1
|
Guo B, Yu W, Xu X, Liu Y, Liu Y, Du G, Liu L, Lv X. Adaptively Evolved and Multiplexed Engineered Saccharomyces cerevisiae for Neutralizer-Free Production of l-Lactic Acid. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:9009-9018. [PMID: 40191959 DOI: 10.1021/acs.jafc.4c12575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
l-Lactic acid is a three-carbon monocarboxylic acid that has extensive applications. However, the bioproduction of l-lactic acid requires the addition of neutralizers, which significantly increases the production costs and can cause environmental pollution. To address this, a Saccharomyces cerevisiae mutant, TMG2, which can tolerate a lactic acid environment (pH 2.60), was obtained through adaptive laboratory evolution. Subsequently, the "push-pull-restrain" strategy was used to improve l-lactic acid production, resulting in a production of 46.8 g/L l-lactic acid. Finally, by overexpressing the transport protein pPfFNT and improving the NADH and acetyl-CoA supply, the l-lactic acid titer of strain TMG27 was improved by 33.8% to 62.6 g/L. Without neutralizers, the l-lactic acid titer reached 76.2 g/L (the fermentation pH was 2.90) with a productivity of 2.1 g/(L h) in a 5-L bioreactor, representing the highest productivity ever reported. Collectively, these results lay the foundation for the environmentally friendly bioproduction of l-lactic acid.
Collapse
Affiliation(s)
- Baoyuan Guo
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Yixing Institute of Food Biotechnology Co., Ltd., Yixing 214200, China
| | - Wenwen Yu
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xianhao Xu
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yujie Liu
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Henan Jindan Lactic Acid Technology Co., Ltd., Dancheng 477100, China
| | - Yanfeng Liu
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Long Liu
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xueqin Lv
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
2
|
Tiedjens F, Menzel M, Stahnke P, Grotewold H, Uzun C, Yildirim D, Beitz E. A Yeast-Based Assay for Inhibitors of l-Lactate Transport Utilizing Fluorescent Biosensors. ChemMedChem 2025; 20:e202400918. [PMID: 39671273 PMCID: PMC11961148 DOI: 10.1002/cmdc.202400918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/13/2024] [Accepted: 12/13/2024] [Indexed: 12/15/2024]
Abstract
Inhibitors of ʟ-lactate transport are in development as a novel mode of action in antitumor therapy and malaria. Previously, we used radiolabeled ʟ-lactate to assay transport via the human monocarboxylate transporter 1, MCT1, and the structurally unrelated malaria parasite's transporter, PfFNT. We encountered a sensitivity limit at IC50 around 100 nM possibly resulting from the required high cell number per sample. Here, we describe a sensitive background-free high-throughput assay in yeast based on fluorescent iLACCO biosensors. We used iLACCO for co-expression and fusions with the transporter protein. Uptake of ʟ-lactate produced strong intensiometric fluorescent responses that could be monitored in cell suspensions using a fluorometer and in individual cells by fluorescence microscopy. The signal decreased dose-dependently in the presence of specific MCT1 and PfFNT inhibitors. Re-evaluation of 36 PfFNT inhibitors yielded IC50 values below 100 nM now matching previous data on Ki compound affinity to isolated transporter protein.
Collapse
Affiliation(s)
- Finn Tiedjens
- Department of Pharmaceutical and Medicinal ChemistryChristian-Albrechts-University of KielGutenbergstr. 7624118KielGermany
| | - Maike Menzel
- Department of Pharmaceutical and Medicinal ChemistryChristian-Albrechts-University of KielGutenbergstr. 7624118KielGermany
| | - Pauline Stahnke
- Department of Pharmaceutical and Medicinal ChemistryChristian-Albrechts-University of KielGutenbergstr. 7624118KielGermany
| | - Hanna Grotewold
- Department of Pharmaceutical and Medicinal ChemistryChristian-Albrechts-University of KielGutenbergstr. 7624118KielGermany
| | - Cane Uzun
- Department of Pharmaceutical and Medicinal ChemistryChristian-Albrechts-University of KielGutenbergstr. 7624118KielGermany
| | - Derya Yildirim
- Department of Pharmaceutical and Medicinal ChemistryChristian-Albrechts-University of KielGutenbergstr. 7624118KielGermany
| | - Eric Beitz
- Department of Pharmaceutical and Medicinal ChemistryChristian-Albrechts-University of KielGutenbergstr. 7624118KielGermany
| |
Collapse
|
3
|
Nerlich C, Tiedjens F, Hertel R, Henke B, Häuer S, Panitzsch LS, Hansen K, Franck O, Mete A, Leroy D, Schade D, Peifer C, Hannus S, Becker F, Wittlin S, Spielmann T, Beitz E. Addressing the Intracellular Vestibule of the Plasmodial Lactate Transporter PfFNT by p-Substituted Inhibitors Amplifies In Vitro Activity. J Med Chem 2024; 67:18368-18383. [PMID: 39361938 PMCID: PMC11513924 DOI: 10.1021/acs.jmedchem.4c01674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/10/2024] [Accepted: 09/19/2024] [Indexed: 10/05/2024]
Abstract
Inhibition of the lactate transporter PfFNT is a valid novel mode of action against malaria parasites. Current pyridine-substituted pentafluoro-3-hydroxy-pent-2-en-1-ones act as substrate analogs with submicromolar EC50 in vitro, and >99.7% activity in mice. The recently solved structure of a PfFNT-inhibitor complex visualized the binding mode. Here, we extended the inhibitor layout by series of amine- and anilide-linked pyridine p-substituents to generate additional interactions in the cytoplasmic vestibule. Virtual docking indicated hydrogen bonding to Tyr31 and Ser102. Fluorescence cross-correlation spectroscopy yielded respectively enhanced target affinity. Strikingly, the in vitro activity increased by 1 order of magnitude to 14.8 nM at negligible cytotoxicity. While p-amine substitutions were rapidly metabolized, the more stable p-acetanilide cleared 99.7% of parasites at 4 × 50 mg kg-1 in a mouse malaria model. Future stabilization of the p-substitution against metabolism may translate the gain in in vitro potency to the in vivo situation.
Collapse
Affiliation(s)
- Cornelius Nerlich
- Department
of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, Gutenbergstr. 76, 24118 Kiel, Germany
| | - Finn Tiedjens
- Department
of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, Gutenbergstr. 76, 24118 Kiel, Germany
| | - Robin Hertel
- Department
of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, Gutenbergstr. 76, 24118 Kiel, Germany
| | - Björn Henke
- Department
of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, Gutenbergstr. 76, 24118 Kiel, Germany
| | - Susan Häuer
- Department
of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, Gutenbergstr. 76, 24118 Kiel, Germany
| | - Lea S. Panitzsch
- Bernhard-Nocht-Institute
for Tropical Medicine, Bernhard-Nocht-Str. 74, 20359 Hamburg, Germany
| | - Kerrin Hansen
- Intana
Bioscience GmbH, Lochhamer
Str. 29a, 82152 Planegg, Germany
| | - Ole Franck
- Department
of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, Gutenbergstr. 76, 24118 Kiel, Germany
| | - Antonio Mete
- Medsyndesign
Ltd, ATIC, 5 Oakwood
Drive, LE11 3QF Loughborough, U.K.
| | - Didier Leroy
- R&D
Department/Drug Discovery, ICC, Medicines
for Malaria Venture (MMV), 20 Route de Pré Bois, 1215 Geneva 15, Switzerland
| | - Dennis Schade
- Department
of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, Gutenbergstr. 76, 24118 Kiel, Germany
| | - Christian Peifer
- Department
of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, Gutenbergstr. 76, 24118 Kiel, Germany
| | - Stefan Hannus
- Intana
Bioscience GmbH, Lochhamer
Str. 29a, 82152 Planegg, Germany
| | - Frank Becker
- Intana
Bioscience GmbH, Lochhamer
Str. 29a, 82152 Planegg, Germany
| | - Sergio Wittlin
- Swiss
Tropical
and Public Health Institute, Kreuzstr. 2, 4123 Allschwil, Switzerland
- University
of Basel, 4003 Basel, Switzerland
| | - Tobias Spielmann
- Bernhard-Nocht-Institute
for Tropical Medicine, Bernhard-Nocht-Str. 74, 20359 Hamburg, Germany
| | - Eric Beitz
- Department
of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, Gutenbergstr. 76, 24118 Kiel, Germany
| |
Collapse
|
4
|
Chen P, Chen Y, Xia N, Fan B, Niu Z, He Z, Wang X, Yuan J, Gupta N, Shen B. A pyruvate transporter in the apicoplast of apicomplexan parasites. Proc Natl Acad Sci U S A 2024; 121:e2314314121. [PMID: 38865262 PMCID: PMC11194499 DOI: 10.1073/pnas.2314314121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 05/13/2024] [Indexed: 06/14/2024] Open
Abstract
Pyruvate lies at a pivotal node of carbon metabolism in eukaryotes. It is involved in diverse metabolic pathways in multiple organelles, and its interorganelle shuttling is crucial for cell fitness. Many apicomplexan parasites harbor a unique organelle called the apicoplast that houses metabolic pathways like fatty acid and isoprenoid precursor biosyntheses, requiring pyruvate as a substrate. However, how pyruvate is supplied in the apicoplast remains enigmatic. Here, deploying the zoonotic parasite Toxoplasma gondii as a model apicomplexan, we identified two proteins residing in the apicoplast membranes that together constitute a functional apicoplast pyruvate carrier (APC) to mediate the import of cytosolic pyruvate. Depletion of APC results in reduced activities of metabolic pathways in the apicoplast and impaired integrity of this organelle, leading to parasite growth arrest. APC is a pyruvate transporter in diverse apicomplexan parasites, suggesting a common strategy for pyruvate acquisition by the apicoplast in these clinically relevant intracellular pathogens.
Collapse
Affiliation(s)
- Pu Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan430070, Hubei Province, People’s Republic of China
- Hubei Hongshan Laboratory, Wuhan 430070, Hubei Province, People’s Republic of China
| | - Yukun Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan430070, Hubei Province, People’s Republic of China
- Hubei Hongshan Laboratory, Wuhan 430070, Hubei Province, People’s Republic of China
| | - Ningbo Xia
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan430070, Hubei Province, People’s Republic of China
| | - Bolin Fan
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan430070, Hubei Province, People’s Republic of China
| | - Zhipeng Niu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan430070, Hubei Province, People’s Republic of China
| | - Zhengming He
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan430070, Hubei Province, People’s Republic of China
| | - Xu Wang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signal Network, School of Life Sciences, Xiamen University, Xiamen361005, Fujian Province, People’s Republic of China
| | - Jing Yuan
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signal Network, School of Life Sciences, Xiamen University, Xiamen361005, Fujian Province, People’s Republic of China
| | - Nishith Gupta
- Intracellular Parasite Education and Research Labs, Department of Biological Sciences, Birla Institute of Technology and Science, Pilani500078, Hyderabad, India
- Department of Molecular Parasitology, Faculty of Life Sciences, Humboldt University, Berlin10115, Germany
| | - Bang Shen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan430070, Hubei Province, People’s Republic of China
- Hubei Hongshan Laboratory, Wuhan 430070, Hubei Province, People’s Republic of China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen518000, Guangdong Province, People’s Republic of China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen518000, Guangdong Province, People’s Republic of China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan430070, Hubei Province, People’s Republic of China
| |
Collapse
|
5
|
Lindblom JR, Zhang X, Lehane AM. A pH Fingerprint Assay to Identify Inhibitors of Multiple Validated and Potential Antimalarial Drug Targets. ACS Infect Dis 2024; 10:1185-1200. [PMID: 38499199 PMCID: PMC11019546 DOI: 10.1021/acsinfecdis.3c00588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/22/2024] [Accepted: 02/09/2024] [Indexed: 03/20/2024]
Abstract
New drugs with novel modes of action are needed to safeguard malaria treatment. In recent years, millions of compounds have been tested for their ability to inhibit the growth of asexual blood-stage Plasmodium falciparum parasites, resulting in the identification of thousands of compounds with antiplasmodial activity. Determining the mechanisms of action of antiplasmodial compounds informs their further development, but remains challenging. A relatively high proportion of compounds identified as killing asexual blood-stage parasites show evidence of targeting the parasite's plasma membrane Na+-extruding, H+-importing pump, PfATP4. Inhibitors of PfATP4 give rise to characteristic changes in the parasite's internal [Na+] and pH. Here, we designed a "pH fingerprint" assay that robustly identifies PfATP4 inhibitors while simultaneously allowing the detection of (and discrimination between) inhibitors of the lactate:H+ transporter PfFNT, which is a validated antimalarial drug target, and the V-type H+ ATPase, which was suggested as a possible target of the clinical candidate ZY19489. In our pH fingerprint assays and subsequent secondary assays, ZY19489 did not show evidence for the inhibition of pH regulation by the V-type H+ ATPase, suggesting that it has a different mode of action in the parasite. The pH fingerprint assay also has the potential to identify protonophores, inhibitors of the acid-loading Cl- transporter(s) (for which the molecular identity(ies) remain elusive), and compounds that act through inhibition of either the glucose transporter PfHT or glycolysis. The pH fingerprint assay therefore provides an efficient starting point to match a proportion of antiplasmodial compounds with their mechanisms of action.
