1
|
Caligiuri A, Galla T, Lacasa L. Characterizing the dynamics of unlabeled temporal networks. CHAOS (WOODBURY, N.Y.) 2025; 35:053122. [PMID: 40338941 DOI: 10.1063/5.0253870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 04/13/2025] [Indexed: 05/10/2025]
Abstract
Networks model the architecture backbone of complex systems. The backbone itself can change over time leading to what is called "temporal networks." Interpreting temporal networks as trajectories in graph space of a latent graph dynamics has recently enabled the extension of concepts and tools from dynamical systems and time series to networks. Here, we address temporal networks with unlabeled nodes, a case that has received relatively little attention so far. Situations in which node labeling cannot be tracked over time often emerge in practice due to technical challenges or privacy constraints. In unlabeled temporal networks, there is no one-to-one matching between a network snapshot and its adjacency matrix. Characterizing the dynamical properties of such unlabeled network trajectories is, therefore, nontrivial. Here, we exploit graph invariants to extend some recently proposed network-dynamical quantifiers of linear correlations and dynamical instability to the unlabeled setting. In particular, we focus on autocorrelation functions and the sensitive dependence on initial conditions. We show with synthetic graph dynamics that the measures are capable of recovering and estimating these dynamical fingerprints even when node labels are unavailable. We also validate the methods for some empirical temporal networks with removed node labels.
Collapse
Affiliation(s)
- Annalisa Caligiuri
- Institute for Cross-Disciplinary Physics and Complex Systems (IFISC, CSIC-UIB), 07122 Palma de Mallorca, Spain
| | - Tobias Galla
- Institute for Cross-Disciplinary Physics and Complex Systems (IFISC, CSIC-UIB), 07122 Palma de Mallorca, Spain
| | - Lucas Lacasa
- Institute for Cross-Disciplinary Physics and Complex Systems (IFISC, CSIC-UIB), 07122 Palma de Mallorca, Spain
| |
Collapse
|
2
|
Acharya K, Aguilar J, Dall'Amico L, Nicolaou K, Meloni S, Ser-Giacomi E. Comparing temporal and aggregated network descriptions of fluid transport in the Mediterranean Sea. Phys Rev E 2025; 111:024211. [PMID: 40103174 DOI: 10.1103/physreve.111.024211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 01/28/2025] [Indexed: 03/20/2025]
Abstract
Ocean currents exhibit strong time dependence at all scales that influences physical and biochemical dynamics. Network approaches to fluid transport permit to address explicitly how connectivity across the seascape is affected by the spatiotemporal variability of currents. However, such temporal aspect is mostly neglected, relying on a static representation of the flow. We here investigate the role of current variability on networks describing physical transport across the Mediterranean basin. We first focus on degree distributions and community structure comparing ensembles of temporal networks that explicitly resolve time dependence and their aggregated, i.e., time-averaged, counterparts. Furthermore, we explore the implications of the two approaches in a simple reaction dispersal model for a generic tracer. Our analysis evidences that aggregation induces structural network changes that cannot be easily avoided, not even introducing a pruning of the aggregated adjacency matrix. We also highlight that, depending on the time scales considered, the importance of the temporal features of the networks can vary significantly. Finally, we find that the tracer evolution obtained from a temporal dispersal kernel cannot be always approximated by aggregated adjacency matrices, in particular during transients of the dynamics.
Collapse
Affiliation(s)
- Kishor Acharya
- Instituto de Física Interdisciplinar y Sistemas Complejos IFISC (CSIC-UIB), Campus UIB, 07122 Palma de Mallorca, Spain
- University of Luxembourg, Department of Physics and Material Science, L-4365 Esch-sur-Alzette, Luxembourg
| | - Javier Aguilar
- Instituto de Física Interdisciplinar y Sistemas Complejos IFISC (CSIC-UIB), Campus UIB, 07122 Palma de Mallorca, Spain
- Universidad de Granada, Investigador ForInDoc del Govern de les Illes Balears en el departamento de Electromagnetismo y Física de la Materia e Instituto Carlos I de Física Teórica y Computacional, E-18071 Granada, Spain
- University of Padova, Laboratory of Interdisciplinary Physics, Department of Physics and Astronomy "G. Galilei", 35131 Padova, Italy
| | | | - Kyriacos Nicolaou
- Utrecht University, Centre for Complex Systems Studies, 3584 CE Utrecht, The Netherlands
- Utrecht University, Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, 3584 CH Utrecht, The Netherlands
| | - Sandro Meloni
- Instituto de Física Interdisciplinar y Sistemas Complejos IFISC (CSIC-UIB), Campus UIB, 07122 Palma de Mallorca, Spain
- Consiglio Nazionale delle Ricerche, Istituto per le Applicazioni del Calcolo "Mauro Picone", 00185 Roma, Italy
- Centro Studi e Ricerche "Enrico Fermi" (CREF), 00184 Roma, Italy
| | - Enrico Ser-Giacomi
- Instituto de Física Interdisciplinar y Sistemas Complejos IFISC (CSIC-UIB), Campus UIB, 07122 Palma de Mallorca, Spain
| |
Collapse
|
3
|
Casiraghi G, Andres G. Empirical networks are sparse: Enhancing multiedge models with zero-inflation. PNAS NEXUS 2025; 4:pgaf001. [PMID: 39816243 PMCID: PMC11734526 DOI: 10.1093/pnasnexus/pgaf001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 12/20/2024] [Indexed: 01/18/2025]
Abstract
Real-world networks are sparse. As we show in this article, even when a large number of interactions is observed, most node pairs remain disconnected. We demonstrate that classical multiedge network models, such as the G ( N , p ) , configuration models, and stochastic block models, fail to accurately capture this phenomenon. To mitigate this issue, zero-inflation must be integrated into these traditional models. Through zero-inflation, we incorporate a mechanism that accounts for the excess number of zeroes (disconnected pairs) observed in empirical data. By performing an analysis on all the datasets from the Sociopatterns repository, we illustrate how zero-inflated models more accurately reflect the sparsity and heavy-tailed edge count distributions observed in empirical data. Our findings underscore that failing to account for these ubiquitous properties in real-world networks inadvertently leads to biased models that do not accurately represent complex systems and their dynamics.
Collapse
Affiliation(s)
- Giona Casiraghi
- Chair of Systems Design, ETH Zurich, Weinbergstrasse 56/58, Zurich 8092, Switzerland
| | - Georges Andres
- Chair of Systems Design, ETH Zurich, Weinbergstrasse 56/58, Zurich 8092, Switzerland
| |
Collapse
|
4
|
Stafin K, Śliwa P, Pia Tkowski M, Matýsek D. Chitosan as a Templating Agent of Calcium Phosphate Crystalline Phases in Biomimetic Mineralization: Theoretical and Experimental Studies. ACS APPLIED MATERIALS & INTERFACES 2024; 16:63155-63169. [PMID: 39526983 DOI: 10.1021/acsami.4c11887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Highlighting the essential role of chitosan (CS), known for its biocompatibility, biodegradability, and ability to promote cell adhesion and proliferation, this study explores its utility in modulating the biomimetic mineralization of calcium phosphate (CaP). This approach holds promise for developing biomaterials suitable for bone regeneration. However, the interactions between the CS surface and in situ precipitated CaP still require further exploration. In the theoretical section, molecular dynamics (MD) simulations demonstrate that, at an appropriate pH level during the prenucleation stage, calcium ions (Ca2+) and hydrogen phosphate ions (HPO42-) form Posner-like clusters. Additionally, the interaction between these clusters and the CS molecule enhances system stability. Together, these phenomena facilitate the transition to subsequent heterogeneous nucleation on the surface of the organic matrix, which is a more controlled process than homogeneous nucleation in solution. Dynamic simulation results suggest that CS acts as a stabilizing matrix at pH 8.0 during biomimetic mineralization. In the experimental section, the effects of pH and the molecular weight of CS were investigated, with a focus on their impact on the crystal structure of the resulting material. X-ray diffraction and scanning electron microscopy analyses reveal that, under conditions of approximately pH 8.0 and a CS molecular weight of 20 000 g/mol, and controlled ion concentration, ultrasound radiation, and temperature, the dominant CaP phases in the material are carbonate-doped hydroxyapatite (CHA) and octacalcium phosphate (OCP). These findings suggest that CS, when adjusted for molecular weight and pH, facilitates the formation of CaP crystal phases that closely resemble the natural inorganic composition of bone, highlighting its protective and regulatory roles in the growth and maturation of crystals during mineralization. The theoretical predictions and experimental outcomes confirm the crucial role of CS as a templating agent, enabling the development of a biomimetic mineralization pathway. CS's ability to guide this process may prove valuable in the design of materials for bone tissue engineering, particularly in developing effective materials for bone tissue healing and regeneration.
Collapse
Affiliation(s)
- Krzysztof Stafin
- Department of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, ul. Warszawska 24, 31-155 Kraków, Poland
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, ul. Warszawska 24, 31-155 Kraków, Poland
| | - Paweł Śliwa
- Department of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, ul. Warszawska 24, 31-155 Kraków, Poland
| | - Marek Pia Tkowski
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, ul. Warszawska 24, 31-155 Kraków, Poland
| | - Dalibor Matýsek
- Faculty of Mining and Geology, Technical University of Ostrava, 708 00 Ostrava, Czech Republic
| |
Collapse
|
5
|
Gallo L, Lacasa L, Latora V, Battiston F. Higher-order correlations reveal complex memory in temporal hypergraphs. Nat Commun 2024; 15:4754. [PMID: 38834592 DOI: 10.1038/s41467-024-48578-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 05/02/2024] [Indexed: 06/06/2024] Open
Abstract
Many real-world complex systems are characterized by interactions in groups that change in time. Current temporal network approaches, however, are unable to describe group dynamics, as they are based on pairwise interactions only. Here, we use time-varying hypergraphs to describe such systems, and we introduce a framework based on higher-order correlations to characterize their temporal organization. The analysis of human interaction data reveals the existence of coherent and interdependent mesoscopic structures, thus capturing aggregation, fragmentation and nucleation processes in social systems. We introduce a model of temporal hypergraphs with non-Markovian group interactions, which reveals complex memory as a fundamental mechanism underlying the emerging pattern in the data.
