1
|
Narayan AB, Hariom SK, Mukherjee AP, Das D, Nair A, Nelson EJR. 'Nomadic' Hematopoietic Stem Cells Navigate the Embryonic Landscape. Stem Cell Rev Rep 2025; 21:605-628. [PMID: 39786676 DOI: 10.1007/s12015-025-10843-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2025] [Indexed: 01/12/2025]
Abstract
Hematopoietic stem cells are a unique population of tissue-resident multipotent cells with an extensive ability to self-renew and regenerate the entire lineage of differentiated blood cells. Stem cells reside in a highly specialized microenvironment with surrounding supporting cells, forming a complex and dynamic network to preserve and maintain their function. The survival, activation, and quiescence of stem cells are largely influenced by niche-derived signals, with aging niche contributing to a decline in stem cell function. Although the role of niche in regulating hematopoiesis has long been established by transplantation studies, limited methods in observing the process in vivo have eluded a detailed understanding of the various niche components. Danio rerio (zebrafish) has emerged as a solution in the past few decades, enabling discovery of cellular interactions, in addition to chemical and genetic factors regulating HSCs. This review reiterates zebrafish as a suitable model for studies on vertebrate embryonic and adult hematopoiesis, delving into this temporally and spatially dissected multi-step process. The critical role played by epigenetic regulators are discussed, along with contributions of the various physiological processes in sustaining the stem cell population. Stem cell niche transcends mere knowledge acquisition, assuring scope in cell therapy, organoid cultures, aging research, and clinical applications including bone marrow transplantation and cancer. A better understanding of the various niche components could also leverage therapeutic efforts to drive differentiation of HSCs from pluripotent progenitors, sustain stemness in laboratory cultures, and improve stem cell transplantation outcomes.
Collapse
Affiliation(s)
- Anand Badhri Narayan
- Department of Integrative Biology, Gene Therapy Laboratory, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, TN, 632 014, India
| | - Senthil Kumar Hariom
- Department of Integrative Biology, Gene Therapy Laboratory, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, TN, 632 014, India
| | - Ayan Prasad Mukherjee
- Department of Integrative Biology, Gene Therapy Laboratory, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, TN, 632 014, India
| | - Deotima Das
- Department of Integrative Biology, Gene Therapy Laboratory, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, TN, 632 014, India
| | - Aadhira Nair
- Department of Integrative Biology, Gene Therapy Laboratory, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, TN, 632 014, India
| | - Everette Jacob Remington Nelson
- Department of Integrative Biology, Gene Therapy Laboratory, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, TN, 632 014, India.
| |
Collapse
|
2
|
Liu F, Wang M, Gao S, Song G, Liu M, Li Y, Sun P, Lai W, Wang H, Yang YG, Liu F, Yang Y, Wang L. RNA m 5C methylation mediated by Ybx1 ensures hematopoietic stem and progenitor cell expansion. Cell Rep 2025; 44:115324. [PMID: 39954256 DOI: 10.1016/j.celrep.2025.115324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 12/01/2024] [Accepted: 01/28/2025] [Indexed: 02/17/2025] Open
Abstract
Hematopoietic stem and progenitor cells (HSPCs) undergo rapid transcriptional transitions among distinct cell states and functional properties during development, but the underlying molecular mechanism is largely unknown. Here, we characterize the mRNA m5C landscape of developing HSPCs in zebrafish and found that m5C modification is essential for HSPC expansion through maintaining mRNA stability. Deletion of the m5C reader, Y-box binding protein 1 (Ybx1), significantly inhibits the proliferation of HSPCs in zebrafish and mice. Mechanistically, Ybx1 recognizes m5C-modified mRNAs and maintains the stability of cell-cycle-related transcripts, thereby ensuring proper HSPC expansion. This study reveals the critical role of Ybx1-mediated mRNA m5C modification in developmental hematopoiesis and provides new insights and epitransciptomic strategies for optimizing HSPC expansion.
Collapse
Affiliation(s)
- Fan Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Mengke Wang
- Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Suwei Gao
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Gege Song
- Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengyao Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Ying Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Piao Sun
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Weiyi Lai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Hailin Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yun-Gui Yang
- Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Feng Liu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, China; State Key Laboratory of Membrane Biology, Institute of Zoology, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing 100101, China.
| | - Ying Yang
- Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Lu Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China.
| |
Collapse
|
3
|
Chen J, Lu C, Xie W, Cao X, Zhang J, Luo J, Li J. Exposure to Nanoplastics Cause Caudal Vein Plexus Damage and Hematopoietic Dysfunction by Oxidative Stress Response in Zebrafish (Danio rerio). Int J Nanomedicine 2024; 19:13789-13803. [PMID: 39723177 PMCID: PMC11669342 DOI: 10.2147/ijn.s485091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 12/13/2024] [Indexed: 12/28/2024] Open
Abstract
Introduction The proliferation of nanoplastics (NPs) has emerged as a significant environmental concern due to their extensive use, raising concerns about potential adverse effects on human health. However, the exact impacts of NPs on the early development of hematopoietic organs remain poorly understood. Methods This investigation utilized fluorescence microscopy to observe the effects of various NP concentrations on the caudal vein plexus (CVP) development in zebrafish embryos. Subsequent RNA sequencing (RNA-seq) identified genes related to CVP deformities and hematopoietic stem/progenitor cells (HSPCs) in zebrafish embryos exposed to NPs. Additionally, single cell RNA sequencing (scRNA-seq) analysis identified genes associated with the development of CVP and HSPCs. RT-qPCR assessed changes in expression of these genes in zebrafish embryos exposed to different NP concentrations. Results The impact of NPs on zebrafish embryos was investigated, revealing significant reductions in survival and hatching rates and decreases in body length alongside increased heart rates. Exposure to NPs at 8 mg/L severely impaired zebrafish CVP development. RNA-seq revealed that NPs exposure altered the activity of oxidative enzymes, hydrolases, and the extracellular matrix in zebrafish embryos. Treatment with 10 µM NAC effectively rescued the CVP defects induced by NPs. Additionally, scRNA-seq identified genes associated with EC and HSPC development, and subsequent RT-qPCR validation confirmed significant expression changes in these genes. Conclusion The results of this study suggest that NPs induce oxidative stress in vascular ECs and HSPCs, which mediates CVP damage and impairs hematopoiesis in zebrafish embryos.
Collapse
Affiliation(s)
- Juntao Chen
- Key Laboratory of Bioresources and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, People’s Republic of China
- Engineering Research Center of Key Technique for Biotherapy of Guangdong Province, Shantou University Medical College, Shantou, People’s Republic of China
| | - Chunjiao Lu
- Engineering Research Center of Key Technique for Biotherapy of Guangdong Province, Shantou University Medical College, Shantou, People’s Republic of China
| | - Wenjie Xie
- Key Laboratory of Bioresources and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, People’s Republic of China
- Engineering Research Center of Key Technique for Biotherapy of Guangdong Province, Shantou University Medical College, Shantou, People’s Republic of China
| | - Xiaoqian Cao
- Key Laboratory of Bioresources and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, People’s Republic of China
| | - Jiannan Zhang
- Key Laboratory of Bioresources and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, People’s Republic of China
| | - Juanjuan Luo
- Engineering Research Center of Key Technique for Biotherapy of Guangdong Province, Shantou University Medical College, Shantou, People’s Republic of China
| | - Juan Li
- Key Laboratory of Bioresources and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, People’s Republic of China
| |
Collapse
|
4
|
Clements WK, Khoury H. The molecular and cellular hematopoietic stem cell specification niche. Exp Hematol 2024; 136:104280. [PMID: 39009276 PMCID: PMC11338702 DOI: 10.1016/j.exphem.2024.104280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/17/2024]
Abstract
Hematopoietic stem cells (HSCs) are a population of tissue-specific stem cells that reside in the bone marrow of adult mammals, where they self-renew and continuously regenerate the adult hematopoietic lineages over the life of the individual. Prominence as a stem cell model and clinical usefulness have driven interest in understanding the physiologic processes that lead to the specification of HSCs during embryonic development. High-efficiency directed differentiation of HSCs by the instruction of defined progenitor cells using sequentially defined instructive molecules and conditions remains impossible, indicating that comprehensive knowledge of the complete set of precursor intermediate identities and required inductive inputs remains incompletely understood. Recently, interest in the molecular and cellular microenvironment where HSCs are specified from endothelial precursors-the "specification niche"-has increased. Here we review recent progress in understanding these niche spaces across vertebrate phyla, as well as how a better characterization of the origin and molecular phenotypes of the niche cell populations has helped inform and complicate previous understanding of signaling required for HSC emergence and maturation.
Collapse
Affiliation(s)
- Wilson K Clements
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN.
| | - Hanane Khoury
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN
| |
Collapse
|
5
|
Song H, Shin U, Nam U, Lee Y. Exploring hematopoiesis in zebrafish using forward genetic screening. Exp Mol Med 2024; 56:51-58. [PMID: 38172599 PMCID: PMC10834449 DOI: 10.1038/s12276-023-01138-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 01/05/2024] Open
Abstract
Zebrafish have emerged as a powerful animal model for investigating the genetic basis of hematopoiesis. Owing to its close genetic and developmental similarities to humans, combined with its rapid reproduction and extensive genomic resources, zebrafish have become a versatile and efficient platform for genetic studies. In particular, the forward genetic screening approach has enabled the unbiased identification of novel genes and pathways related to blood development, from hematopoietic stem cell formation to terminal differentiation. Recent advances in mutant gene mapping have further expanded the scope of forward genetic screening, facilitating the identification of previously unknown genes and pathways relevant to hematopoiesis. In this review, we provide an overview of the zebrafish forward screening approach for hematopoietic gene discovery and highlight the key genes and pathways identified using this method. This review emphasizes the importance of zebrafish as a model system for understanding the genetic basis of hematopoiesis and its associated disorders.
