1
|
Sharma Y, Lo R, Tomilin VN, Ha K, Deremo H, Pareek AV, Dong W, Liao X, Lebedeva S, Charu V, Kambham N, Mutig K, Pochynyuk O, Bhalla V. ClC-Kb pore mutation disrupts glycosylation and triggers distal tubular remodeling. JCI Insight 2024; 9:e175998. [PMID: 39405114 PMCID: PMC11601903 DOI: 10.1172/jci.insight.175998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 10/08/2024] [Indexed: 11/29/2024] Open
Abstract
Mutations in the CLCNKB gene (1p36), encoding the basolateral chloride channel ClC-Kb, cause type 3 Bartter syndrome. We identified a family with a mixed Bartter/Gitelman phenotype and early-onset kidney failure and by employing a candidate gene approach, identified what we believe is a novel homozygous mutation (CLCNKB c.499G>T [p.Gly167Cys]) in exon 6 of CLCNKB in the index patient. We then validated these results with Sanger and whole-exome sequencing. Compared with wild-type ClC-Kb, the Gly167Cys mutant conducted less current and exhibited impaired complex N-linked glycosylation in vitro. We demonstrated that loss of Gly-167, rather than gain of a mutant Cys, impairs complex glycosylation, but that surface expression remains intact. Moreover, Asn-364 was necessary for channel function and complex glycosylation. Morphologic evaluation of human kidney biopsies revealed typical basolateral localization of mutant Gly167Cys ClC-Kb in cortical distal tubular epithelia. However, we detected attenuated expression of distal sodium transport proteins, changes in abundance of distal tubule segments, and hypokalemia-associated intracellular condensates from the index patient compared with control nephrectomy specimens. The present data establish what we believe are novel regulatory mechanisms of ClC-Kb activity and demonstrate nephron remodeling in humans, caused by mutant ClC-Kb, with implications for renal electrolyte handling, blood pressure control, and kidney disease.
Collapse
Affiliation(s)
- Yogita Sharma
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Robin Lo
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Viktor N. Tomilin
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Kotdaji Ha
- Department of Physiology, UCSF, San Francisco, California, USA
| | - Holly Deremo
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Aishwarya V. Pareek
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Wuxing Dong
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Xiaohui Liao
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Svetlana Lebedeva
- Department of Pharmacology, Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Vivek Charu
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Neeraja Kambham
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Kerim Mutig
- Department of Pharmacology, Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- Department of Translational Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Oleh Pochynyuk
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Vivek Bhalla
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
2
|
Rioux AV, Nsimba-Batomene TR, Slimani S, Bergeron NAD, Gravel MAM, Schreiber SV, Fiola MJ, Haydock L, Garneau AP, Isenring P. Navigating the multifaceted intricacies of the Na +-Cl - cotransporter, a highly regulated key effector in the control of hydromineral homeostasis. Physiol Rev 2024; 104:1147-1204. [PMID: 38329422 PMCID: PMC11381001 DOI: 10.1152/physrev.00027.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/01/2024] [Accepted: 02/03/2024] [Indexed: 02/09/2024] Open
Abstract
The Na+-Cl- cotransporter (NCC; SLC12A3) is a highly regulated integral membrane protein that is known to exist as three splice variants in primates. Its primary role in the kidney is to mediate the cosymport of Na+ and Cl- across the apical membrane of the distal convoluted tubule. Through this role and the involvement of other ion transport systems, NCC allows the systemic circulation to reclaim a fraction of the ultrafiltered Na+, K+, Cl-, and Mg+ loads in exchange for Ca2+ and [Formula: see text]. The physiological relevance of the Na+-Cl- cotransport mechanism in humans is illustrated by several abnormalities that result from NCC inactivation through the administration of thiazides or in the setting of hereditary disorders. The purpose of the present review is to discuss the molecular mechanisms and overall roles of Na+-Cl- cotransport as the main topics of interest. On reading the narrative proposed, one will realize that the knowledge gained in regard to these themes will continue to progress unrelentingly no matter how refined it has now become.
Collapse
Affiliation(s)
- A V Rioux
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| | - T R Nsimba-Batomene
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| | - S Slimani
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| | - N A D Bergeron
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| | - M A M Gravel
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| | - S V Schreiber
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| | - M J Fiola
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| | - L Haydock
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
- Service de Néphrologie-Transplantation Rénale Adultes, Hôpital Necker-Enfants Malades, AP-HP, INSERM U1151, Université Paris Cité, Paris, France
| | - A P Garneau
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
- Service de Néphrologie-Transplantation Rénale Adultes, Hôpital Necker-Enfants Malades, AP-HP, INSERM U1151, Université Paris Cité, Paris, France
| | - P Isenring
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| |
Collapse
|
3
|
Culver SA, Suleman N, Kavuru V, Siragy HM. Renal Hypokalemia: An Endocrine Perspective. J Clin Endocrinol Metab 2024; 109:1694-1706. [PMID: 38546505 DOI: 10.1210/clinem/dgae201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Indexed: 06/18/2024]
Abstract
The majority of disorders that cause renal potassium wasting present with abnormalities in adrenal hormone secretion. While these findings frequently lead patients to seek endocrine evaluation, clinicians often struggle to accurately diagnose these conditions, delaying treatment and adversely impacting patient care. At the same time, growing insight into the genetic and molecular basis of these disorders continues to improve their diagnosis and management. In this review, we outline a practical integrated approach to the evaluation of renal hypokalemia syndromes that are seen in endocrine practice while highlighting recent advances in understanding of the genetics and pathophysiology behind them.
Collapse
Affiliation(s)
- Silas A Culver
- Division of Endocrinology, Department of Medicine, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - Nawar Suleman
- Division of Endocrinology, Department of Medicine, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - Varun Kavuru
- Department of Medicine, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - Helmy M Siragy
- Division of Endocrinology, Department of Medicine, University of Virginia Health System, Charlottesville, VA 22908, USA
| |
Collapse
|
4
|
Hamsho S, Alhussen AHD, Alabdullah H, Sleiay B, Kasem N, Hassan Q. Hypokalemia in a young man…think Bartter syndrome type 3. Ann Med Surg (Lond) 2024; 86:3636-3640. [PMID: 38846905 PMCID: PMC11152808 DOI: 10.1097/ms9.0000000000001994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 03/13/2024] [Indexed: 06/09/2024] Open
Abstract
Background Bartter syndrome is an autosomal recessive salt reabsorption disorder that results in decreased extracellular fluid volume with low/normal blood pressure. Case presentation A 17-year-old boy with polydipsia, polyuria, weakness in the lower limbs, and ataxic gait. His Laboratory test shows hypokalemia; hypochloremia, hypomagnesemia and metabolic alkalosis. The authors' patient was managed by fluid and electrolyte replacement, which is essential in emergency management. Conclusion Bartter syndrome is difficult to treat, and currently, there is no complete cure. The overall prognosis depends on the extent of receptor dysfunction, and despite these facts, most patients can live a normal life if they strictly follow their treatment plan.
Collapse
Affiliation(s)
| | | | | | - Bilal Sleiay
- Faculty of Medicine, Hama University, Hama, Syria
| | - Noor Kasem
- Department of Nephrology, Al Assad and Al Mouwasat University Hospital
| | - Qussai Hassan
- Department of Nephrology, Al Assad University Hospital, Faculty of Medicine, Damascus University, Damascus
| |
Collapse
|
5
|
Alexander RT, Dimke H. Molecular mechanisms of loop diuretics on renal calcium and magnesium transport. Acta Physiol (Oxf) 2024; 240:e14138. [PMID: 38520137 DOI: 10.1111/apha.14138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/06/2024] [Accepted: 03/12/2024] [Indexed: 03/25/2024]
Affiliation(s)
- R Todd Alexander
- Department of Physiology & Pediatrics, University of Alberta, Edmonton, Alberta, Canada
- Women's and Children's Health Institute, Edmonton, Alberta, Canada
| | - Henrik Dimke
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Department of Nephrology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
6
|
Yun Y, Park SS, Lee S, Seok H, Park S, Lee SY. Expanding Genotype-Phenotype Correlation of CLCNKA and CLCNKB Variants Linked to Hearing Loss. Int J Mol Sci 2023; 24:17077. [PMID: 38069401 PMCID: PMC10707517 DOI: 10.3390/ijms242317077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
The ClC-K channels CLCNKA and CLCNKB are crucial for the transepithelial transport processes required for sufficient urinary concentrations and sensory mechanoelectrical transduction in the cochlea. Loss-of-function alleles in these channels are associated with various clinical phenotypes, ranging from hypokalemic alkalosis to sensorineural hearing loss (SNHL) accompanied by severe renal conditions, i.e., Bartter's syndrome. Using a stepwise genetic approach encompassing whole-genome sequencing (WGS), we identified one family with compound heterozygous variants in the ClC-K channels, specifically a truncating variant in CLCNKA in trans with a contiguous deletion of CLCNKA and CLCNKB. Breakpoint PCR and Sanger sequencing elucidated the breakpoint junctions derived from WGS, and allele-specific droplet digital PCR confirmed one copy loss of the CLCNKA_CLCNKB contiguous deletion. The proband that harbors the CLCNKA_CLCNKB variants is characterized by SNHL without hypokalemic alkalosis and renal anomalies, suggesting a distinct phenotype in the ClC-K channels in whom SNHL predominantly occurs. These results expanded genotypes and phenotypes associated with ClC-K channels, including the disease entities associated with non-syndromic hearing loss. Repeated identification of deletions across various extents of CLCNKA_CLCNKB suggests a mutational hotspot allele, highlighting the need for an in-depth analysis of the CLCNKA_CLCNKB intergenic region, especially in undiagnosed SNHL patients with a single hit in CLCNKA.
Collapse
Affiliation(s)
- Yejin Yun
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Sang Soo Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Soyoung Lee
- GENOME INSIGHT TECHNOLOGY Inc., Daejeon 34051, Republic of Korea (S.P.)
| | - Heeyoung Seok
- Department of Transdisciplinary Research and Collaboration, Genomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Seongyeol Park
- GENOME INSIGHT TECHNOLOGY Inc., Daejeon 34051, Republic of Korea (S.P.)
| | - Sang-Yeon Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Department of Genomic Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea
- Sensory Organ Research Institute, Seoul National University Medical Research Center, Seoul 03080, Republic of Korea
| |
Collapse
|
7
|
Ye S, Wu P, Gao Z, Wang M, Zhou L, Qi Z. Inhibitory effect of S-nitroso-N-acetylpenicillamine on the basolateral 10-pS Cl- channel in thick ascending limb. PLoS One 2023; 18:e0284707. [PMID: 37083928 PMCID: PMC10121052 DOI: 10.1371/journal.pone.0284707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 04/05/2023] [Indexed: 04/22/2023] Open
Abstract
We have previously reported that L-arginine, a nitric oxide synthase substrate, inhibits the basolateral 10-pS Cl- channel through the cGMP/PKG signaling pathway in the thick ascending limb (TAL). As a NO releasing agent, the effect of S-nitroso-N-acetyl-penicillamine (SNAP) on the channel activity was examined in thick ascending limb of C57BL/6 mice in the present study. SNAP inhibited the basolateral 10-pS Cl- channel in a dose-dependent manner with an IC50 value of 6.6 μM. The inhibitory effect of SNAP was abolished not only by NO scavenger (carboxy-PTIO) but also by blockers of soluble guanylate cyclase (ODQ or LY-83583), indicating that the cGMP-dependent signaling pathway is involved. Moreover, the inhibitory effect of SNAP on the channel was strongly attenuated by a protein kinase G (PKG)-specific inhibitor, KT-5823, but not by the PDE2 inhibitor, BAY-60-7550. We concluded that SNAP inhibited the basolateral 10-pS Cl- channels in the TAL through a cGMP/PKG signaling pathway. As the 10-pS Cl- channel is important for regulation of NaCl absorption along the nephron, these data suggest that SNAP might be served as a regulator to prevent high-salt absorption related diseases, such as hypertension.
