1
|
An Y, Li M, He P, Tan Y, Liu R, Xu D, Yang L, Tan X, Wen X, Liu G, Lu Z. Ir-organometallic compounds-mediated internal and external dual-phototheranostics for collaborative antitumor therapy. Biomaterials 2025; 322:123400. [PMID: 40359843 DOI: 10.1016/j.biomaterials.2025.123400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 04/04/2025] [Accepted: 05/06/2025] [Indexed: 05/15/2025]
Abstract
Cerenkov light-based excitation represents an attractive alternative to conventional external light excitation, aiming to break the penetration limitations of in vivo optical imaging and therapy. However, Cerenkov light's inherent deficiency severely restricts its potential applications in tumor theranostic. Herein, we have seamlessly integrated organometallic compounds with radio-phototheranostics for the first time, achieving significant tumor inhibition and the inaugural instance of a radionuclide(18F)-activated NIR photosensitizer with a wavelength exceeding 800 nm through the innovative "internal-external attack" design and "two-in-one" internal energy transfer. In this study, coumarin 6 and IR775 derivatives were connected via iridium atoms to construct dual-function iridium-organometallic compounds (IR-C6Ir), combining internal and external responsive molecules for dual phototherapy and Cerenkov light red-shift fluorescence imaging. IR-C6Ir can be preferably accumulated at mitochondrial at the tumor site, inducing excellent anti-tumor effect with a 92.5 % tumor volume reduction at the lower concentration (0.65 μM) and excitation level (800 μCi of 18F and 0.5 W/cm2 of 808 nm laser irradiation). In addition, IR-C6Ir-mediated internal and external phototherapy exhibited the synergistic enhancement effect of "1 + 1>2" and achieved tumor multiplex visualization. The combination of internal phototherapy and external phototherapy motifs in one molecule, provides IR-C6Ir with a novel strategy for high-efficiency and low-toxicity phototherapy.
Collapse
Affiliation(s)
- Yibo An
- State Key Laboratory of Vaccines for Infectious Diseases & Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China; Sichuan Research Institute of Xiamen University, Chengdu, 610000, China
| | - Man Li
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Fujian Engineering Research Center of Molecular Theranostic Technology, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Pan He
- Department of General Surgery, Institute of Hepatobiliary-Pancreatic-Intestinal Diseases, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China; Department of Hepatobiliary and Pancreatic Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Yubo Tan
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Fujian Engineering Research Center of Molecular Theranostic Technology, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Renyuan Liu
- State Key Laboratory of Vaccines for Infectious Diseases & Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Dazhuang Xu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Fujian Engineering Research Center of Molecular Theranostic Technology, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Lijuan Yang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Fujian Engineering Research Center of Molecular Theranostic Technology, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Xinyu Tan
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Fujian Engineering Research Center of Molecular Theranostic Technology, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Xiaofei Wen
- Department of Interventional Radiology, The First Affiliated Hospital of Xiamen University, Xiamen, 361102, China.
| | - Gang Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Fujian Engineering Research Center of Molecular Theranostic Technology, School of Public Health, Xiamen University, Xiamen, 361102, China.
| | - Zhixiang Lu
- State Key Laboratory of Vaccines for Infectious Diseases & Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China; Sichuan Research Institute of Xiamen University, Chengdu, 610000, China.
| |
Collapse
|
2
|
Li J, Lyu S, Li CA, Tang Y, Wang F, Wang Q, Li X, Xu G, Li H, Zhang Y, Guo Z, Chen X, Zhang X. Radionuclide-Activated Luminescence for Cancer Theranostics. Chemistry 2025; 31:e202500296. [PMID: 40062717 DOI: 10.1002/chem.202500296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 03/10/2025] [Indexed: 03/25/2025]
Abstract
Within dielectric media, charged particles emitted from medical radionuclides induce polarization of surrounding molecules, which subsequently generate Cerenkov luminescence (CL) upon returning to their ground state. This CL emission confers clinically approved radiotracers with distinctive potential for applications in phototheranostics. However, the utility of CL in vivo has been severely constrained by its ultraviolet-weighted emission spectrum and extremely low photon flux, particularly in living imaging and triggering photodynamic therapy. Certain optical probes, encompassing fluorescent agents and nanoparticle scintillators, can be activated by radionuclides to generate red-shifted emissions with amplified luminescence intensity compared to CL. This phenomenon, termed radionuclide-activated luminescence (RL), represents a promising strategy for enhancing radionuclide-induced tumor phototheranostic outcomes. This review systematically summarizes the advances in RL technology, highlighting the development of various RL probes and their innovative applications in laser-free optical bioimaging and cancer phototherapy. It further delves into the confronting challenges and prospects of RL technology, aiming to provide a comprehensive overview and practical insights to advance the integration of radiotheranostics and phototheranostics in clinical practice.
Collapse
Affiliation(s)
- Jingchao Li
- Department of Nuclear Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Shengji Lyu
- Department of Prevention & Healthcare, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Cheng-Ao Li
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Yi Tang
- Department of Nuclear Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Fangyang Wang
- Department of Nuclear Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Qiang Wang
- Department of Nuclear Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Xin Li
- Department of Nuclear Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Guo Xu
- Department of Nuclear Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Hongqing Li
- Department of Nuclear Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Yueying Zhang
- Department of Nuclear Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Zhide Guo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Xiao Chen
- Department of Nuclear Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Xianzhong Zhang
- Theranostics and Translational Research Center, National Infrastructures for Translational Medicine, Institute of Clinical Medicine &, Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| |
Collapse
|
3
|
Cao Y, Gu J, Chen Z, Gao J, Yang J, Wu W, Fang M, Li Q, Liu B, Li Z. HClO-Activated Near-Infrared Chemiluminescent Probes with a Malononitrile Group for In-Vivo Imaging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2408941. [PMID: 39713927 DOI: 10.1002/adma.202408941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 12/03/2024] [Indexed: 12/24/2024]
Abstract
Chemiluminescence (CL) imaging has emerged as a powerful approach to molecular imaging that allows exceptional sensitivity with virtually no background interference because of its unique capacity to emit photons without an external excitation source. Despite its high potential, the application of this nascent technique faces challenges because the current chemiluminescent agents have limited reactive sites, require complex synthesis, are insufficiently bright, and lack near-infrared emission. Herein, a series of HClO-activated chemiluminescent probes that exhibit robust near-infrared emission are studied. Specifically engineered to respond to HClO, a known biomarker of acute inflammation, these probes achieve high-contrast in vivo imaging by eliminating the need for constant external excitation. Comprehensive experimental and theoretical investigations demonstrate that the CL of the probes depends on the reactivity of the vinylene bonds, following a concerted decomposition of the oxidized chemiluminescent molecule. The application of these chemiluminescent nanoparticles in vivo facilitates high-contrast imaging of acute inflammation, providing real-time, high-contrast visualization of inflammatory conditions. This advancement signifies a leap forward for chemiluminescent nanoplatforms in biomedical imaging and expands the available methodologies in this field.
Collapse
Affiliation(s)
- Yalei Cao
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Juqing Gu
- Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Zhijian Chen
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Jucai Gao
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Jie Yang
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Wenbo Wu
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Manman Fang
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Qianqian Li
- Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Bin Liu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Zhen Li
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
- Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, Department of Chemistry, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
4
|
Li Z, Liu H, Zhang XB. Reactive oxygen species-mediated organic long-persistent luminophores light up biomedicine: from two-component separated nano-systems to integrated uni-luminophores. Chem Soc Rev 2024; 53:11207-11227. [PMID: 39363873 DOI: 10.1039/d4cs00443d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Organic luminophores have been widely utilized in cells and in vivo fluorescence imaging but face extreme challenges, including a low signal-to-noise ratio (SNR) and even false signals, due to non-negligible background signals derived from real-time excitation lasers. To overcome these challenges, in the last decade, functionalized organic long-persistent luminophores have gained much attention. Such luminophores could not only overcome the biological toxicity of inorganic long-persistent luminescent materials (metabolic toxicity and leakage risk of inorganic heavy metals), but also continue to emit long-persistent luminescence after removing the excitation source, thus effectively improving imaging quality. More importantly, organic long-persistent luminophores have good structure tailorability for the construction of activable probes, which is favorable for biosensing. Recently, the development of reactive oxygen species (ROS)-mediated long-persistent (ROSLP) luminophores (especially organic small-molecule ROSLP luminophores) is still in the rising stage. Notably, ROSLP luminophores for in vivo imaging have experienced from two-component separated nano-systems to integrated uni-luminophores, which obtained gradually better designability and biocompatibility. In this review, we summarize the progress and challenges of organic long-persistent luminophores, focusing on their development history, long-persistent luminescence working mechanisms, and biomedical applications. We hope that these insights will help scientists further develop functionalized organic long-persistent luminophores for the biomedical field.
Collapse
Affiliation(s)
- Zhe Li
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200092, China.
| | - Hongwen Liu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China.
| | - Xiao-Bing Zhang
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 410082, China.
| |
Collapse
|
5
|
Zhao H, Li C, Shi X, Zhang J, Jia X, Hu Z, Gao Y, Tian J. Near-infrared II fluorescence-guided glioblastoma surgery targeting monocarboxylate transporter 4 combined with photothermal therapy. EBioMedicine 2024; 106:105243. [PMID: 39004066 PMCID: PMC11284385 DOI: 10.1016/j.ebiom.2024.105243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 06/30/2024] [Accepted: 06/30/2024] [Indexed: 07/16/2024] Open
Abstract
BACKGROUND Surgery is crucial for glioma treatment, but achieving complete tumour removal remains challenging. We evaluated the effectiveness of a probe targeting monocarboxylate transporter 4 (MCT4) in recognising gliomas, and of near-infrared window II (NIR-II) fluorescent molecular imaging and photothermal therapy as treatment strategies. METHODS We combined an MCT4-specific monoclonal antibody with indocyanine green to create the probe. An orthotopic mouse model and a transwell model were used to evaluate its ability to guide tumour resection using NIR-II fluorescence and to penetrate the blood-brain barrier (BBB), respectively. A subcutaneous tumour model was established to confirm photothermal therapy efficacy. Probe specificity was assessed in brain tissue from mice and humans. Finally, probe effectiveness in photothermal therapy was investigated. FINDINGS MCT4 was differentially expressed in tumour and normal brain tissue. The designed probe exhibited precise tumour targeting. Tumour imaging was precise, with a signal-to-background (SBR) ratio of 2.8. Residual tumour cells were absent from brain tissue postoperatively (SBR: 6.3). The probe exhibited robust penetration of the BBB. Moreover, the probe increased the tumour temperature to 50 °C within 5 min of laser excitation. Photothermal therapy significantly reduced tumour volume and extended survival time in mice without damage to vital organs. INTERPRETATION These findings highlight the potential efficacy of our probe for fluorescence-guided surgery and therapeutic interventions. FUNDING Jilin Province Department of Science and Technology (20200403079SF), Department of Finance (2021SCZ06) and Development and Reform Commission (20200601002JC); National Natural Science Foundation of China (92059207, 92359301, 62027901, 81930053, 81227901, U21A20386); and CAS Youth Interdisciplinary Team (JCTD-2021-08).
Collapse
Affiliation(s)
- Hongyang Zhao
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Jilin University, Changchun, China; CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China; Jilin Province Neuro-oncology Engineering Laboratory, Changchun, China; Jilin Provincial Key Laboratory of Neuro-oncology, Changchun, China
| | - Chunzhao Li
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China; Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Xiaojing Shi
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Jinnan Zhang
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Jilin University, Changchun, China; Jilin Province Neuro-oncology Engineering Laboratory, Changchun, China; Jilin Provincial Key Laboratory of Neuro-oncology, Changchun, China
| | - Xiaohua Jia
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China.
| | - Zhenhua Hu
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China; National Key Laboratory of Kidney Diseases, Beijing, China.
| | - Yufei Gao
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Jilin University, Changchun, China; Jilin Province Neuro-oncology Engineering Laboratory, Changchun, China; Jilin Provincial Key Laboratory of Neuro-oncology, Changchun, China.
| | - Jie Tian
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China; National Key Laboratory of Kidney Diseases, Beijing, China; Beijing Advanced Innovation Center for Big Data-based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, China.
| |
Collapse
|
6
|
Li J, Li Y, Ming J, Zeng X, Wang T, Yang H, Liu H, An Y, Zhang X, Zhuang R, Su X, Guo Z, Zhang X. Progressive Optimization of Lanthanide Nanoparticle Scintillators for Enhanced Triple-Activated Radioluminescence Imaging. Angew Chem Int Ed Engl 2024; 63:e202401683. [PMID: 38719735 DOI: 10.1002/anie.202401683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Indexed: 06/21/2024]
Abstract
Lanthanide nanoparticle (LnNP) scintillators exhibit huge potential in achieving radionuclide-activated luminescence (radioluminescence, RL). However, their structure-activity relationship remains largely unexplored. Herein, progressive optimization of LnNP scintillators is presented to unveil their structure-dependent RL property and enhance their RL output efficiency. Benefiting from the favorable host matrix and the luminescence-protective effect of core-shell engineering, NaGdF4 : 15 %Eu@NaLuF4 nanoparticle scintillators with tailored structures emerged as the top candidates. Living imaging experiments based on optimal LnNP scintillators validated the feasibility of laser-free continuous RL activated by clinical radiopharmaceuticals for tumor multiplex visualization. This research provides unprecedented insights into the rational design of LnNP scintillators, which would enable efficient energy conversion from Cerenkov luminescence, γ-radiation, and β-electrons into visible photon signals, thus establishing a robust nanotechnology-aided approach for tumor-directed radio-phototheranostics.