Collapse
Affiliation(s)
| | | | - Adele M. Lehane
- Research School of Biology, Australian National University, Canberra, Australian Capital
Territory 2600, Australia
| |
Collapse
|
6
|
Cheuka PM, Njaria P, Mayoka G, Funjika E. Emerging Drug Targets for Antimalarial Drug Discovery: Validation and Insights into Molecular Mechanisms of Function. J Med Chem 2024; 67:838-863. [PMID: 38198596 DOI: 10.1021/acs.jmedchem.3c01828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Approximately 619,000 malaria deaths were reported in 2021, and resistance to recommended drugs, including artemisinin-combination therapies (ACTs), threatens malaria control. Treatment failure with ACTs has been found to be as high as 93% in northeastern Thailand, and parasite mutations responsible for artemisinin resistance have already been reported in some African countries. Therefore, there is an urgent need to identify alternative treatments with novel targets. In this Perspective, we discuss some promising antimalarial drug targets, including enzymes involved in proteolysis, DNA and RNA metabolism, protein synthesis, and isoprenoid metabolism. Other targets discussed are transporters, Plasmodium falciparum acetyl-coenzyme A synthetase, N-myristoyltransferase, and the cyclic guanosine monophosphate-dependent protein kinase G. We have outlined mechanistic details, where these are understood, underpinning the biological roles and hence druggability of such targets. We believe that having a clear understanding of the underlying chemical interactions is valuable to medicinal chemists in their quest to design appropriate inhibitors.
Collapse
Affiliation(s)
- Peter Mubanga Cheuka
- Department of Chemistry, School of Natural Sciences, University of Zambia, P.O. Box 32379, Lusaka 10101, Zambia
| | - Paul Njaria
- Department of Pharmacognosy and Pharmaceutical Chemistry, Kenyatta University, P.O. Box 14548-00400, Nairobi 00100, Kenya
| | - Godfrey Mayoka
- Department of Pharmacology and Pharmacognosy, School of Pharmacy, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000-00200, Nairobi 00100, Kenya
| | - Evelyn Funjika
- Department of Chemistry, School of Natural Sciences, University of Zambia, P.O. Box 32379, Lusaka 10101, Zambia
| |
Collapse
|
7
|
Özkan M, Yılmaz H, Ergenekon P, Erdoğan EM, Erbakan M. Microbial membrane transport proteins and their biotechnological applications. World J Microbiol Biotechnol 2024; 40:71. [PMID: 38225445 PMCID: PMC10789880 DOI: 10.1007/s11274-024-03891-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/09/2024] [Indexed: 01/17/2024]
Abstract
Because of the hydrophobic nature of the membrane lipid bilayer, the majority of the hydrophilic solutes require special transportation mechanisms for passing through the cell membrane. Integral membrane transport proteins (MTPs), which belong to the Major Intrinsic Protein Family, facilitate the transport of these solutes across cell membranes. MTPs including aquaporins and carrier proteins are transmembrane proteins spanning across the cell membrane. The easy handling of microorganisms enabled the discovery of a remarkable number of transport proteins specific to different substances. It has been realized that these transporters have very important roles in the survival of microorganisms, their pathogenesis, and antimicrobial resistance. Astonishing features related to the solute specificity of these proteins have led to the acceleration of the research on the discovery of their properties and the development of innovative products in which these unique properties are used or imitated. Studies on microbial MTPs range from the discovery and characterization of a novel transporter protein to the mining and screening of them in a large transporter library for particular functions, from simulations and modeling of specific transporters to the preparation of biomimetic synthetic materials for different purposes such as biosensors or filtration membranes. This review presents recent discoveries on microbial membrane transport proteins and focuses especially on formate nitrite transport proteins and aquaporins, and advances in their biotechnological applications.
Collapse
Affiliation(s)
- Melek Özkan
- Environmental Engineering Department, Gebze Technical University, Kocaeli, 41400, Türkiye.
| | - Hilal Yılmaz
- Environmental Engineering Department, Gebze Technical University, Kocaeli, 41400, Türkiye
| | - Pınar Ergenekon
- Environmental Engineering Department, Gebze Technical University, Kocaeli, 41400, Türkiye
| | - Esra Meşe Erdoğan
- Environmental Engineering Department, Gebze Technical University, Kocaeli, 41400, Türkiye
| | - Mustafa Erbakan
- Biosystem Engineering Department, Bozok University, Yozgat , 66900, Türkiye
| |
Collapse
|
8
|
Henshall IG, Spielmann T. Critical interdependencies between Plasmodium nutrient flux and drugs. Trends Parasitol 2023; 39:936-944. [PMID: 37716852 PMCID: PMC10580322 DOI: 10.1016/j.pt.2023.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/18/2023]
Abstract
Nutrient import and waste efflux are critical dependencies for intracellular Plasmodium falciparum parasites. Nutrient transport proteins are often lineage specific and can provide unique targets for antimalarial drug development. P. falciparum nutrient transport pathways can be a double-edged sword for the parasite, not only mediating the import of nutrients and excretion of waste products but also providing an access route for drugs. Here we briefly summarise the nutrient acquisition pathways of intracellular P. falciparum blood-stage parasites and then highlight how these pathways influence many aspects relevant to antimalarial drugs, resulting in complex and often underappreciated interdependencies.
Collapse
Affiliation(s)
| | - Tobias Spielmann
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.
| |
Collapse
|
9
|
Davies H, Bergmann B, Walloch P, Nerlich C, Hansen C, Wittlin S, Spielmann T, Treeck M, Beitz E. The Plasmodium Lactate/H + Transporter PfFNT Is Essential and Druggable In Vivo. Antimicrob Agents Chemother 2023; 67:e0035623. [PMID: 37428074 PMCID: PMC10433847 DOI: 10.1128/aac.00356-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/19/2023] [Indexed: 07/11/2023] Open
Abstract
Malaria parasites in the blood stage express a single transmembrane transport protein for the release of the glycolytic end product l-lactate/H+ from the cell. This transporter is a member of the strictly microbial formate-nitrite transporter (FNT) family and a novel putative drug target. Small, drug-like FNT inhibitors potently block lactate transport and kill Plasmodium falciparum parasites in culture. The protein structure of Plasmodium falciparum FNT (PfFNT) in complex with the inhibitor has been resolved and confirms its previously predicted binding site and its mode of action as a substrate analog. Here, we investigated the mutational plasticity and essentiality of the PfFNT target on a genetic level, and established its in vivo druggability using mouse malaria models. We found that, besides a previously identified PfFNT G107S resistance mutation, selection of parasites at 3 × IC50 (50% inhibitory concentration) gave rise to two new point mutations affecting inhibitor binding: G21E and V196L. Conditional knockout and mutation of the PfFNT gene showed essentiality in the blood stage, whereas no phenotypic defects in sexual development were observed. PfFNT inhibitors mainly targeted the trophozoite stage and exhibited high potency in P. berghei- and P. falciparum-infected mice. Their in vivo activity profiles were comparable to that of artesunate, demonstrating strong potential for the further development of PfFNT inhibitors as novel antimalarials.
Collapse
Affiliation(s)
- Heledd Davies
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Bärbel Bergmann
- Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Germany
| | - Philipp Walloch
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Cornelius Nerlich
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Christian Hansen
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Sergio Wittlin
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Tobias Spielmann
- Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Germany
| | - Moritz Treeck
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, United Kingdom
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Eric Beitz
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, Kiel, Germany
| |
Collapse
|
10
|
Hu J, Li G, Liu Z, Ma H, Yuan W, Lu Z, Zhang D, Ling H, Zhang F, Liu Y, Liu C, Qiu Y. Bicarbonate transporter SLC4A7 promotes EMT and metastasis of HNSCC by activating the PI3K/AKT/mTOR signaling pathway. Mol Carcinog 2023; 62:628-640. [PMID: 36727616 DOI: 10.1002/mc.23511] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 02/03/2023]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide. Currently, therapeutic modalities such as surgery, chemotherapy, radiotherapy, and immunotherapy are being used to treat HNSCC. However, the treatment outcomes of most patients are dismal because they are already in middle or advanced stage by the time of diagnosis and poorly responsive to treatments. It is therefore of great interest to clarify mechanisms that contribute to the metastasis of cells to identify possible targets for therapy. In this study, we identified the Na+ -coupled bicarbonate transporter, SLC4A7, play essential roles in the metastasis of HNSCC. Our results showed that the relative expression of SLC4A7 messenger RNA was highly expressed in HNSCCs samples from TCGA, and compared with precancerous cells of human oral mucosa (DOK), SLC4A7 was highly expressed in HNSCC cell lines. In vitro and in vivo experiments showed that dysregulation of SLC4A7 had minor influence on the proliferation of HNSCC but impacted HNSCC's migration and invasion. Meanwhile, SLC4A7 could promote epithelial-mesenchymal transition (EMT) in HNSCC. RNA-seq, KEGG pathway enrichment analysis and Western blot further revealed that downregulation of SLC4A7 in HNSCC cells inhibited the PI3K/AKT pathway. These findings were further validated via rescue experiments using a small molecule inhibitor of PI3K/mTOR (GDC-0980). Our findings suggest that SLC4A7 promotes EMT and metastasis of HNSCC through the PI3K/AKT/mTOR signaling pathway, which may be a valuable predictive biomarker and potential therapeutic target in HNSCC.
Collapse
Affiliation(s)
- Junli Hu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, China.,Department of Otolaryngology Head and Neck Surgery, Yantian District People's Hospital, Shenzhen, Guangdong, China
| | - Guo Li
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhifeng Liu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, China
| | - Huiling Ma
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, China
| | - Wenhui Yuan
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, China
| | - Zhaoyi Lu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, China
| | - Diekuo Zhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, China
| | - Hang Ling
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, China
| | - Fengyu Zhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, China
| | - Yong Liu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Chao Liu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yuanzheng Qiu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
11
|
Local Attraction of Substrates and Co-Substrates Enhances Weak Acid and Base Transmembrane Transport. Biomolecules 2022; 12:biom12121794. [PMID: 36551222 PMCID: PMC9775063 DOI: 10.3390/biom12121794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
The transmembrane transport of weak acid and base metabolites depends on the local pH conditions that affect the protonation status of the substrates and the availability of co-substrates, typically protons. Different protein designs ensure the attraction of substrates and co-substrates to the transporter entry sites. These include electrostatic surface charges on the transport proteins and complexation with seemingly transport-unrelated proteins that provide substrate and/or proton antenna, or enzymatically generate substrates in place. Such protein assemblies affect transport rates and directionality. The lipid membrane surface also collects and transfers protons. The complexity in the various systems enables adjustability and regulation in a given physiological or pathophysiological situation. This review describes experimentally shown principles in the attraction and facilitation of weak acid and base transport substrates, including monocarboxylates, ammonium, bicarbonate, and arsenite, plus protons as a co-substrate.