Collapse
Affiliation(s)
- Hyemin Song
- Department of Biomedical Sciences, UC San Diego School of Medicine, La Jolla, CA, 92093, USA
- Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Unbeom Shin
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Uijeong Nam
- Department of Biomedical Science and Technology, Kyung Hee University, Seoul, 05278, Republic of Korea
| | - Yoonsung Lee
- Clinical Research Institute, Kyung Hee University Hospital at Gangdong, School of Medicine, Kyung Hee University, Seoul, 05278, Republic of Korea.
| |
Collapse
|
6
|
Rajan AM, Rosin NL, Labit E, Biernaskie J, Liao S, Huang P. Single-cell analysis reveals distinct fibroblast plasticity during tenocyte regeneration in zebrafish. SCIENCE ADVANCES 2023; 9:eadi5771. [PMID: 37967180 PMCID: PMC10651129 DOI: 10.1126/sciadv.adi5771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 10/16/2023] [Indexed: 11/17/2023]
Abstract
Despite their importance in tissue maintenance and repair, fibroblast diversity and plasticity remain poorly understood. Using single-cell RNA sequencing, we uncover distinct sclerotome-derived fibroblast populations in zebrafish, including progenitor-like perivascular/interstitial fibroblasts, and specialized fibroblasts such as tenocytes. To determine fibroblast plasticity in vivo, we develop a laser-induced tendon ablation and regeneration model. Lineage tracing reveals that laser-ablated tenocytes are quickly regenerated by preexisting fibroblasts. By combining single-cell clonal analysis and live imaging, we demonstrate that perivascular/interstitial fibroblasts actively migrate to the injury site, where they proliferate and give rise to new tenocytes. By contrast, perivascular fibroblast-derived pericytes or specialized fibroblasts, including tenocytes, exhibit no regenerative plasticity. Active Hedgehog (Hh) signaling is required for the proliferation of activated fibroblasts to ensure efficient tenocyte regeneration. Together, our work highlights the functional diversity of fibroblasts and establishes perivascular/interstitial fibroblasts as tenocyte progenitors that promote tendon regeneration in a Hh signaling-dependent manner.
Collapse
Affiliation(s)
- Arsheen M. Rajan
- Department of Biochemistry and Molecular Biology, Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Nicole L. Rosin
- Faculty of Veterinary Medicine, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Elodie Labit
- Faculty of Veterinary Medicine, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Jeff Biernaskie
- Faculty of Veterinary Medicine, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Shan Liao
- Inflammation Research Network, Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Peng Huang
- Department of Biochemistry and Molecular Biology, Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
7
|
Sahai-Hernandez P, Pouget C, Eyal S, Svoboda O, Chacon J, Grimm L, Gjøen T, Traver D. Dermomyotome-derived endothelial cells migrate to the dorsal aorta to support hematopoietic stem cell emergence. eLife 2023; 12:e58300. [PMID: 37695317 PMCID: PMC10495111 DOI: 10.7554/elife.58300] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 09/03/2023] [Indexed: 09/12/2023] Open
Abstract
Development of the dorsal aorta is a key step in the establishment of the adult blood-forming system, since hematopoietic stem and progenitor cells (HSPCs) arise from ventral aortic endothelium in all vertebrate animals studied. Work in zebrafish has demonstrated that arterial and venous endothelial precursors arise from distinct subsets of lateral plate mesoderm. Here, we profile the transcriptome of the earliest detectable endothelial cells (ECs) during zebrafish embryogenesis to demonstrate that tissue-specific EC programs initiate much earlier than previously appreciated, by the end of gastrulation. Classic studies in the chick embryo showed that paraxial mesoderm generates a subset of somite-derived endothelial cells (SDECs) that incorporate into the dorsal aorta to replace HSPCs as they exit the aorta and enter circulation. We describe a conserved program in the zebrafish, where a rare population of endothelial precursors delaminates from the dermomyotome to incorporate exclusively into the developing dorsal aorta. Although SDECs lack hematopoietic potential, they act as a local niche to support the emergence of HSPCs from neighboring hemogenic endothelium. Thus, at least three subsets of ECs contribute to the developing dorsal aorta: vascular ECs, hemogenic ECs, and SDECs. Taken together, our findings indicate that the distinct spatial origins of endothelial precursors dictate different cellular potentials within the developing dorsal aorta.
Collapse
Affiliation(s)
- Pankaj Sahai-Hernandez
- Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, United States
| | - Claire Pouget
- Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, United States
| | - Shai Eyal
- Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, United States
| | - Ondrej Svoboda
- Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, United States
- Department of Cell Differentiation, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic v.v.i, Prague, Czech Republic
| | - Jose Chacon
- Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, United States
| | - Lin Grimm
- Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, United States
| | - Tor Gjøen
- Department of Pharmacy, University of Oslo, Oslo, Norway
| | - David Traver
- Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, United States
| |
Collapse
|
8
|
Yamada T, Yoshinari Y, Tobo M, Habara O, Nishimura T. Nacα protects the larval fat body from cell death by maintaining cellular proteostasis in Drosophila. Nat Commun 2023; 14:5328. [PMID: 37658058 PMCID: PMC10474126 DOI: 10.1038/s41467-023-41103-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 08/17/2023] [Indexed: 09/03/2023] Open
Abstract
Protein homeostasis (proteostasis) is crucial for the maintenance of cellular homeostasis. Impairment of proteostasis activates proteotoxic and unfolded protein response pathways to resolve cellular stress or induce apoptosis in damaged cells. However, the responses of individual tissues to proteotoxic stress and evoking cell death program have not been extensively explored in vivo. Here, we show that a reduction in Nascent polypeptide-associated complex protein alpha subunit (Nacα) specifically and progressively induces cell death in Drosophila fat body cells. Nacα mutants disrupt both ER integrity and the proteasomal degradation system, resulting in caspase activation through JNK and p53. Although forced activation of the JNK and p53 pathways was insufficient to induce cell death in the fat body, the reduction of Nacα sensitized fat body cells to intrinsic and environmental stresses. Reducing overall protein synthesis by mTor inhibition or Minute mutants alleviated the cell death phenotype in Nacα mutant fat body cells. Our work revealed that Nacα is crucial for protecting the fat body from cell death by maintaining cellular proteostasis, thus demonstrating the coexistence of a unique vulnerability and cell death resistance in the fat body.
Collapse
Affiliation(s)
- Takayuki Yamada
- Laboratory for Growth Control Signaling, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Hyogo, 650-0047, Japan
| | - Yuto Yoshinari
- Laboratory of Metabolic Regulation and Genetics, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, 371-8512, Japan
| | - Masayuki Tobo
- Laboratory of Metabolic Regulation and Genetics, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, 371-8512, Japan
| | - Okiko Habara
- Laboratory for Growth Control Signaling, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Hyogo, 650-0047, Japan
| | - Takashi Nishimura
- Laboratory for Growth Control Signaling, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Hyogo, 650-0047, Japan.
- Laboratory of Metabolic Regulation and Genetics, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, 371-8512, Japan.
| |
Collapse
|
9
|
Eisa-Beygi S, Hu MM, Kumar SN, Jeffery BE, Collery RF, Vo NJ, Lamichanne BS, Yost HJ, Veldman MB, Link BA. Mesenchymal Stromal Cells Facilitate Tip Cell Fusion Downstream of BMP-Mediated Venous Angiogenesis-Brief Report. Arterioscler Thromb Vasc Biol 2023; 43:e231-e237. [PMID: 37128914 PMCID: PMC10330147 DOI: 10.1161/atvbaha.122.318622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 04/05/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND The goal of this study was to identify and characterize cell-cell interactions that facilitate endothelial tip cell fusion downstream of BMP (bone morphogenic protein)-mediated venous plexus formation. METHODS High resolution and time-lapse imaging of transgenic reporter lines and loss-of-function studies were carried out to study the involvement of mesenchymal stromal cells during venous angiogenesis. RESULTS BMP-responsive stromal cells facilitate timely and precise fusion of venous tip cells during developmental angiogenesis. CONCLUSIONS Stromal cells are required for anastomosis of venous tip cells in the embryonic caudal hematopoietic tissue.
Collapse
Affiliation(s)
- Shahram Eisa-Beygi
- Department of Cell Biology, Neurobiology and Anatomy (S.E.-B., M.-M.H., B.E.J., R.F.C., M.B.V., B.A.L.), Medical College of Wisconsin, Milwaukee
| | - Meng-Ming Hu
- Department of Cell Biology, Neurobiology and Anatomy (S.E.-B., M.-M.H., B.E.J., R.F.C., M.B.V., B.A.L.), Medical College of Wisconsin, Milwaukee
| | - Suresh N Kumar
- Department of Pathology (S.N.K.), Medical College of Wisconsin, Milwaukee
| | - Brooke E Jeffery
- Department of Cell Biology, Neurobiology and Anatomy (S.E.-B., M.-M.H., B.E.J., R.F.C., M.B.V., B.A.L.), Medical College of Wisconsin, Milwaukee
| | - Ross F Collery
- Department of Cell Biology, Neurobiology and Anatomy (S.E.-B., M.-M.H., B.E.J., R.F.C., M.B.V., B.A.L.), Medical College of Wisconsin, Milwaukee
- Department of Ophthalmology and Visual Sciences (R.F.C.), Medical College of Wisconsin, Milwaukee
| | - Nghia Jack Vo
- Department of Radiology (N.V.), Medical College of Wisconsin, Milwaukee
- Department of Radiology, Pediatric Imaging and Interventional Radiology, Children's Hospital of Wisconsin, Milwaukee (N.V.)
| | - Bhawika S Lamichanne
- Molecular Medicine Program, Eccles Institute of Human Genetics, University of Utah, Salt Lake City (B.S.L., H.J.Y.)
| | - H Joseph Yost
- Molecular Medicine Program, Eccles Institute of Human Genetics, University of Utah, Salt Lake City (B.S.L., H.J.Y.)
