1
|
Klümper N, Cox A, Sjödahl G, Roghmann F, Bolenz C, Hartmann A, Grünwald V, Faltas BM, Hölzel M, Eckstein M. Pre-treatment metastatic biopsy: a step towards precision oncology for urothelial cancer. Nat Rev Urol 2025; 22:256-267. [PMID: 39472646 DOI: 10.1038/s41585-024-00951-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2024] [Indexed: 05/10/2025]
Abstract
Early metastatic spread and clonal expansion of individual mutations result in a heterogeneous tumour landscape in metastatic urothelial cancer (mUC). Substantial molecular heterogeneity of common drug targets, such as membranous NECTIN4, FGFR3 mutations, PDL1 or immune phenotypes, has been documented between primary and metastatic tumours. However, translational and clinical studies frequently do not account for such heterogeneity and often investigate primary tumour samples that might not be representative in patients with mUC. We propose this as a potential factor for why many biomarkers for mUC have failed to be integrated into clinical practice. Fresh pre-treatment metastatic biopsies enable the capturing of prevailing tumour biology in real time. The characterization of metastatic tumour samples can improve response prediction to immunotherapy, the anti-NECTIN4 antibody-drug conjugate enfortumab vedotin and the FGFR inhibitor erdafitinib. Routine metastatic biopsy can thus improve the precision of identifying driver druggable alterations, thus improving treatment selection for patients with mUC.
Collapse
Affiliation(s)
- Niklas Klümper
- Department of Urology and Pediatric Urology, University Hospital Bonn, Bonn, Germany.
- Institute of Experimental Oncology, University Hospital Bonn, Bonn, Germany.
| | - Alexander Cox
- Department of Urology and Pediatric Urology, University Hospital Bonn, Bonn, Germany
| | - Gottfrid Sjödahl
- Department of Translational Medicine, Division of Urological Research, Lund University, Lund, Sweden
| | - Florian Roghmann
- Department of Urology, Marien Hospital, Ruhr-University Bochum, Herne, Germany
| | - Christian Bolenz
- Department of Urology and Paediatric Urology, University Hospital Ulm, University of Ulm, Ulm, Germany
| | - Arndt Hartmann
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Viktor Grünwald
- Clinic for Internal Medicine (Tumour Research) and Clinic for Urology, Interdisciplinary Genitourinary Oncology at the West-German Cancer Center, Essen University Hospital, Essen, Germany
| | - Bishoy M Faltas
- Department of Hematology/Oncology, Weill-Cornell Medicine, New York, NY, USA
| | - Michael Hölzel
- Institute of Experimental Oncology, University Hospital Bonn, Bonn, Germany
| | - Markus Eckstein
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
2
|
Guercio BJ, Whiting K, Shah RH, Ballman KV, Halabi S, Regazzi AM, Milbank JH, Bajorin DF, Beltran H, Morris MJ, Solit DB, Berger MF, Iyer G, Seshan V, Rosenberg JE. Circulating Tumor DNA and Response to Cisplatin-based Chemotherapy in Patients with Metastatic Urothelial Carcinoma Enrolled in CALGB 90601 (Alliance). EUR UROL SUPPL 2025; 75:80-88. [PMID: 40256659 PMCID: PMC12008543 DOI: 10.1016/j.euros.2025.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2025] [Indexed: 04/22/2025] Open
Abstract
Background and objective Cisplatin-based chemotherapy has been a cornerstone of therapy for advanced/metastatic urothelial cancer (mUC). However, no genomic characteristics have been validated as prognostic biomarkers for this therapy. We sought to identify prognostic biomarkers using plasma cell-free (cf)DNA collected in a phase 3 cooperative group trial. Methods We analyzed pretreatment cfDNA from a cohort nested in CALGB 90601 (Alliance), a first-line trial of gemcitabine/cisplatin with bevacizumab or placebo in mUC. We examined associations between cfDNA features and overall survival (OS), progression-free survival (PFS), and treatment response. Key findings and limitations Baseline cfDNA was sequenced from 201 patients with mUC. There was no statistically significant association between alterations in DNA damage response (DDR) genes and response to cisplatin-based chemotherapy (12/24; 50% response rate in DDR+ vs 60/145; 41% response rate in DDR-; p = 0.4), OS (hazard ratio [HR] 0.78, 95% confidence interval [CI] 0.50-1.22; p = 0.3) or PFS (HR 0.77, 95% CI 0.48-1.22; p = 0.3), although the DDR analysis was underpowered owing to the low frequency of DDR gene alterations. Higher variant allele frequency (VAF) in circulating tumor (ct)DNA was associated with shorter OS (HR 2.51, 95% CI 1.26-5.00; p = 0.009) and PFS (HR 2.18, 95% CI 1.02-4.67; p = 0.045). Shorter OS was associated with cfDNA alterations in TERT (HR 1.59, 95% CI 1.15-2.19; p = 0.005), PIK3CA (HR 1.91, 95% CI 1.20-3.04; p = 0.006), and ERBB2 (HR 1.64, 95% CI 1.08-2.49; p = 0.019). Conclusions and clinical implications Among patients with mUC treated with cisplatin-based chemotherapy, high pretreatment VAF in ctDNA and alterations in the TERT promoter, PIK3CA, and ERBB2 were associated with poor prognosis. Patient summary We looked at the link between tumor DNA present in blood and outcomes after chemotherapy for patients with advanced bladder cancer. Higher amounts of tumor DNA in blood and mutations in specific cancer genes were linked to worse survival. The results may help in the design of new studies to improve survival for patients with advanced bladder cancer.This trial is registered on ClinicalTrials.gov as NCT00942331.
Collapse
Affiliation(s)
- Brendan J. Guercio
- James P. Wilmot Cancer Institute, University of Rochester, Rochester, NY, USA
| | - Karissa Whiting
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ronak H. Shah
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Karla V. Ballman
- Department of Quantitative Health Sciences, and Alliance Statistics and Data Management Center, Mayo Clinic, Rochester, MN, USA
| | - Susan Halabi
- Department of Biostatistics and Bioinformatics, and Alliance Statistics and Data Management Center, Duke University, Durham, NC, USA
| | - Ashley M. Regazzi
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jennifer H. Milbank
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dean F. Bajorin
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Himisha Beltran
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Michael J. Morris
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - David B. Solit
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Michael F. Berger
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gopa Iyer
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Venkatraman Seshan
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jonathan E. Rosenberg
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
3
|
Perfetto C, Aprile M, Cataldi S, Giovannetti E, Costa V. Unraveling BRAF alterations: molecular insights to circumvent therapeutic resistance across cancer types. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2025; 8:14. [PMID: 40201310 PMCID: PMC11977354 DOI: 10.20517/cdr.2024.213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/22/2025] [Accepted: 02/10/2025] [Indexed: 04/10/2025]
Abstract
Aim: As intrinsic resistance - often driven by concurrent genomic alterations in tumor suppressor genes or oncogenes - remains a major challenge in oncology, this work aimed to comprehensively analyze BRAF somatic alterations across cancer types and identify new potential therapeutic strategies to overcome drug resistance. Methods: We conducted an extensive analysis of genomics, transcriptomics, and clinical data retrieved from public repositories, including cBioPortal. Our comprehensive analysis examined BRAF alterations [point mutations, structural variants (SVs) and copy number alteration] in more than 217,000 tumor samples across 120 distinct tumor types from primary and metastatic sites in both adult and pediatric cohorts, focusing on mutual exclusivity and co-occurrence of mutations in other oncogenes or tumor suppressors. The work also explores the association of BRAF somatic alterations with survival, clinical and molecular features. Results: Analysis of mutation frequencies across cancer types revealed that BRAFV600E represents approximately 90% of all BRAF alterations. While melanoma and thyroid carcinoma show the highest prevalence of BRAF mutations, followed by colorectal and non-small cell lung cancer in terms of absolute number of patients harboring BRAF mutations worldwide, notably high mutation frequencies were identified in rare malignancies, including hairy-cell leukemia, ganglioglioma, and serous borderline ovarian tumors. The comprehensive analysis of genomic profiling data across these tumors uncovered distinct patterns of co-occurring and mutually exclusive alterations in oncogenes and tumor suppressor genes, illuminating resistance mechanisms and suggesting novel therapeutic combinations. Conclusion: Comprehensive genomic profiling is critical for optimizing targeted therapy and overcoming drug resistance in BRAF-mutated cancers. The identification of co-occurring alterations provides opportunities for rational combination therapies, emphasizing the importance of detailed mutation profiling in developing effective treatment strategies across diverse cancer types.
Collapse
Affiliation(s)
- Caterina Perfetto
- Institute of Genetics and Biophysics (IGB), National Research Council of Italy (CNR), Naples 80131, Italy
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania “Luigi Vanvitelli”, Caserta 81100, Italy
- Authors contributed equally
| | - Marianna Aprile
- Institute of Genetics and Biophysics (IGB), National Research Council of Italy (CNR), Naples 80131, Italy
- Authors contributed equally
| | - Simona Cataldi
- Institute of Genetics and Biophysics (IGB), National Research Council of Italy (CNR), Naples 80131, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, Amsterdam UMC, VU University, Cancer Center Amsterdam, Amsterdam 1081 HV, The Netherlands
- Fondazione Pisana per La Scienza, San Giuliano Terme 56017, Italy
| | - Valerio Costa
- Institute of Genetics and Biophysics (IGB), National Research Council of Italy (CNR), Naples 80131, Italy
| |
Collapse
|
4
|
Devenport JM, Tran T, Harris BR, Fingerman D, DeWeerd RA, Elkhidir LH, LaVigne D, Fuh K, Sun L, Bednarski JJ, Drapkin R, Mullen MM, Green AM. APOBEC3A drives ovarian cancer metastasis by altering epithelial-mesenchymal transition. JCI Insight 2025; 10:e186409. [PMID: 40059825 PMCID: PMC11949045 DOI: 10.1172/jci.insight.186409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 01/22/2025] [Indexed: 03/19/2025] Open
Abstract
High-grade serous ovarian cancer (HGSOC) is the most prevalent and aggressive histological subtype of ovarian cancer and often presents with metastatic disease. The drivers of metastasis in HGSOC remain enigmatic. APOBEC3A (A3A), an enzyme that generates mutations across various cancers, has been proposed as a mediator of tumor heterogeneity and disease progression. However, the role of A3A in HGSOC has not been explored. We observed an association between high levels of APOBEC3-mediated mutagenesis and poor overall survival in primary HGSOC. We experimentally addressed this correlation by modeling A3A expression in HGSOC, and this resulted in increased metastatic behavior of HGSOC cells in culture and distant metastatic spread in vivo, which was dependent on catalytic activity of A3A. A3A activity in both primary and cultured HGSOC cells yielded consistent alterations in expression of epithelial-mesenchymal transition (EMT) genes resulting in hybrid EMT and mesenchymal signatures, providing a mechanism for their increased metastatic potential. Inhibition of key EMT factors TWIST1 and IL-6 resulted in mitigation of A3A-dependent metastatic phenotypes. Our findings define the prevalence of A3A mutagenesis in HGSOC and implicate A3A as a driver of HGSOC metastasis via EMT, underscoring its clinical relevance as a potential prognostic biomarker. Our study lays the groundwork for the development of targeted therapies aimed at mitigating the deleterious effect of A3A-driven EMT in HGSOC.
Collapse
Affiliation(s)
| | | | | | - Dylan Fingerman
- Department of Pediatrics
- Cancer Biology Graduate Program, and
| | | | | | - Danielle LaVigne
- Department of Pediatrics
- Molecular Genetics and Genomics Graduate Program, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Katherine Fuh
- Department of Obstetrics, Gynecology, and Reproductive Sciences, UCSF, San Francisco, California, USA
| | - Lulu Sun
- Division of Anatomic and Molecular Pathology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | - Ronny Drapkin
- Penn Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, and
- Basser Center for BRCA, Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Mary M. Mullen
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Siteman Cancer Center, and
| | - Abby M. Green
- Department of Pediatrics
- Center for Genome Integrity, Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
5
|
Liu Z, Zhang X, Ben T, Li M, Jin Y, Wang T, Song Y. Focal adhesion in the tumour metastasis: from molecular mechanisms to therapeutic targets. Biomark Res 2025; 13:38. [PMID: 40045379 PMCID: PMC11884212 DOI: 10.1186/s40364-025-00745-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 02/11/2025] [Indexed: 03/09/2025] Open
Abstract
The tumour microenvironment is the "hotbed" of tumour cells, providing abundant extracellular support for growth and metastasis. However, the tumour microenvironment is not static and is constantly remodelled by a variety of cellular components, including tumour cells, through mechanical, biological and chemical means to promote metastasis. Focal adhesion plays an important role in cell-extracellular matrix adhesion. An in-depth exploration of the role of focal adhesion in tumour metastasis, especially their contribution at the biomechanical level, is an important direction of current research. In this review, we first summarize the assembly of focal adhesions and explore their kinetics in tumour cells. Then, we describe in detail the role of focal adhesion in various stages of tumour metastasis, especially its key functions in cell migration, invasion, and matrix remodelling. Finally, we describe the anti-tumour strategies targeting focal adhesion and the current progress in the development of some inhibitors against focal adhesion proteins. In this paper, we summarize for the first time that focal adhesion play a positive feedback role in pro-tumour metastatic matrix remodelling by summarizing the five processes of focal adhesion assembly in a multidimensional way. It is beneficial for researchers to have a deeper understanding of the role of focal adhesion in the biological behaviour of tumour metastasis and the potential of focal adhesion as a therapeutic target, providing new ideas for the prevention and treatment of metastases.
Collapse
Affiliation(s)
- Zonghao Liu
- Department of Radiotherapy, Cancer Hospital of China Medical University, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, P. R. China
- The First Clinical College, China Medical University, Shenyang, Liaoning Province, 110122, P. R. China
| | - Xiaofang Zhang
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Tianru Ben
- The First Clinical College, China Medical University, Shenyang, Liaoning Province, 110122, P. R. China
| | - Mo Li
- Department of Breast Surgery, Liaoning Cancer Hospital and Institute, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, P. R. China
| | - Yi Jin
- Department of Breast Surgery, Liaoning Cancer Hospital and Institute, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, P. R. China
| | - Tianlu Wang
- Department of Radiotherapy, Cancer Hospital of China Medical University, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, P. R. China.
- Department of Radiotherapy, Cancer Hospital of Dalian University of Technology, Shenyang, Liaoning Province, 110042, People's Republic of China.
- Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning Province, 116024, P. R. China.
| | - Yingqiu Song
- Department of Radiotherapy, Cancer Hospital of China Medical University, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, P. R. China.
- Department of Radiotherapy, Liaoning Cancer Hospital & Institute, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, P. R. China.
| |
Collapse
|
6
|
Fontes MS, de Almeida DVP, Cárcano F, Lages P, Dienstmann R. Precision medicine for urothelial carcinoma: An international perspective. Urol Oncol 2024; 42:402-410. [PMID: 38218630 DOI: 10.1016/j.urolonc.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/24/2023] [Accepted: 11/10/2023] [Indexed: 01/15/2024]
Abstract
The treatment landscape of urothelial cancers has evolved in the last decade with the approval of chemotherapy, immune checkpoint inhibitors, targeted therapies, and antibody drug conjugates. Although improvements in response and survival have been achieved with these strategies, in some scenarios their benefit is still questionable. Current efforts to identify prognostic and predictive biomarkers are crucial for better patient selection and treatment outcomes. In this paper we will review the most promising biomarkers under investigation, such as molecular classifiers, genomic alterations, programmed cell death ligand 1 expression, tumor mutational burden, circulating tumor DNA, urinary biomarkers among others, for muscle invasive bladder cancer and metastatic urothelial cancers. Deeper understanding of these biomarkers will aid clinical decision-making and help tailor treatment strategies.
Collapse
Affiliation(s)
- Mariane S Fontes
- Division of Genitourinary Medical Oncology, Oncoclínicas, Rio de Janeiro, Brazil; LAGOG-Latin American Cooperative Oncology Group, Porto Alegre, Brazil.
| | - Daniel Vargas Pivato de Almeida
- Division of Genitourinary Medical Oncology, Oncoclínicas, Brasília, Brazil; LAGOG-Latin American Cooperative Oncology Group, Porto Alegre, Brazil
| | - Flavio Cárcano
- Division of Genitourinary Medical Oncology, Oncoclínicas, Belo Horizonte, Brazil; Research and Teaching Institute, Barretos Cancer Hospital, Barretos, Brazil
| | - Paulo Lages
- Division of Genitourinary Medical Oncology, Oncoclínicas, Brasília, Brazil; LAGOG-Latin American Cooperative Oncology Group, Porto Alegre, Brazil
| | | |
Collapse
|
7
|
Nguyen DD, Hooper WF, Liu W, Chu TR, Geiger H, Shelton JM, Shah M, Goldstein ZR, Winterkorn L, Helland A, Sigouros M, Manohar J, Moyer J, Al Assaad M, Semaan A, Cohen S, Madorsky Rowdo F, Wilkes D, Osman M, Singh RR, Sboner A, Valentine HL, Abbosh P, Tagawa ST, Nanus DM, Nauseef JT, Sternberg CN, Molina AM, Scherr D, Inghirami G, Mosquera JM, Elemento O, Robine N, Faltas BM. The interplay of mutagenesis and ecDNA shapes urothelial cancer evolution. Nature 2024; 635:219-228. [PMID: 39385020 PMCID: PMC11541202 DOI: 10.1038/s41586-024-07955-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/14/2024] [Indexed: 10/11/2024]
Abstract
Advanced urothelial cancer is a frequently lethal disease characterized by marked genetic heterogeneity1. In this study, we investigated the evolution of genomic signatures caused by endogenous and external mutagenic processes and their interplay with complex structural variants (SVs). We superimposed mutational signatures and phylogenetic analyses of matched serial tumours from patients with urothelial cancer to define the evolutionary dynamics of these processes. We show that APOBEC3-induced mutations are clonal and early, whereas chemotherapy induces mutational bursts of hundreds of late subclonal mutations. Using a genome graph computational tool2, we observed frequent high copy-number circular amplicons characteristic of extrachromosomal DNA (ecDNA)-forming SVs. We characterized the distinct temporal patterns of APOBEC3-induced and chemotherapy-induced mutations within ecDNA-forming SVs, gaining new insights into the timing of these mutagenic processes relative to ecDNA biogenesis. We discovered that most CCND1 amplifications in urothelial cancer arise within circular ecDNA-forming SVs. ecDNA-forming SVs persisted and increased in complexity, incorporating additional DNA segments and contributing to the evolution of treatment resistance. Oxford Nanopore Technologies long-read whole-genome sequencing followed by de novo assembly mapped out CCND1 ecDNA structure. Experimental modelling of CCND1 ecDNA confirmed its role as a driver of treatment resistance. Our findings define fundamental mechanisms that drive urothelial cancer evolution and have important therapeutic implications.
Collapse
Affiliation(s)
- Duy D Nguyen
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | | | - Weisi Liu
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | | | | | | | | | | | | | | | - Michael Sigouros
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jyothi Manohar
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jenna Moyer
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Majd Al Assaad
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Alissa Semaan
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Sandra Cohen
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Florencia Madorsky Rowdo
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - David Wilkes
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Mohamed Osman
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Rahul R Singh
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Andrea Sboner
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Henkel L Valentine
- Nuclear Dynamics and Cancer program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Phillip Abbosh
- Nuclear Dynamics and Cancer program, Fox Chase Cancer Center, Philadelphia, PA, USA
- Department of Urology, Einstein Healthcare Network, Philadelphia, PA, USA
| | - Scott T Tagawa
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Urology, Weill Cornell Medicine, New York, NY, USA
| | - David M Nanus
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Urology, Weill Cornell Medicine, New York, NY, USA
| | - Jones T Nauseef
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Cora N Sternberg
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Ana M Molina
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Douglas Scherr
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Urology, Weill Cornell Medicine, New York, NY, USA
| | - Giorgio Inghirami
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Juan Miguel Mosquera
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Olivier Elemento
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | | | - Bishoy M Faltas
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA.