Collapse
|
12
|
Kammel M, Pinske C, Sawers RG. FocA and its central role in fine-tuning pH homeostasis of enterobacterial formate metabolism. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 36197793 DOI: 10.1099/mic.0.001253] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
During enterobacterial mixed-acid fermentation, formate is generated from pyruvate by the glycyl-radical enzyme pyruvate formate-lyase (PflB). In Escherichia coli, especially at low pH, formate is then disproportionated to CO2 and H2 by the cytoplasmically oriented, membrane-associated formate hydrogenlyase (FHL) complex. If electron acceptors are available, however, formate is oxidized by periplasmically oriented, respiratory formate dehydrogenases. Formate translocation across the cytoplasmic membrane is controlled by the formate channel, FocA, a member of the formate-nitrite transporter (FNT) family of homopentameric anion channels. This review highlights recent advances in our understanding of how FocA helps to maintain intracellular formate and pH homeostasis during fermentation. Efflux and influx of formate/formic acid are distinct processes performed by FocA and both are controlled through protein interaction between FocA's N-terminal domain with PflB. Formic acid efflux by FocA helps to maintain cytoplasmic pH balance during exponential-phase growth. Uptake of formate against the electrochemical gradient (inside negative) is energetically and mechanistically challenging for a fermenting bacterium unless coupled with proton/cation symport. Translocation of formate/formic acid into the cytoplasm necessitates an active FHL complex, whose synthesis also depends on formate. Thus, FocA, FHL and PflB function together to govern formate homeostasis. We explain how FocA achieves efflux of formic acid and propose mechanisms for pH-dependent uptake of formate both with and without proton symport. We propose that FocA displays both channel- and transporter-like behaviour. Whether this translocation behaviour is shared by other members of the FNT family is also discussed.
Collapse
Affiliation(s)
- Michelle Kammel
- Institute of Microbiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Constanze Pinske
- Institute of Microbiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - R Gary Sawers
- Institute of Microbiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
13
|
Jiang X. An overview of the Plasmodium falciparum hexose transporter and its therapeutic interventions. Proteins 2022; 90:1766-1778. [PMID: 35445447 PMCID: PMC9790349 DOI: 10.1002/prot.26351] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/22/2022] [Accepted: 03/30/2022] [Indexed: 12/30/2022]
Abstract
Despite intense elimination efforts, human malaria, caused by the infection of five Plasmodium species, remains the deadliest parasitic disease in the world. Even worse, with the emergence and spreading of the first-line drug-resistant Plasmodium parasites, therapeutic interventions based on novel plasmodial drug targets are more necessary than ever. Given that the blood-stage parasites primarily rely on glycolysis for their energy supply, blocking glucose uptake, the rate-limiting step of ATP generation, was considered a promising approach to kill these parasites. To achieve this goal, characterization of the plasmodial hexose transporter and development of selective inhibitors have been pursued for decades. Here, we review the identification and characterization of the Plasmodium falciparum hexose transporter (PfHT1) and summarize current advances in its inhibitor development.
Collapse
Affiliation(s)
- Xin Jiang
- School of Biotechnology and Biomolecular Sciencesthe University of New South WalesSydneyNew South Wales
| |
Collapse
|
14
|
Ma Y, Lee E, Yoshikawa H, Noda T, Miyamoto J, Kimura I, Hatano R, Miki T. Phloretin suppresses carbohydrate-induced GLP-1 secretion via inhibiting short chain fatty acid release from gut microbiome. Biochem Biophys Res Commun 2022; 621:176-182. [DOI: 10.1016/j.bbrc.2022.06.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/19/2022] [Accepted: 06/21/2022] [Indexed: 11/30/2022]
|
15
|
Huynh MH, Carruthers VB. Toxoplasma gondii excretion of glycolytic products is associated with acidification of the parasitophorous vacuole during parasite egress. PLoS Pathog 2022; 18:e1010139. [PMID: 35512005 PMCID: PMC9113570 DOI: 10.1371/journal.ppat.1010139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 05/17/2022] [Accepted: 03/28/2022] [Indexed: 11/19/2022] Open
Abstract
The Toxoplasma gondii lytic cycle is a repetition of host cell invasion, replication, egress, and re-invasion into the next host cell. While the molecular players involved in egress have been studied in greater detail in recent years, the signals and pathways for triggering egress from the host cell have not been fully elucidated. A perforin-like protein, PLP1, has been shown to be necessary for permeabilizing the parasitophorous vacuole (PV) membrane or exit from the host cell. In vitro studies indicated that PLP1 is most active in acidic conditions, and indirect evidence using superecliptic pHluorin indicated that the PV pH drops prior to parasite egress. Using ratiometric pHluorin, a GFP variant that responds to changes in pH with changes in its bimodal excitation spectrum peaks, allowed us to directly measure the pH in the PV prior to and during egress by live-imaging microscopy. A statistically significant change was observed in PV pH during ionomycin or zaprinast induced egress in both wild-type RH and Δplp1 vacuoles compared to DMSO-treated vacuoles. Interestingly, if parasites are chemically paralyzed, a pH drop is still observed in RH but not in Δplp1 tachyzoites. This indicates that the pH drop is dependent on the presence of PLP1 or motility. Efforts to determine transporters, exchangers, or pumps that could contribute to the drop in PV pH identified two formate-nitrite transporters (FNTs). Auxin induced conditional knockdown and knockouts of FNT1 and FNT2 reduced the levels of lactate and pyruvate released by the parasites and lead to an abatement of vacuolar acidification. While additional transporters and molecules are undoubtedly involved, we provide evidence of a definitive reduction in vacuolar pH associated with induced and natural egress and characterize two transporters that contribute to the acidification. Toxoplasma gondii is a single celled intracellular parasite that infects many different animals, and it is thought to infect up to one third of the human population. This parasite must rupture out of its replicative compartment and the host cell to spread from one cell to another. Previous studies indicated that a decrease in pH occurs within the replicative compartment near the time of parasite exit from host cells, an event termed egress. However, it remained unknown whether the decrease in pH is directly tied to egress and, if so, what is responsible for the decrease in pH. Here we used a fluorescent reporter protein to directly measure pH within the replicative compartment during parasite egress. We found that pH decreases immediately prior to parasite egress and that this decrease is linked to parasite disruption of membranes. We also identified a family of transporters that release acidic products from parasite use of glucose for energy as contributing to the decrease in pH during egress. Our findings provide new insight that connects parasite glucose metabolism to acidification of its replicative compartment during egress from infected cells.
Collapse
Affiliation(s)
- My-Hang Huynh
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Vern B. Carruthers
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
16
|
Kammel M, Sawers RG. The FocA channel functions to maintain intracellular formate homeostasis during Escherichia coli fermentation. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35377837 DOI: 10.1099/mic.0.001168] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
FocA translocates formate/formic acid bi-directionally across the cytoplasmic membrane when Escherichia coli grows by fermentation. It remains unclear, however, what physiological benefit is imparted by FocA, because formic acid (pK a=3.75) can diffuse passively across the membrane, especially at low pH. Here, we monitored changes in intra- and extracellular formate levels during batch-culture fermentation, comparing a parental E. coli K-12 strain with its isogenic focA mutant. Our results show that, regardless of the initial pH in the culture, FocA functions to maintain relatively constant intracellular formate levels during growth. Analysis of a strain synthesizing a FocAT91A variant with an exchange in a conserved threonine residue within the translocation pore revealed the strain accumulated formate intracellularly and imported formate poorly, but in a pH-dependent manner, which was different to uptake by native FocA. We conclude that FocA maintains formate homeostasis, using different mechanisms for efflux and uptake of the anion.
Collapse
Affiliation(s)
- Michelle Kammel
- Institute for Biology/Microbiology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3 06120 Halle (Saale), Germany
| | - R Gary Sawers
- Institute for Biology/Microbiology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3 06120 Halle (Saale), Germany
| |
Collapse
|
17
|
Kammel M, Trebbin O, Pinske C, Sawers RG. A single amino acid exchange converts FocA into a unidirectional efflux channel for formate. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35084298 PMCID: PMC8914244 DOI: 10.1099/mic.0.001132] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
During mixed-acid fermentation, Escherichia coli initially translocates formate out of the cell, but re-imports it at lower pH. This is performed by FocA, the archetype of the formate-nitrite transporter (FNT) family of pentameric anion channels. Each protomer of FocA has a hydrophobic pore through which formate/formic acid is bidirectionally translocated. It is not understood how the direction of formate/formic acid passage through FocA is controlled by pH. A conserved histidine residue (H209) is located within the translocation pore, suggesting that protonation/deprotonation might be linked to the direction of formate translocation. Using a formate-responsive lacZ-based reporter system we monitored changes in formate levels in vivo when H209 in FocA was exchanged for either of the non-protonatable amino acids asparagine or glutamine, which occur naturally in some FNTs. These FocA variants (with N or Q) functioned as highly efficient formate efflux channels and the bacteria could neither accumulate formate nor produce hydrogen gas. Therefore, the data in this study suggest that this central histidine residue within the FocA pore is required for pH-dependent formate uptake into E. coli cells. We also address why H209 is evolutionarily conserved and provide a physiological rationale for the natural occurrence of N/Q variants of FNT channels.
Collapse
Affiliation(s)
- Michelle Kammel
- Institute for Biology/Microbiology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle (Saale), Germany
| | - Oliver Trebbin
- Institute for Biology/Microbiology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle (Saale), Germany
- Present address: IMD Laboratory Oderland GmbH, Am Kleistpark 1, Frankfurt (Oder), Germany
| | - Constanze Pinske
- Institute for Biology/Microbiology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle (Saale), Germany
| | - R. Gary Sawers
- Institute for Biology/Microbiology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle (Saale), Germany
- *Correspondence: R. Gary Sawers,
| |
Collapse
|
18
|
Geistlinger K, Schmidt JDR, Beitz E. Lactic Acid Permeability of Aquaporin-9 Enables Cytoplasmic Lactate Accumulation via an Ion Trap. Life (Basel) 2022; 12:life12010120. [PMID: 35054513 PMCID: PMC8779662 DOI: 10.3390/life12010120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/08/2022] [Accepted: 01/12/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Background: Human aquaporin-9 (AQP9) conducts several small uncharged metabolites, such as glycerol, urea, and lactic acid. Certain brain tumors were shown to upregulate AQP9 expression, and the putative increase in lactic acid permeability was assigned to severity. (2) Methods: We expressed AQP9 and human monocarboxylate transporter 1 (MCT1) in yeast to determine the uptake rates and accumulation of radiolabeled l-lactate/l-lactic acid in different external pH conditions. (3) Results: The AQP9-mediated uptake of l-lactic acid was slow compared to MCT1 at neutral and slightly acidic pH, due to low concentrations of the neutral substrate species. At a pH corresponding to the pKa of l-lactic acid, uptake via AQP9 was faster than via MCT1. Substrate accumulation was fundamentally different between AQP9 and MCT1. With MCT1, an equilibrium was reached, at which the intracellular and extracellular l-lactate/H+ concentrations were balanced. Uptake via AQP9 was linear, theoretically yielding orders of magnitude of higher substrate accumulation than MCT1. (4) Conclusions: The selectivity of AQP9 for neutral l-lactic acid establishes an ion trap for l-lactate after dissociation. This may be physiologically relevant if the transmembrane proton gradient is steep, and AQP9 acts as the sole uptake path on at least one side of a polarized cell.