| | - Matthew B Veldman
- Department of Cell Biology, Neurobiology and Anatomy (S.E.-B., M.-M.H., B.E.J., R.F.C., M.B.V., B.A.L.), Medical College of Wisconsin, Milwaukee
| | - Brian A Link
- Department of Cell Biology, Neurobiology and Anatomy (S.E.-B., M.-M.H., B.E.J., R.F.C., M.B.V., B.A.L.), Medical College of Wisconsin, Milwaukee
| |
Collapse
|
10
|
Hagedorn EJ, Perlin JR, Freeman RJ, Wattrus SJ, Han T, Mao C, Kim JW, Fernández-Maestre I, Daily ML, D'Amato C, Fairchild MJ, Riquelme R, Li B, Ragoonanan DAVE, Enkhbayar K, Henault EL, Wang HG, Redfield SE, Collins SH, Lichtig A, Yang S, Zhou Y, Kunar B, Gomez-Salinero JM, Dinh TT, Pan J, Holler K, Feldman HA, Butcher EC, van Oudenaarden A, Rafii S, Junker JP, Zon LI. Transcription factor induction of vascular blood stem cell niches in vivo. Dev Cell 2023; 58:1037-1051.e4. [PMID: 37119815 PMCID: PMC10330626 DOI: 10.1016/j.devcel.2023.04.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/08/2023] [Accepted: 04/07/2023] [Indexed: 05/01/2023]
Abstract
The hematopoietic niche is a supportive microenvironment composed of distinct cell types, including specialized vascular endothelial cells that directly interact with hematopoietic stem and progenitor cells (HSPCs). The molecular factors that specify niche endothelial cells and orchestrate HSPC homeostasis remain largely unknown. Using multi-dimensional gene expression and chromatin accessibility analyses in zebrafish, we define a conserved gene expression signature and cis-regulatory landscape that are unique to sinusoidal endothelial cells in the HSPC niche. Using enhancer mutagenesis and transcription factor overexpression, we elucidate a transcriptional code that involves members of the Ets, Sox, and nuclear hormone receptor families and is sufficient to induce ectopic niche endothelial cells that associate with mesenchymal stromal cells and support the recruitment, maintenance, and division of HSPCs in vivo. These studies set forth an approach for generating synthetic HSPC niches, in vitro or in vivo, and for effective therapies to modulate the endogenous niche.
Collapse
Affiliation(s)
- Elliott J Hagedorn
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA, USA; Section of Hematology and Medical Oncology and Center for Regenerative Medicine, Boston University School of Medicine and Boston Medical Center, Boston, MA, USA
| | - Julie R Perlin
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA, USA
| | - Rebecca J Freeman
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA, USA
| | - Samuel J Wattrus
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA, USA
| | - Tianxiao Han
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA, USA
| | - Clara Mao
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA, USA
| | - Ji Wook Kim
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA, USA
| | - Inés Fernández-Maestre
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA, USA
| | - Madeleine L Daily
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA, USA
| | - Christopher D'Amato
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA, USA
| | - Michael J Fairchild
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA, USA
| | - Raquel Riquelme
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA, USA
| | - Brian Li
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA, USA
| | - Dana A V E Ragoonanan
- Section of Hematology and Medical Oncology and Center for Regenerative Medicine, Boston University School of Medicine and Boston Medical Center, Boston, MA, USA
| | - Khaliun Enkhbayar
- Section of Hematology and Medical Oncology and Center for Regenerative Medicine, Boston University School of Medicine and Boston Medical Center, Boston, MA, USA
| | - Emily L Henault
- Section of Hematology and Medical Oncology and Center for Regenerative Medicine, Boston University School of Medicine and Boston Medical Center, Boston, MA, USA
| | - Helen G Wang
- Section of Hematology and Medical Oncology and Center for Regenerative Medicine, Boston University School of Medicine and Boston Medical Center, Boston, MA, USA
| | - Shelby E Redfield
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA, USA
| | - Samantha H Collins
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA, USA
| | - Asher Lichtig
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA, USA
| | - Song Yang
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA, USA
| | - Yi Zhou
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA, USA
| | - Balvir Kunar
- Ansary Stem Cell Institute, Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jesus Maria Gomez-Salinero
- Ansary Stem Cell Institute, Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Thanh T Dinh
- Veterans Affairs Palo Alto Health Care System, The Palo Alto Veterans Institute for Research and the Department of Pathology, Stanford University, Stanford, CA, USA
| | - Junliang Pan
- Veterans Affairs Palo Alto Health Care System, The Palo Alto Veterans Institute for Research and the Department of Pathology, Stanford University, Stanford, CA, USA
| | - Karoline Holler
- Berlin Institute for Medical Systems Biology, Max Delbruck Center for Molecular Medicine, Berlin, Germany
| | - Henry A Feldman
- Institutional Centers for Clinical and Translational Research, Boston Children's Hospital, Boston, MA, USA
| | - Eugene C Butcher
- Veterans Affairs Palo Alto Health Care System, The Palo Alto Veterans Institute for Research and the Department of Pathology, Stanford University, Stanford, CA, USA
| | - Alexander van Oudenaarden
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Shahin Rafii
- Ansary Stem Cell Institute, Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - J Philipp Junker
- Berlin Institute for Medical Systems Biology, Max Delbruck Center for Molecular Medicine, Berlin, Germany
| | - Leonard I Zon
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA, USA.
| |
Collapse
|
11
|
Ma RC, Kocha KM, Méndez-Olivos EE, Ruel TD, Huang P. Origin and diversification of fibroblasts from the sclerotome in zebrafish. Dev Biol 2023; 498:35-48. [PMID: 36933633 DOI: 10.1016/j.ydbio.2023.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 02/13/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023]
Abstract
Fibroblasts play an important role in maintaining tissue integrity by secreting components of the extracellular matrix and initiating response to injury. Although the function of fibroblasts has been extensively studied in adults, the embryonic origin and diversification of different fibroblast subtypes during development remain largely unexplored. Using zebrafish as a model, we show that the sclerotome, a sub-compartment of the somite, is the embryonic source of multiple fibroblast subtypes including tenocytes (tendon fibroblasts), blood vessel associated fibroblasts, fin mesenchymal cells, and interstitial fibroblasts. High-resolution imaging shows that different fibroblast subtypes occupy unique anatomical locations with distinct morphologies. Long-term Cre-mediated lineage tracing reveals that the sclerotome also contributes to cells closely associated with the axial skeleton. Ablation of sclerotome progenitors results in extensive skeletal defects. Using photoconversion-based cell lineage analysis, we find that sclerotome progenitors at different dorsal-ventral and anterior-posterior positions display distinct differentiation potentials. Single-cell clonal analysis combined with in vivo imaging suggests that the sclerotome mostly contains unipotent and bipotent progenitors prior to cell migration, and the fate of their daughter cells is biased by their migration paths and relative positions. Together, our work demonstrates that the sclerotome is the embryonic source of trunk fibroblasts as well as the axial skeleton, and local signals likely contribute to the diversification of distinct fibroblast subtypes.
Collapse
Affiliation(s)
- Roger C Ma
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive, Calgary, Alberta, T2N 4N1, Canada
| | - Katrinka M Kocha
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive, Calgary, Alberta, T2N 4N1, Canada
| | - Emilio E Méndez-Olivos
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive, Calgary, Alberta, T2N 4N1, Canada
| | - Tyler D Ruel
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive, Calgary, Alberta, T2N 4N1, Canada
| | - Peng Huang
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive, Calgary, Alberta, T2N 4N1, Canada.
| |
Collapse
|
12
|
Murayama E, Vivier C, Schmidt A, Herbomel P. Alcam-a and Pdgfr-α are essential for the development of sclerotome-derived stromal cells that support hematopoiesis. Nat Commun 2023; 14:1171. [PMID: 36859431 PMCID: PMC9977867 DOI: 10.1038/s41467-023-36612-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 02/09/2023] [Indexed: 03/03/2023] Open
Abstract
Mesenchymal stromal cells are essential components of hematopoietic stem and progenitor cell (HSPC) niches, regulating HSPC proliferation and fates. Their developmental origins are largely unknown. In zebrafish, we previously found that the stromal cells of the caudal hematopoietic tissue (CHT), a niche functionally homologous to the mammalian fetal liver, arise from the ventral part of caudal somites. We have now found that this ventral domain is the sclerotome, and that two markers of mammalian mesenchymal stem/stromal cells, Alcam and Pdgfr-α, are distinctively expressed there and instrumental for the emergence and migration of stromal cell progenitors, which in turn conditions the proper assembly of the vascular component of the CHT niche. Furthermore, we find that trunk somites are similarly dependent on Alcam and Pdgfr-α to produce mesenchymal cells that foster HSPC emergence from the aorta. Thus the sclerotome contributes essential stromal cells for each of the key steps of developmental hematopoiesis.
Collapse
Affiliation(s)
- Emi Murayama
- Institut Pasteur, Department of Developmental & Stem Cell Biology, Paris, 75015, France. .,INSERM, Paris, 75013, France. .,CNRS, UMR3738, Paris, 75015, France.
| | - Catherine Vivier
- Institut Pasteur, Department of Developmental & Stem Cell Biology, Paris, 75015, France.,CNRS, UMR3738, Paris, 75015, France
| | - Anne Schmidt
- Institut Pasteur, Department of Developmental & Stem Cell Biology, Paris, 75015, France.,CNRS, UMR3738, Paris, 75015, France
| | - Philippe Herbomel
- Institut Pasteur, Department of Developmental & Stem Cell Biology, Paris, 75015, France.,CNRS, UMR3738, Paris, 75015, France
| |
Collapse
|
13
|
Nakajima H, Ishikawa H, Yamamoto T, Chiba A, Fukui H, Sako K, Fukumoto M, Mattonet K, Kwon HB, Hui SP, Dobreva GD, Kikuchi K, Helker CSM, Stainier DYR, Mochizuki N. Endoderm-derived islet1-expressing cells differentiate into endothelial cells to function as the vascular HSPC niche in zebrafish. Dev Cell 2023; 58:224-238.e7. [PMID: 36693371 DOI: 10.1016/j.devcel.2022.12.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 10/26/2022] [Accepted: 12/29/2022] [Indexed: 01/25/2023]
Abstract
Endothelial cells (ECs) line blood vessels and serve as a niche for hematopoietic stem and progenitor cells (HSPCs). Recent data point to tissue-specific EC specialization as well as heterogeneity; however, it remains unclear how ECs acquire these properties. Here, by combining live-imaging-based lineage-tracing and single-cell transcriptomics in zebrafish embryos, we identify an unexpected origin for part of the vascular HSPC niche. We find that islet1 (isl1)-expressing cells are the progenitors of the venous ECs that constitute the majority of the HSPC niche. These isl1-expressing cells surprisingly originate from the endoderm and differentiate into ECs in a process dependent on Bmp-Smad signaling and subsequently requiring npas4l (cloche) function. Single-cell RNA sequencing analyses show that isl1-derived ECs express a set of genes that reflect their distinct origin. This study demonstrates that endothelial specialization in the HSPC niche is determined at least in part by the origin of the ECs.