Collapse
Affiliation(s)
- Shiwei Ye
- Department of Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen, China
| | - Peng Wu
- Department of Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen, China
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhongxiuzi Gao
- Department of Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen, China
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mingyan Wang
- Department of Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen, China
| | - Li Zhou
- Department of Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen, China
| | - Zhi Qi
- Department of Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
8
|
Nojehdeh ST, Mojbafan M, Hooman N, Hoseini R, Otukesh H. Genetic diagnosis of Bartter syndrome in Iranian patients and detection of a novel homozygous CLCNKB mutation. Clin Case Rep 2022; 10:e6698. [PMID: 36514463 PMCID: PMC9734084 DOI: 10.1002/ccr3.6698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 10/28/2022] [Accepted: 11/18/2022] [Indexed: 12/14/2022] Open
Abstract
An Iranian girl with clinical symptoms of Bartter syndrome like hypokalemia, polyuria, polydipsia, hyponatremia, and hypochloremic alkalosis was referred to us in whom the CLCNKB gene was genetically evaluated using Sanger sequencing. A homozygous pathogenic variant of c.1332_1335delCTCT was detected in this patient.
Collapse
Affiliation(s)
| | - Marzieh Mojbafan
- Department of Medical Genetics, School of MedicineIran University of Medical Sciences (IUMS)TehranIran
- Department of Medical GeneticsAli‐Asghar Children's HospitalTehranIran
| | - Nakysa Hooman
- Clinical research Development CenterIran University of Medical SciencesTehranIran
- Department of Pediatric NephrologyAli‐Asghar Children's HospitalTehranIran
| | - Rozita Hoseini
- Department of Pediatric NephrologyAli‐Asghar Children's HospitalTehranIran
| | - Hasan Otukesh
- Department of Pediatric NephrologyAli‐Asghar Children's HospitalTehranIran
| |
Collapse
|
9
|
Marcoux AA, Tremblay LE, Slimani S, Fiola MJ, Mac-Way F, Haydock L, Garneau AP, Isenring P. Anatomophysiology of the Henle's Loop: Emphasis on the Thick Ascending Limb. Compr Physiol 2021; 12:3119-3139. [PMID: 34964111 DOI: 10.1002/cphy.c210021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The loop of Henle plays a variety of important physiological roles through the concerted actions of ion transport systems in both its apical and basolateral membranes. It is involved most notably in extracellular fluid volume and blood pressure regulation as well as Ca2+ , Mg2+ , and acid-base homeostasis because of its ability to reclaim a large fraction of the ultrafiltered solute load. This nephron segment is also involved in urinary concentration by energizing several of the steps that are required to generate a gradient of increasing osmolality from cortex to medulla. Another important role of the loop of Henle is to sustain a process known as tubuloglomerular feedback through the presence of specialized renal tubular cells that lie next to the juxtaglomerular arterioles. This article aims at describing these physiological roles and at discussing a number of the molecular mechanisms involved. It will also report on novel findings and uncertainties regarding the realization of certain processes and on the pathophysiological consequences of perturbed salt handling by the thick ascending limb of the loop of Henle. Since its discovery 150 years ago, the loop of Henle has remained in the spotlight and is now generating further interest because of its role in the renal-sparing effect of SGLT2 inhibitors. © 2022 American Physiological Society. Compr Physiol 12:1-21, 2022.
Collapse
Affiliation(s)
- Andrée-Anne Marcoux
- Nephrology Research Group, Department of Medicine, Laval University, Québec, QC, Canada
| | - Laurence E Tremblay
- Nephrology Research Group, Department of Medicine, Laval University, Québec, QC, Canada
| | - Samira Slimani
- Nephrology Research Group, Department of Medicine, Laval University, Québec, QC, Canada
| | - Marie-Jeanne Fiola
- Nephrology Research Group, Department of Medicine, Laval University, Québec, QC, Canada
| | - Fabrice Mac-Way
- Nephrology Research Group, Department of Medicine, Laval University, Québec, QC, Canada
| | - Ludwig Haydock
- Nephrology Research Group, Department of Medicine, Laval University, Québec, QC, Canada
| | - Alexandre P Garneau
- Nephrology Research Group, Department of Medicine, Laval University, Québec, QC, Canada.,Cardiometabolic Axis, School of Kinesiology and Physical Activity Sciences, University of Montréal, Montréal, QC, Canada
| | - Paul Isenring
- Nephrology Research Group, Department of Medicine, Laval University, Québec, QC, Canada
| |
Collapse
|
10
|
Marcoux A, Tremblay LE, Slimani S, Fiola M, Mac‐Way F, Garneau AP, Isenring P. Molecular characteristics and physiological roles of Na + -K + -Cl - cotransporter 2. J Cell Physiol 2021; 236:1712-1729. [PMID: 32776569 PMCID: PMC7818487 DOI: 10.1002/jcp.29997] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/28/2020] [Accepted: 07/24/2020] [Indexed: 12/23/2022]
Abstract
Na+ -K+ -Cl- cotransporter 2 (NKCC2; SLC12A1) is an integral membrane protein that comes as three splice variants and mediates the cotranslocation of Na+ , K+ , and Cl- ions through the apical membrane of the thick ascending loop of Henle (TALH). In doing so, and through the involvement of other ion transport systems, it allows this nephron segment to reclaim a large fraction of the ultrafiltered Na+ , Cl- , Ca2+ , Mg2+ , and HCO3- loads. The functional relevance of NKCC2 in human is illustrated by the many abnormalities that result from the inactivation of this transport system through the use of loop diuretics or in the setting of inherited disorders. The following presentation aims at discussing the physiological roles and molecular characteristics of Na+ -K+ -Cl- cotransport in the TALH and those of the individual NKCC2 splice variants more specifically. Many of the historical and recent data that have emerged from the experiments conducted will be outlined and their larger meaning will also be placed into perspective with the aid of various hypotheses.
Collapse
Affiliation(s)
- Andree‐Anne Marcoux
- Department of Medicine, Nephrology Research GroupLaval UniversityQuebec CityQuébecCanada
| | - Laurence E. Tremblay
- Department of Medicine, Nephrology Research GroupLaval UniversityQuebec CityQuébecCanada
| | - Samira Slimani
- Department of Medicine, Nephrology Research GroupLaval UniversityQuebec CityQuébecCanada
| | - Marie‐Jeanne Fiola
- Department of Medicine, Nephrology Research GroupLaval UniversityQuebec CityQuébecCanada
| | - Fabrice Mac‐Way
- Department of Medicine, Nephrology Research GroupLaval UniversityQuebec CityQuébecCanada
| | - Alexandre P. Garneau
- Department of Medicine, Nephrology Research GroupLaval UniversityQuebec CityQuébecCanada
- Cardiometabolic Axis, School of Kinesiology and Physical Activity SciencesUniversity of MontréalMontréalQuebecCanada
| | - Paul Isenring
- Department of Medicine, Nephrology Research GroupLaval UniversityQuebec CityQuébecCanada
| |
Collapse
|
11
|
Guo Y, Lu Y, Wang J, Zhu L, Liu X. Dysregulated ion channels and transporters activate endoplasmic reticulum stress in rat kidney of fetal growth restriction. Life Sci 2020; 259:118276. [PMID: 32798560 DOI: 10.1016/j.lfs.2020.118276] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/08/2020] [Accepted: 08/10/2020] [Indexed: 12/30/2022]
Abstract
AIMS The mechanisms underlying the fetal origin of renal disease remains unknown. This study aimed to investigate the profiles of ion channel and transporter proteins in the fetal kidney in fetal growth restriction (FGR)rats, and to explore their association with the fetal origin of renal disease. MAIN METHODS An FGR rat model was developed by administration of a low-protein diet. Then 367 differentially expressed proteins (DEPs) from quantitative proteome analysis were subjected to Ingenuity Pathway Analysis. 22 DEPs associated with ion channels/transporters were evaluated in the fetal kidney. Na+/H+ exchanger1(NHE1) and its downstream unfolded protein response (UPR) pathway were investigated. Furthermore, overexpression of NHE1 were achieved via plasmid transfection to evaluate the potential influence on the UPR pathway and cell apoptosis in human proximal tubular epithelial cell line HK2 cells. KEY FINDINGS Findings were as follows: 1) In the FGR fetal kidney, aquaporin 2/4, solute carrier (SLC) 8a1, 33a1, etc. were downregulated, whereas other transporters including SLC 2a1, 4a1, 9a1, 29a3, etc. were upregulated. 2) NHE1 mRNA levels were markedly elevated in the FGR fetus. Further investigation revealed an increase in the UPR pathway regulators. 3) In vitro study showed that NHE1 overexpression in HK2 cells significantly induced expression of the endoplasmic reticulum stress (ERS) regulators and led to a decrease in the anti-apoptotic potential. SIGNIFICANCE We speculate that maternal protein malnutrition causes dysregulation of ion channels/transporters in the fetal kidney. Upregulated NHE1 may activate the UPR pathway and induce cell apoptosis thus leading to impairment of kidney function.
Collapse
Affiliation(s)
- Yanyan Guo
- Key Laboratory of maternal-fetal medicine of Liaoning Province, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, China
| | - Yan Lu
- Department of human resource, Shengjing Hospital of China Medical University, China
| | - Jun Wang
- Key Laboratory of maternal-fetal medicine of Liaoning Province, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, China
| | - Liangliang Zhu
- Key Laboratory of maternal-fetal medicine of Liaoning Province, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, China
| | - Xiaomei Liu
- Key Laboratory of maternal-fetal medicine of Liaoning Province, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, China.
| |
Collapse
|
12
|
Sahbani D, Strumbo B, Tedeschi S, Conte E, Camerino GM, Benetti E, Montini G, Aceto G, Procino G, Imbrici P, Liantonio A. Functional Study of Novel Bartter's Syndrome Mutations in ClC-Kb and Rescue by the Accessory Subunit Barttin Toward Personalized Medicine. Front Pharmacol 2020; 11:327. [PMID: 32256370 PMCID: PMC7092721 DOI: 10.3389/fphar.2020.00327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 03/05/2020] [Indexed: 12/12/2022] Open
Abstract
Type III and IV Bartter syndromes (BS) are rare kidney tubulopathies caused by loss-of-function mutations in the CLCNKB and BSND genes coding respectively for the ClC-Kb chloride channels and accessory subunit barttin. ClC-K channels are expressed in the Henle's loop, distal convoluted tubule, and cortical collecting ducts of the kidney and contribute to chloride absorption and urine concentration. In our Italian cohort, we identified two new mutations in CLCNKB, G167V and G289R, in children affected by BS and previously reported genetic variants, A242E, a chimeric gene and the deletion of the whole CLCNKB. All the patients had hypokalemia and metabolic alkalosis, increased serum renin and aldosterone levels and were treated with a symptomatic therapy. In order to define the molecular mechanisms responsible for BS, we co-expressed ClC-Kb wild type and channels with point mutations with barttin in HEK 293 cells and characterized chloride currents through the patch-clamp technique. In addition, we attempted to revert the functional defect caused by BS mutations through barttin overexpression. G167V and A242E channels showed a drastic current reduction compared to wild type, likely suggesting compromised expression of mutant channels at the plasma membrane. Conversely, G289R channel was similar to wild type raising the doubt that an additional mutation in another gene or other mechanisms could account for the clinical phenotype. Interestingly, increasing ClC-K/barttin ratio augmented G167V and A242E mutants' chloride current amplitudes towards wild type levels. These results confirm a genotype-phenotype correlation in BS and represent a preliminary proof of concept that molecules functioning as molecular chaperones can restore channel function in expression-defective ClC-Kb mutants.
Collapse
Affiliation(s)
- Dalila Sahbani
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Bice Strumbo
- Laboratory of Medical Genetics, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Silvana Tedeschi
- Laboratory of Medical Genetics, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Elena Conte
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | | | - Elisa Benetti
- Nephrology, Dialysis and Transplant Unit, Department of Women's and Children's Health, University-Hospital of Padova, Padova, Italy
| | - Giovanni Montini
- Pediatric Nephrology, Dialysis, and Transplant Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | | | - Giuseppe Procino
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Bari, Italy
| | - Paola Imbrici
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Antonella Liantonio
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
13
|
Besouw MTP, Kleta R, Bockenhauer D. Bartter and Gitelman syndromes: Questions of class. Pediatr Nephrol 2020; 35:1815-1824. [PMID: 31664557 PMCID: PMC7501116 DOI: 10.1007/s00467-019-04371-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/28/2019] [Accepted: 09/17/2019] [Indexed: 12/30/2022]
Abstract
Bartter and Gitelman syndromes are rare inherited tubulopathies characterized by hypokalaemic, hypochloraemic metabolic alkalosis. They are caused by mutations in at least 7 genes involved in the reabsorption of sodium in the thick ascending limb (TAL) of the loop of Henle and/or the distal convoluted tubule (DCT). Different subtypes can be distinguished and various classifications have been proposed based on clinical symptoms and/or the underlying genetic cause. Yet, the clinical phenotype can show remarkable variability, leading to potential divergences between classifications. These problems mostly relate to uncertainties over the role of the basolateral chloride exit channel CLCNKB, expressed in both TAL and DCT and to what degree the closely related paralogue CLCNKA can compensate for the loss of CLCNKB function. Here, we review what is known about the physiology of the transport proteins involved in these disorders. We also review the various proposed classifications and explain why a gene-based classification constitutes a pragmatic solution.