Collapse
|
19
|
Schmidt JDR, Beitz E. Mutational Widening of Constrictions in a Formate-Nitrite/H + Transporter Enables Aquaporin-Like Water Permeability and Proton Conductance. J Biol Chem 2021; 298:101513. [PMID: 34929166 PMCID: PMC8749060 DOI: 10.1016/j.jbc.2021.101513] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 11/30/2022] Open
Abstract
The unrelated protein families of the microbial formate–nitrite transporters (FNTs) and aquaporins (AQP) likely adapted the same protein fold through convergent evolution. FNTs facilitate weak acid anion/H+ cotransport, whereas AQP water channels strictly exclude charged substrates including protons. The FNT channel–like transduction pathway bears two lipophilic constriction sites that sandwich a highly conserved histidine residue. Because of lacking experiments, the function of these constrictions is unclear, and the protonation status of the central histidine during substrate transport remains a matter of debate. Here, we introduced constriction-widening mutations into the prototypical FNT from Escherichia coli, FocA, and assayed formate/H+ transport properties, water/solute permeability, and proton conductance. We found that enlargement of these constrictions concomitantly decreased formate/formic acid transport. In contrast to wildtype FocA, the mutants were unable to make use of a transmembrane proton gradient as a driving force. A construct in which both constrictions were eliminated exhibited water permeability, similar to AQPs, although accompanied by a proton conductance. Our data indicate that the lipophilic constrictions mainly act as barriers to isolate the central histidine from the aqueous bulk preventing protonation via proton wires. These results are supportive of an FNT transport model in which the central histidine is uncharged, and weak acid substrate anion protonation occurs in the vestibule regions of the transporter before passing the constrictions.
Collapse
Affiliation(s)
- Jana D R Schmidt
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany
| | - Eric Beitz
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany.
| |
Collapse
|
20
|
Nerlich C, Epalle NH, Seick P, Beitz E. Discovery and Development of Inhibitors of the Plasmodial FNT-Type Lactate Transporter as Novel Antimalarials. Pharmaceuticals (Basel) 2021; 14:1191. [PMID: 34832972 PMCID: PMC8624176 DOI: 10.3390/ph14111191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/17/2021] [Accepted: 11/17/2021] [Indexed: 11/19/2022] Open
Abstract
Plasmodium spp. malaria parasites in the blood stage draw energy from anaerobic glycolysis when multiplying in erythrocytes. They tap the ample glucose supply of the infected host using the erythrocyte glucose transporter 1, GLUT1, and a hexose transporter, HT, of the parasite's plasma membrane. Per glucose molecule, two lactate anions and two protons are generated as waste that need to be released rapidly from the parasite to prevent blockage of the energy metabolism and acidification of the cytoplasm. Recently, the missing Plasmodium lactate/H+ cotransporter was identified as a member of the exclusively microbial formate-nitrite transporter family, FNT. Screening of an antimalarial compound selection with unknown targets led to the discovery of specific and potent FNT-inhibitors, i.e., pentafluoro-3-hydroxy-pent-2-en-1-ones. Here, we summarize the discovery and further development of this novel class of antimalarials, their modes of binding and action, circumvention of a putative resistance mutation of the FNT target protein, and suitability for in vivo studies using animal malaria models.
Collapse
Affiliation(s)
| | | | | | - Eric Beitz
- Department of Pharmaceutical and Medicinal Chemistry, Pharmaceutical Institute, Christian-Albrechts-University of Kiel, Gutenbergstr. 76, 24118 Kiel, Germany; (C.N.); (N.H.E.); (P.S.)
| |
Collapse
|
21
|
Structural characterization of the Plasmodium falciparum lactate transporter PfFNT alone and in complex with antimalarial compound MMV007839 reveals its inhibition mechanism. PLoS Biol 2021; 19:e3001386. [PMID: 34499638 PMCID: PMC8428694 DOI: 10.1371/journal.pbio.3001386] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 08/04/2021] [Indexed: 02/05/2023] Open
Abstract
Plasmodium falciparum, the deadliest causal agent of malaria, caused more than half of the 229 million malaria cases worldwide in 2019. The emergence and spreading of frontline drug-resistant Plasmodium strains are challenging to overcome in the battle against malaria and raise urgent demands for novel antimalarial agents. The P. falciparum formate-nitrite transporter (PfFNT) is a potential drug target due to its housekeeping role in lactate efflux during the intraerythrocytic stage. Targeting PfFNT, MMV007839 was identified as a lead compound that kills parasites at submicromolar concentrations. Here, we present 2 cryogenic-electron microscopy (cryo-EM) structures of PfFNT, one with the protein in its apo form and one with it in complex with MMV007839, both at 2.3 Å resolution. Benefiting from the high-resolution structures, our study provides the molecular basis for both the lactate transport of PfFNT and the inhibition mechanism of MMV007839, which facilitates further antimalarial drug design.
Collapse
|
22
|
Jakobowska I, Becker F, Minguzzi S, Hansen K, Henke B, Epalle NH, Beitz E, Hannus S. Fluorescence Cross-Correlation Spectroscopy Yields True Affinity and Binding Kinetics of Plasmodium Lactate Transport Inhibitors. Pharmaceuticals (Basel) 2021; 14:ph14080757. [PMID: 34451854 PMCID: PMC8399565 DOI: 10.3390/ph14080757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 01/13/2023] Open
Abstract
Blocking lactate export in the parasitic protozoan Plasmodium falciparum is a novel strategy to combat malaria. We discovered small drug-like molecules that inhibit the sole plasmodial lactate transporter, PfFNT, and kill parasites in culture. The pentafluoro-3-hydroxy-pent-2-en-1-one BH296 blocks PfFNT with nanomolar efficiency but an in vitro selected PfFNT G107S mutation confers resistance against the drug. We circumvented the mutation by introducing a nitrogen atom as a hydrogen bond acceptor site into the aromatic ring of the inhibitor yielding BH267.meta. The current PfFNT inhibitor efficiency values were derived from yeast-based lactate transport assays, yet direct affinity and binding kinetics data are missing. Here, we expressed PfFNT fused with a green fluorescent protein in human embryonic kidney cells and generated fluorescent derivatives of the inhibitors, BH296 and BH267.meta. Using confocal imaging, we confirmed the location of the proposed binding site at the cytosolic transporter entry site. We then carried out fluorescence cross-correlation spectroscopy measurements to assign true Ki-values, as well as kon and koff rate constants for inhibitor binding to PfFNT wildtype and the G107S mutant. BH296 and BH267.meta gave similar rate constants for binding to PfFNT wildtype. BH296 was inactive on PfFNT G107S, whereas BH267.meta bound the mutant protein albeit with weaker affinity than to PfFNT wildtype. Eventually, using a set of PfFNT inhibitor compounds, we found a robust correlation of the results from the biophysical FCCS binding assay to inhibition data of the functional transport assay.
Collapse
Affiliation(s)
- Iga Jakobowska
- Intana Bioscience GmbH, Lochhamer Str. 29a, 82152 Planegg, Germany; (I.J.); (F.B.); (S.M.); (K.H.)
| | - Frank Becker
- Intana Bioscience GmbH, Lochhamer Str. 29a, 82152 Planegg, Germany; (I.J.); (F.B.); (S.M.); (K.H.)
| | - Stefano Minguzzi
- Intana Bioscience GmbH, Lochhamer Str. 29a, 82152 Planegg, Germany; (I.J.); (F.B.); (S.M.); (K.H.)
| | - Kerrin Hansen
- Intana Bioscience GmbH, Lochhamer Str. 29a, 82152 Planegg, Germany; (I.J.); (F.B.); (S.M.); (K.H.)
| | - Björn Henke
- Pharmaceutical Institute, Christian-Albrechts-University of Kiel, Gutenbergstr. 76, 24118 Kiel, Germany; (B.H.); (N.H.E.)
| | - Nathan Hugo Epalle
- Pharmaceutical Institute, Christian-Albrechts-University of Kiel, Gutenbergstr. 76, 24118 Kiel, Germany; (B.H.); (N.H.E.)
| | - Eric Beitz
- Pharmaceutical Institute, Christian-Albrechts-University of Kiel, Gutenbergstr. 76, 24118 Kiel, Germany; (B.H.); (N.H.E.)
- Correspondence: (E.B.); (S.H.)
| | - Stefan Hannus
- Intana Bioscience GmbH, Lochhamer Str. 29a, 82152 Planegg, Germany; (I.J.); (F.B.); (S.M.); (K.H.)
- Correspondence: (E.B.); (S.H.)
| |
Collapse
|
23
|
Soares-Silva I, Ribas D, Sousa-Silva M, Azevedo-Silva J, Rendulić T, Casal M. Membrane transporters in the bioproduction of organic acids: state of the art and future perspectives for industrial applications. FEMS Microbiol Lett 2021; 367:5873408. [PMID: 32681640 PMCID: PMC7419537 DOI: 10.1093/femsle/fnaa118] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 07/17/2020] [Indexed: 12/16/2022] Open
Abstract
Organic acids such as monocarboxylic acids, dicarboxylic acids or even more complex molecules such as sugar acids, have displayed great applicability in the industry as these compounds are used as platform chemicals for polymer, food, agricultural and pharmaceutical sectors. Chemical synthesis of these compounds from petroleum derivatives is currently their major source of production. However, increasing environmental concerns have prompted the production of organic acids by microorganisms. The current trend is the exploitation of industrial biowastes to sustain microbial cell growth and valorize biomass conversion into organic acids. One of the major bottlenecks for the efficient and cost-effective bioproduction is the export of organic acids through the microbial plasma membrane. Membrane transporter proteins are crucial elements for the optimization of substrate import and final product export. Several transporters have been expressed in organic acid-producing species, resulting in increased final product titers in the extracellular medium and higher productivity levels. In this review, the state of the art of plasma membrane transport of organic acids is presented, along with the implications for industrial biotechnology.
Collapse
Affiliation(s)
- I Soares-Silva
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal.,Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
| | - D Ribas
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal.,Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
| | - M Sousa-Silva
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal.,Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
| | - J Azevedo-Silva
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal.,Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
| | - T Rendulić
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal.,Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
| | - M Casal
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal.,Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
| |
Collapse
|
24
|
Köpnick AL, Geistlinger K, Beitz E. Cysteine 159 delineates a hinge region of the alternating access monocarboxylate transporter 1 and is targeted by cysteine-modifying inhibitors. FEBS J 2021; 288:6052-6062. [PMID: 33999492 DOI: 10.1111/febs.16024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/14/2021] [Accepted: 05/14/2021] [Indexed: 12/16/2022]
Abstract
Monocarboxylate transporter isoforms 1-4, MCT, of the solute carrier SLC16A family facilitate proton-coupled transport of l-lactate. Growth of tumors that exhibit the Warburg effect, that is, high rates of anaerobic glycolysis despite availability of oxygen, relies on swift l-lactate export, whereas oxygenic cancer cells import circulating l-lactate as a fuel. Currently, MCTs are viewed as promising anticancer targets. Small-molecule inhibitors have been found, and, recently, high-resolution protein structures have been obtained. Key questions, however, regarding the exact binding sites of cysteine-modifying inhibitors and the substrate translocation cycle lack a conclusive experimental basis. Here, we report Cys159 of the ubiquitous human MCT1 to reside in a critical hinge region of the alternating access-type transporter. We identified Cys159 as the binding site of the organomercurial pCMBS. The inhibitory effect of pCMBS was proposed to be indirect via modification of the chaperone basigin. We provide evidence that pCMBS locks MCT1 in its outward open conformation in a wedge-like fashion. We corroborated this finding using smaller cysteine-modifying reagents that size-dependently inhibited l-lactate transport. The smallest modifiers targeted additional cysteines as shown by a C159S mutant. We found a Cys399/Cys400 pair to constitute the second hinge of the transporter that tolerated only individual replacement by serine. The hinge cysteines, in particular the selectively addressable Cys159, provide natural anchors for placing probes into MCTs to report, for instance, on the electrostatics or hydration upon binding of the transported l-lactate substrate and the proton cosubstrate.