Collapse
Affiliation(s)
- Jingchao Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
- PET Center, Department of Nuclear Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, China
| | - Yun Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Jiang Ming
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials and Engineering Research Center for Nano-Preparation Technology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361102, China
| | - Xinying Zeng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Tingting Wang
- School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Hongzhang Yang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Hongwu Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Yibo An
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Xun Zhang
- School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Rongqiang Zhuang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Xinhui Su
- PET Center, Department of Nuclear Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, China
| | - Zhide Guo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Xianzhong Zhang
- Department of Nuclear Medicine, Peking Union Medical College Hospital & Theranostics and Translational Research Center, Institute of Clinical Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| |
Collapse
|
7
|
Li M, Gao J, Yao L, Zhang L, Li D, Li Z, Wu Q, Wang S, Ding J, Liu Y, Wang M, Tang G, Qin H, Li J, Yang X, Liu R, Zeng L, Shi J, Qu G, Jiang G. Determining toxicity of europium oxide nanoparticles in immune cell components and hematopoiesis in dominant organs in mice: Role of lysosomal fluid interaction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 937:173482. [PMID: 38795982 DOI: 10.1016/j.scitotenv.2024.173482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
Extensive application of rare earth element oxide nanoparticles (REE NPs) has raised a concern over the possible toxic health effects after human exposure. Once entering the body, REE NPs are primarily processed by phagocytes in particular macrophages and undergo biotic phosphate complexation in lysosomal compartment. Such biotransformation affects the target organs and in vivo fate of REE NPs after escaping the lysosomes. However, the immunomodulatory effects of intraphagolysosomal dissolved REE NPs remains insufficient. Here, europium oxide (Eu2O3) NPs were pre-incubated with phagolysosomal simulant fluid (PSF) to mimic the biotransformation of europium oxide (p-Eu2O3) NPs under acid phagolysosome conditions. We investigated the alteration in immune cell components and the hematopoiesis disturbance on adult mice after intravenous administration of Eu2O3 NPs and p-Eu2O3 NPs. Our results indicated that the liver and spleen were the main target organs for Eu2O3 NPs and p-Eu2O3 NPs. Eu2O3 NPs had a much higher accumulative potential in organs than p-Eu2O3 NPs. Eu2O3 NPs induced more alterations in immune cells in the spleen, while p-Eu2O3 NPs caused stronger response in the liver. Regarding hematopoietic disruption, Eu2O3 NPs reduced platelets (PLTs) in peripheral blood, which might be related to the inhibited erythrocyte differentiation in the spleen. By contrast, p-Eu2O3 NPs did not cause significant disturbance in peripheral PLTs. Our study demonstrated that the preincubation with PSF led to a distinct response in the immune system compared to the pristine REE NPs, suggesting that the potentially toxic effects induced by the release of NPs after phagocytosis should not be neglected, especially when evaluating the safety of NPs application in vivo.
Collapse
Affiliation(s)
- Min Li
- College of Science, Northeastern University, Shenyang 110819, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jie Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Linlin Yao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Liu Zhang
- College of Science, Northeastern University, Shenyang 110819, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Danyang Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zikang Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Wu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Shunhao Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Ding
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
| | - Yaquan Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minghao Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gang Tang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hua Qin
- College of Science, Northeastern University, Shenyang 110819, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Junya Li
- College of Science, Northeastern University, Shenyang 110819, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xinyue Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Runzeng Liu
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Li Zeng
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, Guangdong 523808, China.
| | - Jianbo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Guibin Jiang
- College of Science, Northeastern University, Shenyang 110819, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| |
Collapse
|
8
|
Teng M, Liang X, Liu H, Li Z, Gao X, Zhang C, Cheng H, Chen H, Liu G. Cerenkov radiation shining a light for cancer theranostics. NANO TODAY 2024; 55:102174. [DOI: 10.1016/j.nantod.2024.102174] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
|
9
|
Zhou K, Zhou S, Du L, Liu E, Dong H, Ma F, Sun Y, Li Y. Safety and effectiveness of indocyanine green fluorescence imaging-guided laparoscopic hepatectomy for hepatic tumor: a systematic review and meta-analysis. Front Oncol 2024; 13:1309593. [PMID: 38234399 PMCID: PMC10791760 DOI: 10.3389/fonc.2023.1309593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/12/2023] [Indexed: 01/19/2024] Open
Abstract
Introduction Previous clinical investigations have reported inconsistent findings regarding the feasibility of utilizing indocyanine green fluorescence imaging (ICGFI) in laparoscopic liver tumor removal. This meta-analysis aims to comprehensively evaluate the safety and effectiveness of ICGFI in laparoscopic hepatectomy (LH). Methods A systematic search of pertinent clinical studies published before January 30th, 2023 was conducted in databases including PubMed, Embase, Cochrane, and Web of Science. The search strategy encompassed key terms such as "indocyanine green fluorescence," "ICG fluorescence," "laparoscopic hepatectomy," "hepatectomies," "liver Neoplasms," "hepatic cancer," and "liver tumor." Additionally, we scrutinized the reference lists of included articles to identify supplementary studies. we assessed the quality of the incorporated studies and extracted clinical data. Meta-analysis was performed using STATA v.17.0 software. Either a fixed-effects or a random-effects model was employed to compute combined effect sizes, accompanied by 95% confidence intervals (CIs), based on varying levels of heterogeneity. Results This meta-analysis encompassed eleven retrospective cohort studies, involving 959 patients in total. Our findings revealed that, in comparison to conventional laparoscopic hepatectomy, patients receiving ICGFI-guided LH exhibited a higher R0 resection rate (OR: 3.96, 95% CI: 1.28, 12.25, I2 = 0.00%, P = 0.778) and a diminished incidence of intraoperative blood transfusion (OR: 0.42, 95% CI: 0.22, 0.81, I 2 = 51.1%, P = 0.056). Additionally, they experienced shorter postoperative hospital stays (WMD: -1.07, 95% CI: -2.00, -0.14, I 2 = 85.1%, P = 0.000). No statistically significant differences emerged between patients receiving ICGFI-guided LH vs. those undergoing conventional LH in terms of minimal margin width and postoperative complications. Conclusion ICGFI-guided LH demonstrates marked superiority over conventional laparoscopic liver tumor resection in achieving R0 resection and reducing intraoperative blood transfusion rates. This technique appears to hold substantial promise. Nonetheless, further studies are needed to explore potential long-term benefits associated with patients undergoing ICGFI-guided LH. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier CRD 42023398195.
Collapse
Affiliation(s)
- Kan Zhou
- Department of Hepatobiliary Surgery, Xianyang Central Hospital, Xianyang, Shaanxi, China
| | - Shumin Zhou
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Lei Du
- Department of Hepatobiliary Surgery, Xianyang Central Hospital, Xianyang, Shaanxi, China
| | - Erpeng Liu
- Clinical Medical College, Xi’an Medical University, Xi’an, Shaanxi, China
| | - Hao Dong
- Department of Hepatobiliary Surgery, Xianyang Central Hospital, Xianyang, Shaanxi, China
| | - Fuping Ma
- Department of Hepatobiliary Surgery, Xianyang Central Hospital, Xianyang, Shaanxi, China
| | - Yali Sun
- Department of Hepatobiliary Surgery, Xianyang Central Hospital, Xianyang, Shaanxi, China
| | - Ying Li
- Department of Hepatobiliary Surgery, Xianyang Central Hospital, Xianyang, Shaanxi, China
| |
Collapse
|
10
|
Zhang G, Zhang J, Chen Y, Du M, Li K, Su L, Yi H, Zhao F, Cao X. Logarithmic total variation regularization via preconditioned conjugate gradient method for sparse reconstruction of bioluminescence tomography. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 243:107863. [PMID: 37871449 DOI: 10.1016/j.cmpb.2023.107863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/25/2023]
Abstract
BACKGROUND AND OBJECTIVE Bioluminescence Tomography (BLT) is a powerful optical molecular imaging technique that enables the noninvasive investigation of dynamic biological phenomena. It aims to reconstruct the three-dimensional spatial distribution of bioluminescent sources from optical measurements collected on the surface of the imaged object. However, BLT reconstruction is a challenging ill-posed problem due to the scattering effect of light and the limitations in detecting surface photons, which makes it difficult for existing methods to achieve satisfactory reconstruction results. In this study, we propose a novel method for sparse reconstruction of BLT based on a preconditioned conjugate gradient with logarithmic total variation regularization (PCG-logTV). METHOD This PCG-logTV method incorporates the sparsity of overlapping groups and enhances the sparse structure of these groups using logarithmic functions, which can preserve edge features and achieve more stable reconstruction results in BLT. To accelerate the convergence of the algorithm solution, we use the preconditioned conjugate gradient iteration method on the objective function and obtain the reconstruction results. We demonstrate the performance of our proposed method through numerical simulations and in vivo experiment. RESULTS AND CONCLUSIONS The results show that the PCG-logTV method obtains the most accurate reconstruction results, and the minimum position error (LE) is 0.254mm, which is 26%, 31% and 34% of the FISTA (0.961), IVTCG (0.81) and L1-TV (0.739) methods, and the root mean square error (RMSE) and relative intensity error (RIE) are the smallest, indicating that it is closest to the real light source. In addition, compared with the other three methods, the PCG-logTV method also has the highest DICE similarity coefficient, which is 0.928, which means that this method can effectively reconstruct the three-dimensional spatial distribution of bioluminescent light sources, has higher resolution and robustness, and is beneficial to the preclinical and clinical studies of BLT.
Collapse
Affiliation(s)
- Gege Zhang
- School of Information Science and Technology, Northwest University, Xi'an, Shaanxi 710127, China; National and Local Joint Engineering Research Center for Cultural Heritage Digitization, Xi'an, Shaanxi 710127, China
| | - Jun Zhang
- School of Information Science and Technology, Northwest University, Xi'an, Shaanxi 710127, China; National and Local Joint Engineering Research Center for Cultural Heritage Digitization, Xi'an, Shaanxi 710127, China
| | - Yi Chen
- School of Information Science and Technology, Northwest University, Xi'an, Shaanxi 710127, China; National and Local Joint Engineering Research Center for Cultural Heritage Digitization, Xi'an, Shaanxi 710127, China
| | - Mengfei Du
- School of Information Science and Technology, Northwest University, Xi'an, Shaanxi 710127, China; National and Local Joint Engineering Research Center for Cultural Heritage Digitization, Xi'an, Shaanxi 710127, China
| | - Kang Li
- School of Information Science and Technology, Northwest University, Xi'an, Shaanxi 710127, China; National and Local Joint Engineering Research Center for Cultural Heritage Digitization, Xi'an, Shaanxi 710127, China
| | - Linzhi Su
- School of Information Science and Technology, Northwest University, Xi'an, Shaanxi 710127, China; National and Local Joint Engineering Research Center for Cultural Heritage Digitization, Xi'an, Shaanxi 710127, China
| | - Huangjian Yi
- School of Information Science and Technology, Northwest University, Xi'an, Shaanxi 710127, China
| | - Fengjun Zhao
- School of Information Science and Technology, Northwest University, Xi'an, Shaanxi 710127, China
| | - Xin Cao
- School of Information Science and Technology, Northwest University, Xi'an, Shaanxi 710127, China; National and Local Joint Engineering Research Center for Cultural Heritage Digitization, Xi'an, Shaanxi 710127, China.