Collapse
Affiliation(s)
- Hiroyuki Nakajima
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 564-8565, Japan.
| | - Hiroyuki Ishikawa
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 564-8565, Japan
| | - Takuya Yamamoto
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan; Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; AMED-CREST, AMED, Tokyo 100-0004, Japan; Medical-risk Avoidance based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto 606-8507, Japan
| | - Ayano Chiba
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 564-8565, Japan
| | - Hajime Fukui
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 564-8565, Japan
| | - Keisuke Sako
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 564-8565, Japan
| | - Moe Fukumoto
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 564-8565, Japan
| | - Kenny Mattonet
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| | - Hyouk-Bum Kwon
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany; Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Subhra P Hui
- S. N. Pradhan Centre for Neurosciences, University of Calcutta, Kolkata 700019, India
| | - Gergana D Dobreva
- Department of Cardiovascular Genomics and Epigenomics, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim 68167, Germany
| | - Kazu Kikuchi
- Department of Cardiac Regeneration Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 564-8565, Japan
| | - Christian S M Helker
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany; Philipps-University Marburg, Faculty of Biology, Cell Signaling and Dynamics, Marburg 35043, Germany
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany.
| | - Naoki Mochizuki
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 564-8565, Japan.
| |
Collapse
|
14
|
Schroeder AM, Nielsen T, Lynott M, Vogler G, Colas AR, Bodmer R. Nascent polypeptide-Associated Complex and Signal Recognition Particle have cardiac-specific roles in heart development and remodeling. PLoS Genet 2022; 18:e1010448. [PMID: 36240221 PMCID: PMC9604979 DOI: 10.1371/journal.pgen.1010448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 10/26/2022] [Accepted: 09/27/2022] [Indexed: 11/25/2022] Open
Abstract
Establishing a catalog of Congenital Heart Disease (CHD) genes and identifying functional networks would improve our understanding of its oligogenic underpinnings. Our studies identified protein biogenesis cofactors Nascent polypeptide-Associated Complex (NAC) and Signal-Recognition-Particle (SRP) as disease candidates and novel regulators of cardiac differentiation and morphogenesis. Knockdown (KD) of the alpha- (Nacα) or beta-subunit (bicaudal, bic) of NAC in the developing Drosophila heart disrupted cardiac developmental remodeling resulting in a fly with no heart. Heart loss was rescued by combined KD of Nacα with the posterior patterning Hox gene Abd-B. Consistent with a central role for this interaction in cardiogenesis, KD of Nacα in cardiac progenitors derived from human iPSCs impaired cardiac differentiation while co-KD with human HOXC12 and HOXD12 rescued this phenotype. Our data suggest that Nacα KD preprograms cardioblasts in the embryo for abortive remodeling later during metamorphosis, as Nacα KD during translation-intensive larval growth or pupal remodeling only causes moderate heart defects. KD of SRP subunits in the developing fly heart produced phenotypes that targeted specific segments and cell types, again suggesting cardiac-specific and spatially regulated activities. Together, we demonstrated directed function for NAC and SRP in heart development, and that regulation of NAC function depends on Hox genes.
Collapse
Affiliation(s)
- Analyne M. Schroeder
- Development, Aging and Regeneration Program, Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, United States of America
- * E-mail: (AMS); (RB)
| | - Tanja Nielsen
- Development, Aging and Regeneration Program, Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, United States of America
| | - Michaela Lynott
- Development, Aging and Regeneration Program, Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, United States of America
| | - Georg Vogler
- Development, Aging and Regeneration Program, Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, United States of America
| | - Alexandre R. Colas
- Development, Aging and Regeneration Program, Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, United States of America
| | - Rolf Bodmer
- Development, Aging and Regeneration Program, Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, United States of America
- * E-mail: (AMS); (RB)
| |
Collapse
|
15
|
Morales-Polanco F, Lee JH, Barbosa NM, Frydman J. Cotranslational Mechanisms of Protein Biogenesis and Complex Assembly in Eukaryotes. Annu Rev Biomed Data Sci 2022; 5:67-94. [PMID: 35472290 PMCID: PMC11040709 DOI: 10.1146/annurev-biodatasci-121721-095858] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The formation of protein complexes is crucial to most biological functions. The cellular mechanisms governing protein complex biogenesis are not yet well understood, but some principles of cotranslational and posttranslational assembly are beginning to emerge. In bacteria, this process is favored by operons encoding subunits of protein complexes. Eukaryotic cells do not have polycistronic mRNAs, raising the question of how they orchestrate the encounter of unassembled subunits. Here we review the constraints and mechanisms governing eukaryotic co- and posttranslational protein folding and assembly, including the influence of elongation rate on nascent chain targeting, folding, and chaperone interactions. Recent evidence shows that mRNAs encoding subunits of oligomeric assemblies can undergo localized translation and form cytoplasmic condensates that might facilitate the assembly of protein complexes. Understanding the interplay between localized mRNA translation and cotranslational proteostasis will be critical to defining protein complex assembly in vivo.
Collapse
Affiliation(s)
| | - Jae Ho Lee
- Department of Biology, Stanford University, Stanford, California, USA;
| | - Natália M Barbosa
- Department of Biology, Stanford University, Stanford, California, USA;
| | - Judith Frydman
- Department of Biology, Stanford University, Stanford, California, USA;
- Department of Genetics, Stanford University, Stanford, California, USA
| |
Collapse
|
16
|
Faisal M, Hassan M, Kumar A, Zubair M, Jamal M, Menghwar H, Saad M, Kloczkowski A. Hematopoietic Stem and Progenitor Cells (HSPCs) and Hematopoietic Microenvironment: Molecular and Bioinformatic Studies of the Zebrafish Models. Int J Mol Sci 2022; 23:7285. [PMID: 35806290 PMCID: PMC9266955 DOI: 10.3390/ijms23137285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/25/2022] [Accepted: 06/25/2022] [Indexed: 02/01/2023] Open
Abstract
Hematopoietic stem cells (HSCs) reside in a specialized microenvironment in a peculiar anatomic location which regulates the maintenance of stem cells and controls its functions. Recent scientific progress in experimental technologies have enabled the specific detection of epigenetic factors responsible for the maintenance and quiescence of the hematopoietic niche, which has improved our knowledge of regulatory mechanisms. The aberrant role of RNA-binding proteins and their impact on the disruption of stem cell biology have been reported by a number of recent studies. Despite recent modernization in hematopoietic microenvironment research avenues, our comprehension of the signaling mechanisms and interactive pathways responsible for integration of the hematopoietic niche is still limited. In the past few decades, zebrafish usage with regards to exploratory studies of the hematopoietic niche has expanded our knowledge for deeper understanding of novel cellular interactions. This review provides an update on the functional roles of different genetic and epigenetic factors and molecular signaling events at different sections of the hematopoietic microenvironment. The explorations of different molecular approaches and interventions of latest web-based tools being used are also outlined. This will help us to get more mechanistic insights and develop therapeutic options for the malignancies.
Collapse
Affiliation(s)
- Muhammad Faisal
- Division of Hematology, College of Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA;
| | - Mubashir Hassan
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, The Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA;
| | - Aman Kumar
- Department of Ophthalmology and Vision Sciences, The Ohio State University, Columbus, OH 43210, USA;
| | - Muhammad Zubair
- Department of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
| | - Muhammad Jamal
- Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan 430072, China;
| | - Harish Menghwar
- Axe Molecular Endocrinology and Nephrology, CHU de Quebec-Research Center (CHUL), Laval University, Quebec City, QC G1V 4G2, Canada;
| | - Muhammad Saad
- Department of Animal Sciences, The Ohio State University, Columbus, OH 43205, USA;
| | - Andrzej Kloczkowski
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, The Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA;
- Department of Pediatrics, The Ohio State University, Columbus, OH 43205, USA
| |
Collapse
|
17
|
Stosik M, Tokarz-Deptuła B, Deptuła W. Haematopoiesis in Zebrafish (Danio Rerio). Front Immunol 2022; 13:902941. [PMID: 35720291 PMCID: PMC9201100 DOI: 10.3389/fimmu.2022.902941] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
Haematopoiesis in fish and mammals is a complex process, and many aspects regarding its model and the differentiation of haematopoietic stem cells (HSCs) still remain enigmatic despite advanced studies. The effects of microenvironmental factors or HSCs niche and signalling pathways on haematopoiesis are also unclear. This review presents Danio rerio as a model organism for studies on haematopoiesis in vertebrates and discusses the development of this process during the embryonic period and in adult fish. It describes the role of the microenvironment of the haematopoietic process in regulating the formation and function of HSCs/HSPCs (hematopoietic stem/progenitor cells) and highlights facts and research areas important for haematopoiesis in fish and mammals.