Collapse
Affiliation(s)
- Anna-Lena Köpnick
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, Germany
| | - Katharina Geistlinger
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, Germany
| | - Eric Beitz
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, Germany
| |
Collapse
|
25
|
Beitz E. Structure memes: Intuitive visualization of sequence logo and subfamily logo information in a 3D protein-structural context. Proteins 2021; 89:1262-1269. [PMID: 33993538 DOI: 10.1002/prot.26147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 11/09/2022]
Abstract
The number of available protein sequences covering virtually all known species is tremendous and ever growing due to the feasibility of the underlying nucleotide sequencing. The speed at which protein structures are being determined is increasing, and as a result of refined cryo-electron microscopy the proportion of solved membrane protein folds is expanding. Sequence data are used to illustrate evolution and to group proteins into families with various levels of subfamilies. Structure data of prototypical proteins provide insight into function brought about by an interplay of specific amino acid residues that are dispersed throughout the sequence. Visually combining rich sequence information with structure data in an intuitively comprehensible way would enhance the process of elucidating key protein aspects regarding evolution, sequence relations, and function. Here, a method is described that projects the information contained in sequence logos and subfamily logos onto protein structures. The amino acid composition at a site is encoded by a mix color in the red-yellow-blue space and the information content is presented by the radius of a sphere at the α-carbon position. The resulting display is termed "structure meme." The underlying sequence and atom coordinate data are retained in the file for simple retrieval on demand using a molecular structure visualization program. Structure memes are recognizable and convey extensive information in a human-discernable way that requires little training.
Collapse
Affiliation(s)
- Eric Beitz
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University, Kiel, Germany
| |
Collapse
|
26
|
Walloch P, Hansen C, Priegann T, Schade D, Beitz E. Pentafluoro-3-hydroxy-pent-2-en-1-ones Potently Inhibit FNT-Type Lactate Transporters from all Five Human-Pathogenic Plasmodium Species. ChemMedChem 2021; 16:1283-1289. [PMID: 33336890 PMCID: PMC8247949 DOI: 10.1002/cmdc.202000952] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Indexed: 12/16/2022]
Abstract
The protozoan parasite Plasmodium falciparum causes the most severe and prevailing form of malaria in sub-Saharan Africa. Previously, we identified the plasmodial lactate transporter, PfFNT, a member of the microbial formate-nitrite transporter family, as a novel antimalarial drug target. With the pentafluoro-3-hydroxy-pent-2-en-1-ones, we discovered PfFNT inhibitors that potently kill P. falciparum parasites in vitro. Four additional human-pathogenic Plasmodium species require attention, that is, P. vivax, most prevalent outside of Africa, and the regional P. malariae, P. ovale and P. knowlesi. Herein, we show that the plasmodial FNT variants are highly similar in terms of protein sequence and functionality. The FNTs from all human-pathogenic plasmodia and the rodent malaria parasite were efficiently inhibited by pentafluoro-3-hydroxy-pent-2-en-1-ones. We further established a phenotypic yeast-based FNT inhibitor screen, and found very low compound cytotoxicity and monocarboxylate transporter 1 off-target activity on human cells, particularly of the most potent FNT inhibitor BH267.meta, allowing these compounds to proceed towards animal model malaria studies.
Collapse
Affiliation(s)
- Philipp Walloch
- Department of Pharmaceutical and Medicinal ChemistryChristian-Albrechts-University of KielGutenbergstr. 7624118KielGermany
| | - Christian Hansen
- Department of Pharmaceutical and Medicinal ChemistryChristian-Albrechts-University of KielGutenbergstr. 7624118KielGermany
| | - Till Priegann
- Department of Pharmaceutical and Medicinal ChemistryChristian-Albrechts-University of KielGutenbergstr. 7624118KielGermany
| | - Dennis Schade
- Department of Pharmaceutical and Medicinal ChemistryChristian-Albrechts-University of KielGutenbergstr. 7624118KielGermany
| | - Eric Beitz
- Department of Pharmaceutical and Medicinal ChemistryChristian-Albrechts-University of KielGutenbergstr. 7624118KielGermany
| |
Collapse
|
27
|
Köpnick AL, Jansen A, Geistlinger K, Epalle NH, Beitz E. Basigin drives intracellular accumulation of l-lactate by harvesting protons and substrate anions. PLoS One 2021; 16:e0249110. [PMID: 33770122 PMCID: PMC7996999 DOI: 10.1371/journal.pone.0249110] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/11/2021] [Indexed: 12/22/2022] Open
Abstract
Transmembrane transport of l-lactate by members of the monocarboxylate transporter family, MCT, is vital in human physiology and a malignancy factor in cancer. Interaction with an accessory protein, typically basigin, is required to deliver the MCT to the plasma membrane. It is unknown whether basigin additionally exerts direct effects on the transmembrane l-lactate transport of MCT1. Here, we show that the presence of basigin leads to an intracellular accumulation of l-lactate 4.5-fold above the substrate/proton concentrations provided by the external buffer. Using basigin truncations we localized the effect to arise from the extracellular Ig-I domain. Identification of surface patches of condensed opposite electrostatic potential, and experimental analysis of charge-affecting Ig-I mutants indicated a bivalent harvesting antenna functionality for both, protons and substrate anions. From these data, and determinations of the cytosolic pH with a fluorescent probe, we conclude that the basigin Ig-I domain drives lactate uptake by locally increasing the proton and substrate concentration at the extracellular MCT entry site. The biophysical properties are physiologically relevant as cell growth on lactate media was strongly promoted in the presence of the Ig-I domain. Lack of the domain due to shedding, or misfolding due to breakage of a stabilizing disulfide bridge reversed the effect. Tumor progression according to classical or reverse Warburg effects depends on the transmembrane l-lactate distribution, and this study shows that the basigin Ig-I domain is a pivotal determinant.
Collapse
Affiliation(s)
- Anna-Lena Köpnick
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Annika Jansen
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Katharina Geistlinger
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Nathan Hugo Epalle
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Eric Beitz
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, Kiel, Germany
| |
Collapse
|
28
|
Identifying the major lactate transporter of Toxoplasma gondii tachyzoites. Sci Rep 2021; 11:6787. [PMID: 33762657 PMCID: PMC7991638 DOI: 10.1038/s41598-021-86204-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 03/10/2021] [Indexed: 11/09/2022] Open
Abstract
Toxoplasma gondii and Plasmodium falciparum parasites both extrude l-lactate, a byproduct of glycolysis. The P. falciparum Formate Nitrite Transporter, PfFNT, mediates l-lactate transport across the plasma membrane of P. falciparum parasites and has been validated as a drug target. The T. gondii genome encodes three FNTs that have been shown to transport l-lactate, and which are proposed to be the targets of several inhibitors of T. gondii proliferation. Here, we show that each of the TgFNTs localize to the T. gondii plasma membrane and are capable of transporting l-lactate across it, with TgFNT1 making the primary contribution to l-lactate transport during the disease-causing lytic cycle of the parasite. We use the Xenopus oocyte expression system to provide direct measurements of l-lactate transport via TgFNT1. We undertake a genetic analysis of the importance of the tgfnt genes for parasite proliferation, and demonstrate that all three tgfnt genes can be disrupted individually and together without affecting the lytic cycle under in vitro culture conditions. Together, our experiments identify the major lactate transporter in the disease causing stage of T. gondii, and reveal that this transporter is not required for parasite proliferation, indicating that TgFNTs are unlikely to be targets for anti-Toxoplasma drugs.
Collapse
|
29
|
Gezelle J, Saggu G, Desai SA. Promises and Pitfalls of Parasite Patch-clamp. Trends Parasitol 2021; 37:414-429. [PMID: 33640269 DOI: 10.1016/j.pt.2021.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 11/25/2022]
Abstract
Protozoan parasites acquire essential ions, nutrients, and other solutes from their insect and vertebrate hosts by transmembrane uptake. For intracellular stages, these solutes must cross additional membranous barriers. At each step, ion channels and transporters mediate not only this uptake but also the removal of waste products. These transport proteins are best isolated and studied with patch-clamp, but these methods remain accessible to only a few parasitologists due to specialized instrumentation and the required training in both theory and practice. Here, we provide an overview of patch-clamp, describing the advantages and limitations of the technology and highlighting issues that may lead to incorrect conclusions. We aim to help non-experts understand and critically assess patch-clamp data in basic research studies.
Collapse
Affiliation(s)
- Jeanine Gezelle
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Gagandeep Saggu
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Sanjay A Desai
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA.
| |
Collapse
|
30
|
Schmidt JDR, Walloch P, Höger B, Beitz E. Aquaporins with lactate/lactic acid permeability at physiological pH conditions. Biochimie 2021; 188:7-11. [PMID: 33577940 DOI: 10.1016/j.biochi.2021.01.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 10/22/2022]
Abstract
The spectrum of putative and experimentally shown permeants of cellular water and solute channels of the ubiquitous aquaporin family is still increasing. Virtually all AQP substrates, e.g. water, glycerol, urea, hydrogen peroxide, or carbon dioxide, are permanently neutral small molecule compounds. Several reports, however, describe aquaporins that exhibit lactate permeability. Lactate in aqueous solution undergoes a pH-dependent protonation equilibrium with neutral lactic acid, which likely represents the actual substrate form passing the aquaporin channel. Certain aquaporins, however, appear to be better geared for lactate/lactic acid permeability even at low proton availability. Here, we discuss the structural properties of such aquaporins and compare them to the microbial protein family of the formate-nitrite (lactate) transporters that assume the aquaporin fold despite unrelated protein sequences.
Collapse
Affiliation(s)
- Jana D R Schmidt
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Philipp Walloch
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Bastian Höger
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Eric Beitz
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, Kiel, Germany.
| |
Collapse
|
31
|
Lyu M, Su CC, Kazura JW, Yu EW. Structural basis of transport and inhibition of the Plasmodium falciparum transporter PfFNT. EMBO Rep 2021; 22:e51628. [PMID: 33471955 DOI: 10.15252/embr.202051628] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 12/14/2022] Open
Abstract
The intra-erythrocyte stage of P. falciparum relies primarily on glycolysis to generate adenosine triphosphate (ATP) and the energy required to support growth and reproduction. Lactic acid, a metabolic byproduct of glycolysis, is potentially toxic as it lowers the pH inside the parasite. Plasmodium falciparum formate-nitrite transporter (PfFNT), a 34-kDa transmembrane protein, has been identified as a novel drug target as it exports lactate from inside the parasite to the surrounding parasitophorous vacuole within the erythrocyte cytosol. The structure and detailed molecular mechanism of this membrane protein are not yet available. Here we present structures of PfFNT in the absence and presence of the functional inhibitor MMV007839 at resolutions of 2.56 Å and 2.78 Å using single-particle cryo-electron microscopy. Genetic analysis and transport assay indicate that PfFNT is able to transfer lactate across the membrane. Combined, our data suggest a stepwise displacement mechanism for substrate transport. The PfFNT membrane protein is capable of picking up lactate ions from the parasite's cytosol, converting them to lactic acids and then exporting these acids into the extracellular space.
Collapse
Affiliation(s)
- Meinan Lyu
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Chih-Chia Su
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - James W Kazura
- Center for Global Health & Diseases, Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Edward W Yu
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| |
Collapse
|
32
|
The Key Glycolytic Enzyme Phosphofructokinase Is Involved in Resistance to Antiplasmodial Glycosides. mBio 2020; 11:mBio.02842-20. [PMID: 33293381 PMCID: PMC7733947 DOI: 10.1128/mbio.02842-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Malaria, caused by Plasmodium parasites, continues to be a devastating global health issue, causing 405,000 deaths and 228 million cases in 2018. Understanding key metabolic processes in malaria parasites is critical to the development of new drugs to combat this major infectious disease. The Plasmodium glycolytic pathway is essential to the malaria parasite, providing energy for growth and replication and supplying important biomolecules for other essential Plasmodium anabolic pathways. Despite this overreliance on glycolysis, no current drugs target glycolysis, and there is a paucity of information on critical glycolysis targets. Our work addresses this unmet need, providing new mechanistic insights into this key pathway. Plasmodium parasites rely heavily on glycolysis for ATP production and for precursors for essential anabolic pathways, such as the methylerythritol phosphate (MEP) pathway. Here, we show that mutations in the Plasmodium falciparum glycolytic enzyme, phosphofructokinase (PfPFK9), are associated with in vitro resistance to a primary sulfonamide glycoside (PS-3). Flux through the upper glycolysis pathway was significantly reduced in PS-3-resistant parasites, which was associated with reduced ATP levels but increased flux into the pentose phosphate pathway. PS-3 may directly or indirectly target enzymes in these pathways, as PS-3-treated parasites had elevated levels of glycolytic and tricarboxylic acid (TCA) cycle intermediates. PS-3 resistance also led to reduced MEP pathway intermediates, and PS-3-resistant parasites were hypersensitive to the MEP pathway inhibitor, fosmidomycin. Overall, this study suggests that PS-3 disrupts core pathways in central carbon metabolism, which is compensated for by mutations in PfPFK9, highlighting a novel metabolic drug resistance mechanism in P. falciparum.