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
8
|
Lobo A, Collins K, Kaushal S, Acosta AM, Akgul M, Adhya AK, Al-Ahmadie HA, Al-Obaidy KI, Amin A, Amin MB, Aron M, Balzer BL, Biswal R, Mohanty S, Browning L, Chakrabarti I, Cima L, Cimadamore A, Desai S, Dhillon J, Deshwal A, Diego GG, Diwaker P, Galea LA, Magi-Galluzzi C, Giannico GA, Gupta NS, Haider A, Hirsch MS, Iczkowski KA, Arora S, Jain E, Jain D, Jha S, Kandukuri S, Kao CS, Kryvenko ON, Kumar RM, Kumari N, Kunju LP, Kuthi L, Lobo J, Lopez JI, Luthringer DJ, Maclean F, Manini C, Mannan R, Martos MG, Mehra R, Menon S, Mishra P, Moch H, Montironi R, Baisakh MR, Netto GJ, Nigam LK, Osunkoya AO, Pagliuca F, Paner GP, Panizo A, Parwani AV, Picken MM, Prendeville S, Przybycin CG, Purkait S, Queipo FJ, Rao BV, Rao P, Reuter VE, Sancheti S, Sangoi AR, Sardana R, Satturwar S, Shah RB, Sharma S, Dixit M, Verma M, Sirohi D, Smith SC, Soni S, Sundaram S, Swain M, Tretiakova M, Trpkov K, MuñizUnamunzaga G, Zhou M, Williamson SR, Lopez-Beltran A, Cheng L, Mohanty SK. Advances, recognition, and interpretation of molecular heterogeneity among conventional and subtype histology of urothelial carcinoma (UC): a survey among urologic pathologists and comprehensive review of the literature. Histopathology 2024; 85:748-759. [PMID: 39075659 DOI: 10.1111/his.15287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/31/2024]
Abstract
AIMS Urothelial carcinoma (UC) demonstrates significant molecular and histologic heterogeneity. The WHO 2022 classification has hinted at adding molecular signatures to the morphologic diagnosis. As morphology and associated molecular repertoire may potentially translate to choices of and response to therapy and relapse rate, broader acceptability of recognizing these key features among uropathologists is needed. This prompted an international survey to ascertain the practice patterns in classical/subtype UC among uropathologists across the globe. METHODS AND RESULTS A survey instrument was shared among 98 uropathologists using SurveyMonkey software. Anonymized respondent data were analysed. The response rate was 85%. A majority were in concordance with the profiles of luminal (93%) and basal (82%) types. Opinion on the FGFR3 testing platform was variable. While 95% concurred that TERT promoter mutation is the key driver in UC, 72% had the opinion that APOBEC mutagenesis is the main signature in muscle invasive bladder cancer (MIBC). Uropathologists have divergent opinions on MIBC and ERCC2 mutations. Among the participants, 94% would quantify aggressive micropapillary and sarcomatoid histology, while 88% would reevaluate another transurethral resection of the bladder tumour specimen in nonmuscle invasive tumour with micropapillary, small cell, or sarcomatoid histology. A leading number agreed to specific molecular signatures of micropapillary (93%), plasmacytoid (97%), and small cell (86%) subtypes. Ninety-six percent of participants agreed that a small-cell component portends a more aggressive course and should be treated with neoadjuvant chemotherapy and 63% would perform HER2/neu testing only on oncologist's request in advanced tumours. Ninety percent agreed that microsatellite instability testing, although not a standard protocol, should be considered in young patients with upper tract UC. Eighty-six percent agreed that UC with high tumour mutational burden would be a better candidate for immunotherapy. CONCLUSION In the era of precision medicine, enhanced understanding of molecular heterogeneity of UC will contribute to better therapeutic options, novel biomarker discovery, innovative management protocols, and outcomes. Our survey provides a broad perspective of pathologists' perceptions and experience regarding incorporation of histomolecular approaches to "personalize" therapy. Due to variable clinical adoption, there is a need for additional data using uniform study criteria. This will drive generation of best practice guidelines in this area for widespread and consistent clinical utility.
Collapse
Affiliation(s)
- Anandi Lobo
- Department of Pathology, Kapoor Centre of Urology and Pathology, Raipur, India
| | - Katrina Collins
- Department of Pathology, Indiana University Health, Indiana, USA
| | - Seema Kaushal
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Andres M Acosta
- Department of Pathology, Indiana University Health, Indiana, USA
| | - Mahmut Akgul
- Department of Pathology, Albany Medical Center, Albany, USA
| | - Amit K Adhya
- Department of Pathology, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Hikmat A Al-Ahmadie
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, USA
| | | | - Ali Amin
- Department of Pathology, Alpert Medical School of Brown University, Providence, USA
| | - Mahul B Amin
- Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, USA
| | - Manju Aron
- Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, USA
| | - Bonnie L Balzer
- Department of Pathology, Cedars-Sinai Medical Center, Los Angeles, USA
| | - Rupanita Biswal
- Department of Pathology, Bagchi Sri Shankara Cancer Hospital, Bhubaneswar, India
| | - Subashish Mohanty
- Department of Pathology, SUM Ultimate Medicare Hospital, Bhubaneswar, India
| | - Lisa Browning
- Department of Pathology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Indranil Chakrabarti
- Department of Pathology, All India Institute of Medical Sciences, Kalyani, India
| | - Luca Cima
- Department of Pathology, Santa Chiara Hospital of Trento, Trento, Italy
| | - Alessia Cimadamore
- Department of Pathology, Molecular Medicine and Cell Therapy Foundation, c/o Polytechnic University of the Marche Region, Ancona, Italy
| | - Sangeeta Desai
- Department of Pathology, Tata Memorial Hospital, Mumbai, India
| | | | | | - Guillermo G Diego
- Department of Pathology, University Gregorio Marañon Hospital, Madrid, Spain
| | - Preeti Diwaker
- Department of Pathology, University College of Medical Sciences, New Delhi, India
| | - Laurence A Galea
- Department of Pathology, Melbourne Pathology, Melbourne, Australia
| | | | | | - Nilesh S Gupta
- Department of Pathology, Henry Ford Health System, Detroit, USA
| | - Aiman Haider
- Department of Pathology, University College London Hospitals NHS Foundation Trust, London, UK
| | | | | | - Samriti Arora
- Department of Pathology, CORE Diagnostics, Gurgaon, India
| | - Ekta Jain
- Department of Pathology, CORE Diagnostics, Gurgaon, India
| | - Deepika Jain
- Department of Pathology, CORE Diagnostics, Gurgaon, India
| | - Shilpy Jha
- Department of Pathology, Advanced Medical and Research Institute, Bhubaneswar, India
| | - Shivani Kandukuri
- Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, USA
| | - Chia-Sui Kao
- Department of Pathology, Cleveland Clinic, Cleveland, USA
| | - Oleksandr N Kryvenko
- Department of Pathology, University of Miami Miller School of Medicine, Miami, USA
| | - Ramani M Kumar
- Department of Pathology, Dane Diagnostics, Palakkad, India
| | - Niraj Kumari
- Department of Pathology, All India Institute of Medical Sciences, Raebareli, India
| | - Lakshmi P Kunju
- Department of Pathology, University of Michigan, Ann Arbor, USA
| | - Levente Kuthi
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - João Lobo
- Department of Pathology, Portuguese Oncology Institute - Porto, Porto, Portugal
| | - Jose I Lopez
- Department of Pathology, Cruces University Hospital, Barakaldo, Spain
| | | | - Fiona Maclean
- Department of Pathology, Douglass Hanly Moir Pathology, Sydney, Australia
| | - Claudia Manini
- Department of Pathology, University of Turin, Turin, Italy
| | - Rahul Mannan
- Department of Pathology, University of Michigan, Ann Arbor, USA
| | - María G Martos
- Department of Pathology, University Gregorio Marañon Hospital, Madrid, Spain
| | - Rohit Mehra
- Department of Pathology, University of Michigan, Ann Arbor, USA
| | - Santosh Menon
- Department of Pathology, Tata Memorial Hospital, Mumbai, India
| | - Pritinanda Mishra
- Department of Pathology, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Holger Moch
- Department of Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Rodolfo Montironi
- Department of Pathology, Molecular Medicine and Cell Therapy Foundation, c/o Polytechnic University of the Marche Region, Ancona, Italy
| | - Manas R Baisakh
- Department of Pathology, Prolife Diagnostics, Bhubaneswar, India
| | - George J Netto
- Department of Pathology, University of Pennsylvania, Philadelphia, USA
| | - Lovelesh K Nigam
- Department of Pathology, Institute of Kidney Diseases and Research Center, Ahmedabad, India
| | - Adeboye O Osunkoya
- Department of Pathology, Emory University School of Medicine, Atlanta, USA
| | - Francesca Pagliuca
- Department of Pathology, Università degliStudidella Campania Luigi Vanvitelli, Caserta, Italy
| | - Gladell P Paner
- Department of Pathology, University of Chicago, Chicago, USA
| | - Angel Panizo
- Department of Pathology, Complejo Hospitalario de Navarra, Pamplona, Spain
| | - Anil V Parwani
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, USA
| | - Maria M Picken
- Department of Pathology, Loyola University Medical Center, Hines, USA
| | - Susan Prendeville
- Department of Pathology, University Health Network, University of Toronto, Toronto, Canada
| | | | - Suvendu Purkait
- Department of Pathology, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Francisco J Queipo
- Department of Pathology, Hospital Universitario de A Coruna, A Coruna, Spain
| | - B Vishal Rao
- Department of Pathology, Basavatarakam Indo-American Cancer Hospital and Research Institute, Hyderabad, India
| | - Priya Rao
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, USA
| | - Victor E Reuter
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, USA
| | - Sankalp Sancheti
- Department of Pathology, Homi Bhabha Cancer Hospital, Punjab, India
| | - Ankur R Sangoi
- Department of Pathology, Stanford University, Stanford, USA
| | - Rohan Sardana
- Department of Pathology, Sardana Laboratories, Jalandhar, India
| | - Swati Satturwar
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, USA
| | - Rajal B Shah
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, USA
| | - Shivani Sharma
- Department of Pathology, CORE Diagnostics, Gurgaon, India
| | - Mallika Dixit
- Department of Pathology, CORE Diagnostics, Gurgaon, India
| | - Monica Verma
- Department of Pathology, CORE Diagnostics, Gurgaon, India
| | - Deepika Sirohi
- Department of Pathology, University of California, San Francisco, USA
| | - Steven C Smith
- Department of Pathology, Virginia Commonwealth University School of Medicine, Richmond, USA
| | - Shailesh Soni
- Department of Pathology, Muljibhai Patel Urological Hospital, Nadiad, India
| | - Sandhya Sundaram
- Department of Pathology, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | | | | | - Kiril Trpkov
- Department of Pathology, University of Calgary, Calgary, Canada
| | | | - Ming Zhou
- Department of Pathology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | | | - Antonio Lopez-Beltran
- Department of Pathology, Unit of Anatomical Pathology, Faculty of Medicine, Cordoba University, Cordoba, Spain
| | - Liang Cheng
- Department of Pathology, Alpert Medical School of Brown University, Providence, USA
| | - Sambit K Mohanty
- Department of Pathology, CORE Diagnostics, Gurgaon, India
- Department of Pathology, Advanced Medical and Research Institute, Bhubaneswar, India
| |
Collapse
|
9
|
Devenport JM, Tran T, Harris BR, Fingerman DF, DeWeerd RA, Elkhidir L, LaVigne D, Fuh K, Sun L, Bednarski JJ, Drapkin R, Mullen M, Green AM. APOBEC3A drives metastasis of high-grade serous ovarian cancer by altering epithelial-to-mesenchymal transition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.25.620297. [PMID: 39553968 PMCID: PMC11565781 DOI: 10.1101/2024.10.25.620297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
High-grade serous ovarian cancer (HGSOC) is the most prevalent and aggressive histological subtype of ovarian cancer, and often presents with metastatic disease. The drivers of metastasis in HGSOC remain enigmatic. APOBEC3A (A3A), an enzyme that generates mutations across various cancers, has been proposed as a mediator of tumor heterogeneity and disease progression. However, the role of A3A in HGSOC has not been explored. Through analysis of genome sequencing from primary HGSOC, we observed an association between high levels of APOBEC3 mutagenesis and poor overall survival. We experimentally addressed this correlation by modeling A3A activity in HGSOC cell lines and mouse models which resulted in increased metastatic behavior of HGSOC cells in culture and distant metastatic spread in vivo . A3A activity in both primary and cultured HGSOC cells yielded consistent alterations in expression of epithelial-mesenchymal-transition (EMT) genes resulting in hybrid EMT and mesenchymal signatures, and providing a mechanism for their increased metastatic potential. Our findings define the prevalence of A3A mutagenesis in HGSOC and implicate A3A as a driver of HGSOC metastasis via EMT, underscoring its clinical relevance as a potential prognostic biomarker. Our study lays the groundwork for the development of targeted therapies aimed at mitigating the deleterious impact of A3A-driven EMT in HGSOC.
Collapse
|
10
|
Loriot Y, Kamal M, Syx L, Nicolle R, Dupain C, Menssouri N, Duquesne I, Lavaud P, Nicotra C, Ngocamus M, Lacroix L, Tselikas L, Crehange G, Friboulet L, Castel-Ajgal Z, Neuzillet Y, Borcoman E, Beuzeboc P, Marret G, Gutman T, Wong J, Radvanyi F, Dureau S, Scoazec JY, Servant N, Allory Y, Besse B, Andre F, Le Tourneau C, Massard C, Bieche I. The genomic and transcriptomic landscape of metastastic urothelial cancer. Nat Commun 2024; 15:8603. [PMID: 39366934 PMCID: PMC11452614 DOI: 10.1038/s41467-024-52915-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 09/20/2024] [Indexed: 10/06/2024] Open
Abstract
Metastatic urothelial carcinoma (mUC) is a lethal cancer, with limited therapeutic options. Large-scale studies in early settings provided critical insights into the genomic and transcriptomic characteristics of non-metastatic UC. The genomic landscape of mUC remains however unclear. Using Whole Exome (WES) and mRNA sequencing (RNA-seq) performed on metastatic biopsies from 111 patients, we show that driver genomic alterations from mUC were comparable to primary UC (TCGA data). APOBEC, platin, and HRD mutational signatures are the most prevalent in mUC, identified in 56%, 14%, and 9% of mUC samples, respectively. Molecular subtyping using consensus transcriptomic classification in mUC shows enrichment in neuroendocrine subtype. Paired samples analysis reveals subtype heterogeneity and temporal evolution. We identify potential therapeutic targets in 73% of mUC patients, of which FGFR3 (26%), ERBB2 (7%), TSC1 (7%), and PIK3CA (13%) are the most common. NECTIN4 and TACSTD2 are highly expressed regardless of molecular subtypes, FGFR3 alterations and sites of metastases.
Collapse
MESH Headings
- Humans
- Receptor, Fibroblast Growth Factor, Type 3/genetics
- Receptor, Fibroblast Growth Factor, Type 3/metabolism
- Transcriptome
- Mutation
- Male
- Female
- Exome Sequencing
- Receptor, ErbB-2/genetics
- Receptor, ErbB-2/metabolism
- Urinary Bladder Neoplasms/genetics
- Urinary Bladder Neoplasms/pathology
- Nectins/genetics
- Nectins/metabolism
- Aged
- Tuberous Sclerosis Complex 1 Protein/genetics
- Tuberous Sclerosis Complex 1 Protein/metabolism
- Cell Adhesion Molecules/genetics
- Cell Adhesion Molecules/metabolism
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/metabolism
- Class I Phosphatidylinositol 3-Kinases/genetics
- Class I Phosphatidylinositol 3-Kinases/metabolism
- Genomics
- Middle Aged
- APOBEC Deaminases/genetics
- APOBEC Deaminases/metabolism
- Urothelium/pathology
- Urothelium/metabolism
- Gene Expression Regulation, Neoplastic
- Cytidine Deaminase/genetics
- Cytidine Deaminase/metabolism
- Neoplasm Metastasis/genetics
- Aged, 80 and over
- Carcinoma, Transitional Cell/genetics
- Carcinoma, Transitional Cell/pathology
- Urologic Neoplasms/genetics
- Urologic Neoplasms/pathology
- Gene Expression Profiling/methods
Collapse
Affiliation(s)
- Yohann Loriot
- Gustave Roussy, DITEP, Gustave Roussy, Villejuif, France.
- INSERM 981, Université Paris-Saclay, Gustave Roussy, Villejuif, France.
- PRISM, Gustave Roussy, Villejuif, France.
| | - Maud Kamal
- Department of Drug Development and Innovation (D3i), Institut Curie, 75005, Paris, France.
| | - Laurene Syx
- Bioinformatics and Computational Systems Biology of Cancer, Institut Curie, PSL Research University, Mines Paris Tech, INSERM U900, 75005, Paris, France
| | - Remy Nicolle
- Université Paris Cité, Centre de Recherche sur l'Inflammation (CRI), INSERM, U1149, CNRS, ERL 8252, F-, 75018, Paris, France
| | - Celia Dupain
- Department of Drug Development and Innovation (D3i), Institut Curie, 75005, Paris, France
| | - Naoual Menssouri
- INSERM 981, Université Paris-Saclay, Gustave Roussy, Villejuif, France
| | - Igor Duquesne
- INSERM 981, Université Paris-Saclay, Gustave Roussy, Villejuif, France
| | - Pernelle Lavaud
- INSERM 981, Université Paris-Saclay, Gustave Roussy, Villejuif, France
| | | | - Maud Ngocamus
- Gustave Roussy, DITEP, Gustave Roussy, Villejuif, France
| | | | - Lambros Tselikas
- Department of interventional radiology, Gustave Roussy, Villejuif, France
| | - Gilles Crehange
- Department of Radiothérapie, Institut Curie, 75005 Paris & 92210 Saint-Cloud, Paris, France
| | - Luc Friboulet
- INSERM 981, Université Paris-Saclay, Gustave Roussy, Villejuif, France
- PRISM, Gustave Roussy, Villejuif, France
| | - Zahra Castel-Ajgal
- Department of Drug Development and Innovation (D3i), Institut Curie, 75005, Paris, France
| | | | - Edith Borcoman
- Department of Drug Development and Innovation (D3i), Institut Curie, 75005, Paris, France
| | | | - Grégoire Marret
- Department of Drug Development and Innovation (D3i), Institut Curie, 75005, Paris, France
| | - Tom Gutman
- Bioinformatics and Computational Systems Biology of Cancer, Institut Curie, PSL Research University, Mines Paris Tech, INSERM U900, 75005, Paris, France
| | - Jennifer Wong
- Department of Genetics, Institut Curie, 75005, Paris, France
| | | | - Sylvain Dureau
- Biometry unit, direction of clinical research, Institut Curie, 75005, Paris, France
| | - Jean-Yves Scoazec
- INSERM 981, Université Paris-Saclay, Gustave Roussy, Villejuif, France
- Biopath department, Gustave Roussy, Villejuif, France
| | - Nicolas Servant
- Bioinformatics and Computational Systems Biology of Cancer, Institut Curie, PSL Research University, Mines Paris Tech, INSERM U900, 75005, Paris, France
| | - Yves Allory
- Department of Pathology, Institut Curie, PSL Research University, 75005, Paris, France
| | - Benjamin Besse
- INSERM 981, Université Paris-Saclay, Gustave Roussy, Villejuif, France
- Department of Cancer Medicine, Gustave Roussy, Villejuif, France
| | - Fabrice Andre
- INSERM 981, Université Paris-Saclay, Gustave Roussy, Villejuif, France
- PRISM, Gustave Roussy, Villejuif, France
| | - Christophe Le Tourneau
- Department of Drug Development and Innovation (D3i), Institut Curie, 75005, Paris, France
- Bioinformatics and Computational Systems Biology of Cancer, Institut Curie, PSL Research University, Mines Paris Tech, INSERM U900, 75005, Paris, France
| | | | - Ivan Bieche
- Department of Genetics, Institut Curie, 75005, Paris, France
- INSERM U1016, Faculty of Pharmaceutical and Biological Sciences, Université Paris Cité, Paris, France
| |
Collapse
|
11
|
Palacka P, Holíčková A, Roška J, Makovický P, Vallová M, Biró C, Órásová E, Obertová J, Mardiak J, Ward TA, Kajo K, Chovanec M. Prognostic value of nucleotide excision repair and translesion DNA synthesis proteins in muscle-infiltrating bladder carcinoma. BMC Cancer 2024; 24:1103. [PMID: 39237917 PMCID: PMC11376035 DOI: 10.1186/s12885-024-12865-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Cisplatin (CDDP) remains a key agent in the treatment of muscle-infiltrating bladder carcinoma (MIBC). However, a proportion of MIBC patients do not respond to chemotherapy, which may be caused by the increased repair of CDDP-induced DNA damage. The purpose of this study was to explore the prognostic value of proteins involved in nucleotide excision repair (NER) and translesion DNA synthesis (TLS) in MIBC patients. METHODS This is a retrospective analysis of 86 MIBC patients. The XPA, XPF, XPG, ERCC1, POLI, POLH and REV3L proteins were stained in primary bladder tumors and their levels were analyzed both in the total cohort and in a subgroup with metastatic urothelial carcinoma (mUC) that received gemcitabine and CDDP as a first-line therapy. Both cohorts were divided by percentage of cancer cells stained positive for each protein into subgroups with high and low expression. In the same manner, the combined expression of NER (XPA + ERCC1 + XPF + XPG) and TLS (POLI + POLH + REV3L), as the whole pathways, was analyzed. RESULTS Mortality was 89.5% at the median follow-up of 120.2 months. In the total cohort, patients with tumors stained positive for XPA, XPG and POLI had significantly worse overall survival (OS) compared to those with negative staining [hazard ratio (HR) = 0.60, 0.62 and 0.53, respectively]. Both XPG and POLI were independent prognostic factors in multivariate analyses (MVA). In addition, an increase in NER and TLS pathway expression was significantly associated with worse OS in the total cohort (HR = 0.54 and 0.60, respectively). In the mUC subgroup, high POLI expression was associated with significant deterioration of OS (HR = 0.56) in univariate analyses, and its independent prognostic value was shown in MVA. CONCLUSIONS Our study showed significant correlations between the tumor expression of XPG and POLI, as well as NER and TLS as the whole pathways, and inferior OS. Hence, they could constitute prognostic biomarkers and potentially promising therapeutic targets in MIBC. However, a prospective trial is required for further validation, thereby overcoming the limitations of this study.
Collapse
Affiliation(s)
- Patrik Palacka
- 2nd Department of Oncology, Comenius University, Faculty of Medicine and National Cancer Institute, Bratislava, Slovakia.
- Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Bratislava, Slovakia.
| | - Andrea Holíčková
- Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jan Roška
- Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Bratislava, Slovakia
| | - Peter Makovický
- Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Bratislava, Slovakia
| | - Miroslava Vallová
- Department of Pathology, St. Elisabeth Cancer Institute, Bratislava, Slovakia
| | - Csaba Biró
- Department of Pathology, St. Elisabeth Cancer Institute, Bratislava, Slovakia
| | - Eveline Órásová
- Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jana Obertová
- 2nd Department of Oncology, Comenius University, Faculty of Medicine and National Cancer Institute, Bratislava, Slovakia
| | - Jozef Mardiak
- 2nd Department of Oncology, Comenius University, Faculty of Medicine and National Cancer Institute, Bratislava, Slovakia
| | - Thomas A Ward
- XCellR8 Ltd, Sci-Tech Daresbury, Cheshire, WA4 4AB, UK
| | - Karol Kajo
- Department of Pathology, St. Elisabeth Cancer Institute, Bratislava, Slovakia
| | - Miroslav Chovanec
- Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Bratislava, Slovakia.
| |
Collapse
|
12
|
Scholtes MP, van Leenders GJLH, Robbrecht DGJ, Boormans JL, Zuiverloon TCM. Are primary tumors suitable for biomarker-guided treatment of metastatic urothelial cancer? Transl Androl Urol 2024; 13:1341-1345. [PMID: 39280671 PMCID: PMC11399036 DOI: 10.21037/tau-24-112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/26/2024] [Indexed: 09/18/2024] Open
Affiliation(s)
- Mathijs P Scholtes
- Department of Urology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Geert J L H van Leenders
- Department of Pathology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Debbie G J Robbrecht
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Joost L Boormans
- Department of Urology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Tahlita C M Zuiverloon
- Department of Urology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
13
|
Tuo Z, Zhang Y, Li D, Wang Y, Wu R, Wang J, Yu Q, Ye L, Shao F, Wusiman D, Yang Y, Yoo KH, Ke M, Okoli UA, Cho WC, Heavey S, Wei W, Feng D. Relationship between clonal evolution and drug resistance in bladder cancer: A genomic research review. Pharmacol Res 2024; 206:107302. [PMID: 39004242 DOI: 10.1016/j.phrs.2024.107302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/28/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024]
Abstract
Bladder cancer stands as a prevalent global malignancy, exhibiting notable sex-based variations in both incidence and prognosis. Despite substantial strides in therapeutic approaches, the formidable challenge of drug resistance persists. The genomic landscape of bladder cancer, characterized by intricate clonal heterogeneity, emerges as a pivotal determinant in fostering this resistance. Clonal evolution, encapsulating the dynamic transformations within subpopulations of tumor cells over time, is implicated in the emergence of drug-resistant traits. Within this review, we illuminate contemporary insights into the role of clonal evolution in bladder cancer, elucidating its influence as a driver in tumor initiation, disease progression, and the formidable obstacle of therapy resistance.
Collapse
Affiliation(s)
- Zhouting Tuo
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Ying Zhang
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Dengxiong Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yetong Wang
- The Fourth Corps of Students of the Basic Medical College, Army Medical University, Chongqing 400038, China
| | - Ruicheng Wu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jie Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qingxin Yu
- Department of Pathology, Ningbo Clinical Pathology Diagnosis Center, Ningbo City, Zhejiang Province 315211, China
| | - Luxia Ye
- Department of Public Research Platform, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Fanglin Shao
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Dilinaer Wusiman
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA; Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Yubo Yang
- Department of Urology, Three Gorges Hospital, Chongqing University, Chongqing, Wanzhou 404000, China
| | - Koo Han Yoo
- Department of Urology, Kyung Hee University, South Korea
| | - Mang Ke
- Department of Urology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China
| | - Uzoamaka Adaobi Okoli
- Division of Surgery & Interventional Science, University College London, London W1W 7TS, UK; Basic and Translational Cancer Research Group, Department of Pharmacology and Therapeutics, College of Medicine, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR China.
| | - Susan Heavey
- Division of Surgery & Interventional Science, University College London, London W1W 7TS, UK.
| | - Wuran Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Dechao Feng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China; Division of Surgery & Interventional Science, University College London, London W1W 7TS, UK.
| |
Collapse
|
14
|
Klümper N, Tran NK, Zschäbitz S, Hahn O, Büttner T, Roghmann F, Bolenz C, Zengerling F, Schwab C, Nagy D, Toma M, Kristiansen G, Heers H, Ivanyi P, Niegisch G, Grunewald CM, Darr C, Farid A, Schlack K, Abbas M, Aydogdu C, Casuscelli J, Mokry T, Mayr M, Niedersüß-Beke D, Rausch S, Dietrich D, Saal J, Ellinger J, Ritter M, Alajati A, Kuppe C, Meeks J, Vera Badillo FE, Nakauma-González JA, Boormans J, Junker K, Hartmann A, Grünwald V, Hölzel M, Eckstein M. NECTIN4 Amplification Is Frequent in Solid Tumors and Predicts Enfortumab Vedotin Response in Metastatic Urothelial Cancer. J Clin Oncol 2024; 42:2446-2455. [PMID: 38657187 PMCID: PMC11227306 DOI: 10.1200/jco.23.01983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/31/2024] [Accepted: 02/26/2024] [Indexed: 04/26/2024] Open
Abstract
PURPOSE The anti-NECTIN4 antibody-drug conjugate enfortumab vedotin (EV) is approved for patients with metastatic urothelial cancer (mUC). However, durable benefit is only achieved in a small, yet uncharacterized patient subset. NECTIN4 is located on chromosome 1q23.3, and 1q23.3 gains represent frequent copy number variations (CNVs) in urothelial cancer. Here, we aimed to evaluate NECTIN4 amplifications as a genomic biomarker to predict EV response in patients with mUC. MATERIALS AND METHODS We established a NECTIN4-specific fluorescence in situ hybridization (FISH) assay to assess the predictive value of NECTIN4 CNVs in a multicenter EV-treated mUC patient cohort (mUC-EV, n = 108). CNVs were correlated with membranous NECTIN4 protein expression, EV treatment responses, and outcomes. We also assessed the prognostic value of NECTIN4 CNVs measured in metastatic biopsies of non-EV-treated mUC (mUC-non-EV, n = 103). Furthermore, we queried The Cancer Genome Atlas (TCGA) data sets (10,712 patients across 32 cancer types) for NECTIN4 CNVs. RESULTS NECTIN4 amplifications are frequent genomic events in muscle-invasive bladder cancer (TCGA bladder cancer data set: approximately 17%) and mUC (approximately 26% in our mUC cohorts). In mUC-EV, NECTIN4 amplification represents a stable genomic alteration during metastatic progression and associates with enhanced membranous NECTIN4 protein expression. Ninety-six percent (27 of 28) of patients with NECTIN4 amplifications demonstrated objective responses to EV compared with 32% (24 of 74) in the nonamplified subgroup (P < .001). In multivariable Cox analysis adjusted for age, sex, and Bellmunt risk factors, NECTIN4 amplifications led to a 92% risk reduction for death (hazard ratio, 0.08 [95% CI, 0.02 to 0.34]; P < .001). In the mUC-non-EV, NECTIN4 amplifications were not associated with outcomes. TCGA Pan-Cancer analysis demonstrated that NECTIN4 amplifications occur frequently in other cancers, for example, in 5%-10% of breast and lung cancers. CONCLUSION NECTIN4 amplifications are genomic predictors of EV responses and long-term survival in patients with mUC.
Collapse
Affiliation(s)
- Niklas Klümper
- Department of Urology and Pediatric Urology, University Hospital Bonn, Bonn, Germany
- Institute of Experimental Oncology, University Medical Center Bonn (UKB), Bonn, Germany
- Center for Integrated Oncology Aachen/Bonn/Cologne/Düsseldorf (CIO-ABCD), Bonn, Germany
- BRIDGE-Consortium Germany e.V., Mannheim, Germany
| | - Ngoc Khanh Tran
- Department of Urology and Pediatric Urology, University Hospital Bonn, Bonn, Germany
- Institute of Experimental Oncology, University Medical Center Bonn (UKB), Bonn, Germany
- Center for Integrated Oncology Aachen/Bonn/Cologne/Düsseldorf (CIO-ABCD), Bonn, Germany
| | - Stefanie Zschäbitz
- Department of Medical Oncology, National Center for Tumor Disease (NCT), University Hospital, Heidelberg, Germany
| | - Oliver Hahn
- Department of Urology and Pediatric Urology, Julius Maximilians University Medical Center of Würzburg, Würzburg, Germany
| | - Thomas Büttner
- Department of Urology and Pediatric Urology, University Hospital Bonn, Bonn, Germany
- Center for Integrated Oncology Aachen/Bonn/Cologne/Düsseldorf (CIO-ABCD), Bonn, Germany
| | - Florian Roghmann
- BRIDGE-Consortium Germany e.V., Mannheim, Germany
- Department of Urology, Marien Hospital, Ruhr-University Bochum, Herne, Germany
| | - Christian Bolenz
- BRIDGE-Consortium Germany e.V., Mannheim, Germany
- Department of Urology and Pediatric Urology, University Hospital Ulm, University of Ulm, Ulm, Germany
| | - Friedemann Zengerling
- BRIDGE-Consortium Germany e.V., Mannheim, Germany
- Department of Urology and Pediatric Urology, University Hospital Ulm, University of Ulm, Ulm, Germany
| | - Constantin Schwab
- Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | - Dora Nagy
- Center for Integrated Oncology Aachen/Bonn/Cologne/Düsseldorf (CIO-ABCD), Bonn, Germany
- Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - Marieta Toma
- Center for Integrated Oncology Aachen/Bonn/Cologne/Düsseldorf (CIO-ABCD), Bonn, Germany
- Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - Glen Kristiansen
- Center for Integrated Oncology Aachen/Bonn/Cologne/Düsseldorf (CIO-ABCD), Bonn, Germany
- BRIDGE-Consortium Germany e.V., Mannheim, Germany
- Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - Hendrik Heers
- Department of Urology, University Hospital Marburg, Marburg, Germany
| | - Philipp Ivanyi
- Department of Hemostaseology, Oncology and Stem Cell Transplantation, Medical University Hannover, Hannover, Germany
| | - Günter Niegisch
- Department of Urology, University Hospital Düsseldorf, Düsseldorf, Germany
| | | | - Christopher Darr
- Department of Urology, University Hospital Essen, Essen, Germany
| | - Arian Farid
- Department of Urology, University Medical Center Göttingen, Göttingen, Germany
| | - Katrin Schlack
- Department of Urology, University Hospital Münster, Münster, Germany
| | - Mahmoud Abbas
- Department of Pathology, University Hospital Münster, Münster, Germany
| | - Can Aydogdu
- Department of Urology, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Jozefina Casuscelli
- Department of Urology, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Theresa Mokry
- Department of Diagnostic and Interventional Radiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Michael Mayr
- Clinic Ottakring, Institute of Pathology and Microbiology, Wien, Austria
| | | | - Steffen Rausch
- Department of Urology, Eberhard Karls University, Tübingen, Germany
| | - Dimo Dietrich
- Department of Otorhinolaryngology, University Medical Center Bonn (UKB), Bonn, Germany
| | - Jonas Saal
- Institute of Experimental Oncology, University Medical Center Bonn (UKB), Bonn, Germany
- Center for Integrated Oncology Aachen/Bonn/Cologne/Düsseldorf (CIO-ABCD), Bonn, Germany
- Medical Clinic III for Oncology, Hematology, Immune-Oncology and Rheumatology, University Medical Center Bonn (UKB), Bonn, Germany
| | - Jörg Ellinger
- Department of Urology and Pediatric Urology, University Hospital Bonn, Bonn, Germany
- Center for Integrated Oncology Aachen/Bonn/Cologne/Düsseldorf (CIO-ABCD), Bonn, Germany
| | - Manuel Ritter
- Department of Urology and Pediatric Urology, University Hospital Bonn, Bonn, Germany
- Center for Integrated Oncology Aachen/Bonn/Cologne/Düsseldorf (CIO-ABCD), Bonn, Germany
- BRIDGE-Consortium Germany e.V., Mannheim, Germany
| | - Abdullah Alajati
- Department of Urology and Pediatric Urology, University Hospital Bonn, Bonn, Germany
- Center for Integrated Oncology Aachen/Bonn/Cologne/Düsseldorf (CIO-ABCD), Bonn, Germany
| | - Christoph Kuppe
- Institute of Experimental Medicine and Systems Biology and Division of Nephrology, RWTH Aachen University, Aachen, Germany
| | - Joshua Meeks
- Department of Urology, Feinberg School of Medicine, Chicago, IL
| | | | - J. Alberto Nakauma-González
- Department of Urology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Joost Boormans
- Department of Urology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Kerstin Junker
- Department of Urology and Pediatric Urology, Saarland University, Homburg, Germany
| | - Arndt Hartmann
- BRIDGE-Consortium Germany e.V., Mannheim, Germany
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center EMN, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Bavarian Center for Cancer Research (Bayerisches Zentrum für Krebsforschung, BZKF), Erlangen, Germany
| | - Viktor Grünwald
- Clinic for Internal Medicine (Tumor Research) and Clinic for Urology, Interdisciplinary Genitourinary Oncology at the West-German Cancer Center, Essen University Hospital, Essen, Germany
| | - Michael Hölzel
- Institute of Experimental Oncology, University Medical Center Bonn (UKB), Bonn, Germany
- Center for Integrated Oncology Aachen/Bonn/Cologne/Düsseldorf (CIO-ABCD), Bonn, Germany
| | - Markus Eckstein
- BRIDGE-Consortium Germany e.V., Mannheim, Germany
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center EMN, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Bavarian Center for Cancer Research (Bayerisches Zentrum für Krebsforschung, BZKF), Erlangen, Germany
| |
Collapse
|
15
|
Tong Z, Zhao Y, Bai S, Ebner B, Lienhard L, Zhao Y, Wang Z, Pan Q, Guo P, Bracht T, Sitek B, Gschwend JE, Xu W, Nawroth R. The mechanism of resistance to CDK4/6 inhibition and novel combination therapy with RNR inhibition for chemo-resistant bladder cancer. Cancer Commun (Lond) 2024; 44:700-704. [PMID: 38468431 PMCID: PMC11194448 DOI: 10.1002/cac2.12532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/27/2024] [Accepted: 03/01/2024] [Indexed: 03/13/2024] Open
Affiliation(s)
- Zhichao Tong
- Department of UrologyHarbin Medical University Cancer HospitalHarbinHeilongjiangP. R. China
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted TheranosticsHarbin Medical UniversityHarbinHeilongjiangP. R. China
- Department of UrologyKlinikum rechts der Isar, Technical university of MunichMunichGermany
- Department of UrologyThe Fourth Hospital of Harbin Medical UniversityHarbinHeilongjiangP. R. China
| | - Yubo Zhao
- Department of UrologyHarbin Medical University Cancer HospitalHarbinHeilongjiangP. R. China
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted TheranosticsHarbin Medical UniversityHarbinHeilongjiangP. R. China
| | - Shiyu Bai
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted TheranosticsHarbin Medical UniversityHarbinHeilongjiangP. R. China
- Department of UrologyThe Fourth Hospital of Harbin Medical UniversityHarbinHeilongjiangP. R. China
| | - Benedikt Ebner
- Department of UrologyKlinikum rechts der Isar, Technical university of MunichMunichGermany
- Department of UrologyLudwig‐Maximilians‐University of MunichMunichGermany
| | - Lou Lienhard
- Department of UrologyKlinikum rechts der Isar, Technical university of MunichMunichGermany
| | - Yuling Zhao
- Department of UrologyKlinikum rechts der Isar, Technical university of MunichMunichGermany
| | - Ziqi Wang
- Department of UrologyHarbin Medical University Cancer HospitalHarbinHeilongjiangP. R. China
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted TheranosticsHarbin Medical UniversityHarbinHeilongjiangP. R. China
| | - Qi Pan
- Department of UrologyKlinikum rechts der Isar, Technical university of MunichMunichGermany
- Department of UrologyShanghai General Hospital, Shanghai Jiao Tong UniversityShanghaiP. R. China
| | - Pengyu Guo
- Department of UrologyHarbin Medical University Cancer HospitalHarbinHeilongjiangP. R. China
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted TheranosticsHarbin Medical UniversityHarbinHeilongjiangP. R. China
| | - Thilo Bracht
- Medizinisches Proteom‐Center, Ruhr‐Universität BochumBochumGermany
- Clinic for Anesthesiology, Intensive Care and Pain Therapy, University Medical Center Knappschaftskrankenhaus BochumBochumGermany
| | - Barbara Sitek
- Medizinisches Proteom‐Center, Ruhr‐Universität BochumBochumGermany
- Clinic for Anesthesiology, Intensive Care and Pain Therapy, University Medical Center Knappschaftskrankenhaus BochumBochumGermany
| | - Jürgen E. Gschwend
- Department of UrologyKlinikum rechts der Isar, Technical university of MunichMunichGermany
| | - Wanhai Xu
- Department of UrologyHarbin Medical University Cancer HospitalHarbinHeilongjiangP. R. China
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted TheranosticsHarbin Medical UniversityHarbinHeilongjiangP. R. China
| | - Roman Nawroth
- Department of UrologyKlinikum rechts der Isar, Technical university of MunichMunichGermany
| |
Collapse
|
16
|
Xiao Y, Jin W, Qian K, Ju L, Wang G, Wu K, Cao R, Chang L, Xu Z, Luo J, Shan L, Yu F, Chen X, Liu D, Cao H, Wang Y, Cao X, Zhou W, Cui D, Tian Y, Ji C, Luo Y, Hong X, Chen F, Peng M, Zhang Y, Wang X. Integrative Single Cell Atlas Revealed Intratumoral Heterogeneity Generation from an Adaptive Epigenetic Cell State in Human Bladder Urothelial Carcinoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308438. [PMID: 38582099 PMCID: PMC11200000 DOI: 10.1002/advs.202308438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/22/2024] [Indexed: 04/08/2024]
Abstract
Intratumor heterogeneity (ITH) of bladder cancer (BLCA) contributes to therapy resistance and immune evasion affecting clinical prognosis. The molecular and cellular mechanisms contributing to BLCA ITH generation remain elusive. It is found that a TM4SF1-positive cancer subpopulation (TPCS) can generate ITH in BLCA, evidenced by integrative single cell atlas analysis. Extensive profiling of the epigenome and transcriptome of all stages of BLCA revealed their evolutionary trajectories. Distinct ancestor cells gave rise to low-grade noninvasive and high-grade invasive BLCA. Epigenome reprograming led to transcriptional heterogeneity in BLCA. During early oncogenesis, epithelial-to-mesenchymal transition generated TPCS. TPCS has stem-cell-like properties and exhibited transcriptional plasticity, priming the development of transcriptionally heterogeneous descendent cell lineages. Moreover, TPCS prevalence in tumor is associated with advanced stage cancer and poor prognosis. The results of this study suggested that bladder cancer interacts with its environment by acquiring a stem cell-like epigenomic landscape, which might generate ITH without additional genetic diversification.
Collapse
Affiliation(s)
- Yu Xiao
- Department of Urology, Hubei Key Laboratory of Urological Diseases, Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei ProvinceZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Wan Jin
- Department of Urology, Hubei Key Laboratory of Urological Diseases, Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei ProvinceZhongnan Hospital of Wuhan UniversityWuhan430071China
- Euler TechnologyBeijing102206China
| | - Kaiyu Qian
- Department of Urology, Hubei Key Laboratory of Urological Diseases, Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei ProvinceZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Lingao Ju
- Department of Urology, Hubei Key Laboratory of Urological Diseases, Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei ProvinceZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Gang Wang
- Department of Urology, Hubei Key Laboratory of Urological Diseases, Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei ProvinceZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Kai Wu
- Euler TechnologyBeijing102206China
| | - Rui Cao
- Department of UrologyBeijing Friendship HospitalCapital Medical UniversityBeijing100050China
| | | | - Zilin Xu
- Department of Urology, Hubei Key Laboratory of Urological Diseases, Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei ProvinceZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Jun Luo
- Department of PathologyZhongnan Hospital of Wuhan UniversityWuhan430071China
| | | | - Fang Yu
- Department of PathologyZhongnan Hospital of Wuhan UniversityWuhan430071China
| | | | | | - Hong Cao
- Department of PathologyZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Yejinpeng Wang
- Department of Urology, Hubei Key Laboratory of Urological Diseases, Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei ProvinceZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Xinyue Cao
- Department of Urology, Hubei Key Laboratory of Urological Diseases, Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei ProvinceZhongnan Hospital of Wuhan UniversityWuhan430071China
- Clinical Trial CenterZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Wei Zhou
- Hubei Key Laboratory of Medical Technology on TransplantationInstitute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan UniversityWuhan430071China
| | - Diansheng Cui
- Department of UrologyHubei Cancer HospitalWuhan430079China
| | - Ye Tian
- Department of UrologyBeijing Friendship HospitalCapital Medical UniversityBeijing100050China
| | - Chundong Ji
- Department of UrologyThe Affiliated Hospital of Panzhihua UniversityPanzhihua617099China
| | - Yongwen Luo
- Department of Urology, Hubei Key Laboratory of Urological Diseases, Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei ProvinceZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Xin Hong
- Department of UrologyPeking University International HospitalBeijing102206China
| | - Fangjin Chen
- Center for Quantitative BiologySchool of Life SciencesPeking UniversityBeijing100091China
| | - Minsheng Peng
- State Key Laboratory of Genetic Resources and EvolutionKunming Institute of ZoologyChinese Academy of SciencesKunming650201China
- Kunming College of Life ScienceUniversity of Academy of SciencesKunming650201China
| | - Yi Zhang
- Euler TechnologyBeijing102206China
| | - Xinghuan Wang
- Department of Urology, Hubei Key Laboratory of Urological Diseases, Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei ProvinceZhongnan Hospital of Wuhan UniversityWuhan430071China
- Medical Research InstituteWuhan UniversityWuhan430071China
| |
Collapse
|
17
|
Maru Y, Kohno M, Suzuka K, Odaka A, Masuda M, Araki A, Itami M, Tanaka N, Hippo Y. Establishment and characterization of multiple patient-derived organoids from a case of advanced endometrial cancer. Hum Cell 2024; 37:840-853. [PMID: 38546950 DOI: 10.1007/s13577-024-01048-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 02/22/2024] [Indexed: 04/15/2024]
Abstract
Patient-derived organoids (PDOs) retain the original tumor's characteristics to a large degree and allow direct evaluation of the drug sensitivity, thereby emerging as a valuable resource for both basic and preclinical researches. Whereas most past studies stereotypically adopted a single PDO as an avatar of the patient, it remains to be investigated whether this assumption can be justified even for the tumor with spatial diversity. To address this issue, we established and characterized multiple PDOs originating from various sites of a patient with advanced uterine carcinosarcoma (UCS). Specifically, cancer cells were separately sampled from three sites; resected UCS tumor tissue, the peritoneal lavage fluid, and an intra-uterine brushing of the tumor. The three derived PDOs were morphologically undistinguishable, displaying typical carcinoma organoids-like appearance, but two of them proliferated at a faster rate. The primary tumor harbored mutations in TP53 and STK11 along with amplifications in CCNE1, ERBB2, and KRAS. These two mutations and the CCNE1 amplification were detected in all PDOs, while either KRAS or ERBB2 amplification was selectively observed in each PDO in a mutually exclusive manner. Observed intra-tumor heterogeneity in HER2 expression was differentially reproduced in the PDOs, which mirrored each PDO's sensitivity to HER2 inhibitors. Inter-PDO heterogeneity was also evident in sensitivity to standard cytotoxic agents. Lastly, a drug screening identified four candidate reagents commonly effective to all PDOs. Collectively, we showed that multiple PDOs could help reproduce the spatial diversity of a tumor and serve as a valuable resource in UCS research in many respects.