Collapse
Affiliation(s)
- Michał Stosik
- Institute of Biological Science, Faculty of Biological Sciences, University of Zielona Góra, Zielona Góra, Poland
| | | | - Wiesław Deptuła
- Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Toruń, Poland
| |
Collapse
|
18
|
Pereira Zambalde E, Bayraktar R, Schultz Jucoski T, Ivan C, Rodrigues AC, Mathias C, knutsen E, Silveira de Lima R, Fiori Gradia D, de Souza Fonseca Ribeiro EM, Hannash S, Adrian Calin G, Carvalhode Oliveira J. A novel lncRNA derived from an ultraconserved region: lnc- uc.147, a potential biomarker in luminal A breast cancer. RNA Biol 2021; 18:416-429. [PMID: 34387142 PMCID: PMC8677017 DOI: 10.1080/15476286.2021.1952757] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 06/02/2021] [Accepted: 07/04/2021] [Indexed: 02/06/2023] Open
Abstract
The human genome contains 481 ultraconserved regions (UCRs), which are genomic stretches of over 200 base pairs conserved among human, rat, and mouse. The majority of these regions are transcriptionally active (T-UCRs), and several have been found to be differentially expressed in tumours. Some T-UCRs have been functionally characterized, but of those few have been associated to breast cancer (BC). Using TCGA data, we found 302 T-UCRs related to clinical features in BC: 43% were associated with molecular subtypes, 36% with oestrogen-receptor positivity, 17% with HER2 expression, 12% with stage, and 10% with overall survival. The expression levels of 12 T-UCRs were further analysed in a cohort of 82 Brazilian BC patients using RT-qPCR. We found that uc.147 is high expressed in luminal A and B patients. For luminal A, a subtype usually associated with better prognosis, high uc.147 expression was associated with a poor prognosis and suggested as an independent prognostic factor. The lncRNA from uc.147 (lnc-uc.147) is located in the nucleus. Northern blotting results show that uc.147 is a 2,8 kb monoexonic trancript, and its sequence was confirmed by RACE. The silencing of uc.147 increases apoptosis, arrests cell cycle, and reduces cell viability and colony formation in BC cell lines. Additionally, we identifed 19 proteins that interact with lnc-uc.147 through mass spectrometry and demonstrated a high correlation of lnc-uc.147 with the neighbour gene expression and miR-18 and miR-190b. This is the first study to analyse the expression of all T-UCRs in BC and to functionally assess the lnc-uc.147.
Collapse
Affiliation(s)
- Erika Pereira Zambalde
- Laboratory of Human Cytogenetics and Oncogenetics, Department of Genetics, Universidade Federal Do Paraná, Curitiba, PR, Brazil
- Department of Experimental Therapeutics, MD Anderson Cancer Center, University of Texas, Houston, TX, USA
| | - Recep Bayraktar
- Department of Experimental Therapeutics, MD Anderson Cancer Center, University of Texas, Houston, TX, USA
| | - Tayana Schultz Jucoski
- Laboratory of Human Cytogenetics and Oncogenetics, Department of Genetics, Universidade Federal Do Paraná, Curitiba, PR, Brazil
| | - Cristina Ivan
- Center for RNA Interference and Non-coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ana Carolina Rodrigues
- Laboratory of Human Cytogenetics and Oncogenetics, Department of Genetics, Universidade Federal Do Paraná, Curitiba, PR, Brazil
| | - Carolina Mathias
- Laboratory of Human Cytogenetics and Oncogenetics, Department of Genetics, Universidade Federal Do Paraná, Curitiba, PR, Brazil
| | - Erik knutsen
- Department of Experimental Therapeutics, MD Anderson Cancer Center, University of Texas, Houston, TX, USA
- Department of Medical Biology, Faculty of Health Sciences, UiT - the Arctic University of Norway, Tromsø, Norway
| | | | - Daniela Fiori Gradia
- Laboratory of Human Cytogenetics and Oncogenetics, Department of Genetics, Universidade Federal Do Paraná, Curitiba, PR, Brazil
| | | | - Samir Hannash
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - George Adrian Calin
- Department of Experimental Therapeutics, MD Anderson Cancer Center, University of Texas, Houston, TX, USA
- Center for RNA Interference and Non-coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jaqueline Carvalhode Oliveira
- Laboratory of Human Cytogenetics and Oncogenetics, Department of Genetics, Universidade Federal Do Paraná, Curitiba, PR, Brazil
| |
Collapse
|
19
|
Cai Y, Wang J, Jin D, Liu Q, Chen X, Pan L, Li Y, Wang X, Qian F, Wang J, Zhong TP, Wang S. Dhx15 regulates zebrafish definitive hematopoiesis through the unfolded protein response pathway. Cancer Sci 2021; 112:3884-3894. [PMID: 34077586 PMCID: PMC8409414 DOI: 10.1111/cas.15002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/21/2021] [Accepted: 05/26/2021] [Indexed: 12/27/2022] Open
Abstract
Gene alterations are recognized as important events in acute myeloid leukemia (AML) progression. Studies on hematopoiesis of altered genes contribute to a better understanding on their roles in AML progression. Our previous work reported a DEAH box helicase 15 (DHX15) R222G mutation in AML patients, and we showed DHX15 overexpression is associated with poor prognosis in AML patients. In this work, we further study the role of dhx15 in zebrafish developmental hematopoiesis by generating dhx15−/− zebrafish using transcription activator‐like effector nuclease technology. Whole‐mount in situ hybridization (WISH) analysis showed hematopoietic stem/progenitor cells were dramatically perturbed when dhx15 was deleted. Immunofluorescence staining indicated inhibited hematopoietic stem/progenitor cell (HSPC) proliferation instead of accelerated apoptosis were detected in dhx15−/− zebrafish. Furthermore, our data showed that HSPC defect is mediated through the unfolded protein response (UPR) pathway. DHX15 R222G mutation, a recurrent mutation identified in AML patients, displayed a compromised function in restoring HSPC failure in dhx15−/−; Tg (hsp: DHX15 R222G) zebrafish. Collectively, this work revealed a vital role of dhx15 in the maintenance of definitive hematopoiesis in zebrafish through the unfolded protein respone pathway. The study of DHX15 and DHX15 R222G mutation could hold clinical significance for evaluating prognosis of AML patients with aberrant DHX15 expression.
Collapse
Affiliation(s)
- Yuanhua Cai
- Union Clinical Medical Colleges, Fujian Medical University, Fuzhou, China
| | - Jing Wang
- Union Clinical Medical Colleges, Fujian Medical University, Fuzhou, China
| | - Daqing Jin
- Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, East China Normal University School of Life Sciences, Shanghai, China
| | - Qiao Liu
- Union Clinical Medical Colleges, Fujian Medical University, Fuzhou, China
| | - Xianglei Chen
- Union Clinical Medical Colleges, Fujian Medical University, Fuzhou, China
| | - Lili Pan
- Union Clinical Medical Colleges, Fujian Medical University, Fuzhou, China.,Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yang Li
- Union Clinical Medical Colleges, Fujian Medical University, Fuzhou, China.,Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xuechun Wang
- Union Clinical Medical Colleges, Fujian Medical University, Fuzhou, China
| | - Feng Qian
- School of Life Sciences and Institutes of Biomedical Sciences, Ministry of Education Key Laboratory of Contemporary Anthropology and State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, China
| | - Jiucun Wang
- School of Life Sciences and Institutes of Biomedical Sciences, Ministry of Education Key Laboratory of Contemporary Anthropology and State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, China
| | - Tao Peter Zhong
- Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, East China Normal University School of Life Sciences, Shanghai, China.,Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Shaoyuan Wang
- Union Clinical Medical Colleges, Fujian Medical University, Fuzhou, China.,Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
20
|
A single-cell resolution developmental atlas of hematopoietic stem and progenitor cell expansion in zebrafish. Proc Natl Acad Sci U S A 2021; 118:2015748118. [PMID: 33785593 PMCID: PMC8040670 DOI: 10.1073/pnas.2015748118] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The caudal hematopoietic tissue (CHT) is characterized as a hematopoietic organ for fetal hematopoietic stem and progenitor cell (HSPC) expansion in zebrafish. In this study, we used scRNA-seq combined with functional assays to decode the developing CHT. First, we resolved fetal HSPC heterogeneity, manifested as lineage priming and metabolic gene signatures. We further analyzed the cellular interactions among nonhematopoietic niche components and HSPCs and identified an endothelial cell-specific factor, Gpr182, followed by experimental validation of its role in promoting HSPC expansion. Finally, we uncovered the conservation and divergence of developmental hematopoiesis between human fetal liver and zebrafish CHT. Our study provides a valuable resource for fetal HSPC development and clues to establish a supportive niche for HSPC expansion in vitro. During vertebrate embryogenesis, fetal hematopoietic stem and progenitor cells (HSPCs) exhibit expansion and differentiation properties in a supportive hematopoietic niche. To profile the developmental landscape of fetal HSPCs and their local niche, here, using single-cell RNA-sequencing, we deciphered a dynamic atlas covering 28,777 cells and 9 major cell types (23 clusters) of zebrafish caudal hematopoietic tissue (CHT). We characterized four heterogeneous HSPCs with distinct lineage priming and metabolic gene signatures. Furthermore, we investigated the regulatory mechanism of CHT niche components for HSPC development, with a focus on the transcription factors and ligand–receptor networks involved in HSPC expansion. Importantly, we identified an endothelial cell-specific G protein–coupled receptor 182, followed by in vivo and in vitro functional validation of its evolutionally conserved role in supporting HSPC expansion in zebrafish and mice. Finally, comparison between zebrafish CHT and human fetal liver highlighted the conservation and divergence across evolution. These findings enhance our understanding of the regulatory mechanism underlying hematopoietic niche for HSPC expansion in vivo and provide insights into improving protocols for HSPC expansion in vitro.