Collapse
Affiliation(s)
- Martine T. P. Besouw
- Department of Pediatric Nephrology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Robert Kleta
- Renal Unit, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK ,Department of Renal Medicine, University College London, London, UK
| | - Detlef Bockenhauer
- Renal Unit, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK ,Department of Renal Medicine, University College London, London, UK
| |
Collapse
|
14
|
Pérez-Rius C, Castellanos A, Gaitán-Peñas H, Navarro A, Artuch R, Barrallo-Gimeno A, Estévez R. Role of zebrafish ClC-K/barttin channels in apical kidney chloride reabsorption. J Physiol 2019; 597:3969-3983. [PMID: 31177533 DOI: 10.1113/jp278069] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 05/29/2019] [Indexed: 12/16/2022] Open
Abstract
KEY POINTS We have characterized the zebrafish clc-k and barttin proteins, demonstrating that they form a protein complex mediating chloride flux in a similar manner to their mammalian counterparts. As in mammals, in zebrafish, clc-k and barttin are basically expressed in the kidney. Contrary to what is found in mammals, in zebrafish both proteins show an apical localization in the kidney. We have generated the first knockout in zebrafish of a CLC protein. Lack of clc-k in zebrafish resulted in embryonic lethality, possibly caused by a reduction in total chloride content. As a consequence, there is an up-regulation of other chloride channels and other regulatory mechanisms such as renin or the uro-guanylin receptor in the kidney. barttin is mislocalized in vivo when clc-k is not present, indicating that there is a mutual dependence of the protein expression and localization between barttin and clc-k proteins. ABSTRACT ClC-K/barttin channels are very important for salt transport in the kidney. This function can be clearly seen since mutations in CLCNKB or BSND cause Bartter's syndrome types III and IV, respectively. Working with the freshwater teleost zebrafish, we characterized the genes homologous to the mammalian chloride channel ClC-K and its obligate subunit barttin and we obtained and studied clc-k knockout zebrafish. The zebrafish clc-k/barttin proteins are very similar to their mammalian counterparts, and both proteins are necessary to mediate chloride currents. Localization studies indicated that both proteins are exclusively expressed in the apical membranes of zebrafish kidney tubules. Knockout of clc-k resulted in embryonic lethality. These animals showed barttin mislocalization and a reduction in whole-body chloride concentration, as well as up-regulation of the expression of other chloride channels and renin, and an increase in the kidney expression of the uroguanylin receptor. Our results indicate that apical kidney chloride reabsorption through clc-k/barttin channels is crucial for chloride homeostasis in zebrafish as it is in humans. The zebrafish model could be used as a new in vivo system to study ClC-K function.
Collapse
Affiliation(s)
- Carla Pérez-Rius
- Unitat de Fisiologia, Departament de Ciències Fisiològiques, Genes, Disease and Therapy Program, IDIBELL-Institute of Neurosciences, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Aida Castellanos
- Unitat de Fisiologia, Departament de Ciències Fisiològiques, Genes, Disease and Therapy Program, IDIBELL-Institute of Neurosciences, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Centro de Investigación en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - Héctor Gaitán-Peñas
- Unitat de Fisiologia, Departament de Ciències Fisiològiques, Genes, Disease and Therapy Program, IDIBELL-Institute of Neurosciences, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Centro de Investigación en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - Almudena Navarro
- Unitat de Fisiologia, Departament de Ciències Fisiològiques, Genes, Disease and Therapy Program, IDIBELL-Institute of Neurosciences, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Rafael Artuch
- Centro de Investigación en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain.,Clinical Biochemistry Department, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Alejandro Barrallo-Gimeno
- Unitat de Fisiologia, Departament de Ciències Fisiològiques, Genes, Disease and Therapy Program, IDIBELL-Institute of Neurosciences, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Centro de Investigación en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - Raúl Estévez
- Unitat de Fisiologia, Departament de Ciències Fisiològiques, Genes, Disease and Therapy Program, IDIBELL-Institute of Neurosciences, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Centro de Investigación en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| |
Collapse
|
15
|
Elrharchi S, Riahi Z, Salime S, Nahili H, Rouba H, Kabine M, Bonnet C, Petit C, Barakat A. Two novel homozygous missense mutations identified in the BSND gene in Moroccan patients with Bartter's syndrome. Int J Pediatr Otorhinolaryngol 2018; 113:46-50. [PMID: 30174009 DOI: 10.1016/j.ijporl.2018.07.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 07/05/2018] [Accepted: 07/07/2018] [Indexed: 11/18/2022]
Abstract
OBJECTIVES Hearing loss (HL) is one of the most common sensorineural disorders. In the present study, we identified two novel missense mutations in BSND gene causing Bartter syndrome type IV which is a genetic disease with an autosomal recessive transmission, characterized by hypokalaemia, metabolic alkalosis, an elevation in plasma renin activity and hyperaldosteronism as well as sensorineural deafness. METHODS Whole-exome sequencing was performed to study the genetic causes of Hearing loss in two unrelated patients from two Moroccan families. RESULTS The two novel homozygous mutations p.Arg8Gly (c.22C > G), p.Thr36Asn (c.107C > A) in exon 1 of BSND gene which encodes barttin were identified in 7 patients belonging to two unrelated families originated from central region of Morocco. CONCLUSION We identified two novel missense mutations p.Arg8Gly and p.Thr36Asn in exon 1 of BSND gene; both mutations were described for the first time in Moroccan patients with Bartter syndrome type IV.
Collapse
Affiliation(s)
- Soukaina Elrharchi
- Laboratory of Genomics and Human Genetics, Institut Pasteur du Maroc, Casablanca, Morocco; Laboratoire de santé et environnement, Faculté des Sciences Ain Chock, Université Hassan II, Casablanca, Morocco
| | - Zied Riahi
- INSERM UMRS1120, Institut de la Vision, Paris, France; UPMC-Sorbonnes Universités Paris VI, Paris, France
| | - Sara Salime
- Laboratory of Genomics and Human Genetics, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Halima Nahili
- Laboratory of Genomics and Human Genetics, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Hassan Rouba
- Laboratory of Genomics and Human Genetics, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Mostafa Kabine
- Laboratoire de santé et environnement, Faculté des Sciences Ain Chock, Université Hassan II, Casablanca, Morocco
| | - Crystel Bonnet
- INSERM UMRS1120, Institut de la Vision, Paris, France; UPMC-Sorbonnes Universités Paris VI, Paris, France
| | - Christine Petit
- INSERM UMRS1120, Institut de la Vision, Paris, France; UPMC-Sorbonnes Universités Paris VI, Paris, France; Unité de Génétique et Physiologie de l'Audition, Institut Pasteur, Paris, France; Collège de France, Paris, France
| | - Abdelhamid Barakat
- Laboratory of Genomics and Human Genetics, Institut Pasteur du Maroc, Casablanca, Morocco.
| |
Collapse
|
16
|
Jentsch TJ, Pusch M. CLC Chloride Channels and Transporters: Structure, Function, Physiology, and Disease. Physiol Rev 2018; 98:1493-1590. [DOI: 10.1152/physrev.00047.2017] [Citation(s) in RCA: 214] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
CLC anion transporters are found in all phyla and form a gene family of eight members in mammals. Two CLC proteins, each of which completely contains an ion translocation parthway, assemble to homo- or heteromeric dimers that sometimes require accessory β-subunits for function. CLC proteins come in two flavors: anion channels and anion/proton exchangers. Structures of these two CLC protein classes are surprisingly similar. Extensive structure-function analysis identified residues involved in ion permeation, anion-proton coupling and gating and led to attractive biophysical models. In mammals, ClC-1, -2, -Ka/-Kb are plasma membrane Cl−channels, whereas ClC-3 through ClC-7 are 2Cl−/H+-exchangers in endolysosomal membranes. Biological roles of CLCs were mostly studied in mammals, but also in plants and model organisms like yeast and Caenorhabditis elegans. CLC Cl−channels have roles in the control of electrical excitability, extra- and intracellular ion homeostasis, and transepithelial transport, whereas anion/proton exchangers influence vesicular ion composition and impinge on endocytosis and lysosomal function. The surprisingly diverse roles of CLCs are highlighted by human and mouse disorders elicited by mutations in their genes. These pathologies include neurodegeneration, leukodystrophy, mental retardation, deafness, blindness, myotonia, hyperaldosteronism, renal salt loss, proteinuria, kidney stones, male infertility, and osteopetrosis. In this review, emphasis is laid on biophysical structure-function analysis and on the cell biological and organismal roles of mammalian CLCs and their role in disease.
Collapse
Affiliation(s)
- Thomas J. Jentsch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany; and Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Genova, Italy
| | - Michael Pusch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany; and Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Genova, Italy
| |
Collapse
|
17
|
Wojciechowski D, Thiemann S, Schaal C, Rahtz A, de la Roche J, Begemann B, Becher T, Fischer M. Activation of renal ClC-K chloride channels depends on an intact N terminus of their accessory subunit barttin. J Biol Chem 2018; 293:8626-8637. [PMID: 29674316 DOI: 10.1074/jbc.ra117.000860] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 04/17/2018] [Indexed: 12/27/2022] Open
Abstract
ClC-K channels belong to the CLC family of chloride channels and chloride/proton antiporters. They contribute to sodium chloride reabsorption in Henle's loop of the kidney and to potassium secretion into the endolymph by the stria vascularis of the inner ear. Their accessory subunit barttin stabilizes the ClC-K/barttin complex, promotes its insertion into the surface membrane, and turns the pore-forming subunits into a conductive state. Barttin mutations cause Bartter syndrome type IV, a salt-wasting nephropathy with sensorineural deafness. Here, studying ClC-K/barttin channels heterologously expressed in MDCK-II and HEK293T cells with confocal imaging and patch-clamp recordings, we demonstrate that the eight-amino-acids-long barttin N terminus is required for channel trafficking and activation. Deletion of the complete N terminus (Δ2-8 barttin) retained barttin and human hClC-Ka channels in intracellular compartments. Partial N-terminal deletions did not compromise subcellular hClC-Ka trafficking but drastically reduced current amplitudes. Sequence deletions encompassing Thr-6, Phe-7, or Arg-8 in barttin completely failed to activate hClC-Ka. Analyses of protein expression and whole-cell current noise revealed that inactive channels reside in the plasma membrane. Substituting the deleted N terminus with a polyalanine sequence was insufficient for recovering chloride currents, and single amino acid substitutions highlighted that the correct sequence is required for proper function. Fast and slow gate activation curves obtained from rat V166E rClC-K1/barttin channels indicated that mutant barttin fails to constitutively open the slow gate. Increasing expression of barttin over that of ClC-K partially recovered this insufficiency, indicating that N-terminal modifications of barttin alter both binding affinities and gating properties.