Collapse
|
33
|
Bader A, Beitz E. Transmembrane Facilitation of Lactate/H + Instead of Lactic Acid Is Not a Question of Semantics but of Cell Viability. MEMBRANES 2020; 10:membranes10090236. [PMID: 32942665 PMCID: PMC7557405 DOI: 10.3390/membranes10090236] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/10/2020] [Accepted: 09/13/2020] [Indexed: 12/15/2022]
Abstract
Transmembrane transport of monocarboxylates is conferred by structurally diverse membrane proteins. Here, we describe the pH dependence of lactic acid/lactate facilitation of an aquaporin (AQP9), a monocarboxylate transporter (MCT1, SLC16A1), and a formate–nitrite transporter (plasmodium falciparum FNT, PfFNT) in the equilibrium transport state. FNTs exhibit a channel-like structure mimicking the aquaporin-fold, yet act as secondary active transporters. We used radiolabeled lactate to monitor uptake via yeast-expressed AQP9, MCT1, and PfFNT for long enough time periods to reach the equilibrium state in which import and export rates are balanced. We confirmed that AQP9 behaved perfectly equilibrative for lactic acid, i.e., the neutral lactic acid molecule enters and passes the channel. MCT1, in turn, actively used the transmembrane proton gradient and acted as a lactate/H+ co-transporter. PfFNT behaved highly similar to the MCT in terms of transport properties, although it does not adhere to the classical alternating access transporter model. Instead, the FNT appears to use the proton gradient to neutralize the lactate anion in the protein’s vestibule to generate lactic acid in a place that traverses the central hydrophobic transport path. In conclusion, we propose to include FNT-type proteins into a more generalized, function-based transporter definition.
Collapse
Affiliation(s)
| | - Eric Beitz
- Correspondence: ; Tel.: +49-431-880-1809
| |
Collapse
|
34
|
Walloch P, Henke B, Häuer S, Bergmann B, Spielmann T, Beitz E. Introduction of Scaffold Nitrogen Atoms Renders Inhibitors of the Malarial l-Lactate Transporter, PfFNT, Effective against the Gly107Ser Resistance Mutation. J Med Chem 2020; 63:9731-9741. [DOI: 10.1021/acs.jmedchem.0c00852] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Philipp Walloch
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany
| | - Björn Henke
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany
| | - Susan Häuer
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany
| | - Bärbel Bergmann
- Bernhard-Nocht-Institute for Tropical Medicine, 20359 Hamburg, Germany
| | - Tobias Spielmann
- Bernhard-Nocht-Institute for Tropical Medicine, 20359 Hamburg, Germany
| | - Eric Beitz
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany
| |
Collapse
|
35
|
Kloehn J, Oppenheim RD, Siddiqui G, De Bock PJ, Kumar Dogga S, Coute Y, Hakimi MA, Creek DJ, Soldati-Favre D. Multi-omics analysis delineates the distinct functions of sub-cellular acetyl-CoA pools in Toxoplasma gondii. BMC Biol 2020; 18:67. [PMID: 32546260 PMCID: PMC7296777 DOI: 10.1186/s12915-020-00791-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 05/08/2020] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Acetyl-CoA is a key molecule in all organisms, implicated in several metabolic pathways as well as in transcriptional regulation and post-translational modification. The human pathogen Toxoplasma gondii possesses at least four enzymes which generate acetyl-CoA in the nucleo-cytosol (acetyl-CoA synthetase (ACS); ATP citrate lyase (ACL)), mitochondrion (branched-chain α-keto acid dehydrogenase-complex (BCKDH)) and apicoplast (pyruvate dehydrogenase complex (PDH)). Given the diverse functions of acetyl-CoA, we know very little about the role of sub-cellular acetyl-CoA pools in parasite physiology. RESULTS To assess the importance and functions of sub-cellular acetyl-CoA-pools, we measured the acetylome, transcriptome, proteome and metabolome of parasites lacking ACL/ACS or BCKDH. We demonstrate that ACL/ACS constitute a synthetic lethal pair. Loss of both enzymes causes a halt in fatty acid elongation, hypo-acetylation of nucleo-cytosolic and secretory proteins and broad changes in gene expression. In contrast, loss of BCKDH results in an altered TCA cycle, hypo-acetylation of mitochondrial proteins and few specific changes in gene expression. We provide evidence that changes in the acetylome, transcriptome and proteome of cells lacking BCKDH enable the metabolic adaptations and thus the survival of these parasites. CONCLUSIONS Using multi-omics and molecular tools, we obtain a global and integrative picture of the role of distinct acetyl-CoA pools in T. gondii physiology. Cytosolic acetyl-CoA is essential and is required for the synthesis of parasite-specific fatty acids. In contrast, loss of mitochondrial acetyl-CoA can be compensated for through metabolic adaptations implemented at the transcriptional, translational and post-translational level.
Collapse
Affiliation(s)
- Joachim Kloehn
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, Rue Michel-Servet 1, 1211, Geneva, Switzerland
| | - Rebecca D Oppenheim
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, Rue Michel-Servet 1, 1211, Geneva, Switzerland
| | - Ghizal Siddiqui
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville campus, Parkville, VIC, 3052, Australia
| | - Pieter-Jan De Bock
- University Grenoble Alpes, CEA, INSERM, IRIG, BGE, F-38000, Grenoble, France
| | - Sunil Kumar Dogga
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, Rue Michel-Servet 1, 1211, Geneva, Switzerland
| | - Yohann Coute
- University Grenoble Alpes, CEA, INSERM, IRIG, BGE, F-38000, Grenoble, France
| | - Mohamed-Ali Hakimi
- Epigenetic and Parasites Team, UMR5163/LAPM, Domaine de la Merci, Jean Roget Institute, 38700, La Tronche, France
| | - Darren J Creek
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville campus, Parkville, VIC, 3052, Australia
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, Rue Michel-Servet 1, 1211, Geneva, Switzerland.
| |
Collapse
|
36
|
Mukherjee M, Gupta A, Sankararamakrishnan R. Is the E. coli Homolog of the Formate/Nitrite Transporter Family an Anion Channel? A Computational Study. Biophys J 2020; 118:846-860. [PMID: 31968229 DOI: 10.1016/j.bpj.2019.12.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 12/04/2019] [Accepted: 12/16/2019] [Indexed: 10/25/2022] Open
Abstract
Formate/nitrite transporters (FNTs) selectively transport monovalent anions and are found in prokaryotes and lower eukaryotes. They play a significant role in bacterial growth and act against the defense mechanism of infected hosts. Because FNTs do not occur in higher animals, they are attractive drug targets for many bacterial diseases. Phylogenetic analysis revealed that they can be classified into eight subgroups, two of which belong to the uncharacterized YfdC-α and YfdC-β groups. Experimentally determined structures of FNTs belonging to different phylogenetic groups adopt the unique aquaporin-like hourglass helical fold. We considered the formate channel from Vibrio cholerae, the hydrosulphide channel from Clostridium difficile, and the uncharacterized channel from Escherichia coli (EcYfdC) to investigate the mechanism of transport and selectivity. Using equilibrium molecular dynamics and umbrella sampling studies, we determined temporal channel radius profiles, permeation events, and potential of mean force profiles of different substrates with the conserved central histidine residue in protonated or neutral form. Unlike the formate channel from V. cholerae and the hydrosulphide channel from C. difficile, molecular dynamics studies showed that the formate substrate was unable to enter the vestibule region of EcYfdC. Absence of a conserved basic residue and presence of acidic residues in the vestibule regions, conserved only in YfdC-α, were found to be responsible for high energy barriers for the anions to enter EcYfdC. Potential of mean force profiles generated for ammonia and ammonium ion revealed that EcYfdC can transport neutral solutes and could possibly be involved in the transport of cations analogous to the mechanism proposed for ammonium transporters. Although YfdC members belong to the FNT family, our studies strongly suggest that EcYfdC is not an anion channel. Absence or presence of specific charged residues at particular positions makes EcYfdC selective for neutral or possibly cationic substrates. Further experimental studies are needed to get a definitive answer to the question of the substrate selectivity of EcYfdC. This provides an example of membrane proteins from the same family transporting substrates of different chemical nature.
Collapse
Affiliation(s)
- Mishtu Mukherjee
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, India
| | - Ankita Gupta
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, India
| | | |
Collapse
|
37
|
Martin RE. The transportome of the malaria parasite. Biol Rev Camb Philos Soc 2019; 95:305-332. [PMID: 31701663 DOI: 10.1111/brv.12565] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 10/02/2019] [Accepted: 10/04/2019] [Indexed: 12/15/2022]
Abstract
Membrane transport proteins, also known as transporters, control the movement of ions, nutrients, metabolites, and waste products across the membranes of a cell and are central to its biology. Proteins of this type also serve as drug targets and are key players in the phenomenon of drug resistance. The malaria parasite has a relatively reduced transportome, with only approximately 2.5% of its genes encoding transporters. Even so, assigning functions and physiological roles to these proteins, and ascertaining their contributions to drug action and drug resistance, has been very challenging. This review presents a detailed critique and synthesis of the disruption phenotypes, protein subcellular localisations, protein functions (observed or predicted), and links to antimalarial drug resistance for each of the parasite's transporter genes. The breadth and depth of the gene disruption data are particularly impressive, with at least one phenotype determined in the parasite's asexual blood stage for each transporter gene, and multiple phenotypes available for 76% of the genes. Analysis of the curated data set revealed there to be relatively little redundancy in the Plasmodium transportome; almost two-thirds of the parasite's transporter genes are essential or required for normal growth in the asexual blood stage of the parasite, and this proportion increased to 78% when the disruption phenotypes available for the other parasite life stages were included in the analysis. These observations, together with the finding that 22% of the transportome is implicated in the parasite's resistance to existing antimalarials and/or drugs within the development pipeline, indicate that transporters are likely to serve, or are already serving, as drug targets. Integration of the different biological and bioinformatic data sets also enabled the selection of candidates for transport processes known to be essential for parasite survival, but for which the underlying proteins have thus far remained undiscovered. These include potential transporters of pantothenate, isoleucine, or isopentenyl diphosphate, as well as putative anion-selective channels that may serve as the pore component of the parasite's 'new permeation pathways'. Other novel insights into the parasite's biology included the identification of transporters for the potential development of antimalarial treatments, transmission-blocking drugs, prophylactics, and genetically attenuated vaccines. The syntheses presented herein set a foundation for elucidating the functions and physiological roles of key members of the Plasmodium transportome and, ultimately, to explore and realise their potential as therapeutic targets.