Collapse
|
21
|
Colucci-Guyon E, Rifflet A, Saint-Auret S, da Costa A, Boucontet L, Laval T, Prehaud C, Blanchard N, Levraud JP, Boneca IG, Demangel C, Guenin-Macé L. Spatiotemporal analysis of mycolactone distribution in vivo reveals partial diffusion in the central nervous system. PLoS Negl Trop Dis 2020; 14:e0008878. [PMID: 33264290 PMCID: PMC7710047 DOI: 10.1371/journal.pntd.0008878] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/13/2020] [Indexed: 01/26/2023] Open
Abstract
Mycobacterium ulcerans, the causative agent of Buruli ulcer (BU) disease, is unique amongst human pathogens in its capacity to produce a lipid toxin called mycolactone. While previous studies have demonstrated that bacterially-released mycolactone diffuses beyond infection foci, the spatiotemporal distribution of mycolactone remained largely unknown. Here, we used the zebrafish model to provide the first global kinetic analysis of mycolactone's diffusion in vivo, and multicellular co-culture systems to address the critical question of the toxin's access to the brain. Zebrafish larvae were injected with a fluorescent-derivative of mycolactone to visualize the in vivo diffusion of the toxin from the peripheral circulation. A rapid, body-wide distribution of mycolactone was observed, with selective accumulation in tissues near the injection site and brain, together with an important excretion through the gastro-intestinal tract. Our conclusion that mycolactone reached the central nervous system was reinforced by an in cellulo model of human blood brain barrier and a mouse model of M. ulcerans-infection. Here we show that mycolactone has a broad but heterogenous profile of distribution in vivo. Our investigations in vitro and in vivo support the view that a fraction of bacterially-produced mycolactone gains access to the central nervous system. The relative persistence of mycolactone in the bloodstream suggests that assays of circulating mycolactone are relevant for BU disease monitoring and treatment optimization.
Collapse
Affiliation(s)
- Emma Colucci-Guyon
- Macrophages and Development of Immunity, Institut Pasteur, CNRS UMR 3738, Paris, France
| | - Aline Rifflet
- Institut Pasteur, Unité Biologie et génétique de la paroi bactérienne, Paris 75724, France; CNRS, UMR 2001 “Microbiologie intégrative et moléculaire”, Paris 75015, France; INSERM, groupe Avenir, Paris, France
| | - Sarah Saint-Auret
- Université de Haute-Alsace, Université de Strasbourg, CNRS, LIMA, UMR 7042, Mulhouse, France
| | | | - Laurent Boucontet
- Macrophages and Development of Immunity, Institut Pasteur, CNRS UMR 3738, Paris, France
| | - Thomas Laval
- Immunobiology of Infection Unit, Institut Pasteur, INSERM U1221, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | | | - Nicolas Blanchard
- Université de Haute-Alsace, Université de Strasbourg, CNRS, LIMA, UMR 7042, Mulhouse, France
| | - Jean-Pierre Levraud
- Macrophages and Development of Immunity, Institut Pasteur, CNRS UMR 3738, Paris, France
| | - Ivo G. Boneca
- Institut Pasteur, Unité Biologie et génétique de la paroi bactérienne, Paris 75724, France; CNRS, UMR 2001 “Microbiologie intégrative et moléculaire”, Paris 75015, France; INSERM, groupe Avenir, Paris, France
| | - Caroline Demangel
- Immunobiology of Infection Unit, Institut Pasteur, INSERM U1221, Paris, France
| | - Laure Guenin-Macé
- Immunobiology of Infection Unit, Institut Pasteur, INSERM U1221, Paris, France
- * E-mail:
| |
Collapse
|
22
|
Mayfield RD, Zhu L, Smith TA, Tiwari GR, Tucker HO. The SMYD1 and skNAC transcription factors contribute to neurodegenerative diseases. Brain Behav Immun Health 2020; 9:100129. [PMID: 34589886 PMCID: PMC8474399 DOI: 10.1016/j.bbih.2020.100129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 11/06/2022] Open
Abstract
SMYD1 and the skNAC isoform of the NAC transcription factor have both previously been characterized as transcription factors in hematopoiesis and cardiac/skeletal muscle. Here we report that comparative analysis of genes deregulated by SMYD1 or skNAC knockdown in differentiating C2C12 myoblasts identified transcripts characteristic of neurodegenerative diseases, including Alzheimer's, Parkinson's and Huntington's Diseases (AD, PD, and HD). This led us to determine whether SMYD1 and skNAC function together or independently within the brain. Based on meta-analyses and direct experimentation, we observed SMYD1 and skNAC expression within cortical striata of human brains, mouse brains and transgenic mouse models of these diseases. We observed some of these features in mouse myoblasts induced to differentiate into neurons. Finally, several defining features of Alzheimer's pathology, including the brain-specific, axon-enriched microtubule-associated protein, Tau, are deregulated upon SMYD1 loss.
Collapse
Affiliation(s)
- R. Dayne Mayfield
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, 78712, USA
- Department of Neuroscience, The University of Texas at Austin, Austin, TX, 78712, USA
- Department of Molecular Biosciences, The University of Texas at Austin, 1 University Station A5000, Austin, TX, 78712, USA
| | - Li Zhu
- Department of Pathology, Lokey Stem Cell Research Building, 265 Campus Drive, Stanford, CA, 94305, USA
- Department of Molecular Biosciences, The University of Texas at Austin, 1 University Station A5000, Austin, TX, 78712, USA
| | - Tyler A. Smith
- Department of Neuroscience, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Gayatri R. Tiwari
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Haley O. Tucker
- Department of Molecular Biosciences, The University of Texas at Austin, 1 University Station A5000, Austin, TX, 78712, USA
| |
Collapse
|
23
|
Wattrus SJ, Zon LI. A Transgenic System for Rapid Magnetic Enrichment of Rare Embryonic Cells. Zebrafish 2020; 17:354-357. [PMID: 32749922 DOI: 10.1089/zeb.2020.1904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Collecting large numbers of rare cells for high-throughput molecular analysis remains a technical challenge, primarily due to limitations in existing technologies. In developmental biology this has impeded single-cell analysis of primordial organs, which derive from few cells. In this study, we share novel transgenic lines for rapid cell enrichment from zebrafish embryos using human surface antigens for immunological binding and magnetic sorting. As proof of principle, we tagged, enriched, and performed single-cell RNA sequencing on nascent hematopoietic stem/progenitor cells and endothelial cells from early embryos. Our method is a quick, efficient, and cost-effective approach to a previously intractable problem.
Collapse
Affiliation(s)
- Samuel J Wattrus
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts, USA.,Department of Stem Cell and Regenerative Biology and Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Leonard I Zon
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts, USA.,Department of Stem Cell and Regenerative Biology and Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
24
|
Deuerling E, Gamerdinger M, Kreft SG. Chaperone Interactions at the Ribosome. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a033977. [PMID: 30833456 DOI: 10.1101/cshperspect.a033977] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The continuous refreshment of the proteome is critical to maintain protein homeostasis and to adapt cells to changing conditions. Thus, de novo protein biogenesis by ribosomes is vitally important to every cellular system. This process is delicate and error-prone and requires, besides cytosolic chaperones, the guidance by a specialized set of molecular chaperones that bind transiently to the translation machinery and the nascent protein to support early folding events and to regulate cotranslational protein transport. These chaperones include the bacterial trigger factor (TF), the archaeal and eukaryotic nascent polypeptide-associated complex (NAC), and the eukaryotic ribosome-associated complex (RAC). This review focuses on the structures, functions, and substrates of these ribosome-associated chaperones and highlights the most recent findings about their potential mechanisms of action.
Collapse
Affiliation(s)
- Elke Deuerling
- Molecular Microbiology, Department of Biology, University of Konstanz, 78464 Konstanz, Germany
| | - Martin Gamerdinger
- Molecular Microbiology, Department of Biology, University of Konstanz, 78464 Konstanz, Germany
| | - Stefan G Kreft
- Molecular Microbiology, Department of Biology, University of Konstanz, 78464 Konstanz, Germany
| |
Collapse
|
25
|
Stem cell safe harbor: the hematopoietic stem cell niche in zebrafish. Blood Adv 2019; 2:3063-3069. [PMID: 30425071 DOI: 10.1182/bloodadvances.2018021725] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/19/2018] [Indexed: 12/20/2022] Open
Abstract
Each stem cell resides in a highly specialized anatomic location known as the niche that protects and regulates stem cell function. The importance of the niche in hematopoiesis has long been appreciated in transplantation, but without methods to observe activity in vivo, the components and mechanisms of the hematopoietic niche have remained incompletely understood. Zebrafish have emerged over the past few decades as an answer to this. Use of zebrafish to study the hematopoietic niche has enabled discovery of novel cell-cell interactions, as well as chemical and genetic regulators of hematopoietic stem cells. Mastery of niche components may improve therapeutic efforts to direct differentiation of hematopoietic stem cells from pluripotent cells, sustain stem cells in culture, or improve stem cell transplant.