| |
Collapse
|
11
|
Wang B, Tang C, Lin E, Jia X, Xie G, Li P, Li D, Yang Q, Guo X, Cao C, Shi X, Zou B, Cai C, Tian J, Hu Z, Li J. NIR-II fluorescence-guided liver cancer surgery by a small molecular HDAC6 targeting probe. EBioMedicine 2023; 98:104880. [PMID: 38035463 PMCID: PMC10698675 DOI: 10.1016/j.ebiom.2023.104880] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 11/05/2023] [Accepted: 11/05/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the sixth most common malignancy globally and ranks third in terms of both mortality and incidence rates. Surgical resection holds potential as a curative approach for HCC. However, the residual disease contributes to a high 5-year recurrence rate of 70%. Due to their excellent specificity and optical properties, fluorescence-targeted probes are deemed effective auxiliary tools for addressing residual lesions, enabling precise surgical diagnosis and treatment. Research indicates histone deacetylase 6 (HDAC6) overexpression in HCC cells, making it a potential imaging biomarker. This study designed a targeted small-molecule fluorescent probe, SeCF3-IRDye800cw (SeCF3-IRD800), operating within the Second near-infrared window (NIR-II, 1000-1700 nm). The study confirms the biocompatibility of SeCF3-IRD800 and proceeds to demonstrate its applications in imaging in vivo, fluorescence-guided surgery (FGS) for liver cancer, liver fibrosis imaging, and clinical samples incubation, thereby preliminarily validating its utility in liver cancer. METHODS SeCF3-IRD800 was synthesized by combining the near-infrared fluorescent dye IRDye800cw-NHS with an improved HDAC6 inhibitor. Initially, a HepG2-Luc subcutaneous tumor model (n = 12) was constructed to investigate the metabolic differences between SeCF3-IRD800 and ICG in vivo. Subsequently, HepG2-Luc (n = 12) and HCCLM3-Luc (n = 6) subcutaneous xenograft mouse models were used to assess in vivo targeting by SeCF3-IRD800. The HepG2-Luc orthotopic liver cancer model (n = 6) was employed to showcase the application of SeCF3-IRD800 in FGS. Liver fibrosis (n = 6) and HepG2-Luc orthotopic (n = 6) model imaging results were used to evaluate the impact of different pathological backgrounds on SeCF3-IRD800 imaging. Three groups of fresh HCC and normal liver samples from patients with liver cancer were utilized for SeCF3-IRD800 incubation ex vivo, while preclinical experiments illustrated its potential for clinical application. FINDINGS The HDAC6 inhibitor 6 (SeCF3) modified with trifluoromethyl was labeled with IRDy800CW-NHS to synthesize the small-molecule targeted probe SeCF3-IRD800, with NIR-II fluorescence signals. SeCF3-IRD800 was rapidly metabolized by the kidneys and exhibited excellent biocompatibility. In vivo validation demonstrated that SeCF3-IRD800 achieved optimal imaging within 8 h, displaying high tumor fluorescence intensity (7658.41 ± 933.34) and high tumor-to-background ratio (5.20 ± 1.04). Imaging experiments with various expression levels revealed its capacity for HDAC6-specific targeting across multiple HCC tumor models, suitable for NIR-II intraoperative imaging. Fluorescence-guided surgery experiments were found feasible and capable of detecting sub-visible 2 mm tumor lesions under white light, aiding surgical decision-making. Further imaging of liver fibrosis mice showed that SeCF3-IRD800's imaging efficacy remained unaffected by liver pathological conditions. Correlations were observed between HDAC6 expression levels and corresponding fluorescence intensity (R2 = 0.8124) among normal liver, liver fibrosis, and HCC tissues. SeCF3-IRD800 identified HDAC6-positive samples from patients with HCC, holding advantages for perspective intraoperative identification in liver cancer. Thus, the rapidly metabolized HDAC6-targeted small-molecule NIR-II fluorescence probe SeCF3-IRD800 holds significant clinical translational value. INTERPRETATION The successful application of NIR-II fluorescence-guided surgery in liver cancer indicates that SeCF3-IRD800 has great potential to improve the clinical diagnosis and treatment of liver cancer, and could be used as an auxiliary tool for surgical treatment of liver cancer without being affected by liver pathology. FUNDING This paper is supported by the National Natural Science Foundation of China (NSFC) (92,059,207, 62,027,901, 81,930,053, 81,227,901, 82,272,105, U21A20386 and 81,971,773), CAS Youth Interdisciplinary Team (JCTD-2021-08), the Zhuhai High-level Health Personnel Team Project (Zhuhai HLHPTP201703), and Guangdong Basic and Applied Basic Research Foundation under Grant No. 2022A1515011244.
Collapse
Affiliation(s)
- Bo Wang
- Department of Hepatobiliary Surgery and Liver Transplantation, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, China; CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chu Tang
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, 710071, China
| | - En Lin
- Department of Hepatobiliary Surgery and Liver Transplantation, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, China; CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiaohua Jia
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ganyuan Xie
- Department of Hepatobiliary Surgery and Liver Transplantation, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, China
| | - Peiping Li
- Department of Hepatobiliary Surgery and Liver Transplantation, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, China
| | - Decheng Li
- Department of Hepatobiliary Surgery and Liver Transplantation, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, China
| | - Qiyue Yang
- Key Laboratory of Digital Hepatobiliary Surgery, PLA, Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, 100048, China
| | - Xiaoyong Guo
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China; Clinical College of Armed Police General Hospital of Anhui Medical University, Department of Gastroenterology of The Third Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Caiguang Cao
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaojing Shi
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Baojia Zou
- Department of Hepatobiliary Surgery and Liver Transplantation, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, China
| | - Chaonong Cai
- Department of Hepatobiliary Surgery and Liver Transplantation, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, China
| | - Jie Tian
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, 100191, China; Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, 710071, China.
| | - Zhenhua Hu
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jian Li
- Department of Hepatobiliary Surgery and Liver Transplantation, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, China.
| |
Collapse
|
12
|
Zhang J, Zhang G, Chen Y, Li K, Zhao F, Yi H, Su L, Cao X. Regularized reconstruction based on joint smoothly clipped absolute deviation regularization and graph manifold learning for fluorescence molecular tomography. Phys Med Biol 2023; 68:195004. [PMID: 37647921 DOI: 10.1088/1361-6560/acf55a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/30/2023] [Indexed: 09/01/2023]
Abstract
Objective.Fluorescence molecular tomography (FMT) is an optical imaging modality that provides high sensitivity and low cost, which can offer the three-dimensional distribution of biomarkers by detecting the fluorescently labeled probe noninvasively. In the field of preclinical cancer diagnosis and treatment, FMT has gained significant traction. Nonetheless, the current FMT reconstruction results suffer from unsatisfactory morphology and location accuracy of the fluorescence distribution, primarily due to the light scattering effect and the ill-posed nature of the inverse problem.Approach.To address these challenges, a regularized reconstruction method based on joint smoothly clipped absolute deviation regularization and graph manifold learning (SCAD-GML) for FMT is presented in this paper. The SCAD-GML approach combines the sparsity of the fluorescent sources with the latent manifold structure of fluorescent source distribution to achieve more accurate and sparse reconstruction results. To obtain the reconstruction results efficiently, the non-convex gradient descent iterative method is employed to solve the established objective function. To assess the performance of the proposed SCAD-GML method, a comprehensive evaluation is conducted through numerical simulation experiments as well asin vivoexperiments.Main results.The results demonstrate that the SCAD-GML method outperforms other methods in terms of both location and shape recovery of fluorescence biomarkers distribution.Siginificance.These findings indicate that the SCAD-GML method has the potential to advance the application of FMT inin vivobiological research.
Collapse
Affiliation(s)
- Jun Zhang
- School of Information Science and Technology, Northwest University, Xi'an, Shaanxi 710127, People's Republic of China
- National and Local Joint Engineering Research Center for Cultural Heritage Digitization, Xi'an, Shaanxi 710127, People's Republic of China
| | - Gege Zhang
- School of Information Science and Technology, Northwest University, Xi'an, Shaanxi 710127, People's Republic of China
- National and Local Joint Engineering Research Center for Cultural Heritage Digitization, Xi'an, Shaanxi 710127, People's Republic of China
| | - Yi Chen
- School of Information Science and Technology, Northwest University, Xi'an, Shaanxi 710127, People's Republic of China
- National and Local Joint Engineering Research Center for Cultural Heritage Digitization, Xi'an, Shaanxi 710127, People's Republic of China
| | - Kang Li
- School of Information Science and Technology, Northwest University, Xi'an, Shaanxi 710127, People's Republic of China
- National and Local Joint Engineering Research Center for Cultural Heritage Digitization, Xi'an, Shaanxi 710127, People's Republic of China
| | - Fengjun Zhao
- School of Information Science and Technology, Northwest University, Xi'an, Shaanxi 710127, People's Republic of China
| | - Huangjian Yi
- School of Information Science and Technology, Northwest University, Xi'an, Shaanxi 710127, People's Republic of China
| | - Linzhi Su
- School of Information Science and Technology, Northwest University, Xi'an, Shaanxi 710127, People's Republic of China
- National and Local Joint Engineering Research Center for Cultural Heritage Digitization, Xi'an, Shaanxi 710127, People's Republic of China
| | - Xin Cao
- School of Information Science and Technology, Northwest University, Xi'an, Shaanxi 710127, People's Republic of China
- National and Local Joint Engineering Research Center for Cultural Heritage Digitization, Xi'an, Shaanxi 710127, People's Republic of China
| |
Collapse
|
13
|
Chen Y, Du M, Zhang G, Zhang J, Li K, Su L, Zhao F, Yi H, Cao X. Sparse reconstruction based on dictionary learning and group structure strategy for cone-beam X-ray luminescence computed tomography. OPTICS EXPRESS 2023; 31:24845-24861. [PMID: 37475302 DOI: 10.1364/oe.493797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/13/2023] [Indexed: 07/22/2023]
Abstract
As a dual-modal imaging technology that has emerged in recent years, cone-beam X-ray luminescence computed tomography (CB-XLCT) has exhibited promise as a tool for the early three-dimensional detection of tumors in small animals. However, due to the challenges imposed by the low absorption and high scattering of light in tissues, the CB-XLCT reconstruction problem is a severely ill-conditioned inverse problem, rendering it difficult to obtain satisfactory reconstruction results. In this study, a strategy that utilizes dictionary learning and group structure (DLGS) is proposed to achieve satisfactory CB-XLCT reconstruction performance. The group structure is employed to account for the clustering of nanophosphors in specific regions within the organism, which can enhance the interrelation of elements in the same group. Furthermore, the dictionary learning strategy is implemented to effectively capture sparse features. The performance of the proposed method was evaluated through numerical simulations and in vivo experiments. The experimental results demonstrate that the proposed method achieves superior reconstruction performance in terms of location accuracy, target shape, robustness, dual-source resolution, and in vivo practicability.
Collapse
|
14
|
Zhang Y, Li F, Cui Z, Li K, Guan J, Tian L, Wang Y, Liu N, Wu W, Chai Z, Wang S. A Radioluminescent Metal-Organic Framework for Monitoring 225Ac in Vivo. J Am Chem Soc 2023. [PMID: 37366004 DOI: 10.1021/jacs.3c02325] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
225Ac is considered as one of the most promising radioisotopes for alpha-therapy because its emitted high-energy α-particles can efficiently damage tumor cells. However, it also represents a significant threat to healthy tissues owing to extremely high radiotoxicity if targeted therapy fails. This calls for a pressing requirement of monitoring the biodistribution of 225Ac in vivo during the treatment of tumors. However, the lack of imageable photons or positrons from therapeutic doses of 225Ac makes this task currently quite challenging. We report here a nanoscale luminescent europium-organic framework (EuMOF) that allows for fast, simple, and efficient labeling of 225Ac in its crystal structure with sufficient 225Ac-retention stability based on similar coordination behaviors between Ac3+ and Eu3+. After labeling, the short distance between 225Ac and Eu3+ in the structure leads to exceedingly efficient energy transduction from225Ac-emitted α-particles to surrounding Eu3+ ions, which emits red luminescence through a scintillation process and produces sufficient photons for clearcut imaging. The in vivo intensity distribution of radioluminescence signal originating from the 225Ac-labeled EuMOF is consistent with the dose of 225Ac dispersed among the various organs determined by the radioanalytical measurement ex vivo, certifying the feasibility of in vivo directly monitoring 225Ac using optical imaging for the first time. In addition, 225Ac-labeled EuMOF displays notable efficiency in treating the tumor. These results provide a general design principle for fabricating 225Ac-labeled radiopharmaceuticals with imaging photons and propose a simple way to in vivo track radionuclides with no imaging photons, including but not limited to 225Ac.
Collapse
Affiliation(s)
- Yugang Zhang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Feize Li
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China
| | - Zhencun Cui
- Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou 730000, China
| | - Kai Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Jingwen Guan
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Longlong Tian
- Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou 730000, China
| | - Yaxing Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Ning Liu
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China
| | - Wangsuo Wu
- Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou 730000, China
| | - Zhifang Chai
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Shuao Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| |
Collapse
|
15
|
Li R, He H, Li X, Zheng X, Li Z, Zhang H, Ye J, Zhang W, Yu C, Feng G, Fan W. EDB-FN targeted probes for the surgical navigation, radionuclide imaging, and therapy of thyroid cancer. Eur J Nucl Med Mol Imaging 2023; 50:2100-2113. [PMID: 36807768 DOI: 10.1007/s00259-023-06147-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/08/2023] [Indexed: 02/20/2023]
Abstract
PURPOSE Extradomain B of fibronectin (EDB-FN) is a promising diagnostic and therapeutic biomarker for thyroid cancer (TC). Here, we identified a high-affinity EDB-FN targeted peptide named EDBp (AVRTSAD) and developed three EDBp-based probes, Cy5-PEG4-EDBp(Cy5-EDBp), [18F]-NOTA-PEG4-EDBp([18F]-EDBp), and [177Lu]-DOTA-PEG4-EDBp ([177Lu]-EDBp), for the surgical navigation, radionuclide imaging, and therapy of TC. METHODS Based on the previously identified EDB-FN targeted peptide ZD2, the optimized EDB-FN targeted peptide EDBp was identified by using the alanine scan strategy. Three EDBp-based probes, Cy5-EDBp, [18F]-EDBp, and [177Lu]-EDBp, were developed for fluorescence imaging, positron emission tomography (PET) imaging, and radiotherapy in TC tumor-bearing mice, respectively. Additionally, [18F]-EDBp was evaluated in two TC patients. RESULTS The binding affinity of EDBp to the EDB fragment protein (Kd = 14.4 ± 1.4 nM, n = 3) was approximately 336-fold greater than that of the ZD2 (Kd = 4839.7 ± 361.7 nM, n = 3). Fluorescence imaging with Cy5-EDBp facilitated the complete removal of TC tumors. [18F]-EDBp PET imaging clearly delineated TC tumors, with high tumor uptake (16.43 ± 1.008%ID/g, n = 6, at 1-h postinjection). Radiotherapy with [177Lu]-EDBp inhibited tumor growth and prolonged survival in TC tumor-bearing mice (survival time of different treatment groups: saline vs. EDBp vs. ABRAXANE vs. [177Lu]-EDBp = 8.00 d vs. 8.00 d vs. 11.67 d vs. 22.33 d, ***p < 0.001). Importantly, the first-in-human evaluation of [18F]-EDBp demonstrated that it had specific targeting properties (SUVmax value of 3.6) and safety. CONCLUSION Cy5-EDBp, [18F]-EDBp, and [177Lu]-EDBp are promising candidates for the surgical navigation, radionuclide imaging, and radionuclide therapy of TC, respectively.
Collapse
Affiliation(s)
- Ruping Li
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou , 510060, Guangdong, People's Republic of China
| | - Huihui He
- Department of Nuclear Medicine, Affiliated Hospital of Jiangnan University, Wuxi, 214000, China
| | - Xinling Li
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou , 510060, Guangdong, People's Republic of China
| | - Xiaobin Zheng
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou , 510060, Guangdong, People's Republic of China
| | - Zhijian Li
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou , 510060, Guangdong, People's Republic of China
| | - Hu Zhang
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou , 510060, Guangdong, People's Republic of China
| | - Jiacong Ye
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou , 510060, Guangdong, People's Republic of China
| | - Weiguang Zhang
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou , 510060, Guangdong, People's Republic of China
| | - Chunjing Yu
- Department of Nuclear Medicine, Affiliated Hospital of Jiangnan University, Wuxi, 214000, China.
| | - Guokai Feng
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou , 510060, Guangdong, People's Republic of China.
| | - Wei Fan
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou , 510060, Guangdong, People's Republic of China.
| |
Collapse
|
16
|
Li J, Zhang L, Liu J, Zhang D, Kang D, Wang B, He X, Zhang H, Zhao Y, Guo H, Hou Y. An adaptive parameter selection strategy based on maximizing the probability of data for robust fluorescence molecular tomography reconstruction. JOURNAL OF BIOPHOTONICS 2023:e202300031. [PMID: 37074336 DOI: 10.1002/jbio.202300031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/20/2023] [Accepted: 04/14/2023] [Indexed: 05/03/2023]
Abstract
To alleviate the ill-posed of the inverse problem in fluorescent molecular tomography (FMT), many regularization methods based on L2 or L1 norm have been proposed. Whereas, the quality of regularization parameters affects the performance of the reconstruction algorithm. Some classical parameter selection strategies usually need initialization of parameter range and high computing costs, which is not universal in the practical application of FMT. In this paper, an universally applicable adaptive parameter selection method based on maximizing the probability of data (MPD) strategy was proposed. This strategy used maximum a posteriori (MAP) estimation and maximum likelihood (ML) estimation to establish a regularization parameters model. The stable optimal regularization parameters can be determined by multiple iterative estimates. Numerical simulations and in vivo experiments show that MPD strategy can obtain stable regularization parameters for both regularization algorithms based on L2 or L1 norm and achieve good reconstruction performance.
Collapse
Affiliation(s)
- Jintao Li
- The Xi'an Key Laboratory of Radiomics and Intelligent Perception, Xi'an, China
- School of Information Sciences and Technology, Northwest University, Xi'an, China
| | - Lizhi Zhang
- The Xi'an Key Laboratory of Radiomics and Intelligent Perception, Xi'an, China
- School of Information Sciences and Technology, Northwest University, Xi'an, China
| | - Jia Liu
- Xi'an Company of Shaanxi Tobacco Company, The Information Center, Xi'an, China
| | - Diya Zhang
- The Xi'an Key Laboratory of Radiomics and Intelligent Perception, Xi'an, China
- School of Information Sciences and Technology, Northwest University, Xi'an, China
| | - Dizhen Kang
- The Xi'an Key Laboratory of Radiomics and Intelligent Perception, Xi'an, China
- School of Information Sciences and Technology, Northwest University, Xi'an, China
| | - Beilei Wang
- The Xi'an Key Laboratory of Radiomics and Intelligent Perception, Xi'an, China
- School of Information Sciences and Technology, Northwest University, Xi'an, China
| | - Xiaowei He
- The Xi'an Key Laboratory of Radiomics and Intelligent Perception, Xi'an, China
- School of Information Sciences and Technology, Northwest University, Xi'an, China
| | - Heng Zhang
- The Xi'an Key Laboratory of Radiomics and Intelligent Perception, Xi'an, China
- School of Information Sciences and Technology, Northwest University, Xi'an, China
| | - Yizhe Zhao
- The Xi'an Key Laboratory of Radiomics and Intelligent Perception, Xi'an, China
- School of Information Sciences and Technology, Northwest University, Xi'an, China
| | - Hongbo Guo
- The Xi'an Key Laboratory of Radiomics and Intelligent Perception, Xi'an, China
- School of Information Sciences and Technology, Northwest University, Xi'an, China
| | - Yuqing Hou
- The Xi'an Key Laboratory of Radiomics and Intelligent Perception, Xi'an, China
- School of Information Sciences and Technology, Northwest University, Xi'an, China
| |
Collapse
|
17
|
Liu Y, Teng L, Lou XF, Zhang XB, Song G. "Four-In-One" Design of a Hemicyanine-Based Modular Scaffold for High-Contrast Activatable Molecular Afterglow Imaging. J Am Chem Soc 2023; 145:5134-5144. [PMID: 36823697 DOI: 10.1021/jacs.2c11466] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Afterglow luminescence (long persistent luminescence) holds great potential for nonbackground molecular imaging. However, current afterglow probes are mainly nanoparticles, and afterglow imaging systems based on organic small molecules are still lacking and have rarely been reported. Moreover, the lack of reactive sites and a universal molecular scaffold makes it difficult to design activatable afterglow probes. To address these issues, this study reports a novel kind of hemicyanine-based molecule scaffolds with stimuli-responsive afterglow luminescence, which is dependent on an intramolecular cascade photoreaction between 1O2 and the afterglow molecule to store the photoenergy for delayed luminescence after light cessation. As a proof of concept, three modular activatable molecular afterglow probes (MAPs) with a "four-in-one" molecular design by integrating a stimuli-responsive unit, 1O2-generating unit, 1O2-capturing unit, and luminescent unit into one probe are customized for quantification and imaging of targets including pH, superoxide anions, and aminopeptidase. Notably, MAPs show higher sensitivity in afterglow imaging than in fluorescence imaging because the responsive unit simultaneously controls the initiation of fluorescence (S1 to S0) and 1O2 generation (S1 to T1). Finally, MAPs are applied for high-contrast afterglow imaging of drug-induced hepatotoxicity, which is poorly evaluated in clinics and drug discovery. By reporting the sequential occurrence of oxidative stress and upregulation of aminopeptidase, such activatable afterglow probes allow noninvasive imaging of hepatotoxicity earlier than the serological and histology manifestation, indicating their promise for early diagnosis of hepatotoxicity.
Collapse
Affiliation(s)
- Yongchao Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Lili Teng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Xiao-Feng Lou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Guosheng Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
18
|
Li S, Wei J, Yao Q, Song X, Xie J, Yang H. Emerging ultrasmall luminescent nanoprobes for in vivo bioimaging. Chem Soc Rev 2023; 52:1672-1696. [PMID: 36779305 DOI: 10.1039/d2cs00497f] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Photoluminescence (PL) imaging has become a fundamental tool in disease diagnosis, therapeutic evaluation, and surgical navigation applications. However, it remains a big challenge to engineer nanoprobes for high-efficiency in vivo imaging and clinical translation. Recent years have witnessed increasing research efforts devoted into engineering sub-10 nm ultrasmall nanoprobes for in vivo PL imaging, which offer the advantages of efficient body clearance, desired clinical translation potential, and high imaging signal-to-noise ratio. In this review, we present a comprehensive summary and contrastive discussion of emerging ultrasmall luminescent nanoprobes towards in vivo PL bioimaging of diseases. We first summarize size-dependent nano-bio interactions and imaging features, illustrating the unique attributes and advantages/disadvantages of ultrasmall nanoprobes differentiating them from molecular and large-sized probes. We also discuss general design methodologies and PL properties of emerging ultrasmall luminescent nanoprobes, which are established based on quantum dots, metal nanoclusters, lanthanide-doped nanoparticles, and silicon nanoparticles. Then, recent advances of ultrasmall luminescent nanoprobes are highlighted by surveying their latest in vivo PL imaging applications. Finally, we discuss existing challenges in this exciting field and propose some strategies to improve in vivo PL bioimaging and further propel their clinical applications.
Collapse
Affiliation(s)
- Shihua Li
- Qingyuan Innovation Laboratory, 1# Xueyuan Road, Quanzhou, Fujian 362801, China.,MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| | - Jing Wei
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China. .,Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
| | - Qiaofeng Yao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore. .,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, Fujian 350207, China
| | - Xiaorong Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China. .,Fujian Science &Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| | - Jianping Xie
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore. .,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, Fujian 350207, China
| | - Huanghao Yang
- Qingyuan Innovation Laboratory, 1# Xueyuan Road, Quanzhou, Fujian 362801, China.,MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China. .,Fujian Science &Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| |
Collapse
|
19
|
Fu L, Lu B, Tian J, Hu Z. PSSGAN: Towards spectrum shift based perceptual quality enhancement for fluorescence imaging. Comput Med Imaging Graph 2023; 107:102216. [DOI: 10.1016/j.compmedimag.2023.102216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/19/2023]
|
20
|
Zhang L, Guo H, Li J, Kang D, Zhang D, He X, Zhao Y, Wei D, Yu J. Multi-target reconstruction strategy based on blind source separation of surface measurement signals in FMT. BIOMEDICAL OPTICS EXPRESS 2023; 14:1159-1177. [PMID: 36950247 PMCID: PMC10026579 DOI: 10.1364/boe.481348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/30/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Fluorescence molecular tomography (FMT) is a promising molecular imaging technique for tumor detection in the early stage. High-precision multi-target reconstructions are necessary for quantitative analysis in practical FMT applications. The existing reconstruction methods perform well in retrieving a single fluorescent target but may fail in reconstructing a multi-target, which remains an obstacle to the wider application of FMT. In this paper, a novel multi-target reconstruction strategy based on blind source separation (BSS) of surface measurement signals was proposed, which transformed the multi-target reconstruction problem into multiple single-target reconstruction problems. Firstly, by multiple points excitation, multiple groups of superimposed measurement signals conforming to the conditions of BSS were constructed. Secondly, an efficient nonnegative least-correlated component analysis with iterative volume maximization (nLCA-IVM) algorithm was applied to construct the separation matrix, and the superimposed measurement signals were separated into the measurements of each target. Thirdly, the least squares fitting method was combined with BSS to determine the number of fluorophores indirectly. Lastly, each target was reconstructed based on the extracted surface measurement signals. Numerical simulations and in vivo experiments proved that it has the ability of multi-target resolution for FMT. The encouraging results demonstrate the significant effectiveness and potential of our method for practical FMT applications.
Collapse
Affiliation(s)
- Lizhi Zhang
- The Xi’an Key Laboratory of Radiomics and Intelligent Perception, Xi’an, China
- School of Information Sciences and Technology, Northwest University, Xi’an 710127, China
| | - Hongbo Guo
- The Xi’an Key Laboratory of Radiomics and Intelligent Perception, Xi’an, China
- School of Information Sciences and Technology, Northwest University, Xi’an 710127, China
| | - Jintao Li
- The Xi’an Key Laboratory of Radiomics and Intelligent Perception, Xi’an, China
- School of Information Sciences and Technology, Northwest University, Xi’an 710127, China
| | - Dizhen Kang
- The Xi’an Key Laboratory of Radiomics and Intelligent Perception, Xi’an, China
- School of Information Sciences and Technology, Northwest University, Xi’an 710127, China
| | - Diya Zhang
- The Xi’an Key Laboratory of Radiomics and Intelligent Perception, Xi’an, China
- School of Information Sciences and Technology, Northwest University, Xi’an 710127, China
| | - Xiaowei He
- The Xi’an Key Laboratory of Radiomics and Intelligent Perception, Xi’an, China
- School of Information Sciences and Technology, Northwest University, Xi’an 710127, China
| | - Yizhe Zhao
- The Xi’an Key Laboratory of Radiomics and Intelligent Perception, Xi’an, China
- School of Information Sciences and Technology, Northwest University, Xi’an 710127, China
| | - De Wei
- The Xi’an Key Laboratory of Radiomics and Intelligent Perception, Xi’an, China
- School of Information Sciences and Technology, Northwest University, Xi’an 710127, China
| | - Jingjing Yu
- School of Physics and Information Technology, Shaanxi Normal University, Xi’an 710062, China
| |
Collapse
|
21
|
Yang S, Dai W, Zheng W, Wang J. Non-UV-activated persistent luminescence phosphors for sustained bioimaging and phototherapy. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
22
|
Xiong Y, He P, Zhang Y, Chen H, Peng Y, He P, Tian J, Cheng H, Liu G, Li J. Superstable homogeneous lipiodol-ICG formulation: initial feasibility and first-in-human clinical application for ruptured hepatocellular carcinoma. Regen Biomater 2022; 10:rbac106. [PMID: 36683740 PMCID: PMC9847516 DOI: 10.1093/rb/rbac106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/24/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
The most common treatment of spontaneous tumor rupture hemorrhage (STRH) is transcatheter arterial embolization (TAE) followed by liver resection, and surgical navigation using near-infrared fluorescence is effective method for detecting hidden lesions and ill-defined tumor boundaries. However, due to the blockage of the tumor-supplying artery after effective TAE treatment, it is difficult to deliver sufficient fluorescent probes to the tumor region. In this study, we report on the successful application of superstable homogeneous intermixed formulation technology (SHIFT) in precise conversion hepatectomy for ruptured hepatocellular carcinoma (HCC). A homogeneous lipiodol-ICG formulation obtained by SHIFT (SHIFT-ICG) was developed for clinical practice for STRH. A ruptured HCC patient received the combined protocol for embolization and fluorescence surgical navigation and exhibited excellent hemostatic effect. Lipiodol and ICG were both effectively deposited in the primary lesion, including a small metastatic lesion. In follow-up laparoscopic hepatectomy, SHIFT-ICG could clearly and precisely image the full tumor regions and boundaries in real time, and even indistinguishable satellite lesions still expressed a remarkable fluorescence intensity. In conclusion, the simple and green SHIFT-ICG formulation can be effectively used in emergency embolization hemostasis and later precise fluorescence navigation hepatectomy in patients with ruptured HCC bleeding and has high clinical application value.
Collapse
Affiliation(s)
- Yongfu Xiong
- Department of Hepatobiliary Surgery, Academician (Expert) Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong 637600, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Pan He
- Department of Hepatobiliary Surgery, Academician (Expert) Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong 637600, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou 646000, China
| | - Yang Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Hu Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yisheng Peng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Peng He
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Jie Tian
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Hongwei Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Jingdong Li
- Department of Hepatobiliary Surgery, Academician (Expert) Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong 637600, China
| |
Collapse
|
23
|
Cao C, Xiao A, Cai M, Shen B, Guo L, Shi X, Tian J, Hu Z. Excitation-based fully connected network for precise NIR-II fluorescence molecular tomography. BIOMEDICAL OPTICS EXPRESS 2022; 13:6284-6299. [PMID: 36589575 PMCID: PMC9774866 DOI: 10.1364/boe.474982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/26/2022] [Accepted: 10/30/2022] [Indexed: 06/17/2023]
Abstract
Fluorescence molecular tomography (FMT) is a novel imaging modality to obtain fluorescence biomarkers' three-dimensional (3D) distribution. However, the simplified mathematical model and complicated inverse problem limit it to achieving precise results. In this study, the second near-infrared (NIR-II) fluorescence imaging was adopted to mitigate tissue scattering and reduce noise interference. An excitation-based fully connected network was proposed to model the inverse process of NIR-II photon propagation and directly obtain the 3D distribution of the light source. An excitation block was embedded in the network allowing it to autonomously pay more attention to neurons related to the light source. The barycenter error was added to the loss function to improve the localization accuracy of the light source. Both numerical simulation and in vivo experiments showed the superiority of the novel NIR-II FMT reconstruction strategy over the baseline methods. This strategy was expected to facilitate the application of machine learning in biomedical research.
Collapse
Affiliation(s)
- Caiguang Cao
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
- These authors contributed equally
| | - Anqi Xiao
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
- These authors contributed equally
| | - Meishan Cai
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Biluo Shen
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Lishuang Guo
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, China
| | - Xiaojing Shi
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Jie Tian
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, China
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, China
| | - Zhenhua Hu
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
24
|
Guo L, Cai M, Zhang X, Zhang Z, Shi X, Zhang X, Liu J, Hu Z, Tian J. A novel weighted auxiliary set matching pursuit method for glioma in Cerenkov luminescence tomography reconstruction. JOURNAL OF BIOPHOTONICS 2022; 15:e202200126. [PMID: 36328059 DOI: 10.1002/jbio.202200126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/25/2022] [Accepted: 07/05/2022] [Indexed: 06/16/2023]
Abstract
Cerenkov luminescence tomography (CLT) is a promising three-dimensional imaging technology that has been actively investigated in preclinical studies. However, because of the ill-posedness in the inverse problem of CLT reconstruction, the reconstruction performance is still not satisfactory for broad biomedical applications. In this study, a novel weighted auxiliary set matching pursuit (WASMP) method was explored to enhance the accuracy of CLT reconstruction. The numerical simulations and in vivo imaging studies using tumor-bearing mice models were conducted to evaluate the performance of the WASMP method. The results of the above experiments proved that the WASMP method achieved superior reconstruction performance than other approaches in terms of positional accuracy and shape recovery. It further demonstrates that the atom selection strategy proposed in this study has a positive effect on improving the accuracy of atoms. The proposed WASMP improves the accuracy for CLT reconstruction for biomedical applications.
Collapse
Affiliation(s)
- Lishuang Guo
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, China
- Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Meishan Cai
- Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoning Zhang
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, China
- Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Zeyu Zhang
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, China
- Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Xiaojing Shi
- Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaojun Zhang
- Department of Nuclear Medicine, Chinese PLA General Hospital, Beijing, China
| | - Jiangang Liu
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, China
| | - Zhenhua Hu
- Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Jie Tian
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, China
- Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
25
|
Liu N, Su X, Sun X. Cerenkov radiation-activated probes for deep cancer theranostics: a review. Theranostics 2022; 12:7404-7419. [PMID: 36438500 PMCID: PMC9691350 DOI: 10.7150/thno.75279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/07/2022] [Indexed: 11/05/2022] Open
Abstract
Cerenkov radiation (CR) from radionuclides and megavoltage X-ray radiation can act as an in situ light source for deep cancer theranostics, overcoming the limitations of external light sources. Despite the blue-weighted emission and low quantum yield of CR, activatable probes-mediated CR can enhance the in-vivo diagnostic signals by Cerenkov resonance energy transfer and also can produce therapeutic effects by reactive species generation/drug release, greatly promoting the biomedical applications of CR. In this review, we describe the principles and sources of CR, construction of CR-activated probes and their application to tumor optical imaging and therapy. Finally, future prospects for the design and biomedical application of CR-activated probes are discussed.
Collapse
Affiliation(s)
- Nian Liu
- PET Center, Department of Nuclear Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xinhui Su
- PET Center, Department of Nuclear Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xiaolian Sun
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
26
|
Xiao A, Shen B, Shi X, Zhang Z, Zhang Z, Tian J, Ji N, Hu Z. Intraoperative Glioma Grading Using Neural Architecture Search and Multi-Modal Imaging. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:2570-2581. [PMID: 35404810 DOI: 10.1109/tmi.2022.3166129] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Glioma grading during surgery can help clinical treatment planning and prognosis, but intraoperative pathological examination of frozen sections is limited by the long processing time and complex procedures. Near-infrared fluorescence imaging provides chances for fast and accurate real-time diagnosis. Recently, deep learning techniques have been actively explored for medical image analysis and disease diagnosis. However, issues of near-infrared fluorescence images, including small-scale, noise, and low-resolution, increase the difficulty of training a satisfying network. Multi-modal imaging can provide complementary information to boost model performance, but simultaneously designing a proper network and utilizing the information of multi-modal data is challenging. In this work, we propose a novel neural architecture search method DLS-DARTS to automatically search for network architectures to handle these issues. DLS-DARTS has two learnable stems for multi-modal low-level feature fusion and uses a modified perturbation-based derivation strategy to improve the performance on the area under the curve and accuracy. White light imaging and fluorescence imaging in the first near-infrared window (650-900 nm) and the second near-infrared window (1,000-1,700 nm) are applied to provide multi-modal information on glioma tissues. In the experiments on 1,115 surgical glioma specimens, DLS-DARTS achieved an area under the curve of 0.843 and an accuracy of 0.634, which outperformed manually designed convolutional neural networks including ResNet, PyramidNet, and EfficientNet, and a state-of-the-art neural architecture search method for multi-modal medical image classification. Our study demonstrates that DLS-DARTS has the potential to help neurosurgeons during surgery, showing high prospects in medical image analysis.
Collapse
|
27
|
PET/NIR-II fluorescence imaging and image-guided surgery of glioblastoma using a folate receptor α-targeted dual-modal nanoprobe. Eur J Nucl Med Mol Imaging 2022; 49:4325-4337. [PMID: 35838757 DOI: 10.1007/s00259-022-05890-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/19/2022] [Indexed: 11/04/2022]
Abstract
PURPOSE The surgery of glioblastoma (GBM) requires a maximal resection of the tumor when it is safe and feasible. The infiltrating growth property of the GBM makes it a challenge for neurosurgeons to identify the tumor tissue even with the assistance of the surgical microscope. This highlights the urgent requirement for imaging techniques that can differentiate tumor tissues during surgery in real time. Fluorescence image-guided surgery of GBM has been investigated using several non-specific fluorescent probes that emit light in the visible and the first near-infrared window (NIR-I, 700-900 nm), which limit the detection accuracy because of the non-specific targeting mechanism and spectral characteristics. Targeted NIR-II (1000-1700 nm) fluorescent probes for GBM are thus highly desired. The folate receptor (FR) has been reported to be upregulated in GBM, which renders it to be a promising target for specific tumor imaging. METHODS In this study, the folic acid (FA) that can target the FR was conjugated with the clinically approved indocyanine green (ICG) dye and DOTA chelator for radiolabeling with 64Cu to achieve targeted positron emission tomography (PET) and fluorescence imaging of GBM. RESULTS Surprisingly it was found that the resulted bioconjugate, DOTA-FA-ICG and non-radioactive natCu-DOTA-FA-ICG, were both self-assembled into nanoparticles with NIR-II emission signal. The radiolabeled DOTA-FA-ICG, 64Cu-DOTA-FA-ICG, was found to specifically accumulate in the orthotopic GBM models using in vivo PET, NIR-II, and NIR-I fluorescence imaging. The best time window of fluorescence imaging was demonstrated to be 24 h after DOTA-FA-ICG injection. NIR-II fluorescence image-guided surgery was successfully conducted in the orthotopic GBM models using DOTA-FA-ICG. All the fluorescent tissue was removed and proved to be GBM by the H&E examination. CONCLUSION Overall, our study demonstrates that the probes, 64Cu-DOTA-FA-ICG and DOTA-FA-ICG, hold promise for preoperative PET examination and intraoperative NIR-II fluorescence image-guided surgery of GBM, respectively.
Collapse
|
28
|
Lv R, Raab M, Wang Y, Tian J, Lin J, Prasad PN. Nanochemistry advancing photon conversion in rare-earth nanostructures for theranostics. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214486] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
29
|
Abstract
Malignant tumors rank as a leading cause of death worldwide. Accurate diagnosis and advanced treatment options are crucial to win battle against tumors. In recent years, Cherenkov luminescence (CL) has shown its technical advantages and clinical transformation potential in many important fields, particularly in tumor diagnosis and treatment, such as tumor detection in vivo, surgical navigation, radiotherapy, photodynamic therapy, and the evaluation of therapeutic effect. In this review, we summarize the advances in CL for tumor diagnosis and treatment. We first describe the physical principles of CL and discuss the imaging techniques used in tumor diagnosis, including CL imaging, CL endoscope, and CL tomography. Then we present a broad overview of the current status of surgical resection, radiotherapy, photodynamic therapy, and tumor microenvironment monitoring using CL. Finally, we shed light on the challenges and possible solutions for tumor diagnosis and therapy using CL.
Collapse
|
30
|
China’s radiopharmaceuticals on expressway: 2014–2021. RADIOCHIM ACTA 2022. [DOI: 10.1515/ract-2021-1137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
This review provides an essential overview on the progress of rapidly-developing China’s radiopharmaceuticals in recent years (2014–2021). Our discussion reflects on efforts to develop potential, preclinical, and in-clinical radiopharmaceuticals including the following areas: (1) brain imaging agents, (2) cardiovascular imaging agents, (3) infection and inflammation imaging agents, (4) tumor radiopharmaceuticals, and (5) boron delivery agents (a class of radiopharmaceutical prodrug) for neutron capture therapy. Especially, the progress in basic research, including new radiolabeling methodology, is highlighted from a standpoint of radiopharmaceutical chemistry. Meanwhile, we briefly reflect on the recent major events related to radiopharmaceuticals along with the distribution of major R&D forces (universities, institutions, facilities, and companies), clinical study status, and national regulatory supports. We conclude with a brief commentary on remaining limitations and emerging opportunities for China’s radiopharmaceuticals.
Collapse
|
31
|
Broad-Spectrum Theranostics and Biomedical Application of Functionalized Nanomaterials. Polymers (Basel) 2022; 14:polym14061221. [PMID: 35335551 PMCID: PMC8956086 DOI: 10.3390/polym14061221] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/06/2022] [Accepted: 03/15/2022] [Indexed: 12/13/2022] Open
Abstract
Nanotechnology is an important branch of science in therapies known as “nanomedicine” and is the junction of various fields such as material science, chemistry, biology, physics, and optics. Nanomaterials are in the range between 1 and 100 nm in size and provide a large surface area to volume ratio; thus, they can be used for various diseases, including cardiovascular diseases, cancer, bacterial infections, and diabetes. Nanoparticles play a crucial role in therapy as they can enhance the accumulation and release of pharmacological agents, improve targeted delivery and ultimately decrease the intensity of drug side effects. In this review, we discussthe types of nanomaterials that have various biomedical applications. Biomolecules that are often conjugated with nanoparticles are proteins, peptides, DNA, and lipids, which can enhance biocompatibility, stability, and solubility. In this review, we focus on bioconjugation and nanoparticles and also discuss different types of nanoparticles including micelles, liposomes, carbon nanotubes, nanospheres, dendrimers, quantum dots, and metallic nanoparticles and their crucial role in various diseases and clinical applications. Additionally, we review the use of nanomaterials for bio-imaging, drug delivery, biosensing tissue engineering, medical devices, and immunoassays. Understandingthe characteristics and properties of nanoparticles and their interactions with the biological system can help us to develop novel strategies for the treatment, prevention, and diagnosis of many diseases including cancer, pulmonary diseases, etc. In this present review, the importance of various kinds of nanoparticles and their biomedical applications are discussed in much detail.