Collapse
Affiliation(s)
- Yoshiaki Maru
- Laboratory of Precision Tumor Model Systems, Chiba Cancer Center Research Institute, 666-2 Nitona-Cho, Chuo-Ku, Chiba-Shi, Chiba, 260-8717, Japan.
| | - Mami Kohno
- Laboratory of Precision Tumor Model Systems, Chiba Cancer Center Research Institute, 666-2 Nitona-Cho, Chuo-Ku, Chiba-Shi, Chiba, 260-8717, Japan
| | - Kiyomi Suzuka
- Department of Gynecology, Chiba Cancer Center, 666-2 Nitona-Cho, Chuo-Ku, Chiba-Shi, Chiba, 260-8717, Japan
| | - Akiko Odaka
- Division of Surgical Pathology, Chiba Cancer Center, 666-2 Nitona-Cho, Chuo-Ku, Chiba-Shi, Chiba, 260-8717, Japan
| | - Mari Masuda
- Department of Proteomics, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Akinobu Araki
- Division of Surgical Pathology, Chiba Cancer Center, 666-2 Nitona-Cho, Chuo-Ku, Chiba-Shi, Chiba, 260-8717, Japan
| | - Makiko Itami
- Division of Surgical Pathology, Chiba Cancer Center, 666-2 Nitona-Cho, Chuo-Ku, Chiba-Shi, Chiba, 260-8717, Japan
| | - Naotake Tanaka
- Department of Gynecology, Chiba Cancer Center, 666-2 Nitona-Cho, Chuo-Ku, Chiba-Shi, Chiba, 260-8717, Japan
| | - Yoshitaka Hippo
- Laboratory of Precision Tumor Model Systems, Chiba Cancer Center Research Institute, 666-2 Nitona-Cho, Chuo-Ku, Chiba-Shi, Chiba, 260-8717, Japan.
| |
Collapse
|
18
|
Lenis AT, Whiting K, Ravichandran V, Tallman JE, Alam SM, Chu CE, De Jesus Escano M, Bochner E, Katims A, Reisz PA, Truong H, Clinton TN, Telis L, Dason S, McPherson V, Teo MY, Funt S, Aggen D, Goh AC, Donahue TF, Cha EK, Donat SM, Herr HW, Dalbagni G, Schultz N, Berger MF, Bajorin DF, Rosenberg JE, Bochner BH, Ostrovnaya I, Al-Ahmadie H, Solit DB, Iyer G, Pietzak EJ. Natural History and Genomic Landscape of Chemotherapy-Resistant Muscle-Invasive Bladder Cancer. JCO Precis Oncol 2024; 8:e2300274. [PMID: 38691813 PMCID: PMC11310921 DOI: 10.1200/po.23.00274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/03/2023] [Accepted: 02/29/2024] [Indexed: 05/03/2024] Open
Abstract
PURPOSE Patients with residual invasive bladder cancer after neoadjuvant chemotherapy (NAC) and radical cystectomy have a poor prognosis. Data on adjuvant therapy for these patients are conflicting. We sought to evaluate the natural history and genomic landscape of chemotherapy-resistant bladder cancer to inform patient management and clinical trials. METHODS Data were collected on patients with clinically localized muscle-invasive urothelial bladder cancer treated with NAC and cystectomy at our institution between May 15, 2001, and August 15, 2019, and completed four cycles of gemcitabine and cisplatin NAC, excluding those treated with adjuvant therapies. Survival was estimated using the Kaplan-Meier method, and multivariable Cox proportional hazards models were used to identify predictors of recurrence-free survival (RFS). Genomic alterations were identified in targeted exome sequencing (Memorial Sloan Kettering Integrated Mutation Profiling of Actionable Cancer Targets) data from post-NAC specimens from a subset of patients. RESULTS Lymphovascular invasion (LVI) was the strongest predictor of RFS (hazard ratio, 2.15 [95% CI, 1.37 to 3.39]) on multivariable analysis. Patients with ypT2N0 disease without LVI had a significantly prolonged RFS compared with those with LVI (70% RFS at 5 years). Lymph node yield did not affect RFS. Among patients with sequencing data (n = 101), chemotherapy-resistant tumors had fewer alterations in DNA damage response genes compared with tumors from a publicly available chemotherapy-naïve cohort (15% v 29%; P = .021). Alterations in CDKN2A/B were associated with shorter RFS. PIK3CA alterations were associated with LVI. Potentially actionable alterations were identified in more than 75% of tumors. CONCLUSION Although chemotherapy-resistant bladder cancer generally portends a poor prognosis, patients with organ-confined disease without LVI may be candidates for close observation without adjuvant therapy. The genomic landscape of chemotherapy-resistant tumors is similar to chemotherapy-naïve tumors. Therapeutic opportunities exist for targeted therapies as adjuvant treatment in chemotherapy-resistant disease.
Collapse
Affiliation(s)
- Andrew T. Lenis
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center (MSK), New York, NY
- Department of Urology, Columbia University Irving Medical Center, New York, NY
| | - Karissa Whiting
- Biostatistics Service, Department of Epidemiology & Biostatistics, MSK, New York, NY
| | - Vignesh Ravichandran
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, MSK, New York, NY
| | - Jacob E. Tallman
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center (MSK), New York, NY
| | - Syed M. Alam
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center (MSK), New York, NY
| | - Carissa E. Chu
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center (MSK), New York, NY
| | - Manual De Jesus Escano
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center (MSK), New York, NY
| | - Emily Bochner
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center (MSK), New York, NY
| | - Andrew Katims
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center (MSK), New York, NY
| | - Peter A. Reisz
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center (MSK), New York, NY
| | - Hong Truong
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center (MSK), New York, NY
| | - Timothy N. Clinton
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center (MSK), New York, NY
| | - Leon Telis
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center (MSK), New York, NY
| | - Shawn Dason
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center (MSK), New York, NY
| | - Victor McPherson
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center (MSK), New York, NY
| | - Min Yuen Teo
- Genitourinary Oncology Service, Department of Medicine, MSK, New York, NY
| | - Samuel Funt
- Genitourinary Oncology Service, Department of Medicine, MSK, New York, NY
| | - David Aggen
- Genitourinary Oncology Service, Department of Medicine, MSK, New York, NY
| | - Alvin C. Goh
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center (MSK), New York, NY
| | - Timothy F. Donahue
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center (MSK), New York, NY
| | - Eugene K. Cha
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center (MSK), New York, NY
| | - S. Machele Donat
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center (MSK), New York, NY
| | - Harry W. Herr
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center (MSK), New York, NY
| | - Guido Dalbagni
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center (MSK), New York, NY
| | - Nikolaus Schultz
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, MSK, New York, NY
- Computational Oncology Service, Department of Epidemiology & Biostatistics, MSK, New York, NY
- Human Oncology and Pathogenesis Program, MSK, New York, NY
| | - Michael F. Berger
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, MSK, New York, NY
- Human Oncology and Pathogenesis Program, MSK, New York, NY
- Molecular Diagnostics Service, Department of Pathology, MSK, New York, NY
| | - Dean F. Bajorin
- Genitourinary Oncology Service, Department of Medicine, MSK, New York, NY
| | | | - Bernard H. Bochner
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center (MSK), New York, NY
| | - Irina Ostrovnaya
- Biostatistics Service, Department of Epidemiology & Biostatistics, MSK, New York, NY
| | - Hikmat Al-Ahmadie
- Genitourinary and Surgical Services, Department of Pathology, MSK, New York, NY
| | - David B. Solit
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, MSK, New York, NY
- Genitourinary Oncology Service, Department of Medicine, MSK, New York, NY
- Human Oncology and Pathogenesis Program, MSK, New York, NY
| | - Gopa Iyer
- Genitourinary Oncology Service, Department of Medicine, MSK, New York, NY
| | - Eugene J. Pietzak
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center (MSK), New York, NY
| |
Collapse
|
19
|
Cox A, Klümper N, Stein J, Sikic D, Breyer J, Bolenz C, Roghmann F, Erben P, Wirtz RM, Wullich B, Ritter M, Hölzel M, Schwamborn K, Horn T, Gschwend J, Hartmann A, Weichert W, Erlmeier F, Eckstein M. Molecular Urothelial Tumor Cell Subtypes Remain Stable During Metastatic Evolution. Eur Urol 2024; 85:328-332. [PMID: 37031005 DOI: 10.1016/j.eururo.2023.03.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 02/23/2023] [Accepted: 03/24/2023] [Indexed: 04/08/2023]
Abstract
Urothelial cancer (UC) care is moving toward precision oncology. For tumor biology-driven treatment of metastatic UC (mUC), molecular subtypes play a crucial role. However, it is not known whether subtypes change during metastatic evolution. To address this, we analyzed a UC progression cohort (N = 154 patients) with 138 matched primary tumors (PRIM) and synchronous or metachronous distant metastasis (MET) by immunohistochemistry, and mRNA sequencing in a subgroup of 20 matched pairs. Protein-based tumor cell subtypes and histomorphology remained stable during metastatic progression (concordance: 94%, 95% confidence interval [CI] 88-97%). In comparison, transcriptome-based molecular consensus subtypes exhibited higher heterogeneity between PRIM and MET (concordance: 45%, 95% CI 23-69%), with switches particularly occurring between luminal and stroma-rich tumors. Of note, all tumors classified as stroma rich showed luminal tumor cell differentiation. By an in-depth analysis, we found a negative correlation of luminal gene and protein expression with increasing desmoplastic stroma content, suggesting that luminal tumor cell differentiation of "stroma-rich tumors" is superimposed by gene expression signals stemming from the stromal compartment. Immunohistochemistry allows tumor cell subtyping into luminal, basal, or neuroendocrine classes that remain stable during metastatic progression. These findings expand our biological understanding of UC MET and have implications for future subtype-stratified clinical trials in patients with mUC. PATIENT SUMMARY: Urothelial carcinomas (UCs) occur in different appearances, the so-called molecular subtypes. These molecular subtypes will gain importance for the therapy of metastatic UCs in the future. We could demonstrate that the subtype remains stable during metastasis, which is highly relevant for future studies.
Collapse
Affiliation(s)
- Alexander Cox
- Department of Urology, University Medical Center Bonn (UKB), Bonn, Germany; Center for Integrated Oncology Aachen/Bonn/Cologne/Düsseldorf (CIO-ABCD), Düsseldorf, Germany
| | - Niklas Klümper
- Department of Urology, University Medical Center Bonn (UKB), Bonn, Germany; Center for Integrated Oncology Aachen/Bonn/Cologne/Düsseldorf (CIO-ABCD), Düsseldorf, Germany; Institute of Experimental Oncology, University Medical Center Bonn (UKB), Bonn, Germany; BRIDGE-Consortium Germany e.V, Mannheim, Germany
| | - Johannes Stein
- Department of Urology, University Medical Center Bonn (UKB), Bonn, Germany; Center for Integrated Oncology Aachen/Bonn/Cologne/Düsseldorf (CIO-ABCD), Düsseldorf, Germany
| | - Danijel Sikic
- BRIDGE-Consortium Germany e.V, Mannheim, Germany; Department of Urology and Pediatric Urology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Comprehensive Cancer Center EMN, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Bavarian Center for Cancer Research (BZKF), Bavaria, Germany
| | - Johannes Breyer
- BRIDGE-Consortium Germany e.V, Mannheim, Germany; Bavarian Center for Cancer Research (BZKF), Bavaria, Germany; Department of Urology, St.-Caritas Hospital Regensburg, Regensburg, Germany; University of Regensburg, Regensburg, Germany
| | - Christian Bolenz
- BRIDGE-Consortium Germany e.V, Mannheim, Germany; Department of Urology and Pediatric Urology, University Hospital Ulm, University of Ulm, Ulm, Germany
| | - Florian Roghmann
- BRIDGE-Consortium Germany e.V, Mannheim, Germany; Department of Urology, Marien Hospital, Ruhr-University Bochum, Herne, Germany
| | - Philipp Erben
- BRIDGE-Consortium Germany e.V, Mannheim, Germany; Department of Urology, University Hospital Mannheim, University of Heidelberg, Mannheim, Germany
| | - Ralph M Wirtz
- BRIDGE-Consortium Germany e.V, Mannheim, Germany; STRATIFYER Molecular Pathology, Cologne, Germany
| | - Bernd Wullich
- BRIDGE-Consortium Germany e.V, Mannheim, Germany; Department of Urology and Pediatric Urology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Comprehensive Cancer Center EMN, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Bavarian Center for Cancer Research (BZKF), Bavaria, Germany
| | - Manuel Ritter
- Department of Urology, University Medical Center Bonn (UKB), Bonn, Germany; Center for Integrated Oncology Aachen/Bonn/Cologne/Düsseldorf (CIO-ABCD), Düsseldorf, Germany
| | - Michael Hölzel
- Center for Integrated Oncology Aachen/Bonn/Cologne/Düsseldorf (CIO-ABCD), Düsseldorf, Germany; Institute of Experimental Oncology, University Medical Center Bonn (UKB), Bonn, Germany; BRIDGE-Consortium Germany e.V, Mannheim, Germany
| | - Kristina Schwamborn
- Bavarian Center for Cancer Research (BZKF), Bavaria, Germany; Institute of Pathology, Technische Universität München, Munich, Germany
| | - Thomas Horn
- Bavarian Center for Cancer Research (BZKF), Bavaria, Germany; Department of Urology, Technische Universität München, Munich, Germany
| | - Jürgen Gschwend
- Bavarian Center for Cancer Research (BZKF), Bavaria, Germany; Department of Urology, Technische Universität München, Munich, Germany
| | - Arndt Hartmann
- BRIDGE-Consortium Germany e.V, Mannheim, Germany; Comprehensive Cancer Center EMN, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Bavarian Center for Cancer Research (BZKF), Bavaria, Germany; Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Wilko Weichert
- Bavarian Center for Cancer Research (BZKF), Bavaria, Germany; Institute of Pathology, Technische Universität München, Munich, Germany
| | - Franziska Erlmeier
- BRIDGE-Consortium Germany e.V, Mannheim, Germany; Comprehensive Cancer Center EMN, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Bavarian Center for Cancer Research (BZKF), Bavaria, Germany; Institute of Pathology, Technische Universität München, Munich, Germany; Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Markus Eckstein
- BRIDGE-Consortium Germany e.V, Mannheim, Germany; Comprehensive Cancer Center EMN, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Bavarian Center for Cancer Research (BZKF), Bavaria, Germany; Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| |
Collapse
|
20
|
Ohara K, Rendeiro AF, Bhinder B, Eng KW, Ravichandran H, Nguyen D, Pisapia D, Vosoughi A, Fernandez E, Shohdy KS, Manohar J, Beg S, Wilkes D, Robinson BD, Khani F, Bareja R, Tagawa ST, Ouseph MM, Sboner A, Elemento O, Faltas BM, Mosquera JM. The evolution of metastatic upper tract urothelial carcinoma through genomic-transcriptomic and single-cell protein markers analysis. Nat Commun 2024; 15:2009. [PMID: 38499531 PMCID: PMC10948878 DOI: 10.1038/s41467-024-46320-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 02/22/2024] [Indexed: 03/20/2024] Open
Abstract
The molecular characteristics of metastatic upper tract urothelial carcinoma (UTUC) are not well understood, and there is a lack of knowledge regarding the genomic and transcriptomic differences between primary and metastatic UTUC. To address these gaps, we integrate whole-exome sequencing, RNA sequencing, and Imaging Mass Cytometry using lanthanide metal-conjugated antibodies of 44 tumor samples from 28 patients with high-grade primary and metastatic UTUC. We perform a spatially-resolved single-cell analysis of cancer, immune, and stromal cells to understand the evolution of primary to metastatic UTUC. We discover that actionable genomic alterations are frequently discordant between primary and metastatic UTUC tumors in the same patient. In contrast, molecular subtype membership and immune depletion signature are stable across primary and matched metastatic UTUC. Molecular and immune subtypes are consistent between bulk RNA-sequencing and mass cytometry of protein markers from 340,798 single cells. Molecular subtypes at the single-cell level are highly conserved between primary and metastatic UTUC tumors within the same patient.
Collapse
Affiliation(s)
- Kentaro Ohara
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - André Figueiredo Rendeiro
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, 1305 York Avenue, New York, NY, 10021, USA
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14 AKH BT 25.3, 1090, Vienna, Austria
| | - Bhavneet Bhinder
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, 1305 York Avenue, New York, NY, 10021, USA
| | - Kenneth Wha Eng
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, 1305 York Avenue, New York, NY, 10021, USA
| | - Hiranmayi Ravichandran
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Duy Nguyen
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, 10065, USA
| | - David Pisapia
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Aram Vosoughi
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Evan Fernandez
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, 1305 York Avenue, New York, NY, 10021, USA
| | - Kyrillus S Shohdy
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Jyothi Manohar
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Shaham Beg
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - David Wilkes
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Brian D Robinson
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Francesca Khani
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Rohan Bareja
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, 1305 York Avenue, New York, NY, 10021, USA
| | - Scott T Tagawa
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, 10065, USA
- Sandra and Edward Meyer Cancer Center at Weill Cornell Medicine, New York, NY, 10065, USA
| | - Madhu M Ouseph
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Andrea Sboner
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, 1305 York Avenue, New York, NY, 10021, USA
| | - Olivier Elemento
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, 1305 York Avenue, New York, NY, 10021, USA
- Sandra and Edward Meyer Cancer Center at Weill Cornell Medicine, New York, NY, 10065, USA
| | - Bishoy M Faltas
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, 10021, USA.
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, 10065, USA.
- Sandra and Edward Meyer Cancer Center at Weill Cornell Medicine, New York, NY, 10065, USA.
- Departments of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY, 10065, USA.
| | - Juan Miguel Mosquera
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10065, USA.
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, 10021, USA.
| |
Collapse
|
21
|
Lusby R, Zhang Z, Mahesh A, Tiwari VK. Decoding gene regulatory circuitry underlying TNBC chemoresistance reveals biomarkers for therapy response and therapeutic targets. NPJ Precis Oncol 2024; 8:64. [PMID: 38472332 DOI: 10.1038/s41698-024-00529-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 01/30/2024] [Indexed: 03/14/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype characterised by extensive intratumoral heterogeneity, high rates of metastasis and chemoresistance, leading to poor clinical outcomes. Despite progress, the mechanistic basis of chemotherapy resistance in TNBC patients remains poorly understood. Here, leveraging single-cell transcriptome datasets of matched longitudinal TNBC chemoresponsive and chemoresistant patient cohorts, we unravel distinct cell subpopulations intricately associated with chemoresistance and the signature genes defining these populations. Notably, using genome-wide mapping of the H3K27ac mark, we show that the expression of these chemoresistance genes is driven via a set of TNBC super-enhancers and associated transcription factor networks across TNBC subtypes. Furthermore, genetic screens reveal that a subset of these transcription factors is essential for the survival of TNBC cells, and their loss increases sensitivity to chemotherapeutic agents. Overall, our study has revealed epigenetic and transcription factor networks underlying chemoresistance and suggests novel avenues to stratify and improve the treatment of patients with a high risk of developing resistance.
Collapse
Affiliation(s)
- Ryan Lusby
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queens University, Belfast, BT9 7BL, UK
| | - Ziyi Zhang
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queens University, Belfast, BT9 7BL, UK
| | - Arun Mahesh
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queens University, Belfast, BT9 7BL, UK
- Institute of Molecular Medicine, University of Southern Denmark, Odense M, Denmark
| | - Vijay K Tiwari
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queens University, Belfast, BT9 7BL, UK.