Collapse
|
26
|
Hu J, Sun F, Chen W, Zhang J, Zhang T, Qi M, Feng T, Liu H, Li X, Xing Y, Xiong X, Shi B, Zhou G, Han B. BTF3 sustains cancer stem-like phenotype of prostate cancer via stabilization of BMI1. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:227. [PMID: 31138311 PMCID: PMC6540453 DOI: 10.1186/s13046-019-1222-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 05/09/2019] [Indexed: 12/24/2022]
Abstract
Background Cancer stem-like traits contribute to prostate cancer (PCa) progression and metastasis. Deciphering the novel molecular mechanisms underlying stem-like traits may provide important insight for developing novel therapeutics. Methods Immunohistochemistry and immunofluorescence assays in prostatic tissues; gain- and loss-of-function analyses using ectopic overexpression and shRNAs in PCa cell lines; measurements of tumorigenic and stemness properties, and transcription in vitro and in vivo; transcriptional analysis in public databases. Results We identified that overexpression of BTF3 in PCa tissues and BTF3 expression highly correlates to stem-like traits. Cancer stem-like characteristics in PCa including self-renewal and metastatic potential were impaired by BTF3 loss and promoted by BTF3 overexpression. Mechanistically, BTF3 could stabilize BMI1, which is a crucial regulator of prostate stem cell self-renewal. More importantly, our data revealed that BTF3 is highly predictive of poor prognosis and may help in risk stratification of PCa patients. Conclusions BTF3 promotes PCa progression though modeling stem-like traits in PCa. BTF3 represents a stratification marker in PCa progression and outcomes. Electronic supplementary material The online version of this article (10.1186/s13046-019-1222-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jing Hu
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Feifei Sun
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Weiwen Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Jinan, 250012, China
| | - Jing Zhang
- Department of Pharmacy, Shandong Provincial Hospital Affiliated To Shandong University, Jinan, 250021, China
| | - Tao Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Shandong University, Jinan, 250012, China
| | - Mei Qi
- Department of Pathology, Shandong University QiLu hospital, Jinan, 250012, China
| | - Tingting Feng
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Hui Liu
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Xinjun Li
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China.,Department of Pathology, Binzhou People's Hospital, Binzhou, 256610, China
| | - Yuanxin Xing
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Jinan, 250012, China
| | - Xueting Xiong
- Department of Molecular Genetics, University of Toronto, M5S1A8, Toronto, ON, Canada
| | - Benkang Shi
- Department of Urology, Shandong University QiLu hospital, Jinan, 250012, China
| | - Gengyin Zhou
- Department of Pathology, Shandong University QiLu hospital, Jinan, 250012, China
| | - Bo Han
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China. .,Department of Pathology, Shandong University QiLu hospital, Jinan, 250012, China.
| |
Collapse
|
27
|
Mahony CB, Bertrand JY. How HSCs Colonize and Expand in the Fetal Niche of the Vertebrate Embryo: An Evolutionary Perspective. Front Cell Dev Biol 2019; 7:34. [PMID: 30915333 PMCID: PMC6422921 DOI: 10.3389/fcell.2019.00034] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 02/25/2019] [Indexed: 12/18/2022] Open
Abstract
Rare hematopoietic stem cells (HSCs) can self-renew, establish the entire blood system and represent the basis of regenerative medicine applied to hematological disorders. Clinical use of HSCs is however limited by their inefficient expansion ex vivo, creating a need to further understand HSC expansion in vivo. After embryonic HSCs are born from the hemogenic endothelium, they migrate to the embryonic/fetal niche, where the future adult HSC pool is established by considerable expansion. This takes place at different anatomical sites and is controlled by numerous signals. HSCs then migrate to their adult niche, where they are maintained throughout adulthood. Exactly how HSC expansion is controlled during embryogenesis remains to be characterized and is an important step to improve the therapeutic use of HSCs. We will review the current knowledge of HSC expansion in the different fetal niches across several model organisms and highlight possible clinical applications.
Collapse
Affiliation(s)
- Christopher B Mahony
- Department of Pathology and Immunology, Faculty of Medicine, CMU, University of Geneva, Geneva, Switzerland
| | - Julien Y Bertrand
- Department of Pathology and Immunology, Faculty of Medicine, CMU, University of Geneva, Geneva, Switzerland
| |
Collapse
|
28
|
VCAM-1 + macrophages guide the homing of HSPCs to a vascular niche. Nature 2018; 564:119-124. [PMID: 30455424 DOI: 10.1038/s41586-018-0709-7] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 09/14/2018] [Indexed: 12/13/2022]
Abstract
Haematopoietic stem and progenitor cells (HSPCs) give rise to all blood lineages that support the entire lifespan of vertebrates1. After HSPCs emerge from endothelial cells within the developing dorsal aorta, homing allows the nascent cells to anchor in their niches for further expansion and differentiation2-5. Unique niche microenvironments, composed of various blood vessels as units of microcirculation and other niche components such as stromal cells, regulate this process6-9. However, the detailed architecture of the microenvironment and the mechanism for the regulation of HSPC homing remain unclear. Here, using advanced live imaging and a cell-labelling system, we perform high-resolution analyses of the HSPC homing in caudal haematopoietic tissue of zebrafish (equivalent to the fetal liver in mammals), and reveal the role of the vascular architecture in the regulation of HSPC retention. We identify a VCAM-1+ macrophage-like niche cell population that patrols the inner surface of the venous plexus, interacts with HSPCs in an ITGA4-dependent manner, and directs HSPC retention. These cells, named 'usher cells', together with caudal venous capillaries and plexus, define retention hotspots within the homing microenvironment. Thus, the study provides insights into the mechanism of HSPC homing and reveals the essential role of a VCAM-1+ macrophage population with patrolling behaviour in HSPC retention.
Collapse
|
29
|
Perlin JR, Robertson AL, Zon LI. Efforts to enhance blood stem cell engraftment: Recent insights from zebrafish hematopoiesis. J Exp Med 2017; 214:2817-2827. [PMID: 28830909 PMCID: PMC5626407 DOI: 10.1084/jem.20171069] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 07/24/2017] [Accepted: 08/02/2017] [Indexed: 12/17/2022] Open
Abstract
Hematopoietic stem cell transplantation (HSCT) is an important therapy for patients with a variety of hematological malignancies. HSCT would be greatly improved if patient-specific hematopoietic stem cells (HSCs) could be generated from induced pluripotent stem cells in vitro. There is an incomplete understanding of the genes and signals involved in HSC induction, migration, maintenance, and niche engraftment. Recent studies in zebrafish have revealed novel genes that are required for HSC induction and niche regulation of HSC homeostasis. Manipulation of these signaling pathways and cell types may improve HSC bioengineering, which could significantly advance critical, lifesaving HSCT therapies.
Collapse
Affiliation(s)
- Julie R Perlin
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA
| | - Anne L Robertson
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA
| | - Leonard I Zon
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA
| |
Collapse
|
30
|
Xue Y, Lv J, Zhang C, Wang L, Ma D, Liu F. The Vascular Niche Regulates Hematopoietic Stem and Progenitor Cell Lodgment and Expansion via klf6a-ccl25b. Dev Cell 2017; 42:349-362.e4. [DOI: 10.1016/j.devcel.2017.07.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 05/06/2017] [Accepted: 07/14/2017] [Indexed: 01/07/2023]
|
31
|
Protein quality control at the ribosome: focus on RAC, NAC and RQC. Essays Biochem 2017; 60:203-212. [PMID: 27744336 DOI: 10.1042/ebc20160011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 05/09/2016] [Indexed: 11/17/2022]
Abstract
The biogenesis of new polypeptides by ribosomes and their subsequent correct folding and localization to the appropriate cellular compartments are essential key processes to maintain protein homoeostasis. These complex mechanisms are governed by a repertoire of protein biogenesis factors that directly bind to the ribosome and chaperone nascent polypeptide chains as soon as they emerge from the ribosomal tunnel exit. This nascent chain 'welcoming committee' regulates multiple co-translational processes including protein modifications, folding, targeting and degradation. Acting at the front of the protein production line, these ribosome-associated protein biogenesis factors lead the way in the cellular proteostasis network to ensure proteome integrity. In this article, I focus on three different systems in eukaryotes that are critical for the maintenance of protein homoeostasis by controlling the birth, life and death of nascent polypeptide chains.
Collapse
|
32
|
Blaser BW, Moore JL, Hagedorn EJ, Li B, Riquelme R, Lichtig A, Yang S, Zhou Y, Tamplin OJ, Binder V, Zon LI. CXCR1 remodels the vascular niche to promote hematopoietic stem and progenitor cell engraftment. J Exp Med 2017; 214:1011-1027. [PMID: 28351983 PMCID: PMC5379982 DOI: 10.1084/jem.20161616] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 12/28/2016] [Accepted: 02/10/2017] [Indexed: 01/26/2023] Open
Abstract
Blaser et al. use live imaging of the zebrafish hematopoietic niche to show that cxcl8/cxcr1 signaling positively regulates HSPC engraftment by increasing HSPC-niche interactions, HSPC mitotic rate, niche size, and expression of cxcl12a in a niche-autonomous manner. The microenvironment is an important regulator of hematopoietic stem and progenitor cell (HSPC) biology. Recent advances marking fluorescent HSPCs have allowed exquisite visualization of HSPCs in the caudal hematopoietic tissue (CHT) of the developing zebrafish. Here, we show that the chemokine cxcl8 and its receptor, cxcr1, are expressed by zebrafish endothelial cells, and we identify cxcl8/cxcr1 signaling as a positive regulator of HSPC colonization. Single-cell tracking experiments demonstrated that this is a result of increases in HSPC–endothelial cell “cuddling,” HSPC residency time within the CHT, and HSPC mitotic rate. Enhanced cxcl8/cxcr1 signaling was associated with an increase in the volume of the CHT and induction of cxcl12a expression. Finally, using parabiotic zebrafish, we show that cxcr1 acts HSPC nonautonomously to improve the efficiency of donor HSPC engraftment. This work identifies a mechanism by which the hematopoietic niche remodels to promote HSPC engraftment and suggests that cxcl8/cxcr1 signaling is a potential therapeutic target in patients undergoing hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Bradley W Blaser
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA 02138
| | - Jessica L Moore
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA 02138
| | - Elliott J Hagedorn
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA 02138
| | - Brian Li
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA 02138
| | - Raquel Riquelme
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA 02138
| | - Asher Lichtig
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA 02138
| | - Song Yang
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA 02138
| | - Yi Zhou
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA 02138
| | - Owen J Tamplin
- Department of Pharmacology, The University of Illinois College of Medicine, Chicago, IL 60612
| | - Vera Binder
- Department of Hematology and Oncology, Dr. von Hauner Children's Hospital, Ludwig-Maximilians University, 80539 Munich, Germany
| | - Leonard I Zon
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA 02138
| |
Collapse
|
33
|
|
34
|
Nik S, Weinreb JT, Bowman TV. Developmental HSC Microenvironments: Lessons from Zebrafish. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1041:33-53. [PMID: 29204828 DOI: 10.1007/978-3-319-69194-7_4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hematopoietic stem cells (HSCs) posses the ability to maintain the blood system of an organism from birth to adulthood. The behavior of HSCs is modulated by its microenvironment. During development, HSCs acquire the instructions to self-renew and differentiate into all blood cell fates by passing through several developmental microenvironments. In this chapter, we discuss the signals and cell types that inform HSC decisions throughout ontogeny with a focus on HSC specification, mobilization, migration, and engraftment.
Collapse
Affiliation(s)
- Sara Nik
- Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.,Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Joshua T Weinreb
- Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.,Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Teresa V Bowman
- Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, USA. .,Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA. .,Departments of Molecular Biology and Medicine (Oncology), Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
35
|
Systemic inoculation of Escherichia coli causes emergency myelopoiesis in zebrafish larval caudal hematopoietic tissue. Sci Rep 2016; 6:36853. [PMID: 27833150 PMCID: PMC5105072 DOI: 10.1038/srep36853] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 10/21/2016] [Indexed: 01/03/2023] Open
Abstract
Emergency granulopoiesis occurs in response to severe microbial infection. However, whether and how other blood components, particularly monocytes/macrophages and their progenitors, including hematopoietic stem/progenitor cells (HSPCs), participate in the process and the underlying molecular mechanisms remain unknown. In this study, we challenged zebrafish larvae via direct injection of Escherichia coli into the bloodstream, which resulted in systemic inoculation with this microbe. The reaction of hematopoietic cells, including HSPCs, in the caudal hematopoietic tissue was carefully analysed. Both macrophages and neutrophils clearly expanded following the challenge. Thus, emergency myelopoiesis, including monopoiesis and granulopoiesis, occurred following systemic bacterial infection. The HSPC reaction was dependent on the bacterial burden, manifesting as a slight increase under low burden, but an obvious reduction following the administration of an excessive volume of bacteria. Pu.1 was important for the effective elimination of the microbes to prevent excessive HSPC apoptosis in response to stress. Moreover, Pu.1 played different roles in steady and emergency monopoiesis. Although Pu.1 was essential for normal macrophage development, it played suppressive roles in emergency monopoiesis. Overall, our study established a systemic bacterial infection model that led to emergency myelopoiesis, thereby improving our understanding of the function of Pu.1 in this scenario.
Collapse
|
36
|
tfec controls the hematopoietic stem cell vascular niche during zebrafish embryogenesis. Blood 2016; 128:1336-45. [PMID: 27402973 DOI: 10.1182/blood-2016-04-710137] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 07/01/2016] [Indexed: 12/11/2022] Open
Abstract
In mammals, embryonic hematopoiesis occurs in successive waves, culminating with the emergence of hematopoietic stem cells (HSCs) in the aorta. HSCs first migrate to the fetal liver (FL), where they expand, before they seed the bone marrow niche, where they will sustain hematopoiesis throughout adulthood. In zebrafish, HSCs emerge from the dorsal aorta and colonize the caudal hematopoietic tissue (CHT). Recent studies showed that they interact with endothelial cells (ECs), where they expand, before they reach their ultimate niche, the kidney marrow. We identified tfec, a transcription factor from the mitf family, which is highly enriched in caudal endothelial cells (cECs) at the time of HSC colonization in the CHT. Gain-of-function assays indicate that tfec is capable of expanding HSC-derived hematopoiesis in a non-cell-autonomous fashion. Furthermore, tfec mutants (generated by CRISPR/Cas9) showed reduced hematopoiesis in the CHT, leading to anemia. Tfec mediates these changes by increasing the expression of several cytokines in cECs from the CHT niche. Among these, we found kitlgb, which could rescue the loss of HSCs observed in tfec mutants. We conclude that tfec plays an important role in the niche to expand hematopoietic progenitors through the modulation of several cytokines. The full comprehension of the mechanisms induced by tfec will represent an important milestone toward the expansion of HSCs for regenerative purposes.
Collapse
|
37
|
Hagedorn EJ, Cillis JL, Curley CR, Patch TC, Li B, Blaser BW, Riquelme R, Zon LI, Shah DI. Generation of Parabiotic Zebrafish Embryos by Surgical Fusion of Developing Blastulae. J Vis Exp 2016. [PMID: 27341538 DOI: 10.3791/54168] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Surgical parabiosis of two animals of different genetic backgrounds creates a unique scenario to study cell-intrinsic versus cell-extrinsic roles for candidate genes of interest, migratory behaviors of cells, and secreted signals in distinct genetic settings. Because parabiotic animals share a common circulation, any blood or blood-borne factor from one animal will be exchanged with its partner and vice versa. Thus, cells and molecular factors derived from one genetic background can be studied in the context of a second genetic background. Parabiosis of adult mice has been used extensively to research aging, cancer, diabetes, obesity, and brain development. More recently, parabiosis of zebrafish embryos has been used to study the developmental biology of hematopoiesis. In contrast to mice, the transparent nature of zebrafish embryos permits the direct visualization of cells in the parabiotic context, making it a uniquely powerful method for investigating fundamental cellular and molecular mechanisms. The utility of this technique, however, is limited by a steep learning curve for generating the parabiotic zebrafish embryos. This protocol provides a step-by-step method on how to surgically fuse the blastulae of two zebrafish embryos of different genetic backgrounds to investigate the role of candidate genes of interest. In addition, the parabiotic zebrafish embryos are tolerant to heat shock, making temporal control of gene expression possible. This method does not require a sophisticated set-up and has broad applications for studying cell migration, fate specification, and differentiation in vivo during embryonic development.
Collapse
Affiliation(s)
- Elliott J Hagedorn
- Division of Hematology/Oncology, Boston Children's Hospital; Harvard Medical School
| | - Jennifer L Cillis
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital
| | - Caitlyn R Curley
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital
| | - Taylor C Patch
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital
| | - Brian Li
- Division of Hematology/Oncology, Boston Children's Hospital; Harvard Medical School
| | - Bradley W Blaser
- Division of Hematology/Oncology, Boston Children's Hospital; Harvard Medical School; Division of Hematologic Malignancies, Dana-Farber Cancer Institute
| | - Raquel Riquelme
- Division of Hematology/Oncology, Boston Children's Hospital; Harvard Medical School
| | - Leonard I Zon
- Division of Hematology/Oncology, Boston Children's Hospital; Harvard Medical School; Harvard Stem Cell Institute; Broad Institute of Massachusetts Institute of Technology; Howard Hughes Medical Institute
| | - Dhvanit I Shah
- Division of Hematology/Oncology, Boston Children's Hospital; Harvard Medical School; Division of Hematology, Department of Medicine, Brigham and Women's Hospital; Harvard Stem Cell Institute; Broad Institute of Massachusetts Institute of Technology;
| |
Collapse
|
38
|
Souilhol C, Gonneau C, Lendinez JG, Batsivari A, Rybtsov S, Wilson H, Morgado-Palacin L, Hills D, Taoudi S, Antonchuk J, Zhao S, Medvinsky A. Inductive interactions mediated by interplay of asymmetric signalling underlie development of adult haematopoietic stem cells. Nat Commun 2016; 7:10784. [PMID: 26952187 PMCID: PMC4786750 DOI: 10.1038/ncomms10784] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 01/21/2016] [Indexed: 01/07/2023] Open
Abstract
During embryonic development, adult haematopoietic stem cells (HSCs) emerge preferentially in the ventral domain of the aorta in the aorta-gonad-mesonephros (AGM) region. Several signalling pathways such as Notch, Wnt, Shh and RA are implicated in this process, yet how these interact to regulate the emergence of HSCs has not previously been described in mammals. Using a combination of ex vivo and in vivo approaches, we report here that stage-specific reciprocal dorso-ventral inductive interactions and lateral input from the urogenital ridges are required to drive HSC development in the aorta. Our study strongly suggests that these inductive interactions in the AGM region are mediated by the interplay between spatially polarized signalling pathways. Specifically, Shh produced in the dorsal region of the AGM, stem cell factor in the ventral and lateral regions, and BMP inhibitory signals in the ventral tissue are integral parts of the regulatory system involved in the development of HSCs.
Collapse
Affiliation(s)
- Céline Souilhol
- Institute for Stem Cell Research, Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, SCRM Bioquarter, 5 Little France Drive, Edinburgh EH16 4UU, Scotland, UK
| | - Christèle Gonneau
- Institute for Stem Cell Research, Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, SCRM Bioquarter, 5 Little France Drive, Edinburgh EH16 4UU, Scotland, UK
| | - Javier G. Lendinez
- Institute for Stem Cell Research, Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, SCRM Bioquarter, 5 Little France Drive, Edinburgh EH16 4UU, Scotland, UK
| | - Antoniana Batsivari
- Institute for Stem Cell Research, Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, SCRM Bioquarter, 5 Little France Drive, Edinburgh EH16 4UU, Scotland, UK
| | - Stanislav Rybtsov
- Institute for Stem Cell Research, Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, SCRM Bioquarter, 5 Little France Drive, Edinburgh EH16 4UU, Scotland, UK
| | - Heather Wilson
- Institute for Stem Cell Research, Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, SCRM Bioquarter, 5 Little France Drive, Edinburgh EH16 4UU, Scotland, UK
| | - Lucia Morgado-Palacin
- Institute for Stem Cell Research, Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, SCRM Bioquarter, 5 Little France Drive, Edinburgh EH16 4UU, Scotland, UK
| | - David Hills
- Institute for Stem Cell Research, Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, SCRM Bioquarter, 5 Little France Drive, Edinburgh EH16 4UU, Scotland, UK
| | - Samir Taoudi
- Molecular Medicine Division, The Walter and Eliza Hall Institute of Medical Research, Victoria 3052 Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Victoria 3052 Melbourne, Australia
- Cancer and Haematology Division, The Walter and Eliza Hall Institute of Medical Research, Victoria 3052 Melbourne, Australia
| | | | - Suling Zhao
- Institute for Stem Cell Research, Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, SCRM Bioquarter, 5 Little France Drive, Edinburgh EH16 4UU, Scotland, UK
| | - Alexander Medvinsky
- Institute for Stem Cell Research, Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, SCRM Bioquarter, 5 Little France Drive, Edinburgh EH16 4UU, Scotland, UK
| |
Collapse
|