Collapse
Affiliation(s)
- Luca Gallo
- Department of Network and Data Science, Central European University, Vienna, Austria.
| | - Lucas Lacasa
- Institute for Cross-Disciplinary Physics and Complex Systems (IFISC), CSIC-UIB, Palma de Mallorca, Spain
| | - Vito Latora
- School of Mathematical Sciences, Queen Mary University of London, London, E1 4NS, UK
- Department of Physics and Astronomy, University of Catania, 95125, Catania, Italy
- INFN Sezione di Catania, Via S. Sofia, 64, 95125, Catania, Italy
- Complexity Science Hub Vienna, A-1080, Vienna, Austria
| | - Federico Battiston
- Department of Network and Data Science, Central European University, Vienna, Austria.
| |
Collapse
|
6
|
Mokryn O, Abbey A, Marmor Y, Shahar Y. Evaluating the dynamic interplay of social distancing policies regarding airborne pathogens through a temporal interaction-driven model that uses real-world and synthetic data. J Biomed Inform 2024; 151:104601. [PMID: 38307358 DOI: 10.1016/j.jbi.2024.104601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 12/18/2023] [Accepted: 01/27/2024] [Indexed: 02/04/2024]
Abstract
OBJECTIVE The recent SARS-CoV-2 pandemic has exhibited diverse patterns of spread across countries and communities, emphasizing the need to consider the underlying population dynamics in modeling its progression and the importance of evaluating the effectiveness of non-pharmaceutical intervention strategies in combating viral transmission within human communities. Such an understanding requires accurate modeling of the interplay between the community dynamics and the disease propagation dynamics within the community. METHODS We build on an interaction-driven model of an airborne disease over contact networks that we have defined. Using the model, we evaluate the effectiveness of temporal, spatial, and spatiotemporal social distancing policies. Temporal social distancing involves a pure dilation of the timeline while preserving individual activity potential and thus prolonging the period of interaction; spatial distancing corresponds to social distancing pods; and spatiotemporal distancing pertains to the situation in which fixed subgroups of the overall group meet at alternate times. We evaluate these social distancing policies over real-world interactions' data and over history-preserving synthetic temporal random networks. Furthermore, we evaluate the policies for the disease's with different number of initial patients, corresponding to either the phase in the progression of the infection through a community or the number of patients infected together at the initial infection event. We expand our model to consider the exposure to viral load, which we correlate with the meetings' duration. RESULTS Our results demonstrate the superiority of decreasing social interactions (i.e., time dilation) within the community over partial isolation strategies, such as the spatial distancing pods and the spatiotemporal distancing strategy. In addition, we found that slow-spreading pathogens (i.e., pathogens that require a longer exposure to infect) spread roughly at the same rate as fast-spreading ones in highly active communities. This result is surprising since the pathogens may follow different paths. However, we demonstrate that the dilation of the timeline considerably slows the spread of the slower pathogens. CONCLUSIONS Our results demonstrate that the temporal dynamics of a community have a more significant effect on the spread of the disease than the characteristics of the spreading processes.
Collapse
Affiliation(s)
- Osnat Mokryn
- Department of Information Systems, University of Haifa, Israel.
| | - Alex Abbey
- Department of Information Systems, University of Haifa, Israel
| | - Yanir Marmor
- Department of Information Systems, University of Haifa, Israel
| | - Yuval Shahar
- Department of Software and Information Systems Engineering, Ben Gurion University, Beer-Sheva, Israel
| |
Collapse
|
7
|
Papo D, Buldú JM. Does the brain behave like a (complex) network? I. Dynamics. Phys Life Rev 2024; 48:47-98. [PMID: 38145591 DOI: 10.1016/j.plrev.2023.12.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 12/10/2023] [Indexed: 12/27/2023]
Abstract
Graph theory is now becoming a standard tool in system-level neuroscience. However, endowing observed brain anatomy and dynamics with a complex network structure does not entail that the brain actually works as a network. Asking whether the brain behaves as a network means asking whether network properties count. From the viewpoint of neurophysiology and, possibly, of brain physics, the most substantial issues a network structure may be instrumental in addressing relate to the influence of network properties on brain dynamics and to whether these properties ultimately explain some aspects of brain function. Here, we address the dynamical implications of complex network, examining which aspects and scales of brain activity may be understood to genuinely behave as a network. To do so, we first define the meaning of networkness, and analyse some of its implications. We then examine ways in which brain anatomy and dynamics can be endowed with a network structure and discuss possible ways in which network structure may be shown to represent a genuine organisational principle of brain activity, rather than just a convenient description of its anatomy and dynamics.
Collapse
Affiliation(s)
- D Papo
- Department of Neuroscience and Rehabilitation, Section of Physiology, University of Ferrara, Ferrara, Italy; Center for Translational Neurophysiology, Fondazione Istituto Italiano di Tecnologia, Ferrara, Italy.
| | - J M Buldú
- Complex Systems Group & G.I.S.C., Universidad Rey Juan Carlos, Madrid, Spain
| |
Collapse
|
8
|
Zarei F, Gandica Y, Rocha LEC. Bursts of communication increase opinion diversity in the temporal Deffuant model. Sci Rep 2024; 14:2222. [PMID: 38278824 PMCID: PMC10817933 DOI: 10.1038/s41598-024-52458-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/18/2024] [Indexed: 01/28/2024] Open
Abstract
Human interactions create social networks forming the backbone of societies. Individuals adjust their opinions by exchanging information through social interactions. Two recurrent questions are whether social structures promote opinion polarisation or consensus and whether polarisation can be avoided, particularly on social media. In this paper, we hypothesise that not only network structure but also the timings of social interactions regulate the emergence of opinion clusters. We devise a temporal version of the Deffuant opinion model where pairwise social interactions follow temporal patterns. Individuals may self-organise into a multi-partisan society due to network clustering promoting the reinforcement of local opinions. Burstiness has a similar effect and is alone sufficient to refrain the population from consensus and polarisation by also promoting the reinforcement of local opinions. The diversity of opinions in socially clustered networks thus increases with burstiness, particularly, and counter-intuitively, when individuals have low tolerance and prefer to adjust to similar peers. The emergent opinion landscape is well-balanced regarding groups' size, with relatively short differences between groups, and a small fraction of extremists. We argue that polarisation is more likely to emerge in social media than offline social networks because of the relatively low social clustering observed online, despite the observed online burstiness being sufficient to promote more diversity than would be expected offline. Increasing the variance of burst activation times, e.g. by being less active on social media, could be a venue to reduce polarisation. Furthermore, strengthening online social networks by increasing social redundancy, i.e. triangles, may also promote diversity.
Collapse
Affiliation(s)
- Fatemeh Zarei
- Department of Economics, Ghent University, Ghent, Belgium
- Department of Physics and Astronomy, Ghent University, Ghent, Belgium
| | - Yerali Gandica
- Department of Mathematics, Valencian International University, Valencia, Spain
| | - Luis E C Rocha
- Department of Economics, Ghent University, Ghent, Belgium.
- Department of Physics and Astronomy, Ghent University, Ghent, Belgium.
| |
Collapse
|
9
|
Marmor Y, Abbey A, Shahar Y, Mokryn O. Assessing individual risk and the latent transmission of COVID-19 in a population with an interaction-driven temporal model. Sci Rep 2023; 13:12955. [PMID: 37563358 PMCID: PMC10415258 DOI: 10.1038/s41598-023-39817-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 07/31/2023] [Indexed: 08/12/2023] Open
Abstract
Interaction-driven modeling of diseases over real-world contact data has been shown to promote the understanding of the spread of diseases in communities. This temporal modeling follows the path-preserving order and timing of the contacts, which are essential for accurate modeling. Yet, other important aspects were overlooked. Various airborne pathogens differ in the duration of exposure needed for infection. Also, from the individual perspective, Covid-19 progression differs between individuals, and its severity is statistically correlated with age. Here, we enrich an interaction-driven model of Covid-19 and similar airborne viral diseases with (a) meetings duration and (b) personal disease progression. The enriched model enables predicting outcomes at both the population and the individual levels. It further allows predicting individual risk of engaging in social interactions as a function of the virus characteristics and its prevalence in the population. We further showed that the enigmatic nature of asymptomatic transmission stems from the latent effect of the network density on this transmission and that asymptomatic transmission has a substantial impact only in sparse communities.
Collapse
Affiliation(s)
- Yanir Marmor
- Information Systems, University of Haifa, Haifa, Israel
| | - Alex Abbey
- Information Systems, University of Haifa, Haifa, Israel
| | - Yuval Shahar
- Software and Information Systems Engineering, Ben Gurion University, Beer Sheva, Israel
| | - Osnat Mokryn
- Information Systems, University of Haifa, Haifa, Israel.
| |
Collapse
|
10
|
Ceria A, Wang H. Temporal-topological properties of higher-order evolving networks. Sci Rep 2023; 13:5885. [PMID: 37041223 PMCID: PMC10090145 DOI: 10.1038/s41598-023-32253-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 03/24/2023] [Indexed: 04/13/2023] Open
Abstract
Human social interactions are typically recorded as time-specific dyadic interactions, and represented as evolving (temporal) networks, where links are activated/deactivated over time. However, individuals can interact in groups of more than two people. Such group interactions can be represented as higher-order events of an evolving network. Here, we propose methods to characterize the temporal-topological properties of higher-order events to compare networks and identify their (dis)similarities. We analyzed 8 real-world physical contact networks, finding the following: (a) Events of different orders close in time tend to be also close in topology; (b) Nodes participating in many different groups (events) of a given order tend to involve in many different groups (events) of another order; Thus, individuals tend to be consistently active or inactive in events across orders; (c) Local events that are close in topology are correlated in time, supporting observation (a). Differently, in 5 collaboration networks, observation (a) is almost absent; Consistently, no evident temporal correlation of local events has been observed in collaboration networks. Such differences between the two classes of networks may be explained by the fact that physical contacts are proximity based, in contrast to collaboration networks. Our methods may facilitate the investigation of how properties of higher-order events affect dynamic processes unfolding on them and possibly inspire the development of more refined models of higher-order time-varying networks.
Collapse
Affiliation(s)
- Alberto Ceria
- Faculty of Electrical Engineering, Mathematics, and Computer Science, Delft University of Technology, Mekelweg 4, 2628 CD, Delft, The Netherlands.
| | - Huijuan Wang
- Faculty of Electrical Engineering, Mathematics, and Computer Science, Delft University of Technology, Mekelweg 4, 2628 CD, Delft, The Netherlands
| |
Collapse
|
11
|
Agajanian S, Alshahrani M, Bai F, Tao P, Verkhivker GM. Exploring and Learning the Universe of Protein Allostery Using Artificial Intelligence Augmented Biophysical and Computational Approaches. J Chem Inf Model 2023; 63:1413-1428. [PMID: 36827465 PMCID: PMC11162550 DOI: 10.1021/acs.jcim.2c01634] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
Allosteric mechanisms are commonly employed regulatory tools used by proteins to orchestrate complex biochemical processes and control communications in cells. The quantitative understanding and characterization of allosteric molecular events are among major challenges in modern biology and require integration of innovative computational experimental approaches to obtain atomistic-level knowledge of the allosteric states, interactions, and dynamic conformational landscapes. The growing body of computational and experimental studies empowered by emerging artificial intelligence (AI) technologies has opened up new paradigms for exploring and learning the universe of protein allostery from first principles. In this review we analyze recent developments in high-throughput deep mutational scanning of allosteric protein functions; applications and latest adaptations of Alpha-fold structural prediction methods for studies of protein dynamics and allostery; new frontiers in integrating machine learning and enhanced sampling techniques for characterization of allostery; and recent advances in structural biology approaches for studies of allosteric systems. We also highlight recent computational and experimental studies of the SARS-CoV-2 spike (S) proteins revealing an important and often hidden role of allosteric regulation driving functional conformational changes, binding interactions with the host receptor, and mutational escape mechanisms of S proteins which are critical for viral infection. We conclude with a summary and outlook of future directions suggesting that AI-augmented biophysical and computer simulation approaches are beginning to transform studies of protein allostery toward systematic characterization of allosteric landscapes, hidden allosteric states, and mechanisms which may bring about a new revolution in molecular biology and drug discovery.