- Institute of Molecular Medicine, University of Southern Denmark, Odense M, Denmark.
- Patrick G. Johnston Centre for Cancer Research, Queen's University, Belfast, BT9 7AE, UK.
- Danish Institute for Advanced Study (DIAS), Odense M, Denmark.
- Department of Clinical Genetics, Odense University Hospital, Odense C, Denmark.
| |
Collapse
|
22
|
Zheng X, Lu T, Wu S, Lin X, Bai J, Chen X, Miao Q, Yan J, Jiang K, Zhang L, Zheng X, Wang H, Xu Y, Xiao W, Li C, Peng W, Ding J, Zhong Q, Zou Z, Yang S, Li Y, Chen S, Zhang Q, Yan J, Tang G, Cai Y, kang M, Mok TSK, Lin G. A novel approach to evaluation of tumor response for advanced pulmonary adenocarcinoma using the intertumoral heterogeneity response score. MedComm (Beijing) 2024; 5:e493. [PMID: 38463396 PMCID: PMC10924640 DOI: 10.1002/mco2.493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 01/19/2024] [Accepted: 01/28/2024] [Indexed: 03/12/2024] Open
Abstract
Treatment response and prognosis estimation in advanced pulmonary adenocarcinoma are challenged by the significant heterogeneity of the disease. The current Response Evaluation Criteria in Solid Tumors (RECIST) criteria, despite providing a basis for solid tumor response evaluation, do not fully encompass this heterogeneity. To better represent these nuances, we introduce the intertumoral heterogeneity response score (THRscore), a measure built upon and expanding the RECIST criteria. This retrospective study included patients with 3-10 measurable advanced lung adenocarcinoma lesions who underwent first-line chemotherapy or targeted therapy. The THRscore, derived from the coefficient of variation in size for each measurable tumor before and 4-6 weeks posttreatment, unveiled a correlation with patient outcomes. Specifically, a high THRscore was associated with shorter progression-free survival, lower tumor response rate, and a higher tumor mutation burden. These associations were further validated in an external cohort, confirming THRscore's effectiveness in stratifying patients based on progression risk and treatment response, and enhancing the utility of RECIST in capturing complex tumor behaviors in lung adenocarcinoma. These findings affirm the promise of THRscore as an enhanced tool for tumor response assessment in advanced lung adenocarcinoma, extending the RECIST criteria's utility.
Collapse
Affiliation(s)
- Xinlong Zheng
- Department of Thoracic OncologyClinical Oncology School of Fujian Medical University, Fujian Cancer HospitalFuzhouChina
| | - Tao Lu
- Department of RadiologyClinical Oncology School of Fujian Medical University, Fujian Cancer HospitalFuzhouChina
| | - Shiwen Wu
- Department of Thoracic OncologyClinical Oncology School of Fujian Medical University, Fujian Cancer HospitalFuzhouChina
| | - Xiaoyan Lin
- Department of OncologyFujian Medical University Union HospitalFuzhouChina
| | - Jing Bai
- Department of ResearchGeneplus‐Beijing InstituteBeijingChina
| | - Xiaohui Chen
- Department of Thoracic SurgeryClinical Oncology School of Fujian Medical University, Fujian Cancer HospitalFuzhouChina
| | - Qian Miao
- Department of Thoracic OncologyClinical Oncology School of Fujian Medical University, Fujian Cancer HospitalFuzhouChina
| | - Jianqun Yan
- Department of Thoracic OncologyClinical Oncology School of Fujian Medical University, Fujian Cancer HospitalFuzhouChina
| | - Kan Jiang
- Department of Thoracic OncologyClinical Oncology School of Fujian Medical University, Fujian Cancer HospitalFuzhouChina
| | - Longfeng Zhang
- Department of Thoracic OncologyClinical Oncology School of Fujian Medical University, Fujian Cancer HospitalFuzhouChina
| | - Xiaobing Zheng
- Department of Thoracic OncologyClinical Oncology School of Fujian Medical University, Fujian Cancer HospitalFuzhouChina
| | - Haibo Wang
- Department of Thoracic OncologyClinical Oncology School of Fujian Medical University, Fujian Cancer HospitalFuzhouChina
| | - Yiquan Xu
- Department of Thoracic OncologyClinical Oncology School of Fujian Medical University, Fujian Cancer HospitalFuzhouChina
| | - Weijin Xiao
- Department of PathologyClinical Oncology School of Fujian Medical University, Fujian Cancer HospitalFuzhouChina
| | - Cao Li
- Department of PathologyClinical Oncology School of Fujian Medical University, Fujian Cancer HospitalFuzhouChina
| | - Wenying Peng
- The Second Department of OncologyYunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer CenterKunmingChina
| | - Jianming Ding
- Department of Radiation OncologyClinical Oncology School of Fujian Medical University, Fujian Cancer HospitalFuzhouChina
| | - Qiaofeng Zhong
- Department of Thoracic OncologyClinical Oncology School of Fujian Medical University, Fujian Cancer HospitalFuzhouChina
| | - Zihua Zou
- Department of Thoracic OncologyClinical Oncology School of Fujian Medical University, Fujian Cancer HospitalFuzhouChina
| | - Shanshan Yang
- Department of Thoracic OncologyClinical Oncology School of Fujian Medical University, Fujian Cancer HospitalFuzhouChina
| | - Yujing Li
- Department of Thoracic OncologyClinical Oncology School of Fujian Medical University, Fujian Cancer HospitalFuzhouChina
| | - Sihui Chen
- Department of Thoracic OncologyClinical Oncology School of Fujian Medical University, Fujian Cancer HospitalFuzhouChina
| | - Qiuyu Zhang
- Institute of ImmunotherapyFujian Medical UniversityFuzhouChina
| | - Jianfeng Yan
- College of ChemistryFuzhou UniversityFuzhouChina
| | - Guofeng Tang
- Department of Thoracic OncologyClinical Oncology School of Fujian Medical University, Fujian Cancer HospitalFuzhouChina
| | - Yuandong Cai
- College of ChemistryFuzhou UniversityFuzhouChina
| | - Miao kang
- Department of Thoracic OncologyClinical Oncology School of Fujian Medical University, Fujian Cancer HospitalFuzhouChina
| | - Tony S. K. Mok
- Department of Clinical OncologyState Key Laboratory of Translational OncologyChinese University of Hong KongShatin, Hong Kong Special Administrative RegionChina
| | - Gen Lin
- Department of Thoracic OncologyClinical Oncology School of Fujian Medical University, Fujian Cancer HospitalFuzhouChina
- Fujian Key Laboratory of Advanced Technology for Cancer Screening and Early Diagnosis, Fujian Cancer HospitalFuzhouChina
- Interdisciplinary Institute for Medical EngineeringFuzhou UniversityFuzhouChina
| |
Collapse
|
23
|
Huelster HL, Gould B, Schiftan EA, Camperlengo L, Davaro F, Rose KM, Soupir AC, Jia S, Zheng T, Sexton WJ, Pow-Sang J, Spiess PE, Daniel Grass G, Wang L, Wang X, Vosoughi A, Necchi A, Meeks JJ, Faltas BM, Du P, Li R. Novel Use of Circulating Tumor DNA to Identify Muscle-invasive and Non-organ-confined Upper Tract Urothelial Carcinoma. Eur Urol 2024; 85:283-292. [PMID: 37802683 DOI: 10.1016/j.eururo.2023.09.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 07/28/2023] [Accepted: 09/21/2023] [Indexed: 10/08/2023]
Abstract
BACKGROUND Optimal patient selection for neoadjuvant chemotherapy prior to surgical extirpation is limited by the inaccuracy of contemporary clinical staging methods in high-risk upper tract urothelial carcinoma (UTUC). OBJECTIVE To investigate whether the detection of plasma circulating tumor DNA (ctDNA) can predict muscle-invasive (MI) and non-organ-confined (NOC) UTUC. DESIGN, SETTING, AND PARTICIPANTS Plasma cell-free DNA was prospectively collected from chemotherapy-naïve, high-risk UTUC patients undergoing surgical extirpation and sequenced using a 152-gene panel and low-pass whole-genome sequencing. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS To test for concordance, whole-exome sequencing was performed on matching tumor samples. The performance of ctDNA for predicting MI/NOC UTUC was summarized using the area under a receiver-operating curve, and a variant count threshold for predicting MI/NOC disease was determined by maximizing Youden's J statistic. Kaplan-Meier methods estimated survival, and Mantel-Cox log-rank testing assessed the association between preoperative ctDNA positivity and clinical outcomes. RESULTS AND LIMITATIONS Of 30 patients enrolled prospectively, 14 were found to have MI/NOC UTUC. At least one ctDNA variant was detected from 21/30 (70%) patients, with 52% concordance with matching tumor samples. Detection of at least two panel-based molecular alterations yielded 71% sensitivity at 94% specificity to predict MI/NOC UTUC. Imposing this threshold in combination with a plasma copy number burden score of >6.5 increased sensitivity to 79% at 94% specificity. Furthermore, the presence of ctDNA was strongly prognostic for progression-free survival (PFS; 1-yr PFS 69% vs 100%, p < 0.001) and cancer-specific survival (CSS; 1-yr CSS 56% vs 100%, p = 0.016). CONCLUSIONS The detection of plasma ctDNA prior to extirpative surgery was highly predictive of MI/NOC UTUC and strongly prognostic of PFS and CSS. Preoperative ctDNA demonstrates promise as a biomarker for selecting patients to undergo neoadjuvant chemotherapy prior to nephroureterectomy. PATIENT SUMMARY Here, we show that DNA from upper tract urothelial tumors can be detected in the blood prior to surgical removal of the kidney or ureter. This circulating tumor DNA can be used to predict that upper tract urothelial carcinoma is invasive into the muscular lining of the urinary tract and may help identify those patients who could benefit from chemotherapy prior to surgery.
Collapse
Affiliation(s)
- Heather L Huelster
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | | | - Elizabeth A Schiftan
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Lucia Camperlengo
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Facundo Davaro
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Kyle M Rose
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Alex C Soupir
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | | | | | - Wade J Sexton
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Julio Pow-Sang
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Philippe E Spiess
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - G Daniel Grass
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Liang Wang
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Xuefeng Wang
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Aram Vosoughi
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Andrea Necchi
- Department of GU Medical Oncology, IRCCS San Raffaele Hospital and Scientific Institute, Milan, Italy
| | - Joshua J Meeks
- Departments of Urology and Biochemistry, Northwestern University, Chicago, IL, USA
| | - Bishoy M Faltas
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Pan Du
- Predicine Inc., Hayward, CA, USA
| | - Roger Li
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
| |
Collapse
|
24
|
Beckabir W, Wobker SE, Damrauer JS, Midkiff B, De la Cruz G, Makarov V, Flick L, Woodcock MG, Grivas P, Bjurlin MA, Harrison MR, Vincent BG, Rose TL, Gupta S, Kim WY, Milowsky MI. Spatial Relationships in the Tumor Microenvironment Demonstrate Association with Pathologic Response to Neoadjuvant Chemoimmunotherapy in Muscle-invasive Bladder Cancer. Eur Urol 2024; 85:242-253. [PMID: 38092611 PMCID: PMC11022933 DOI: 10.1016/j.eururo.2023.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/11/2023] [Accepted: 11/09/2023] [Indexed: 03/09/2024]
Abstract
BACKGROUND Platinum-based neoadjuvant chemotherapy (NAC) is standard for patients with muscle-invasive bladder cancer (MIBC). Pathologic response (complete: ypT0N0 and partial: OBJECTIVE Using the NanoString GeoMx platform, we performed proteomic digital spatial profiling (DSP) on transurethral resections of bladder tumors from 18 responders ( DESIGN, SETTING, AND PARTICIPANTS Pretreatment tumor samples were stained by hematoxylin and eosin and immunofluorescence (panCK and CD45) to select four regions of interest (ROIs): tumor enriched (TE), immune enriched (IE), tumor/immune interface (tumor interface = TX and immune interface = IX). OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS DSP was performed with 52 protein markers from immune cell profiling, immunotherapy drug target, immune activation status, immune cell typing, and pan-tumor panels. RESULTS AND LIMITATIONS Protein marker expression patterns were analyzed to determine their association with pathologic response, incorporating or agnostic of their ROI designation (TE/IE/TX/IX). Overall, DSP-based marker expression showed high intratumoral heterogeneity; however, response was associated with markers including PD-L1 (ROI agnostic), Ki-67 (ROI agnostic, TE, IE, and TX), HLA-DR (TX), and HER2 (TE). An elastic net model of response with ROI-inclusive markers demonstrated better validation set performance (area under the curve [AUC] = 0.827) than an ROI-agnostic model (AUC = 0.432). A model including DSP, tumor mutational burden, and clinical data performed no better (AUC = 0.821) than the DSP-only model. CONCLUSIONS Despite high intratumoral heterogeneity of DSP-based marker expression, we observed associations between pathologic response and specific DSP-based markers in a spatially dependent context. Further exploration of tumor region-specific biomarkers may help predict response to neoadjuvant chemoimmunotherapy in MIBC. PATIENT SUMMARY In this study, we used the GeoMx platform to perform proteomic digital spatial profiling on transurethral resections of bladder tumors from 18 responders and 18 nonresponders from two studies of neoadjuvant chemotherapy (gemcitabine and cisplatin) plus immune checkpoint inhibitor therapy (LCCC1520 [pembrolizumab] and BLASST-1 [nivolumab]). We found that assessing protein marker expression in the context of tumor architecture improved response prediction.
Collapse
Affiliation(s)
- Wolfgang Beckabir
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Microbiology and Immunology, UNC School of Medicine, Chapel Hill, NC, USA
| | - Sara E Wobker
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Pathology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jeffrey S Damrauer
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Division of Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Bentley Midkiff
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Gabriela De la Cruz
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Vladmir Makarov
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Leah Flick
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Mark G Woodcock
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Microbiology and Immunology, UNC School of Medicine, Chapel Hill, NC, USA
| | - Petros Grivas
- Department of Medicine, Division of Medical Oncology, University of Washington, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Marc A Bjurlin
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Urology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michael R Harrison
- Division of Medical Oncology, Department of Medicine, Duke Cancer Institute, Duke University, Durham, NC, USA
| | - Benjamin G Vincent
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Microbiology and Immunology, UNC School of Medicine, Chapel Hill, NC, USA; Division of Hematology, Department of Medicine, UNC School of Medicine, Chapel Hill, NC, USA; Computational Medicine Program, UNC School of Medicine, Chapel Hill, NC, USA; Curriculum in Bioinformatics and Computational Biology, UNC School of Medicine, Chapel Hill, NC, USA
| | - Tracy L Rose
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Division of Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Shilpa Gupta
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - William Y Kim
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Division of Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Matthew I Milowsky
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Division of Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
25
|
Moussa MJ, Campbell MT, Alhalabi O. Revisiting Treatment of Metastatic Urothelial Cancer: Where Do Cisplatin and Platinum Ineligibility Criteria Stand? Biomedicines 2024; 12:519. [PMID: 38540132 PMCID: PMC10968461 DOI: 10.3390/biomedicines12030519] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/13/2024] [Accepted: 02/23/2024] [Indexed: 11/11/2024] Open
Abstract
Cisplatin-based chemotherapy has been the standard of care in metastatic urothelial cancer (mUC) for more than two decades. However, many patients with comorbidities cannot receive cisplatin or its alternative, carboplatin. 'Cisplatin-ineligible' and 'platinum-ineligible' patients lacked effective therapy options. However, the recent combination of enfortumab vedotin (EV), an antibody-drug conjugate targeting Nectin-4, with pembrolizumab (P), an antibody targeting the programmed death-1 (PD-1) immune checkpoint, is changing the status quo of frontline mUC treatment, with potential synergy seen in the EV-103 and EV-302 clinical trials. First, we review the working definitions of 'cisplatin ineligibility' and 'platinum ineligibility' in mUC clinical trials and the standard of care in both categories. Then, we review select clinical trials for frontline treatment of cisplatin- and platinum-ineligible mUC patients on ClinicalTrials.gov. We classify the investigated drugs in these trials by their therapeutic strategies. Alongside chemotherapy combinations, the field is witnessing more immunotherapy combinations with fibroblast growth factor receptor (FGFR) inhibitors, bicycle toxin conjugates, bispecific antibodies, innovative targeted therapies, and many others. Most importantly, we rethink the value of classifying patients by cisplatin or platinum ineligibility in the frontline setting in the post-EVP era. Lastly, we discuss new priority goals to tailor predictive, monitoring, and prognostic biomarkers to these emergent therapies.
Collapse
Affiliation(s)
| | | | - Omar Alhalabi
- Department of Genitourinary Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (M.J.M.); (M.T.C.)
| |
Collapse
|
26
|
Li Y, Jin G, Liu N, Guo H, Xu F. The post-chemotherapy changes of tumor physical microenvironment: Targeting extracellular matrix to address chemoresistance. Cancer Lett 2024; 582:216583. [PMID: 38072368 DOI: 10.1016/j.canlet.2023.216583] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/19/2023]
Abstract
The tumor physical microenvironment (TPME) contributes to cancer chemoresistance in both mechanical and mechanobiological approaches. Along with chemotherapy, the tumor microenvironment undergoes dramatic changes, most of which can regulate TPME through extracellular matrix (ECM) remodeling and related signaling pathways. However, there is still no discussion about the post-chemotherapy TPME changes mediated by ECM remodeling, and consequent impact on chemoresistance. Herein, we summarize the TPME alterations induced by chemotherapy and corresponding influence on chemotherapy response of cancer cells in context of ECM. The response of cancer cell to chemotherapy, imposed by post-chemotherapy ECM, are discussed in both mechanical (ECM physical features) and mechanobiological (ECM-responsive signaling pathways) manner. In the end, we present ECM remodeling and related signaling pathways as two promising clinic strategies to relieve or overcome chemoresistance induced by TPME change, and summarize the corresponding therapeutic agents currently being tested in clinical trials.
Collapse
Affiliation(s)
- Yuan Li
- MOE Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Guorui Jin
- MOE Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Na Liu
- Department of Gastroenterology, Hainan General Hospital (Hainan Affifiliated Hospital of Hainan Medical University), Haikou, Hainan, 570311, PR China.
| | - Hui Guo
- Department of Medical Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, PR China.
| | - Feng Xu
- MOE Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China.
| |
Collapse
|
27
|
Wei W, Liu K, Huang X, Tian S, Wang H, Zhang C, Ye J, Dong Y, An Z, Ma X, Wang B, Huang Y, Zhang X. EIF4A3-mediated biogenesis of circSTX6 promotes bladder cancer metastasis and cisplatin resistance. J Exp Clin Cancer Res 2024; 43:2. [PMID: 38163881 PMCID: PMC10759346 DOI: 10.1186/s13046-023-02932-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/11/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND Cisplatin (CDDP)-based chemotherapy is a standard first-line treatment for metastatic bladder cancer (BCa) patients, and chemoresistance remains a major challenge in clinical practice. Circular RNAs (circRNAs) have emerged as essential regulators in carcinogenesis and cancer progression. However, the role of circRNAs in mediating CDDP chemosensitivity has yet to be well elucidated in BCa. METHODS CircSTX6 (hsa_circ_0007905) was identified by mining the public circRNA datasets and verified by Sanger sequencing, agarose gel electrophoresis, RNase R treatment and qRT-PCR assays. Then, function experiments were performed to evaluate the effects of circSTX6 on BCa metastasis. Luciferase reporter assay, RNA pull-down, RNA immunoprecipitation (RIP), RNA stability assay, Fluorescence in situ hybridization (FISH) and Immunofluorescence (IF) were conducted to evaluate the interaction among circSTX6, miR-515-3p, PABPC1 and SUZ12. Animal experiments were performed to explore the function of circSTX6 in tumor metastasis and CDDP sensitivity. RESULTS We identified that circSTX6 was significantly upregulated in clinical samples and cells of BCa. Functionally, circSTX6 promoted cell migration and invasion both in vitro and in vivo. Mechanistically, circSTX6 could act as a miR-515-3p sponge and abolish its effect on SUZ12. Moreover, circSTX6 was confirmed to increase the stability of SUZ12 mRNA by interacting with a mRNA stabilizer PABPC1 and subsequently promote the expression of SUZ12. Importantly, silencing of circSTX6 improved the chemosensitivity of CDDP-resistant bladder cancer cells to CDDP. Furthermore, in vivo analysis supported that knockdown of circSTX6 attenuated CDDP resistance in BCa tumors. CONCLUSION These studies demonstrate that circSTX6 plays a pivotal role in BCa metastasis and chemoresistance, and has potential to serve as a therapeutic target for treatment of BCa.
Collapse
Affiliation(s)
- Wenjie Wei
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100039, China
- Medical School of PLA, Beijing, 100853, China
| | - Kan Liu
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100039, China
| | - Xing Huang
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100039, China
- Medical School of PLA, Beijing, 100853, China
| | - Shuo Tian
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100039, China
- Medical School of PLA, Beijing, 100853, China
| | - Hanfeng Wang
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100039, China
- Medical School of PLA, Beijing, 100853, China
| | - Chi Zhang
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100039, China
| | - Jiali Ye
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100039, China
- Medical School of PLA, Beijing, 100853, China
| | - Yuhao Dong
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100039, China
- Medical School of PLA, Beijing, 100853, China
| | - Ziyan An
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100039, China
- Medical School of PLA, Beijing, 100853, China
| | - Xin Ma
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100039, China
| | - Baojun Wang
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100039, China.
| | - Yan Huang
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100039, China.
| | - Xu Zhang
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100039, China.
| |
Collapse
|
28
|
Guercio BJ, Sarfaty M, Teo MY, Ratna N, Duzgol C, Funt SA, Lee CH, Aggen DH, Regazzi AM, Chen Z, Lattanzi M, Al-Ahmadie HA, Brannon AR, Shah R, Chu C, Lenis AT, Pietzak E, Bochner BH, Berger MF, Solit DB, Rosenberg JE, Bajorin DF, Iyer G. Clinical and Genomic Landscape of FGFR3-Altered Urothelial Carcinoma and Treatment Outcomes with Erdafitinib: A Real-World Experience. Clin Cancer Res 2023; 29:4586-4595. [PMID: 37682528 PMCID: PMC11233068 DOI: 10.1158/1078-0432.ccr-23-1283] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/02/2023] [Accepted: 09/06/2023] [Indexed: 09/09/2023]
Abstract
PURPOSE Erdafitinib is the only FDA-approved targeted therapy for FGFR2/3-altered metastatic urothelial cancer. We characterized the genetic landscape of FGFR-altered urothelial carcinoma and real-world clinical outcomes with erdafitinib, including on-treatment genomic evolution. EXPERIMENTAL DESIGN Prospectively collected clinical data were integrated with institutional genomic data to define the landscape of FGFR2/3-altered urothelial carcinoma. To identify mechanisms of erdafitinib resistance, a subset of patients underwent prospective cell-free (cf) DNA assessment. RESULTS FGFR3 alterations predictive of erdafitinib sensitivity were identified in 39% (199/504) of patients with non-muscle invasive, 14% (75/526) with muscle-invasive, 43% (81/187) with localized upper tract, and 26% (59/228) with metastatic specimens. One patient had a potentially sensitizing FGFR2 fusion. Among 27 FGFR3-altered cases with a primary tumor and metachronous metastasis, 7 paired specimens (26%) displayed discordant FGFR3 status. Erdafitinib achieved a response rate of 40% but median progression-free and overall survival of only 2.8 and 6.6 months, respectively (n = 32). Dose reductions (38%, 12/32) and interruptions (50%, 16/32) were common. Putative resistance mutations detected in cfDNA involved TP53 (n = 5), AKT1 (n = 1), and second-site FGFR3 mutations (n = 2). CONCLUSIONS FGFR3 mutations are common in urothelial carcinoma, whereas FGFR2 alterations are rare. Discordance of FGFR3 mutational status between primary and metastatic tumors occurs frequently and raises concern over sequencing archival primary tumors to guide patient selection for erdafitinib therapy. Erdafitinib responses were typically brief and dosing was limited by toxicity. FGFR3, AKT1, and TP53 mutations detected in cfDNA represent putative mechanisms of acquired erdafitinib resistance.
Collapse
Affiliation(s)
- Brendan J Guercio
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York
| | - Michal Sarfaty
- Institute of Oncology, Sheba Medical Center, Ramat Gan, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Min Yuen Teo
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Cornell Medical College, New York, New York
| | - Neha Ratna
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Cihan Duzgol
- Commonwealth Radiology Associates, Andover, Massachusetts
| | - Samuel A Funt
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Cornell Medical College, New York, New York
| | - Chung-Han Lee
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Cornell Medical College, New York, New York
| | - David H Aggen
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Cornell Medical College, New York, New York
| | - Ashley M Regazzi
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ziyu Chen
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Hikmat A Al-Ahmadie
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - A Rose Brannon
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ronak Shah
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Carissa Chu
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Andrew T Lenis
- Department of Urology, Columbia University Irving Medical Center, New York, New York
| | - Eugene Pietzak
- Weill Cornell Medical College, New York, New York
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Bernard H Bochner
- Weill Cornell Medical College, New York, New York
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michael F Berger
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - David B Solit
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Cornell Medical College, New York, New York
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jonathan E Rosenberg
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Cornell Medical College, New York, New York
| | - Dean F Bajorin
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Cornell Medical College, New York, New York
| | - Gopa Iyer
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Cornell Medical College, New York, New York
| |
Collapse
|
29
|
Nawaf C, Shiang A, Chauhan PS, Chaudhuri AA, Agarwal G, Smith ZL. Circulating tumor DNA based minimal residual disease detection and adjuvant treatment decision-making for muscle-invasive bladder cancer guided by modern clinical trials. Transl Oncol 2023; 37:101763. [PMID: 37657155 PMCID: PMC10495651 DOI: 10.1016/j.tranon.2023.101763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 08/06/2023] [Accepted: 08/15/2023] [Indexed: 09/03/2023] Open
Abstract
Up to 430,000 cases of bladder cancer are diagnosed each year worldwide. A proposed method for non-invasive monitoring has been to utilize a "liquid biopsy." Liquid biopsy has been proposed as a non-invasive method of testing biomarkers in bodily fluids in order to detect and survey cancer. The liquid biopsy could be utilized to obtain information regarding circulating tumor cells, circulating cell-free tumor DNA, circulating cell-free tumor RNA, and more. It is currently being investigated to help guide adjuvant therapy and improve oncological outcomes. We highlight an array of exciting past and ongoing clinical trials regarding ctDNA and adjuvant therapy in regard to urothelial carcinoma which we believe to be amongst the leaders in the field.
Collapse
Affiliation(s)
- Cayce Nawaf
- Division of Urology, Department of Surgery, Washington University School of Medicine, St. Louis, MO, United States of America; Siteman Cancer Center, Barnes Jewish Hospital and Washington University School of Medicine, St. Louis, MO, United States of America
| | - Alexander Shiang
- Division of Urology, Department of Surgery, Washington University School of Medicine, St. Louis, MO, United States of America; Division of Cancer Biology, Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Pradeep S Chauhan
- Division of Cancer Biology, Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Aadel A Chaudhuri
- Division of Cancer Biology, Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, United States of America; Department of Computer Science and Engineering, Washington University in St. Louis, St. Louis, MO, United States of America; Siteman Cancer Center, Barnes Jewish Hospital and Washington University School of Medicine, St. Louis, MO, United States of America; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States of America; Department of Genetics, Washington University School of Medicine, St. Louis, MO, United States of America.
| | - Gautum Agarwal
- Division of Urology, David Pratt Cancer Center, Mercy Hospital, 607 S New Ballas Rd, St. Louis, MO, United States of America.
| | - Zachary L Smith
- Division of Urology, Department of Surgery, Washington University School of Medicine, St. Louis, MO, United States of America; Siteman Cancer Center, Barnes Jewish Hospital and Washington University School of Medicine, St. Louis, MO, United States of America.
| |
Collapse
|
30
|
Rani B, Ignatz-Hoover JJ, Rana PS, Driscoll JJ. Current and Emerging Strategies to Treat Urothelial Carcinoma. Cancers (Basel) 2023; 15:4886. [PMID: 37835580 PMCID: PMC10571746 DOI: 10.3390/cancers15194886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Urothelial cell carcinoma (UCC, bladder cancer, BC) remains a difficult-to-treat malignancy with a rising incidence worldwide. In the U.S., UCC is the sixth most incident neoplasm and ~90% of diagnoses are made in those >55 years of age; it is ~four times more commonly observed in men than women. The most important risk factor for developing BC is tobacco smoking, which accounts for ~50% of cases, followed by occupational exposure to aromatic amines and ionizing radiation. The standard of care for advanced UCC includes platinum-based chemotherapy and programmed cell death (PD-1) or programmed cell death ligand 1 (PD-L1) inhibitors, administered as frontline, second-line, or maintenance therapy. UCC remains generally incurable and is associated with intrinsic and acquired drug and immune resistance. UCC is lethal in the metastatic state and characterized by genomic instability, high PD-L1 expression, DNA damage-response mutations, and a high tumor mutational burden. Although immune checkpoint inhibitors (ICIs) achieve long-term durable responses in other cancers, their ability to achieve similar results with metastatic UCC (mUCC) is not as well-defined. Here, we discuss therapies to improve UCC management and how comprehensive tumor profiling can identify actionable biomarkers and eventually fulfill the promise of precision medicine for UCC patients.
Collapse
Affiliation(s)
- Berkha Rani
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (B.R.); (J.J.I.-H.); (P.S.R.)
| | - James J. Ignatz-Hoover
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (B.R.); (J.J.I.-H.); (P.S.R.)
- Division of Hematology & Oncology, Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Adult Hematologic Malignancies & Stem Cell Transplant Section, Seidman Cancer Center, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Priyanka S. Rana
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (B.R.); (J.J.I.-H.); (P.S.R.)
- Division of Hematology & Oncology, Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Adult Hematologic Malignancies & Stem Cell Transplant Section, Seidman Cancer Center, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - James J. Driscoll
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (B.R.); (J.J.I.-H.); (P.S.R.)
- Division of Hematology & Oncology, Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Adult Hematologic Malignancies & Stem Cell Transplant Section, Seidman Cancer Center, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| |
Collapse
|
31
|
Duquesne I, Abou Chakra M, Hage L, Pinar U, Loriot Y. Liquid biopsies for detection, surveillance, and prognosis of urothelial cancer: a future standard? Expert Rev Anticancer Ther 2023; 23:995-1007. [PMID: 37542214 DOI: 10.1080/14737140.2023.2245144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 08/02/2023] [Indexed: 08/06/2023]
Abstract
INTRODUCTION Liquid biopsies are used for the detection of tumor-specific elements in body fluid. Their application in prognosis and diagnosis of muscle/non-muscle invasive bladder cancer (MIBC/NMIBC) or upper tract urothelial cancer (UTUC) remains poorly known and rarely mentioned in clinical guidelines. AREAS COVERED Herein, we provide an overview of current data regarding the use of liquid biopsies in urothelial tumors. EXPERT OPINION Studies that were included analyzed liquid biopsies using the detection of circulating tumor cells (CTCs), deoxyribonucleic acid (DNA), ribonucleic acid (RNA), exosomes, or metabolomics. The sensitivity of blood CTC detection in patients with localized cancer was 35% and raised to 50% in patients with metastatic cancer. In NMIBC patients, blood CTC was associated with poor prognosis, whereas discrepancies were seen in MIBC patients. Circulating plasma DNA presented a superior sensitivity to urine and was a good indicator for diagnosis, follow-up, and oncological outcome. In urine, specific bladder cancer (BC) microRNA had an overall sensitivity of 85% and a specificity of 86% in the diagnosis of urothelial cancer. These results are in favor of the use of liquid biopsies as biomarkers for in urothelial cancer management.
Collapse
Affiliation(s)
- Igor Duquesne
- Department of Urology, Cochin Hospital, Assistance Publique-Hopitaux de Paris, Universite Paris Cite, Paris, France
| | - Mohamad Abou Chakra
- Department of Urology, Cochin Hospital, Assistance Publique-Hopitaux de Paris, Universite Paris Cite, Paris, France
| | - Lory Hage
- Department of Urology, Cochin Hospital, Assistance Publique-Hopitaux de Paris, Universite Paris Cite, Paris, France
| | - Ugo Pinar
- Department of Urology, Pitie Salpetriere Hospital, Assistance Publique-Hopitaux de Paris, Universite Paris Sorbonne, Paris, France
| | - Yohann Loriot
- Department of Cancer Medicine, Gustave Roussy Institute, Cancer Campus, Grand Paris, Universite Paris-Sud, Villejuif, France
| |
Collapse
|
32
|
Daneshdoust D, Yin M, Luo M, Sundi D, Dang Y, Lee C, Li J, Liu X. Conditional Reprogramming Modeling of Bladder Cancer for Clinical Translation. Cells 2023; 12:1714. [PMID: 37443748 PMCID: PMC10341071 DOI: 10.3390/cells12131714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/09/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
The use of advanced preclinical models has become increasingly important in drug development. This is particularly relevant in bladder cancer, where the global burden of disease is quite high based on prevalence and a relatively high rate of lethality. Predictive tools to select patients who will be responsive to invasive or morbid therapies (chemotherapy, radiotherapy, immunotherapy, and/or surgery) are largely absent. Patient-derived and clinically relevant models including patient-derived xenografts (PDX), organoids, and conditional reprogramming (CR) of cell cultures efficiently generate numerous models and are being used in both basic and translational cancer biology. These CR cells (CRCs) can be reprogrammed to maintain a highly proliferative state and reproduce the genomic and histological characteristics of the parental tissue. Therefore, CR technology may be a clinically relevant model to test and predict drug sensitivity, conduct gene profile analysis and xenograft research, and undertake personalized medicine. This review discusses studies that have utilized CR technology to conduct bladder cancer research.
Collapse
Affiliation(s)
- Danyal Daneshdoust
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA (M.L.)
| | - Ming Yin
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA (M.L.)
- Department of Medicine, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA
| | - Mingjue Luo
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA (M.L.)
| | - Debasish Sundi
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA (M.L.)
- Department of Urology, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA
| | - Yongjun Dang
- Center for Novel Target and Therapeutic Intervention, Chongqing Medical University, Chongqing 400016, China
| | - Cheryl Lee
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA (M.L.)
- Department of Urology, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA
| | - Jenny Li
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA (M.L.)
| | - Xuefeng Liu
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA (M.L.)
- Departments of Pathology, Urology and Radiation Oncology, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
33
|
Hessey S, Fessas P, Zaccaria S, Jamal-Hanjani M, Swanton C. Insights into the metastatic cascade through research autopsies. Trends Cancer 2023; 9:490-502. [PMID: 37059687 DOI: 10.1016/j.trecan.2023.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 04/16/2023]
Abstract
Metastasis is a complex process and the leading cause of cancer-related death globally. Recent studies have demonstrated that genomic sequencing data from paired primary and metastatic tumours can be used to trace the evolutionary origins of cells responsible for metastasis. This approach has yielded new insights into the genomic alterations that engender metastatic potential, and the mechanisms by which cancer spreads. Given that the reliability of these approaches is contingent upon how representative the samples are of primary and metastatic tumour heterogeneity, we review insights from studies that have reconstructed the evolution of metastasis within the context of their cohorts and designs. We discuss the role of research autopsies in achieving the comprehensive sampling necessary to advance the current understanding of metastasis.
Collapse
Affiliation(s)
- Sonya Hessey
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK; Cancer Metastasis Laboratory, University College London Cancer Institute, London, UK; Computational Cancer Genomics Research Group, University College London Cancer Institute, London, UK
| | - Petros Fessas
- Cancer Metastasis Laboratory, University College London Cancer Institute, London, UK
| | - Simone Zaccaria
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK; Computational Cancer Genomics Research Group, University College London Cancer Institute, London, UK
| | - Mariam Jamal-Hanjani
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK; Cancer Metastasis Laboratory, University College London Cancer Institute, London, UK; Department of Oncology, University College London Hospitals, London, UK.
| | - Charles Swanton
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK; Department of Oncology, University College London Hospitals, London, UK; Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
34
|
Jana S, Brahma S, Arora S, Wladyka CL, Hoang P, Blinka S, Hough R, Horn JL, Liu Y, Wang LJ, Depeille P, Smith E, Montgomery RB, Lee JK, Haffner MC, Vakar-Lopez F, Grivas P, Wright JL, Lam HM, Black PC, Roose JP, Ryazanov AG, Subramaniam AR, Henikoff S, Hsieh AC. Transcriptional-translational conflict is a barrier to cellular transformation and cancer progression. Cancer Cell 2023; 41:853-870.e13. [PMID: 37084735 PMCID: PMC10208629 DOI: 10.1016/j.ccell.2023.03.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 01/31/2023] [Accepted: 03/24/2023] [Indexed: 04/23/2023]
Abstract
We uncover a tumor-suppressive process in urothelium called transcriptional-translational conflict caused by deregulation of the central chromatin remodeling component ARID1A. Loss of Arid1a triggers an increase in a nexus of pro-proliferation transcripts, but a simultaneous inhibition of the eukaryotic elongation factor 2 (eEF2), which results in tumor suppression. Resolution of this conflict through enhancing translation elongation speed enables the efficient and precise synthesis of a network of poised mRNAs resulting in uncontrolled proliferation, clonogenic growth, and bladder cancer progression. We observe a similar phenomenon in patients with ARID1A-low tumors, which also exhibit increased translation elongation activity through eEF2. These findings have important clinical implications because ARID1A-deficient, but not ARID1A-proficient, tumors are sensitive to pharmacologic inhibition of protein synthesis. These discoveries reveal an oncogenic stress created by transcriptional-translational conflict and provide a unified gene expression model that unveils the importance of the crosstalk between transcription and translation in promoting cancer.
Collapse
Affiliation(s)
- Sujata Jana
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Sandipan Brahma
- Basic Science Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Sonali Arora
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Cynthia L Wladyka
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Patrick Hoang
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Steven Blinka
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Rowan Hough
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Jessie L Horn
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Yuzhen Liu
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Li-Jie Wang
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Philippe Depeille
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Eric Smith
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | - John K Lee
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Department of Medicine, University of Washington, Seattle, WA 98195, USA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Michael C Haffner
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Funda Vakar-Lopez
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Petros Grivas
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Jonathan L Wright
- Department of Urology, University of Washington, Seattle, WA 98915, USA
| | - Hung-Ming Lam
- Department of Urology, University of Washington, Seattle, WA 98915, USA
| | - Peter C Black
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Jeroen P Roose
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Alexey G Ryazanov
- Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | | | - Steven Henikoff
- Basic Science Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Howard Hughes Medical Institute, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Andrew C Hsieh
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Department of Medicine, University of Washington, Seattle, WA 98195, USA; Genome Sciences, University of Washington, Seattle, WA 98915, USA.
| |
Collapse
|
35
|
Ryu D, Kim TM, Lee YH, Ha US. Longitudinal Analyses of Mutational Subclonal Architecture and Tumor Subtypes in Recurrent Bladder Cancer. Int J Mol Sci 2023; 24:ijms24098418. [PMID: 37176124 PMCID: PMC10179737 DOI: 10.3390/ijms24098418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Longitudinal tumor sequencing of recurrent bladder cancer (BC) can facilitate the investigation of BC progression-associated genomic and transcriptomic alterations. In this study, we analyzed 18 tumor specimens including distant and locoregional metastases obtained during tumor progression for five BC patients using whole-exome and transcriptome sequencing. Along with the substantial level of intratumoral mutational heterogeneity across the cases, we observed that clonal mutations were enriched with known BC driver genes and apolipoprotein B mRNA editing enzyme, catalytic polypeptide (APOBEC)-associated mutation signatures compared with subclonal mutations, suggesting the genetic makeup for BC tumorigenesis associated with APOBEC deaminase activity was accomplished early in the cancer evolution. Mutation-based phylogenetic analyses also revealed temporal dynamics of mutational clonal architectures in which the number of mutational clones varied along the BC progression and notably was often punctuated by clonal sweeps associated with chemotherapy. The bulk-level transcriptome sequencing revealed frequent subtype switching in which transcriptionally defined BC subtypes may vary during tumor progression. Longitudinal whole-exome and transcriptome sequencing of recurrent BC may advance our understanding into the BC heterogeneity in terms of somatic mutations, cell clones and transcriptome-based tumor subtypes during disease progression.
Collapse
Affiliation(s)
- Daeun Ryu
- Department of Medical Informatics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Tae-Min Kim
- Department of Medical Informatics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Yun-Hee Lee
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - U-Syn Ha
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
36
|
Yang J, Xiang T, Zhu S, Lao Y, Wang Y, Liu T, Li K, Ma Y, Zhong C, Zhang S, Tan W, Lin D, Wu C. Comprehensive Analyses Reveal Effects on Tumor Immune Infiltration and Immunotherapy Response of APOBEC Mutagenesis and Its Molecular Mechanisms in Esophageal Squamous Cell Carcinoma. Int J Biol Sci 2023; 19:2551-2571. [PMID: 37215984 PMCID: PMC10197887 DOI: 10.7150/ijbs.83824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/25/2023] [Indexed: 05/24/2023] Open
Abstract
The apolipoprotein B mRNA editing enzyme catalytic polypeptide (APOBEC) mutagenesis is prevalent in esophageal squamous cell carcinoma (ESCC). However, the functional role of APOBEC mutagenesis has yet to be fully delineated. To address this, we collect matched multi-omics data of 169 ESCC patients and evaluate characteristics of immune infiltration using multiple bioinformatic approaches based on bulk and single-cell RNA sequencing (scRNA-seq) data and verified by functional assays. We find that APOBEC mutagenesis prolongs overall survival (OS) of ESCC patients. The reason for this outcome is probably due to high anti-tumor immune infiltration, immune checkpoints expression and immune related pathway enrichment, such as interferon (IFN) signaling, innate and adaptive immune system. The elevated AOBEC3A (A3A) activity paramountly contributes to the footprints of APOBEC mutagenesis and is first discovered to be transactivated by FOSL1. Mechanistically, upregulated A3A exacerbates cytosolic double-stranded DNA (dsDNA) accumulation, thus stimulating cGAS-STING pathway. Simultaneously, A3A is associated with immunotherapy response which is predicted by TIDE algorithm, validated in a clinical cohort and further confirmed in mouse models. These findings systematically elucidate the clinical relevance, immunological characteristics, prognostic value for immunotherapy and underlying mechanisms of APOBEC mutagenesis in ESCC, which demonstrate great potential in clinical utility to facilitate clinical decisions.
Collapse
Affiliation(s)
- Jie Yang
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Tao Xiang
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Shihao Zhu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yueqiong Lao
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yuqian Wang
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Tianyuan Liu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Kai Li
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yuling Ma
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Ce Zhong
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Shaosen Zhang
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Wen Tan
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Dongxin Lin
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou 510060, China
| | - Chen Wu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China
- CAMS Oxford Institute, Chinese Academy of Medical Sciences, Beijing 100006, China
| |
Collapse
|
37
|
Mohanty SK, Lobo A, Mishra SK, Cheng L. Precision Medicine in Bladder Cancer: Present Challenges and Future Directions. J Pers Med 2023; 13:jpm13050756. [PMID: 37240925 DOI: 10.3390/jpm13050756] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Bladder cancer (BC) is characterized by significant histopathologic and molecular heterogeneity. The discovery of molecular pathways and knowledge of cellular mechanisms have grown exponentially and may allow for better disease classification, prognostication, and development of novel and more efficacious noninvasive detection and surveillance strategies, as well as selection of therapeutic targets, which can be used in BC, particularly in a neoadjuvant or adjuvant setting. This article outlines recent advances in the molecular pathology of BC with a better understanding and deeper focus on the development and deployment of promising biomarkers and therapeutic avenues that may soon make a transition into the domain of precision medicine and clinical management for patients with BC.
Collapse
Affiliation(s)
- Sambit K Mohanty
- Department of Pathology and Laboratory Medicine, Advanced Medical Research Institute and CORE Diagnostics, Gurgaon 122016, India
| | - Anandi Lobo
- Department of Pathology and Laboratory Medicine, Kapoor Center for Pathology and Urology, Raipur 490042, India
| | - Sourav K Mishra
- Department of Medical Oncology, All India Institute of Medical Sciences, Bhubaneswar 750017, India
| | - Liang Cheng
- Department of Pathology and Laboratory Medicine, Brown University Warren Alpert Medical School, Lifespan Academic Medical Center, and the Legorreta Cancer Center at Brown University, 593 Eddy Street, APC 12-105, Providence, RI 02903, USA
| |
Collapse
|
38
|
Al Bakir M, Huebner A, Martínez-Ruiz C, Grigoriadis K, Watkins TBK, Pich O, Moore DA, Veeriah S, Ward S, Laycock J, Johnson D, Rowan A, Razaq M, Akther M, Naceur-Lombardelli C, Prymas P, Toncheva A, Hessey S, Dietzen M, Colliver E, Frankell AM, Bunkum A, Lim EL, Karasaki T, Abbosh C, Hiley CT, Hill MS, Cook DE, Wilson GA, Salgado R, Nye E, Stone RK, Fennell DA, Price G, Kerr KM, Naidu B, Middleton G, Summers Y, Lindsay CR, Blackhall FH, Cave J, Blyth KG, Nair A, Ahmed A, Taylor MN, Procter AJ, Falzon M, Lawrence D, Navani N, Thakrar RM, Janes SM, Papadatos-Pastos D, Forster MD, Lee SM, Ahmad T, Quezada SA, Peggs KS, Van Loo P, Dive C, Hackshaw A, Birkbak NJ, Zaccaria S, Jamal-Hanjani M, McGranahan N, Swanton C. The evolution of non-small cell lung cancer metastases in TRACERx. Nature 2023; 616:534-542. [PMID: 37046095 PMCID: PMC10115651 DOI: 10.1038/s41586-023-05729-x] [Citation(s) in RCA: 95] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/12/2023] [Indexed: 04/14/2023]
Abstract
Metastatic disease is responsible for the majority of cancer-related deaths1. We report the longitudinal evolutionary analysis of 126 non-small cell lung cancer (NSCLC) tumours from 421 prospectively recruited patients in TRACERx who developed metastatic disease, compared with a control cohort of 144 non-metastatic tumours. In 25% of cases, metastases diverged early, before the last clonal sweep in the primary tumour, and early divergence was enriched for patients who were smokers at the time of initial diagnosis. Simulations suggested that early metastatic divergence more frequently occurred at smaller tumour diameters (less than 8 mm). Single-region primary tumour sampling resulted in 83% of late divergence cases being misclassified as early, highlighting the importance of extensive primary tumour sampling. Polyclonal dissemination, which was associated with extrathoracic disease recurrence, was found in 32% of cases. Primary lymph node disease contributed to metastatic relapse in less than 20% of cases, representing a hallmark of metastatic potential rather than a route to subsequent recurrences/disease progression. Metastasis-seeding subclones exhibited subclonal expansions within primary tumours, probably reflecting positive selection. Our findings highlight the importance of selection in metastatic clone evolution within untreated primary tumours, the distinction between monoclonal versus polyclonal seeding in dictating site of recurrence, the limitations of current radiological screening approaches for early diverging tumours and the need to develop strategies to target metastasis-seeding subclones before relapse.
Collapse
Affiliation(s)
- Maise Al Bakir
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Ariana Huebner
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Carlos Martínez-Ruiz
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Kristiana Grigoriadis
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Thomas B K Watkins
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Oriol Pich
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - David A Moore
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Department of Cellular Pathology, University College London Hospitals, London, UK
| | - Selvaraju Veeriah
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Sophia Ward
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Advanced Sequencing Facility, The Francis Crick Institute, London, UK
| | - Joanne Laycock
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Diana Johnson
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Andrew Rowan
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Maryam Razaq
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Mita Akther
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | | | - Paulina Prymas
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Antonia Toncheva
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Sonya Hessey
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Metastasis Laboratory, University College London Cancer Institute, London, UK
- Computational Cancer Genomics Research Group, University College London Cancer Institute, London, UK
| | - Michelle Dietzen
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Emma Colliver
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Alexander M Frankell
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Abigail Bunkum
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Metastasis Laboratory, University College London Cancer Institute, London, UK
- Computational Cancer Genomics Research Group, University College London Cancer Institute, London, UK
| | - Emilia L Lim
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Takahiro Karasaki
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Cancer Metastasis Laboratory, University College London Cancer Institute, London, UK
| | - Christopher Abbosh
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Crispin T Hiley
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Mark S Hill
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Daniel E Cook
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Gareth A Wilson
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Roberto Salgado
- Department of Pathology, ZAS Hospitals, Antwerp, Belgium
- Division of Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Emma Nye
- Experimental Histopathology, The Francis Crick Institute, London, UK
| | | | - Dean A Fennell
- University of Leicester, Leicester, UK
- University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Gillian Price
- Department of Medical Oncology, Aberdeen Royal Infirmary NHS Grampian, Aberdeen, UK
- University of Aberdeen, Aberdeen, UK
| | - Keith M Kerr
- University of Aberdeen, Aberdeen, UK
- Department of Pathology, Aberdeen Royal Infirmary NHS Grampian, Aberdeen, UK
| | - Babu Naidu
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Gary Middleton
- University Hospital Birmingham NHS Foundation Trust, Birmingham, UK
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Yvonne Summers
- Division of Cancer Sciences, The University of Manchester and The Christie NHS Foundation Trust, Manchester, UK
| | - Colin R Lindsay
- Division of Cancer Sciences, The University of Manchester and The Christie NHS Foundation Trust, Manchester, UK
| | - Fiona H Blackhall
- Division of Cancer Sciences, The University of Manchester and The Christie NHS Foundation Trust, Manchester, UK
| | - Judith Cave
- Department of Oncology, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Kevin G Blyth
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Glasgow, UK
- Queen Elizabeth University Hospital, Glasgow, UK
| | - Arjun Nair
- Department of Radiology, University College London Hospitals, London, UK
- UCL Respiratory, Department of Medicine, University College London, London, UK
| | - Asia Ahmed
- Department of Radiology, University College London Hospitals, London, UK
| | - Magali N Taylor
- Department of Radiology, University College London Hospitals, London, UK
| | | | - Mary Falzon
- Department of Cellular Pathology, University College London Hospitals, London, UK
| | - David Lawrence
- Department of Thoracic Surgery, University College London Hospital NHS Trust, London, UK
| | - Neal Navani
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
- Department of Thoracic Medicine, University College London Hospitals, London, UK
| | - Ricky M Thakrar
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
- Department of Thoracic Medicine, University College London Hospitals, London, UK
| | - Sam M Janes
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | | | - Martin D Forster
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Department of Oncology, University College London Hospitals, London, UK
| | - Siow Ming Lee
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Department of Oncology, University College London Hospitals, London, UK
| | - Tanya Ahmad
- Department of Oncology, University College London Hospitals, London, UK
| | - Sergio A Quezada
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Immune Regulation and Tumour Immunotherapy Group, Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK
| | - Karl S Peggs
- Department of Haematology, University College London Hospitals, London, UK
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK
| | - Peter Van Loo
- Cancer Genomics Laboratory, The Francis Crick Institute, London, UK
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Caroline Dive
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, University of Manchester, Manchester, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University of Manchester, Manchester, UK
| | - Allan Hackshaw
- Cancer Research UK & UCL Cancer Trials Centre, London, UK
| | - Nicolai J Birkbak
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
| | - Simone Zaccaria
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Computational Cancer Genomics Research Group, University College London Cancer Institute, London, UK
| | - Mariam Jamal-Hanjani
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK.
- Cancer Metastasis Laboratory, University College London Cancer Institute, London, UK.
- Department of Oncology, University College London Hospitals, London, UK.
| | - Nicholas McGranahan
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK.
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK.
| | - Charles Swanton
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK.
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK.
- Department of Oncology, University College London Hospitals, London, UK.
| |
Collapse
|
39
|
Chen W, Tan M, Yu C, Liao G, Kong D, Bai J, Yang B, Gong H. ARHGAP6 inhibits bladder cancer cell viability, migration, and invasion via β-catenin signaling and enhances mitomycin C sensitivity. Hum Cell 2023; 36:786-797. [PMID: 36715867 DOI: 10.1007/s13577-023-00860-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/17/2023] [Indexed: 01/31/2023]
Abstract
The Rho/ROCK pathway regulates diverse cellular processes and contributes to the development and advancement of several types of human cancers. This study investigated the role of specific Rho GTPase-activating proteins (RhoGAP), ARHGAP6, in bladder cancer (BC). In this study, ARHGAP6 expression in BC and its clinical significance were investigated. In vitro and in vivo assays were used to explore the tumor-related function and the underlying molecular mechanism ARHGAP6 of in BC. The mRNA and protein levels of ARHGAP6 significantly reduced in human BC tissues and cell lines compared with corresponding adjacent non-cancerous tissues and normal urothelial cells. In vitro, ARHGAP6 overexpression markedly decreased the viability, migration, and invasion of BC cells. Interestingly, low ARHGAP6 expression in BC strongly correlated with poor patient survival and was highly associated with metastasis and β-catenin signaling. Furthermore, ARHGAP6 expression strongly influenced the sensitivity of BC cells to mitomycin C treatment. Together, our results demonstrate that ARHGAP6 plays critical roles in regulating the proliferation, migration, invasion, and metastasis of BC cells possibly via the modulation of β-catenin and strongly influences the chemosensitivity of BC cells.
Collapse
Affiliation(s)
- Weihua Chen
- Department of Urology, Shanghai East Hospital, Tongji University, Shanghai, 200120, China
| | - Mingyue Tan
- Department of Urology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200021, Shanghai, China
| | - Chao Yu
- Department of Urology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Guoqiang Liao
- Department of Urology, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, No. 1500 Zhouyuan Road, Pudong, 201318, Shanghai, China
| | - Dehui Kong
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Jie Bai
- Department of Urology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Bo Yang
- Department of Urology, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, No. 1500 Zhouyuan Road, Pudong, 201318, Shanghai, China.
| | - Hua Gong
- Department of Urology, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, No. 1500 Zhouyuan Road, Pudong, 201318, Shanghai, China.
| |
Collapse
|
40
|
Erlmeier F, Klümper N, Landgraf L, Strissel PL, Strick R, Sikic D, Taubert H, Wach S, Geppert CI, Bahlinger V, Breyer J, Ritter M, Bolenz C, Roghmann F, Erben P, Schwamborn K, Wirtz RM, Horn T, Wullich B, Hölzel M, Hartmann A, Gschwend JE, Weichert W, Eckstein M. Spatial Immunephenotypes of Distant Metastases but not Matched Primary Urothelial Carcinomas Predict Response to Immune Checkpoint Inhibition. Eur Urol 2023; 83:133-142. [PMID: 36372626 DOI: 10.1016/j.eururo.2022.10.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/03/2022] [Accepted: 10/18/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND The value of programmed cell death ligand-1 (PD-L1) to predict durable responses to immune checkpoint inhibitors (ICIs) in metastatic urothelial carcinoma (mUC) is inconsistent. We hypothesize that the use of archived primary tumor material (PRIM) for PD-L1 testing in clinical trials not properly reflecting the metastatic disease status (MET) contributes to this clinical issue. OBJECTIVE To analyze the predictive and prognostic value of PD-L1, spatial immunephenotypes, and major histocompatibility complex class I (MHC-I) determined in patient-matched PRIM/MET. DESIGN, SETTING, AND PARTICIPANTS PD-L1, spatial immunephenotypes, and MHC-I were examined in 154 mUC patients with at least one available pretreatment MET (138 patient-matched PRIM/MET pairs). OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS PD-L1, spatial immunephenotype, and MHC-I status of (patient-matched PRIM and) pretreatment MET were correlated with chemotherapy and ICI response and outcomes. RESULTS AND LIMITATIONS Discordance rates in patient-matched PRIM/MET were 25/30%, 36%, and 49% for PD-L1 (CPS10/IC5%), immunephenotypes, and MHC-I (loss vs preserved), respectively. Correlations with chemotherapy and ICI responses were observed for immunephenotypes and MHC-I status determined in MET (not for PD-L1 alone), but not in PRIM. In case of ICIs, patients with cytotoxic tumor immune microenvironment (TIME) showed durable responses with disease control rates of 90% and a hazard ratio for disease progression/death of 0.05 (95% confidence interval: 0.01-0.65) versus patients with immunedepleted MET (disease control rate 29%). MET MHC-I status added an incremental value to predict durable ICI responses. Limitations include the partly retrospective design and the lack of MET multisampling on individual patient level. CONCLUSIONS The TIME is subject to substantial dynamics during metastatic evolution. MET immunephenotypes and MHC-I statuses show promising potential to predict chemotherapy and durable ICI responses, while the PRIM TIME does not. Thus, future clinical trials should rather rely on pretreatment MET biopsies reflecting the current immunological disease state than on PRIM. PATIENT SUMMARY Prediction of chemotherapy and responses to immune checkpoint inhibitors might be possible using representative pretreatment metastatic biopsies.
Collapse
Affiliation(s)
- Franziska Erlmeier
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany; Comprehensive Cancer Center EMN, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; BRIDGE-Consortium Germany e.V, Mannheim, Germany; Institute of Pathology, Technical University Munich, Munich, Germany; Bayerisches Zentrum für Krebsforschung (BZKF), Bavaria, Germany
| | - Niklas Klümper
- Department of Urology and Pediatric Urology, University Medical Center Bonn (UKB), Bonn, Germany; Institute of Experimental Oncology, University Medical Center Bonn (UKB), Bonn, Germany; Center for Integrated Oncology, Aachen/Bonn/Cologne/Düsseldorf (CIO-ABCD), Germany
| | - Laura Landgraf
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany; Comprehensive Cancer Center EMN, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Bayerisches Zentrum für Krebsforschung (BZKF), Bavaria, Germany
| | - Pamela L Strissel
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany; Comprehensive Cancer Center EMN, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; BRIDGE-Consortium Germany e.V, Mannheim, Germany; Bayerisches Zentrum für Krebsforschung (BZKF), Bavaria, Germany; Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Reiner Strick
- Comprehensive Cancer Center EMN, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; BRIDGE-Consortium Germany e.V, Mannheim, Germany; Bayerisches Zentrum für Krebsforschung (BZKF), Bavaria, Germany; Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Danijel Sikic
- Comprehensive Cancer Center EMN, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; BRIDGE-Consortium Germany e.V, Mannheim, Germany; Bayerisches Zentrum für Krebsforschung (BZKF), Bavaria, Germany; Department of Urology and Pediatric Urology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Helge Taubert
- Comprehensive Cancer Center EMN, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; BRIDGE-Consortium Germany e.V, Mannheim, Germany; Bayerisches Zentrum für Krebsforschung (BZKF), Bavaria, Germany; Department of Urology and Pediatric Urology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sven Wach
- Comprehensive Cancer Center EMN, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; BRIDGE-Consortium Germany e.V, Mannheim, Germany; Bayerisches Zentrum für Krebsforschung (BZKF), Bavaria, Germany; Department of Urology and Pediatric Urology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Carol I Geppert
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany; Comprehensive Cancer Center EMN, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Bayerisches Zentrum für Krebsforschung (BZKF), Bavaria, Germany
| | - Veronika Bahlinger
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany; Comprehensive Cancer Center EMN, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; BRIDGE-Consortium Germany e.V, Mannheim, Germany; Bayerisches Zentrum für Krebsforschung (BZKF), Bavaria, Germany
| | - Johannes Breyer
- BRIDGE-Consortium Germany e.V, Mannheim, Germany; Bayerisches Zentrum für Krebsforschung (BZKF), Bavaria, Germany; Department of Urology, University of Regensburg, Caritas St. Josef, Regensburg, Germany
| | - Manuel Ritter
- BRIDGE-Consortium Germany e.V, Mannheim, Germany; Department of Urology and Pediatric Urology, University Medical Center Bonn (UKB), Bonn, Germany; Center for Integrated Oncology, Aachen/Bonn/Cologne/Düsseldorf (CIO-ABCD), Germany
| | - Christian Bolenz
- BRIDGE-Consortium Germany e.V, Mannheim, Germany; Department of Urology and Pediatric Urology, University Hospital Ulm, University of Ulm, Ulm, Germany
| | - Florian Roghmann
- BRIDGE-Consortium Germany e.V, Mannheim, Germany; Department of Urology, Marien Hospital, Ruhr-University Bochum, Herne, Germany
| | - Philipp Erben
- BRIDGE-Consortium Germany e.V, Mannheim, Germany; Department of Urology, University Hospital Mannheim, University of Heidelberg, Mannheim, Germany
| | - Kristina Schwamborn
- Institute of Pathology, Technical University Munich, Munich, Germany; Bayerisches Zentrum für Krebsforschung (BZKF), Bavaria, Germany
| | - Ralph M Wirtz
- BRIDGE-Consortium Germany e.V, Mannheim, Germany; STRATIFYER Molecular Pathology, Cologne, Germany
| | - Thomas Horn
- Bayerisches Zentrum für Krebsforschung (BZKF), Bavaria, Germany; Department of Urology, Technical University Munich, Munich, Germany
| | - Bernd Wullich
- Comprehensive Cancer Center EMN, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; BRIDGE-Consortium Germany e.V, Mannheim, Germany; Bayerisches Zentrum für Krebsforschung (BZKF), Bavaria, Germany; Department of Urology and Pediatric Urology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Michael Hölzel
- Institute of Experimental Oncology, University Medical Center Bonn (UKB), Bonn, Germany; Center for Integrated Oncology, Aachen/Bonn/Cologne/Düsseldorf (CIO-ABCD), Germany
| | - Arndt Hartmann
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany; Comprehensive Cancer Center EMN, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; BRIDGE-Consortium Germany e.V, Mannheim, Germany; Bayerisches Zentrum für Krebsforschung (BZKF), Bavaria, Germany
| | - Jürgen E Gschwend
- Bayerisches Zentrum für Krebsforschung (BZKF), Bavaria, Germany; Department of Urology, Technical University Munich, Munich, Germany
| | - Wilko Weichert
- Institute of Pathology, Technical University Munich, Munich, Germany; Bayerisches Zentrum für Krebsforschung (BZKF), Bavaria, Germany
| | - Markus Eckstein
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany; Comprehensive Cancer Center EMN, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; BRIDGE-Consortium Germany e.V, Mannheim, Germany; Bayerisches Zentrum für Krebsforschung (BZKF), Bavaria, Germany.
| |
Collapse
|
41
|
Reike MJ, Contreras-Sanz A, Black PC. Biological Stratification of Invasive and Advanced Urothelial Carcinoma. Urol Clin North Am 2023; 50:69-80. [DOI: 10.1016/j.ucl.2022.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
42
|
Seillier L, Peifer M. Reconstructing Phylogenetic Relationship in Bladder Cancer: A Methodological Overview. Methods Mol Biol 2023; 2684:113-132. [PMID: 37410230 DOI: 10.1007/978-1-0716-3291-8_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Bladder cancer (BC) expresses itself as a highly heterogeneous disease both at the histological and molecular level, often occurring as synchronous or metachronous multifocal disease with high risk of recurrence and potential to metastasize. Multiple sequencing studies focusing on both non-muscle-invasive bladder cancer (NMIBC) and muscle-invasive bladder cancer (MIBC) gave insights into the extent of both inter- and intrapatient heterogeneity, but many questions on clonal evolution in BC remain unanswered. In this review article, we provide an overview over the technical and theoretical concepts linked to reconstructing evolutionary trajectories in BC and propose a set of tools and established software for phylogenetic analysis.
Collapse
Affiliation(s)
| | - Martin Peifer
- Department of Translational Genomics, University of Cologne, Cologne, Germany
| |
Collapse
|
43
|
Bejrananda T, Saetang J, Sangkhathat S. Molecular Subtyping in Muscle-Invasive Bladder Cancer on Predicting Survival and Response of Treatment. Biomedicines 2022; 11:69. [PMID: 36672577 PMCID: PMC9856180 DOI: 10.3390/biomedicines11010069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
Molecular classifications for urothelial bladder cancer appear to be promising in disease prognostication and prediction. This study investigated the novel molecular subtypes of muscle invasive bladder cancer (MIBC). Tumor samples and normal tissues of MIBC patients were submitted for transcriptome sequencing. Expression profiles were clustered using K-means clustering and principal component analysis. The molecular subtypes were also applied to The Cancer Genome Atlas (TCGA) dataset and analyzed for clinical outcome correlation. Three molecular subtypes of MIBC were discovered, clusters A, B, and C. The most differentially upregulated genes in cluster A were BDKRB1, EDNRA, AVPR1A, PDGFRB, and TNC, while the most upregulated genes in cluster C were collagen-related genes, PDGFRB, and PRKG1. For cluster B, COL6A3, COL1A2, COL6A2, tenascin C, and fibroblast growth factor 2 were statistically suppressed. When the centroids of clustering on PCA were applied to TCGA data, the clustering significantly predicted survival outcomes. Cluster B had the best overall survival (OS), and cluster C was associated with poor OS but exhibited the best response to perioperative chemotherapy. Among all groups, cluster B had a better pathologic response to neoadjuvant chemotherapy (40%). Based on the results of the present study, the novel clusters of subtype MIBC appear potentially suitable for integration into clinical practice.
Collapse
Affiliation(s)
- Tanan Bejrananda
- Department of Surgery, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Jirakrit Saetang
- Department of Surgery, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Songkhla 90112, Thailand
| | - Surasak Sangkhathat
- Department of Surgery, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
- Translational Medicine Research Center, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| |
Collapse
|
44
|
Clinton TN, Chen Z, Wise H, Lenis AT, Chavan S, Donoghue MT, Almassi N, Chu CE, Dason S, Rao P, Rodrigues JA, Vasani NB, Ridouani F, Rosenberg JE, Bajorin DF, Teo MY, Bochner BH, Berger MF, Ostrovnaya I, Pietzak EJ, Iyer G, Gao SP, Hu W, Al-Ahmadie HA, Solit DB. Genomic heterogeneity as a barrier to precision oncology in urothelial cancer. Cell Rep 2022; 41:111859. [PMID: 36543146 PMCID: PMC9882421 DOI: 10.1016/j.celrep.2022.111859] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/13/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
Precision oncology relies on the accurate molecular characterization of individual patients with cancer at the time of treatment initiation. However, tumor molecular profiles are not static, and cancers continually evolve because of ongoing mutagenesis and clonal selection. Here, we performed genomic analyses of primary tumors, metastases, and plasma collected from individual patients to define the concordance of actionable genomic alterations and to identify drivers of metastatic disease progression. We observed a high degree of discordance of actionable genomic alterations, with 23% discordant between primary and metastatic disease sites. Among chromatin-modifying genes, ARID1A mutations, when discordant, were exclusive to the metastatic tumor samples. Our findings indicate that the high degree of lesion-to-lesion genomic heterogeneity may be a barrier to precision oncology approaches for bladder cancer and that circulating tumor DNA profiling may be preferred to tumor sequencing for a subset of patients.
Collapse
Affiliation(s)
- Timothy N. Clinton
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA,Present address: Division of Urology, Department of Surgery, Brigham and Women’s Hospital and Dana-Farber Cancer Institute, Boston, MA 02115, USA,These authors contributed equally
| | - Ziyu Chen
- Physiology, Biophysics and Systems Biology Program, Weill Cornell Medicine, New York, NY 10065, USA,These authors contributed equally
| | - Hannah Wise
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA,Present address: Flatiron Health, New York, NY 10013, USA
| | - Andrew T. Lenis
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Shweta Chavan
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Mark T.A. Donoghue
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Nima Almassi
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Carissa E. Chu
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Shawn Dason
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Pavitra Rao
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - James A. Rodrigues
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Naresh B. Vasani
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Fourat Ridouani
- Interventional Radiology, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jonathan E. Rosenberg
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Dean F. Bajorin
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Min Yuen Teo
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Bernard H. Bochner
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Michael F. Berger
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA,Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Irina Ostrovnaya
- Department of Epidemiology-Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10017, USA
| | - Eugene J. Pietzak
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Gopa Iyer
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sizhi Paul Gao
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Wenhuo Hu
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Hikmat A. Al-Ahmadie
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - David B. Solit
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA,Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA,Lead contact,Correspondence:
| |
Collapse
|
45
|
Zhang B, Jia P, Wang J, Pei G, Wang C, Pei S, Li X, Zhao Z, Yi X, Guan XY, Huang Y. Integrated analysis of racial disparities in genomic architecture identifies a trans-ancestry prognostic subtype in bladder cancer. Mol Oncol 2022; 17:564-581. [PMID: 36495164 PMCID: PMC10061287 DOI: 10.1002/1878-0261.13360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 11/08/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
The incidence of bladder cancer and patient survival vary greatly among different populations, but the influence of the associated molecular features and evolutionary processes on its clinical treatment and prognostication remains unknown. Here, we analyze the genomic architectures of 505 bladder cancer patients from Asian/Black/White populations. We identify a previously unknown association between AHNAK mutations and activity of the APOBEC-a mutational signature, the activity of which varied substantially across populations. All significantly mutated genes but only half of arm-level somatic copy number alterations (SCNAs) are enriched with clonal events, indicating large-scale SCNAs as rich sources of bladder cancer clonal diversities. The prevalence of TP53 and ATM clonal mutations as well as the associated burden of SCNAs is significantly higher in Whites/Blacks than in Asians. We identify a trans-ancestry prognostic subtype of bladder cancer characterized by enrichment of non-muscle-invasive patients and muscle-invasive patients with good prognosis, increased CREBBP/FGFR3/HRAS/NFE2L2 mutations, decreased intra-tumor heterogeneity and genome instability, and an activated tumor microenvironment.
Collapse
Affiliation(s)
- Baifeng Zhang
- Departments of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, China.,Departments of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, China.,Geneplus-Beijing, China
| | - Peilin Jia
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, TX, USA
| | - Jiayin Wang
- Department of Computer Science and Technology, School of Electronic and Information Engineering, Xi'an Jiaotong University, Shaanxi, China
| | - Guangsheng Pei
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, TX, USA
| | | | | | - Xiangchun Li
- Department of Epidemiology and Biostatistics, Tianjin Medical University Cancer Institute and Hospital, China
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, TX, USA
| | | | - Xin-Yuan Guan
- Departments of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, China.,Departments of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, China
| | - Yi Huang
- Geneplus-Beijing, China.,Department of Computer Science and Technology, School of Electronic and Information Engineering, Xi'an Jiaotong University, Shaanxi, China.,Luohu people's hospital, Shenzhen, China
| |
Collapse
|
46
|
Bacon JVW, Müller DC, Ritch E, Annala M, Dugas SG, Herberts C, Vandekerkhove G, Seifert H, Zellweger T, Black PC, Bubendorf L, Wyatt AW, Rentsch CA. Somatic Features of Response and Relapse in Non-muscle-invasive Bladder Cancer Treated with Bacillus Calmette-Guérin Immunotherapy. Eur Urol Oncol 2022; 5:677-686. [PMID: 34895867 DOI: 10.1016/j.euo.2021.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/13/2021] [Accepted: 11/13/2021] [Indexed: 01/26/2023]
Abstract
BACKGROUND High-risk non-muscle-invasive bladder cancer (NMIBC) is treated with bacillus Calmette-Guérin (BCG), but relapse is common. Improvement of patient outcomes requires better understanding of links between BCG resistance and genomic driver alterations. OBJECTIVE To validate the prognostic impact of common genomic alterations in NMIBC pretreatment and define somatic changes present in post-BCG relapses. DESIGN, SETTING, AND PARTICIPANTS We retrieved tumour tissues and outcomes for 90 patients with BCG-naive NMIBC initiating BCG monotherapy. Post-BCG tissue was available from 34 patients. All tissues underwent targeted sequencing of tumour and matched normal. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS Associations between clinical outcomes and genomics were determined using Cox proportional hazard models. RESULTS AND LIMITATIONS Of the patients, 58% were relapse free at data cut-off, 24% had NMIBC recurrence, and 18% experienced muscle-invasive progression. The risk of relapse was associated with ARID1A mutation (hazard ratio [HR] = 2.00; p = 0.04) and CCNE1 amplification (HR = 2.61; p = 0.02). Pre- and post-BCG tumours shared truncal driver alterations, with mutations in TERT and chromatin remodelling genes particularly conserved. However, shifts in somatic profiles were common and clinically relevant alterations in FGFR3, PIK3CA, TSC1, and TP53 were temporally variable, despite apparent clonal prevalence at one time point. Limitations include the difficulty of resolving the relative impact of BCG therapy versus surgery on genomics at relapse and biopsy bias. CONCLUSIONS Somatic hypermutation and alterations in CCNE1 and ARID1A should be incorporated into future models predicting NMIBC BCG outcomes. Changes in tumour genomics over time highlight the importance of recent biopsy when considering targeted therapies, and suggest that relapse after BCG is due to persisting and evolving precursor populations. PATIENT SUMMARY Changes in key cancer genes can predict bladder cancer relapse after treatment with bacillus Calmette-Guérin. Relapses after treatment can be driven by large-scale genetic changes within the cancer. These genetic changes help us understand how superficial bladder cancer can progress to be treatment resistant.
Collapse
Affiliation(s)
- Jack V W Bacon
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - David C Müller
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland; Department of Urology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Elie Ritch
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Matti Annala
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada; Prostate Cancer Research Center, Faculty of Medicine and Life Sciences and BioMediTech Institute, University of Tampere, Tampere, Finland
| | - Sarah G Dugas
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland; Department of Urology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Cameron Herberts
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Gillian Vandekerkhove
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Helge Seifert
- Department of Urology, University Hospital Basel, University of Basel, Basel, Switzerland
| | | | - Peter C Black
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lukas Bubendorf
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Alexander W Wyatt
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada; Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada.
| | - Cyrill A Rentsch
- Department of Urology, University Hospital Basel, University of Basel, Basel, Switzerland.
| |
Collapse
|
47
|
Zhu Y, Zhou J, Zhu L, Hu W, Liu B, Xie L. Adoptive tumor infiltrating lymphocytes cell therapy for cervical cancer. Hum Vaccin Immunother 2022; 18:2060019. [PMID: 35468048 PMCID: PMC9897649 DOI: 10.1080/21645515.2022.2060019] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cervical cancer is one of the most common malignancies among females. As a virus-related cancer, cervical cancer has attracted a lot of attention to develop virus-targeted immune therapy, including vaccine and adoptive immune cell therapy (ACT). Adoptive tumor infiltrating lymphocytes (TILs) cell therapy has been found to be able to control advanced disease progression in some cervical cancer patients who have received several lines of treatment in a pilot clinical trial. In addition, sustainable therapeutic effect has been identified in some cases. The safety risks of TIL therapy for patients are minimal or at least manageable. In this review, we focused on the versatility of TILs and tried to summarize potential strategies to improve the therapeutic effect of TILs and discuss related perspectives.
Collapse
Affiliation(s)
- Yahui Zhu
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu, China
| | - Jing Zhou
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu, China
| | - Lijing Zhu
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu, China
| | - Wenjing Hu
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu, China
| | - Baorui Liu
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu, China
| | - Li Xie
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu, China,CONTACT Li Xie No. 321, Zhongshan Road, Gulou District, Nanjing, Jiangsu, China
| |
Collapse
|
48
|
Mun JY, Baek SW, Jeong MS, Jang IH, Lee SR, You JY, Kim JA, Yang GE, Choi YH, Kim TN, Chu IS, Leem SH. Stepwise molecular mechanisms responsible for chemoresistance in bladder cancer cells. Cell Death Dis 2022; 8:450. [DOI: 10.1038/s41420-022-01242-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 11/09/2022]
Abstract
AbstractChemotherapy resistance is an obstacle to cancer therapy and is considered a major cause of recurrence. Thus, understanding the mechanisms of chemoresistance is critical to improving the prognosis of patients. Here, we have established a stepwise gemcitabine-resistant T24 bladder cancer cell line to understand the molecular mechanisms of chemoresistance within cancer cells. The characteristics of the stepwise chemoresistance cell line were divided into 4 phases (parental, early, intermediate, and late phases). These four phase cells showed increasingly aggressive phenotypes in vitro and in vivo experiments with increasing phases and revealed the molecular properties of the biological process from parent cells to phased gemcitabine-resistant cell line (GRC). Taken together, through the analysis of gene expression profile data, we have characterized gene set of each phase indicating the response to anticancer drug treatment. Specifically, we identified a multigene signature (23 genes including GATA3, APOBEC3G, NT5E, MYC, STC1, FOXD1, SMAD9) and developed a chemoresistance score consisting of that could predict eventual responsiveness to gemcitabine treatment. Our data will contribute to predicting chemoresistance and improving the prognosis of bladder cancer patients.
Collapse
|
49
|
Makrakis D, Talukder R, Lin GI, Diamantopoulos LN, Dawsey S, Gupta S, Carril-Ajuria L, Castellano D, de Kouchkovsky I, Koshkin VS, Park JJ, Alva A, Bilen MA, Stewart TF, McKay RR, Tripathi N, Agarwal N, Vather-Wu N, Zakharia Y, Morales-Barrera R, Devitt ME, Cortellini A, Fulgenzi CAM, Pinato DJ, Nelson A, Hoimes CJ, Gupta K, Gartrell BA, Sankin A, Tripathi A, Zakopoulou R, Bamias A, Murgic J, Fröbe A, Rodriguez-Vida A, Drakaki A, Liu S, Lu E, Kumar V, Lorenzo GD, Joshi M, Isaacsson-Velho P, Buznego LA, Duran I, Moses M, Jang A, Barata P, Sonpavde G, Yu EY, Montgomery RB, Grivas P, Khaki AR. Association Between Sites of Metastasis and Outcomes With Immune Checkpoint Inhibitors in Advanced Urothelial Carcinoma. Clin Genitourin Cancer 2022; 20:e440-e452. [PMID: 35778337 PMCID: PMC10257151 DOI: 10.1016/j.clgc.2022.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/01/2022] [Accepted: 06/01/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Sites of metastasis have prognostic significance in advanced urothelial carcinoma (aUC), but more information is needed regarding outcomes based on metastatic sites in patients treated with immune checkpoint inhibitors (ICI). We hypothesized that presence of liver/bone metastases would be associated with worse outcomes with ICI. METHODS We identified a retrospective cohort of patients with aUC across 26 institutions, collecting demographics, clinicopathological, treatment, and outcomes information. Outcomes were compared with logistic (observed response rate; ORR) and Cox (progression-free survival; PFS, overall survival; OS) regression between patients with/without metastasis beyond lymph nodes (LN) and those with/without bone/liver/lung metastasis. Analysis was stratified by 1st or 2nd+ line. RESULTS We identified 917 ICI-treated patients: in the 1st line, bone/liver metastases were associated with shorter PFS (Hazard ratio; HR: 1.65 and 2.54), OS (HR: 1.60 and 2.35, respectively) and lower ORR (OR: 0.48 and 0.31). In the 2nd+ line, bone/liver metastases were associated with shorter PFS (HR: 1.71 and 1.62), OS (HR: 1.76 and 1.56) and, for bone-only metastases, lower ORR (OR: 0.29). In the 1st line, LN-confined metastasis was associated with longer PFS (HR: 0.53), OS (HR:0.49) and higher ORR (OR: 2.97). In the 2nd+ line, LN-confined metastasis was associated with longer PFS (HR: 0.47), OS (HR: 0.54), and higher ORR (OR: 2.79); all associations were significant. CONCLUSION Bone and/or liver metastases were associated with worse, while LN-confined metastases were associated with better outcomes in patients with aUC receiving ICI. These findings in a large population treated outside clinical trials corroborate data from trial subset analyses.
Collapse
Affiliation(s)
- Dimitrios Makrakis
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA
| | - Rafee Talukder
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA
| | | | | | - Scott Dawsey
- Department of Hematology and Oncology, Cleveland Clinic Taussig Cancer Institute, Cleveland, OH
| | - Shilpa Gupta
- Department of Hematology and Oncology, Cleveland Clinic Taussig Cancer Institute, Cleveland, OH
| | - Lucia Carril-Ajuria
- Department of Medical Oncology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Daniel Castellano
- Department of Medical Oncology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Ivan de Kouchkovsky
- Division of Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA
| | - Vadim S Koshkin
- Division of Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA
| | - Joseph J Park
- Division of Oncology, Department of Medicine, University of Michigan, Ann Arbor, MI
| | - Ajjai Alva
- Division of Oncology, Department of Medicine, University of Michigan, Ann Arbor, MI
| | - Mehmet A Bilen
- Winship Cancer Institute of Emory University, Atlanta, GA
| | - Tyler F Stewart
- Division of Hematology/Oncology, Department of Medicine, University of California San Diego, La Jolla, CA
| | - Rana R McKay
- Division of Hematology/Oncology, Department of Medicine, University of California San Diego, La Jolla, CA
| | - Nishita Tripathi
- Division of Oncology, Department of Medicine, University of Utah, Salt Lake City, UT
| | - Neeraj Agarwal
- Division of Oncology, Department of Medicine, University of Utah, Salt Lake City, UT
| | | | - Yousef Zakharia
- Division of Oncology, Department of Medicine, University of Iowa, Iowa City, IA
| | - Rafael Morales-Barrera
- Vall d'Hebron Institute of Oncology, Vall d' Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Michael E Devitt
- Division of Hematology/Oncology, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA
| | | | | | - David J Pinato
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Ariel Nelson
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
| | - Christopher J Hoimes
- Division of Medical Oncology, Seidman Cancer Center at Case Comprehensive Cancer Center, Cleveland, OH; Division of Medical Oncology, Duke University, Durham, NC
| | - Kavita Gupta
- Departments of Medical Oncology and Urology, Montefiore Medical Center, Bronx, NY
| | - Benjamin A Gartrell
- Departments of Medical Oncology and Urology, Montefiore Medical Center, Bronx, NY
| | - Alex Sankin
- Departments of Medical Oncology and Urology, Montefiore Medical Center, Bronx, NY
| | - Abhishek Tripathi
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Roubini Zakopoulou
- Department of Clinical Therapeutics, Alexandra General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Aristotelis Bamias
- 2nd Propaedeutic Dept of Internal Medicine, ATTIKON University Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Jure Murgic
- Department of Oncology and Nuclear Medicine, University Hospital Center Sestre Milosrdnice, Zagreb
| | - Ana Fröbe
- Department of Oncology and Nuclear Medicine, University Hospital Center Sestre Milosrdnice, Zagreb; School of Dental Medicine, Zagreb, Croatia
| | - Alejo Rodriguez-Vida
- Medical Oncology Department, Hospital del Mar Research Institute, Barcelona, Spain
| | - Alexandra Drakaki
- Division of Hematology/Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Sandy Liu
- Division of Hematology/Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Eric Lu
- Division of Hematology/Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Vivek Kumar
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | | | - Monika Joshi
- Division of Hematology/Oncology, Department of Medicine, Penn State Cancer Institute, Hershey, PA
| | - Pedro Isaacsson-Velho
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD; Division of Oncology, Hospital Moinhos de Vento, Porto Alegre, Brazil
| | | | - Ignacio Duran
- Hospital Universitario Marques de Valdecilla. IDIVAL. Santander, Spain
| | - Marcus Moses
- Deming Department of Medicine, Section of Hematology/Oncology, Tulane University, New Orleans, LA
| | - Albert Jang
- Deming Department of Medicine, Section of Hematology/Oncology, Tulane University, New Orleans, LA
| | - Pedro Barata
- Deming Department of Medicine, Section of Hematology/Oncology, Tulane University, New Orleans, LA
| | - Guru Sonpavde
- Genitourinary Oncology Program, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Evan Y Yu
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA; Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Robert Bruce Montgomery
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA; Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Petros Grivas
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA; Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA.
| | - Ali Raza Khaki
- Division of Oncology, Department of Medicine, Stanford University, Palo Alto, CA.
| |
Collapse
|
50
|
Urinary Comprehensive Genomic Profiling Correlates Urothelial Carcinoma Mutations with Clinical Risk and Efficacy of Intervention. J Clin Med 2022; 11:jcm11195827. [PMID: 36233691 PMCID: PMC9571552 DOI: 10.3390/jcm11195827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/13/2022] [Accepted: 09/27/2022] [Indexed: 11/15/2022] Open
Abstract
The clinical standard of care for urothelial carcinoma (UC) relies on invasive procedures with suboptimal performance. To enhance UC treatment, we developed a urinary comprehensive genomic profiling (uCGP) test, UroAmplitude, that measures mutations from tumor DNA present in urine. In this study, we performed a blinded, prospective validation of technical sensitivity and positive predictive value (PPV) using reference standards, and found at 1% allele frequency, mutation detection performs at 97.4% sensitivity and 80.4% PPV. We then prospectively compared the mutation profiles of urine-extracted DNA to those of matched tumor tissue to validate clinical performance. Here, we found tumor single-nucleotide variants were observed in the urine with a median concordance of 91.7% and uCGP revealed distinct patterns of genomic lesions enriched in low- and high-grade disease. Finally, we retrospectively explored longitudinal case studies to quantify residual disease following bladder-sparing treatments, and found uCGP detected residual disease in patients receiving bladder-sparing treatment and predicted recurrence and disease progression. These findings demonstrate the potential of the UroAmplitude platform to reliably identify and track mutations associated with UC at each stage of disease: diagnosis, treatment, and surveillance. Multiple case studies demonstrate utility for patient risk classification to guide both surgical and therapeutic interventions.
Collapse
|