Collapse
Affiliation(s)
- Daniel Wojciechowski
- From the Institute for Neurophysiology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Stefan Thiemann
- From the Institute for Neurophysiology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Christina Schaal
- From the Institute for Neurophysiology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Alina Rahtz
- From the Institute for Neurophysiology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Jeanne de la Roche
- From the Institute for Neurophysiology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Birgit Begemann
- From the Institute for Neurophysiology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Toni Becher
- From the Institute for Neurophysiology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Martin Fischer
- From the Institute for Neurophysiology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| |
Collapse
|
18
|
Wingo CS, Stockand JD. Alkaline activation of ClC-K2 chloride channels switches renal cells from reabsorbing to secreting. J Gen Physiol 2018; 148:195-9. [PMID: 27574289 PMCID: PMC5004340 DOI: 10.1085/jgp.201611669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 08/05/2016] [Indexed: 12/28/2022] Open
Affiliation(s)
- Charles S Wingo
- Department of Medicine, University of Florida, Gainesville, FL 32610 Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL 32610 Nephrology Section, Department of Veteran Affairs Medical Center, Gainesville, FL 32608
| | - James D Stockand
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| |
Collapse
|
19
|
Pinelli L, Nissant A, Edwards A, Lourdel S, Teulon J, Paulais M. Dual regulation of the native ClC-K2 chloride channel in the distal nephron by voltage and pH. J Gen Physiol 2017; 148:213-26. [PMID: 27574292 PMCID: PMC5004338 DOI: 10.1085/jgp.201611623] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 07/07/2016] [Indexed: 12/23/2022] Open
Abstract
ClC-K2 is present on the basolateral membrane of kidney epithelial cells, but little is known about its single channel properties. Pinelli et al. record unitary ClC-K2 currents from intercalated cells of mouse connecting tubules and investigate their regulation by voltage, pH, Cl−, and Ca2+. ClC-K2, a member of the ClC family of Cl− channels and transporters, forms the major basolateral Cl− conductance in distal nephron epithelial cells and therefore plays a central role in renal Cl− absorption. However, its regulation remains largely unknown because of the fact that recombinant ClC-K2 has not yet been studied at the single-channel level. In the present study, we investigate the effects of voltage, pH, Cl−, and Ca2+ on native ClC-K2 in the basolateral membrane of intercalated cells from the mouse connecting tubule. The ∼10-pS channel shows a steep voltage dependence such that channel activity increases with membrane depolarization. Intracellular pH (pHi) and extracellular pH (pHo) differentially modulate the voltage dependence curve: alkaline pHi flattens the curve by causing an increase in activity at negative voltages, whereas alkaline pHo shifts the curve toward negative voltages. In addition, pHi, pHo, and extracellular Ca2+ strongly increase activity, mainly because of an increase in the number of active channels with a comparatively minor effect on channel open probability. Furthermore, voltage alters both the number of active channels and their open probability, whereas intracellular Cl− has little influence. We propose that changes in the number of active channels correspond to them entering or leaving an inactivated state, whereas modulation of open probability corresponds to common gating by these channels. We suggest that pH, through the combined effects of pHi and pHo on ClC-K2, might be a key regulator of NaCl absorption and Cl−/HCO3− exchange in type B intercalated cells.
Collapse
Affiliation(s)
- Laurent Pinelli
- Sorbonne Universités, Université Pierre-et-Marie-Curie Paris 06, UMR_S 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France Institut National de la Santé et de la Recherche Médicale, UMR_S 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France Centre National de la Recherche Scientifique ERL 8228, Centre de Recherche des Cordeliers, F-75006 Paris, France
| | - Antoine Nissant
- Sorbonne Universités, Université Pierre-et-Marie-Curie Paris 06, UMR_S 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France Institut National de la Santé et de la Recherche Médicale, UMR_S 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France Centre National de la Recherche Scientifique ERL 8228, Centre de Recherche des Cordeliers, F-75006 Paris, France
| | - Aurélie Edwards
- Sorbonne Universités, Université Pierre-et-Marie-Curie Paris 06, UMR_S 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France Institut National de la Santé et de la Recherche Médicale, UMR_S 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France Centre National de la Recherche Scientifique ERL 8228, Centre de Recherche des Cordeliers, F-75006 Paris, France
| | - Stéphane Lourdel
- Sorbonne Universités, Université Pierre-et-Marie-Curie Paris 06, UMR_S 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France Institut National de la Santé et de la Recherche Médicale, UMR_S 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France Centre National de la Recherche Scientifique ERL 8228, Centre de Recherche des Cordeliers, F-75006 Paris, France
| | - Jacques Teulon
- Sorbonne Universités, Université Pierre-et-Marie-Curie Paris 06, UMR_S 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France Institut National de la Santé et de la Recherche Médicale, UMR_S 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France Centre National de la Recherche Scientifique ERL 8228, Centre de Recherche des Cordeliers, F-75006 Paris, France
| | - Marc Paulais
- Sorbonne Universités, Université Pierre-et-Marie-Curie Paris 06, UMR_S 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France Institut National de la Santé et de la Recherche Médicale, UMR_S 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France Centre National de la Recherche Scientifique ERL 8228, Centre de Recherche des Cordeliers, F-75006 Paris, France
| |
Collapse
|
20
|
Jiang M, Karasawa T, Steyger PS. Aminoglycoside-Induced Cochleotoxicity: A Review. Front Cell Neurosci 2017; 11:308. [PMID: 29062271 PMCID: PMC5640705 DOI: 10.3389/fncel.2017.00308] [Citation(s) in RCA: 185] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 09/15/2017] [Indexed: 12/20/2022] Open
Abstract
Aminoglycoside antibiotics are used as prophylaxis, or urgent treatment, for many life-threatening bacterial infections, including tuberculosis, sepsis, respiratory infections in cystic fibrosis, complex urinary tract infections and endocarditis. Although aminoglycosides are clinically-essential antibiotics, the mechanisms underlying their selective toxicity to the kidney and inner ear continue to be unraveled despite more than 70 years of investigation. The following mechanisms each contribute to aminoglycoside-induced toxicity after systemic administration: (1) drug trafficking across endothelial and epithelial barrier layers; (2) sensory cell uptake of these drugs; and (3) disruption of intracellular physiological pathways. Specific factors can increase the risk of drug-induced toxicity, including sustained exposure to higher levels of ambient sound, and selected therapeutic agents such as loop diuretics and glycopeptides. Serious bacterial infections (requiring life-saving aminoglycoside treatment) induce systemic inflammatory responses that also potentiate the degree of ototoxicity and permanent hearing loss. We discuss prospective clinical strategies to protect auditory and vestibular function from aminoglycoside ototoxicity, including reduced cochlear or sensory cell uptake of aminoglycosides, and otoprotection by ameliorating intracellular cytotoxicity.
Collapse
Affiliation(s)
- Meiyan Jiang
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Takatoshi Karasawa
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Peter S Steyger
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, United States.,National Center for Rehabilitative Auditory Research, Portland VA Medical Center (VHA), Portland, OR, United States
| |
Collapse
|
21
|
Raina R, Chaturvedi T, Polaconda S, Siri Mukunda A, Kumar Sethi S, Krishnappa V. A unique finding of normal aldosterone level in Bartter’s syndrome. J Nephropathol 2017. [DOI: 10.15171/jnp.2017.59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
22
|
Imbrici P, Tricarico D, Mangiatordi GF, Nicolotti O, Lograno MD, Conte D, Liantonio A. Pharmacovigilance database search discloses ClC-K channels as a novel target of the AT 1 receptor blockers valsartan and olmesartan. Br J Pharmacol 2017; 174:1972-1983. [PMID: 28334417 DOI: 10.1111/bph.13794] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 03/03/2017] [Accepted: 03/04/2017] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND AND PURPOSE Human ClC-K chloride channels are highly attractive targets for drug discovery as they have a variety of important physiological functions and are associated with genetic disorders. These channels are crucial in the kidney as they control chloride reabsorption and water diuresis. In addition, loss-of-function mutations of CLCNKB and BSND genes cause Bartter's syndrome (BS), whereas CLCNKA and CLCNKB gain-of-function polymorphisms predispose to a rare form of salt sensitive hypertension. Both disorders lack a personalized therapy that is in most cases only symptomatic. The aim of this study was to identify novel ClC-K ligands from drugs already on the market, by exploiting the pharmacological side activity of drug molecules available from the FDA Adverse Effects Reporting System database. EXPERIMENTAL APPROACH We searched for drugs having a Bartter-like syndrome as a reported side effect, with the assumption that BS could be causatively related to the block of ClC-K channels. The ability of the selected BS-causing drugs to bind and block ClC-K channels was then validated through an integrated experimental and computational approach based on patch clamp electrophysiology in HEK293 cells and molecular docking simulations. KEY RESULTS Valsartan and olmesartan were able to block ClC-Ka channels and the molecular requirements for effective inhibition of these channels have been identified. CONCLUSION AND IMPLICATIONS These results suggest additional mechanisms of action for these sartans further to their primary AT1 receptor antagonism and propose these compounds as leads for designing new potent ClC-K ligands.
Collapse
Affiliation(s)
- Paola Imbrici
- Department of Pharmacy - Drug Sciences, University of Bari 'Aldo Moro', Bari, Italy
| | - Domenico Tricarico
- Department of Pharmacy - Drug Sciences, University of Bari 'Aldo Moro', Bari, Italy
| | | | - Orazio Nicolotti
- Department of Pharmacy - Drug Sciences, University of Bari 'Aldo Moro', Bari, Italy
| | | | - Diana Conte
- Department of Pharmacy - Drug Sciences, University of Bari 'Aldo Moro', Bari, Italy
| | - Antonella Liantonio
- Department of Pharmacy - Drug Sciences, University of Bari 'Aldo Moro', Bari, Italy
| |
Collapse
|
23
|
Grill A, Schießl IM, Gess B, Fremter K, Hammer A, Castrop H. Salt-losing nephropathy in mice with a null mutation of the Clcnk2 gene. Acta Physiol (Oxf) 2016; 218:198-211. [PMID: 27421685 DOI: 10.1111/apha.12755] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 05/03/2016] [Accepted: 07/11/2016] [Indexed: 12/19/2022]
Abstract
AIM The basolateral chloride channel ClC-Kb facilitates Cl reabsorption in the distal nephron of the human kidney. Functional mutations in CLCNKB are associated with Bartter's syndrome type 3, a hereditary salt-losing nephropathy. To address the function of ClC-K2 in vivo, we generated ClC-K2-deficient mice. METHODS ClC-K2-deficient mice were generated using TALEN technology. RESULTS ClC-K2-deficient mice were viable and born in a Mendelian ratio. ClC-K2-/- mice showed no gross anatomical abnormalities, but they were growth retarded. The 24-h urine volume was increased in ClC-K2-/- mice (4.4 ± 0.6 compared with 0.9 ± 0.2 mL per 24 h in wild-type littermates; P = 0.001). Accordingly, ambient urine osmolarity was markedly reduced (590 ± 39 vs. 2216 ± 132 mosmol L-1 in wild types; P < 0.0001). During water restriction (24 h), urinary osmolarity increased to 1633 ± 153 and 3769 ± 129 mosmol L-1 in ClC-K2-/- and wild-type mice (n = 12; P < 0.0001), accompanied by a loss of body weight of 12 ± 0.4 and 8 ± 0.2% respectively (P < 0.0001). ClC-K2-/- mice showed an increased renal sodium excretion and compromised salt conservation during a salt-restricted diet. The salt-losing phenotype of ClC-K2-/- mice was associated with a reduced plasma volume, hypotension, a slightly reduced glomerular filtration rate, an increased renal prostaglandin E2 generation and a massively stimulated renin-angiotensin system. Clckb-/- mice showed a reduced sensitivity to furosemide and were completely resistant to thiazides. CONCLUSION Loss of ClC-K2 compromises TAL function and abolishes salt reabsorption in the distal convoluted tubule. Our data suggest that ClC-K2 is crucial for renal salt reabsorption and concentrating ability. ClC-K2-deficient mice in most aspects mimic patients with Bartter's syndrome type 3.
Collapse
Affiliation(s)
- A. Grill
- Institute of Physiology; University of Regensburg; Regensburg Germany
| | - I. M. Schießl
- Institute of Physiology; University of Regensburg; Regensburg Germany
| | - B. Gess
- Institute of Physiology; University of Regensburg; Regensburg Germany
| | - K. Fremter
- Institute of Physiology; University of Regensburg; Regensburg Germany
| | - A. Hammer
- Institute of Physiology; University of Regensburg; Regensburg Germany
| | - H. Castrop
- Institute of Physiology; University of Regensburg; Regensburg Germany
| |
Collapse
|
24
|
Luan H, Wu P, Wang M, Sui H, Fan L, Gu R. Effects of adenosine stimulation on the mRNA expression of CLCNKB in the basolateral medullary thick ascending limb of the rat kidney. Mol Med Rep 2016; 14:4391-4398. [PMID: 27748841 DOI: 10.3892/mmr.2016.5781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 08/06/2016] [Indexed: 11/06/2022] Open
Abstract
Adenosine is a molecule produced by several organs within the body, including the kidneys, where it acts as an autoregulatory factor. It mediates ion transport in several nephron segments, including the proximal tubule and the thick ascending limb (TAL). Ion transport is dictated in part by anionic chloride channels, which regulate crucial kidney functions, including the reabsorption of Na+ and Cl‑, urine concentration, and establishing and maintaining the corticomedullary osmotic gradient. The present study investigated the effects of adenosine on the mRNA expression of chloride voltage‑gated channel Kb (CLCNKB), a candidate gene involved in hypertension, which encodes for the ClC‑Kb channel. Medullary thick ascending limb (mTAL) tubules were isolated from the rat kidney, and primary cultures of mTAL cells from the mTAL tubules were established. The cells were treated with adenosine and the mRNA expression of CLCNKB was detected by reverse transcription‑quantitative polymerase chain reaction. The cells were also treated with pathways inhibitors (H8 and AACOCF3), and the protein expression of cyclic adenosine 3',5'‑monophosphate (cAMP)‑protein kinase A (PKA) and phospholipase A2 (PLA2) by were analyzed by western blotting. The findings indicated that adenosine increased the mRNA expression of CLCNKB in primary cultures of medullary TAL cells, and this stimulatory effect was regulated by the cAMP‑PKA and PLA2‑arachidonic acid (AA) pathways. The present study showed that adenosine affected the mRNA expression of CLCNKB, initially through the cAMP‑PKA pathway and then the PLA2‑AA pathway.
