1
|
E.S K, A.K Z, M.Yu S, K.I P, N.L R, E.G N, K.S S, A.A K, T.L V, A.S M, E.N M, T.M P, E.S V, A.A K. Distinct molecular features of FLNC mutations, associated with different clinical phenotypes. Cytoskeleton (Hoboken) 2025; 82:158-174. [PMID: 39315490 PMCID: PMC11904857 DOI: 10.1002/cm.21922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/25/2024]
Abstract
Filamin С is a key an actin-binding protein of muscle cells playing a critical role in maintaining structural integrity and sarcomere organization. FLNC mutations contribute to various types of cardiomyopathies and myopathies through potentially different molecular mechanisms. Here, we described the impact of two clinically distinct FLNC variants (R1267Q associated with arrhythmogenic cardiomyopathy and V2264M associated with restrictive cardiomyopathy) on calcium homeostasis, electrophysiology, and gene expression profile of iPSC-derived patient-specific cardiomyocytes. We demonstrated that R1267Q FLNC variant leads to greater disturbances in calcium dynamics, Nav1.5 kinetics and action potentials compared to V2264M variant. These functional characteristics were accompanied by transcriptome changes in genes linked to action potential and sodium transport as well as structural cardiomyocyte genes. We suggest distinct molecular effects of two FLNC variants linked to different types of cardiomyopathies in terms of myofilament structure, electrophysiology, ion channel function and intracellular calcium homeostasis providing the molecular the bases for their different clinical phenotypes.
Collapse
Affiliation(s)
- Klimenko E.S
- Almazov National Medical Research CentreInstitute of Molecular Biology and GeneticsSaint‐PetersburgRussia
| | - Zaytseva A.K
- Almazov National Medical Research CentreInstitute of Molecular Biology and GeneticsSaint‐PetersburgRussia
| | - Sorokina M.Yu
- Almazov National Medical Research CentreInstitute of Molecular Biology and GeneticsSaint‐PetersburgRussia
| | - Perepelina K.I
- Almazov National Medical Research CentreInstitute of Molecular Biology and GeneticsSaint‐PetersburgRussia
| | - Rodina N.L
- Almazov National Medical Research CentreInstitute of Molecular Biology and GeneticsSaint‐PetersburgRussia
| | - Nikitina E.G
- Almazov National Medical Research CentreInstitute of Molecular Biology and GeneticsSaint‐PetersburgRussia
| | - Sukhareva K.S
- Almazov National Medical Research CentreInstitute of Molecular Biology and GeneticsSaint‐PetersburgRussia
| | - Khudiakov A.A
- Almazov National Medical Research CentreInstitute of Molecular Biology and GeneticsSaint‐PetersburgRussia
| | - Vershinina T.L
- Almazov National Medical Research CentreInstitute of Molecular Biology and GeneticsSaint‐PetersburgRussia
| | - Muravyev A.S
- Almazov National Medical Research CentreInstitute of Molecular Biology and GeneticsSaint‐PetersburgRussia
| | - Mikhaylov E.N
- Almazov National Medical Research CentreInstitute of Molecular Biology and GeneticsSaint‐PetersburgRussia
| | - Pervunina T.M
- Almazov National Medical Research CentreInstitute of Molecular Biology and GeneticsSaint‐PetersburgRussia
| | - Vasichkina E.S
- Almazov National Medical Research CentreInstitute of Molecular Biology and GeneticsSaint‐PetersburgRussia
| | - Kostareva A.A
- Almazov National Medical Research CentreInstitute of Molecular Biology and GeneticsSaint‐PetersburgRussia
- Karolinska Institutet, Department of Women's and Children's HealthKarolinska University HospitalStockholmSweden
| |
Collapse
|
2
|
Mulder T, Johnson J, González-Morales N. The filamins of Drosophila. Genome 2025; 68:1-11. [PMID: 39869855 DOI: 10.1139/gen-2024-0159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
The actin cytoskeleton is a dynamic mesh of filaments that provide structural support for cells and respond to external deformation forces. Active sensing of these forces is crucial for the function of the actin cytoskeleton, and some actin crosslinkers accomplish it. One such crosslinker is filamin, a highly conserved actin crosslinker dimeric protein with an elastic region capable of responding to mechanical changes in the actin cytoskeleton. Filamins are required across various cells and tissues. In Drosophila early and recent studies have provided many details about filamin functions. This review centers on the two Drosophila filamins encoded by the cheerio and jitterbu g genes. We examine the structural and evolutionary aspects of filamin genes in flies, contrasting them with those of other model organisms. Then, we synthesize phenotypic data across diverse cell types. Additionally, we outline the genetic tools available for both genes. We also propose to divide filamins into typical and atypical based on the number of actin-binding domains and their relationship with other filamins.
Collapse
Affiliation(s)
- Tiara Mulder
- Department of Biology, Dalhousie University, Halifax, NS, Canada
| | - Jennifer Johnson
- Department of Biology, Dalhousie University, Halifax, NS, Canada
| | | |
Collapse
|
3
|
Ramos-Mejía R, del Pino M, Aza-Carmona M, Abbate S, Obregon MG, Heath KE, Fano V. Novel FLNB Variants in Seven Argentinian Cases with Spondylocarpotarsal Synostosis Syndrome. J Pediatr Genet 2024; 13:167-174. [PMID: 39086440 PMCID: PMC11288708 DOI: 10.1055/s-0042-1759782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 11/08/2022] [Indexed: 12/23/2022]
Abstract
Spondylocarpotarsal synostosis syndrome (SCT) is a very rare skeletal dysplasia characterized by vertebral, carpal, and tarsal fusion; growth retardation; and mild dysmorphic facial features. Variants in FLNB, MYH3, and RFLNA have been implicated in this dysplasia. We report the clinical and radiological follow-up of seven SCT pediatric cases associated with biallelic FLNB variants, from four Argentinian families. The seven cases share previously described facial characteristics: round facies, large eyes, and wide based nose; all of them had variable height deficit, in one case noted early in life. Other findings included clinodactyly, joint limitation without bone fusion, neurosensorial hearing loss, and ophthalmological compromise. All cases presented with spinal fusion with variable severity and location, carpal bones coalition, and also delay in carpal ossification. The heterozygous carrier parents had normal height values to -2.5 score standard deviation, without skeletal defects detected. Three different FLNB variants, one nonsense and two frameshift, were detected, all of which were predicted to result in a truncated protein or are degraded by nonsense mediated decay. All cases had at least one copy of the nonsense variant, c.1128C> G; p. (Tyr376*), suggesting the presence of a common ancestor.
Collapse
Affiliation(s)
- R Ramos-Mejía
- Growth and Development Department, Hospital Garrahan, Buenos Aires, Argentina
| | - M del Pino
- Growth and Development Department, Hospital Garrahan, Buenos Aires, Argentina
| | - M Aza-Carmona
- Centro de Investigacion Biomédica en Red Enfermedades Raras (CIBERER), ISCIII, Madrid, España
- Institute of Medical and Molecular Genetics (INGEMM), Hospital Universitario La Paz, Universidad Autónoma de Madrid, Madrid, España
- Skeletal Dysplasia Multidisciplinary Unit (UMDE-ERN BOND), Hospital Universitario La Paz, Universidad Autonóma de Madrid, Madrid, España
| | - S Abbate
- Genetics Department, Hospital Garrahan, Buenos Aires, Argentina
| | - M G. Obregon
- Genetics Department, Hospital Garrahan, Buenos Aires, Argentina
| | - K E. Heath
- Centro de Investigacion Biomédica en Red Enfermedades Raras (CIBERER), ISCIII, Madrid, España
- Institute of Medical and Molecular Genetics (INGEMM), Hospital Universitario La Paz, Universidad Autónoma de Madrid, Madrid, España
- Skeletal Dysplasia Multidisciplinary Unit (UMDE-ERN BOND), Hospital Universitario La Paz, Universidad Autonóma de Madrid, Madrid, España
| | - V Fano
- Growth and Development Department, Hospital Garrahan, Buenos Aires, Argentina
| |
Collapse
|
4
|
Wang Q, Wang HY, Wu SY, Wang XQ, Wu HY, Xie RR, Wang FY, Chen XL, Chen LQ, Lv HT, Chen T. FLNB haploinsufficiency-related short stature: a new syndrome or an expanded spectrum of Larsen syndrome. World J Pediatr 2024; 20:976-980. [PMID: 39080191 DOI: 10.1007/s12519-024-00832-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/15/2024] [Indexed: 09/26/2024]
Affiliation(s)
- Qing Wang
- Department of Endocrinology, Genetics and Metabolism, Children's Hospital of Soochow University, Suzhou, China
| | - Hong-Ying Wang
- Suzhou Clinical Center for Rare Diseases in Children, Children's Hospital of Soochow University, Suzhou, China
| | - Shui-Yan Wu
- Intensive Care Unit, Children's Hospital of Soochow University, Suzhou, China
| | - Xue-Qian Wang
- Suzhou Clinical Center for Rare Diseases in Children, Children's Hospital of Soochow University, Suzhou, China
| | - Hai-Ying Wu
- Department of Endocrinology, Genetics and Metabolism, Children's Hospital of Soochow University, Suzhou, China
| | - Rong-Rong Xie
- Department of Endocrinology, Genetics and Metabolism, Children's Hospital of Soochow University, Suzhou, China
| | - Feng-Yun Wang
- Department of Endocrinology, Genetics and Metabolism, Children's Hospital of Soochow University, Suzhou, China
| | - Xiu-Li Chen
- Department of Endocrinology, Genetics and Metabolism, Children's Hospital of Soochow University, Suzhou, China
| | - Lin-Qi Chen
- Department of Endocrinology, Genetics and Metabolism, Children's Hospital of Soochow University, Suzhou, China
| | - Hai-Tao Lv
- Suzhou Clinical Center for Rare Diseases in Children, Children's Hospital of Soochow University, Suzhou, China
- Department of Cardiology, Children's Hospital of Soochow University, Suzhou, China
| | - Ting Chen
- Department of Endocrinology, Genetics and Metabolism, Children's Hospital of Soochow University, Suzhou, China.
- Suzhou Clinical Center for Rare Diseases in Children, Children's Hospital of Soochow University, Suzhou, China.
- Department of Pediatrics, Kunshan Sixth People's Hospital, Suzhou, Jiangsu, China.
| |
Collapse
|
5
|
Qasim H, Khan H, Zeb H, Ahmad A, Ilyas M, Zahoor M, Umar MN, Ullah R, Ali EA. A novel variant in the FLNB gene associated with spondylocarpotarsal synostosis syndrome. J Basic Clin Physiol Pharmacol 2024; 35:181-187. [PMID: 38743867 DOI: 10.1515/jbcpp-2024-0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 04/30/2024] [Indexed: 05/16/2024]
Abstract
OBJECTIVES Genetic disorders involved in skeleton system arise due to the disturbance in skeletal development, growth and homeostasis. Filamin B is an actin binding protein which is large dimeric protein which cross link actin cytoskeleton filaments into dynamic structure. A single nucleotide changes in the FLNB gene causes spondylocarpotarsal synostosis syndrome, a rare bone disorder due to which the fusion of carpels and tarsals synostosis occurred along with fused vertebrae. In the current study we investigated a family residing in north-western areas of Pakistan. METHODS The whole exome sequencing of proband was performed followed by Sanger sequencing of all family members of the subject to validate the variant segregation within the family. Bioinformatics tools were utilized to assess the pathogenicity of the variant. RESULTS Whole Exome Sequencing revealed a novel variant (NM_001457: c.209C>T and p.Pro70Leu) in the FLNB gene which was homozygous missense mutation in the FLNB gene. The variant was further validated and visualized by Sanger sequencing and protein structure studies respectively as mentioned before. CONCLUSIONS The findings have highlighted the importance of the molecular diagnosis in SCT (spondylocarpotarsal synostosis syndrome) for genetic risk counselling in consanguineous families.
Collapse
Affiliation(s)
- Hina Qasim
- Centre for Omic Sciences, Islamia College University Peshawar, Peshawar, Pakistan
| | - Hayat Khan
- Centre for Omic Sciences, Islamia College University Peshawar, Peshawar, Pakistan
| | - Humaira Zeb
- Centre for Omic Sciences, Islamia College University Peshawar, Peshawar, Pakistan
| | - Akmal Ahmad
- Centre for Human Genetics, 66934 Hazara University Mansehra , Mansehra, Pakistan
| | - Muhammad Ilyas
- Centre for Omic Sciences, Islamia College University Peshawar, Peshawar, Pakistan
| | - Muhammad Zahoor
- Department of Biochemistry, 66714 University of Malakand , Chakdara, Dir Lower, KPK, Pakistan
| | | | - Riaz Ullah
- Department of Pharmacognosy, College of Pharmacy, 37850 King Saud University , Riyadh, Saudi Arabia
| | - Essam A Ali
- Department of Pharmaceutical Chemistry, 37850 College of Pharmacy King Saud University , Riyadh, Saudi Arabia
| |
Collapse
|
6
|
Madan I, Jackson F, Sahni S, Figueroa R. Severe skeletal dysplasia caused by a novel FLNB gene mutation. BMJ Case Rep 2024; 17:e257998. [PMID: 38453218 PMCID: PMC10921501 DOI: 10.1136/bcr-2023-257998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024] Open
Abstract
A late adolescent primigravida was found to have a fetus with a cystic hygroma and significant shortening of the limbs on first-trimester ultrasound. She underwent chorionic villus sampling with normal microarray result. In the early second trimester, the fetus was found to have the absence of all four limbs and a thorough skeletal dysplasia workup was pursued, identifying a variant in the FLNB gene (c.62C>G). The patient underwent termination of pregnancy. The care of this patient was expedited by first-trimester sonographic evidence of limb abnormalities enabling timely clinical management.
Collapse
Affiliation(s)
- Ichchha Madan
- Gynecology and Obstetrics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Frank Jackson
- Obstetrics and Gynecology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - Simran Sahni
- Touro College of Osteopathic Medicine, Middletown, New York, USA
| | - Reinaldo Figueroa
- Obstetrics and Gynecology, Trinity Health of New England, Hartford, Connecticut, USA
| |
Collapse
|
7
|
Xu Q, Cui L, Lin Y, Cui LA, Xia W. Disruption of FLNB leads to skeletal malformation by interfering with skeletal segmentation through the HOX gene. Bone Rep 2024; 20:101746. [PMID: 38463381 PMCID: PMC10924170 DOI: 10.1016/j.bonr.2024.101746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 02/22/2024] [Accepted: 02/25/2024] [Indexed: 03/12/2024] Open
Abstract
Filamin B (FLNB) plays an important role in skeletal development. Mutations in FLNB can lead to skeletal malformation such as an abnormal number of ossification centers, indicating that the skeletal segmentation in the embryonic period may be interfered with. We established a mouse model with the pathogenic point mutation FLNB NM_001081427.1: c.4756G > A (p.Gly1586Arg) using CRISPR-Cas9 technology. Micro-CT, HE staining and whole skeletal preparation were performed to examine the skeletal malformation. In situ hybridization of embryos was performed to examine the transcription of HOX genes during embryonic development. The expression of FLNB was downregulated in FLNBG1586R/G1586R and FLNBWT/G1586R mice, compared to FLNBWT/WT mice. Fusions in tarsal bones were found in FLNBG1586R/G1586R and FLNBWT/G1586R mice, indicating that the skeletal segmentation was interfered with. In the embryo of FLNBG1586R/G1586R mice (E12.5), the transcription levels of HOXD10 and HOXB2 were downregulated in the carpal region and cervical spine region, respectively. This study indicated that the loss-of-function mutation G1586R in FLNB may lead to abnormal skeletal segmentation, and the mechanism was possibly associated with the downregulation of HOX gene transcription during the embryonic period.
Collapse
Affiliation(s)
- Qiming Xu
- Department of Orthopedic Oncology, Beijing Jishuitan Hospital, Capital Medical University, Beijing 100085, China
| | - Lijia Cui
- Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yude Lin
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Leigh-Anne Cui
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Weibo Xia
- Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
8
|
Hansen MS, Madsen K, Price M, Søe K, Omata Y, Zaiss MM, Gorvin CM, Frost M, Rauch A. Transcriptional reprogramming during human osteoclast differentiation identifies regulators of osteoclast activity. Bone Res 2024; 12:5. [PMID: 38263167 PMCID: PMC10806178 DOI: 10.1038/s41413-023-00312-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/08/2023] [Accepted: 12/15/2023] [Indexed: 01/25/2024] Open
Abstract
Enhanced osteoclastogenesis and osteoclast activity contribute to the development of osteoporosis, which is characterized by increased bone resorption and inadequate bone formation. As novel antiosteoporotic therapeutics are needed, understanding the genetic regulation of human osteoclastogenesis could help identify potential treatment targets. This study aimed to provide an overview of transcriptional reprogramming during human osteoclast differentiation. Osteoclasts were differentiated from CD14+ monocytes from eight female donors. RNA sequencing during differentiation revealed 8 980 differentially expressed genes grouped into eight temporal patterns conserved across donors. These patterns revealed distinct molecular functions associated with postmenopausal osteoporosis susceptibility genes based on RNA from iliac crest biopsies and bone mineral density SNPs. Network analyses revealed mutual dependencies between temporal expression patterns and provided insight into subtype-specific transcriptional networks. The donor-specific expression patterns revealed genes at the monocyte stage, such as filamin B (FLNB) and oxidized low-density lipoprotein receptor 1 (OLR1, encoding LOX-1), that are predictive of the resorptive activity of mature osteoclasts. The expression of differentially expressed G-protein coupled receptors was strong during osteoclast differentiation, and these receptors are associated with bone mineral density SNPs, suggesting that they play a pivotal role in osteoclast differentiation and activity. The regulatory effects of three differentially expressed G-protein coupled receptors were exemplified by in vitro pharmacological modulation of complement 5 A receptor 1 (C5AR1), somatostatin receptor 2 (SSTR2), and free fatty acid receptor 4 (FFAR4/GPR120). Activating C5AR1 enhanced osteoclast formation, while activating SSTR2 decreased the resorptive activity of mature osteoclasts, and activating FFAR4 decreased both the number and resorptive activity of mature osteoclasts. In conclusion, we report the occurrence of transcriptional reprogramming during human osteoclast differentiation and identified SSTR2 and FFAR4 as antiresorptive G-protein coupled receptors and FLNB and LOX-1 as potential molecular markers of osteoclast activity. These data can help future investigations identify molecular regulators of osteoclast differentiation and activity and provide the basis for novel antiosteoporotic targets.
Collapse
Affiliation(s)
- Morten S Hansen
- Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology, Odense University Hospital, DK-5000, Odense C, Denmark
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, DK-5000, Odense C, Denmark
- Clinical Cell Biology, Pathology Research Unit, Department of Clinical Research, University of Southern Denmark, DK-5000, Odense C, Denmark
| | - Kaja Madsen
- Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology, Odense University Hospital, DK-5000, Odense C, Denmark
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, DK-5000, Odense C, Denmark
| | - Maria Price
- Institute of Metabolism and Systems Research (IMSR) and Centre for Diabetes, Endocrinology and Metabolism (CEDAM), University of Birmingham, Birmingham, B15 2TT, UK
- Centre for Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Birmingham, B15 2TT, UK
| | - Kent Søe
- Clinical Cell Biology, Pathology Research Unit, Department of Clinical Research, University of Southern Denmark, DK-5000, Odense C, Denmark
- Department of Molecular Medicine, University of Southern Denmark, DK-5000, Odense C, Denmark
| | - Yasunori Omata
- Department of Orthopedic Surgery, Faculty of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, D-91054, Erlangen, Germany
| | - Mario M Zaiss
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, D-91054, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, D-91054, Erlangen, Germany
| | - Caroline M Gorvin
- Institute of Metabolism and Systems Research (IMSR) and Centre for Diabetes, Endocrinology and Metabolism (CEDAM), University of Birmingham, Birmingham, B15 2TT, UK
- Centre for Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Birmingham, B15 2TT, UK
| | - Morten Frost
- Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology, Odense University Hospital, DK-5000, Odense C, Denmark.
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, DK-5000, Odense C, Denmark.
- Steno Diabetes Center Odense, Odense University Hospital, DK-5000, Odense C, Denmark.
| | - Alexander Rauch
- Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology, Odense University Hospital, DK-5000, Odense C, Denmark.
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, DK-5000, Odense C, Denmark.
- Steno Diabetes Center Odense, Odense University Hospital, DK-5000, Odense C, Denmark.
| |
Collapse
|
9
|
Ye Y, Zhang J, Feng X, Chen C, Chang Y, Qiu G, Wu Z, Zhang TJ, Gao B, Wu N. Exploring the association between congenital vertebral malformations and neural tube defects. J Med Genet 2023; 60:1146-1152. [PMID: 37775263 DOI: 10.1136/jmg-2023-109501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 09/07/2023] [Indexed: 10/01/2023]
Abstract
Congenital vertebral malformations (CVMs) and neural tube defects (NTDs) are common birth defects affecting the spine and nervous system, respectively, due to defects in somitogenesis and neurulation. Somitogenesis and neurulation rely on factors secreted from neighbouring tissues and the integrity of the axial structure. Crucial signalling pathways like Wnt, Notch and planar cell polarity regulate somitogenesis and neurulation with significant crosstalk. While previous studies suggest an association between CVMs and NTDs, the exact mechanism underlying this relationship remains unclear. In this review, we explore embryonic development, signalling pathways and clinical phenotypes involved in the association between CVMs and NTDs. Moreover, we provide a summary of syndromes that exhibit occurrences of both CVMs and NTDs. We aim to provide insights into the potential mechanisms underlying the association between CVMs and NTDs, thereby facilitating clinical diagnosis and management of these anomalies.
Collapse
Affiliation(s)
- Yongyu Ye
- Department of Orthopedic Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Jianan Zhang
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Xin Feng
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Chong Chen
- Department of Orthopedic Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Yunbing Chang
- Department of Orthopedic Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Guixing Qiu
- Department of Orthopedic Surgery, Key Laboratory of Big Data for Spinal Deformities, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Zhihong Wu
- Department of Orthopedic Surgery, Key Laboratory of Big Data for Spinal Deformities, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Terry Jianguo Zhang
- Department of Orthopedic Surgery, Key Laboratory of Big Data for Spinal Deformities, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Bo Gao
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Centre for Translational Stem Cell Biology, Hong Kong, China
| | - Nan Wu
- Department of Orthopedic Surgery, Key Laboratory of Big Data for Spinal Deformities, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| |
Collapse
|
10
|
Bharadwaj A, Sharma J, Singh J, Kumari M, Dargar T, Kalita B, Mathew SJ. Musculoskeletal defects associated with myosin heavy chain-embryonic loss of function are mediated by the YAP signaling pathway. EMBO Mol Med 2023; 15:e17187. [PMID: 37492882 PMCID: PMC10493586 DOI: 10.15252/emmm.202217187] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/27/2023] Open
Abstract
Mutations in MYH3, the gene encoding the developmental myosin heavy chain-embryonic (MyHC-embryonic) skeletal muscle-specific contractile protein, cause several congenital contracture syndromes. Among these, recessive loss-of-function MYH3 mutations lead to spondylocarpotarsal synostosis (SCTS), characterized by vertebral fusions and scoliosis. We find that Myh3 germline knockout adult mice display SCTS phenotypes such as scoliosis and vertebral fusion, in addition to reduced body weight, muscle weight, myofiber size, and grip strength. Myh3 knockout mice also exhibit changes in muscle fiber type, altered satellite cell numbers and increased muscle fibrosis. A mass spectrometric analysis of embryonic skeletal muscle from Myh3 knockouts identified integrin signaling and cytoskeletal regulation as the most affected pathways. These pathways are closely connected to the mechanosensing Yes-associated protein (YAP) transcriptional regulator, which we found to be significantly activated in the skeletal muscle of Myh3 knockout mice. To test whether increased YAP signaling might underlie the musculoskeletal defects in Myh3 knockout mice, we treated these mice with CA3, a small molecule inhibitor of YAP signaling. This led to increased muscle fiber size, rescue of most muscle fiber type alterations, normalization of the satellite cell marker Pax7 levels, increased grip strength, reduced fibrosis, and decline in scoliosis in Myh3 knockout mice. Thus, increased YAP activation underlies the musculoskeletal defects seen in Myh3 knockout mice, indicating its significance as a key pathway to target in SCTS and other MYH3-related congenital syndromes.
Collapse
Affiliation(s)
- Anushree Bharadwaj
- Developmental Genetics Laboratory, Regional Centre for Biotechnology (RCB)NCR Biotech Science ClusterFaridabadIndia
| | - Jaydeep Sharma
- Developmental Genetics Laboratory, Regional Centre for Biotechnology (RCB)NCR Biotech Science ClusterFaridabadIndia
| | - Jagriti Singh
- Developmental Genetics Laboratory, Regional Centre for Biotechnology (RCB)NCR Biotech Science ClusterFaridabadIndia
| | - Mahima Kumari
- Developmental Genetics Laboratory, Regional Centre for Biotechnology (RCB)NCR Biotech Science ClusterFaridabadIndia
| | - Tanushri Dargar
- Developmental Genetics Laboratory, Regional Centre for Biotechnology (RCB)NCR Biotech Science ClusterFaridabadIndia
- Present address:
Faculte de MedicineInstitut NeuroMyoGeneLyonFrance
| | - Bhargab Kalita
- Developmental Genetics Laboratory, Regional Centre for Biotechnology (RCB)NCR Biotech Science ClusterFaridabadIndia
- Present address:
Department of Pathology and Perlmutter Cancer CenterNew York University School of MedicineNew YorkNYUSA
| | - Sam J Mathew
- Developmental Genetics Laboratory, Regional Centre for Biotechnology (RCB)NCR Biotech Science ClusterFaridabadIndia
| |
Collapse
|
11
|
Ohnishi T, Tran V, Sao K, Ramteke P, Querido W, Barve RA, van de Wetering K, Risbud MV. Loss of function mutation in Ank causes aberrant mineralization and acquisition of osteoblast-like-phenotype by the cells of the intervertebral disc. Cell Death Dis 2023; 14:447. [PMID: 37468461 PMCID: PMC10356955 DOI: 10.1038/s41419-023-05893-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 06/09/2023] [Accepted: 06/15/2023] [Indexed: 07/21/2023]
Abstract
Pathological mineralization of intervertebral disc is debilitating and painful and linked to disc degeneration in a subset of human patients. An adenosine triphosphate efflux transporter, progressive ankylosis (ANK) is a regulator of extracellular inorganic pyrophosphate levels and plays an important role in tissue mineralization. However, the function of ANK in intervertebral disc has not been fully explored. Herein we analyzed the spinal phenotype of Ank mutant mice (ank/ank) with attenuated ANK function. Micro-computed tomography and histological analysis showed that loss of ANK function results in the aberrant annulus fibrosus mineralization and peripheral disc fusions with cranial to caudal progression in the spine. Vertebrae in ank mice exhibit elevated cortical bone mass and increased tissue non-specific alkaline phosphatase-positive endplate chondrocytes with decreased subchondral endplate porosity. The acellular dystrophic mineral inclusions in the annulus fibrosus were localized adjacent to apoptotic cells and cells that acquired osteoblast-like phenotype. Fourier transform infrared spectral imaging showed that the apatite mineral in the outer annulus fibrosus had similar chemical composition to that of vertebral bone. Transcriptomic analysis of annulus fibrosus and nucleus pulposus tissues showed changes in several biological themes with a prominent dysregulation of BMAL1/CLOCK circadian regulation. The present study provides new insights into the role of ANK in the disc tissue compartments and highlights the importance of local inorganic pyrophosphate metabolism in inhibiting the mineralization of this important connective tissue.
Collapse
Affiliation(s)
- Takashi Ohnishi
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, 060-8638, Japan
| | - Victoria Tran
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Kimheak Sao
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Pranay Ramteke
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - William Querido
- Department of Bioengineering, Temple University, Philadelphia, PA, 19122, USA
| | - Ruteja A Barve
- Department of Genetics, Genome Technology Access Centre at the McDonnell Genome Institute, Washington University, School of Medicine, St. Louis, MO, 63110, USA
| | - Koen van de Wetering
- Department of Dermatology and Cutaneous Biology, Jefferson Institute of Molecular Medicine and PXE International Center of Excellence in Research and Clinical Care, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Makarand V Risbud
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| |
Collapse
|
12
|
Handa A, Grigelioniene G, Nishimura G. Skeletal Dysplasia Families: A Stepwise Approach to Diagnosis. Radiographics 2023; 43:e220067. [PMID: 37053103 DOI: 10.1148/rg.220067] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Skeletal dysplasias are a heterogeneous collection of genetic disorders characterized by bone and cartilage abnormalities, and they encompass over 400 disorders. These disorders are rare individually, but collectively they are common (approximate incidence of one in 5000 births). Radiologists occasionally encounter skeletal dysplasias in daily practice. In the 1980s, Professor Juergen Spranger proposed a concept suitable for the diagnosis of skeletal dysplasias termed bone dysplasia families. He stated that (a) different bone dysplasias that share a similar skeletal pattern can be grouped into a "family," (b) the final diagnosis is feasible through the provisional recognition of a pattern followed by a more careful analysis, and (c) families of bone dysplasias may be the result of similar pathogenetic mechanisms. The prototypes of bone dysplasia families include dysostosis multiplex family, achondroplasia family, spondyloepiphyseal dysplasia congenita family, and Larsen syndrome-otopalatodigital syndrome family. Since Spranger's proposal, the concept of bone dysplasia families, along with advancing genetic techniques, has been validated and further expanded. Today, this molecularly proven concept enables a simple stepwise approach to be applied to the radiologic diagnosis of skeletal dysplasias. The first step is the categorization of a given case into a family based on pattern recognition, and the second step is more meticulous observation, such as identification of different severities of the same pattern or subtle but distinctive findings. Since major skeletal dysplasias are limited in number, radiologists can be familiar with the representative patterns of these disorders. The authors describe a stepwise radiologic approach to diagnosing major skeletal dysplasia families and review the clinical and genetic features of these disorders. Published under a CC BY 4.0 license. Quiz questions for this article are available through the Online Learning Center. Online supplemental material and the slide presentation from the RSNA Annual Meeting are available for this article.
Collapse
Affiliation(s)
- Atsuhiko Handa
- From the Department of Radiology, Boston Children's Hospital, 300 Longwood Ave, Boston, MA 02115 (A.H.); Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden (G.G., G.N.); Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden (G.G.); Department of Clinical Genetics and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden (G.G.); and Center for Intractable Diseases, Saitama University Hospital, Saitama, Japan (G.N.)
| | - Giedre Grigelioniene
- From the Department of Radiology, Boston Children's Hospital, 300 Longwood Ave, Boston, MA 02115 (A.H.); Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden (G.G., G.N.); Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden (G.G.); Department of Clinical Genetics and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden (G.G.); and Center for Intractable Diseases, Saitama University Hospital, Saitama, Japan (G.N.)
| | - Gen Nishimura
- From the Department of Radiology, Boston Children's Hospital, 300 Longwood Ave, Boston, MA 02115 (A.H.); Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden (G.G., G.N.); Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden (G.G.); Department of Clinical Genetics and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden (G.G.); and Center for Intractable Diseases, Saitama University Hospital, Saitama, Japan (G.N.)
| |
Collapse
|
13
|
Mir B, Gaber K, Ghali D, Merabia BG, Lin C, Kishta W. Developmental Foot Deformities in Patients with Connective Tissue Disorders. JBJS Rev 2023; 11:01874474-202302000-00008. [PMID: 36800486 DOI: 10.2106/jbjs.rvw.22.00219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
» Foot deformities make up a large percentage of all orthopaedic complaints in patients with Down syndrome, Marfan syndrome, Ehlers-Danlos syndrome, Larsen syndrome, and osteogenesis imperfecta. » Some common causes of foot deformities in these conditions include increased ligament laxity, hypotonia, and hypermobility of the joints. » Treatment options for syndromic foot deformities include the use of foot orthoses, physical therapy, bracing, and various surgical procedures. » There is limited evidence supporting the use of surgical intervention to correct foot deformities associated with Down syndrome, Marfan syndrome, Ehlers-Danlos syndrome, Larsen syndrome, and osteogenesis imperfecta. Therefore, further research is needed to determine the short-term and long-term outcomes of these procedures.
Collapse
Affiliation(s)
- Basit Mir
- Ashford and St. Peter's Hospitals NHS Foundation Trust, Chertsey, Surrey, United Kingdom
| | - Karim Gaber
- Department of Orthopaedic Surgery, Mansoura International Hospital, Mansoura, Egypt
| | - Daniel Ghali
- Faculty of Health, University of Waterloo, Waterloo, Ontario, Canada
| | | | - Celina Lin
- Division of Physical Medicine and Rehabilitation, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Waleed Kishta
- Division of Orthopaedic Surgery, Department of Surgery, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
14
|
Genomic Characterization by Whole-Exome Sequencing of Hypermobility Spectrum Disorder. Genes (Basel) 2022; 13:genes13071269. [PMID: 35886052 PMCID: PMC9319525 DOI: 10.3390/genes13071269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/17/2022] [Accepted: 07/10/2022] [Indexed: 02/04/2023] Open
Abstract
No genetic basis is currently established that differentiates hypermobility spectrum disorders (HSD) from hypermobile Ehlers–Danlos syndrome (hEDS). Diagnosis is entirely based on clinical parameters with high overlap, leading to frequent misdiagnosis of these two phenotypes. This study presents a landscape of DNA mutations through whole-exome sequencing of patients clinically diagnosed with generalized HSD. In this study, three genes (MUC3A, RHBG, and ZNF717) were mutated in all five patients evaluated. The functional enrichment analysis on all 1162 mutated genes identified the extracellular matrix (ECM) structural constituent as the primary overrepresented molecular function. Ingenuity pathway analysis identified relevant bio-functions, such as the organization of ECM and hereditary connective tissue disorders. A comparison with the matrisome revealed 55 genes and highlighted MUC16 and FREM2. We also contrasted the list of mutated genes with those from a transcriptomic analysis on data from Gene Expression Omnibus, with only 0.5% of the genes at the intersection of both approaches supporting the hypothesis of two different diseases that inevitably share a common genetic background but are not the same. Potential biomarkers for HSD include the five genes presented. We conclude the study by describing five potential biomarkers and by highlighting the importance of genetic/genomic approaches that, combined with clinical data, may result in an accurate diagnosis and better treatment.
Collapse
|
15
|
Cell-Dependent Pathogenic Roles of Filamin B in Different Skeletal Malformations. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8956636. [PMID: 35832491 PMCID: PMC9273461 DOI: 10.1155/2022/8956636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 06/10/2022] [Indexed: 11/17/2022]
Abstract
Mutations of filamin B (FLNB) gene can lead to a spectrum of autosomal skeletal malformations including spondylocarpotarsal syndrome (SCT), Larsen syndrome (LRS), type I atelosteogenesis (AO1), type III atelosteogenesis (AO3), and boomerang dysplasia (BD). Among them, LRS is milder while BD causes a more severe phenotype. However, the molecular mechanism underlying the differences in clinical phenotypes of different FLNB variants has not been fully determined. Here, we presented two patients suffering from autosomal dominant LRS and autosomal recessive vitamin D-dependent rickets type IA (VDDR-IA). Whole-exome sequencing revealed two novel missense variants in FLNB, c.4846A>G (p.T1616A) and c.7022T>G (p.I2341R), which are located in repeat 15 and 22 of filamin B, respectively. The expression of FLNBI2341R in the muscle tissue from our LRS patient was remarkably increased. And in vitro studies showed that both variants led to a lack of filopodia and accumulation of the mutants in the perinuclear region in HEK293 cells. We also found that c.4846A>G (p.T1616A) and c.7022T>G (p.I2341R) regulated endochondral osteogenesis in different ways. c.4846A>G (p.T1616A) activated AKT pathways through inhibiting SHIP2, suppressed the Smad3 pathway, and impaired the expression of Runx2 in both Saos-2 and ATDC5 cells. c.7022T>G (p.I2341R) activated both AKT and Smad3 pathways and increased the expression of Runx2 in Saos-2 cells, while in ATDC5 cells it activated AKT pathways through inhibiting SHIP2, suppressed the Smad3 pathway, and reduced the expression of Runx2. Our study demonstrated the pathogenic mechanisms of two novel FLNB variants in two different clinical settings and proved that FLNB variants could not only directly cause skeletal malformations but also worsen skeletal symptoms in the setting of other skeletal diseases. Besides, FLNB variants differentially affect skeletal development which contributes to clinical heterogeneity of FLNB-related disorders.
Collapse
|
16
|
Zieba J, Forlenza KN, Heard K, Martin JH, Bosakova M, Cohn DH, Robertson SP, Krejci P, Krakow D. Intervertebral disc degeneration is rescued by TGFβ/BMP signaling modulation in an ex vivo filamin B mouse model. Bone Res 2022; 10:37. [PMID: 35474298 PMCID: PMC9042866 DOI: 10.1038/s41413-022-00200-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/01/2021] [Accepted: 01/06/2022] [Indexed: 12/14/2022] Open
Abstract
Spondylocarpotarsal syndrome (SCT) is a rare musculoskeletal disorder characterized by short stature and vertebral, carpal, and tarsal fusions resulting from biallelic nonsense mutations in the gene encoding filamin B (FLNB). Utilizing a FLNB knockout mouse, we showed that the vertebral fusions in SCT evolved from intervertebral disc (IVD) degeneration and ossification of the annulus fibrosus (AF), eventually leading to full trabecular bone formation. This resulted from alterations in the TGFβ/BMP signaling pathway that included increased canonical TGFβ and noncanonical BMP signaling. In this study, the role of FLNB in the TGFβ/BMP pathway was elucidated using in vitro, in vivo, and ex vivo treatment methodologies. The data demonstrated that FLNB interacts with inhibitory Smads 6 and 7 (i-Smads) to regulate TGFβ/BMP signaling and that loss of FLNB produces increased TGFβ receptor activity and decreased Smad 1 ubiquitination. Through the use of small molecule inhibitors in an ex vivo spine model, TGFβ/BMP signaling was modulated to design a targeted treatment for SCT and disc degeneration. Inhibition of canonical and noncanonical TGFβ/BMP pathway activity restored Flnb-/- IVD morphology. These most effective improvements resulted from specific inhibition of TGFβ and p38 signaling activation. FLNB acts as a bridge for TGFβ/BMP signaling crosstalk through i-Smads and is key for the critical balance in TGFβ/BMP signaling that maintains the IVD. These findings further our understanding of IVD biology and reveal new molecular targets for disc degeneration as well as congenital vertebral fusion disorders.
Collapse
Affiliation(s)
- Jennifer Zieba
- Department of Orthopedic Surgery, Los Angeles, CA, 90095, USA
| | | | - Kelly Heard
- Department of Orthopedic Surgery, Los Angeles, CA, 90095, USA
| | - Jorge H Martin
- Department of Orthopedic Surgery, Los Angeles, CA, 90095, USA
| | - Michaela Bosakova
- Department of Biology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, 65691, Brno, Czech Republic
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 60200, Brno, Czech Republic
| | - Daniel H Cohn
- Department of Orthopedic Surgery, Los Angeles, CA, 90095, USA
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Stephen P Robertson
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Pavel Krejci
- Department of Biology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, 65691, Brno, Czech Republic
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 60200, Brno, Czech Republic
| | - Deborah Krakow
- Department of Orthopedic Surgery, Los Angeles, CA, 90095, USA.
- Department of Human Genetics, Los Angeles, CA, 90095, USA.
- Department of Obstetrics and Gynecology, Los Angeles, CA, 90095, USA.
- Department of Pediatrics, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
17
|
Quiggle A, Charng WL, Antunes L, Nikolov M, Bledsoe X, Hecht JT, Dobbs MB, Gurnett CA. Whole Exome Sequencing in Individuals with Idiopathic Clubfoot Reveals a Recurrent Filamin B (FLNB) Deletion. Clin Orthop Relat Res 2022; 480:421-430. [PMID: 34491919 PMCID: PMC8747482 DOI: 10.1097/corr.0000000000001957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 08/11/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND Clubfoot, a congenital deformity that presents as a rigid, inward turning of the foot, affects approximately 1 in 1000 infants and occurs as an isolated birth defect in 80% of patients. Despite its high level of heritability, few causative genes have been identified, and mutations in known genes are only responsible for a small portion of clubfoot heritability. QUESTIONS/PURPOSES (1) Are any rare gene variants enriched (that is, shared) in unrelated patients with isolated clubfoot? (2) Are there other rare variants in the identified gene (Filamin B) in these patients with clubfoot? METHODS Whole-exome sequence data were generated from a discovery cohort of 183 unrelated probands with clubfoot and 2492 controls. Variants were filtered with minor allele frequency < 0.02 to identify rare variants as well as small insertions and deletions (indels) resulting in missense variants, nonsense or premature truncation, or in-frame deletions. A candidate deletion was then genotyped in another cohort of 974 unrelated patients with clubfoot (a replication cohort). Other rare variants in the candidate gene were also investigated. A segregation analysis was performed in multigenerational families of individuals with clubfoot to see if the genotypes segregate with phenotypes. Single-variant association analysis was performed using the Fisher two-tailed exact test (exact p values are presented to give an indication of the magnitude of the association). RESULTS There were no recurrent variants in the known genes causing clubfoot in this study. A three-base pair in-frame codon deletion of Filamin B (FLNB) (p.E1792del, rs1470699812) was identified in 1.6% (3 of 183) of probands with clubfoot in the discovery cohort compared with 0% of controls (0 of 2492) (odds ratio infinity (inf) [95% CI 5.64 to inf]; p = 3.18 x 10-5) and 0.0016% of gnomAD controls (2 of 125,709) (OR 1.01 x 103 [95% CI 117.42 to 1.64 x 104]; p = 3.13 x 10-8). By screening a replication cohort (n = 974 patients), we found two probands with the identical FLNB deletion. In total, the deletion was identified in 0.43% (5 of 1157) of probands with clubfoot compared with 0% of controls and 0.0016% of gnomAD controls (OR 268.5 [95% CI 43.68 to 2.88 x 103]; p = 1.43 x 10-9). The recurrent FLNB p.E1792del variant segregated with clubfoot, with incomplete penetrance in two families. Affected individuals were more likely to be male and have bilateral clubfoot. Although most patients had isolated clubfoot, features consistent with Larsen syndrome, including upper extremity abnormalities such as elbow and thumb hypermobility and wide, flat thumbs, were noted in affected members of one family. We identified 19 additional rare FLNB missense variants located throughout the gene in patients with clubfoot. One of these missense variants, FLNB p.G2397D, exhibited incomplete penetrance in one family. CONCLUSION A recurrent FLNB E1792 deletion was identified in 0.43% of 1157 isolated patients with clubfoot. Given the absence of any recurrent variants in our discovery phase (n = 183) for any of the known genes causing clubfoot, our findings support that novel and rare missense variants in FLNB in patients with clubfoot, although rare, may be among the most commonly known genetic causes of clubfoot. Patients with FLNB variants often have isolated clubfoot, but they and their family members may be at an increased risk of having additional clinical features consistent with Larsen syndrome. CLINICAL RELEVANCE Identification of FLNB variants may be useful for determining clubfoot recurrence risk and comorbidities.
Collapse
Affiliation(s)
- Ashley Quiggle
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO, USA
| | - Wu-Lin Charng
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Lilian Antunes
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO, USA
| | - Momchil Nikolov
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Xavier Bledsoe
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Jacqueline T. Hecht
- Department of Pediatrics, McGovern Medical School and School of Dentistry, the University of Texas Health Science Center at Houston, Houston, TX, USA
| | | | | |
Collapse
|
18
|
Lu M, Yuan B, Yan X, Sun Z, Lillehoj HS, Lee Y, Baldwin-Bott C, Li C. Clostridium perfringens-Induced Host-Pathogen Transcriptional Changes in the Small Intestine of Broiler Chickens. Pathogens 2021; 10:pathogens10121607. [PMID: 34959561 PMCID: PMC8705629 DOI: 10.3390/pathogens10121607] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/26/2021] [Accepted: 12/04/2021] [Indexed: 11/16/2022] Open
Abstract
Clostridium perfringens is an important opportunistic pathogen that may result in toxin-mediated diseases involving food poisoning/tissue gangrene in humans and various enterotoxaemia in animal species. It is a main etiological agent for necrotic enteritis (NE), the most financially devastating bacterial disease in broiler chickens, especially if raised under antibiotic-free conditions. Importantly, NE is responsible for losses of six billion US dollars annually in the global poultry industry. To investigate the molecular mechanisms of C. perfringens-induced pathogenesis in the gut and its microbiome mRNA levels in C. perfringens-infected and non-infected hosts, we used RNA sequencing technology to perform transcriptional analysis of both host intestine and microbiome using our NE model. The growth rate was significantly impaired in chickens infected by C. perfringens. In total, 13,473 annotated chicken genes were differentially expressed between these two groups, with ninety-six genes showing statistical significance (|absolute fold changes| > 2.0, adjusted p value < 0.05). Genes involved in energy production, MHC Class I antigen, translation, ribosomal structures, and amino acid, nucleotide and carbohydrate metabolism from infected gut tissues were significantly down-regulated. The upregulated genes were mainly engaged in innate and adaptive immunity, cellular processes, genetic information processing, and organismal systems. Additionally, the transcriptional levels of four crucial foodborne pathogens were significantly elevated in a synergic relationship with pathogenic C. perfringens infection. This study presents the profiling data that would likely be a relevant reference for NE pathogenesis and may provide new insights into the mechanism of host-pathogen interaction in C. perfringens-induced NE infection in broiler chickens.
Collapse
Affiliation(s)
- Mingmin Lu
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service-US Department of Agriculture, Beltsville, MD 20705, USA; (M.L.); (B.Y.); (Z.S.); (H.S.L.); (Y.L.); (C.B.-B.)
| | - Baohong Yuan
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service-US Department of Agriculture, Beltsville, MD 20705, USA; (M.L.); (B.Y.); (Z.S.); (H.S.L.); (Y.L.); (C.B.-B.)
- School of Basic Medicine Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xianghe Yan
- Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service-US Department of Agriculture, Beltsville, MD 20705, USA
- Correspondence: (X.Y.); (C.L.)
| | - Zhifeng Sun
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service-US Department of Agriculture, Beltsville, MD 20705, USA; (M.L.); (B.Y.); (Z.S.); (H.S.L.); (Y.L.); (C.B.-B.)
| | - Hyun S. Lillehoj
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service-US Department of Agriculture, Beltsville, MD 20705, USA; (M.L.); (B.Y.); (Z.S.); (H.S.L.); (Y.L.); (C.B.-B.)
| | - Youngsub Lee
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service-US Department of Agriculture, Beltsville, MD 20705, USA; (M.L.); (B.Y.); (Z.S.); (H.S.L.); (Y.L.); (C.B.-B.)
| | - Calder Baldwin-Bott
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service-US Department of Agriculture, Beltsville, MD 20705, USA; (M.L.); (B.Y.); (Z.S.); (H.S.L.); (Y.L.); (C.B.-B.)
- Eleanor Roosevelt High School, Greenbelt, MD 20770, USA
| | - Charles Li
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service-US Department of Agriculture, Beltsville, MD 20705, USA; (M.L.); (B.Y.); (Z.S.); (H.S.L.); (Y.L.); (C.B.-B.)
- Correspondence: (X.Y.); (C.L.)
| |
Collapse
|
19
|
Farkas DL. Biomedical Applications of Translational Optical Imaging: From Molecules to Humans. Molecules 2021; 26:molecules26216651. [PMID: 34771060 PMCID: PMC8587670 DOI: 10.3390/molecules26216651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 11/16/2022] Open
Abstract
Light is a powerful investigational tool in biomedicine, at all levels of structural organization. Its multitude of features (intensity, wavelength, polarization, interference, coherence, timing, non-linear absorption, and even interactions with itself) able to create contrast, and thus images that detail the makeup and functioning of the living state can and should be combined for maximum effect, especially if one seeks simultaneously high spatiotemporal resolution and discrimination ability within a living organism. The resulting high relevance should be directed towards a better understanding, detection of abnormalities, and ultimately cogent, precise, and effective intervention. The new optical methods and their combinations needed to address modern surgery in the operating room of the future, and major diseases such as cancer and neurodegeneration are reviewed here, with emphasis on our own work and highlighting selected applications focusing on quantitation, early detection, treatment assessment, and clinical relevance, and more generally matching the quality of the optical detection approach to the complexity of the disease. This should provide guidance for future advanced theranostics, emphasizing a tighter coupling-spatially and temporally-between detection, diagnosis, and treatment, in the hope that technologic sophistication such as that of a Mars rover can be translationally deployed in the clinic, for saving and improving lives.
Collapse
Affiliation(s)
- Daniel L. Farkas
- PhotoNanoscopy and Acceleritas Corporations, 13412 Ventura Boulevard, Sherman Oaks, CA 91423, USA; ; Tel.: +1-310-600-7102
- Clinical Photonics Corporation, 8591 Skyline Drive, Los Angeles, CA 90046, USA
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
20
|
Thomas MM, Ashaat EA, Otaify GA, Ismail S, Essawi ML, Abdel-Hamid MS, Hassan HA, Alsaiedi SA, Aglan M, El Ruby MO, Temtamy S. First Report of Two Egyptian Patients with Desbuquois Dysplasia due to Homozygous CANT1 Mutations. Mol Syndromol 2021; 12:279-288. [PMID: 34602954 DOI: 10.1159/000516607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/17/2021] [Indexed: 02/02/2023] Open
Abstract
Desbuquois dysplasia type 1 (DBQD1) is a very rare skeletal dysplasia characterized by growth retardation, short stature, distinct hand features, and a characteristic radiological monkey wrench appearance at the proximal femur. We report on 2unrelated Egyptian patients having the characteristic features of DBQD1 with different expressivity. Patient 1 presented at the age of 45 days with respiratory distress, short limbs, faltering growth, and distinctive facies while patient 2 presented at 5 years of age with short stature and hypospadias. The 2 patients shared radiological features suggestive of DBQD1. Whole-exome sequencing revealed a homozygous frameshift mutation in the CANT1 gene (NM_001159772.1:c.277_278delCT; p.Leu93ValfsTer89) in patient 1 and a homozygous missense mutation (NM_138793.4:c.898C>T; p.Arg300Cys) in patient 2. Phenotypic variability and variable expressivity of DBQD was evident in our patients. Hypoplastic scrotum and hypospadias were additional unreported associated findings, thus expanding the phenotypic spectrum of the disorder. We reviewed the main features of skeletal dysplasias exhibiting similar radiological manifestations for differential diagnosis. We suggest that the variable severity in both patients could be due to the nature of the CANT1 gene mutations which necessitates the molecular study of more cases for phenotype-genotype correlations.
Collapse
Affiliation(s)
- Manal M Thomas
- Human Genetics and Genome Research Division, Clinical Genetics Department, National Research Centre, Cairo, Egypt
| | - Engy A Ashaat
- Human Genetics and Genome Research Division, Clinical Genetics Department, National Research Centre, Cairo, Egypt
| | - Ghada A Otaify
- Human Genetics and Genome Research Division, Clinical Genetics Department, National Research Centre, Cairo, Egypt
| | - Samira Ismail
- Human Genetics and Genome Research Division, Clinical Genetics Department, National Research Centre, Cairo, Egypt
| | - Mona L Essawi
- Human Genetics and Genome Research Division, Medical Molecular Genetics Department, National Research Centre, Cairo, Egypt
| | - Mohamed S Abdel-Hamid
- Human Genetics and Genome Research Division, Medical Molecular Genetics Department, National Research Centre, Cairo, Egypt
| | - Heba A Hassan
- Human Genetics and Genome Research Division, Medical Molecular Genetics Department, National Research Centre, Cairo, Egypt
| | | | - Mona Aglan
- Human Genetics and Genome Research Division, Clinical Genetics Department, National Research Centre, Cairo, Egypt
| | - Mona O El Ruby
- Human Genetics and Genome Research Division, Clinical Genetics Department, National Research Centre, Cairo, Egypt
| | - Samia Temtamy
- Human Genetics and Genome Research Division, Clinical Genetics Department, National Research Centre, Cairo, Egypt
| |
Collapse
|
21
|
Liu C, Tang W, Zhao H, Yang S, Ren Z, Li J, Chen Y, Zhao X, Xu D, Zhao Y, Shen C. The variants at FLNA and FLNB contribute to the susceptibility of hypertension and stroke with differentially expressed mRNA. THE PHARMACOGENOMICS JOURNAL 2021; 21:458-466. [PMID: 33649519 DOI: 10.1038/s41397-021-00222-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 01/18/2021] [Accepted: 02/02/2021] [Indexed: 01/31/2023]
Abstract
BACKGROUND Filamin A and filamin B were involved in vascular development and remodeling. Herein, it is important to explore the associations of FLNA and FLNB variants with hypertension and stroke. METHODS The associations of two single-nucleotide polymorphisms (SNPs) at FLNA and five SNPs at FLNB with hypertension and stroke were examined in two case-control studies and a cohort study in Chinese Han population. Risks were estimated as odds ratio (OR) and hazard ratio (HR) by Logistic and Cox regression analysis respectively. In addition, filamin B, FLNA and FLNB mRNA expression were measured. RESULTS In the case-control study of hypertension, FLNA rs2070816 (CT + TT vs. CC) and rs2070829 (CG + GG vs. CC) were significantly associated with hypertension in <55 years group (OR = 1.338, P = 0.018; OR = 1.615, P = 0.005) and FLNB rs839240 (AG + GG vs. AA) was significantly associated with hypertension in females (OR = 0.828, P = 0.041) and nonsmokers (OR = 0.829, P = 0.020). In the follow-up study, rs2070829 GG genotype carriers presented a higher risk of hypertension than CC/CG in males (HR = 1.737, P = 0.014) and smokers (HR = 1.949, P = 0.012). In the case-control study of stroke, FLNB rs1131356 variation was significantly associated with ischemic stroke (IS) and intracerebral hemorrhage (ICH), ORs of additive model were 1.342 and 1.451, with P values of 0.001 and 0.007. The FLNA transcript 2, FLNB transcript 3, transcript 4 mRNA, and filamin B expression levels were significantly different between IS cases and hypertension controls and among the genotypes of rs839240 in hypertensive individuals (P < 0.05). CONCLUSIONS Our findings support the genetic contribution of FLNA and FLNB to hypertension, and stroke with differentially mRNA expression.
Collapse
Affiliation(s)
- Chunlan Liu
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Wuzhuang Tang
- Department of Neurology, Affiliated Yixing People's Hospital of Jiangsu University, People's Hospital of Yixing City, Yixing, China
| | - Hailong Zhao
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Song Yang
- Department of Cardiology, Affiliated Yixing People's Hospital of Jiangsu University, People's Hospital of Yixing City, Yixing, China
| | - Zhanyun Ren
- Department of Neurology, Affiliated Yixing People's Hospital of Jiangsu University, People's Hospital of Yixing City, Yixing, China
| | - Jie Li
- Department of Neurology, Affiliated Yixing People's Hospital of Jiangsu University, People's Hospital of Yixing City, Yixing, China
| | - Yanchun Chen
- Department of Cardiology, Affiliated Yixing People's Hospital of Jiangsu University, People's Hospital of Yixing City, Yixing, China
| | - Xianghai Zhao
- Department of Cardiology, Affiliated Yixing People's Hospital of Jiangsu University, People's Hospital of Yixing City, Yixing, China
| | - Donghua Xu
- Department of Neurology, Affiliated Yixing People's Hospital of Jiangsu University, People's Hospital of Yixing City, Yixing, China
| | - Yanping Zhao
- Department of Neurology, Affiliated Yixing People's Hospital of Jiangsu University, People's Hospital of Yixing City, Yixing, China
| | - Chong Shen
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
22
|
Feng X, Cheung JPY, Je JSH, Cheung PWH, Chen S, Yue M, Wang N, Choi VNT, Yang X, Song YQ, Luk KDK, Gao B. Genetic variants of TBX6 and TBXT identified in patients with congenital scoliosis in Southern China. J Orthop Res 2021; 39:971-988. [PMID: 32672867 DOI: 10.1002/jor.24805] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/02/2020] [Accepted: 07/09/2020] [Indexed: 02/04/2023]
Abstract
Congenital scoliosis (CS) is a spinal deformity present at birth due to underlying congenital vertebral malformation (CVM) that occurs during embryonic development. Hemivertebrae is the most common anomaly that causes CS. Recently, compound heterozygosity in TBX6 has been identified in Northern Chinese, Japanese, and European CS patient cohorts, which explains about 7%-10% of the affected population. In this report, we recruited 67 CS patients characterized with hemivertebrae in the Southern Chinese population and investigated the TBX6 variant and risk haplotype. We found that two patients with hemivertebrae in the thoracic spine and one patient with hemivertebrae in the lumbar spine carry the previously defined pathogenic TBX6 compound heterozygous variants. In addition, whole exome sequencing of patients with CS and their family members identified a de novo missense mutation (c.G47T: p.R16L) in another member of the T-box family, TBXT. This rare mutation compromised the binding of TBXT to its target sequence, leading to reduced transcriptional activity, and exhibited dominant-negative effect on wild-type TBXT. Our findings further highlight the importance of T-box family genes in the development of congenital scoliosis.
Collapse
Affiliation(s)
- Xin Feng
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Jason Pui Yin Cheung
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Jimmy S H Je
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Prudence W H Cheung
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Shuxia Chen
- The State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Ming Yue
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Ni Wang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Vanessa N T Choi
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Xueyan Yang
- The State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - You-Qiang Song
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Keith D K Luk
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Bo Gao
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| |
Collapse
|
23
|
Intragenic Deletions in FLNB Are Part of the Mutational Spectrum Causing Spondylocarpotarsal Synostosis Syndrome. Genes (Basel) 2021; 12:genes12040528. [PMID: 33916386 PMCID: PMC8065484 DOI: 10.3390/genes12040528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/25/2021] [Accepted: 04/01/2021] [Indexed: 11/16/2022] Open
Abstract
Spondylocarpotarsal synostosis syndrome (SCT) is characterized by vertebral fusions, a disproportionately short stature, and synostosis of carpal and tarsal bones. Pathogenic variants in FLNB, MYH3, and possibly in RFLNA, have been reported to be responsible for this condition. Here, we present two unrelated individuals presenting with features typical of SCT in which Sanger sequencing combined with whole genome sequencing identified novel, homozygous intragenic deletions in FLNB (c.1346-1372_1941+389del and c.3127-353_4223-1836del). Both deletions remove several consecutive exons and are predicted to result in a frameshift. To our knowledge, this is the first time that large structural variants in FLNB have been reported in SCT, and thus our findings add to the classes of variation that can lead to this disorder. These cases highlight the need for copy number sensitive methods to be utilized in order to be comprehensive in the search for a molecular diagnosis in individuals with a clinical diagnosis of SCT.
Collapse
|
24
|
Yasunaga M, Ishikawa H, Yanagita K, Tamaoki S. An orthodontic perspective on Larsen syndrome. BMC Oral Health 2021; 21:111. [PMID: 33691679 PMCID: PMC7948355 DOI: 10.1186/s12903-021-01454-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/22/2021] [Indexed: 11/10/2022] Open
Abstract
Background Larsen syndrome (LS) is a rare disorder of osteochondrodysplasia. In addition to large-joint dislocations, craniofacial anomalies are typical characteristics. In this report, we performed orthodontic analyses, including skeletal and occlusal evaluations, to examine whether the craniofacial skeletal morphology leads to the craniofacial anomalies in LS. Case presentation A 5 year old Japanese girl who was clinically diagnosed with LS was referred to the orthodontic clinic in the Fukuoka Dental College Medical and Dental Hospital because of a malocclusion. Clinical findings at birth were knee-joint dislocations, equinovarus foot deformities, and cleft soft palate. The patient showed craniofacial anomalies with hypertelorism, prominent forehead, depressed nasal bridge, and flattened midface. To evaluate the craniofacial skeletal morphology, cephalometric analysis was performed. In the frontal cephalometric analysis, the larger widths between bilateral points of the orbitale were related to hypertelorism. The lateral cephalometric analysis revealed the midface hypoplasia and the retrognathic mandible. These findings were responsible for the flattened appearance of the patient’s face, even if the anteroposterior position of the nasion was normal. Her forehead looked prominent in relation to the face probably because of the retrognathic maxilla and mandible. Both the study model and the frontal cephalometric analysis indicated constriction of the upper and lower dental arches. The posterior crossbite facilitated by the premature contacts had developed in association with the constriction of the upper dental arch. Conclusions This patient had some craniofacial anomalies with characteristic appearances in LS. It was evident that the underlying skeletal morphology led to the craniofacial dysmorphism.
Collapse
Affiliation(s)
- Madoka Yasunaga
- Section of Orthodontics, Department of Oral Growth and Development, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka, 8140193, Japan.
| | - Hiroyuki Ishikawa
- Executive Trustee, Educational Institution, Fukuoka Gakuen, 2-15-1 Tamura, Sawara-ku, Fukuoka, 8140193, Japan
| | - Kenichi Yanagita
- Pediatric Dentistry, Fukuoka Children's Hospital, 5-1-1 Kashiiteriha, Higashi-ku, Fukuoka, 8130017, Japan
| | - Sachio Tamaoki
- Section of Orthodontics, Department of Oral Growth and Development, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka, 8140193, Japan
| |
Collapse
|
25
|
Giampietro PF. 50 Years Ago in TheJournalofPediatrics: 50 Years Ago Today: The Expanding Phenotype of Larsen Syndrome. J Pediatr 2021; 229:94. [PMID: 33487232 DOI: 10.1016/j.jpeds.2020.08.075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Philip F Giampietro
- Division of Medical Genetics, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey
| |
Collapse
|
26
|
Yasin S, Makitie O, Naz S. Spondylocarpotarsal synostosis syndrome due to a novel loss of function FLNB variant: a case report. BMC Musculoskelet Disord 2021; 22:31. [PMID: 33407338 PMCID: PMC7789006 DOI: 10.1186/s12891-020-03890-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 12/16/2020] [Indexed: 11/28/2022] Open
Abstract
Background Loss of function or gain of function variants of Filamin B (FLNB) cause recessive or dominant skeletal disorders respectively. Spondylocarpotarsal synostosis syndrome (SCT) is a rare autosomal recessive disorder characterized by short stature, fused vertebrae and fusion of carpal and tarsal bones. We present a novel FLNB homozygous pathogenic variant and present a carrier of the variant with short height. Case presentation We describe a family with five patients affected with skeletal malformations, short stature and vertebral deformities. Exome sequencing revealed a novel homozygous frameshift variant c.2911dupG p.(Ala971GlyfsTer122) in FLNB, segregating with the phenotype in the family. The variant was absent in public databases and 100 ethnically matched control chromosomes. One of the heterozygous carriers of the variant had short stature. Conclusion Our report expands the genetic spectrum of FLNB pathogenic variants. It also indicates a need to assess the heights of other carriers of FLNB recessive variants to explore a possible role in idiopathic short stature. Supplementary Information The online version contains supplementary material available at 10.1186/s12891-020-03890-2.
Collapse
Affiliation(s)
- Samina Yasin
- School of Biological Sciences, University of the Punjab, Quaid-i-Azam Campus, Lahore, Punjab, Pakistan
| | - Outi Makitie
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Sadaf Naz
- School of Biological Sciences, University of the Punjab, Quaid-i-Azam Campus, Lahore, Punjab, Pakistan.
| |
Collapse
|
27
|
Lamsoul I, Dupré L, Lutz PG. Molecular Tuning of Filamin A Activities in the Context of Adhesion and Migration. Front Cell Dev Biol 2020; 8:591323. [PMID: 33330471 PMCID: PMC7714767 DOI: 10.3389/fcell.2020.591323] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/05/2020] [Indexed: 01/08/2023] Open
Abstract
The dynamic organization of actin cytoskeleton meshworks relies on multiple actin-binding proteins endowed with distinct actin-remodeling activities. Filamin A is a large multi-domain scaffolding protein that cross-links actin filaments with orthogonal orientation in response to various stimuli. As such it plays key roles in the modulation of cell shape, cell motility, and differentiation throughout development and adult life. The essentiality and complexity of Filamin A is highlighted by mutations that lead to a variety of severe human disorders affecting multiple organs. One of the most conserved activity of Filamin A is to bridge the actin cytoskeleton to integrins, thereby maintaining the later in an inactive state. We here review the numerous mechanisms cells have developed to adjust Filamin A content and activity and focus on the function of Filamin A as a gatekeeper to integrin activation and associated adhesion and motility.
Collapse
Affiliation(s)
- Isabelle Lamsoul
- Centre de Physiopathologie de Toulouse Purpan, INSERM, CNRS, Université de Toulouse, UPS, Toulouse, France
| | - Loïc Dupré
- Centre de Physiopathologie de Toulouse Purpan, INSERM, CNRS, Université de Toulouse, UPS, Toulouse, France.,Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | - Pierre G Lutz
- Centre de Physiopathologie de Toulouse Purpan, INSERM, CNRS, Université de Toulouse, UPS, Toulouse, France
| |
Collapse
|
28
|
Welter H, Herrmann C, Fröhlich T, Flenkenthaler F, Eubler K, Schorle H, Nettersheim D, Mayerhofer A, Müller-Taubenberger A. Filamin A Orchestrates Cytoskeletal Structure, Cell Migration and Stem Cell Characteristics in Human Seminoma TCam-2 Cells. Cells 2020; 9:E2563. [PMID: 33266100 PMCID: PMC7761120 DOI: 10.3390/cells9122563] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/19/2020] [Accepted: 11/26/2020] [Indexed: 12/16/2022] Open
Abstract
Filamins are large dimeric F-actin cross-linking proteins, crucial for the mechanosensitive properties of a number of cell types. Due to their interaction with a variety of different proteins, they exert important regulatory functions. However, in the human testis the role of filamins has been insufficiently explored. Immunohistochemical staining of human testis samples identified filamin A (FLNA) in spermatogonia and peritubular myoid cells. Investigation of different testicular tumor samples indicated that seminoma also express FLNA. Moreover, mass spectrometric analyses identified FLNA as one of the most abundant proteins in human seminoma TCam-2 cells. We therefore focused on FLNA in TCam-2 cells, and identified by co-immunoprecipitation LAD1, RUVBL1 and DAZAP1, in addition to several cytoskeletal proteins, as interactors of FLNA. To study the role of FLNA in TCam-2 cells, we generated FLNA-deficient cells using the CRISPR/Cas9 system. Loss of FLNA causes an irregular arrangement of the actin cytoskeleton and mechanical instability, impaired adhesive properties and disturbed migratory behavior. Furthermore, transcriptional activity of typical stem cell factors is increased in the absence of FLNA. In summary, our data suggest that FLNA is crucially involved in balancing stem cell characteristics and invasive properties in human seminoma cells and possibly human testicular germ cells.
Collapse
Affiliation(s)
- Harald Welter
- Anatomy III, Cell Biology, Biomedical Center, Ludwig Maximillian University of Munich, 82152 Planegg, Martinsried, Germany; (H.W.); (C.H.); (K.E.); (A.M.-T.)
| | - Carola Herrmann
- Anatomy III, Cell Biology, Biomedical Center, Ludwig Maximillian University of Munich, 82152 Planegg, Martinsried, Germany; (H.W.); (C.H.); (K.E.); (A.M.-T.)
| | - Thomas Fröhlich
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig Maximilian University of Munich, 81377 Munich, Germany; (T.F.); (F.F.)
| | - Florian Flenkenthaler
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig Maximilian University of Munich, 81377 Munich, Germany; (T.F.); (F.F.)
| | - Katja Eubler
- Anatomy III, Cell Biology, Biomedical Center, Ludwig Maximillian University of Munich, 82152 Planegg, Martinsried, