1
|
Lemke J, Mengers N, Schmidt L, Schulig L, König S, Rosendahl P, Bartz FM, Garscha U, Bednarski PJ, Link A. Lead Optimization of Positive Allosteric K V7.2/3 Channel Modulators toward Improved Balance of Lipophilicity and Aqueous Solubility. J Med Chem 2025; 68:8377-8399. [PMID: 40198203 DOI: 10.1021/acs.jmedchem.4c03112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
The voltage-gated potassium channel KV7.2/3 is gaining attention for its association with several medical indications. While recently reported, potent compounds aimed to fill the therapeutic gap left by market-withdrawn activators, key physicochemical parameters did not meet the requirements of potential drug candidates. Targeting the membrane-located channel requires subtly balancing lipophilicity, activity, and aqueous solubility. This publication describes the lead optimization of a highly active compound toward optimized physicochemical parameters. Out of 42 newly synthesized compounds, 30 showed activity on KV7.2/3 channels, and 15 had also an increased solubility compared the to hit compound. The integration of a three-dimensional bulky structure and the probable onset of chameleonic behavior, led to a 20-fold solubility increase (S = 21.7 vs 1.1 μM) and only slightly reduced potency (pEC50 = 7.42 vs 7.96) for the lead. Additionally, the target engagement of the compound was theoretically enhanced by a reduction of membrane retention.
Collapse
Affiliation(s)
- Jana Lemke
- Institute of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 17, Greifswald 17489, Germany
| | - Nadine Mengers
- Institute of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 17, Greifswald 17489, Germany
| | - Louis Schmidt
- Institute of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 17, Greifswald 17489, Germany
| | - Lukas Schulig
- Institute of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 17, Greifswald 17489, Germany
| | - Stefanie König
- Institute of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 17, Greifswald 17489, Germany
| | - Pascal Rosendahl
- Institute of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 17, Greifswald 17489, Germany
| | - Frieda-Marie Bartz
- Institute of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 17, Greifswald 17489, Germany
| | - Ulrike Garscha
- Institute of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 17, Greifswald 17489, Germany
| | - Patrick J Bednarski
- Institute of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 17, Greifswald 17489, Germany
| | - Andreas Link
- Institute of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 17, Greifswald 17489, Germany
| |
Collapse
|
2
|
Shi W, Zhao Q, Gao H, Yang Y, Tan Z, Li N, Wang H, Ji Y, Zhou Y. Exploring the bioactive ingredients of three traditional Chinese medicine formulas against age-related hearing loss through network pharmacology and experimental validation. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:3731-3759. [PMID: 39356317 PMCID: PMC11978554 DOI: 10.1007/s00210-024-03464-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/16/2024] [Indexed: 10/03/2024]
Abstract
Traditional Chinese medicine (TCM) formulas, including the Er-Long-Zuo-Ci pill, Tong-Qiao-Er-Long pill, and Er-Long pill, have long been utilized in China for managing age-related hearing loss (ARHL). However, the specific bioactive compounds, pharmacological targets, and underlying mechanisms remain elusive. This study aims to find the shared bioactive ingredients among these three formulas, uncover the molecular pathways they regulate, and identify potential therapeutic targets for ARHL. Furthermore, it seeks to validate the efficacy of these major components through both in vivo and in vitro experiments. Common bioactive ingredients were extracted from the TCMSP database, and their putative target proteins were predicted using the Swiss Target Prediction database. ARHL-related target proteins were collected from GeneCards and OMIM databases. Our approach involved constructing drug-target networks and drug-disease-specific protein-protein interaction networks and conducting clustering, topological property analyses, and functional annotation through GO and KEGG enrichment analysis. Molecular docking analysis was utilized to delineate interaction mechanisms between major bioactive ingredients and key target proteins. Finally, in vivo and in vitro experiments involving ABR recording, immunofluorescent staining, HE staining, and quantitative PCR were conducted to validate the treatment effects of flavonoids on the declining auditory function in DBA/2 J mice. We identified 11 common chemical compounds across the three formulas and their associated 276 putative targets. Additionally, 3350 ARHL-related targets were compiled. As an intersection of the putative targets of the common compounds and ARHL-related proteins, 145 shared targets were determined. Functional enrichment analysis indicated that these compounds may modulate various biological processes, including cell proliferation, apoptosis, inflammatory response, and synaptic connections. Notably, potential targets such as TNFα, MAPK1, SRC, AKT, EGFR, ESR1, and AR were implicated. Flavonoids emerged as major bioactive components against ARHL based on target numbers, with molecular docking demonstrating diverse interaction models between these flavonoids and protein targets. Furthermore, baicalin could mitigate the age-related cochlear damage and hearing loss of DBA/2 J mice through its multi-target and multi-pathway mechanism, involving anti-inflammation, modulation of sex hormone-related pathways, and activation of potassium channels. This study offers an integrated network pharmacology approach, validated by in vivo and in vitro experiments, shedding light on the potential mechanisms, major active components, and therapeutic targets of TCM formulas for treating ARHL.
Collapse
Affiliation(s)
- Wenying Shi
- School of Basic Medical Sciences, Hebei University, Baoding, 071030, China
| | - Qi Zhao
- School of Basic Medical Sciences, Hebei University, Baoding, 071030, China
| | - Hongwei Gao
- School of Basic Medical Sciences, Hebei University, Baoding, 071030, China
| | - Yaxin Yang
- School of Basic Medical Sciences, Hebei University, Baoding, 071030, China
| | - Zhiyong Tan
- School of Basic Medical Sciences, Hebei University, Baoding, 071030, China
| | - Na Li
- School of Basic Medical Sciences, Hebei University, Baoding, 071030, China
| | - Hongjie Wang
- School of Basic Medical Sciences, Hebei University, Baoding, 071030, China
| | - Yonghua Ji
- School of Basic Medical Sciences, Hebei University, Baoding, 071030, China
| | - You Zhou
- School of Basic Medical Sciences, Hebei University, Baoding, 071030, China.
| |
Collapse
|
3
|
Zhang B, Shi X, Liu X, Liu Y, Li X, Wang Q, Huang D, Zhao W, Cui J, Cao Y, Chai X, Wang J, Zhang Y, Wang X, Jia Q. Discovery of E0199: A novel compound targeting both peripheral Na V and K V7 channels to alleviate neuropathic pain. J Pharm Anal 2025; 15:101132. [PMID: 39906690 PMCID: PMC11791318 DOI: 10.1016/j.jpha.2024.101132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 10/07/2024] [Accepted: 10/22/2024] [Indexed: 02/06/2025] Open
Abstract
This research study focuses on addressing the limitations of current neuropathic pain (NP) treatments by developing a novel dual-target modulator, E0199, targeting both NaV1.7, NaV1.8, and NaV1.9 and KV7 channels, a crucial regulator in controlling NP symptoms. The objective of the study was to synthesize a compound capable of modulating these channels to alleviate NP. Through an experimental design involving both in vitro and in vivo methods, E0199 was tested for its efficacy on ion channels and its therapeutic potential in a chronic constriction injury (CCI) mouse model. The results demonstrated that E0199 significantly inhibited NaV1.7, NaV1.8, and NaV1.9 channels with a particularly low half maximal inhibitory concentration (IC50) for NaV1.9 by promoting sodium channel inactivation, and also effectively increased KV7.2/7.3, KV7.2, and KV7.5 channels, excluding KV7.1 by promoting potassium channel activation. This dual action significantly reduced the excitability of dorsal root ganglion neurons and alleviated pain hypersensitivity in mice at low doses, indicating a potent analgesic effect without affecting heart and skeletal muscle ion channels critically. The safety of E0199 was supported by neurobehavioral evaluations. Conclusively, E0199 represents a ground-breaking approach in NP treatment, showcasing the potential of dual-target small-molecule compounds in providing a more effective and safe therapeutic option for NP. This study introduces a promising direction for the future development of NP therapeutics.
Collapse
Affiliation(s)
- Boxuan Zhang
- Department of Pharmaceutical Chemistry, College of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, China
| | - Xiaoxing Shi
- Department of Pharmacology, College of Basic Medical, Hebei Medical University, Shijiazhuang, 050017, China
| | - Xingang Liu
- Department of Pharmaceutical Chemistry, College of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yan Liu
- Department of Pharmaceutical Experimental Teaching Center, College of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, China
| | - Xuedong Li
- Department of Pharmaceutical Chemistry, College of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, China
| | - Qi Wang
- Shijiazhuang Xianyu Digital Biotechnology Co., Ltd., College of Software, Hebei Normal University, Shijiazhuang, 050024, China
| | - Dongyang Huang
- Department of Pharmacology, College of Basic Medical, Hebei Medical University, Shijiazhuang, 050017, China
| | - Weidong Zhao
- Department of Pharmacology, College of Basic Medical, Hebei Medical University, Shijiazhuang, 050017, China
| | - Junru Cui
- The Center for New Drug Safety Evaluation and Research, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yawen Cao
- Department of Pharmacology, College of Basic Medical, Hebei Medical University, Shijiazhuang, 050017, China
| | - Xu Chai
- Department of Pharmacology, College of Basic Medical, Hebei Medical University, Shijiazhuang, 050017, China
| | - Jiahao Wang
- Department of Pharmacology, College of Basic Medical, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yang Zhang
- Department of Pharmaceutical Chemistry, College of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, China
| | - Xiangyu Wang
- Hebei Medical University Postdoctoral Mobile Station of Basic Medical, Hebei Medical University, Shijiazhuang, 050017, China
- Departments of Clinic Pharmacy, College of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, China
| | - Qingzhong Jia
- Department of Pharmaceutical Chemistry, College of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, China
| |
Collapse
|
4
|
Lemke J, Gollasch M, Tsvetkov D, Schulig L. Advances in the design and development of chemical modulators of the voltage-gated potassium channels K V7.4 and K V7.5. Expert Opin Drug Discov 2025; 20:47-62. [PMID: 39627683 DOI: 10.1080/17460441.2024.2438226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/20/2024] [Accepted: 12/02/2024] [Indexed: 12/10/2024]
Abstract
INTRODUCTION Hypertension remains a major public health concern, with significant morbidity and mortality worldwide. Despite the availability of various antihypertensive medications, blood pressure control remains suboptimal in many individuals. During the last decades, KV7.4 and KV7.5, which were already known from the view of neuronal regulation, emerged as possible important players in the regulation of vascular tone and blood pressure. AREAS COVERED This review covers physiological functions and current advancements in the development of KV7.4 and KV7.5 channel modulators. The authors highlight the structural elements likely to be important for the future design of KV7 subtype-selective modulators, underscoring their potential as an innovative hypertension treatment. EXPERT OPINION Extensive research has been focused on targeting neuronal KV7.2 and KV7.3 channels, while KV7.4 and KV7.5 attracted less attention. Many of the developed compounds represent derivatives of flupirtine or retigabine, whereby subtype channel selectivity has only been demonstrated for a handful of individual compounds. Novel substances address additional sites within the binding pocket by incorporating new functional groups. A comprehensive and systematic evaluation of a compound set with significant subtype selectivity should be performed. The discovery of new highly active, less toxic, and selective compounds, therefore, remains the goal of further research in the coming years.
Collapse
Affiliation(s)
- Jana Lemke
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Maik Gollasch
- Department of Internal Medicine and Geriatrics, University Medicine, Greifswald, Germany
| | - Dmitry Tsvetkov
- Department of Internal Medicine and Geriatrics, University Medicine, Greifswald, Germany
| | - Lukas Schulig
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| |
Collapse
|
5
|
Fazio L, Naik VN, Therpurakal RN, Gomez Osorio FM, Rychlik N, Ladewig J, Strüber M, Cerina M, Meuth SG, Budde T. Retigabine, a potassium channel opener, restores thalamocortical neuron functionality in a murine model of autoimmune encephalomyelitis. Brain Behav Immun 2024; 122:202-215. [PMID: 39142423 DOI: 10.1016/j.bbi.2024.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 08/07/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Multiple Sclerosis (MS) is an autoimmune neurodegenerative disease, whose primary hallmark is the occurrence of inflammatory lesions in white and grey matter structures. Increasing evidence in MS patients and respective murine models reported an impaired ionic homeostasis driven by inflammatory-demyelination, thereby profoundly affecting signal propagation. However, the impact of a focal inflammatory lesion on single-cell and network functionality has hitherto not been fully elucidated. OBJECTIVES In this study, we sought to determine the consequences of a localized cortical inflammatory lesion on the excitability and firing pattern of thalamic neurons in the auditory system. Moreover, we tested the neuroprotective effect of Retigabine (RTG), a specific Kv7 channel opener, on disease outcome. METHODS To resemble the human disease, we focally administered pro-inflammatory cytokines, TNF-α and IFN-γ, in the primary auditory cortex (A1) of MOG35-55 immunized mice. Thereafter, we investigated the impact of the induced inflammatory milieu on afferent thalamocortical (TC) neurons, by performing ex vivo recordings. Moreover, we explored the effect of Kv7 channel modulation with RTG on auditory information processing, using in vivo electrophysiological approaches. RESULTS Our results revealed that a cortical inflammatory lesion profoundly affected the excitability and firing pattern of neighboring TC neurons. Noteworthy, RTG restored control-like values and TC tonotopic mapping. CONCLUSION Our results suggest that RTG treatment might robustly mitigate inflammation-induced altered excitability and preserve ascending information processing.
Collapse
Affiliation(s)
- Luca Fazio
- Department of Neurology, University of Düsseldorf, Düsseldorf, Germany.
| | - Venu Narayanan Naik
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany.
| | | | | | - Nicole Rychlik
- Institute of Physiology I, University of Münster, Münster, Germany.
| | - Julia Ladewig
- Department of Translational Brain Research, Central Institute of Mental Health (ZI), University of Heidelberg/Medical Faculty Mannheim, Germany; HITBR Hector Institute for Translational Brain Research gGmbH, Mannheim, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Michael Strüber
- Epilepsy Center Frankfurt Rhine-Main, Center of Neurology and Neurosurgery, Goethe University, Frankfurt, Germany.
| | - Manuela Cerina
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Sven G Meuth
- Department of Neurology, University of Düsseldorf, Düsseldorf, Germany.
| | - Thomas Budde
- Institute of Physiology I, University of Münster, Münster, Germany.
| |
Collapse
|
6
|
Infield D, Schene ME, Galpin JD, Ahern CA. Genetic Code Expansion for Mechanistic Studies in Ion Channels: An (Un)natural Union of Chemistry and Biology. Chem Rev 2024; 124:11523-11543. [PMID: 39207057 PMCID: PMC11503617 DOI: 10.1021/acs.chemrev.4c00306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/12/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Ion channels play central roles in biology and human health by catalyzing the transmembrane flow of electrical charge. These proteins are ideal targets for genetic code expansion (GCE) methods because it is feasible to measure ion channel activity from miniscule amounts of protein and to analyze the resulting data via rigorous, established biophysical methods. In an ideal scenario, the encoding of synthetic, noncanonical amino acids via GCE allows the experimenter to ask questions inaccessible to traditional methods. For this reason, GCE has been successfully applied to a variety of ligand- and voltage-gated channels wherein extensive structural, functional, and pharmacological data exist. Here, we provide a comprehensive summary of GCE as applied to ion channels. We begin with an overview of the methods used to encode noncanonical amino acids in channels and then describe mechanistic studies wherein GCE was used for photochemistry (cross-linking; caged amino acids) and atomic mutagenesis (isosteric manipulation of charge and aromaticity; backbone mutation). Lastly, we cover recent advances in the encoding of fluorescent amino acids for the real-time study of protein conformational dynamics.
Collapse
Affiliation(s)
- Daniel
T. Infield
- Department of Molecular Physiology
and Biophysics, University of Iowa, Iowa City, Iowa 52242, United States
| | - Miranda E. Schene
- Department of Molecular Physiology
and Biophysics, University of Iowa, Iowa City, Iowa 52242, United States
| | - Jason D. Galpin
- Department of Molecular Physiology
and Biophysics, University of Iowa, Iowa City, Iowa 52242, United States
| | - Christopher A. Ahern
- Department of Molecular Physiology
and Biophysics, University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
7
|
Abbott GW, Manville RW. Discovery of a potent, Kv7.3-selective potassium channel opener from a Polynesian traditional botanical anticonvulsant. Commun Chem 2024; 7:233. [PMID: 39390220 PMCID: PMC11467302 DOI: 10.1038/s42004-024-01318-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024] Open
Abstract
Plants remain an important source of biologically active small molecules with high therapeutic potential. The voltage-gated potassium (Kv) channel formed by Kv7.2/3 (KCNQ2/3) heteromers is a major target for anticonvulsant drug development. Here, we screened 1444 extracts primarily from plants collected in California and the US Virgin Islands, for their ability to activate Kv7.2/3 but not inhibit Kv1.3, to select against tannic acid being the active component. We validated the 7 strongest hits, identified Thespesia populnea (miro, milo, portia tree) as the most promising, then discovered its primary active metabolite to be gentisic acid (GA). GA highly potently activated Kv7.2/3 (EC50, 2.8 nM). GA is, uniquely to our knowledge, 100% selective for Kv7.3 versus other Kv7 homomers; it requires S5 residue Kv7.3-W265 for Kv7.2/3 activation, and it ameliorates pentylenetetrazole-induced seizures in mice. Structure-activity studies revealed that the FDA-approved vasoprotective drug calcium dobesilate, a GA analog, is a previously unrecognized Kv7.2/3 channel opener. Also an active aspirin metabolite, GA provides a molecular rationale for the use of T. populnea as an anticonvulsant in Polynesian indigenous medicine and presents novel pharmacological prospects for potent, isoform-selective, therapeutic Kv7 channel activation.
Collapse
Affiliation(s)
- Geoffrey W Abbott
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA.
| | - Rían W Manville
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
| |
Collapse
|
8
|
Stagno C, Mancuso F, Ciaglia T, Ostacolo C, Piperno A, Iraci N, Micale N. In Silico Methods for the Discovery of Kv7.2/7.3 Channels Modulators: A Comprehensive Review. Molecules 2024; 29:3234. [PMID: 38999185 PMCID: PMC11243076 DOI: 10.3390/molecules29133234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024] Open
Abstract
The growing interest in Kv7.2/7.3 agonists originates from the involvement of these channels in several brain hyperexcitability disorders. In particular, Kv7.2/7.3 mutants have been clearly associated with epileptic encephalopathies (DEEs) as well as with a spectrum of focal epilepsy disorders, often associated with developmental plateauing or regression. Nevertheless, there is a lack of available therapeutic options, considering that retigabine, the only molecule used in clinic as a broad-spectrum Kv7 agonist, has been withdrawn from the market in late 2016. This is why several efforts have been made both by both academia and industry in the search for suitable chemotypes acting as Kv7.2/7.3 agonists. In this context, in silico methods have played a major role, since the precise structures of different Kv7 homotetramers have been only recently disclosed. In the present review, the computational methods used for the design of Kv.7.2/7.3 small molecule agonists and the underlying medicinal chemistry are discussed in the context of their biological and structure-function properties.
Collapse
Affiliation(s)
- Claudio Stagno
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (CHIBIOFARAM), University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Francesca Mancuso
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (CHIBIOFARAM), University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Tania Ciaglia
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy
| | - Carmine Ostacolo
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy
| | - Anna Piperno
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (CHIBIOFARAM), University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Nunzio Iraci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (CHIBIOFARAM), University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Nicola Micale
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (CHIBIOFARAM), University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
9
|
Ahmed AI, Al-Nuaimi S, Mustafa A, Zeidan A, Agouni A, Djouhri L. K v7 Channel Activators Flupirtine and ML213 Alleviate Neuropathic Pain Behavior in the Streptozotocin Rat Model of Diabetic Neuropathy. J Pain Res 2024; 17:2267-2278. [PMID: 38947132 PMCID: PMC11214752 DOI: 10.2147/jpr.s467535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/18/2024] [Indexed: 07/02/2024] Open
Abstract
Background & Objective Chronic peripheral neuropathic pain (PNP) is a debilitating condition that is associated with many types of injury/diseases, including diabetes mellitus. Patients with longstanding diabetes develop diabetic PNP (DPNP), which is resilient to currently available drugs. The underlying molecular mechanisms of DPNP are still illusive, but Kv7 channels that have been implicated in the pathogenesis of various types of chronic pain are likely to be involved. Indeed, using the streptozotocin (STZ) rat model of DPNP, we have previously shown that Kv7 activation with their non-selective activator retigabine attenuated neuropathic pain behavior suggesting that these channels are implicated in DPNP pathogenesis. Here, we evaluated, in the same STZ model, whether the more potent and more selective Kv7 channel openers flupirtine and ML213 attenuate STZ-induced pain hypersensitivity. Methods Male Sprague Dawley rats (250-300 g) were used. The STZ model involved a single injection of STZ (60 mg/kg, i.p.). Behavioral testing for mechanical and heat pain sensitivity was performed using a dynamic plantar aesthesiometer and Hargreaves analgesiometer, respectively. Results STZ rats exhibited behavioral signs of mechanical and heat hypersensitivity as indicated by significant decreases in the mean paw withdrawal threshold (PWT) and mean paw withdrawal latency (PWL), respectively, at 35 days post-STZ treatment. Single injections of flupirtine (10 mg/kg, i.p.) and ML213 (5 mg/kg, i.p.) to STZ rats (35-days after STZ treatment) caused significant increases in the mean PWT, but not PWL, indicating attenuation of mechanical, but not heat hypersensitivity. Both flupirtine and ML213 were as effective as the positive control gabapentin (10/kg, i.p.), and their anti-allodynic effects were prevented by the Kv7 channel-specific blocker XE991 (3 mg/kg, i.p.). Conclusion The findings suggest that Kv7 channels are involved in the mechanisms of mechanical but not heat hypersensitivity associated with DPNP, and that their activation may prove to be effective in alleviating DPNP symptoms.
Collapse
Affiliation(s)
- Ashraf Ibrahim Ahmed
- Department of Basic Medical Science, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Salma Al-Nuaimi
- Department of Basic Medical Science, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Ayman Mustafa
- Department of Basic Medical Science, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Asad Zeidan
- Department of Basic Medical Science, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Abdelali Agouni
- Department of Pharmaceutical Sciences, College of Pharmacy, QU health, Qatar University, Doha, Qatar
| | - Laiche Djouhri
- Department of Basic Medical Science, College of Medicine, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
10
|
Sánchez JD, Gómez-Carpintero J, González JF, Menéndez JC. Twenty-first century antiepileptic drugs. An overview of their targets and synthetic approaches. Eur J Med Chem 2024; 272:116476. [PMID: 38759456 DOI: 10.1016/j.ejmech.2024.116476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/19/2024]
Abstract
The therapeutic use of the traditional drugs against epilepsy has been hindered by their toxicity and low selectivity. These limitations have stimulated the design and development of new generations of antiepileptic drugs. This review explores the molecular targets and synthesis of the antiepileptic drugs that have entered the market in the 21st century, with a focus on manufacturer synthesis.
Collapse
Affiliation(s)
- J Domingo Sánchez
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040, Madrid, Spain
| | - Jorge Gómez-Carpintero
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040, Madrid, Spain
| | - Juan F González
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040, Madrid, Spain
| | - J Carlos Menéndez
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040, Madrid, Spain.
| |
Collapse
|
11
|
Liang Q, Chi G, Cirqueira L, Zhi L, Marasco A, Pilati N, Gunthorpe MJ, Alvaro G, Large CH, Sauer DB, Treptow W, Covarrubias M. The binding and mechanism of a positive allosteric modulator of Kv3 channels. Nat Commun 2024; 15:2533. [PMID: 38514618 PMCID: PMC10957983 DOI: 10.1038/s41467-024-46813-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 03/11/2024] [Indexed: 03/23/2024] Open
Abstract
Small-molecule modulators of diverse voltage-gated K+ (Kv) channels may help treat a wide range of neurological disorders. However, developing effective modulators requires understanding of their mechanism of action. We apply an orthogonal approach to elucidate the mechanism of action of an imidazolidinedione derivative (AUT5), a highly selective positive allosteric modulator of Kv3.1 and Kv3.2 channels. AUT5 modulation involves positive cooperativity and preferential stabilization of the open state. The cryo-EM structure of the Kv3.1/AUT5 complex at a resolution of 2.5 Å reveals four equivalent AUT5 binding sites at the extracellular inter-subunit interface between the voltage-sensing and pore domains of the channel's tetrameric assembly. Furthermore, we show that the unique extracellular turret regions of Kv3.1 and Kv3.2 essentially govern the selective positive modulation by AUT5. High-resolution apo and bound structures of Kv3.1 demonstrate how AUT5 binding promotes turret rearrangements and interactions with the voltage-sensing domain to favor the open conformation.
Collapse
Affiliation(s)
- Qiansheng Liang
- Department of Neuroscience,, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, PA, 19107, USA
- Jack and Vicki Farber Institute for Neuroscience and the Jefferson Synaptic Biology Center, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Gamma Chi
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Leonardo Cirqueira
- Laboratorio de Biologia Teorica e Computacional, University of Brasilia, Brasilia, Brazil
| | - Lianteng Zhi
- Department of Neuroscience,, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, PA, 19107, USA
- Jack and Vicki Farber Institute for Neuroscience and the Jefferson Synaptic Biology Center, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Agostino Marasco
- Autifony Srl, Istituto di Ricerca Pediatrica Citta' della Speranza, Via Corso Stati Uniti, 4f, 35127, Padua, Italy
| | - Nadia Pilati
- Autifony Srl, Istituto di Ricerca Pediatrica Citta' della Speranza, Via Corso Stati Uniti, 4f, 35127, Padua, Italy
| | - Martin J Gunthorpe
- Autifony Therapeutics, Ltd, Stevenage Bioscience Catalyst, Gunnels Wood Road, Stevenage, SG1 2FX, UK
| | - Giuseppe Alvaro
- Autifony Srl, Istituto di Ricerca Pediatrica Citta' della Speranza, Via Corso Stati Uniti, 4f, 35127, Padua, Italy
| | - Charles H Large
- Autifony Therapeutics, Ltd, Stevenage Bioscience Catalyst, Gunnels Wood Road, Stevenage, SG1 2FX, UK
| | - David B Sauer
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Werner Treptow
- Laboratorio de Biologia Teorica e Computacional, University of Brasilia, Brasilia, Brazil
| | - Manuel Covarrubias
- Department of Neuroscience,, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, PA, 19107, USA.
- Jack and Vicki Farber Institute for Neuroscience and the Jefferson Synaptic Biology Center, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| |
Collapse
|
12
|
Huang Y, Ma D, Yang Z, Zhao Y, Guo J. Voltage-gated potassium channels KCNQs: Structures, mechanisms, and modulations. Biochem Biophys Res Commun 2023; 689:149218. [PMID: 37976835 DOI: 10.1016/j.bbrc.2023.149218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/19/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023]
Abstract
KCNQ (Kv7) channels are voltage-gated, phosphatidylinositol 4,5-bisphosphate- (PIP2-) modulated potassium channels that play essential roles in regulating the activity of neurons and cardiac myocytes. Hundreds of mutations in KCNQ channels are closely related to various cardiac and neurological disorders, such as long QT syndrome, epilepsy, and deafness, which makes KCNQ channels important drug targets. During the past several years, the application of single-particle cryo-electron microscopy (cryo-EM) technique in the structure determination of KCNQ channels has greatly advanced our understanding of their molecular mechanisms. In this review, we summarize the currently available structures of KCNQ channels, analyze their special voltage gating mechanism, and discuss their activation mechanisms by both the endogenous membrane lipid and the exogenous synthetic ligands. These structural studies of KCNQ channels will guide the development of drugs targeting KCNQ channels.
Collapse
Affiliation(s)
- Yuan Huang
- Department of Cardiology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Demin Ma
- Department of Biophysics and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Zhenni Yang
- Department of Biophysics and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yiwen Zhao
- The Key Laboratory of Neural and Vascular Biology, The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Ministry of Education, Hebei Medical University, Shijiazhuang, 050011, China
| | - Jiangtao Guo
- Department of Biophysics and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|
13
|
Alhassen L, Alhassen W, Wong C, Sun Y, Xia Z, Civelli O, Hoshi N. Dehydroepiandrosterone Sulfate (DHEAS) Is an Endogenous Kv7 Channel Modulator That Reduces Kv7/M-Current Suppression and Inflammatory Pain. J Neurosci 2023; 43:7073-7083. [PMID: 37648450 PMCID: PMC10601364 DOI: 10.1523/jneurosci.2307-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 07/13/2023] [Accepted: 07/20/2023] [Indexed: 09/01/2023] Open
Abstract
Neuronal Kv7 voltage-gated potassium channels generate the M-current and regulate neuronal excitability. Here, we report that dehydroepiandrosterone sulfate (DHEAS) is an endogenous Kv7 channel modulator that attenuates Gq-coupled receptor-induced M-current suppression. DHEAS reduced muscarinic agonist-induced Kv7-current suppression of Kv7.1, Kv7.2, Kv7.4, or Kv7.5 homomeric currents and endogenous M-currents in rat sympathetic ganglion neurons. However, DHEAS per se did not alter the voltage dependence of these Kv7 homomeric channels or the m1 receptor-induced activation of phospholipase C or protein kinase C. DHEAS-treated Kv7.2 homomeric currents became resistant to depletion of phosphatidylinositol 4,5-bisphosphate (PIP2) induced by voltage-activated phosphatase, Ci-VSP or eVSP. Our computational models predicted a novel binding site for DHEAS in the cytoplasmic domain of Kv7 subunits. A single-point mutation of the predicted key histidine into cysteine in the rat Kv7.2 subunit, rKv7.2(H558C), resulted in a loss of effects of DHEAS on muscarinic Kv7 current suppression. Furthermore, in vivo administration of DHEAS in mice of both sexes reduced late phase pain responses in the formalin paw test. However, it did not have effects on early phase responses in the formalin paw test or responses in the hot plate test. Coadministration of a selective Kv7 inhibitor, XE991, and DHEAS eliminated analgesic effects of DHEAS in late phase responses in the formalin paw test. Collectively, these results suggest that DHEAS attenuates M-current suppression by stabilizing PIP2-Kv7 subunit interaction and can mitigate inflammatory pain.SIGNIFICANCE STATEMENT M-current suppression induced by stimulation of Gq-coupled receptors is a form of Kv7 current modulation that can reversibly increase neuronal excitability. This study demonstrates that DHEAS, an endogenous steroid hormone, is a novel Kv7 channel modulator that can attenuate M-current suppression without affecting basal Kv7 channel kinetics. Administration of DHEAS in vivo alleviated inflammatory pain in rodents. These results suggest that the degree of M-current suppression can be dynamically regulated by small molecules. Therefore, this novel form of Kv7 channel regulation holds promising potential as a therapeutic target for sensitized nervous activities, such as inflammatory pain.
Collapse
Affiliation(s)
- Lamees Alhassen
- Department of Pharmaceutical Sciences, University of California-Irvine, Irvine, California 92697
| | - Wedad Alhassen
- Department of Pharmaceutical Sciences, University of California-Irvine, Irvine, California 92697
| | - Cindy Wong
- Department of Pharmaceutical Sciences, University of California-Irvine, Irvine, California 92697
| | - Yuxuan Sun
- Department of Pharmaceutical Sciences, University of California-Irvine, Irvine, California 92697
| | - Zelin Xia
- Department of Pharmaceutical Sciences, University of California-Irvine, Irvine, California 92697
| | - Olivier Civelli
- Department of Pharmaceutical Sciences, University of California-Irvine, Irvine, California 92697
| | - Naoto Hoshi
- Department of Pharmaceutical Sciences, University of California-Irvine, Irvine, California 92697
- Department of Physiology and Biophysics, University of California-Irvine, Irvine, California 92697
| |
Collapse
|
14
|
Villegas-Esguevillas M, Cho S, Vera-Zambrano A, Kwon JW, Barreira B, Telli G, Navarro-Dorado J, Morales-Cano D, de Olaiz B, Moreno L, Greenwood I, Pérez-Vizcaíno F, Kim SJ, Climent B, Cogolludo A. The novel K V7 channel activator URO-K10 exerts enhanced pulmonary vascular effects independent of the KCNE4 regulatory subunit. Biomed Pharmacother 2023; 164:114952. [PMID: 37295249 DOI: 10.1016/j.biopha.2023.114952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/23/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023] Open
Abstract
KV7 channels exert a pivotal role regulating vascular tone in several vascular beds. In this context, KV7 channel agonists represent an attractive strategy for the treatment of pulmonary arterial hypertension (PAH). Therefore, in this study, we have explored the pulmonary vascular effects of the novel KV7 channel agonist URO-K10. Consequently, the vasodilator and electrophysiological effects of URO-K10 were tested in rat and human pulmonary arteries (PA) and PA smooth muscle cells (PASMC) using myography and patch-clamp techniques. Protein expression was also determined by Western blot. Morpholino-induced knockdown of KCNE4 was assessed in isolated PA. PASMC proliferation was measured by BrdU incorporation assay. In summary, our data show that URO-K10 is a more effective relaxant of PA than the classical KV7 activators retigabine and flupirtine. URO-K10 enhanced KV currents in PASMC and its electrophysiological and relaxant effects were inhibited by the KV7 channel blocker XE991. The effects of URO-K10 were confirmed in human PA. URO-K10 also exhibited antiproliferative effects in human PASMC. Unlike retigabine and flupirtine, URO-K10-induced pulmonary vasodilation was not affected by morpholino-induced knockdown of the KCNE4 regulatory subunit. Noteworthy, the pulmonary vasodilator efficacy of this compound was considerably increased under conditions mimicking the ionic remodelling (as an in vitro model of PAH) and in PA from monocrotaline-induced pulmonary hypertensive rats. Taking all together, URO-K10 behaves as a KCNE4-independent KV7 channel activator with much increased pulmonary vascular effects compared to classical KV7 channel activators. Our study identifies a promising new drug in the context of PAH.
Collapse
Affiliation(s)
- Marta Villegas-Esguevillas
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Institute of Health Research Gregorio Marañón (IiSGM), Madrid, Spain; CIBER Enfermedades Respiratorias (Ciberes), Madrid, Spain
| | - Suhan Cho
- Department of Physiology, College of Medicine, Seoul National University, Seoul, South Korea
| | - Alba Vera-Zambrano
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Institute of Health Research Gregorio Marañón (IiSGM), Madrid, Spain; CIBER Enfermedades Respiratorias (Ciberes), Madrid, Spain
| | - Jae Won Kwon
- Institute of Health Research Gregorio Marañón (IiSGM), Madrid, Spain
| | - Bianca Barreira
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Institute of Health Research Gregorio Marañón (IiSGM), Madrid, Spain; CIBER Enfermedades Respiratorias (Ciberes), Madrid, Spain
| | - Göcken Telli
- Department of Pharmacology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Jorge Navarro-Dorado
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Daniel Morales-Cano
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Institute of Health Research Gregorio Marañón (IiSGM), Madrid, Spain; CIBER Enfermedades Respiratorias (Ciberes), Madrid, Spain
| | - Beatriz de Olaiz
- Department of Thoracic Surgery, Hospital Universitario de Getafe, Getafe, Spain
| | - Laura Moreno
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Institute of Health Research Gregorio Marañón (IiSGM), Madrid, Spain; CIBER Enfermedades Respiratorias (Ciberes), Madrid, Spain
| | - Iain Greenwood
- Vascular Biology Research Centre, Institute of Molecular and Clinical Sciences, St George's University of London, United Kingdom
| | - Francisco Pérez-Vizcaíno
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Institute of Health Research Gregorio Marañón (IiSGM), Madrid, Spain; CIBER Enfermedades Respiratorias (Ciberes), Madrid, Spain
| | - Sung Joon Kim
- Department of Physiology, College of Medicine, Seoul National University, Seoul, South Korea
| | - Belén Climent
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain.
| | - Angel Cogolludo
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Institute of Health Research Gregorio Marañón (IiSGM), Madrid, Spain; CIBER Enfermedades Respiratorias (Ciberes), Madrid, Spain
| |
Collapse
|
15
|
Kanyo R, Lamothe SM, Urrutia A, Goodchild SJ, Allison WT, Dean R, Kurata HT. Site and Mechanism of ML252 Inhibition of Kv7 Voltage-Gated Potassium Channels. FUNCTION 2023; 4:zqad021. [PMID: 37342413 PMCID: PMC10278987 DOI: 10.1093/function/zqad021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 06/22/2023] Open
Abstract
Kv7 (KCNQ) voltage-gated potassium channels are critical regulators of neuronal excitability and are candidate targets for development of antiseizure medications. Drug discovery efforts have identified small molecules that modulate channel function and reveal mechanistic insights into Kv7 channel physiological roles. While Kv7 channel activators have therapeutic benefits, inhibitors are useful for understanding channel function and mechanistic validation of candidate drugs. In this study, we reveal the mechanism of a Kv7.2/Kv7.3 inhibitor, ML252. We used docking and electrophysiology to identify critical residues involved in ML252 sensitivity. Most notably, Kv7.2[W236F] or Kv7.3[W265F] mutations strongly attenuate ML252 sensitivity. This tryptophan residue in the pore is also required for sensitivity to certain activators, including retigabine and ML213. We used automated planar patch clamp electrophysiology to assess competitive interactions between ML252 and different Kv7 activator subtypes. A pore-targeted activator (ML213) weakens the inhibitory effects of ML252, whereas a distinct activator subtype (ICA-069673) that targets the voltage sensor does not prevent ML252 inhibition. Using transgenic zebrafish larvae expressing an optical reporter (CaMPARI) to measure neural activity in-vivo, we demonstrate that Kv7 inhibition by ML252 increases neuronal excitability. Consistent with in-vitro data, ML213 suppresses ML252 induced neuronal activity, while the voltage-sensor targeted activator ICA-069673 does not prevent ML252 actions. In summary, this study establishes a binding site and mechanism of action of ML252, classifying this poorly understood drug as a pore-targeted Kv7 channel inhibitor that binds to the same tryptophan residue as commonly used pore-targeted Kv7 activators. ML213 and ML252 likely have overlapping sites of interaction in the pore Kv7.2 and Kv7.3 channels, resulting in competitive interactions. In contrast, the VSD-targeted activator ICA-069673 does not prevent channel inhibition by ML252.
Collapse
Affiliation(s)
- Richard Kanyo
- Dept. of Pharmacology, Alberta Diabetes Institute, University of Alberta, 9-70 Medical Sciences Building, Edmonton, AB T6G 2H7, Canada
| | - Shawn M Lamothe
- Dept. of Pharmacology, Alberta Diabetes Institute, University of Alberta, 9-70 Medical Sciences Building, Edmonton, AB T6G 2H7, Canada
| | - Arturo Urrutia
- Dept. of Cellular and Molecular Biology, Xenon Pharmaceuticals Inc., 3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Samuel J Goodchild
- Dept. of Cellular and Molecular Biology, Xenon Pharmaceuticals Inc., 3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - W Ted Allison
- Dept. of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Richard Dean
- Dept. of Cellular and Molecular Biology, Xenon Pharmaceuticals Inc., 3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | | |
Collapse
|
16
|
Jeong DJ, Kim KW, Suh BC. Dual regulation of Kv7.2/7.3 channels by long-chain n-alcohols. J Gen Physiol 2022; 155:213769. [PMID: 36534082 PMCID: PMC9767652 DOI: 10.1085/jgp.202213191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/31/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
Normal alcohols (n-alcohols) can induce anesthetic effects by acting on neuronal ion channels. Recent studies have revealed the effects of n-alcohols on various ion channels; however, the underlying molecular mechanisms remain unclear. Here, we provide evidence that long-chain n-alcohols have dual effects on Kv7.2/7.3 channels, resulting in channel activation as the net effect. Using heterologous expression systems, we found that n-alcohols could differentially regulate the Kv7.2/7.3 channel depending on their chain length. Treatment with short-chain ethanol and propanol diminished Kv7.2/7.3 currents, whereas treatment with long-chain hexanol and octanol enhanced the currents. However, the long-chain alcohols failed to potentiate Kv7.2 currents pre-activated by retigabine. Instead, they inhibited the currents, similar to short-chain ethanol. The stimulatory effect of the long-chain n-alcohols was also converted into an inhibitory one in the mutant Kv7.2(W236L) channels, while the inhibitory effect of ethanol did not differ between wild-type Kv7.2 and mutant Kv7.2(W236L). The inhibition of currents by n-alcohols was also seen in Kv7.1 channel which does not have the tryptophan (W) residue in S5. These findings suggest that long-chain n-alcohols exhibit dual effects through independent working sites on the Kv7.2 channel. Finally, we confirmed that the hydroxyl group with a negative electrostatic potential surface is essential for the dual actions of n-alcohol. Together, our data suggest that long-chain n-alcohols regulate Kv7.2/7.3 channels by interacting with both stimulatory and inhibitory sites and that their stimulatory action depends on the conserved tryptophan 236 residue in S5 and could be important for triggering their anesthetic effects.
Collapse
Affiliation(s)
- Da-Jeong Jeong
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Kwon-Woo Kim
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Byung-Chang Suh
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea,Correspondence to Byung-Chang Suh:
| |
Collapse
|
17
|
Liu LX, Gu RR, Jin Y, Chen XQ, Li XW, Zheng YM, Gao ZB, Guo YW. Diversity-oriented synthesis of marine polybrominated diphenyl ethers as potential KCNQ potassium channel activators. Bioorg Chem 2022; 126:105909. [DOI: 10.1016/j.bioorg.2022.105909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/03/2022] [Accepted: 05/22/2022] [Indexed: 01/10/2023]
|
18
|
Hernandez CC, Tarfa RA, Miguel I Limcaoco J, Liu R, Mondal P, Hill C, Keith Duncan R, Tzounopoulos T, Stephenson CRJ, O'Meara MJ, Wipf P. Development of an automated screen for Kv7.2 potassium channels and discovery of a new agonist chemotype. Bioorg Med Chem Lett 2022; 71:128841. [PMID: 35671848 PMCID: PMC9469649 DOI: 10.1016/j.bmcl.2022.128841] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/11/2022] [Accepted: 06/01/2022] [Indexed: 01/11/2023]
Abstract
To identify pore domain ligands on Kv7.2 potassium ion channels, we compared wild-type (WT) and W236L mutant Kv7.2 channels in a series of assays with previously validated and novel agonist chemotypes. Positive controls were retigabine, flupirtine, and RL-81; i.e. Kv7.2 channel activators that significantly shift voltage-dependent activation to more negative potentials (ΔV50) at 5 µM. We identified 6 new compounds that exhibited differential enhancing activity between WT and W236L mutant channels. Whole cell patch-clamp electrophysiology studies were conducted to identify Kv7.2. Kv7.2/3, Kv7.4, and Kv7.5 selectivity. Our results validate the SyncroPatch platform and establish new structure activity relationships (SAR). Specifically, in addition to selective Kv7.2, Kv7.2/3, Kv7.4. and Kv7.5 agonists, we identified a novel chemotype, ZK-21, a 4-aminotetrahydroquinoline that is distinct from any of the previously described Kv7 channel modifiers. Using flexible receptor docking, ZK-21 was predicted to be stabilized by W236 and bind perpendicular to retigabine, burying the benzyl carbamate group into a tunnel reaching the core of the pore domain.
Collapse
Affiliation(s)
- Ciria C Hernandez
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, United States
| | - Rahilla A Tarfa
- Department of Otolaryngology, Pittsburgh Hearing Research Center, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Jose Miguel I Limcaoco
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, United States
| | - Ruiting Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Pravat Mondal
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Clare Hill
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, United States; Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - R Keith Duncan
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI 48109, United States
| | - Thanos Tzounopoulos
- Department of Otolaryngology, Pittsburgh Hearing Research Center, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Corey R J Stephenson
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, United States
| | - Matthew J O'Meara
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, United States
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, United States; Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15213, United States; School of Pharmacy, University of Eastern Finland, 70210 Kuopio, Finland
| |
Collapse
|
19
|
Musella S, Carotenuto L, Iraci N, Baroli G, Ciaglia T, Nappi P, Basilicata MG, Salviati E, Barrese V, Vestuto V, Pignataro G, Pepe G, Sommella E, Di Sarno V, Manfra M, Campiglia P, Gomez-Monterrey I, Bertamino A, Taglialatela M, Ostacolo C, Miceli F. Beyond Retigabine: Design, Synthesis, and Pharmacological Characterization of a Potent and Chemically Stable Neuronal Kv7 Channel Activator with Anticonvulsant Activity. J Med Chem 2022; 65:11340-11364. [PMID: 35972998 PMCID: PMC9421656 DOI: 10.1021/acs.jmedchem.2c00911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
![]()
Neuronal Kv7 channels represent important pharmacological
targets
for hyperexcitability disorders including epilepsy. Retigabine is
the prototype Kv7 activator clinically approved for seizure treatment;
however, severe side effects associated with long-term use have led
to its market discontinuation. Building upon the recently described
cryoEM structure of Kv7.2 complexed with retigabine and on previous
structure–activity relationship studies, a small library of
retigabine analogues has been designed, synthesized, and characterized
for their Kv7 opening ability using both fluorescence- and electrophysiology-based
assays. Among all tested compounds, 60 emerged as a potent
and photochemically stable neuronal Kv7 channel activator. Compared
to retigabine, compound 60 displayed a higher brain/plasma
distribution ratio, a longer elimination half-life, and more potent
and effective anticonvulsant effects in an acute seizure model in
mice. Collectively, these data highlight compound 60 as
a promising lead compound for the development of novel Kv7 activators
for the treatment of hyperexcitability diseases.
Collapse
Affiliation(s)
- Simona Musella
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, Fisciano 84084, Salerno, Italy
| | - Lidia Carotenuto
- Department of Neuroscience, Reproductive Sciences and Dentistry, University Federico II of Naples, Via Pansini, 5, Naples 80131, Italy
| | - Nunzio Iraci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (CHIBIOFARAM), University of Messina, Viale Ferdinando Stagno d'Alcontres 31, Messina 98166, Italy
| | - Giulia Baroli
- Department of Neuroscience, Reproductive Sciences and Dentistry, University Federico II of Naples, Via Pansini, 5, Naples 80131, Italy
| | - Tania Ciaglia
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, Fisciano 84084, Salerno, Italy
| | - Piera Nappi
- Department of Neuroscience, Reproductive Sciences and Dentistry, University Federico II of Naples, Via Pansini, 5, Naples 80131, Italy
| | | | - Emanuela Salviati
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, Fisciano 84084, Salerno, Italy
| | - Vincenzo Barrese
- Department of Neuroscience, Reproductive Sciences and Dentistry, University Federico II of Naples, Via Pansini, 5, Naples 80131, Italy
| | - Vincenzo Vestuto
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, Fisciano 84084, Salerno, Italy
| | - Giuseppe Pignataro
- Department of Neuroscience, Reproductive Sciences and Dentistry, University Federico II of Naples, Via Pansini, 5, Naples 80131, Italy
| | - Giacomo Pepe
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, Fisciano 84084, Salerno, Italy
| | - Eduardo Sommella
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, Fisciano 84084, Salerno, Italy
| | - Veronica Di Sarno
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, Fisciano 84084, Salerno, Italy
| | - Michele Manfra
- Department of Science, University of Basilicata, Via dell'Ateneo Lucano 10, Potenza 85100, Italy
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, Fisciano 84084, Salerno, Italy
| | - Isabel Gomez-Monterrey
- Department of Pharmacy, University Federico II of Naples, Via D. Montesano 49, Naples 80131, Italy
| | - Alessia Bertamino
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, Fisciano 84084, Salerno, Italy
| | - Maurizio Taglialatela
- Department of Neuroscience, Reproductive Sciences and Dentistry, University Federico II of Naples, Via Pansini, 5, Naples 80131, Italy
| | - Carmine Ostacolo
- Department of Pharmacy, University Federico II of Naples, Via D. Montesano 49, Naples 80131, Italy
| | - Francesco Miceli
- Department of Neuroscience, Reproductive Sciences and Dentistry, University Federico II of Naples, Via Pansini, 5, Naples 80131, Italy
| |
Collapse
|
20
|
Yang ND, Kanyo R, Zhao L, Li J, Kang PW, Dou AK, White KM, Shi J, Nerbonne JM, Kurata HT, Cui J. Electro-mechanical coupling of KCNQ channels is a target of epilepsy-associated mutations and retigabine. SCIENCE ADVANCES 2022; 8:eabo3625. [PMID: 35857840 PMCID: PMC9299555 DOI: 10.1126/sciadv.abo3625] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
KCNQ2 and KCNQ3 form the M-channels that are important in regulating neuronal excitability. Inherited mutations that alter voltage-dependent gating of M-channels are associated with neonatal epilepsy. In the homolog KCNQ1 channel, two steps of voltage sensor activation lead to two functionally distinct open states, the intermediate-open (IO) and activated-open (AO), which define the gating, physiological, and pharmacological properties of KCNQ1. However, whether the M-channel shares the same mechanism is unclear. Here, we show that KCNQ2 and KCNQ3 feature only a single conductive AO state but with a conserved mechanism for the electro-mechanical (E-M) coupling between voltage sensor activation and pore opening. We identified some epilepsy-linked mutations in KCNQ2 and KCNQ3 that disrupt E-M coupling. The antiepileptic drug retigabine rescued KCNQ3 currents that were abolished by a mutation disrupting E-M coupling, suggesting that modulating the E-M coupling in KCNQ channels presents a potential strategy for antiepileptic therapy.
Collapse
Affiliation(s)
- Nien-Du Yang
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, and Cardiac Bioelectricity and Arrhythmia Center, Washington University, St. Louis, MO 63130, USA
| | - Richard Kanyo
- Department of Pharmacology, Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Lu Zhao
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, and Cardiac Bioelectricity and Arrhythmia Center, Washington University, St. Louis, MO 63130, USA
| | - Jingru Li
- Department of Pharmacology, Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Po Wei Kang
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, and Cardiac Bioelectricity and Arrhythmia Center, Washington University, St. Louis, MO 63130, USA
| | - Alex Kelly Dou
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, and Cardiac Bioelectricity and Arrhythmia Center, Washington University, St. Louis, MO 63130, USA
| | - Kelli McFarland White
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, and Cardiac Bioelectricity and Arrhythmia Center, Washington University, St. Louis, MO 63130, USA
| | - Jingyi Shi
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, and Cardiac Bioelectricity and Arrhythmia Center, Washington University, St. Louis, MO 63130, USA
| | - Jeanne M. Nerbonne
- Departments of Developmental Biology and Internal Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Harley T. Kurata
- Department of Pharmacology, Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Jianmin Cui
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, and Cardiac Bioelectricity and Arrhythmia Center, Washington University, St. Louis, MO 63130, USA
| |
Collapse
|
21
|
Triclosan is a KCNQ3 potassium channel activator. Pflugers Arch 2022; 474:721-732. [PMID: 35459955 DOI: 10.1007/s00424-022-02692-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/24/2022] [Accepted: 04/13/2022] [Indexed: 01/10/2023]
Abstract
KCNQ channels participate in the physiology of several cell types. In neurons of the central nervous system, the primary subunits are KCNQ2, 3, and 5. Activation of these channels silence the neurons, limiting action potential duration and preventing high-frequency action potential burst. Loss-of-function mutations of the KCNQ channels are associated with a wide spectrum of phenotypes characterized by hyperexcitability. Hence, pharmacological activation of these channels is an attractive strategy to treat epilepsy and other hyperexcitability conditions as are the evolution of stroke and traumatic brain injury. In this work we show that triclosan, a bactericide widely used in personal care products, activates the KCNQ3 channels but not the KCNQ2. Triclosan induces a voltage shift in the activation, increases the conductance, and slows the closing of the channel. The response is independent of PIP2. Molecular docking simulations together with site-directed mutagenesis suggest that the putative binding site is in the voltage sensor domain. Our results indicate that triclosan is a new activator for KCNQ channels.
Collapse
|
22
|
Zimmermann MT. Molecular Modeling is an Enabling Approach to Complement and Enhance Channelopathy Research. Compr Physiol 2022; 12:3141-3166. [PMID: 35578963 DOI: 10.1002/cphy.c190047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Hundreds of human membrane proteins form channels that transport necessary ions and compounds, including drugs and metabolites, yet details of their normal function or how function is altered by genetic variants to cause diseases are often unknown. Without this knowledge, researchers are less equipped to develop approaches to diagnose and treat channelopathies. High-resolution computational approaches such as molecular modeling enable researchers to investigate channelopathy protein function, facilitate detailed hypothesis generation, and produce data that is difficult to gather experimentally. Molecular modeling can be tailored to each physiologic context that a protein may act within, some of which may currently be difficult or impossible to assay experimentally. Because many genomic variants are observed in channelopathy proteins from high-throughput sequencing studies, methods with mechanistic value are needed to interpret their effects. The eminent field of structural bioinformatics integrates techniques from multiple disciplines including molecular modeling, computational chemistry, biophysics, and biochemistry, to develop mechanistic hypotheses and enhance the information available for understanding function. Molecular modeling and simulation access 3D and time-dependent information, not currently predictable from sequence. Thus, molecular modeling is valuable for increasing the resolution with which the natural function of protein channels can be investigated, and for interpreting how genomic variants alter them to produce physiologic changes that manifest as channelopathies. © 2022 American Physiological Society. Compr Physiol 12:3141-3166, 2022.
Collapse
Affiliation(s)
- Michael T Zimmermann
- Bioinformatics Research and Development Laboratory, Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Clinical and Translational Sciences Institute, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
23
|
Garofalo B, Bonvin AM, Bosin A, Di Giorgio FP, Ombrato R, Vargiu AV. Molecular Insights Into Binding and Activation of the Human KCNQ2 Channel by Retigabine. Front Mol Biosci 2022; 9:839249. [PMID: 35309507 PMCID: PMC8927717 DOI: 10.3389/fmolb.2022.839249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 02/11/2022] [Indexed: 01/29/2023] Open
Abstract
Voltage-gated potassium channels of the Kv7.x family are involved in a plethora of biological processes across many tissues in animals, and their misfunctioning could lead to several pathologies ranging from diseases caused by neuronal hyperexcitability, such as epilepsy, or traumatic injuries and painful diabetic neuropathy to autoimmune disorders. Among the members of this family, the Kv7.2 channel can form hetero-tetramers together with Kv7.3, forming the so-called M-channels, which are primary regulators of intrinsic electrical properties of neurons and of their responsiveness to synaptic inputs. Here, prompted by the similarity between the M-current and that in Kv7.2 alone, we perform a computational-based characterization of this channel in its different conformational states and in complex with the modulator retigabine. After validation of the structural models of the channel by comparison with experimental data, we investigate the effect of retigabine binding on the two extreme states of Kv7.2 (resting-closed and activated-open). Our results suggest that binding, so far structurally characterized only in the intermediate activated-closed state, is possible also in the other two functional states. Moreover, we show that some effects of this binding, such as increased flexibility of voltage sensing domains and propensity of the pore for open conformations, are virtually independent on the conformational state of the protein. Overall, our results provide new structural and dynamic insights into the functioning and the modulation of Kv7.2 and related channels.
Collapse
Affiliation(s)
| | - Alexandre M.J.J. Bonvin
- Faculty of Science—Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - Andrea Bosin
- Department of Physics, University of Cagliari, Cagliari, Italy
| | | | - Rosella Ombrato
- Angelini Pharma S.p.A., Rome, Italy
- *Correspondence: Rosella Ombrato, ; Attilio V. Vargiu,
| | - Attilio V. Vargiu
- Department of Physics, University of Cagliari, Cagliari, Italy
- *Correspondence: Rosella Ombrato, ; Attilio V. Vargiu,
| |
Collapse
|
24
|
Abstract
Since prehistory, human species have depended on plants for both food and medicine. Even in countries with ready access to modern medicines, alternative treatments are still highly regarded and commonly used. Unlike modern pharmaceuticals, many botanical medicines are in widespread use despite a lack of safety and efficacy data derived from controlled clinical trials and often unclear mechanisms of action. Contributing to this are the complex and undefined composition and likely multifactorial mechanisms of action and multiple targets of many botanical medicines. Here, we review the newfound importance of the ubiquitous KCNQ subfamily of voltage-gated potassium channels as targets for botanical medicines, including basil, capers, cilantro, lavender, fennel, chamomile, ginger, and Camellia, Sophora, and Mallotus species. We discuss the implications for the traditional use of these plants for disorders such as seizures, hypertension, and diabetes and the molecular mechanisms of plant secondary metabolite effects on KCNQ channels.
Collapse
Affiliation(s)
- Kaitlyn E Redford
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California 92697, USA;
| | - Geoffrey W Abbott
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California 92697, USA;
| |
Collapse
|
25
|
Zheng Y, Liu H, Chen Y, Dong S, Wang F, Wang S, Li GL, Shu Y, Xu F. Structural insights into the lipid and ligand regulation of a human neuronal KCNQ channel. Neuron 2021; 110:237-247.e4. [PMID: 34767770 DOI: 10.1016/j.neuron.2021.10.029] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/20/2021] [Accepted: 10/19/2021] [Indexed: 01/10/2023]
Abstract
The KCNQ family (KCNQ1-KCNQ5) of voltage-gated potassium channels plays critical roles in many physiological and pathological processes. It is known that the channel opening of all KCNQs relies on the signaling lipid molecule phosphatidylinositol 4,5-bisphosphate (PIP2). However, the molecular mechanism of PIP2 in modulating the opening of the four neuronal KCNQ channels (KCNQ2-KCNQ5), which are essential for regulating neuronal excitability, remains largely elusive. Here, we report the cryoelectron microscopy (cryo-EM) structures of human KCNQ4 determined in complex with the activator ML213 in the absence or presence of PIP2. Two PIP2 molecules are identified in the open-state structure of KCNQ4, which act as a bridge to couple the voltage-sensing domain (VSD) and pore domain (PD) of KCNQ4 leading to the channel opening. Our findings reveal the binding sites and activation mechanisms of ML213 and PIP2 for neuronal KCNQ channels, providing a framework for therapeutic intervention targeting on these important channels.
Collapse
Affiliation(s)
- You Zheng
- iHuman Institute, ShanghaiTech University, Shanghai, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, China; Center for Excellence in Molecular Cell Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Heng Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China; Center for Excellence in Molecular Cell Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yuxin Chen
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031, China; Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, China
| | - Shaowei Dong
- iHuman Institute, ShanghaiTech University, Shanghai, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, China; Center for Excellence in Molecular Cell Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Fang Wang
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031, China; Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, China
| | - Shengyi Wang
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031, China; Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, China
| | - Geng-Lin Li
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, China
| | - Yilai Shu
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031, China; Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, China.
| | - Fei Xu
- iHuman Institute, ShanghaiTech University, Shanghai, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, China; Center for Excellence in Molecular Cell Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
26
|
PIP 2-dependent coupling of voltage sensor and pore domains in K v7.2 channel. Commun Biol 2021; 4:1189. [PMID: 34650221 PMCID: PMC8517023 DOI: 10.1038/s42003-021-02729-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 09/23/2021] [Indexed: 01/10/2023] Open
Abstract
Phosphatidylinositol-4,5-bisphosphate (PIP2) is a signaling lipid which regulates voltage-gated Kv7/KCNQ potassium channels. Altered PIP2 sensitivity of neuronal Kv7.2 channel is involved in KCNQ2 epileptic encephalopathy. However, the molecular action of PIP2 on Kv7.2 gating remains largely elusive. Here, we use molecular dynamics simulations and electrophysiology to characterize PIP2 binding sites in a human Kv7.2 channel. In the closed state, PIP2 localizes to the periphery of the voltage-sensing domain (VSD). In the open state, PIP2 binds to 4 distinct interfaces formed by the cytoplasmic ends of the VSD, the gate, intracellular helices A and B and their linkers. PIP2 binding induces bilayer-interacting conformation of helices A and B and the correlated motion of the VSD and the pore domain, whereas charge-neutralizing mutations block this coupling and reduce PIP2 sensitivity of Kv7.2 channels by disrupting PIP2 binding. These findings reveal the allosteric role of PIP2 in Kv7.2 channel activation. Pant et al. describe the mechanism by which PIP2 might regulate homomeric Kv7.2 channels. They identify sites important in the binding of the PIP2 lipid to Kv7.2 channels and propose that the PIP2 binding to a specific site results in the coupling between the voltage sensor domain (VSD) and pore domain (PD), which stabilizes the open state of the channel.
Collapse
|
27
|
Larsson JE, Karlsson U, Wu X, Liin SI. Combining endocannabinoids with retigabine for enhanced M-channel effect and improved KV7 subtype selectivity. J Gen Physiol 2021; 152:151732. [PMID: 32365171 PMCID: PMC7398146 DOI: 10.1085/jgp.202012576] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/25/2020] [Indexed: 12/22/2022] Open
Abstract
Retigabine is unique among anticonvulsant drugs by targeting the neuronal M-channel, which is composed of KV7.2/KV7.3 and contributes to the negative neuronal resting membrane potential. Unfortunately, retigabine causes adverse effects, which limits its clinical use. Adverse effects may be reduced by developing M-channel activators with improved KV7 subtype selectivity. The aim of this study was to evaluate the prospect of endocannabinoids as M-channel activators, either in isolation or combined with retigabine. Human KV7 channels were expressed in Xenopus laevis oocytes. The effect of extracellular application of compounds with different properties was studied using two-electrode voltage clamp electrophysiology. Site-directed mutagenesis was used to construct channels with mutated residues to aid in the mechanistic understanding of these effects. We find that arachidonoyl-L-serine (ARA-S), a weak endocannabinoid, potently activates the human M-channel expressed in Xenopus oocytes. Importantly, we show that ARA-S activates the M-channel via a different mechanism and displays a different KV7 subtype selectivity compared with retigabine. We demonstrate that coapplication of ARA-S and retigabine at low concentrations retains the effect on the M-channel while limiting effects on other KV7 subtypes. Our findings suggest that improved KV7 subtype selectivity of M-channel activators can be achieved through strategically combining compounds with different subtype selectivity.
Collapse
Affiliation(s)
- Johan E Larsson
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Urban Karlsson
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Xiongyu Wu
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Sara I Liin
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
28
|
Naffaa MM, Al-Ewaidat OA. Ligand modulation of KCNQ-encoded (K V7) potassium channels in the heart and nervous system. Eur J Pharmacol 2021; 906:174278. [PMID: 34174270 DOI: 10.1016/j.ejphar.2021.174278] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/06/2021] [Accepted: 06/18/2021] [Indexed: 10/21/2022]
Abstract
KCNQ-encoded (KV7) potassium channels are diversely distributed in the human tissues, associated with many physiological processes and pathophysiological conditions. These channels are increasingly used as drug targets for treating diseases. More selective and potent molecules on various types of the KV7 channels are desirable for appropriate therapies. The recent knowledge of the structure and function of human KCNQ-encoded channels makes it more feasible to achieve these goals. This review discusses the role and mechanism of action of many molecules in modulating the function of the KCNQ-encoded potassium channels in the heart and nervous system. The effects of these compounds on KV7 channels help to understand their involvement in many diseases, and to search for more selective and potent ligands to be used in the treatment of many disorders such as various types of cardiac arrhythmias, epilepsy, and pain.
Collapse
Affiliation(s)
- Moawiah M Naffaa
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, 27710, USA; Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA.
| | - Ola A Al-Ewaidat
- Faculty of Medicine, The University of Jordan, Amman, 11942, Jordan
| |
Collapse
|
29
|
Borgini M, Mondal P, Liu R, Wipf P. Chemical modulation of Kv7 potassium channels. RSC Med Chem 2021; 12:483-537. [PMID: 34046626 PMCID: PMC8128042 DOI: 10.1039/d0md00328j] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/01/2020] [Indexed: 01/10/2023] Open
Abstract
The rising interest in Kv7 modulators originates from their ability to evoke fundamental electrophysiological perturbations in a tissue-specific manner. A large number of therapeutic applications are, in part, based on the clinical experience with two broad-spectrum Kv7 agonists, flupirtine and retigabine. Since precise molecular structures of human Kv7 channel subtypes in closed and open states have only very recently started to emerge, computational studies have traditionally been used to analyze binding modes and direct the development of more potent and selective Kv7 modulators with improved safety profiles. Herein, the synthetic and medicinal chemistry of small molecule modulators and the representative biological properties are summarized. Furthermore, new therapeutic applications supported by in vitro and in vivo assay data are suggested.