Collapse
Affiliation(s)
- Rowena E Martin
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
38
|
Hajek P, Bader A, Helmstetter F, Henke B, Arnold P, Beitz E. Cell-Free and Yeast-Based Production of the Malarial Lactate Transporter, PfFNT, Delivers Comparable Yield and Protein Quality. Front Pharmacol 2019; 10:375. [PMID: 31024323 PMCID: PMC6467934 DOI: 10.3389/fphar.2019.00375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 03/26/2019] [Indexed: 11/16/2022] Open
Abstract
Cell-free protein production is an attractive alternative to cell-based expression. Rapid results, small-volume reactions, irrelevance of protein toxicity, flexibility, and openness of the system are strong points in favor of the cell-free system. However, the in vitro situation lacks the cellular quality control machinery comprising e.g., the translocon for inserting membrane proteins into lipid bilayers, and chaperon-assisted protein degradation pathways. Here, we compare yield and protein quality of the lactate transporter, PfFNT, from malaria parasites when produced in Pichia pastoris yeast, or in an Escherichia coli S30-extract-based cell-free system. Besides solubilization and correct folding, PfFNT requires oligomerization into homopentamers. We assessed PfFNT folding/oligomerization and function by transmission electron microscopy imaging, transport assays, and binding of small-molecule inhibitors. For the latter, we used chromatography of the PfFNT-inhibitor complex with dual-wavelength detection, and biolayer interferometry. Our data show, that PfFNT possesses an intrinsic capability for assuming the correct fold, oligomerization pattern, and functionality during in vitro translation. This competence depended on the detergent present in the cell-free reaction. The choice of detergent further affected purification and inhibitor binding. In conclusion, in the presence of a suitable detergent, cell-free systems are very well capable of producing high quality membrane proteins.
Collapse
Affiliation(s)
- Philipp Hajek
- Department of Pharmaceutical and Medicinal Chemistry, Pharmaceutical Institute, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Annika Bader
- Department of Pharmaceutical and Medicinal Chemistry, Pharmaceutical Institute, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Folknand Helmstetter
- Department of Pharmaceutical and Medicinal Chemistry, Pharmaceutical Institute, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Björn Henke
- Department of Pharmaceutical and Medicinal Chemistry, Pharmaceutical Institute, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Philipp Arnold
- Anatomical Institute, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Eric Beitz
- Department of Pharmaceutical and Medicinal Chemistry, Pharmaceutical Institute, Christian-Albrechts-University Kiel, Kiel, Germany
| |
Collapse
|
39
|
Helmstetter F, Arnold P, Höger B, Petersen LM, Beitz E. Formate-nitrite transporters carrying nonprotonatable amide amino acids instead of a central histidine maintain pH-dependent transport. J Biol Chem 2018; 294:623-631. [PMID: 30455351 DOI: 10.1074/jbc.ra118.006340] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/09/2018] [Indexed: 01/25/2023] Open
Abstract
Microbial formate-nitrite transporter-type proteins (FNT) exhibit dual transport functionality. At neutral pH, electrogenic anion currents are detectable, whereas upon acidification transport of the neutral, protonated monoacid predominates. Physiologically, FNT-mediated proton co-transport is vital when monocarboxylic acid products of the energy metabolism, such as l-lactate, are released from the cell. Accordingly, Plasmodium falciparum malaria parasites can be killed by small-molecule inhibitors of PfFNT. Two opposing hypotheses on the site of substrate protonation are plausible. The proton relay mechanism postulates proton transfer from a highly conserved histidine centrally positioned in the transport path. The dielectric slide mechanism assumes decreasing acidity of substrates entering the lipophilic vestibules and protonation via the bulk water. Here, we defined the transport mechanism of the FNT from the amoebiasis parasite Entamoeba histolytica, EhFNT, and also show that BtFdhC from Bacillus thuringiensis is a functional formate transporter. Both FNTs carry a nonprotonatable amide amino acid, asparagine or glutamine, respectively, at the central histidine position. Despite having a nonprotonatable residue, EhFNT displayed the same substrate selectivity for larger monocarboxylates including l-lactate, a low substrate affinity as is typical for FNTs, and, strikingly, proton motive force-dependent transport as observed for PfFNT harboring a central histidine. These results argue against a proton relay mechanism, indicating that substrate protonation must occur outside of the central histidine region, most likely in the vestibules. Furthermore, EhFNT is the sole annotated FNT in the Entamoeba genome suggesting that it could be a putative new drug target with similar utility as that of the malarial PfFNT.
Collapse
Affiliation(s)
| | - Philipp Arnold
- the Anatomical Institute, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany
| | - Bastian Höger
- From the Department of Pharmaceutical and Medicinal Chemistry, and
| | | | - Eric Beitz
- From the Department of Pharmaceutical and Medicinal Chemistry, and
| |
Collapse
|
40
|
Erler H, Ren B, Gupta N, Beitz E. The intracellular parasite Toxoplasma gondii harbors three druggable FNT-type formate and l-lactate transporters in the plasma membrane. J Biol Chem 2018; 293:17622-17630. [PMID: 30237165 DOI: 10.1074/jbc.ra118.003801] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 09/14/2018] [Indexed: 12/31/2022] Open
Abstract
Toxoplasma gondii is a globally prevalent parasitic protist. It is well-known for its ability to infect almost all nucleated vertebrate cells, which is reflected by its unique metabolic architecture. Its fast-growing tachyzoite stage catabolizes glucose via glycolysis to yield l-lactate as a major by-product that must be exported from the cell to prevent toxicity; the underlying mechanism remains to be elucidated, however. Herein, we report three formate-nitrite transporter (FNT)-type monocarboxylate/proton symporters located in the plasma membrane of the T. gondii tachyzoite stage. We observed that all three proteins transport both l-lactate and formate in a pH-dependent manner and are inhibited by 2-hydroxy-chromanones (a class of small synthetic molecules). We also show that these compounds pharmacologically inhibit T. gondii growth. Using a chemical biology approach, we identified the critical residues in the substrate-selectivity region of the parasite transporters that determine differential specificity and sensitivity toward both substrates and inhibitors. Our findings further indicate that substrate specificity in FNT family proteins from T. gondii has evolved such that a functional repurposing of prokaryotic-type transporters helps fulfill a critical metabolic role in a clinically important parasitic protist. In summary, we have identified and characterized the lactate transporters of T. gondii and have shown that compounds blocking the FNTs in this parasite can inhibit its growth, suggesting that these transporters could have utility as potential drug targets.
Collapse
Affiliation(s)
- Holger Erler
- From the Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany and
| | - Bingjian Ren
- Department of Molecular Parasitology, Faculty of Life Sciences, Humboldt University, 10115 Berlin, Germany
| | - Nishith Gupta
- Department of Molecular Parasitology, Faculty of Life Sciences, Humboldt University, 10115 Berlin, Germany
| | - Eric Beitz
- From the Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany and
| |
Collapse
|
41
|
Garcia CH, Depoix D, Queiroz RM, Souza JM, Fontes W, de Sousa MV, Santos MD, Carvalho PC, Grellier P, Charneau S. Dynamic molecular events associated to Plasmodium berghei gametogenesis through proteomic approach. J Proteomics 2018; 180:88-98. [DOI: 10.1016/j.jprot.2017.11.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 11/08/2017] [Accepted: 11/14/2017] [Indexed: 10/18/2022]
|
42
|
Meier A, Erler H, Beitz E. Targeting Channels and Transporters in Protozoan Parasite Infections. Front Chem 2018; 6:88. [PMID: 29637069 PMCID: PMC5881087 DOI: 10.3389/fchem.2018.00088] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 03/12/2018] [Indexed: 12/25/2022] Open
Abstract
Infectious diseases caused by pathogenic protozoa are among the most significant causes of death in humans. Therapeutic options are scarce and massively challenged by the emergence of resistant parasite strains. Many of the current anti-parasite drugs target soluble enzymes, generate unspecific oxidative stress, or act by an unresolved mechanism within the parasite. In recent years, collections of drug-like compounds derived from large-scale phenotypic screenings, such as the malaria or pathogen box, have been made available to researchers free of charge boosting the identification of novel promising targets. Remarkably, several of the compound hits have been found to inhibit membrane proteins at the periphery of the parasites, i.e., channels and transporters for ions and metabolites. In this review, we will focus on the progress made on targeting channels and transporters at different levels and the potential for use against infections with apicomplexan parasites mainly Plasmodium spp. (malaria) and Toxoplasma gondii (toxoplasmosis), with kinetoplastids Trypanosoma brucei (sleeping sickness), Trypanosoma cruzi (Chagas disease), and Leishmania ssp. (leishmaniasis), and the amoeba Entamoeba histolytica (amoebiasis).
Collapse
Affiliation(s)
- Anna Meier
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Holger Erler
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Eric Beitz
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, Kiel, Germany
| |
Collapse
|
43
|
Transmembrane solute transport in the apicomplexan parasite Plasmodium. Emerg Top Life Sci 2017; 1:553-561. [PMID: 33525850 DOI: 10.1042/etls20170097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 11/12/2017] [Accepted: 11/16/2017] [Indexed: 12/22/2022]
Abstract
Apicomplexa are a large group of eukaryotic, single-celled parasites, with complex life cycles that occur within a wide range of different microenvironments. They include important human pathogens such as Plasmodium, the causal agent of malaria, and Toxoplasma, which causes toxoplasmosis most often in immunocompromised individuals. Despite environmental differences in their life cycles, these parasites retain the ability to obtain nutrients, remove waste products, and control ion balances. They achieve this flexibility by relying on proteins that can deliver and remove solutes. This reliance on transport proteins for essential functions makes these pathways excellent potential targets for drug development programmes. Transport proteins are frequently key mediators of drug resistance by their ability to remove drugs from their sites of action. The study of transport processes mediated by integral membrane proteins and, in particular, identification of their physiological functions and localisation, and differentiation from host orthologues has already established new validated drug targets. Our understanding of how apicomplexan parasites have adapted to changing environmental challenges has also increased through the study of their transporters. This brief introduction to membrane transporters of apicomplexans highlights recent discoveries focusing on Plasmodium and emphasises future directions.
Collapse
|
44
|
Atkovska K, Hub JS. Energetics and mechanism of anion permeation across formate-nitrite transporters. Sci Rep 2017; 7:12027. [PMID: 28931899 PMCID: PMC5607303 DOI: 10.1038/s41598-017-11437-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 08/24/2017] [Indexed: 01/13/2023] Open
Abstract
Formate-nitrite transporters (FNTs) facilitate the translocation of monovalent polyatomic anions, such as formate and nitrite, across biological membranes. FNTs are widely distributed among pathogenic bacteria and eukaryotic parasites, but they lack human homologues, making them attractive drug targets. The mechanisms and energetics involved in anion permeation across the FNTs have remained largely unclear. Both, channel and transporter mode of function have been proposed, with strong indication of proton coupling to the permeation process. We combine molecular dynamics simulations, quantum mechanical calculations, and pK a calculations, to compute the energetics of the complete permeation cycle of an FNT. We find that anions as such, are not able to traverse the FNT pore. Instead, anion binding into the pore is energetically coupled to protonation of a centrally located histidine. In turn, the histidine can protonate the permeating anion, thereby enabling its release. Such mechanism can accommodate the functional diversity among the FNTs, as it may facilitate both, export and import of substrates, with or without proton co-transport. The mechanism excludes proton leakage via the Grotthuss mechanism, and it rationalises the selectivity for weak acids.