Collapse
|
32
|
Zhang Z, He K, Chi C, Hu Z, Tian J. Intraoperative fluorescence molecular imaging accelerates the coming of precision surgery in China. Eur J Nucl Med Mol Imaging 2022; 49:2531-2543. [PMID: 35230491 PMCID: PMC9206608 DOI: 10.1007/s00259-022-05730-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 02/13/2022] [Indexed: 02/06/2023]
Abstract
Purpose China has the largest cancer population globally. Surgery is the main choice for most solid cancer patients. Intraoperative fluorescence molecular imaging (FMI) has shown its great potential in assisting surgeons in achieving precise resection. We summarized the typical applications of intraoperative FMI and several new trends to promote the development of precision surgery. Methods The academic database and NIH clinical trial platform were systematically evaluated. We focused on the clinical application of intraoperative FMI in China. Special emphasis was placed on a series of typical studies with new technologies or high-level evidence. The emerging strategy of combining FMI with other modalities was also discussed. Results The clinical applications of clinically approved indocyanine green (ICG), methylene blue (MB), or fluorescein are on the rise in different surgical departments. Intraoperative FMI has achieved precise lesion detection, sentinel lymph node mapping, and lymphangiography for many cancers. Nerve imaging is also exploring to reduce iatrogenic injuries. Through different administration routes, these fluorescent imaging agents provided encouraging results in surgical navigation. Meanwhile, designing new cancer-specific fluorescent tracers is expected to be a promising trend to further improve the surgical outcome. Conclusions Intraoperative FMI is in a rapid development in China. In-depth understanding of cancer-related molecular mechanisms is necessary to achieve precision surgery. Molecular-targeted fluorescent agents and multi-modal imaging techniques might play crucial roles in the era of precision surgery.
Collapse
Affiliation(s)
- Zeyu Zhang
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, China.,CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Kunshan He
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Computer Science and Beijing Key Lab of Human-Computer Interaction, Institute of Software, Chinese Academy of Sciences, Beijing, China
| | - Chongwei Chi
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China. .,University of Chinese Academy of Sciences, Beijing, China.
| | - Zhenhua Hu
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China. .,University of Chinese Academy of Sciences, Beijing, China.
| | - Jie Tian
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, China. .,CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
33
|
Jia Q, Zhang R, Wang Y, Yan H, Li Z, Feng Y, Ji Y, Yang Z, Yang Y, Pu K, Wang Z. A metabolic acidity-activatable calcium phosphate probe with fluorescence signal amplification capabilities for non-invasive imaging of tumor malignancy. Sci Bull (Beijing) 2022; 67:288-298. [PMID: 36546078 DOI: 10.1016/j.scib.2021.11.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/24/2021] [Accepted: 10/09/2021] [Indexed: 02/07/2023]
Abstract
Dysregulated energy metabolism has recently been recognized as an emerging hallmark of cancer. Tumor cells, which are characterized by abnormal glycolysis, exhibit a lower extracellular pH (6.5-7.0) than normal tissues (7.2-7.4), providing a promising target for tumor-specific imaging and therapy. However, most pH-sensitive materials are unable to distinguish such a subtle pH difference owing to their wide and continuous pH-responsive range. In this study, we developed an efficient strategy for the fabrication of a tumor metabolic acidity-activatable calcium phosphate (CaP) fluorescent probe (termed MACaP9). Unlike traditional CaP-based biomedical nanomaterials, which only work within more acidic organelles, such as endosomes and lysosomes (pH 4.0-6.0), MACaP9 could not only specifically respond to the tumor extra-cellular pH but also rapidly convert pH variations into a distinct fluorescence signal to visually distinguish tumor from normal tissues. The superior sensitivity and specificity of MACaP9 enabled high-contrast visualization of a broad range of tumors, as well as small tumor lesions.
Collapse
Affiliation(s)
- Qian Jia
- Laboratory of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710126, China
| | - Ruili Zhang
- Laboratory of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710126, China
| | - Yongdong Wang
- Laboratory of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710126, China
| | - Haohao Yan
- Laboratory of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710126, China
| | - Zheng Li
- Laboratory of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710126, China
| | - Yanbin Feng
- Laboratory of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710126, China
| | - Yu Ji
- Laboratory of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710126, China
| | - Zuo Yang
- Laboratory of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710126, China
| | - Yang Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China; School of Materials Science and Engineering, Tongji University, Shanghai 201804, China.
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457, Singapore
| | - Zhongliang Wang
- Laboratory of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710126, China; Academy of Advanced Interdisciplinary Research, Xidian University, Xi'an 710071, China.
| |
Collapse
|
34
|
Liu Y, Hu X, Chu M, Guo H, Yu J, He X. A Finite Element Mesh Regrouping Strategy-Based Hybrid Light Transport Model for Enhancing the Efficiency and Accuracy of XLCT. Front Oncol 2022; 11:751139. [PMID: 35111664 PMCID: PMC8801618 DOI: 10.3389/fonc.2021.751139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 12/10/2021] [Indexed: 11/19/2022] Open
Abstract
X-ray luminescence computed tomography (XLCT) is an emerging hybrid imaging modality in optical molecular imaging, which has attracted more attention and has been widely studied. In XLCT, the accuracy and operational efficiency of an optical transmission model play a decisive role in the rapid and accurate reconstruction of light sources. For simulation of optical transmission characteristics in XLCT, considering the limitations of the diffusion equation (DE) and the time and memory costs of simplified spherical harmonic approximation equation (SPN), a hybrid light transport model needs to be built. DE and SPN models are first-order and higher-order approximations of RTE, respectively. Due to the discontinuity of the regions using the DE and SPN models and the inconsistencies of the system matrix dimensions constructed by the two models in the solving process, the system matrix construction of a hybrid light transmission model is a problem to be solved. We provided a new finite element mesh regrouping strategy-based hybrid light transport model for XLCT. Firstly, based on the finite element mesh regrouping strategy, two separate meshes can be obtained. Thus, for DE and SPN models, the system matrixes and source weight matrixes can be calculated separately in two respective mesh systems. Meanwhile, some parallel computation strategy can be combined with finite element mesh regrouping strategy to further save the system matrix calculation time. Then, the two system matrixes with different dimensions were coupled though repeated nodes were processed according to the hybrid boundary conditions, the two meshes were combined into a regrouping mesh, and the hybrid optical transmission model was established. In addition, the proposed method can reduce the computational memory consumption than the previously proposed hybrid light transport model achieving good balance between computational accuracy and efficiency. The forward numerical simulation results showed that the proposed method had better transmission accuracy and achieved a balance between efficiency and accuracy. The reverse simulation results showed that the proposed method had superior location accuracy, morphological recovery capability, and image contrast capability in source reconstruction. In-vivo experiments verified the practicability and effectiveness of the proposed method.
Collapse
Affiliation(s)
- Yanqiu Liu
- Key Laboratory for Radiomics and Intelligent Sense of Xi'an, Northwest University, Xi'an, China.,School of Information Sciences and Technology, Northwest University, Xi'an, China
| | - Xiangong Hu
- Key Laboratory for Radiomics and Intelligent Sense of Xi'an, Northwest University, Xi'an, China.,Network and Data Center, Northwest University, Xi'an, China
| | - Mengxiang Chu
- Key Laboratory for Radiomics and Intelligent Sense of Xi'an, Northwest University, Xi'an, China.,Network and Data Center, Northwest University, Xi'an, China
| | - Hongbo Guo
- Key Laboratory for Radiomics and Intelligent Sense of Xi'an, Northwest University, Xi'an, China.,School of Information Sciences and Technology, Northwest University, Xi'an, China
| | - Jingjing Yu
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, China
| | - Xiaowei He
- Key Laboratory for Radiomics and Intelligent Sense of Xi'an, Northwest University, Xi'an, China.,School of Information Sciences and Technology, Northwest University, Xi'an, China.,Network and Data Center, Northwest University, Xi'an, China
| |
Collapse
|
35
|
Guo H, Yu J, He X, Yi H, Hou Y, He X. Total Variation Constrained Graph Manifold Learning Strategy for Cerenkov Luminescence Tomography. OPTICS EXPRESS 2022; 30:1422-1441. [PMID: 35209303 DOI: 10.1364/oe.448250] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/19/2021] [Indexed: 06/14/2023]
Abstract
Harnessing the power and flexibility of radiolabeled molecules, Cerenkov luminescence tomography (CLT) provides a novel technique for non-invasive visualisation and quantification of viable tumour cells in a living organism. However, owing to the photon scattering effect and the ill-posed inverse problem, CLT still suffers from insufficient spatial resolution and shape recovery in various preclinical applications. In this study, we proposed a total variation constrained graph manifold learning (TV-GML) strategy for achieving accurate spatial location, dual-source resolution, and tumour morphology. TV-GML integrates the isotropic total variation term and dynamic graph Laplacian constraint to make a trade-off between edge preservation and piecewise smooth region reconstruction. Meanwhile, the tetrahedral mesh-Cartesian grid pair method based on the k-nearest neighbour, and the adaptive and composite Barzilai-Borwein method, were proposed to ensure global super linear convergence of the solution of TV-GML. The comparison results of both simulation experiments and in vivo experiments further indicated that TV-GML achieved superior reconstruction performance in terms of location accuracy, dual-source resolution, shape recovery capability, robustness, and in vivo practicability. Significance: We believe that this novel method will be beneficial to the application of CLT for quantitative analysis and morphological observation of various preclinical applications and facilitate the development of the theory of solving inverse problem.
Collapse
|
36
|
Chen X, Wang X, Yan T, Zheng Y, Cao H, Ren F, Cao X, Meng X, Lu X, Liang S, Wu K. Sensitivity improved Cerenkov luminescence endoscopy using optimal system parameters. Quant Imaging Med Surg 2022; 12:425-438. [PMID: 34993091 DOI: 10.21037/qims-21-373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 07/06/2021] [Indexed: 12/24/2022]
Abstract
Background The challenges of clinical translation of optical imaging, including the limited availability of clinically used imaging probes and the restricted penetration depth of light propagation in tissues can be avoided using Cerenkov luminescence endoscopy (CLE). However, the clinical applications of CLE are limited due to the low signal level of Cerenkov luminescence and the large transmission loss caused by the endoscope, which results in a relatively low detection sensitivity of current CLE. The aim of this study was to enhance the detection sensitivity of the CLE system and thus improve the system for clinical application in the detection of gastrointestinal diseases. Methods Four optical fiber endoscopes were customized with different system parameters, including monofilament (MF) diameter of imaging fiber bundles, fiber material, probe coating, etc. The endoscopes were connected to the detector via a specifically designed straight connection device to form the CLE system. The β-2-[18F]-Fluoro-2-deoxy-D-glucose (18F-FDG) solution and the radionuclide of Gallium-68 (68Ga) were used to evaluate the performance of the CLE system. The images of the 18F-FDG solution acquired by the CLE were used to optimize imaging parameters of the system. By using the endoscope with optimized parameters, including the MF diameter of imaging fiber bundles, fiber materials, etc., the resolution and sensitivity of the assembled CLE system were measured by imaging the radionuclide of 68Ga. Results The results of 18F-FDG experiments showed that larger MF diameter led to higher collection efficiency. The fiber material and probe coating with high transmission ratios in the range of 400-900 nm also increased signal collection and transmission efficiency. The results of 68Ga evaluations showed that a minimum radioactive activity of radionuclides as low as 0.03 µCi was detected in vitro within 5 minutes, while that of 0.68 µCi can be detected within 1 minute. In vivo experiments also demonstrated that the developed CLE system achieved a high sensitivity at a submicrocurie level; that is, 0.44 µCi within 5 minutes, and 0.83 µCi within 1 minute. The weaker in vivo sensitivity was due to the attenuation of the signal by the mouse tissue skin and the autofluorescence interference produced by biological tissues. Conclusions By optimizing the structural parameters of fiber endoscope and imaging parameters for data acquisition, we developed a CLE system with a sensitivity at submicrocurie level. These results support the possibility that this technology can clinically detect early tumors within 1 minute.
Collapse
Affiliation(s)
- Xueli Chen
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of China, School of Life Science and Technology, Xidian University, Xi'an, China
| | - Xinyu Wang
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of China, School of Life Science and Technology, Xidian University, Xi'an, China
| | - Tianyu Yan
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of China, School of Life Science and Technology, Xidian University, Xi'an, China
| | - Yun Zheng
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of China, School of Life Science and Technology, Xidian University, Xi'an, China
| | - Honghao Cao
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of China, School of Life Science and Technology, Xidian University, Xi'an, China
| | - Feng Ren
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of China, School of Life Science and Technology, Xidian University, Xi'an, China
| | - Xu Cao
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of China, School of Life Science and Technology, Xidian University, Xi'an, China
| | - Xiangfeng Meng
- Institute of Medical Device Control, National Institutes for Food and Drug Control, Beijing, China
| | - Xiaojian Lu
- Nanjing Chunhui Science and Technology Industrial Co. Ltd., Nanjing, China
| | - Shuhui Liang
- Fourth Military Medical University, State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xi'an, China
| | - Kaichun Wu
- Fourth Military Medical University, State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xi'an, China
| |
Collapse
|
37
|
Zhang Q, O'Brien S, Grimm J. Biomedical Applications of Lanthanide Nanomaterials, for Imaging, Sensing and Therapy. Nanotheranostics 2022; 6:184-194. [PMID: 34976593 PMCID: PMC8671952 DOI: 10.7150/ntno.65530] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/23/2021] [Indexed: 12/22/2022] Open
Abstract
The application of nanomaterials made of rare earth elements within biomedical sciences continues to make significant progress. The rare earth elements, also called the lanthanides, play an essential role in modern life through materials and electronics. As we learn more about their utility, function, and underlying physics, we can contemplate extending their applications to biomedicine. This particularly applies to diagnosis and radiation therapy due to their relatively unique features, such as an ultra-wide Stokes shift in the luminescence, variable magnetism and potentially tunable properties, due to the library of lanthanides available and their multivalent oxidation state chemistry. The ability to prepare nanomaterials of relatively smaller sizes has increased the likelihood of use in vivo. In this review, we summarize the different emerging applications of nanoparticles with rare earth elements as the host or doped elements for biomedical applications in the past three to four years, especially in the area of imaging and disease diagnosis. Researchers have made progress in utilizing surfactants and polymers to modify the surface of lanthanide nanoparticles to enhance biocompatibility. At the same time, specific antibodies and proteins can also be conjugated to these nanoparticles to increase targeting efficiency for specific tumor models. Finally, in the near-infrared II imaging window, lanthanide nanoparticles have been shown to exhibit extraordinary bright emission, which is an exciting development for image-guided surgery.