Collapse
Affiliation(s)
- Haiyan Luan
- Department of Pharmacology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Peng Wu
- Department of Pharmacology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Mingxiao Wang
- Department of Pharmacology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Hongyu Sui
- Department of Physiology, Basic Medical School, Jiamusi University, Jiamusi, Heilongjiang 154007, P.R. China
| | - Lili Fan
- Department of Pharmacology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Ruimin Gu
- Department of Pharmacology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| |
Collapse
|
25
|
Imbrici P, Liantonio A, Camerino GM, De Bellis M, Camerino C, Mele A, Giustino A, Pierno S, De Luca A, Tricarico D, Desaphy JF, Conte D. Therapeutic Approaches to Genetic Ion Channelopathies and Perspectives in Drug Discovery. Front Pharmacol 2016; 7:121. [PMID: 27242528 PMCID: PMC4861771 DOI: 10.3389/fphar.2016.00121] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 04/25/2016] [Indexed: 12/21/2022] Open
Abstract
In the human genome more than 400 genes encode ion channels, which are transmembrane proteins mediating ion fluxes across membranes. Being expressed in all cell types, they are involved in almost all physiological processes, including sense perception, neurotransmission, muscle contraction, secretion, immune response, cell proliferation, and differentiation. Due to the widespread tissue distribution of ion channels and their physiological functions, mutations in genes encoding ion channel subunits, or their interacting proteins, are responsible for inherited ion channelopathies. These diseases can range from common to very rare disorders and their severity can be mild, disabling, or life-threatening. In spite of this, ion channels are the primary target of only about 5% of the marketed drugs suggesting their potential in drug discovery. The current review summarizes the therapeutic management of the principal ion channelopathies of central and peripheral nervous system, heart, kidney, bone, skeletal muscle and pancreas, resulting from mutations in calcium, sodium, potassium, and chloride ion channels. For most channelopathies the therapy is mainly empirical and symptomatic, often limited by lack of efficacy and tolerability for a significant number of patients. Other channelopathies can exploit ion channel targeted drugs, such as marketed sodium channel blockers. Developing new and more specific therapeutic approaches is therefore required. To this aim, a major advancement in the pharmacotherapy of channelopathies has been the discovery that ion channel mutations lead to change in biophysics that can in turn specifically modify the sensitivity to drugs: this opens the way to a pharmacogenetics strategy, allowing the development of a personalized therapy with increased efficacy and reduced side effects. In addition, the identification of disease modifiers in ion channelopathies appears an alternative strategy to discover novel druggable targets.
Collapse
Affiliation(s)
- Paola Imbrici
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro" Bari, Italy
| | - Antonella Liantonio
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro" Bari, Italy
| | - Giulia M Camerino
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro" Bari, Italy
| | - Michela De Bellis
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro" Bari, Italy
| | - Claudia Camerino
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro" Bari, Italy
| | - Antonietta Mele
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro" Bari, Italy
| | - Arcangela Giustino
- Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro" Bari, Italy
| | - Sabata Pierno
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro" Bari, Italy
| | - Annamaria De Luca
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro" Bari, Italy
| | - Domenico Tricarico
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro" Bari, Italy
| | - Jean-Francois Desaphy
- Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro" Bari, Italy
| | - Diana Conte
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro" Bari, Italy
| |
Collapse
|
26
|
Seyberth HW. Pathophysiology and clinical presentations of salt-losing tubulopathies. Pediatr Nephrol 2016; 31:407-18. [PMID: 26178649 DOI: 10.1007/s00467-015-3143-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 06/01/2015] [Accepted: 06/05/2015] [Indexed: 12/21/2022]
Abstract
At least three renal tubular segments are involved in the pathophysiology of salt-losing tubulopathies (SLTs). Whether the pathogenesis starts either in the thick ascending limb of the loop of Henle (TAL) or in the distal convoluted tubule (DCT), it is the function of the downstream-localized aldosterone sensitive distal tubule (ASDT) to contribute to the adaptation process. In isolated TAL defects (loop disorders) ASDT adaptation is supported by upregulation of DCT, whereas in DCT disorders the ASDT is complemented by upregulation of TAL function. This upregulation has a major impact on the clinical presentation of SLT patients. Taking into account both the symptoms and signs of primary tubular defect and of the secondary reactions of adaptation, a clinical diagnosis can be made that eventually leads to an appropriate therapy. In addition to salt wasting, as occurs in all SLTs, characteristic features of loop disorders are hypo- or isosthenuric polyuria and hypercalciuria, whereas characteristics of DCT disorders are hypokalemia and (symptomatic) hypomagnesemia. In both SLT categories, replacement of urinary losses is the primary goal of treatment. In loop disorders COX inhibitors are also recommended to mitigate polyuria, and in DCT disorders magnesium supplementation is essential for effective treatment. Of note, the combination of a salt- and potassium-rich diet together with an adequate fluid intake is always the basis of long-term treatment in all SLTs.
Collapse
Affiliation(s)
- Hannsjörg W Seyberth
- Department of Pediatrics and Adolescent Medicine, Philipps University, Marburg, Germany. .,, Lazarettgarten 23, 76829, Landau, Germany.
| |
Collapse
|
27
|
Wu P, Gao Z, Ye S, Qi Z. Nitric oxide inhibits basolateral 10-pS Cl - channels through the cGMP/PKG signaling pathway in the thick ascending limb of C57BL/6 mice. Am J Physiol Renal Physiol 2016; 310:F755-F762. [PMID: 26764200 DOI: 10.1152/ajprenal.00270.2015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 01/07/2016] [Indexed: 11/22/2022] Open
Abstract
We used patch-clamp techniques to examine whether nitric oxide (NO) decreases NaCl reabsorption by suppressing basolateral 10-pS Cl- channels in the thick ascending limb (TAL). Both the NO synthase substrate l-arginine (l-Arg) and the NO donor S-nitroso-N-acetylpenicillamine significantly inhibited 10-pS Cl- channel activity in the TAL. The inhibitory effect of l-Arg on Cl- channels was completely abolished in the presence of the NO synthase inhibitor or NO scavenger. Moreover, inhibition of soluble guanylyl cyclase abrogated the effect of l-Arg on Cl- channels, whereas the cGMP analog 8-bromo-cGMP (8-BrcGMP) mimicked the effect of l-Arg and significantly decreased 10-pS Cl- channel activity, indicating that NO inhibits basolateral Cl- channels by increasing cGMP production. Furthermore, treatment of the TAL with a PKG inhibitor blocked the effect of l-Arg and 8-BrcGMP on Cl- channels, respectively. In contrast, a phosphodiesterase 2 inhibitor had no significant effect on l-Arg or 8-BrcGMP-induced inhibition of Cl- channels. Therefore, we conclude that NO decreases basolateral 10-pS Cl- channel activity through a cGMP-dependent PKG pathway, which may contribute to the natriuretic and diuretic effects of NO in vivo.
Collapse
Affiliation(s)
- Peng Wu
- Department of Basic Medical Sciences, Medical College, Xiamen University, Xiamen, China
| | - Zhongxiuzi Gao
- Department of Basic Medical Sciences, Medical College, Xiamen University, Xiamen, China
| | - Shiwei Ye
- Department of Basic Medical Sciences, Medical College, Xiamen University, Xiamen, China
| | - Zhi Qi
- Department of Basic Medical Sciences, Medical College, Xiamen University, Xiamen, China
| |
Collapse
|
28
|
Cha EJ, Hwang WM, Yun SR, Park MH. An Adult Case of Bartter Syndrome Type III Presenting with Proteinuria. J Pathol Transl Med 2016; 50:160-4. [PMID: 26755355 PMCID: PMC4804144 DOI: 10.4132/jptm.2015.08.31] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 08/04/2015] [Accepted: 08/31/2015] [Indexed: 11/18/2022] Open
Abstract
Bartter syndrome (BS) I–IV is a rare autosomal recessive disorder affecting salt reabsorption in the thick ascending limb of the loop of Henle. This report highlights clinicopathological findings and genetic studies of classic BS in a 22-year-old female patient who presented with persistent mild proteinuria for 2 years. A renal biopsy demonstrated a mild to moderate increase in the mesangial cells and matrix of most glomeruli, along with marked juxtaglomerular cell hyperplasia. These findings suggested BS associated with mild IgA nephropathy. Focal tubular atrophy, interstitial fibrosis, and lymphocytic infiltration were also observed. A genetic study of the patient and her parents revealed a mutation of the CLCNKB genes. The patient was diagnosed with BS, type III. This case represents an atypical presentation of classic BS in an adult patient. Pathologic findings of renal biopsy combined with genetic analysis and clinicolaboratory findings are important in making an accurate diagnosis.
Collapse
Affiliation(s)
- Eun Jung Cha
- Department of Pathology, Konyang University Hospital, Konyang University College of Medicine, Daejeon, Korea
| | - Won Min Hwang
- Division of Nephrology, Department of Internal Medicine, Konyang University Hospital, Konyang University College of Medicine, Daejeon, Korea
| | - Sung-Ro Yun
- Division of Nephrology, Department of Internal Medicine, Konyang University Hospital, Konyang University College of Medicine, Daejeon, Korea
| | - Moon Hyang Park
- Department of Pathology, Konyang University Hospital, Konyang University College of Medicine, Daejeon, Korea
| |
Collapse
|
29
|
Gattineni J, Baum M. Developmental changes in renal tubular transport-an overview. Pediatr Nephrol 2015; 30:2085-98. [PMID: 24253590 PMCID: PMC4028442 DOI: 10.1007/s00467-013-2666-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 10/01/2013] [Accepted: 10/11/2013] [Indexed: 10/26/2022]
Abstract
The adult kidney maintains a constant volume and composition of extracellular fluid despite changes in water and salt intake. The neonate is born with a kidney that has a small fraction of the glomerular filtration rate of the adult and immature tubules that function at a lower capacity than that of the mature animal. Nonetheless, the neonate is also able to maintain a constant extracellular fluid volume and composition. Postnatal renal tubular development was once thought to be due to an increase in the transporter abundance to meet the developmental increase in glomerular filtration rate. However, postnatal renal development of each nephron segment is quite complex. There are isoform changes of several transporters as well as developmental changes in signal transduction that affect the capacity of renal tubules to reabsorb solutes and water. This review will discuss neonatal tubular function with an emphasis on the differences that have been found between the neonate and adult. We will also discuss some of the factors that are responsible for the maturational changes in tubular transport that occur during postnatal renal development.
Collapse
Affiliation(s)
- Jyothsna Gattineni
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390-9061, USA
| | - Michel Baum
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390-9061, USA.
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
30
|
Accardi A. Structure and gating of CLC channels and exchangers. J Physiol 2015; 593:4129-38. [PMID: 26148215 DOI: 10.1113/jp270575] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 06/28/2015] [Indexed: 11/08/2022] Open
Abstract
Since their serendipitous discovery the CLC family of Cl(-) transporting proteins has been a never ending source of surprises. From their double-barrelled architecture to their complex structure and divergence as channels and transporters, the CLCs never cease to amaze biophysicists, biochemists and physiologists alike. These unusual functional properties allow the CLCs to fill diverse physiological niches, regulating processes that range from muscle contraction to acidification of intracellular organelles, nutrient accumulation and survival of bacteria to environmental stresses. Over the last 15 years, the availability of atomic-level information on the structure of the CLCs, coupled to the discovery that the family is divided into passive channels and secondary active transporters, has revolutionized our understanding of their function. These breakthroughs led to the identification of the key structural elements regulating gating, transport, selectivity and regulation by ligands. Unexpectedly, many lines of evidence indicate that the CLC exchangers function according to a non-conventional transport mechanism that defies the fundamental tenets of the alternating-access paradigm for exchange transport, paving the way for future unexpected insights into the principles underlying active transport and channel gating.
Collapse
Affiliation(s)
- Alessio Accardi
- Departments of Anaesthesiology, Physiology & Biophysics, and Biochemistry, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10021, USA
| |
Collapse
|
31
|
Andrini O, Keck M, Briones R, Lourdel S, Vargas-Poussou R, Teulon J. ClC-K chloride channels: emerging pathophysiology of Bartter syndrome type 3. Am J Physiol Renal Physiol 2015; 308:F1324-34. [DOI: 10.1152/ajprenal.00004.2015] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 03/23/2015] [Indexed: 02/08/2023] Open
Abstract
The mutations in the CLCNKB gene encoding the ClC-Kb chloride channel are responsible for Bartter syndrome type 3, one of the four variants of Bartter syndrome in the genetically based nomenclature. All forms of Bartter syndrome are characterized by hypokalemia, metabolic alkalosis, and secondary hyperaldosteronism, but Bartter syndrome type 3 has the most heterogeneous presentation, extending from severe to very mild. A relatively large number of CLCNKB mutations have been reported, including gene deletions and nonsense or missense mutations. However, only 20 CLCNKB mutations have been functionally analyzed, due to technical difficulties regarding ClC-Kb functional expression in heterologous systems. This review provides an overview of recent progress in the functional consequences of CLCNKB mutations on ClC-Kb chloride channel activity. It has been observed that 1) all ClC-Kb mutants have an impaired expression at the membrane; and 2) a minority of the mutants combines reduced membrane expression with altered pH-dependent channel gating. Although further investigation is needed to fully characterize disease pathogenesis, Bartter syndrome type 3 probably belongs to the large family of conformational diseases, in which the mutations destabilize channel structure, inducing ClC-Kb retention in the endoplasmic reticulum and accelerated channel degradation.
Collapse
Affiliation(s)
- Olga Andrini
- UPMC Université Paris 06, UMR_S 1138, Team 3, Paris, France
- INSERM, UMR_S 872, Paris, France
| | - Mathilde Keck
- UPMC Université Paris 06, UMR_S 1138, Team 3, Paris, France
- INSERM, UMR_S 872, Paris, France
| | - Rodolfo Briones
- Department of Theoretical and Computational Biophysics, Max-Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Stéphane Lourdel
- UPMC Université Paris 06, UMR_S 1138, Team 3, Paris, France
- INSERM, UMR_S 872, Paris, France
| | - Rosa Vargas-Poussou
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Département de Génétique, Paris, France; and
- Université Paris-Descartes, Faculté de Médecine, Paris, France
| | - Jacques Teulon
- UPMC Université Paris 06, UMR_S 1138, Team 3, Paris, France
- INSERM, UMR_S 872, Paris, France
| |
Collapse
|
32
|
Koulouridis E, Koulouridis I. Molecular pathophysiology of Bartter's and Gitelman's syndromes. World J Pediatr 2015; 11:113-25. [PMID: 25754753 DOI: 10.1007/s12519-015-0016-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 10/23/2014] [Indexed: 12/17/2022]
Abstract
BACKGROUND In the last two decades, progress in cytogenetic and genome research has enabled investigators to unravel the underlying molecular mechanisms of inherited tubulopathies such as Bartter's and Gitelman's syndromes and helped physicians to better understand not only these two pathologic entities but also renal pathophysiology and salt sensitive hypertension. DATA SOURCES Articles collected from PubMed and open access journals included original articles, research articles, and comprehensive reviews. They were evaluated by the authors with an special emphasis on originality and up to date information about molecular pathophysiology. RESULTS Bartter's and Gitelman's syndromes are two different inherited salt loosing tubulopathies. They are characterized by various inability of distal nephron to reabsorb sodium chloride with resultant extarcellular volume contraction and increased activity of the renin angiotensin aldosterone system. Hypokalemic metabolic alkalosis is a common feature of these two forms of tubulopathies. Hypercalciuria characterizes the majority of Bartter's syndrome, and hypomagnesemia with hypocalciuria characterizes Gitelman's syndrome. Low blood pressure is a common feature among patients who suffered from these tubulopathies. Bartter's syndromes encompass a heterogeneous group of ion channels defects localized at the thick ascending limp of Henle's loop with resultant loss of function of sodium-potassium-2 chloride cotransporter. These defects result in the impairment of the countercurrent multiplication system of the kidney as well as calcium, potassium and acid base disturbances which in the majority of cases are proved lethal especially in the antenatal and/or immediate postnatal life period. The underlying pathology in Gitelman's syndrome is defined to the distal convoluted tubule and is related to loss of function of the sodium-chloride cotransporter. The results of this defect encompass the inability of extracellular volume homeostasis, magnesium and potassium conservation, and acid base disturbances which are generally mild and in the majority of cases are not life-threatening. CONCLUSIONS Recent advances in molecular pathophysiology of Bartter's and Gitelman's syndromes have helped physicians to better understand the underlying mechanisms of these pathologic entities which remain obscure. Data collected from experiments among genetically manipulated animals enable us to better understand the pathophysiology of mammalian kidney and the underlying mechanisms of salt sensitive hypertension and to lay a foundation for the future development of new drugs, especially diuretics and antihypertensive drugs.
Collapse
|
33
|
Hill M, Dušková M, Stárka L. Dehydroepiandrosterone, its metabolites and ion channels. J Steroid Biochem Mol Biol 2015; 145:293-314. [PMID: 24846830 DOI: 10.1016/j.jsbmb.2014.05.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 05/06/2014] [Accepted: 05/11/2014] [Indexed: 11/20/2022]
Abstract
This review is focused on the physiological and pathophysiological relevance of steroids influencing the activities of the central and peripheral nervous systems with regard to their concentrations in body fluids and tissues in various stages of human life like the fetal development or pregnancy. The data summarized in this review shows that DHEA and its unconjugated and sulfated metabolites are physiologically and pathophysiologically relevant in modulating numerous ion channels and participate in vital functions of the human organism. DHEA and its unconjugated and sulfated metabolites including 5α/β-reduced androstane steroids participate in various physiological and pathophysiological processes like the management of GnRH cyclic release, regulation of glandular and neurotransmitter secretions, maintenance of glucose homeostasis on one hand and insulin insensitivity on the other hand, control of skeletal muscle and smooth muscle activities including vasoregulation, promotion of tolerance to ischemia and other neuroprotective effects. In respect of prevalence of steroid sulfates over unconjugated steroids in the periphery and the opposite situation in the CNS, the sulfated androgens and androgen metabolites reach relevance in peripheral organs. The unconjugated androgens and estrogens are relevant in periphery and so much the more in the CNS due to higher concentrations of most unconjugated steroids in the CNS tissues than in circulation and peripheral organs. This article is part of a Special Issue entitled "Essential role of DHEA".
Collapse
Affiliation(s)
- M Hill
- Steroid Hormone Unit, Institute of Endocrinology, Národní třída 8, Prague 116 94, Praha 1, CZ 116 94, Czech Republic.
| | - M Dušková
- Steroid Hormone Unit, Institute of Endocrinology, Národní třída 8, Prague 116 94, Praha 1, CZ 116 94, Czech Republic.
| | - L Stárka
- Steroid Hormone Unit, Institute of Endocrinology, Národní třída 8, Prague 116 94, Praha 1, CZ 116 94, Czech Republic.
| |
Collapse
|
34
|
Paulo JA, McAllister FE, Everley RA, Beausoleil SA, Banks AS, Gygi SP. Effects of MEK inhibitors GSK1120212 and PD0325901 in vivo using 10-plex quantitative proteomics and phosphoproteomics. Proteomics 2014; 15:462-73. [PMID: 25195567 DOI: 10.1002/pmic.201400154] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 08/05/2014] [Accepted: 09/01/2014] [Indexed: 12/11/2022]
Abstract
Multiplexed isobaric tag based quantitative proteomics and phosphoproteomics strategies can comprehensively analyze drug treatments effects on biological systems. Given the role of mitogen-activated protein/extracellular signal-regulated kinase (MEK) signaling in cancer and mitogen-activated protein kinase (MAPK)-dependent diseases, we sought to determine if this pathway could be inhibited safely by examining the downstream molecular consequences. We used a series of tandem mass tag 10-plex experiments to analyze the effect of two MEK inhibitors (GSK1120212 and PD0325901) on three tissues (kidney, liver, and pancreas) from nine mice. We quantified ∼ 6000 proteins in each tissue, but significant protein-level alterations were minimal with inhibitor treatment. Of particular interest was kidney tissue, as edema is an adverse effect of these inhibitors. From kidney tissue, we enriched phosphopeptides using titanium dioxide (TiO2 ) and quantified 10 562 phosphorylation events. Further analysis by phosphotyrosine peptide immunoprecipitation quantified an additional 592 phosphorylation events. Phosphorylation motif analysis revealed that the inhibitors decreased phosphorylation levels of proline-x-serine-proline (PxSP) and serine-proline (SP) sites, consistent with extracellular-signal-regulated kinase (ERK) inhibition. The MEK inhibitors had the greatest decrease on the phosphorylation of two proteins, Barttin and Slc12a3, which have roles in ion transport and fluid balance. Further studies will provide insight into the effect of these MEK inhibitors with respect to edema and other adverse events in mouse models and human patients.
Collapse
Affiliation(s)
- Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | |
Collapse
|
35
|
Imbrici P, Liantonio A, Gradogna A, Pusch M, Camerino DC. Targeting kidney CLC-K channels: Pharmacological profile in a human cell line versus Xenopus oocytes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:2484-91. [DOI: 10.1016/j.bbamem.2014.05.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 04/29/2014] [Accepted: 05/16/2014] [Indexed: 10/25/2022]
|
36
|
Shafique S, Siddiqi S, Schraders M, Oostrik J, Ayub H, Bilal A, Ajmal M, Seco CZ, Strom TM, Mansoor A, Mazhar K, Shah STA, Hussain A, Azam M, Kremer H, Qamar R. Genetic spectrum of autosomal recessive non-syndromic hearing loss in Pakistani families. PLoS One 2014; 9:e100146. [PMID: 24949729 PMCID: PMC4065008 DOI: 10.1371/journal.pone.0100146] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Accepted: 05/22/2014] [Indexed: 12/01/2022] Open
Abstract
The frequency of inherited bilateral autosomal recessive non-syndromic hearing loss (ARNSHL) in Pakistan is 1.6/1000 individuals. More than 50% of the families carry mutations in GJB2 while mutations in MYO15A account for about 5% of recessive deafness. In the present study a cohort of 30 ARNSHL families was initially screened for mutations in GJB2 and MYO15A. Homozygosity mapping was performed by employing whole genome single nucleotide polymorphism (SNP) genotyping in the families that did not carry mutations in GJB2 or MYO15A. Mutation analysis was performed for the known ARNSHL genes present in the homozygous regions to determine the causative mutations. This allowed the identification of a causative mutation in all the 30 families including 9 novel mutations, which were identified in 9 different families (GJB2 (c.598G>A, p.Gly200Arg); MYO15A (c.9948G>A, p.Gln3316Gln; c.3866+1G>A; c.8767C>T, p.Arg2923* and c.8222T>C, p.Phe2741Ser), TMC1 (c.362+18A>G), BSND (c.97G>C, p.Val33Leu), TMPRSS3 (c.726C>G, p.Cys242Trp) and MSRB3 (c.20T>G, p.Leu7Arg)). Furthermore, 12 recurrent mutations were detected in 21 other families. The 21 identified mutations included 10 (48%) missense changes, 4 (19%) nonsense mutations, 3 (14%) intronic mutations, 2 (9%) splice site mutations and 2 (9%) frameshift mutations. GJB2 accounted for 53% of the families, while mutations in MYO15A were the second most frequent (13%) cause of ARNSHL in these 30 families. The identification of novel as well as recurrent mutations in the present study increases the spectrum of mutations in known deafness genes which could lead to the identification of novel founder mutations and population specific mutated deafness genes causative of ARNSHL. These results provide detailed genetic information that has potential diagnostic implication in the establishment of cost-efficient allele-specific analysis of frequently occurring variants in combination with other reported mutations in Pakistani populations.