Collapse
Affiliation(s)
- Kalina Atkovska
- University of Goettingen, Institute for Microbiology and Genetics, Goettingen, 37077, Germany.,University of Goettingen, Göttingen Center for Molecular Biosciences, Goettingen, 37077, Germany
| | - Jochen S Hub
- University of Goettingen, Institute for Microbiology and Genetics, Goettingen, 37077, Germany. .,University of Goettingen, Göttingen Center for Molecular Biosciences, Goettingen, 37077, Germany.
| |
Collapse
|
45
|
Hunger D, Röcker M, Falke D, Lilie H, Sawers RG. The C-terminal Six Amino Acids of the FNT Channel FocA Are Required for Formate Translocation But Not Homopentamer Integrity. Front Microbiol 2017; 8:1616. [PMID: 28878762 PMCID: PMC5572259 DOI: 10.3389/fmicb.2017.01616] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 08/08/2017] [Indexed: 01/27/2023] Open
Abstract
FocA is the archetype of the pentameric formate-nitrite transporter (FNT) superfamily of channels, members of which translocate small organic and inorganic anions across the cytoplasmic membrane of microorganisms. The N- and C-termini of each protomer are cytoplasmically oriented. A Y-L-R motif is found immediately after transmembrane helix 6 at the C-terminus of FNT proteins related to FocA, or those with a role in formate translocation. Previous in vivo studies had revealed that formate translocation through FocA was controlled by interaction with the formate-producing glycyl-radical enzyme pyruvate formate-lyase (PflB) or its structural and functional homolog, TdcE. In this study we analyzed the effect on in vivo formate export and import, as well as on the stability of the homopentamer in the membrane, of successively removing amino acid residues from the C-terminus of FocA. Removal of up to five amino acids was without consequence for either formate translocation or oligomer stability. Removal of a sixth residue (R280) prevented formate uptake by FocA in a strain lacking PflB and significantly reduced, but did not prevent, formate export. Sensitivity to the toxic formate analog hypophosphite, which is also transported into the cell by FocA, was also relieved. Circular dichroism spectroscopy and blue-native PAGE analysis revealed, however, that this variant had near identical secondary and quaternary structural properties to those of native FocA. Interaction with the glycyl radical enzyme, TdcE, was also unaffected by removal of the C-terminal 6 amino acid residues, indicating that impaired interaction with TdcE was not the reason for impaired formate translocation. Removal of a further residue (L279) severely restricted formate export, the stability of the protein and its ability to form homopentamers. Together, these studies revealed that the Y278-L279-R280 motif at the C-terminus is essential for bidirectional formate translocation by FocA, but that L279 is both necessary and sufficient for homopentamer integrity.
Collapse
Affiliation(s)
- Doreen Hunger
- Institute of Microbiology, Martin-Luther University Halle-WittenbergHalle, Germany
| | - Marie Röcker
- Institute of Microbiology, Martin-Luther University Halle-WittenbergHalle, Germany
| | - Dörte Falke
- Institute of Microbiology, Martin-Luther University Halle-WittenbergHalle, Germany
| | - Hauke Lilie
- Institute of Biochemistry and Biotechnology, Martin-Luther University Halle-WittenbergHalle, Germany
| | - R Gary Sawers
- Institute of Microbiology, Martin-Luther University Halle-WittenbergHalle, Germany
| |
Collapse
|
46
|
Khosh-Naucke M, Becker J, Mesén-Ramírez P, Kiani P, Birnbaum J, Fröhlke U, Jonscher E, Schlüter H, Spielmann T. Identification of novel parasitophorous vacuole proteins in P. falciparum parasites using BioID. Int J Med Microbiol 2017; 308:13-24. [PMID: 28784333 DOI: 10.1016/j.ijmm.2017.07.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 07/14/2017] [Accepted: 07/17/2017] [Indexed: 10/19/2022] Open
Abstract
Malaria blood stage parasites develop within red blood cells where they are contained in a vacuolar compartment known as the parasitophorous vacuole (PV). This compartment holds a key role in the interaction of the parasite with its host cell. However, the proteome of this compartment has so far not been comprehensively analysed. Here we used BioID in asexual blood stages of the most virulent human malaria parasite Plasmodium falciparum to identify new proteins of the PV. The resulting proteome contained many of the already known PV proteins and validation by GFP-knock-in of 10 previously in P. falciparum uncharacterised hits revealed 5 new PV proteins and two with a partial PV localisation. This included proteins peripherally attached to the inner face of the PV membrane as well as proteins anchored in the parasite plasma membrane that protrude into the PV. Using selectable targeted gene disruption we generated mutants for 2 of the 10 candidates. In contrast we could not select parasites with disruptions for another 3 candidates, strongly suggesting that they are important for parasite growth. Interestingly, one of these included the orthologue of UIS2, a protein previously proposed to regulate protein translation in the parasite cytoplasm but here shown to be an essential PV protein. This work extends the number of known PV proteins and provides a starting point for further functional analyses of this compartment.
Collapse
Affiliation(s)
- Melissa Khosh-Naucke
- Bernhard Nocht Institute for Tropical Medicine, Parasitology Section, Bernhard-Nocht-Straße 74, 20359 Hamburg, Germany
| | - Johanna Becker
- Bernhard Nocht Institute for Tropical Medicine, Parasitology Section, Bernhard-Nocht-Straße 74, 20359 Hamburg, Germany
| | - Paolo Mesén-Ramírez
- Bernhard Nocht Institute for Tropical Medicine, Parasitology Section, Bernhard-Nocht-Straße 74, 20359 Hamburg, Germany
| | - Parnian Kiani
- Core Facility Mass Spectrometric Proteomics, Institute of Clinical Chemistry, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Jakob Birnbaum
- Bernhard Nocht Institute for Tropical Medicine, Parasitology Section, Bernhard-Nocht-Straße 74, 20359 Hamburg, Germany
| | - Ulrike Fröhlke
- Bernhard Nocht Institute for Tropical Medicine, Parasitology Section, Bernhard-Nocht-Straße 74, 20359 Hamburg, Germany
| | - Ernst Jonscher
- Bernhard Nocht Institute for Tropical Medicine, Parasitology Section, Bernhard-Nocht-Straße 74, 20359 Hamburg, Germany
| | - Hartmut Schlüter
- Core Facility Mass Spectrometric Proteomics, Institute of Clinical Chemistry, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Tobias Spielmann
- Bernhard Nocht Institute for Tropical Medicine, Parasitology Section, Bernhard-Nocht-Straße 74, 20359 Hamburg, Germany.
| |
Collapse
|
47
|
Anion-selective Formate/nitrite transporters: taxonomic distribution, phylogenetic analysis and subfamily-specific conservation pattern in prokaryotes. BMC Genomics 2017; 18:560. [PMID: 28738779 PMCID: PMC5525234 DOI: 10.1186/s12864-017-3947-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 07/16/2017] [Indexed: 11/10/2022] Open
Abstract
Background The monovalent anions formate, nitrite and hydrosulphide are main metabolites of bacterial respiration during anaerobic mixed-acid fermentation. When accumulated in the cytoplasm, these anions become cytotoxic. Membrane proteins that selectively transport these monovalent anions across the membrane have been identified and they belong to the family of Formate/Nitrite Transporters (FNTs). Individual members that selectively transport formate, nitrite and hydrosulphide have been investigated. Experimentally determined structures of FNTs indicate that they share the same hourglass helical fold with aquaporins and aquaglyceroporins and have two constriction regions, namely, cytoplasmic slit and central constriction. Members of FNTs are found in bacteria, archaea, fungi and protists. However, no FNT homolog has been identified in mammals. With FNTs as potential drug targets for many bacterial diseases, it is important to understand the mechanism of selectivity and transport across these transporters. Results We have systematically searched the sequence databases and identified 2206 FNT sequences from bacteria, archaea and eukaryotes. Although FNT sequences are very diverse, homology modeling followed by structure-based sequence alignment revealed that nearly one third of all the positions within the transmembrane region exhibit high conservation either as a group or at the level of individual residues across all three kingdoms. Phylogenetic analysis of prokaryotic FNT sequences revealed eight different subgroups. Formate, nitrite and hydrosulphide transporters respectively are clustered into two (FocA and FdhC), three (NirC-α, NirC-β and NirC-γ) and one (HSC) subfamilies. We have also recognized two FNT subgroups (YfdC-α and YfdC-β) with unassigned function. Analysis of taxonomic distribution indicates that each subfamily prefers specific taxonomic groups. Structure-based sequence alignment of individual subfamily members revealed that certain positions in the two constriction regions and some residues facing the interior show subfamily-specific conservation. We have also identified examples of FNTs with the two constriction regions formed by residues that are less frequently observed. We have developed dbFNT, a database of FNT models and associated details. dbFNT is freely available to scientific community. Conclusions Taxonomic distribution and sequence conservation of FNTs exhibit subfamily-specific features. The conservation pattern in the central constriction and cytoplasmic slit in the open and closed states are distinct for YfdC and NirC subfamilies. The same is true for some residues facing the interior of the transporters. The specific residues in these positions can exert influence on the type of solutes that are transported by these proteins. With FNTs found in many disease-causing bacteria, the knowledge gained in this study can be used in the development and design of anti-bacterial drugs. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3947-4) contains supplementary material, which is available to authorized users.
Collapse
|
48
|
Wiechert M, Erler H, Golldack A, Beitz E. A widened substrate selectivity filter of eukaryotic formate-nitrite transporters enables high-level lactate conductance. FEBS J 2017; 284:2663-2673. [PMID: 28544379 DOI: 10.1111/febs.14117] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 05/05/2017] [Accepted: 05/18/2017] [Indexed: 12/24/2022]
Abstract
Bacterial formate-nitrite transporters (FNT) regulate the metabolic flow of small weak mono-acids derived from anaerobic mixed-acid fermentation, such as formate, and further transport nitrite and hydrosulfide. The eukaryotic Plasmodium falciparumFNT is vital for the malaria parasite by its ability to release the larger l-lactate substrate as the metabolic end product of anaerobic glycolysis in symport with protons preventing cytosolic acidification. However, the molecular basis for substrate discrimination by FNTs has remained unclear. Here, we identified a size-selective FNT substrate filter region around an invariant lysine at the bottom of the periplasmic/extracellular vestibule. The selectivity filter is reminiscent of the aromatic/arginine constriction of aquaporin water and solute channels regarding composition, location in the protein, and the size-selection principle. Bioinformatics support an adaptation of the eukaryotic FNT selectivity filter to accommodate larger physiologically relevant substrates. Mutations that affect the diameter at the filter site predictably modulated substrate selectivity. The shape of the vestibule immediately above the filter region further affects selectivity. This study indicates that eukaryotic FNTs evolved to transport larger mono-acid substrates, especially l-lactic acid as a product of energy metabolism.
Collapse
Affiliation(s)
- Marie Wiechert
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, Germany
| | - Holger Erler
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, Germany
| | - André Golldack
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, Germany
| | - Eric Beitz
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, Germany
| |
Collapse
|
49
|
Wiechert M, Beitz E. Formate-nitrite transporters: Monoacids ride the dielectric slide. Channels (Austin) 2017; 11:365-367. [PMID: 28494190 DOI: 10.1080/19336950.2017.1329999] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Marie Wiechert
- a Department of Pharmaceutical and Medicinal Chemistry , Christian-Albrechts-University of Kiel , Kiel , Germany
| | - Eric Beitz
- a Department of Pharmaceutical and Medicinal Chemistry , Christian-Albrechts-University of Kiel , Kiel , Germany
| |
Collapse
|
50
|
Rothert M, Rönfeldt D, Beitz E. Electrostatic attraction of weak monoacid anions increases probability for protonation and passage through aquaporins. J Biol Chem 2017; 292:9358-9364. [PMID: 28360107 DOI: 10.1074/jbc.m117.782516] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 03/28/2017] [Indexed: 11/06/2022] Open
Abstract
A positive electrostatic field emanating from the center of the aquaporin (AQP) water and solute channel is responsible for the repulsion of cations. At the same time, however, a positive field will attract anions. In this regard, l-lactate/lactic acid permeability has been shown for various isoforms of the otherwise highly water and neutral substrate selective AQP family. The structural requirements rendering certain AQPs permeable for weak monoacids and the mechanism of conduction have remained unclear. Here, we show by profiling pH-dependent substrate permeability, measurements of media alkalization, and proton decoupling that AQP9 acts as a channel for the protonated, neutral monocarboxylic acid species. Intriguingly, the obtained permeability rates indicate an up to 10 times higher probability of passage via AQP9 than given by the fraction of the protonated acid substrate at a certain pH. We generated AQP9 point mutants showing that this effect is independent from properties of the channel interior but caused by the protein surface electrostatics. Monocarboxylic acid-conducting AQPs thus employ a mechanism similar to the family of formate-nitrite transporters for weak monoacids. On a more general basis, our data illustrate semiquantitatively the contribution of surface electrostatics to the interaction of charged molecule substrates or ligands with target proteins, such as channels, transporters, enzymes, or receptors.
Collapse
Affiliation(s)
- Monja Rothert
- From the Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany
| | - Deike Rönfeldt
- From the Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany
| | - Eric Beitz
- From the Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany
| |
Collapse
|