Collapse
Affiliation(s)
- Qize Zhang
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Chemistry and Biochemistry, The City College of New York, 1024 Marshak, 160 Convent Avenue, New York, New York 10031, USA
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, USA
| | - Stephen O'Brien
- Department of Chemistry and Biochemistry, The City College of New York, 1024 Marshak, 160 Convent Avenue, New York, New York 10031, USA
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, USA
| | - Jan Grimm
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Pharmacology, Weill Cornell Medical College, New York, NY 10021, USA
- Department of Radiology, Weill Cornell Medical College, New York, NY 10021, USA
| |
Collapse
|
38
|
Abstract
Optical imaging is an indispensable tool in clinical diagnostics and fundamental biomedical research. Autofluorescence-free optical imaging, which eliminates real-time optical excitation to minimize background noise, enables clear visualization of biological architecture and physiopathological events deep within living subjects. Molecular probes especially developed for autofluorescence-free optical imaging have been proven to remarkably improve the imaging sensitivity, penetration depth, target specificity, and multiplexing capability. In this Review, we focus on the advancements of autofluorescence-free molecular probes through the lens of particular molecular or photophysical mechanisms that produce long-lasting luminescence after the cessation of light excitation. The versatile design strategies of these molecular probes are discussed along with a broad range of biological applications. Finally, challenges and perspectives are discussed to further advance the next-generation autofluorescence-free molecular probes for in vivo imaging and in vitro biosensors.
Collapse
Affiliation(s)
- Yuyan Jiang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore.,School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| |
Collapse
|
39
|
Pétusseau AF, Bruza P, Pogue BW. Survey of X-ray induced Cherenkov excited fluorophores with potential for human use. JOURNAL OF RADIATION RESEARCH 2021; 62:833-840. [PMID: 34247250 PMCID: PMC8438248 DOI: 10.1093/jrr/rrab055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/13/2021] [Indexed: 06/13/2023]
Abstract
X-ray induced molecular luminescence (XML) is a phenomenon that can be utilized for clinical, deep-tissue functional imaging of tailored molecular probes. In this study, a survey of common or clinically approved fluorophores was carried out for their megavoltage X-ray induced excitation and emission characteristics. We find that direct scintillation effects and Cherenkov generation are two possible ways to cause these molecules' excitation. To distinguish the contributions of each excitation mechanism, we exploited the dependency of Cherenkov radiation yield on X-ray energy. The probes were irradiated by constant dose of 6 MV and 18 MV X-ray radiation, and their relative emission intensities and spectra were quantified for each X-ray energy pair. From the ratios of XML, yield for 6 MV and 18 MV irradiation we found that the Cherenkov radiation dominated as an excitation mechanism, except for aluminum phthalocyanine, which exhibited substantial scintillation. The highest emission yields were detected from fluorescein, proflavin and aluminum phthalocyanine, in that order. XML yield was found to be affected by the emission quantum yield, overlap of the fluorescence excitation and Cherenkov emission spectra, scintillation yield. Considering all these factors and XML emission spectrum respective to tissue optical window, aluminum phthalocyanine offers the best XML yield for deep tissue use, while fluorescein and proflavine are most useful for subcutaneous or superficial use.
Collapse
Affiliation(s)
| | - Petr Bruza
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | - Brian W Pogue
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| |
Collapse
|
40
|
Liu Y, Wang Q, Du B, Wang XZ, Xue Q, Gao WF. Meta-analysis of indocyanine green fluorescence imaging-guided laparoscopic hepatectomy. Photodiagnosis Photodyn Ther 2021; 35:102354. [PMID: 34052422 DOI: 10.1016/j.pdpdt.2021.102354] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/07/2021] [Accepted: 05/21/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND This meta-analysis was conducted to systematically evaluate the short-term efficacy and safety of indocyanine green (ICG) fluorescence imaging-guided laparoscopic hepatectomy. METHODS A systematic search was conducted of the literature on ICG fluorescence imaging-guided laparoscopic hepatectomy in randomized, semi-randomized controlled trials and observational studies. The found publications and conference papers in English were manually searched and the references included in the literature were traced. The retrieval period was up to February 2021. After evaluating the quality of the included studies, the meta-analysis was conducted using the STATA 15.1 software. RESULTS This meta-analysis included 6 studies comprising 417 patients with liver disease. The meta-results showed that compared to the control group, ICG fluorescence imaging-guided laparoscopic hepatectomy can significantly shorten the operative time [weighted mean differences (WMD) = -20.81, 95% CI, -28.02--13.59, p = 0.000], reduce intraoperative bleeding [WMD = -108.16, 95% CI, -127.88--88.44, p = 0.000], shorten hospital stay [WMD= -1.23,95% CI, -1.50--0.95, p = 0.000], and reduce the incidence of postoperative complications [OR = 0.49,95% CI, 0.26-0.91, p = 0.025]. There were no differences in blood transfusion, hilar occlusion time, and surgical margin. CONCLUSION The application of ICG fluorescence imaging technology in laparoscopic hepatectomy can effectively reduce the operative time, blood loss, hospital stay and the incidence of postoperative complications. However, more multicenter large-sample randomized controlled trials are needed to further confirm its advantages.
Collapse
Affiliation(s)
- Yu Liu
- Department of Hepatobiliary Surgery, People's Hospital of Leshan, Sichuan Leshan 614000, China
| | - Qing Wang
- Department of Hepatobiliary Surgery, People's Hospital of Leshan, Sichuan Leshan 614000, China
| | - Bo Du
- Department of Hepatobiliary Surgery, People's Hospital of Leshan, Sichuan Leshan 614000, China
| | - Xu Zhi Wang
- Department of Hepatobiliary Surgery, People's Hospital of Leshan, Sichuan Leshan 614000, China
| | - Qian Xue
- Department of Hepatobiliary Surgery, People's Hospital of Leshan, Sichuan Leshan 614000, China
| | - Wei Feng Gao
- Department of Hepatobiliary Surgery, People's Hospital of Leshan, Sichuan Leshan 614000, China.
| |
Collapse
|
41
|
Yin L, Cao Z, Wang K, Tian J, Yang X, Zhang J. A review of the application of machine learning in molecular imaging. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:825. [PMID: 34268438 PMCID: PMC8246214 DOI: 10.21037/atm-20-5877] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 10/02/2020] [Indexed: 12/12/2022]
Abstract
Molecular imaging (MI) is a science that uses imaging methods to reflect the changes of molecular level in living state and conduct qualitative and quantitative studies on its biological behaviors in imaging. Optical molecular imaging (OMI) and nuclear medical imaging are two key research fields of MI. OMI technology refers to the optical information generated by the imaging target (such as tumors) due to drug intervention and other reasons. By collecting the optical information, researchers can track the motion trajectory of the imaging target at the molecular level. Owing to its high specificity and sensitivity, OMI has been widely used in preclinical research and clinical surgery. Nuclear medical imaging mainly detects ionizing radiation emitted by radioactive substances. It can provide molecular information for early diagnosis, effective treatment and basic research of diseases, which has become one of the frontiers and hot topics in the field of medicine in the world today. Both OMI and nuclear medical imaging technology require a lot of data processing and analysis. In recent years, artificial intelligence technology, especially neural network-based machine learning (ML) technology, has been widely used in MI because of its powerful data processing capability. It provides a feasible strategy to deal with large and complex data for the requirement of MI. In this review, we will focus on the applications of ML methods in OMI and nuclear medical imaging.
Collapse
Affiliation(s)
- Lin Yin
- Key Laboratory of Molecular Imaging of Chinese Academy of Sciences, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Zhen Cao
- Peking University First Hospital, Beijing, China
| | - Kun Wang
- Key Laboratory of Molecular Imaging of Chinese Academy of Sciences, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Jie Tian
- Key Laboratory of Molecular Imaging of Chinese Academy of Sciences, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China.,Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, China
| | - Xing Yang
- Peking University First Hospital, Beijing, China
| | | |
Collapse
|
42
|
Pratt EC, Tamura R, Grimm J. Cerenkov Imaging. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00028-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
43
|
Liu Y, Peng Y, Su S, Fang C, Qin S, Wang X, Xia X, Li B, He P. A meta-analysis of indocyanine green fluorescence image-guided laparoscopic cholecystectomy for benign gallbladder disease. Photodiagnosis Photodyn Ther 2020; 32:101948. [PMID: 32771612 DOI: 10.1016/j.pdpdt.2020.101948] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/27/2020] [Accepted: 07/31/2020] [Indexed: 12/29/2022]
Abstract
BACKGROUND This meta-analysis was conducted to evaluate the effectiveness and safety of indocyanine green fluorescence image-guided laparoscopic cholecystectomy for benign gallbladder disease. METHODS Clinical studies were retrieved from PubMed, Embase, Cochrane Library, Medline, and the Web of Science databases. Study-specific effect sizes and their 95 % confidence intervals (CIs) were combined to calculate the pooled values, using fixed-effects or random-effects models. RESULTS Eleven studies with combined total of 2221 patients were included. Compared to the control group, the indocyanine green fluorescence imaging-guided group experienced shorter operative time (standardized mean difference [SMD] = -0.30; 95 % CI = -0.45 - -0.15; P < 0.001), shorter biliary anatomy identification time (SMD = -2.34; 95 % CI = -2.58 - -2.10; P < 0.001), lower blood loss (SMD = -0.14; 95 % CI = -0.26 - -0.01; P = 0.035), higher success rate of biliary tract imaging (odds ratio [OR] = 2.37; 95 % CI = 1.09-5.12; P = 0.029), lower rate of conversion to open surgery (OR = 0.10; 95 % CI = 0.04 - 0.28; P < 0.001), shorter hospital stay (SMD = -0.23; 95 % CI = -0.39 - -0.06, P = 0.008), and lower biliary tract imaging costs (SMD = -247.88; 95 % CI, -274.31--221.45, P = 0.000). Postoperative complications did not differ between the groups. CONCLUSION This systematic review shows that indocyanine green fluorescence biliary tract imaging is a safe and feasible new way for biliary tract identification in laparoscopic cholecystectomy.
Collapse
Affiliation(s)
- Yu Liu
- Department of Hepatobiliary Surgery, People's Hospital of Leshan, Sichuan, Leshan, 614000, China
| | - Yisheng Peng
- Department of General Surgery(Hepatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Song Su
- Department of General Surgery(Hepatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Cheng Fang
- Department of General Surgery(Hepatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Shu Qin
- Department of General Surgery(Hepatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China; Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, 646000, China
| | - Xuewen Wang
- Department of Hepatobiliary Surgery, Zigong Fourth People's Hospital, Zigong 643000, China
| | - Xianming Xia
- Department of General Surgery(Hepatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China; Academician(Expert)Workstation of Sichuan Province, Luzhou, 646000, China
| | - Bo Li
- Department of General Surgery(Hepatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China; Academician(Expert)Workstation of Sichuan Province, Luzhou, 646000, China.
| | - Pan He
- Department of General Surgery(Hepatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China; Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, 646000, China; Academician(Expert)Workstation of Sichuan Province, Luzhou, 646000, China.
| |
Collapse
|
44
|
Cai M, Zhang Z, Shi X, Yang J, Hu Z, Tian J. Non-Negative Iterative Convex Refinement Approach for Accurate and Robust Reconstruction in Cerenkov Luminescence Tomography. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:3207-3217. [PMID: 32324543 DOI: 10.1109/tmi.2020.2987640] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cerenkov luminescence tomography (CLT) is a promising imaging tool for obtaining three-dimensional (3D) non-invasive visualization of the in vivo distribution of radiopharmaceuticals. However, the reconstruction performance remains unsatisfactory for biomedical applications because the inverse problem of CLT is severely ill-conditioned and intractable. In this study, therefore, a novel non-negative iterative convex refinement (NNICR) approach was utilized to improve the CLT reconstruction accuracy, robustness as well as the shape recovery capability. The spike and slab prior information was employed to capture the sparsity of Cerenkov source, which could be formalized as a non-convex optimization problem. The NNICR approach solved this non-convex problem by refining the solutions of the convex sub-problems. To evaluate the performance of the NNICR approach, numerical simulations and in vivo tumor-bearing mice models experiments were conducted. Conjugated gradient based Tikhonov regularization approach (CG-Tikhonov), fast iterative shrinkage-thresholding algorithm based Lasso approach (Fista-Lasso) and Elastic-Net regularization approach were used for the comparison of the reconstruction performance. The results of these experiments demonstrated that the NNICR approach obtained superior reconstruction performance in terms of location accuracy, shape recovery capability, robustness and in vivo practicability. It was believed that this study would facilitate the preclinical and clinical applications of CLT in the future.