Collapse
Affiliation(s)
- Sobia Shafique
- COMSATS Institute of Information Technology, Park Road, Islamabad, Pakistan
| | - Saima Siddiqi
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad, Pakistan
| | - Margit Schraders
- Department of Otorhinolaryngology, Hearing and Genes, Radboud University Medical Center, Nijmegen, The Netherlands
- Nijmegen Centre for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jaap Oostrik
- Department of Otorhinolaryngology, Hearing and Genes, Radboud University Medical Center, Nijmegen, The Netherlands
- Nijmegen Centre for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Humaira Ayub
- COMSATS Institute of Information Technology, Park Road, Islamabad, Pakistan
| | - Ammad Bilal
- Simon Fraser University, Vancouver, British Colombia, Canada
| | - Muhammad Ajmal
- COMSATS Institute of Information Technology, Park Road, Islamabad, Pakistan
| | - Celia Zazo Seco
- Department of Otorhinolaryngology, Hearing and Genes, Radboud University Medical Center, Nijmegen, The Netherlands
- Nijmegen Centre for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tim M. Strom
- Institute of Human Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Atika Mansoor
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad, Pakistan
| | - Kehkashan Mazhar
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad, Pakistan
| | - Syed Tahir A. Shah
- COMSATS Institute of Information Technology, Park Road, Islamabad, Pakistan
| | - Alamdar Hussain
- COMSATS Institute of Information Technology, Park Road, Islamabad, Pakistan
| | - Maleeha Azam
- COMSATS Institute of Information Technology, Park Road, Islamabad, Pakistan
| | - Hannie Kremer
- Department of Otorhinolaryngology, Hearing and Genes, Radboud University Medical Center, Nijmegen, The Netherlands
- Nijmegen Centre for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands
- * E-mail: (HK); (RQ)
| | - Raheel Qamar
- COMSATS Institute of Information Technology, Park Road, Islamabad, Pakistan
- Al-Nafees Medical College & Hospital, Isra University, Islamabad, Pakistan
- * E-mail: (HK); (RQ)
| |
Collapse
|
37
|
Ohkubo K, Matsuzaki T, Yuki M, Yoshida R, Terawaki Y, Maeyama A, Kawashima H, Ono J, Yanase T, Matsunaga A. A novel mutation of CLCNKB in a Japanese patient of Gitelman-like phenotype with diuretic insensitivity to thiazide administration. Meta Gene 2014; 2:342-8. [PMID: 25606418 PMCID: PMC4287957 DOI: 10.1016/j.mgene.2014.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 04/09/2014] [Accepted: 04/10/2014] [Indexed: 11/28/2022] Open
Abstract
The clinical phenotypes of patients with Bartter syndrome type III sometimes closely resemble those of Gitelman syndrome. We report a patient with mild, adult-onset symptoms, such as muscular weakness and fatigue, who showed hypokalemic metabolic alkalosis, elevated renin–aldosterone levels with normal blood pressure, hypocalciuria and hypomagnesemia. She was also suffering from chondrocalcinosis. A diuretic test with furosemide and thiazide showed a good response to furosemide, but little response to thiazide. Although the clinical findings and diuretic tests predicted that the patient had Gitelman syndrome, genetic analysis found no mutation in SLC12A3. However, a novel missense mutation, p.L647F in CLCNKB, which is located in the CBS domain at the C-terminus of ClC-Kb, was discovered. Therefore, gene analyses of CLCNKB and SLC12A3 might be necessary to elucidate the precise etiology of the salt-losing tubulopathies regardless of the results of diuretic tests. We report a patient of Gitelman-like phenotype with chondrocalcinosis. She also showed the insensitivity to thiazide. No mutation in SLC12A3, but a novel mutation, L647F in CLCNKB was discovered. The L647F located in the CBS domain of ClC-Kb. Molecular gene analysis of CLCNKB and SLC12A3 is necessary to the precise etiology.
Collapse
Affiliation(s)
- Kumiko Ohkubo
- Department of Laboratory Medicine, Faculty of Medicine, Fukuoka University, Japan ; Department of Clinical Laboratory, Fukuoka University Hospital, Japan
| | - Tomoe Matsuzaki
- Department of Clinical Laboratory, Fukuoka University Hospital, Japan
| | - Makiko Yuki
- Department of Clinical Laboratory, Fukuoka University Hospital, Japan
| | - Ryoko Yoshida
- Department of Endocrinology and Diabetes, Faculty of Medicine, Fukuoka University, Japan
| | - Yuichi Terawaki
- Department of Endocrinology and Diabetes, Faculty of Medicine, Fukuoka University, Japan
| | - Akira Maeyama
- Department of Orthopaedic Surgery, Faculty of Medicine, Fukuoka University, Japan
| | | | - Junko Ono
- Diabetes Center, Karindoh Hospital, Japan
| | - Toshihiko Yanase
- Department of Endocrinology and Diabetes, Faculty of Medicine, Fukuoka University, Japan
| | - Akira Matsunaga
- Department of Laboratory Medicine, Faculty of Medicine, Fukuoka University, Japan ; Department of Clinical Laboratory, Fukuoka University Hospital, Japan
| |
Collapse
|
38
|
Abstract
Specific channels permit movement of selected ions through cellular membranes, and are of vital importance in a number of physiological processes, particularly in excitable tissues such as nerve and muscle, but also in endocrine organs and in epithelial biology. Disorders of channel proteins are termed channelopathies, and their importance is increasingly recognised within medicine. In the kidney, ion channels have critical roles enabling sodium and potassium reuptake or excretion along the nephron, in magnesium homeostasis, in the control of water reabsorption in the collecting duct, and in determining glomerular permeability. In this review, we assess the channelopathies encountered in each nephron segment, and see how their molecular and genetic characterisation in the past 20–30 years has furthered our understanding of normal kidney physiology and disease processes, aids correct diagnosis and promises future therapeutic opportunities.
Collapse
Affiliation(s)
- KW Loudon
- Department of Renal Medicine, Addenbrooke’s Hospital, Cambridge, UK
| | - AC Fry
- Department of Renal Medicine, Addenbrooke’s Hospital, Cambridge, UK
| |
Collapse
|
39
|
Pathological impact of hyperpolarization-activated chloride current peculiar to rat pulmonary vein cardiomyocytes. J Mol Cell Cardiol 2013; 66:53-62. [PMID: 24239603 DOI: 10.1016/j.yjmcc.2013.11.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 10/28/2013] [Accepted: 11/04/2013] [Indexed: 01/10/2023]
Abstract
Pulmonary veins (PVs) are believed to be a crucial origin of atrial fibrillation. We recently reported that rat PV cardiomyocytes exhibit arrhythmogenic automaticity in response to norepinephrine. Herein, we further characterized the electrophysiological properties underlying the potential arrhythmogenicity of PV cardiomyocytes. Patch clamping studies revealed a time dependent hyperpolarization-activated inward current in rat PV cardiomyocytes, but not in left atrial (LA) myocytes. The current was Cs(+) resistant, and was not affected by removal of external Na(+) or K(+). The current was inhibited with Cd(2+), and the reversal potential was sensitive to changes in [Cl(-)] on either side of the membrane in a manner consistent with a Cl(-) selective channel. Cl(-) channel blockers attenuated the current, and slowed or completely inhibited the norepinephrine-induced automaticity. The biophysical properties of the hyperpolarization-activated Cl(-) current in rat PVs were different from those of ClC-2 currents previously reported: (i) the voltage-dependent activation of the Cl(-) current in rat PVs was shifted to negative potentials as [Cl(-)]i increased, (ii) the Cl(-) current was enhanced by extracellular acidification, and (iii) extracellular hyper-osmotic stress increased the current, whereas hypo-osmotic cell swelling suppressed the current. qPCR analysis revealed negligible ClC-2 mRNA expression in the rat PV. These findings suggest that rat PV cardiomyocytes possess a peculiar voltage-dependent Cl(-) channel, and that the channel may play a functional role in norepinephrine-induced automaticity.
Collapse
|
40
|
Abstract
Chloride transport along the nephron is one of the key actions of the kidney that regulates extracellular volume and blood pressure. To maintain steady state, the kidney needs to reabsorb the vast majority of the filtered load of chloride. This is accomplished by the integrated function of sequential chloride transport activities along the nephron. The detailed mechanisms of transport in each segment generate unique patterns of interactions between chloride and numerous other individual components that are transported by the kidney. Consequently, chloride transport is inextricably intertwined with that of sodium, potassium, protons, calcium, and water. These interactions not only allow for exquisitely precise regulation but also determine the particular patterns in which the system can fail in disease states.
Collapse
Affiliation(s)
- John C Edwards
- UNC Kidney Center and the Departments of Medicine and Cell and Molecular Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
| |
Collapse
|
41
|
Denton JS, Pao AC, Maduke M. Novel diuretic targets. Am J Physiol Renal Physiol 2013; 305:F931-42. [PMID: 23863472 PMCID: PMC3798746 DOI: 10.1152/ajprenal.00230.2013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 07/12/2013] [Indexed: 01/11/2023] Open
Abstract
As the molecular revolution continues to inform a deeper understanding of disease mechanisms and pathways, there exist unprecedented opportunities for translating discoveries at the bench into novel therapies for improving human health. Despite the availability of several different classes of antihypertensive medications, only about half of the 67 million Americans with hypertension manage their blood pressure appropriately. A broader selection of structurally diverse antihypertensive drugs acting through different mechanisms would provide clinicians with greater flexibility in developing effective treatment regimens for an increasingly diverse and aging patient population. An emerging body of physiological, genetic, and pharmacological evidence has implicated several renal ion-transport proteins, or regulators thereof, as novel, yet clinically unexploited, diuretic targets. These include the renal outer medullary potassium channel, ROMK (Kir1.1), Kir4.1/5.1 potassium channels, ClC-Ka/b chloride channels, UTA/B urea transporters, the chloride/bicarbonate exchanger pendrin, and the STE20/SPS1-related proline/alanine-rich kinase (SPAK). The molecular pharmacology of these putative targets is poorly developed or lacking altogether; however, recent efforts by a few academic and pharmaceutical laboratories have begun to lessen this critical barrier. Here, we review the evidence in support of the aforementioned proteins as novel diuretic targets and highlight examples where progress toward developing small-molecule pharmacology has been made.
Collapse
Affiliation(s)
- Jerod S Denton
- T4208 Medical Center North, 1161 21st Ave. South, Nashville, TN 37232.
| | | | | |
Collapse
|
42
|
Wu P, Wang M, Luan H, Li L, Wang L, Wang W, Gu R. Angiotensin II stimulates basolateral 10-pS Cl channels in the thick ascending limb. Hypertension 2013; 61:1211-7. [PMID: 23569086 PMCID: PMC3686115 DOI: 10.1161/hypertensionaha.111.01069] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 03/09/2013] [Indexed: 02/07/2023]
Abstract
Chloride channels in the basolateral membrane play a key role in Cl absorption in the thick ascending limb (TAL). The patch-clamp experiments were performed to test whether angiotensin II (AngII) increases Cl absorption in the TAL by stimulating the basolateral 10-pS Cl channels. AngII (1-100 nmol/L) stimulated the 10-pS Cl channel in the TAL, an effect that was blocked by losartan (angiotension AT1 receptor [AT1R] antagonist) but not by PD123319 (angiotension AT2 receptor [AT2R] antagonist). Inhibition of phospholipase C or protein kinase C also abolished the stimulatory effect of AngII on Cl channels. Moreover, stimulation of protein kinase C with phorbol-12-myristate-13-acetate mimicked the effect of AngII and increased Cl channel activity. However, the stimulatory effect of AngII on Cl channels was absent in the TAL pretreated with diphenyleneiodonium sulfate, an inhibitor of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. Moreover, treatment of the TAL with diphenyleneiodonium sulfate also blocked the effect of phorbol-12-myristate-13-acetate on the 10-pS Cl channel. Western blotting demonstrated that incubation of isolated TAL with AngII increased phosphorylation of p47(phox) at Ser(304), suggesting that AngII stimulates the basolateral Cl channels by increasing NADPH oxidase-dependent superoxide generation. This notion was also supported by the observation that H2O2 significantly increased 10-pS Cl channel activity in the TAL. We conclude that stimulation of AT1R increased the basolateral Cl channels by activating the protein kinase C-dependent NADPH oxidase pathway. The stimulatory effect of AngII on the basolateral Cl channel may contribute to AngII-induced increases in NaCl reabsorption in the TAL and AngII-infuse-induced hypertension.