Collapse
Affiliation(s)
- Matteo Borgini
- Department of Chemistry, University of Pittsburgh Pittsburgh PA 15260 USA
| | - Pravat Mondal
- Department of Chemistry, University of Pittsburgh Pittsburgh PA 15260 USA
| | - Ruiting Liu
- Department of Chemistry, University of Pittsburgh Pittsburgh PA 15260 USA
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh Pittsburgh PA 15260 USA
| |
Collapse
|
30
|
Li X, Zhang Q, Guo P, Fu J, Mei L, Lv D, Wang J, Lai D, Ye S, Yang H, Guo J. Molecular basis for ligand activation of the human KCNQ2 channel. Cell Res 2021; 31:52-61. [PMID: 32884139 PMCID: PMC7852908 DOI: 10.1038/s41422-020-00410-8] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 08/14/2020] [Indexed: 01/10/2023] Open
Abstract
The voltage-gated potassium channel KCNQ2 is responsible for M-current in neurons and is an important drug target to treat epilepsy, pain and several other diseases related to neuronal hyper-excitability. A list of synthetic compounds have been developed to directly activate KCNQ2, yet our knowledge of their activation mechanism is limited, due to lack of high-resolution structures. Here, we report cryo-electron microscopy (cryo-EM) structures of the human KCNQ2 determined in apo state and in complex with two activators, ztz240 or retigabine, which activate KCNQ2 through different mechanisms. The activator-bound structures, along with electrophysiology analysis, reveal that ztz240 binds at the voltage-sensing domain and directly stabilizes it at the activated state, whereas retigabine binds at the pore domain and activates the channel by an allosteric modulation. By accurately defining ligand-binding sites, these KCNQ2 structures not only reveal different ligand recognition and activation mechanisms, but also provide a structural basis for drug optimization and design.
Collapse
Affiliation(s)
- Xiaoxiao Li
- Department of Biophysics, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Qiansen Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Peipei Guo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Jie Fu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Lianghe Mei
- Suzhou Institute of Drug Innovation, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 108 Yuxin Road, Suzhou, Jiangsu, 215123, China
| | - Dashuai Lv
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Jiangqin Wang
- Department of Biophysics, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Dongwu Lai
- Department of Cardiology, Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China
| | - Sheng Ye
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Huaiyu Yang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China.
| | - Jiangtao Guo
- Department of Biophysics, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China.
- Department of Cardiology, Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China.
| |
Collapse
|
31
|
Carbamate group as structural motif in drugs: a review of carbamate derivatives used as therapeutic agents. Arh Hig Rada Toksikol 2020; 71:285-299. [PMID: 33410773 PMCID: PMC7968508 DOI: 10.2478/aiht-2020-71-3466] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 12/01/2020] [Indexed: 12/17/2022] Open
Abstract
Due to their very good chemical and proteolytic stability, ability to penetrate cell membranes, and resemblance to a peptide bond, carbamate derivatives have received much attention in recent years and got an important role in modern drug discovery and medicinal chemistry. Today, carbamates make structural and/or functional part of many drugs and prodrugs approved and marketed for the treatment of various diseases such as cancer, epilepsy, hepatitis C, HIV infection, and Alzheimer's disease. In drugs they can play a role in drug-target interaction or improve the biological activity of parent molecules. In prodrugs they are mainly used to delay first-pass metabolism and enhance the bioavailability and effectiveness of compounds. This brief review takes a look at the properties and use of carbamates in various fields of medicine and provides quick insights into the mechanisms of action for some of them.
Collapse
|
32
|
Wu X, Larsson HP. Insights into Cardiac IKs (KCNQ1/KCNE1) Channels Regulation. Int J Mol Sci 2020; 21:ijms21249440. [PMID: 33322401 PMCID: PMC7763278 DOI: 10.3390/ijms21249440] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/05/2020] [Accepted: 12/09/2020] [Indexed: 12/19/2022] Open
Abstract
The delayed rectifier potassium IKs channel is an important regulator of the duration of the ventricular action potential. Hundreds of mutations in the genes (KCNQ1 and KCNE1) encoding the IKs channel cause long QT syndrome (LQTS). LQTS is a heart disorder that can lead to severe cardiac arrhythmias and sudden cardiac death. A better understanding of the IKs channel (here called the KCNQ1/KCNE1 channel) properties and activities is of great importance to find the causes of LQTS and thus potentially treat LQTS. The KCNQ1/KCNE1 channel belongs to the superfamily of voltage-gated potassium channels. The KCNQ1/KCNE1 channel consists of both the pore-forming subunit KCNQ1 and the modulatory subunit KCNE1. KCNE1 regulates the function of the KCNQ1 channel in several ways. This review aims to describe the current structural and functional knowledge about the cardiac KCNQ1/KCNE1 channel. In addition, we focus on the modulation of the KCNQ1/KCNE1 channel and its potential as a target therapeutic of LQTS.
Collapse
|
33
|
Li T, Wu K, Yue Z, Wang Y, Zhang F, Shen H. Structural Basis for the Modulation of Human KCNQ4 by Small-Molecule Drugs. Mol Cell 2020; 81:25-37.e4. [PMID: 33238160 DOI: 10.1016/j.molcel.2020.10.037] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/28/2020] [Accepted: 10/28/2020] [Indexed: 12/17/2022]
Abstract
Among the five KCNQ channels, also known as the Kv7 voltage-gated potassium (Kv) channels, KCNQ2-KCNQ5 control neuronal excitability. Dysfunctions of KCNQ2-KCNQ5 are associated with neurological disorders such as epilepsy, deafness, and neuropathic pain. Here, we report the cryoelectron microscopy (cryo-EM) structures of human KCNQ4 and its complexes with the opener retigabine or the blocker linopirdine at overall resolutions of 2.5, 3.1, and 3.3 Å, respectively. In all structures, a phosphatidylinositol 4,5-bisphosphate (PIP2) molecule inserts its head group into a cavity within each voltage-sensing domain (VSD), revealing an unobserved binding mode for PIP2. Retigabine nestles in each fenestration, inducing local shifts. Instead of staying within the central pore, linopirdine resides in a cytosolic cavity underneath the inner gate. Electrophysiological analyses of various mutants corroborated the structural observations. Our studies reveal the molecular basis for the modulatory mechanism of neuronal KCNQ channels and provide a framework for structure-facilitated drug discovery targeting these important channels.
Collapse
Affiliation(s)
- Tian Li
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Kun Wu
- Emergency Medicine Clinical Research Center, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Zhenlei Yue
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Yifei Wang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Fan Zhang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Huaizong Shen
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China.
| |
Collapse
|
34
|
Kurata HT. Chemical regulation of Kv7 channels: Diverse scaffolds, sites, and mechanisms of action. J Gen Physiol 2020; 152:151830. [PMID: 32484852 PMCID: PMC7398145 DOI: 10.1085/jgp.202012598] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Kv7 channels are powerfully regulated by a wide variety of physiological and pharmacological signals. Larsson et al. describe the direct modulation of Kv7 channels by endocannabinoids and explore how combinations of Kv7 activators with distinct subtype specificities might lead to effective and selective drug cocktails.
Collapse
Affiliation(s)
- Harley T Kurata
- Department of Pharmacology, Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
35
|
Li J, Maghera J, Lamothe SM, Marco EJ, Kurata HT. Heteromeric Assembly of Truncated Neuronal Kv7 Channels: Implications for Neurologic Disease and Pharmacotherapy. Mol Pharmacol 2020; 98:192-202. [PMID: 32580997 DOI: 10.1124/mol.120.119644] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 06/11/2020] [Indexed: 02/14/2025] Open
Abstract
Neuronal voltage-gated potassium channels (Kv) are critical regulators of electrical activity in the central nervous system. Mutations in the KCNQ (Kv7) ion channel family are linked to epilepsy and neurodevelopmental disorders. These channels underlie the neuronal "M-current" and cluster in the axon initial segment to regulate the firing of action potentials. There is general consensus that KCNQ channel assembly and heteromerization are controlled by C-terminal helices. We identified a pediatric patient with neurodevelopmental disability, including autism traits, inattention and hyperactivity, and ataxia, who carries a de novo frameshift mutation in KCNQ3 (KCNQ3-FS534), leading to truncation of ∼300 amino acids in the C terminus. We investigated possible molecular mechanisms of channel dysfunction, including haplo-insufficiency or a dominant-negative effect caused by the assembly of truncated KCNQ3 and functional KCNQ2 subunits. We also used a recently recognized property of the KCNQ2-specific activator ICA-069673 to identify assembly of heteromeric channels. ICA-069673 exhibits a functional signature that depends on the subunit composition of KCNQ2/3 channels, allowing us to determine whether truncated KCNQ3 subunits can assemble with KCNQ2. Our findings demonstrate that although the KCNQ3-FS534 mutant does not generate functional channels on its own, large C-terminal truncations of KCNQ3 (including the KCNQ3-FS534 mutation) assemble efficiently with KCNQ2 but fail to promote or stabilize KCNQ2/KCNQ3 heteromeric channel expression. Therefore, the frequent assumption that pathologies linked to KCNQ3 truncations arise from haplo-insufficiency should be reconsidered in some cases. Subtype-specific channel activators like ICA-069673 are a reliable tool to identify heteromeric assembly of KCNQ2 and KCNQ3. SIGNIFICANCE STATEMENT: Mutations that truncate the C terminus of neuronal Kv7/KCNQ channels are linked to a spectrum of seizure disorders. One role of the multifunctional KCNQ C terminus is to mediate subtype-specific assembly of heteromeric KCNQ channels. This study describes the use of a subtype-specific Kv7 activator to assess assembly of heteromeric KCNQ2/KCNQ3 (Kv7.2/Kv7.3) channels and demonstrates that large disease-linked and experimentally generated C-terminal truncated KCNQ3 mutants retain the ability to assemble with KCNQ2.
Collapse
Affiliation(s)
- Jingru Li
- Department of Pharmacology, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada (J.L., J.M., S.M.L., H.T.K.) and Department of Neurodevelopmental Medicine, Cortica Healthcare, San Rafael, California (E.J.M.)
| | - Jasmine Maghera
- Department of Pharmacology, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada (J.L., J.M., S.M.L., H.T.K.) and Department of Neurodevelopmental Medicine, Cortica Healthcare, San Rafael, California (E.J.M.)
| | - Shawn M Lamothe
- Department of Pharmacology, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada (J.L., J.M., S.M.L., H.T.K.) and Department of Neurodevelopmental Medicine, Cortica Healthcare, San Rafael, California (E.J.M.)
| | - Elysa J Marco
- Department of Pharmacology, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada (J.L., J.M., S.M.L., H.T.K.) and Department of Neurodevelopmental Medicine, Cortica Healthcare, San Rafael, California (E.J.M.)
| | - Harley T Kurata
- Department of Pharmacology, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada (J.L., J.M., S.M.L., H.T.K.) and Department of Neurodevelopmental Medicine, Cortica Healthcare, San Rafael, California (E.J.M.)
| |
Collapse
|
36
|
Kinarivala N, Morsy A, Patel R, Carmona AV, Sajib MS, Raut S, Mikelis CM, Al-Ahmad A, Trippier PC. An iPSC-Derived Neuron Model of CLN3 Disease Facilitates Small Molecule Phenotypic Screening. ACS Pharmacol Transl Sci 2020; 3:931-947. [PMID: 33073192 DOI: 10.1021/acsptsci.0c00077] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Indexed: 02/06/2023]
Abstract
The neuronal ceroid lipofuscinoses (NCLs) are a family of rare lysosomal storage disorders. The most common form of NCL occurs in children harboring a mutation in the CLN3 gene. This form is lethal with no existing cure or treatment beyond symptomatic relief. The pathophysiology of CLN3 disease is complex and poorly understood, with current in vivo and in vitro models failing to identify pharmacological targets for therapeutic intervention. This study reports the characterization of the first CLN3 patient-specific induced pluripotent stem cell (iPSC)-derived model of the blood-brain barrier and establishes the suitability of an iPSC-derived neuron model of the disease to facilitate compound screening. Upon differentiation, hallmarks of CLN3 disease are apparent, including lipofuscin and subunit c of mitochondrial ATP synthase accumulation, mitochondrial dysfunction, and attenuated Bcl-2 expression. The model led to the identification of small molecules that cleared subunit c accumulation by mTOR-independent modulation of autophagy, conferred protective effects through induction of Bcl-2 and rescued mitochondrial dysfunction.
Collapse
Affiliation(s)
- Nihar Kinarivala
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, United States
| | - Ahmed Morsy
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Ronak Patel
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, United States
| | - Angelica V Carmona
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Md Sanaullah Sajib
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, United States
| | - Snehal Raut
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, United States
| | - Constantinos M Mikelis
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, United States
| | - Abraham Al-Ahmad
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, United States
| | - Paul C Trippier
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States.,Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, United States.,UNMC Center for Drug Discovery, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| |
Collapse
|
37
|
Braun N, Sheikh ZP, Pless SA. The current chemical biology tool box for studying ion channels. J Physiol 2020; 598:4455-4471. [DOI: 10.1113/jp276695] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 07/06/2020] [Indexed: 12/13/2022] Open
Affiliation(s)
- N. Braun
- Department of Drug Design and Pharmacology University of Copenhagen Jagtvej 160 Copenhagen 2100 Denmark
| | - Z. P. Sheikh
- Department of Drug Design and Pharmacology University of Copenhagen Jagtvej 160 Copenhagen 2100 Denmark
| | - S. A. Pless
- Department of Drug Design and Pharmacology University of Copenhagen Jagtvej 160 Copenhagen 2100 Denmark
| |
Collapse
|
38
|
Wilenkin B, Burris KD, Eastwood BJ, Sher E, Williams AC, Priest BT. Development of an Electrophysiological Assay for Kv7 Modulators on IonWorks Barracuda. Assay Drug Dev Technol 2020; 17:310-321. [PMID: 31634018 DOI: 10.1089/adt.2019.942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Relief from chronic pain continues to represent a large unmet need. The voltage-gated potassium channel Kv7.2/7.3, also known as KCNQ2/3, is a key contributor to the control of resting membrane potential and excitability in nociceptive neurons and represents a promising target for potential therapeutics. In this study, we present a medium throughput electrophysiological assay for the identification and characterization of modulators of Kv7.2/7.3 channels, using the IonWorks Barracuda™ automated voltage clamp platform. The assay combines a family of voltage steps used to construct conductance curves with a unique analysis method. Kv7.2/7.3 modulators shift the activation voltage and/or change the maximal conductance of the current, and both parameters have been used to quantify compound mediated effects. Both effects are expected to modulate neuronal excitability in vivo. The analysis method described assigns a single potency value that combines changes in activation voltage and maximal conductance and is expected to predict compound mediated changes in excitability.
Collapse
Affiliation(s)
- Benjamin Wilenkin
- Department of Quantitative Biology, Eli Lilly and Company, Indianapolis, Indiana
| | - Kevin D Burris
- Department of Quantitative Biology, Eli Lilly and Company, Indianapolis, Indiana
| | - Brian J Eastwood
- Department of Statistics, Eli Lilly and Company, Indianapolis, Indiana
| | - Emanuele Sher
- Department of Discovery Pain Group, Eli Lilly and Company, Indianapolis, Indiana
| | - Andrew C Williams
- Department of Medicinal Chemistry, Eli Lilly and Company, Indianapolis, Indiana
| | - Birgit T Priest
- Department of Quantitative Biology, Eli Lilly and Company, Indianapolis, Indiana
| |
Collapse
|
39
|
Kanyo R, Wang CK, Locskai LF, Li J, Allison WT, Kurata HT. Functional and behavioral signatures of Kv7 activator drug subtypes. Epilepsia 2020; 61:1678-1690. [PMID: 32652600 DOI: 10.1111/epi.16592] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 01/10/2023]
Abstract
OBJECTIVE Voltage-gated potassium channels of the KCNQ (Kv7) family are targeted by a variety of activator compounds with therapeutic potential for treatment of epilepsy. Exploration of this drug class has revealed a variety of effective compounds with diverse mechanisms. In this study, we aimed to clarify functional criteria for categorization of Kv7 activator compounds, and to compare the effects of prototypical drugs in a zebrafish larvae model. METHODS In vitro electrophysiological approaches with recombinant ion channels were used to highlight functional properties important for classification of drug mechanisms. We also benchmarked the effects of representative antiepileptic Kv7 activator drugs using behavioral seizure assays of zebrafish larvae and in vivo Ca2+ imaging with the ratiometric Ca2+ sensor CaMPARI. RESULTS Drug effects on channel gating kinetics, and drug sensitivity profiles to diagnostic channel mutations, were used to highlight properties for categorization of Kv7 activator drugs into voltage sensor-targeted or pore-targeted subtypes. Quantifying seizures and ratiometric Ca2+ imaging in freely swimming zebrafish larvae demonstrated that while all Kv7 activators tested lead to suppression of neuronal excitability, pore-targeted activators (like ML213 and retigabine) strongly suppress seizure behavior, whereas ICA-069673 triggers a seizure-like hypermotile behavior. SIGNIFICANCE This study suggests criteria to categorize antiepileptic Kv7 activator drugs based on their underlying mechanism. We also establish the use of in vivo CaMPARI as a tool for screening effects of anticonvulsant drugs on neuronal excitability in zebrafish. In summary, despite a shared ability to suppress neuronal excitability, our findings illustrate how mechanistic differences between Kv7 activator subtypes influence their effects on heteromeric channels and lead to vastly different in vivo outcomes.
Collapse
Affiliation(s)
- Richard Kanyo
- Department of Biological Sciences, Centre for Prions and Protein Folding Disease, University of Alberta, Edmonton, Alberta, Canada
| | - Caroline K Wang
- Department of Pharmacology, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Laszlo F Locskai
- Department of Biological Sciences, Centre for Prions and Protein Folding Disease, University of Alberta, Edmonton, Alberta, Canada
| | - Jingru Li
- Department of Pharmacology, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - W Ted Allison
- Department of Biological Sciences, Centre for Prions and Protein Folding Disease, University of Alberta, Edmonton, Alberta, Canada
| | - Harley T Kurata
- Department of Pharmacology, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
40
|
Redford KE, Abbott GW. The ubiquitous flavonoid quercetin is an atypical KCNQ potassium channel activator. Commun Biol 2020; 3:356. [PMID: 32641720 PMCID: PMC7343821 DOI: 10.1038/s42003-020-1089-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 06/18/2020] [Indexed: 12/11/2022] Open
Abstract
Many commonly consumed plants are used as folk medicines, often with unclear molecular mechanisms. Recent studies uncovered the ubiquitous and influential KCNQ family of voltage-gated potassium (Kv) channels as a therapeutic target for several medicinal plant compounds. Capers - immature flower buds of Capparis spinosa - have been consumed for food and medicinal purposes for millennia. Here, we show that caper extract hyperpolarizes cells expressing KCNQ1 or KCNQ2/3 Kv channels. Capers are the richest known natural source of quercetin, the most consumed dietary flavonoid. Quercetin potentiated KCNQ1/KCNE1, KCNQ2/3 and KCNQ4 currents but, unusually, not KCNQ5. Strikingly, quercetin augmented both activation and inactivation of KCNQ1, via a unique KCNQ activation mechanism involving sites atop the voltage sensor and in the pore. The findings uncover a novel potential molecular basis for therapeutic effects of quercetin-rich foods and a new chemical space for atypical modes of KCNQ channel modulation. Kaitlyn E. Redford and Geoffrey W. Abbott show that quercetin, a flavonoid highly expressed in capers, potentiates KCNQ currents to varying degrees depending on the subunit composition of the channel complex. By combining in silico docking, mutagenesis, and electrophysiology they show that this flavonoid can bind KCNQ channels atop the voltage sensor and within the pore module, highlighting an atypical mode of channel modulation.
Collapse
Affiliation(s)
- Kaitlyn E Redford
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
| | - Geoffrey W Abbott
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA.
| |
Collapse
|
41
|
Mondejar-Parreño G, Perez-Vizcaino F, Cogolludo A. Kv7 Channels in Lung Diseases. Front Physiol 2020; 11:634. [PMID: 32676036 PMCID: PMC7333540 DOI: 10.3389/fphys.2020.00634] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/18/2020] [Indexed: 12/23/2022] Open
Abstract
Lung diseases constitute a global health concern causing disability. According to WHO in 2016, respiratory diseases accounted for 24% of world population mortality, the second cause of death after cardiovascular diseases. The Kv7 channels family is a group of voltage-dependent K+ channels (Kv) encoded by KCNQ genes that are involved in various physiological functions in numerous cell types, especially, cardiac myocytes, smooth muscle cells, neurons, and epithelial cells. Kv7 channel α-subunits are regulated by KCNE1–5 ancillary β-subunits, which modulate several characteristics of Kv7 channels such as biophysical properties, cell-location, channel trafficking, and pharmacological sensitivity. Kv7 channels are mainly expressed in two large groups of lung tissues: pulmonary arteries (PAs) and bronchial tubes. In PA, Kv7 channels are expressed in pulmonary artery smooth muscle cells (PASMCs); while in the airway (trachea, bronchus, and bronchioles), Kv7 channels are expressed in airway smooth muscle cells (ASMCs), airway epithelial cells (AEPs), and vagal airway C-fibers (VACFs). The functional role of Kv7 channels may vary depending on the cell type. Several studies have demonstrated that the impairment of Kv7 channel has a strong impact on pulmonary physiology contributing to the pathophysiology of different respiratory diseases such as cystic fibrosis, asthma, chronic obstructive pulmonary disease, chronic coughing, lung cancer, and pulmonary hypertension. Kv7 channels are now recognized as playing relevant physiological roles in many tissues, which have encouraged the search for Kv7 channel modulators with potential therapeutic use in many diseases including those affecting the lung. Modulation of Kv7 channels has been proposed to provide beneficial effects in a number of lung conditions. Therefore, Kv7 channel openers/enhancers or drugs acting partly through these channels have been proposed as bronchodilators, expectorants, antitussives, chemotherapeutics and pulmonary vasodilators.
Collapse
Affiliation(s)
- Gema Mondejar-Parreño
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain.,Ciber Enfermedades Respiratorias (Ciberes), Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
| | - Francisco Perez-Vizcaino
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain.,Ciber Enfermedades Respiratorias (Ciberes), Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
| | - Angel Cogolludo
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain.,Ciber Enfermedades Respiratorias (Ciberes), Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
| |
Collapse
|
42
|
Abbott GW. KCNQs: Ligand- and Voltage-Gated Potassium Channels. Front Physiol 2020; 11:583. [PMID: 32655402 PMCID: PMC7324551 DOI: 10.3389/fphys.2020.00583] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/11/2020] [Indexed: 12/26/2022] Open
Abstract
Voltage-gated potassium (Kv) channels in the KCNQ (Kv7) family are essential features of a broad range of excitable and non-excitable cell types and are found in organisms ranging from Hydra vulgaris to Homo sapiens. Although they are firmly in the superfamily of S4 domain-bearing voltage-sensing ion channels, KCNQ channels are highly sensitive to a range of endogenous and exogenous small molecules that act directly on the pore, the voltage-sensing domain, or the interface between the two. The focus of this review is regulation of KCNQs by direct binding of neurotransmitters and metabolites from both animals and plants and the role of the latter in the effects of plants consumed for food and as traditional folk medicines. The conceptual question arises: Are KCNQs voltage-gated channels that are also sensitive to ligands or ligand-gated channels that are also sensitive to voltage?
Collapse
Affiliation(s)
- Geoffrey W Abbott
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
43
|
Villalba-Galea CA. Modulation of K V7 Channel Deactivation by PI(4,5)P 2. Front Pharmacol 2020; 11:895. [PMID: 32636742 PMCID: PMC7318307 DOI: 10.3389/fphar.2020.00895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 06/02/2020] [Indexed: 01/16/2023] Open
Abstract
The activity of KV7 channels critically contributes to the regulation of cellular electrical excitability in many cell types. In the central nervous system, the heteromeric KV7.2/KV7.3 channel is thought to be the chief molecular entity giving rise to M-currents. These K+-currents as so called because they are inhibited by the activation of Gq protein-coupled muscarinic receptors. In general, activation of Gq protein-coupled receptors (GqPCRs) decreases the concentration of the phosphoinositide PI(4,5)P2 which is required for KV7 channel activity. It has been recently reported that the deactivation rate of KV7.2/KV7.3 channels decreases as a function of activation. This suggests that the activated/open channel stabilizes as activation persists. This property has been regarded as evidence for the existence of modal behavior in the activity of these channels. In particular, it has been proposed that the heteromeric KV7.2/KV7.3 channel has at least two modes of activity that can be distinguished by both their deactivation kinetics and sensitivity to Retigabine. The current study was aimed at understanding the effect of PI(4,5)P2 depletion on the modal behavior of KV7.2/KV7.3 channels. Here, it was hypothesized that depleting the membrane of P(4,5)P2 would hamper the stabilization of the activated/open channel, resulting in higher rates of deactivation of the heteromeric KV7.2/KV7.3 channel. In addressing this question, it was found that the activity-dependent slowdown of the deactivation was not as prominent when channels were co-expressed with the chimeric phosphoinositide-phosphatase Ci-VS-TPIP or when cells were treated with the phosphoinositide kinase inhibitor Wortmannin. Further, it was observed that either of these approaches to deplete PI(4,5)P2 had a higher impact on the kinetic of deactivation following prolonged activation, while having little or no effect when activation was short-lived. Furthermore, it was observed that the action of either Ci-VS-TPIP or Wortmannin reduced the effect of Retigabine on the kinetics of deactivation, having a higher impact when activation was prolonged. These combined observations led to the conclusion that the deactivation kinetic of KV7.2/KV7.3 channels was sensitive to PI(4,5)P2 depletion in an activation-dependent manner, displaying a stronger effect on deactivation following prolonged activation.
Collapse
Affiliation(s)
- Carlos A. Villalba-Galea
- Department of Physiology and Pharmacology, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA, United States
| |
Collapse
|
44
|
Manville RW, Abbott GW. Isoform-Selective KCNA1 Potassium Channel Openers Built from Glycine. J Pharmacol Exp Ther 2020; 373:391-401. [PMID: 32217768 PMCID: PMC7228494 DOI: 10.1124/jpet.119.264507] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/24/2020] [Indexed: 12/18/2022] Open
Abstract
Loss of function of voltage-gated potassium (Kv) channels is linked to a range of lethal or debilitating channelopathies. New pharmacological approaches are warranted to isoform-selectively activate specific Kv channels. One example is KCNA1 Potassium Voltage-Gated Channel Subfamily A Member 1 (KCNA1) (Kv1.1), an archetypal Shaker-type Kv channel, in which loss-of-function mutations cause episodic ataxia type 1 (EA1). EA1 causes constant myokomia and episodic bouts of ataxia and may associate with epilepsy and other disorders. We previously found that the inhibitory neurotransmitter γ-aminobutyric acid and modified versions of glycine directly activate Kv channels within the KCNQ subfamily, a characteristic favored by strong negative electrostatic surface potential near the neurotransmitter carbonyl group. Here, we report that adjusting the number and positioning of fluorine atoms within the fluorophenyl ring of glycine derivatives produces isoform-selective KCNA1 channel openers that are inactive against KCNQ2/3 channels, or even KCNA2, the closest relative of KCNA1. The findings refine our understanding of the molecular basis for KCNQ versus KCNA1 activation and isoform selectivity and constitute, to our knowledge, the first reported isoform-selective KCNA1 opener. SIGNIFICANCE STATEMENT: Inherited loss-of-function gene sequence variants in KCNA1, which encodes the KCNA1 (Kv1.1) voltage-gated potassium channel, cause episodic ataxia type 1 (EA1), a movement disorder also linked to epilepsy and developmental delay. We have discovered several isoform-specific KCNA1-activating small molecules, addressing a notable gap in the field and providing possible lead compounds and a novel chemical space for the development of potential future therapeutic drugs for EA1.
Collapse
Affiliation(s)
- Rían W Manville
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California
| | - Geoffrey W Abbott
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California
| |
Collapse
|
45
|
Van Theemsche KM, Van de Sande DV, Snyders DJ, Labro AJ. Hydrophobic Drug/Toxin Binding Sites in Voltage-Dependent K + and Na + Channels. Front Pharmacol 2020; 11:735. [PMID: 32499709 PMCID: PMC7243439 DOI: 10.3389/fphar.2020.00735] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/04/2020] [Indexed: 12/26/2022] Open
Abstract
In the Nav channel family the lipophilic drugs/toxins binding sites and the presence of fenestrations in the channel pore wall are well defined and categorized. No such classification exists in the much larger Kv channel family, although certain lipophilic compounds seem to deviate from binding to well-known hydrophilic binding sites. By mapping different compound binding sites onto 3D structures of Kv channels, there appear to be three distinct lipid-exposed binding sites preserved in Kv channels: the front and back side of the pore domain, and S2-S3/S3-S4 clefts. One or a combination of these sites is most likely the orthologous equivalent of neurotoxin site 5 in Nav channels. This review describes the different lipophilic binding sites and location of pore wall fenestrations within the Kv channel family and compares it to the knowledge of Nav channels.
Collapse
Affiliation(s)
- Kenny M Van Theemsche
- Laboratory of Molecular, Cellular, and Network Excitability, University of Antwerp, Antwerp, Belgium
| | - Dieter V Van de Sande
- Laboratory of Molecular, Cellular, and Network Excitability, University of Antwerp, Antwerp, Belgium
| | - Dirk J Snyders
- Laboratory of Molecular, Cellular, and Network Excitability, University of Antwerp, Antwerp, Belgium
| | - Alain J Labro
- Laboratory of Molecular, Cellular, and Network Excitability, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
46
|
Shi S, Li J, Sun F, Chen Y, Pang C, Geng Y, Qi J, Guo S, Wang X, Zhang H, Zhan Y, An H. Molecular Mechanisms and Structural Basis of Retigabine Analogues in Regulating KCNQ2 Channel. J Membr Biol 2020; 253:167-181. [DOI: 10.1007/s00232-020-00113-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/05/2020] [Indexed: 12/22/2022]
|
47
|
Manville RW, Papanikolaou M, Abbott GW. M-Channel Activation Contributes to the Anticonvulsant Action of the Ketone Body β-Hydroxybutyrate. J Pharmacol Exp Ther 2020; 372:148-156. [PMID: 31757819 PMCID: PMC6994816 DOI: 10.1124/jpet.119.263350] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 11/20/2019] [Indexed: 12/26/2022] Open
Abstract
Ketogenic diets are effective therapies for refractory epilepsy, yet the underlying mechanisms are incompletely understood. The anticonvulsant efficacy of ketogenic diets correlates positively to the serum concentration of β-hydroxybutyrate (BHB), the primary ketone body generated by ketosis. Voltage-gated potassium channels generated by KCNQ2-5 subunits, especially KCNQ2/3 heteromers, generate the M-current, a therapeutic target for synthetic anticonvulsants. Here, we report that BHB directly activates KCNQ2/3 channels (EC50 = 0.7 µM), via a highly conserved S5 tryptophan (W265) on KCNQ3. BHB was also acutely effective as an anticonvulsant in the pentylene tetrazole (PTZ) seizure assay in mice. Strikingly, coadministration of γ-amino-β-hydroxybutyric acid, a high-affinity KCNQ2/3 partial agonist that also acts via KCNQ3-W265, similarly reduced the efficacy of BHB in KCNQ2/3 channel activation in vitro and in the PTZ seizure assay in vivo. Our results uncover a novel, unexpected molecular basis for anticonvulsant effects of the major ketone body induced by ketosis. SIGNIFICANCE STATEMENT: Ketogenic diets are used to treat refractory epilepsy but the therapeutic mechanism is not fully understood. Here, we show that clinically relevant concentrations of β-hydroxybutyrate, the primary ketone body generated during ketogenesis, activates KCNQ2/3 potassium channels by binding to a specific site on KCNQ3, an effect known to reduce neuronal excitability. We provide evidence using a mouse chemoconvulsant model that KCNQ2/3 activation contributes to the antiepileptic action of β-hydroxybutyrate.
Collapse
Affiliation(s)
- Rían W Manville
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California
| | - Maria Papanikolaou
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California
| | - Geoffrey W Abbott
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California
| |
Collapse
|
48
|
Ostacolo C, Miceli F, Di Sarno V, Nappi P, Iraci N, Soldovieri MV, Ciaglia T, Ambrosino P, Vestuto V, Lauritano A, Musella S, Pepe G, Basilicata MG, Manfra M, Perinelli DR, Novellino E, Bertamino A, Gomez-Monterrey IM, Campiglia P, Taglialatela M. Synthesis and Pharmacological Characterization of Conformationally Restricted Retigabine Analogues as Novel Neuronal Kv7 Channel Activators. J Med Chem 2019; 63:163-185. [DOI: 10.1021/acs.jmedchem.9b00796] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Carmine Ostacolo
- Department of Pharmacy, University Federico II of Naples, Via D. Montesano 49, 80131 Naples, Italy
| | - Francesco Miceli
- Department of Neuroscience, Reproductive Sciences and Dentistry, University Federico II of Naples, Via Pansini, 5, 80131 Naples, Italy
| | - Veronica Di Sarno
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Piera Nappi
- Department of Neuroscience, Reproductive Sciences and Dentistry, University Federico II of Naples, Via Pansini, 5, 80131 Naples, Italy
| | - Nunzio Iraci
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Maria Virginia Soldovieri
- Department of Medicine and Health Science V. Tiberio, University of Molise, Via F. de Sanctis, 86100 Campobasso, Italy
| | - Tania Ciaglia
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Paolo Ambrosino
- Department of Science and Technology (DST), University of Sannio, Via Port’Arsa 11, 82100 Benevento, Italy
| | - Vincenzo Vestuto
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Anna Lauritano
- Department of Neuroscience, Reproductive Sciences and Dentistry, University Federico II of Naples, Via Pansini, 5, 80131 Naples, Italy
| | - Simona Musella
- European Biomedical Research Center (EBRIS), Via Salvatore de Renzi, 3, 84125 Salerno, Salerno, Italy
| | - Giacomo Pepe
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084 Fisciano, Salerno, Italy
| | | | - Michele Manfra
- Department of Science, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Diego Romano Perinelli
- School of Pharmacy, University of Camerino, Via Gentile III da Varano, 62032 Camerino, Macerata, Italy
| | - Ettore Novellino
- Department of Pharmacy, University Federico II of Naples, Via D. Montesano 49, 80131 Naples, Italy
| | - Alessia Bertamino
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084 Fisciano, Salerno, Italy
| | | | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Maurizio Taglialatela
- Department of Neuroscience, Reproductive Sciences and Dentistry, University Federico II of Naples, Via Pansini, 5, 80131 Naples, Italy
| |
Collapse
|
49
|
Wei AD, Ramirez JM. Presynaptic Mechanisms and KCNQ Potassium Channels Modulate Opioid Depression of Respiratory Drive. Front Physiol 2019; 10:1407. [PMID: 31824331 PMCID: PMC6882777 DOI: 10.3389/fphys.2019.01407] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 10/31/2019] [Indexed: 01/02/2023] Open
Abstract
Opioid-induced respiratory depression (OIRD) is the major cause of death associated with opioid analgesics and drugs of abuse, but the underlying cellular and molecular mechanisms remain poorly understood. We investigated opioid action in vivo in unanesthetized mice and in in vitro medullary slices containing the preBötzinger Complex (preBötC), a locus critical for breathing and inspiratory rhythm generation. Although hypothesized as a primary mechanism, we found that mu-opioid receptor (MOR1)-mediated GIRK activation contributed only modestly to OIRD. Instead, mEPSC recordings from genetically identified Dbx1-derived interneurons, essential for rhythmogenesis, revealed a prevalent presynaptic mode of action for OIRD. Consistent with MOR1-mediated suppression of presynaptic release as a major component of OIRD, Cacna1a KO slices lacking P/Q-type Ca2+ channels enhanced OIRD. Furthermore, OIRD was mimicked and reversed by KCNQ potassium channel activators and blockers, respectively. In vivo whole-body plethysmography combined with systemic delivery of GIRK- and KCNQ-specific potassium channel drugs largely recapitulated these in vitro results, and revealed state-dependent modulation of OIRD. We propose that respiratory failure from OIRD results from a general reduction of synaptic efficacy, leading to a state-dependent collapse of rhythmic network activity.
Collapse
Affiliation(s)
- Aguan D. Wei
- Seattle Children’s Research Institute, Center for Integrative Brain Research, Seattle, WA, United States
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA, United States
| | - Jan-Marino Ramirez
- Seattle Children’s Research Institute, Center for Integrative Brain Research, Seattle, WA, United States
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA, United States
| |
Collapse
|
50
|
Manville RW, Abbott GW. In silico re-engineering of a neurotransmitter to activate KCNQ potassium channels in an isoform-specific manner. Commun Biol 2019; 2:401. [PMID: 31701029 PMCID: PMC6825221 DOI: 10.1038/s42003-019-0648-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 10/10/2019] [Indexed: 12/18/2022] Open
Abstract
Voltage-gated potassium (Kv) channel dysfunction causes a variety of inherited disorders, but developing small molecules that activate Kv channels has proven challenging. We recently discovered that the inhibitory neurotransmitter γ-aminobutyric acid (GABA) directly activates Kv channels KCNQ3 and KCNQ5. Here, finding that inhibitory neurotransmitter glycine does not activate KCNQs, we re-engineered it in silico to introduce predicted KCNQ-opening properties, screened by in silico docking, then validated the hits in vitro. Attaching a fluorophenyl ring to glycine optimized its electrostatic potential, converting it to a low-nM affinity KCNQ channel activator. Repositioning the phenyl ring fluorine and/or adding a methylsulfonyl group increased the efficacy of the re-engineered glycines and switched their target KCNQs. Combining KCNQ2- and KCNQ3-specific glycine derivatives synergistically potentiated KCNQ2/3 activation by exploiting heteromeric channel composition. Thus, in silico optimization and docking, combined with functional screening of only three compounds, facilitated re-engineering of glycine to develop several potent KCNQ activators.
Collapse
Affiliation(s)
- Rían W. Manville
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA USA
| | - Geoffrey W. Abbott
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA USA
| |
Collapse
|