Collapse
|
45
|
Boschi F, Spinelli AE. Nanoparticles for Cerenkov and Radioluminescent Light Enhancement for Imaging and Radiotherapy. NANOMATERIALS 2020; 10:nano10091771. [PMID: 32906838 PMCID: PMC7559269 DOI: 10.3390/nano10091771] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 02/06/2023]
Abstract
Cerenkov luminescence imaging and Cerenkov photodynamic therapy have been developed in recent years to exploit the Cerenkov radiation (CR) generated by radioisotopes, frequently used in Nuclear Medicine, to diagnose and fight cancer lesions. For in vivo detection, the endpoint energy of the radioisotope and, thus, the total number of the emitted Cerenkov photons, represents a very important variable and explains why, for example, 68Ga is better than 18F. However, it was also found that the scintillation process is an important mechanism for light production. Nanotechnology represents the most important field, providing nanosctructures which are able to shift the UV-blue emission into a more suitable wavelength, with reduced absorption, which is useful especially for in vivo imaging and therapy applications. Nanoparticles can be made, loaded or linked to fluorescent dyes to modify the optical properties of CR radiation. They also represent a useful platform for therapeutic agents, such as photosensitizer drugs for the production of reactive oxygen species (ROS). Generally, NPs can be spaced by CR sources; however, for in vivo imaging applications, NPs bound to or incorporating radioisotopes are the most interesting nanocomplexes thanks to their high degree of mutual colocalization and the reduced problem of false uptake detection. Moreover, the distance between the NPs and CR source is crucial for energy conversion. Here, we review the principal NPs proposed in the literature, discussing their properties and the main results obtained by the proponent experimental groups.
Collapse
Affiliation(s)
- Federico Boschi
- Department of Computer Science, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
- Correspondence:
| | - Antonello Enrico Spinelli
- Experimental Imaging Center, San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy;
| |
Collapse
|
46
|
Cao X, Li K, Xu XL, Deneen KMV, Geng GH, Chen XL. Development of tomographic reconstruction for three-dimensional optical imaging: From the inversion of light propagation to artificial intelligence. Artif Intell Med Imaging 2020; 1:78-86. [DOI: 10.35711/aimi.v1.i2.78] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/01/2020] [Accepted: 08/21/2020] [Indexed: 02/06/2023] Open
Abstract
Optical molecular tomography (OMT) is an imaging modality which uses an optical signal, especially near-infrared light, to reconstruct the three-dimensional information of the light source in biological tissue. With the advantages of being low-cost, noninvasive and having high sensitivity, OMT has been applied in preclinical and clinical research. However, due to its serious ill-posedness and ill-condition, the solution of OMT requires heavy data analysis and the reconstruction quality is limited. Recently, the artificial intelligence (commonly known as AI)-based methods have been proposed to provide a different tool to solve the OMT problem. In this paper, we review the progress on OMT algorithms, from conventional methods to AI-based methods, and we also give a prospective towards future developments in this domain.
Collapse
Affiliation(s)
- Xin Cao
- School of Information Science and Technology, Northwest University, Xi’an 710069, Shaanxi Province, China
| | - Kang Li
- School of Information Science and Technology, Northwest University, Xi’an 710069, Shaanxi Province, China
| | - Xue-Li Xu
- School of Information Science and Technology, Northwest University, Xi’an 710069, Shaanxi Province, China
| | - Karen M von Deneen
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, and School of Life Science and Technology, Xidian University, Xi’an 710126, Shaanxi Province, China
| | - Guo-Hua Geng
- School of Information Science and Technology, Northwest University, Xi’an 710069, Shaanxi Province, China
| | - Xue-Li Chen
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, and School of Life Science and Technology, Xidian University, Xi’an 710126, Shaanxi Province, China
| |
Collapse
|
47
|
Wu L, Zou H, Wang H, Zhang S, Liu S, Jiang Y, Chen J, Li Y, Shao M, Zhang R, Li X, Dong J, Yang L, Wang K, Zhu X, Sun X. Update on the development of molecular imaging and nanomedicine in China: Optical imaging. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1660. [PMID: 32725869 DOI: 10.1002/wnan.1660] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 03/11/2020] [Accepted: 05/18/2020] [Indexed: 12/22/2022]
Abstract
Molecular imaging has received increased attention worldwide, including in China, because it offers noninvasive characterization of widely diverse clinically significant pathologies. To achieve these goals, nanomedicine has evolved into a broad interdisciplinary field with flexible designs to accommodate and concentrate imaging and therapeutic payloads into pathological cells through selective binding to disease specific cell membrane biomarkers. This concept of personalized medicine reflects the vision of "magic bullets" proposed by German biochemist Paul Ehrlich over 100 years ago. As happening worldwide, Chinese scientists are contributing to this tsunami of science and technologies through impactful national programs and international research collaborations. This review provides a comprehensive update of Chinese innovations to address intractable unmet medical need in China and worldwide in the optical sciences. This article is categorized under: Diagnostic Tools > in vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Lina Wu
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, China.,TOF-PET/CT/MR Center, The Fourth Hospital of Harbin Medical University, Harbin, China
| | - Hongyan Zou
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, China.,TOF-PET/CT/MR Center, The Fourth Hospital of Harbin Medical University, Harbin, China
| | - Hongbin Wang
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, China.,TOF-PET/CT/MR Center, The Fourth Hospital of Harbin Medical University, Harbin, China
| | | | - Shuang Liu
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, China.,TOF-PET/CT/MR Center, The Fourth Hospital of Harbin Medical University, Harbin, China
| | - Ying Jiang
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, China.,TOF-PET/CT/MR Center, The Fourth Hospital of Harbin Medical University, Harbin, China
| | - Jing Chen
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, China.,TOF-PET/CT/MR Center, The Fourth Hospital of Harbin Medical University, Harbin, China
| | - Yingbo Li
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, China.,TOF-PET/CT/MR Center, The Fourth Hospital of Harbin Medical University, Harbin, China
| | - Mengping Shao
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, China.,TOF-PET/CT/MR Center, The Fourth Hospital of Harbin Medical University, Harbin, China
| | - Ruixin Zhang
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, China.,TOF-PET/CT/MR Center, The Fourth Hospital of Harbin Medical University, Harbin, China
| | - Xiaona Li
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, China.,TOF-PET/CT/MR Center, The Fourth Hospital of Harbin Medical University, Harbin, China
| | - Jing Dong
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, China.,TOF-PET/CT/MR Center, The Fourth Hospital of Harbin Medical University, Harbin, China
| | - Lili Yang
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, China.,TOF-PET/CT/MR Center, The Fourth Hospital of Harbin Medical University, Harbin, China
| | - Kai Wang
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, China.,TOF-PET/CT/MR Center, The Fourth Hospital of Harbin Medical University, Harbin, China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, China
| | - Xilin Sun
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, China.,TOF-PET/CT/MR Center, The Fourth Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
48
|
He P, He K, Zhong F, Su S, Fang C, Qin S, Pen F, Xia X, Li B. Meta-analysis of infrahepatic inferior vena cava clamping combined with the pringle maneuver during hepatectomy. Asian J Surg 2020; 44:18-25. [PMID: 32624397 DOI: 10.1016/j.asjsur.2020.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/21/2020] [Accepted: 04/05/2020] [Indexed: 10/23/2022] Open
Abstract
This meta-analysis was conducted to evaluate the effectiveness and safety of infrahepatic inferior vena cava clamping combined with the Pringle maneuver during. hepatectomies. Clinical studies were retrieved from the PubMed, Embase, Cochrane Library, Medline and Web of Science databases. Study-specific effect sizes and their 95% confidence intervals (CIs) were combined to calculate the pooled value using a fixed-effects or random-effects model.Nine studies with 1008 patients in total were included. The infrahepatic inferior vena cava clamping combined with Pringle maneuver group experienced less total operative blood loss (mean difference [MD] = -327.11; 95% CI: -386.50-267.72; P < 0.00001), less blood loss during transection (MD = -270.19; 95% CI: -344.99-195.38; P < 0.00001), fewer blood transfusions (odds ratio [OR] = 0.36; 95% CI: 0.25-0.53;P < 0.00001) and fewer postoperative complications (OR = 0.70; 95% CI: 0.52-0.95; P = 0.02) than did the control group. Operative time (MD = 8.54; 95% CI: 4.68-12.40; P < 0.0001) was similar in both groups. liver transection time,hospital stay, postoperative liver function and renal function did not differ between groups.Applying infrahepatic inferior vena cava clamping combined with the Pringle maneuver can effectively reduce intraoperative bleeding, blood transfusion rates, and postoperative complications, while adding minimal time to the operation.
Collapse
Affiliation(s)
- Pan He
- Department of Hepatobiliary Surgery, Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China; Department of Nuclear Medicine, Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China; Academician(Expert)Workstation of Sichuan Province, Luzhou, 646000, China; Department of Anesthesiology, Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Kai He
- Department of Hepatobiliary Surgery, Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Furui Zhong
- Department of Hepatobiliary Surgery, Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Song Su
- Department of Hepatobiliary Surgery, Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Cheng Fang
- Department of Hepatobiliary Surgery, Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Shu Qin
- Department of Hepatobiliary Surgery, Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Fangyi Pen
- Department of Hepatobiliary Surgery, Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Xianming Xia
- Department of Hepatobiliary Surgery, Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China; Academician(Expert)Workstation of Sichuan Province, Luzhou, 646000, China.
| | - Bo Li
- Department of Hepatobiliary Surgery, Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China; Academician(Expert)Workstation of Sichuan Province, Luzhou, 646000, China.
| |
Collapse
|
49
|
Liu N, Shi J, Wang Q, Guo J, Hou Z, Su X, Zhang H, Sun X. In Vivo Repeatedly Activated Persistent Luminescence Nanoparticles by Radiopharmaceuticals for Long-Lasting Tumor Optical Imaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2001494. [PMID: 32510845 DOI: 10.1002/smll.202001494] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 04/20/2020] [Accepted: 04/27/2020] [Indexed: 06/11/2023]
Abstract
Persistent luminescence nanoparticles (PLNPs) with rechargeable near-infrared afterglow properties attract much attention for tumor diagnosis in living animals since they can avoid tissue autofluorescence and greatly improve the signal-to-background ratio. Using UV, visible light, or X-ray as excitation sources to power up persistent luminescence (PL) faces the challenges such as limited tissue penetration, inefficient charging capability, or tissue damage caused by irradiation. Here, it is proved that radiopharmaceuticals can efficiently excite ZnGa2 O4 :Cr3+ nanoparticles (ZGCs) for both fluorescence and afterglow luminescence via Cerenkov resonance energy transfer as well as ionizing radiation. 18 F-FDG, a clinically approved tumor-imaging radiopharmaceutical with a short decay half-life around 110 min, is successfully used as the internal light source to in vivo excite intravenously injected ZGCs for tumor luminescence imaging over 3 h. The luminescence with similar decay time can be re-obtained for multiple times upon injection of 18 F-FDG at any time needed with no health concern. It is believed this strategy can not only provide tumor luminescence imaging with high sensitivity, high contrast, and long decay time at desired time, but also guarantee the patients much less radiation exposure, greatly benefiting image-guided surgery in the future.
Collapse
Affiliation(s)
- Nian Liu
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China
- Department of Chemistry, Technical University of Munich, Garching, 85747, Germany
| | - Junpeng Shi
- Key Lab of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Qiang Wang
- Department of Nuclear Medicine, Zhongshan Hospital Xiamen University, Xiamen, 361004, China
| | - Jingru Guo
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China
| | - Zhenyu Hou
- Department of Nuclear Medicine, Zhongshan Hospital Xiamen University, Xiamen, 361004, China
| | - Xinhui Su
- Department of Nuclear Medicine, Zhongshan Hospital Xiamen University, Xiamen, 361004, China
| | - Hongwu Zhang
- Key Lab of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- School of Chemistry and Materials, Ludong University, Yantai, 264025, China
| | - Xiaolian Sun
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China
- Department of Nuclear Medicine, Zhongshan Hospital Xiamen University, Xiamen, 361004, China
| |
Collapse
|
50
|
Cai M, Zhang Z, Shi X, Hu Z, Tian J. NIR-II/NIR-I Fluorescence Molecular Tomography of Heterogeneous Mice Based on Gaussian Weighted Neighborhood Fused Lasso Method. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:2213-2222. [PMID: 31976880 DOI: 10.1109/tmi.2020.2964853] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Fluorescence molecular tomography (FMT), which can visualize the distribution of fluorescence biomarkers, has become a novel three-dimensional noninvasive imaging technique for in vivo studies such as tumor detection and lymph node location. However, it remains a challenging problem to achieve satisfactory reconstruction performance of conventional FMT in the first near-infrared window (NIR-I, 700-900nm) because of the severe scattering of NIR-I light. In this study, a promising FMT method for heterogeneous mice was proposed to improve the reconstruction accuracy using the second near-infrared window (NIR-II, 1000-1700nm), where the light scattering significantly reduced compared with NIR-I. The optical properties of NIR-II were analyzed to construct the forward model for NIR-II FMT. Furthermore, to raise the accuracy of solution of the inverse problem, we proposed a novel Gaussian weighted neighborhood fused Lasso (GWNFL) method. Numerical simulation was performed to demonstrate the outperformance of GWNFL compared with other algorithms. Besides, a novel NIR-II/NIR-I dual-modality FMT system was developed to contrast the in vivo reconstruction performance between NIR-II FMT and NIR-I FMT. To compare the reconstruction performance of NIR-II FMT with traditional NIR-I FMT, numerical simulations and in vivo experiments were conducted. Both the simulation and in vivo results showed that NIR-II FMT outperformed NIR-I FMT in terms of location accuracy and spatial overlap index. It is believed that this study could promote the development and biomedical application of NIR-II FMT in the future.
Collapse
|