Collapse
Affiliation(s)
- Peng Wu
- Department of Pharmacology, Harbin Medical University, Harbin, China
| | - Mingxiao Wang
- Department of Pharmacology, Harbin Medical University, Harbin, China
| | - Haiyan Luan
- Department of Pharmacology, Harbin Medical University, Harbin, China
| | - Lili Li
- Department of Pharmacology, Harbin Medical University, Harbin, China
| | - Lijun Wang
- Department of Physiology, Harbin Medical University, Harbin, China
- Department of Pharmacology, New York Medical College, Valhalla, NY
| | - Wenhui Wang
- Department of Pharmacology, New York Medical College, Valhalla, NY
| | - Ruimin Gu
- Department of Pharmacology, Harbin Medical University, Harbin, China
| |
Collapse
|
43
|
Riebeling C, Hayess K, Peters AK, Steemans M, Spielmann H, Luch A, Seiler AEM. Assaying embryotoxicity in the test tube: current limitations of the embryonic stem cell test (EST) challenging its applicability domain. Crit Rev Toxicol 2012; 42:443-64. [PMID: 22512667 DOI: 10.3109/10408444.2012.674483] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Testing for embryotoxicity in vitro is an attractive alternative to animal experimentation. The embryonic stem cell test (EST) is such a method, and it has been formally validated by the European Centre for the Validation of Alternative Methods. A number of recent studies have underscored the potential of this method. However, the EST performed well below the 78% accuracy expected from the validation study using a new set of chemicals and pharmaceutical compounds, and also of toxicity criteria, tested to enlarge the database of the validated EST as part of the Work Package III of the ReProTect Project funded within the 6th Framework Programme of the European Union. To assess the performance and applicability domain of the EST we present a detailed review of the substances and their effects in the EST being nitrofen, ochratoxin A, D-penicillamine, methylazoxymethanol, lovastatin, papaverine, warfarin, β-aminopropionitrile, dinoseb, furosemide, doxylamine, pravastatin, and metoclopramide. By delineation of the molecular mechanisms of the substances we identify six categories of reasons for misclassifications. Some of these limitations might also affect other in vitro methods assessing embryotoxicity. Substances that fall into these categories need to be included in future validation sets and in validation guidelines for embryotoxicity testing. Most importantly, we suggest conceivable improvements and additions to the EST which will resolve most of the limitations.
Collapse
Affiliation(s)
- Christian Riebeling
- German Federal Institute for Risk Assessment (BfR), ZEBET - Alternative Methods to Animal Experiments, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
The central goal of this overview article is to summarize recent findings in renal epithelial transport,focusing chiefly on the connecting tubule (CNT) and the cortical collecting duct (CCD).Mammalian CCD and CNT are involved in fine-tuning of electrolyte and fluid balance through reabsorption and secretion. Specific transporters and channels mediate vectorial movements of water and solutes in these segments. Although only a small percent of the glomerular filtrate reaches the CNT and CCD, these segments are critical for water and electrolyte homeostasis since several hormones, for example, aldosterone and arginine vasopressin, exert their main effects in these nephron sites. Importantly, hormones regulate the function of the entire nephron and kidney by affecting channels and transporters in the CNT and CCD. Knowledge about the physiological and pathophysiological regulation of transport in the CNT and CCD and particular roles of specific channels/transporters has increased tremendously over the last two decades.Recent studies shed new light on several key questions concerning the regulation of renal transport.Precise distribution patterns of transport proteins in the CCD and CNT will be reviewed, and their physiological roles and mechanisms mediating ion transport in these segments will also be covered. Special emphasis will be given to pathophysiological conditions appearing as a result of abnormalities in renal transport in the CNT and CCD.
Collapse
Affiliation(s)
- Alexander Staruschenko
- Department of Physiology and Kidney Disease Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
| |
Collapse
|
45
|
Heat-shock mediated overexpression of HNF1β mutations has differential effects on gene expression in the Xenopus pronephric kidney. PLoS One 2012; 7:e33522. [PMID: 22438943 PMCID: PMC3305329 DOI: 10.1371/journal.pone.0033522] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 02/15/2012] [Indexed: 02/07/2023] Open
Abstract
The transcription factor HNF1B, encoded by the TCF2 gene, plays an important role in the organogenesis of vertebrates. In humans, heterozygous mutations of HNF1B are associated with several diseases, such as pancreatic β-cell dysfunction leading to maturity-onset diabetes of the young (MODY5), defective kidney development, disturbed liver function, pancreas atrophy, and malformations of the genital tract. The African claw frog Xenopus laevis is an excellent model to study the processes involved in embryogenesis and organogenesis, as it can be manipulated easily with a series of methods. In the present study, we overexpressed HNF1β mutants in the developing Xenopus embryo to assess their roles during organogenesis, particularly in the developing pronephric kidney. Towards this goal, we developed a heat-shock inducible binary Cre/loxP system with activator and effector strains. Heat-shock activation of the mutant HNF1B variants P328L329del and A263insGG resulted in malformations of various organs and the affected larvae developed large edemas. Defects in the pronephros were primarily confined to malformed proximal tubules. Furthermore, the expression of the proximal tubule marker genes tmem27 and slc3a1, both involved in amino acid transport, was affected. Both P328L329del and A263insGG downregulated expression of slc3a1. In addition, P328L329del reduced tmem27 expression while A263insGG overexpression decreased expression of the chloride channel clcnk and the transcription factor pax2. Overexpression of two mutant HNF1B derivatives resulted in distinct phenotypes reflected by either a reduction or an enlargement of pronephros size. The expression of selected pronephric marker genes was differentially affected upon overexpression of HNF1B mutations. Based on our findings, we postulate that HNF1B mutations influence gene regulation upon overexpression in specific and distinct manners. Furthermore, our study demonstrates that the newly established Cre/loxP system for Xenopus embryos is an attractive alternative to examine the gene regulatory potential of transcription factors in developing pronephric kidney as exemplified here for HNF1B.
Collapse
|
46
|
Fremont OT, Chan JCM. Understanding Bartter syndrome and Gitelman syndrome. World J Pediatr 2012; 8:25-30. [PMID: 22282380 DOI: 10.1007/s12519-012-0333-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 09/26/2011] [Indexed: 10/14/2022]
Abstract
BACKGROUND We aim to review the clinical features of two renal tubular disorders characterized by sodium and potassium wasting: Bartter syndrome and Gitelman syndrome. DATA SOURCES Selected key references concerning these syndromes were analyzed, together with a PubMed search of the literature from 2000 to 2011. RESULTS The clinical features common to both conditions and those which are distinct to each syndrome were presented. The new findings on the genetics of the five types of Bartter syndrome and the discrete mutations in Gitelman syndrome were reviewed, together with the diagnostic workup and treatment for each condition. CONCLUSIONS Patients with Bartter syndrome types 1, 2 and 4 present at a younger age than classic Bartter syndrome type 3. They present with symptoms, often quite severe in the neonatal period. Patients with classic Bartter syndrome type 3 present later in life and may be sporadically asymptomatic or mildly symptomatic. The severe, steady-state hypokalemia in Bartter syndrome and Gitelman syndrome may abruptly become life-threatening under certain aggravating conditions. Clinicians need to be cognizant of such renal tubular disorders, and promptly treat at-risk patients.
Collapse
Affiliation(s)
- Oliver T Fremont
- The Barbara Bush Children's Hospital, Maine Medical Center, Tufts University School of Medicine, Portland, Maine 04102-3175, USA
| | | |
Collapse
|
47
|
Liantonio A, Gramegna G, Camerino GM, Dinardo MM, Scaramuzzi A, Potenza MA, Montagnani M, Procino G, Lasorsa DR, Mastrofrancesco L, Laghezza A, Fracchiolla G, Loiodice F, Perrone MG, Lopedota A, Conte S, Penza R, Valenti G, Svelto M, Camerino DC. In-vivo administration of CLC-K kidney chloride channels inhibitors increases water diuresis in rats. J Hypertens 2012; 30:153-67. [DOI: 10.1097/hjh.0b013e32834d9eb9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
48
|
Seyberth HW, Schlingmann KP. Bartter- and Gitelman-like syndromes: salt-losing tubulopathies with loop or DCT defects. Pediatr Nephrol 2011; 26:1789-802. [PMID: 21503667 PMCID: PMC3163795 DOI: 10.1007/s00467-011-1871-4] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 03/09/2011] [Accepted: 03/09/2011] [Indexed: 12/11/2022]
Abstract
Salt-losing tubulopathies with secondary hyperaldosteronism (SLT) comprise a set of well-defined inherited tubular disorders. Two segments along the distal nephron are primarily involved in the pathogenesis of SLTs: the thick ascending limb of Henle's loop, and the distal convoluted tubule (DCT). The functions of these pre- and postmacula densa segments are quite distinct, and this has a major impact on the clinical presentation of loop and DCT disorders - the Bartter- and Gitelman-like syndromes. Defects in the water-impermeable thick ascending limb, with its greater salt reabsorption capacity, lead to major salt and water losses similar to the effect of loop diuretics. In contrast, defects in the DCT, with its minor capacity of salt reabsorption and its crucial role in fine-tuning of urinary calcium and magnesium excretion, provoke more chronic solute imbalances similar to the effects of chronic treatment with thiazides. The most severe disorder is a combination of a loop and DCT disorder similar to the enhanced diuretic effect of a co-medication of loop diuretics with thiazides. Besides salt and water supplementation, prostaglandin E2-synthase inhibition is the most effective therapeutic option in polyuric loop disorders (e.g., pure furosemide and mixed furosemide-amiloride type), especially in preterm infants with severe volume depletion. In DCT disorders (e.g., pure thiazide and mixed thiazide-furosemide type), renin-angiotensin-aldosterone system (RAAS) blockers might be indicated after salt, potassium, and magnesium supplementation are deemed insufficient. It appears that in most patients with SLT, a combination of solute supplementation with some drug treatment (e.g., indomethacin) is needed for a lifetime.
Collapse
Affiliation(s)
- Hannsjörg W. Seyberth
- Department of Pediatrics and Adolescent Medicine, Philipps University, Marburg, Germany ,Lazarettgarten 23, 76829 Landau, Germany
| | - Karl P. Schlingmann
- Department of General Pediatrics, University Children’s Hospital, Münster, Germany
| |
Collapse
|
49
|
The salt-wasting phenotype of EAST syndrome, a disease with multifaceted symptoms linked to the KCNJ10 K+ channel. Pflugers Arch 2011; 461:423-35. [DOI: 10.1007/s00424-010-0915-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 12/10/2010] [Accepted: 12/17/2010] [Indexed: 11/25/2022]
|
50
|
Novel molecular pathways in renal Mg2+ transport: a guided tour along the nephron. Curr Opin Nephrol Hypertens 2010; 19:456-62. [PMID: 20625291 DOI: 10.1097/mnh.0b013e32833caf61] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW This review highlights recent advances in renal magnesium (Mg) handling. The understanding of the molecular processes of epithelial Mg transport has expanded considerably due to the identification of novel genes involved in hypomagnesemic disorders. RECENT FINDINGS Mg deficiency remains one of the most common electrolyte disorders. Detailed genetic analysis of families with inherited forms of hypomagnesemia has led to the identification of new genes involved in Mg homeostasis. As such, familial hypomagnesemia has been linked to mutations in the claudin-16/19 complex located in the thick ascending limb. Moreover, the pro-epidermal growth factor, the potassium channels Kv1.1 and Kir4.1, and the hepatocyte nuclear factor 1B have recently been identified as causative factors in syndromes of hereditary hypomagnesemia. These proteins play key roles in regulating electrolyte balance within the distal convoluted tubule, either by directly affecting the epithelial Mg channel, transient receptor potential channel melastatin member 6, or by altering the driving force for Mg influx via the channel. SUMMARY Recent genetic and molecular studies have further elucidated the processes that govern renal Mg transport and hence systemic Mg balance. This has provided us with new tools to understand the molecular pathology behind hypomagnesemia.
Collapse
|