Collapse
Affiliation(s)
- Steve Agajanian
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California 92866, United States
| | - Mohammed Alshahrani
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California 92866, United States
| | - Fang Bai
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology and Information Science and Technology, Shanghai Tech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Peng Tao
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas 75205, United States
| | - Gennady M Verkhivker
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California 92866, United States
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California 92618, United States
| |
Collapse
|
12
|
Brattig Correia R, Barrat A, Rocha LM. Contact networks have small metric backbones that maintain community structure and are primary transmission subgraphs. PLoS Comput Biol 2023; 19:e1010854. [PMID: 36821564 PMCID: PMC9949650 DOI: 10.1371/journal.pcbi.1010854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 01/06/2023] [Indexed: 02/24/2023] Open
Abstract
The structure of social networks strongly affects how different phenomena spread in human society, from the transmission of information to the propagation of contagious diseases. It is well-known that heterogeneous connectivity strongly favors spread, but a precise characterization of the redundancy present in social networks and its effect on the robustness of transmission is still lacking. This gap is addressed by the metric backbone, a weight- and connectivity-preserving subgraph that is sufficient to compute all shortest paths of weighted graphs. This subgraph is obtained via algebraically-principled axioms and does not require statistical sampling based on null-models. We show that the metric backbones of nine contact networks obtained from proximity sensors in a variety of social contexts are generally very small, 49% of the original graph for one and ranging from about 6% to 20% for the others. This reflects a surprising amount of redundancy and reveals that shortest paths on these networks are very robust to random attacks and failures. We also show that the metric backbone preserves the full distribution of shortest paths of the original contact networks-which must include the shortest inter- and intra-community distances that define any community structure-and is a primary subgraph for epidemic transmission based on pure diffusion processes. This suggests that the organization of social contact networks is based on large amounts of shortest-path redundancy which shapes epidemic spread in human populations. Thus, the metric backbone is an important subgraph with regard to epidemic spread, the robustness of social networks, and any communication dynamics that depend on complex network shortest paths.
Collapse
Affiliation(s)
- Rion Brattig Correia
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Department of Systems Science and Industrial Engineering, Center for Social and Biomedical Complexity, Binghamton University, Binghamton New York, United States of America
| | - Alain Barrat
- Aix Marseille Univ, Université de Toulon, CNRS, CPT, Turing Center for Living Systems, Marseille, France
| | - Luis M. Rocha
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Department of Systems Science and Industrial Engineering, Center for Social and Biomedical Complexity, Binghamton University, Binghamton New York, United States of America
| |
Collapse
|
13
|
Abbey A, Shahar Y, Mokryn O. Analysis of the competition among viral strains using a temporal interaction-driven contagion model. Sci Rep 2022; 12:9616. [PMID: 35688869 PMCID: PMC9186289 DOI: 10.1038/s41598-022-13432-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/24/2022] [Indexed: 11/09/2022] Open
Abstract
The temporal dynamics of social interactions were shown to influence the spread of disease. Here, we model the conditions of progression and competition for several viral strains, exploring various levels of cross-immunity over temporal networks. We use our interaction-driven contagion model and characterize, using it, several viral variants. Our results, obtained on temporal random networks and on real-world interaction data, demonstrate that temporal dynamics are crucial to determining the competition results. We consider two and three competing pathogens and show the conditions under which a slower pathogen will remain active and create a second wave infecting most of the population. We then show that when the duration of the encounters is considered, the spreading dynamics change significantly. Our results indicate that when considering airborne diseases, it might be crucial to consider the duration of temporal meetings to model the spread of pathogens in a population.
Collapse
Affiliation(s)
- Alex Abbey
- Information Systems, University of Haifa, Haifa, Israel
| | - Yuval Shahar
- Software and Information Systems Engineering, Ben Gurion University, Beer Sheva, Israel
| | - Osnat Mokryn
- Information Systems, University of Haifa, Haifa, Israel.
| |
Collapse
|
14
|
Badie-Modiri A, Rizi AK, Karsai M, Kivelä M. Directed percolation in random temporal network models with heterogeneities. Phys Rev E 2022; 105:054313. [PMID: 35706217 DOI: 10.1103/physreve.105.054313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 04/07/2022] [Indexed: 06/15/2023]
Abstract
The event graph representation of temporal networks suggests that the connectivity of temporal structures can be mapped to a directed percolation problem. However, similarly to percolation theory on static networks, this mapping is valid under the approximation that the structure and interaction dynamics of the temporal network are determined by its local properties, and, otherwise, it is maximally random. We challenge these conditions and demonstrate the robustness of this mapping in case of more complicated systems. We systematically analyze random and regular network topologies and heterogeneous link-activation processes driven by bursty renewal or self-exciting processes using numerical simulation and finite-size scaling methods. We find that the critical percolation exponents characterizing the temporal network are not sensitive to many structural and dynamical network heterogeneities, while they recover known scaling exponents characterizing directed percolation on low-dimensional lattices. While it is not possible to demonstrate the validity of this mapping for all temporal network models, our results establish the first batch of evidence supporting the robustness of the scaling relationships in the limited-time reachability of temporal networks.
Collapse
Affiliation(s)
- Arash Badie-Modiri
- Department of Computer Science, School of Science, Aalto University, FI-0007, Finland
| | - Abbas K Rizi
- Department of Computer Science, School of Science, Aalto University, FI-0007, Finland
| | - Márton Karsai
- Department of Network and Data Science Central European University, 1100 Vienna, Austria
- Alfréd Rényi Institute of Mathematics, 1053 Budapest, Hungary
| | - Mikko Kivelä
- Department of Computer Science, School of Science, Aalto University, FI-0007, Finland
| |
Collapse
|
15
|
Horsevad N, Mateo D, Kooij RE, Barrat A, Bouffanais R. Transition from simple to complex contagion in collective decision-making. Nat Commun 2022; 13:1442. [PMID: 35301305 PMCID: PMC8931172 DOI: 10.1038/s41467-022-28958-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 02/16/2022] [Indexed: 11/20/2022] Open
Abstract
How does the spread of behavior affect consensus-based collective decision-making among animals, humans or swarming robots? In prior research, such propagation of behavior on social networks has been found to exhibit a transition from simple contagion—i.e, based on pairwise interactions—to a complex one—i.e., involving social influence and reinforcement. However, this rich phenomenology appears so far limited to threshold-based decision-making processes with binary options. Here, we show theoretically, and experimentally with a multi-robot system, that such a transition from simple to complex contagion can also be observed in an archetypal model of distributed decision-making devoid of any thresholds or nonlinearities. Specifically, we uncover two key results: the nature of the contagion—simple or complex—is tightly related to the intrinsic pace of the behavior that is spreading, and the network topology strongly influences the effectiveness of the behavioral transmission in ways that are reminiscent of threshold-based models. These results offer new directions for the empirical exploration of behavioral contagions in groups, and have significant ramifications for the design of cooperative and networked robot systems. In consensus-based collective dynamics, the occurrence of simple and complex contagions shapes system behavior. The authors analyze a transition from simple to complex contagions in collective decision-making processes based on consensus, and demonstrate it with a swarm robotic system.
Collapse
Affiliation(s)
| | | | - Robert E Kooij
- Delft University of Technology, Delft, The Netherlands.,The Netherlands Organization for Applied Scientific Research (TNO), The Hague, The Netherlands
| | - Alain Barrat
- Aix Marseille Univ, Université de Toulon, CNRS, CPT, Turing Center for Living Systems, Marseille, France.,Tokyo Tech World Research Hub Initiative (WRHI), Tokyo Institute of Technology, Tokyo, Japan
| | | |
Collapse
|
16
|
Williams OE, Mazzarisi P, Lillo F, Latora V. Non-Markovian temporal networks with auto- and cross-correlated link dynamics. Phys Rev E 2022; 105:034301. [PMID: 35428139 DOI: 10.1103/physreve.105.034301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
Many of the biological, social and man-made networks around us are inherently dynamic, with their links switching on and off over time. The evolution of these networks is often observed to be non-Markovian, and the dynamics of their links are often correlated. Hence, to accurately model these networks, predict their evolution, and understand how information and other relevant quantities propagate over them, the inclusion of both memory and dynamical dependencies between links is key. In this article we introduce a general class of models of temporal networks based on discrete autoregressive processes for link dynamics. As a concrete and useful case study, we then concentrate on a specific model within this class, which allows to generate temporal networks with a specified underlying structural backbone, and with precise control over the dynamical dependencies between links and the strength and length of their memories. In this network model the presence of each link is influenced not only by its past activity, but also by the past activities of other links, as specified by a coupling matrix, which directly controls the causal relations, and hence the correlations, among links. We propose a maximum likelihood method for estimating the model's parameters from data, showing how the model allows a more realistic description of real-world temporal networks and also to predict their evolution. Due to the flexibility of maximum likelihood inference, we illustrate how to deal with heterogeneity and time-varying patterns, possibly including also nonstationary network dynamics. We then use our network model to investigate the role that, both the features of memory and the type of correlations in the dynamics of links have on the properties of processes occurring over a temporal network. Namely, we study the speed of a spreading process, as measured by the time it takes for diffusion to reach equilibrium. Through both numerical simulations and analytical results, we are able to separate the roles of autocorrelations and neighborhood correlations in link dynamics, showing that not only is the speed of diffusion nonmonotonically dependent on the memory length, but also that correlations among neighboring links help to speed up the spreading process, while autocorrelations slow it back down. Our results have implications in the study of opinion formation, the modeling of social networks, and the spreading of epidemics through mobile populations.
Collapse
Affiliation(s)
- Oliver E Williams
- School of Mathematical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Piero Mazzarisi
- Scuola Normale Superiore, Piazza dei Cavalieri, 7, 56126 Pisa, Italy
| | - Fabrizio Lillo
- Scuola Normale Superiore, Piazza dei Cavalieri, 7, 56126 Pisa, Italy
- Department of Mathematics, University of Bologna, Piazza di Porta San Donato 5, 40126 Bologna, Italy
| | - Vito Latora
- School of Mathematical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom
- Dipartimento di Fisica ed Astronomia, Università di Catania and INFN, I-95123 Catania, Italy
- Complexity Science Hub Vienna (CSHV), A-1080 Vienna, Austria
| |
Collapse
|
17
|
Zhao P, Wang Q, Wang P, Xiao S, Li Y. Influence of network structure on contaminant spreading efficiency. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127511. [PMID: 34688007 DOI: 10.1016/j.jhazmat.2021.127511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/03/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
Contaminants, such as pathogens or non-living substances, can spread through the interaction of their carriers (e.g., air and surfaces), which constitute a network. The structure of such networks plays an important role in the contaminant spread. We measured the contaminant spreading efficiency in different networks using a newly defined parameter. We analyzed basic networks to identify the effect of the network structure on the contaminant spread. The spreading efficiency was highly related to some network parameters, such as the source node's average path length and degree, and considerably varied with the transfer rate per inter-node interaction. We compared the contaminant spreading efficiencies in some complex networks, namely scale-free, random, regular-lattice, and bipartite networks, with centralized, linear, and fractal networks. The contaminant spreading was particularly efficient in the fractal network when the transfer rate was ~0.5. Two categories of experiments were performed to validate the effect of the network structure on contaminant spreading in practical cases: (I) gas diffusion in multi-compartment cabins (II) bacteria transfer in multi-finger networks. The gas diffusion could be well estimated based on the diffusion between two compartments, and it was considerably affected by the network structure. Meanwhile, the bacteria spread was generally less efficient than expected.
Collapse
Affiliation(s)
- Pengcheng Zhao
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Qun Wang
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Peihua Wang
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Shenglan Xiao
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Yuguo Li
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China; School of Public Health, The University of Hong Kong, Pokfulam, Hong Kong, China.
| |
Collapse
|
18
|
Abstract
How to best define, detect and characterize network memory, i.e. the dependence of a network’s structure on its past, is currently a matter of debate. Here we show that the memory of a temporal network is inherently multidimensional, and we introduce a mathematical framework for defining and efficiently estimating the microscopic shape of memory, which characterises how the activity of each link intertwines with the activities of all other links. We validate our methodology on a range of synthetic models, and we then study the memory shape of real-world temporal networks spanning social, technological and biological systems, finding that these networks display heterogeneous memory shapes. In particular, online and offline social networks are markedly different, with the latter showing richer memory and memory scales. Our theory also elucidates the phenomenon of emergent virtual loops and provides a novel methodology for exploring the dynamically rich structure of complex systems. The evolution of networks with structure changing in time is dependent on their past states and relevant to diffusion and spreading processes. The authors show that temporal network’s memory is described by multidimensional patterns at a microscopic scale, and cannot be reduced to a scalar quantity.
Collapse
|
19
|
Berardi V, Pincus D, Walker E, Adams MA. Burstiness and Stochasticity in the Malleability of Physical Activity. JOURNAL OF SPORT & EXERCISE PSYCHOLOGY 2021; 43:387-398. [PMID: 34504039 PMCID: PMC9792373 DOI: 10.1123/jsep.2020-0340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 06/13/2023]
Abstract
This study examined whether patterns of self-organization in physical activity (PA) predicted long-term success in a yearlong PA intervention. Increased moderate to vigorous PA (MVPA) was targeted in insufficiently active adults (N = 512) via goal setting and financial reinforcement. The degree to which inverse power law distributions, which are reflective of self-organization, summarized (a) daily MVPA and (b) time elapsed between meeting daily goals (goal attainment interresponse times) was calculated. Goal attainment interresponse times were also used to calculate burstiness, the degree to which meeting daily goals clustered in time. Inverse power laws accurately summarized interresponse times, but not daily MVPA. For participants with higher levels of MVPA early in the study, burstiness in reaching goals was associated with long-term resistance to intervention, while stochasticity in meeting goals predicted receptiveness to intervention. These results suggest that burstiness may measure self-organizing resistance to change, while PA stochasticity could be a precondition for behavioral malleability.
Collapse
|
20
|
Yao Q, Chen B, Evans TS, Christensen K. Higher-order temporal network effects through triplet evolution. Sci Rep 2021; 11:15419. [PMID: 34326379 PMCID: PMC8322211 DOI: 10.1038/s41598-021-94389-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 07/08/2021] [Indexed: 02/07/2023] Open
Abstract
We study the evolution of networks through 'triplets'-three-node graphlets. We develop a method to compute a transition matrix to describe the evolution of triplets in temporal networks. To identify the importance of higher-order interactions in the evolution of networks, we compare both artificial and real-world data to a model based on pairwise interactions only. The significant differences between the computed matrix and the calculated matrix from the fitted parameters demonstrate that non-pairwise interactions exist for various real-world systems in space and time, such as our data sets. Furthermore, this also reveals that different patterns of higher-order interaction are involved in different real-world situations. To test our approach, we then use these transition matrices as the basis of a link prediction algorithm. We investigate our algorithm's performance on four temporal networks, comparing our approach against ten other link prediction methods. Our results show that higher-order interactions in both space and time play a crucial role in the evolution of networks as we find our method, along with two other methods based on non-local interactions, give the best overall performance. The results also confirm the concept that the higher-order interaction patterns, i.e., triplet dynamics, can help us understand and predict the evolution of different real-world systems.
Collapse
Affiliation(s)
- Qing Yao
- Blackett Laboratory and Centre for Complexity Science, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
- School of Systems Science, Beijing Normal University, Beijing, 100875, China.
| | - Bingsheng Chen
- Blackett Laboratory and Centre for Complexity Science, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Tim S Evans
- Blackett Laboratory and Centre for Complexity Science, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Kim Christensen
- Blackett Laboratory and Centre for Complexity Science, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| |
Collapse
|
21
|
Sharpe DJ, Wales DJ. Graph transformation and shortest paths algorithms for finite Markov chains. Phys Rev E 2021; 103:063306. [PMID: 34271741 DOI: 10.1103/physreve.103.063306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/29/2021] [Indexed: 12/20/2022]
Abstract
The graph transformation (GT) algorithm robustly computes the mean first-passage time to an absorbing state in a finite Markov chain. Here we present a concise overview of the iterative and block formulations of the GT procedure and generalize the GT formalism to the case of any path property that is a sum of contributions from individual transitions. In particular, we examine the path action, which directly relates to the path probability, and analyze the first-passage path ensemble for a model Markov chain that is metastable and therefore numerically challenging. We compare the mean first-passage path action, obtained using GT, with the full path action probability distribution simulated efficiently using kinetic path sampling, and with values for the highest-probability paths determined by the recursive enumeration algorithm (REA). In Markov chains representing realistic dynamical processes, the probability distributions of first-passage path properties are typically fat-tailed and therefore difficult to converge by sampling, which motivates the use of exact and numerically stable approaches to compute the expectation. We find that the kinetic relevance of the set of highest-probability paths depends strongly on the metastability of the Markov chain, and so the properties of the dominant first-passage paths may be unrepresentative of the global dynamics. Use of a global measure for edge costs in the REA, based on net productive fluxes, allows the total reactive flux to be decomposed into a finite set of contributions from simple flux paths. By considering transition flux paths, a detailed quantitative analysis of the relative importance of competing dynamical processes is possible even in the metastable regime.
Collapse
Affiliation(s)
- Daniel J Sharpe
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - David J Wales
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
22
|
Murayama T, Wakamiya S, Aramaki E, Kobayashi R. Modeling the spread of fake news on Twitter. PLoS One 2021; 16:e0250419. [PMID: 33886665 PMCID: PMC8062041 DOI: 10.1371/journal.pone.0250419] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 04/06/2021] [Indexed: 11/18/2022] Open
Abstract
Fake news can have a significant negative impact on society because of the growing use of mobile devices and the worldwide increase in Internet access. It is therefore essential to develop a simple mathematical model to understand the online dissemination of fake news. In this study, we propose a point process model of the spread of fake news on Twitter. The proposed model describes the spread of a fake news item as a two-stage process: initially, fake news spreads as a piece of ordinary news; then, when most users start recognizing the falsity of the news item, that itself spreads as another news story. We validate this model using two datasets of fake news items spread on Twitter. We show that the proposed model is superior to the current state-of-the-art methods in accurately predicting the evolution of the spread of a fake news item. Moreover, a text analysis suggests that our model appropriately infers the correction time, i.e., the moment when Twitter users start realizing the falsity of the news item. The proposed model contributes to understanding the dynamics of the spread of fake news on social media. Its ability to extract a compact representation of the spreading pattern could be useful in the detection and mitigation of fake news.
Collapse
Affiliation(s)
- Taichi Murayama
- Nara Institute of Science and Technology (NAIST), Ikoma, Japan
| | - Shoko Wakamiya
- Nara Institute of Science and Technology (NAIST), Ikoma, Japan
| | - Eiji Aramaki
- Nara Institute of Science and Technology (NAIST), Ikoma, Japan
| | - Ryota Kobayashi
- The University of Tokyo, Tokyo, Japan
- JST PRESTO, Kawaguchi, Japan
- * E-mail:
| |
Collapse
|
23
|
Peng H, Nematzadeh A, Romero DM, Ferrara E. Network modularity controls the speed of information diffusion. Phys Rev E 2020; 102:052316. [PMID: 33327110 DOI: 10.1103/physreve.102.052316] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/08/2020] [Indexed: 11/07/2022]
Abstract
The rapid diffusion of information and the adoption of social behaviors are of critical importance in situations as diverse as collective actions, pandemic prevention, or advertising and marketing. Although the dynamics of large cascades have been extensively studied in various contexts, few have systematically examined the impact of network topology on the efficiency of information diffusion. Here, by employing the linear threshold model on networks with communities, we demonstrate that a prominent network feature-the modular structure-strongly affects the speed of information diffusion in complex contagion. Our simulations show that there always exists an optimal network modularity for the most efficient spreading process. Beyond this critical value, either a stronger or a weaker modular structure actually hinders the diffusion speed. These results are confirmed by an analytical approximation. We further demonstrate that the optimal modularity varies with both the seed size and the target cascade size and is ultimately dependent on the network under investigation. We underscore the importance of our findings in applications from marketing to epidemiology, from neuroscience to engineering, where the understanding of the structural design of complex systems focuses on the efficiency of information propagation.
Collapse
Affiliation(s)
- Hao Peng
- School of Information, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | - Daniel M Romero
- School of Information, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Emilio Ferrara
- Information Sciences Institute, University of Southern California, Los Angeles, California 90292, USA
| |
Collapse
|
24
|
Evans JC, Silk MJ, Boogert NJ, Hodgson DJ. Infected or informed? Social structure and the simultaneous transmission of information and infectious disease. OIKOS 2020. [DOI: 10.1111/oik.07148] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Julian C. Evans
- Dept of Evolutionary Biology and Environmental Studies, Univ. of Zurich Switzerland
| | - Matthew J. Silk
- Centre for Ecology and Conservation, Univ. of Exeter Penryn Campus UK
- Environment and Sustainability Inst., Univ. of Exeter Penryn Campus UK
| | | | - David J. Hodgson
- Centre for Ecology and Conservation, Univ. of Exeter Penryn Campus UK
| |
Collapse
|
25
|
Jo HH, Hiraoka T, Kivelä M. Burst-tree decomposition of time series reveals the structure of temporal correlations. Sci Rep 2020; 10:12202. [PMID: 32699282 PMCID: PMC7376115 DOI: 10.1038/s41598-020-68157-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 06/19/2020] [Indexed: 11/13/2022] Open
Abstract
Comprehensive characterization of non-Poissonian, bursty temporal patterns observed in various natural and social processes is crucial for understanding the underlying mechanisms behind such temporal patterns. Among them bursty event sequences have been studied mostly in terms of interevent times (IETs), while the higher-order correlation structure between IETs has gained very little attention due to the lack of a proper characterization method. In this paper we propose a method of representing an event sequence by a burst tree, which is then decomposed into a set of IETs and an ordinal burst tree. The ordinal burst tree exactly captures the structure of temporal correlations that is entirely missing in the analysis of IET distributions. We apply this burst-tree decomposition method to various datasets and analyze the structure of the revealed burst trees. In particular, we observe that event sequences show similar burst-tree structure, such as heavy-tailed burst-size distributions, despite of very different IET distributions. This clearly shows that the IET distributions and the burst-tree structures can be separable. The burst trees allow us to directly characterize the preferential and assortative mixing structure of bursts responsible for the higher-order temporal correlations. We also show how to use the decomposition method for the systematic investigation of such correlations captured by the burst trees in the framework of randomized reference models. Finally, we devise a simple kernel-based model for generating event sequences showing appropriate higher-order temporal correlations. Our method is a tool to make the otherwise overwhelming analysis of higher-order correlations in bursty time series tractable by turning it into the analysis of a tree structure.
Collapse
Affiliation(s)
- Hang-Hyun Jo
- Department of Physics, The Catholic University of Korea, Bucheon, 14662, Republic of Korea. .,Asia Pacific Center for Theoretical Physics, Pohang, 37673, Republic of Korea.
| | - Takayuki Hiraoka
- Department of Computer Science, Aalto University, Espoo, 00076, Finland.,Asia Pacific Center for Theoretical Physics, Pohang, 37673, Republic of Korea
| | - Mikko Kivelä
- Department of Computer Science, Aalto University, Espoo, 00076, Finland
| |
Collapse
|
26
|
Verkhivker GM, Agajanian S, Hu G, Tao P. Allosteric Regulation at the Crossroads of New Technologies: Multiscale Modeling, Networks, and Machine Learning. Front Mol Biosci 2020; 7:136. [PMID: 32733918 PMCID: PMC7363947 DOI: 10.3389/fmolb.2020.00136] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/08/2020] [Indexed: 12/12/2022] Open
Abstract
Allosteric regulation is a common mechanism employed by complex biomolecular systems for regulation of activity and adaptability in the cellular environment, serving as an effective molecular tool for cellular communication. As an intrinsic but elusive property, allostery is a ubiquitous phenomenon where binding or disturbing of a distal site in a protein can functionally control its activity and is considered as the "second secret of life." The fundamental biological importance and complexity of these processes require a multi-faceted platform of synergistically integrated approaches for prediction and characterization of allosteric functional states, atomistic reconstruction of allosteric regulatory mechanisms and discovery of allosteric modulators. The unifying theme and overarching goal of allosteric regulation studies in recent years have been integration between emerging experiment and computational approaches and technologies to advance quantitative characterization of allosteric mechanisms in proteins. Despite significant advances, the quantitative characterization and reliable prediction of functional allosteric states, interactions, and mechanisms continue to present highly challenging problems in the field. In this review, we discuss simulation-based multiscale approaches, experiment-informed Markovian models, and network modeling of allostery and information-theoretical approaches that can describe the thermodynamics and hierarchy allosteric states and the molecular basis of allosteric mechanisms. The wealth of structural and functional information along with diversity and complexity of allosteric mechanisms in therapeutically important protein families have provided a well-suited platform for development of data-driven research strategies. Data-centric integration of chemistry, biology and computer science using artificial intelligence technologies has gained a significant momentum and at the forefront of many cross-disciplinary efforts. We discuss new developments in the machine learning field and the emergence of deep learning and deep reinforcement learning applications in modeling of molecular mechanisms and allosteric proteins. The experiment-guided integrated approaches empowered by recent advances in multiscale modeling, network science, and machine learning can lead to more reliable prediction of allosteric regulatory mechanisms and discovery of allosteric modulators for therapeutically important protein targets.
Collapse
Affiliation(s)
- Gennady M. Verkhivker
- Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA, United States
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, United States
| | - Steve Agajanian
- Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA, United States
| | - Guang Hu
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Peng Tao
- Department of Chemistry, Center for Drug Discovery, Design, and Delivery (CD4), Center for Scientific Computation, Southern Methodist University, Dallas, TX, United States
| |
Collapse
|
27
|
Abstract
Network embedding techniques are powerful to capture structural regularities in networks and to identify similarities between their local fabrics. However, conventional network embedding models are developed for static structures, commonly consider nodes only and they are seriously challenged when the network is varying in time. Temporal networks may provide an advantage in the description of real systems, but they code more complex information, which could be effectively represented only by a handful of methods so far. Here, we propose a new method of event embedding of temporal networks, called weg2vec, which builds on temporal and structural similarities of events to learn a low dimensional representation of a temporal network. This projection successfully captures latent structures and similarities between events involving different nodes at different times and provides ways to predict the final outcome of spreading processes unfolding on the temporal structure.
Collapse
|
28
|
Fujii K, Takeishi N, Hojo M, Inaba Y, Kawahara Y. Physically-interpretable classification of biological network dynamics for complex collective motions. Sci Rep 2020; 10:3005. [PMID: 32080208 PMCID: PMC7033192 DOI: 10.1038/s41598-020-58064-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 12/13/2019] [Indexed: 11/09/2022] Open
Abstract
Understanding biological network dynamics is a fundamental issue in various scientific and engineering fields. Network theory is capable of revealing the relationship between elements and their propagation; however, for complex collective motions, the network properties often transiently and complexly change. A fundamental question addressed here pertains to the classification of collective motion network based on physically-interpretable dynamical properties. Here we apply a data-driven spectral analysis called graph dynamic mode decomposition, which obtains the dynamical properties for collective motion classification. Using a ballgame as an example, we classified the strategic collective motions in different global behaviours and discovered that, in addition to the physical properties, the contextual node information was critical for classification. Furthermore, we discovered the label-specific stronger spectra in the relationship among the nearest agents, providing physical and semantic interpretations. Our approach contributes to the understanding of principles of biological complex network dynamics from the perspective of nonlinear dynamical systems.
Collapse
Affiliation(s)
- Keisuke Fujii
- Graduate School of Informatics, Nagoya University, Nagoya, Japan. .,RIKEN Center for Advanced Intelligence Project, Tokyo, Japan.
| | - Naoya Takeishi
- RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
| | - Motokazu Hojo
- RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
| | - Yuki Inaba
- Japan Institute of Sports Sciences, Tokyo, Japan
| | - Yoshinobu Kawahara
- RIKEN Center for Advanced Intelligence Project, Tokyo, Japan.,Institute of Mathematics for Industry, Kyushu University, Fukuoka, Japan
| |
Collapse
|
29
|
Sheik Amamuddy O, Veldman W, Manyumwa C, Khairallah A, Agajanian S, Oluyemi O, Verkhivker GM, Tastan Bishop Ö. Integrated Computational Approaches and Tools forAllosteric Drug Discovery. Int J Mol Sci 2020; 21:E847. [PMID: 32013012 PMCID: PMC7036869 DOI: 10.3390/ijms21030847] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 12/16/2022] Open
Abstract
Understanding molecular mechanisms underlying the complexity of allosteric regulationin proteins has attracted considerable attention in drug discovery due to the benefits and versatilityof allosteric modulators in providing desirable selectivity against protein targets while minimizingtoxicity and other side effects. The proliferation of novel computational approaches for predictingligand-protein interactions and binding using dynamic and network-centric perspectives has ledto new insights into allosteric mechanisms and facilitated computer-based discovery of allostericdrugs. Although no absolute method of experimental and in silico allosteric drug/site discoveryexists, current methods are still being improved. As such, the critical analysis and integration ofestablished approaches into robust, reproducible, and customizable computational pipelines withexperimental feedback could make allosteric drug discovery more efficient and reliable. In this article,we review computational approaches for allosteric drug discovery and discuss how these tools can beutilized to develop consensus workflows for in silico identification of allosteric sites and modulatorswith some applications to pathogen resistance and precision medicine. The emerging realization thatallosteric modulators can exploit distinct regulatory mechanisms and can provide access to targetedmodulation of protein activities could open opportunities for probing biological processes and insilico design of drug combinations with improved therapeutic indices and a broad range of activities.
Collapse
Affiliation(s)
- Olivier Sheik Amamuddy
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa; (O.S.A.); (W.V.); (C.M.); (A.K.)
| | - Wayde Veldman
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa; (O.S.A.); (W.V.); (C.M.); (A.K.)
| | - Colleen Manyumwa
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa; (O.S.A.); (W.V.); (C.M.); (A.K.)
| | - Afrah Khairallah
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa; (O.S.A.); (W.V.); (C.M.); (A.K.)
| | - Steve Agajanian
- Graduate Program in Computational and Data Sciences, Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, CA 92866, USA; (S.A.); (O.O.)
| | - Odeyemi Oluyemi
- Graduate Program in Computational and Data Sciences, Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, CA 92866, USA; (S.A.); (O.O.)
| | - Gennady M. Verkhivker
- Graduate Program in Computational and Data Sciences, Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, CA 92866, USA; (S.A.); (O.O.)
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA 92618, USA
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa; (O.S.A.); (W.V.); (C.M.); (A.K.)
| |
Collapse
|
30
|
Lee E, Emmons S, Gibson R, Moody J, Mucha PJ. Concurrency and reachability in treelike temporal networks. Phys Rev E 2019; 100:062305. [PMID: 31962508 PMCID: PMC6989038 DOI: 10.1103/physreve.100.062305] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Indexed: 04/12/2023]
Abstract
Network properties govern the rate and extent of various spreading processes, from simple contagions to complex cascades. Recently, the analysis of spreading processes has been extended from static networks to temporal networks, where nodes and links appear and disappear. We focus on the effects of accessibility, whether there is a temporally consistent path from one node to another, and reachability, the density of the corresponding accessibility graph representation of the temporal network. The level of reachability thus inherently limits the possible extent of any spreading process on the temporal network. We study reachability in terms of the overall levels of temporal concurrency between edges and the structural cohesion of the network agglomerating over all edges. We use simulation results and develop heterogeneous mean-field model predictions for random networks to better quantify how the properties of the underlying temporal network regulate reachability.
Collapse
Affiliation(s)
- Eun Lee
- Carolina Center for Interdisciplinary Applied Mathematics, Department of Mathematics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Scott Emmons
- Carolina Center for Interdisciplinary Applied Mathematics, Department of Mathematics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Ryan Gibson
- Carolina Center for Interdisciplinary Applied Mathematics, Department of Mathematics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - James Moody
- Duke Network Analysis Center and Department of Sociology, Duke University, Durham, North Carolina 27708, USA
| | - Peter J Mucha
- Carolina Center for Interdisciplinary Applied Mathematics, Department of Mathematics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
31
|
Markovian approaches to modeling intracellular reaction processes with molecular memory. Proc Natl Acad Sci U S A 2019; 116:23542-23550. [PMID: 31685609 PMCID: PMC6876203 DOI: 10.1073/pnas.1913926116] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Many cellular processes are governed by stochastic reaction events. These events do not necessarily occur in single steps of individual molecules, and, conversely, each birth or death of a macromolecule (e.g., protein) could involve several small reaction steps, creating a memory between individual events and thus leading to nonmarkovian reaction kinetics. Characterizing this kinetics is challenging. Here, we develop a systematic approach for a general reaction network with arbitrary intrinsic waiting-time distributions, which includes the stationary generalized chemical-master equation (sgCME), the stationary generalized Fokker-Planck equation, and the generalized linear-noise approximation. The first formulation converts a nonmarkovian issue into a markovian one by introducing effective transition rates (that explicitly decode the effect of molecular memory) for the reactions in an equivalent reaction network with the same substrates but without molecular memory. Nonmarkovian features of the reaction kinetics can be revealed by solving the sgCME. The latter 2 formulations can be used in the fast evaluation of fluctuations. These formulations can have broad applications, and, in particular, they may help us discover new biological knowledge underlying memory effects. When they are applied to generalized stochastic models of gene-expression regulation, we find that molecular memory is in effect equivalent to a feedback and can induce bimodality, fine-tune the expression noise, and induce switch.
Collapse
|
32
|
Jo HH, Lee BH, Hiraoka T, Jung WS. Copula-based algorithm for generating bursty time series. Phys Rev E 2019; 100:022307. [PMID: 31574731 DOI: 10.1103/physreve.100.022307] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Indexed: 11/07/2022]
Abstract
Dynamical processes in various natural and social phenomena have been described by a series of events or event sequences showing non-Poissonian, bursty temporal patterns. Temporal correlations in such bursty time series can be understood not only by heterogeneous interevent times (IETs) but also by correlations between IETs. Modeling and simulating various dynamical processes requires us to generate event sequences with a heavy-tailed IET distribution and memory effects between IETs. For this, we propose a Farlie-Gumbel-Morgenstern copula-based algorithm for generating event sequences with correlated IETs when the IET distribution and the memory coefficient between two consecutive IETs are given. We successfully apply our algorithm to the cases with heavy-tailed IET distributions. We also compare our algorithm to the existing shuffling method to find that our algorithm outperforms the shuffling method for some cases. Our copula-based algorithm is expected to be used for more realistic modeling of various dynamical processes.
Collapse
Affiliation(s)
- Hang-Hyun Jo
- Asia Pacific Center for Theoretical Physics, Pohang 37673, Republic of Korea.,Department of Physics, Pohang University of Science and Technology, Pohang 37673, Republic of Korea.,Department of Computer Science, Aalto University, Espoo FI-00076, Finland
| | - Byoung-Hwa Lee
- Asia Pacific Center for Theoretical Physics, Pohang 37673, Republic of Korea.,Department of Physics, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Takayuki Hiraoka
- Asia Pacific Center for Theoretical Physics, Pohang 37673, Republic of Korea
| | - Woo-Sung Jung
- Asia Pacific Center for Theoretical Physics, Pohang 37673, Republic of Korea.,Department of Physics, Pohang University of Science and Technology, Pohang 37673, Republic of Korea.,Department of Industrial and Management Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| |
Collapse
|
33
|
Abstract
We present a contact-based model to study the spreading of epidemics by means of extending the dynamic message-passing approach to temporal networks. The shift in perspective from node- to edge-centric quantities enables accurate modeling of Markovian susceptible-infected-recovered outbreaks on time-varying trees, i.e., temporal networks with a loop-free underlying topology. On arbitrary graphs, the proposed contact-based model incorporates potential structural and temporal heterogeneities of the contact network and improves analytic estimations with respect to the individual-based (node-centric) approach at a low computational and conceptual cost. Within this new framework, we derive an analytical expression for the epidemic threshold on temporal networks and demonstrate the feasibility of this method on empirical data. The spread of infection, information, computer malware, or any contagionlike process is often described by disease models on complex networks with a time-varying topology. Recurrent, or flulike, spreading can be modeled accurately by taking an “individual-based” approach that focuses on nodes in a network. Here, we instead focus on the interactions—the links in a network—and present a contact-based model that accurately describes a second group of contagion processes: those that lead to permanent immunization. Taking this new perspective, we derive a criterion that separates local outbreaks from global epidemics, a crucial tool for risk assessment and control of, for instance, viral marketing. To develop our model, we integrate time-varying network topologies into dynamic message passing, a widely used approach to describe unidirectional contagion processes. Based on this generalized model, we derive a spectral criterion for the stability of the disease-free solution, which determines the critical disease parameters. Through numerous numerical studies, we provide evidence that the contact-based perspective improves the individual-based approach. Finally, we investigate the epidemic risk based on the German cattle-trade network with over 180 000 nodes. Results from the individual-based and contact-based approaches deviate considerably, and thus justify this paradigmatic shift. Our contact-based model is conceptually similar to those that focus on individuals, so we expect that numerous individual-based findings as well as results from networks with a static topology can be transferred in the future. These may include general epidemic models with a non-Poissonian transition process that go beyond the assumption of treelike topologies, stochastic effects, and temporal networks that evolve continuously in time.
Collapse
|
34
|
Jo HH. Analytically solvable autocorrelation function for weakly correlated interevent times. Phys Rev E 2019; 100:012306. [PMID: 31499919 DOI: 10.1103/physreve.100.012306] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Indexed: 11/07/2022]
Abstract
Long-term temporal correlations observed in event sequences of natural and social phenomena have been characterized by algebraically decaying autocorrelation functions. Such temporal correlations can be understood not only by heterogeneous interevent times (IETs) but also by correlations between IETs. In contrast to the role of heterogeneous IETs on the autocorrelation function, little is known about the effects due to the correlations between IETs. To rigorously study these effects, we derive an analytical form of the autocorrelation function for the arbitrary IET distribution in the case with weakly correlated IETs, where the Farlie-Gumbel-Morgenstern copula is adopted for modeling the joint probability distribution function of two consecutive IETs. Our analytical results are confirmed by numerical simulations for exponential and power-law IET distributions. For the power-law case, we find a tendency of the steeper decay of the autocorrelation function for the stronger correlation between IETs. Our analytical approach enables us to better understand long-term temporal correlations induced by the correlations between IETs.
Collapse
Affiliation(s)
- Hang-Hyun Jo
- Asia Pacific Center for Theoretical Physics, Pohang 37673, Republic of Korea; Department of Physics, Pohang University of Science and Technology, Pohang 37673, Republic of Korea; and Department of Computer Science, Aalto University, Espoo FI-00076, Finland
| |
Collapse
|
35
|
Schaub MT, Delvenne JC, Lambiotte R, Barahona M. Multiscale dynamical embeddings of complex networks. Phys Rev E 2019; 99:062308. [PMID: 31330590 DOI: 10.1103/physreve.99.062308] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Indexed: 11/07/2022]
Abstract
Complex systems and relational data are often abstracted as dynamical processes on networks. To understand, predict, and control their behavior, a crucial step is to extract reduced descriptions of such networks. Inspired by notions from control theory, we propose a time-dependent dynamical similarity measure between nodes, which quantifies the effect a node-input has on the network. This dynamical similarity induces an embedding that can be employed for several analysis tasks. Here we focus on (i) dimensionality reduction, i.e., projecting nodes onto a low-dimensional space that captures dynamic similarity at different timescales, and (ii) how to exploit our embeddings to uncover functional modules. We exemplify our ideas through case studies focusing on directed networks without strong connectivity and signed networks. We further highlight how certain ideas from community detection can be generalized and linked to control theory, by using the here developed dynamical perspective.
Collapse
Affiliation(s)
- Michael T Schaub
- Institute for Data, Systems and Society, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.,Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Jean-Charles Delvenne
- ICTEAM, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium.,CORE, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Renaud Lambiotte
- Mathematical Institute, University of Oxford, Oxford, United Kingdom
| | - Mauricio Barahona
- Department of Mathematics, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
36
|
Hiraoka T, Jo HH. Correlated bursts in temporal networks slow down spreading. Sci Rep 2018; 8:15321. [PMID: 30333572 PMCID: PMC6193034 DOI: 10.1038/s41598-018-33700-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/02/2018] [Indexed: 11/09/2022] Open
Abstract
Spreading dynamics has been considered to take place in temporal networks, where temporal interaction patterns between nodes show non-Poissonian bursty nature. The effects of inhomogeneous interevent times (IETs) on the spreading have been extensively studied in recent years, yet little is known about the effects of correlations between IETs on the spreading. In order to investigate those effects, we study two-step deterministic susceptible-infected (SI) and probabilistic SI dynamics when the interaction patterns are modeled by inhomogeneous and correlated IETs, i.e., correlated bursts. By analyzing the transmission time statistics in a single-link setup and by simulating the spreading in Bethe lattices and random graphs, we conclude that the positive correlation between IETs slows down the spreading. We also argue that the shortest transmission time from one infected node to its susceptible neighbors can successfully explain our numerical results.
Collapse
Affiliation(s)
- Takayuki Hiraoka
- Asia Pacific Center for Theoretical Physics, Pohang, 37673, Republic of Korea
| | - Hang-Hyun Jo
- Asia Pacific Center for Theoretical Physics, Pohang, 37673, Republic of Korea. .,Department of Physics, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea. .,Department of Computer Science, Aalto University, Espoo, FI-00076, Finland.
| |
Collapse
|
37
|
Lee BH, Jung WS, Jo HH. Hierarchical burst model for complex bursty dynamics. Phys Rev E 2018; 98:022316. [PMID: 30253546 DOI: 10.1103/physreve.98.022316] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Indexed: 11/07/2022]
Abstract
Temporal inhomogeneities observed in various natural and social phenomena have often been characterized in terms of scaling behaviors in the autocorrelation function with a decaying exponent γ, the interevent time distribution with a power-law exponent α, and the burst size distributions. Here the interevent time is defined as a time interval between two consecutive events in the event sequence, and the burst size denotes the number of events in a bursty train detected for a given time window. To understand such temporal scaling behaviors implying a hierarchical temporal structure, we devise a hierarchical burst model by assuming that each observed event might be a consequence of the multilevel causal or decision-making process. By studying our model analytically and numerically, we confirm the scaling relation α+γ=2, established for the uncorrelated interevent times, despite of the existence of correlations between interevent times. Such correlations between interevent times are supported by the stretched exponential burst size distributions, for which we provide an analytic argument. In addition, by imposing conditions for the ordering of events, we observe an additional feature of log-periodic behavior in the autocorrelation function. Our modeling approach for the hierarchical temporal structure can help us better understand the underlying mechanisms behind complex bursty dynamics showing temporal scaling behaviors.
Collapse
Affiliation(s)
- Byoung-Hwa Lee
- Department of Physics, Pohang University of Science and Technology, Pohang 37673, Republic of Korea.,Asia Pacific Center for Theoretical Physics, Pohang 37673, Republic of Korea
| | - Woo-Sung Jung
- Department of Physics, Pohang University of Science and Technology, Pohang 37673, Republic of Korea.,Asia Pacific Center for Theoretical Physics, Pohang 37673, Republic of Korea.,Department of Industrial and Management Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Hang-Hyun Jo
- Department of Physics, Pohang University of Science and Technology, Pohang 37673, Republic of Korea.,Asia Pacific Center for Theoretical Physics, Pohang 37673, Republic of Korea.,Department of Computer Science, Aalto University, Espoo FI-00076, Finland
| |
Collapse
|
38
|
Mapping temporal-network percolation to weighted, static event graphs. Sci Rep 2018; 8:12357. [PMID: 30120278 PMCID: PMC6098025 DOI: 10.1038/s41598-018-29577-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 07/02/2018] [Indexed: 11/09/2022] Open
Abstract
The dynamics of diffusion-like processes on temporal networks are influenced by correlations in the times of contacts. This influence is particularly strong for processes where the spreading agent has a limited lifetime at nodes: disease spreading (recovery time), diffusion of rumors (lifetime of information), and passenger routing (maximum acceptable time between transfers). We introduce weighted event graphs as a powerful and fast framework for studying connectivity determined by time-respecting paths where the allowed waiting times between contacts have an upper limit. We study percolation on the weighted event graphs and in the underlying temporal networks, with simulated and real-world networks. We show that this type of temporal-network percolation is analogous to directed percolation, and that it can be characterized by multiple order parameters.
Collapse
|
39
|
Rapisardi G, Arenas A, Caldarelli G, Cimini G. Multiple structural transitions in interacting networks. Phys Rev E 2018; 98:012302. [PMID: 30110786 DOI: 10.1103/physreve.98.012302] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Indexed: 11/07/2022]
Abstract
Many real-world systems can be modeled as interconnected multilayer networks, namely, a set of networks interacting with each other. Here, we present a perturbative approach to study the properties of a general class of interconnected networks as internetwork interactions are established. We reveal multiple structural transitions for the algebraic connectivity of such systems, between regimes in which each network layer keeps its independent identity or drives diffusive processes over the whole system, thus generalizing previous results reporting a single transition point. Furthermore, we show that, at first order in perturbation theory, the growth of the algebraic connectivity of each layer depends only on the degree configuration of the interaction network (projected on the respective Fiedler vector), and not on the actual interaction topology. Our findings can have important implications in the design of robust interconnected networked systems, particularly in the presence of network layers whose integrity is more crucial for the functioning of the entire system. We finally show results of perturbation theory applied to the adjacency matrix of the interconnected network, which can be useful to characterize percolation processes on such systems.
Collapse
Affiliation(s)
| | - Alex Arenas
- Departament d'Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Guido Caldarelli
- IMT School for Advanced Studies, 55100 Lucca, Italy.,Istituto dei Sistemi Complessi (ISC)-CNR, 00185-Rome, Italy
| | - Giulio Cimini
- IMT School for Advanced Studies, 55100 Lucca, Italy.,Istituto dei Sistemi Complessi (ISC)-CNR, 00185-Rome, Italy
| |
Collapse
|
40
|
Kim H, Ha M, Jeong H. Dynamic topologies of activity-driven temporal networks with memory. Phys Rev E 2018; 97:062148. [PMID: 30011523 DOI: 10.1103/physreve.97.062148] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Indexed: 11/07/2022]
Abstract
We propose dynamic scaling in temporal networks with heterogeneous activities and memory and provide a comprehensive picture for the dynamic topologies of such networks, in terms of the modified activity-driven network model [H. Kim et al., Eur. Phys. J. B 88, 315 (2015)EPJBFY1434-602810.1140/epjb/e2015-60662-7]. Particularly, we focus on the interplay of the time resolution and memory in dynamic topologies. Through the random-walk (RW) process, we investigate diffusion properties and topological changes as the time resolution increases. Our results with memory are compared to those of the memoryless case. Based on the temporal percolation concept, we derive scaling exponents in the dynamics of the largest cluster and the coverage of the RW process in time-varying networks. We find that the time resolution in the time-accumulated network determines the effective size of the network, while memory affects relevant scaling properties at the crossover from the dynamic regime to the static one. The origin of memory-dependent scaling behaviors is the dynamics of the largest cluster, which depends on temporal degree distributions. Finally, we conjecture of the extended finite-size scaling ansatz for dynamic topologies and the fundamental property of temporal networks, which are numerically confirmed.
Collapse
Affiliation(s)
- Hyewon Kim
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Meesoon Ha
- Department of Physics Education, Chosun University, Gwangju 61452, Korea
| | - Hawoong Jeong
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea.,Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| |
Collapse
|
41
|
Jo HH, Hiraoka T. Limits of the memory coefficient in measuring correlated bursts. Phys Rev E 2018; 97:032121. [PMID: 29776030 DOI: 10.1103/physreve.97.032121] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Indexed: 11/07/2022]
Abstract
Temporal inhomogeneities in event sequences of natural and social phenomena have been characterized in terms of interevent times and correlations between interevent times. The inhomogeneities of interevent times have been extensively studied, while the correlations between interevent times, often called correlated bursts, are far from being fully understood. For measuring the correlated bursts, two relevant approaches were suggested, i.e., memory coefficient and burst size distribution. Here a burst size denotes the number of events in a bursty train detected for a given time window. Empirical analyses have revealed that the larger memory coefficient tends to be associated with the heavier tail of the burst size distribution. In particular, empirical findings in human activities appear inconsistent, such that the memory coefficient is close to 0, while burst size distributions follow a power law. In order to comprehend these observations, by assuming the conditional independence between consecutive interevent times, we derive the analytical form of the memory coefficient as a function of parameters describing interevent time and burst size distributions. Our analytical result can explain the general tendency of the larger memory coefficient being associated with the heavier tail of burst size distribution. We also find that the apparently inconsistent observations in human activities are compatible with each other, indicating that the memory coefficient has limits to measure the correlated bursts.
Collapse
Affiliation(s)
- Hang-Hyun Jo
- Asia Pacific Center for Theoretical Physics, Pohang 37673, Republic of Korea.,Department of Physics, Pohang University of Science and Technology, Pohang 37673, Republic of Korea.,Department of Computer Science, Aalto University, Espoo FI-00076, Finland
| | - Takayuki Hiraoka
- Asia Pacific Center for Theoretical Physics, Pohang 37673, Republic of Korea
| |
Collapse
|
42
|
Bao P, Shen HW, Huang J, Chen H. Mention effect in information diffusion on a micro-blogging network. PLoS One 2018; 13:e0194192. [PMID: 29558498 PMCID: PMC5860736 DOI: 10.1371/journal.pone.0194192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 02/14/2018] [Indexed: 11/18/2022] Open
Abstract
Micro-blogging systems have become one of the most important ways for information sharing. Network structure and users' interactions such as forwarding behaviors have aroused considerable research attention, while mention, as a key feature in micro-blogging platforms which can improve the visibility of a message and direct it to a particular user beyond the underlying social structure, is seldom studied in previous works. In this paper, we empirically study the mention effect in information diffusion, using the dataset from a population-scale social media website. We find that users with high number of followers would receive much more mentions than others. We further investigate the effect of mention in information diffusion by examining the response probability with respect to the number of mentions in a message and observe a saturation at around 5 mentions. Furthermore, we find that the response probability is the highest when a reciprocal followship exists between users, and one is more likely to receive a target user's response if they have similar social status. To illustrate these findings, we propose the response prediction task and formulate it as a binary classification problem. Extensive evaluation demonstrates the effectiveness of discovered factors. Our results have consequences for the understanding of human dynamics on the social network, and potential implications for viral marketing and public opinion monitoring.
Collapse
Affiliation(s)
- Peng Bao
- School of Software Engineering, Beijing Jiaotong University, Beijing, China
| | - Hua-Wei Shen
- CAS Key Laboratory of Network Data Science and Technology, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
| | - Junming Huang
- CompleX Lab, Web Sciences Center and Big Data Research Center, University of Electronic Science and Technology of China, Chengdu, China.,Center for Complex Network Research, Northeastern University, Boston, MA, United States of America
| | - Haiqiang Chen
- China Information Technology Security Evaluation Center, Beijing, China
| |
Collapse
|
43
|
Jo HH. Modeling correlated bursts by the bursty-get-burstier mechanism. Phys Rev E 2018; 96:062131. [PMID: 29347447 DOI: 10.1103/physreve.96.062131] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Indexed: 11/07/2022]
Abstract
Temporal correlations of time series or event sequences in natural and social phenomena have been characterized by power-law decaying autocorrelation functions with decaying exponent γ. Such temporal correlations can be understood in terms of power-law distributed interevent times with exponent α and/or correlations between interevent times. The latter, often called correlated bursts, has recently been studied by measuring power-law distributed bursty trains with exponent β. A scaling relation between α and γ has been established for the uncorrelated interevent times, while little is known about the effects of correlated interevent times on temporal correlations. In order to study these effects, we devise the bursty-get-burstier model for correlated bursts, by which one can tune the degree of correlations between interevent times, while keeping the same interevent time distribution. We numerically find that sufficiently strong correlations between interevent times could violate the scaling relation between α and γ for the uncorrelated case. A nontrivial dependence of γ on β is also found for some range of α. The implication of our results is discussed in terms of the hierarchical organization of bursty trains at various time scales.
Collapse
Affiliation(s)
- Hang-Hyun Jo
- Asia Pacific Center for Theoretical Physics, Pohang 37673, Republic of Korea; Department of Physics, Pohang University of Science and Technology, Pohang 37673, Republic of Korea; and Department of Computer Science, Aalto University, Espoo FI-00076, Finland
| |
Collapse
|
44
|
Lifetime-preserving reference models for characterizing spreading dynamics on temporal networks. Sci Rep 2018; 8:709. [PMID: 29335422 PMCID: PMC5768694 DOI: 10.1038/s41598-017-18450-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 12/11/2017] [Indexed: 11/08/2022] Open
Abstract
To study how a certain network feature affects processes occurring on a temporal network, one often compares properties of the original network against those of a randomized reference model that lacks the feature in question. The randomly permuted times (PT) reference model is widely used to probe how temporal features affect spreading dynamics on temporal networks. However, PT implicitly assumes that edges and nodes are continuously active during the network sampling period - an assumption that does not always hold in real networks. We systematically analyze a recently-proposed restriction of PT that preserves node lifetimes (PTN), and a similar restriction (PTE) that also preserves edge lifetimes. We use PT, PTN, and PTE to characterize spreading dynamics on (i) synthetic networks with heterogeneous edge lifespans and tunable burstiness, and (ii) four real-world networks, including two in which nodes enter and leave the network dynamically. We find that predictions of spreading speed can change considerably with the choice of reference model. Moreover, the degree of disparity in the predictions reflects the extent of node/edge turnover, highlighting the importance of using lifetime-preserving reference models when nodes or edges are not continuously present in the network.
Collapse
|
45
|
Rocha LEC, Masuda N, Holme P. Sampling of temporal networks: Methods and biases. Phys Rev E 2017; 96:052302. [PMID: 29347767 DOI: 10.1103/physreve.96.052302] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Indexed: 11/07/2022]
Abstract
Temporal networks have been increasingly used to model a diversity of systems that evolve in time; for example, human contact structures over which dynamic processes such as epidemics take place. A fundamental aspect of real-life networks is that they are sampled within temporal and spatial frames. Furthermore, one might wish to subsample networks to reduce their size for better visualization or to perform computationally intensive simulations. The sampling method may affect the network structure and thus caution is necessary to generalize results based on samples. In this paper, we study four sampling strategies applied to a variety of real-life temporal networks. We quantify the biases generated by each sampling strategy on a number of relevant statistics such as link activity, temporal paths and epidemic spread. We find that some biases are common in a variety of networks and statistics, but one strategy, uniform sampling of nodes, shows improved performance in most scenarios. Given the particularities of temporal network data and the variety of network structures, we recommend that the choice of sampling methods be problem oriented to minimize the potential biases for the specific research questions on hand. Our results help researchers to better design network data collection protocols and to understand the limitations of sampled temporal network data.
Collapse
Affiliation(s)
- Luis E C Rocha
- Department of Public Health Sciences, Karolinska Institutet, 17177 Stockholm, Sweden and Department of Mathematics, Université de Namur, 5000 Namur, Belgium
| | - Naoki Masuda
- Department of Engineering Mathematics, University of Bristol, Bristol BS8 1UB, United Kingdom
| | - Petter Holme
- Institute of Innovative Research, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| |
Collapse
|
46
|
Henry A, Martin OC. Short relaxation times but long transient times in both simple and complex reaction networks. J R Soc Interface 2017; 13:rsif.2016.0388. [PMID: 27411726 PMCID: PMC4971225 DOI: 10.1098/rsif.2016.0388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 06/20/2016] [Indexed: 12/27/2022] Open
Abstract
When relaxation towards an equilibrium or steady state is exponential at large times, one usually considers that the associated relaxation time τ, i.e. the inverse of the decay rate, is the longest characteristic time in the system. However, that need not be true, other times such as the lifetime of an infinitesimal perturbation can be much longer. In the present work, we demonstrate that this paradoxical property can arise even in quite simple systems such as a linear chain of reactions obeying mass action (MA) kinetics. By mathematical analysis of simple reaction networks, we pin-point the reason why the standard relaxation time does not provide relevant information on the potentially long transient times of typical infinitesimal perturbations. Overall, we consider four characteristic times and study their behaviour in both simple linear chains and in more complex reaction networks taken from the publicly available database ‘Biomodels’. In all these systems, whether involving MA rates, Michaelis–Menten reversible kinetics, or phenomenological laws for reaction rates, we find that the characteristic times corresponding to lifetimes of tracers and of concentration perturbations can be significantly longer than τ.
Collapse
Affiliation(s)
- Adrien Henry
- GQE-Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Olivier C Martin
- GQE-Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| |
Collapse
|
47
|
Backtracking and Mixing Rate of Diffusion on Uncorrelated Temporal Networks. ENTROPY 2017. [DOI: 10.3390/e19100542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
48
|
Petit J, Lauwens B, Fanelli D, Carletti T. Theory of Turing Patterns on Time Varying Networks. PHYSICAL REVIEW LETTERS 2017; 119:148301. [PMID: 29053314 DOI: 10.1103/physrevlett.119.148301] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Indexed: 06/07/2023]
Abstract
The process of pattern formation for a multispecies model anchored on a time varying network is studied. A nonhomogeneous perturbation superposed to an homogeneous stable fixed point can be amplified following the Turing mechanism of instability, solely instigated by the network dynamics. By properly tuning the frequency of the imposed network evolution, one can make the examined system behave as its averaged counterpart, over a finite time window. This is the key observation to derive a closed analytical prediction for the onset of the instability in the time dependent framework. Continuously and piecewise constant periodic time varying networks are analyzed, setting the framework for the proposed approach. The extension to nonperiodic settings is also discussed.
Collapse
Affiliation(s)
- Julien Petit
- naXys, Namur Institute for Complex Systems, University of Namur, B5000 Namur, Belgium
- Department of Mathematics, Royal Military Academy, B1000 Brussels, Belgium
| | - Ben Lauwens
- Department of Mathematics, Royal Military Academy, B1000 Brussels, Belgium
| | - Duccio Fanelli
- Dipartimento di Fisica e Astronomia and CSDC, Università degli Studi di Firenze, 50019 Sesto Fiorentino, Italy
- INFN Sezione di Firenze, 50019 Sesto Fiorentino, Italy
| | - Timoteo Carletti
- naXys, Namur Institute for Complex Systems, University of Namur, B5000 Namur, Belgium
| |
Collapse
|
49
|
Artime O, Fernández-Gracia J, Ramasco JJ, San Miguel M. Joint effect of ageing and multilayer structure prevents ordering in the voter model. Sci Rep 2017; 7:7166. [PMID: 28769089 PMCID: PMC5541013 DOI: 10.1038/s41598-017-07031-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 06/20/2017] [Indexed: 11/08/2022] Open
Abstract
The voter model rules are simple, with agents copying the state of a random neighbor, but they lead to non-trivial dynamics. Besides opinion processes, the model has also applications for catalysis and species competition. Inspired by the temporal inhomogeneities found in human interactions, one can introduce ageing in the agents: the probability to update their state decreases with the time elapsed since the last change. This modified dynamics induces an approach to consensus via coarsening in single-layer complex networks. In this work, we investigate how a multilayer structure affects the dynamics of the ageing voter model. The system is studied as a function of the fraction of nodes sharing states across layers (multiplexity parameter q). We find that the dynamics of the system suffers a notable change at an intermediate value q*. Above it, the voter model always orders to an absorbing configuration. While below it a fraction of the realizations falls into dynamical traps associated to a spontaneous symmetry breaking. In this latter case, the majority opinion in the different layers takes opposite signs and the arrival at the absorbing state is indefinitely delayed due to ageing.
Collapse
Affiliation(s)
- Oriol Artime
- Instituto de Física Interdisciplinar y Sistemas Complejos IFISC (CSIC-UIB), Campus UIB, 07122, Palma de Mallorca, Spain.
| | - Juan Fernández-Gracia
- Instituto de Física Interdisciplinar y Sistemas Complejos IFISC (CSIC-UIB), Campus UIB, 07122, Palma de Mallorca, Spain
| | - José J Ramasco
- Instituto de Física Interdisciplinar y Sistemas Complejos IFISC (CSIC-UIB), Campus UIB, 07122, Palma de Mallorca, Spain
| | - Maxi San Miguel
- Instituto de Física Interdisciplinar y Sistemas Complejos IFISC (CSIC-UIB), Campus UIB, 07122, Palma de Mallorca, Spain
| |
Collapse
|
50
|
Li X, Li X. Reconstruction of stochastic temporal networks through diffusive arrival times. Nat Commun 2017; 8:15729. [PMID: 28604687 PMCID: PMC5472785 DOI: 10.1038/ncomms15729] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 04/24/2017] [Indexed: 11/28/2022] Open
Abstract
Temporal networks have opened a new dimension in defining and quantification of complex interacting systems. Our ability to identify and reproduce time-resolved interaction patterns is, however, limited by the restricted access to empirical individual-level data. Here we propose an inverse modelling method based on first-arrival observations of the diffusion process taking place on temporal networks. We describe an efficient coordinate-ascent implementation for inferring stochastic temporal networks that builds in particular but not exclusively on the null model assumption of mutually independent interaction sequences at the dyadic level. The results of benchmark tests applied on both synthesized and empirical network data sets confirm the validity of our algorithm, showing the feasibility of statistically accurate inference of temporal networks only from moderate-sized samples of diffusion cascades. Our approach provides an effective and flexible scheme for the temporally augmented inverse problems of network reconstruction and has potential in a broad variety of applications. Reconstruction of time-resolved interactions in networks is more challenging than for the time-independent case, as causal relations limit accessibility to empirical data. Here the authors propose a method based on first-arrival observations of a diffusion process to infer stochastic temporal networks.
Collapse
Affiliation(s)
- Xun Li
- Adaptive Networks and Control Laboratory, Department of Electronic Engineering, and Research Center of Smart Networks and Systems, School of Information Science and Engineering, Fudan University, Shanghai 200433, China
| | - Xiang Li
- Adaptive Networks and Control Laboratory, Department of Electronic Engineering, and Research Center of Smart Networks and Systems, School of Information Science and Engineering, Fudan University, Shanghai 200433, China
| |
Collapse
|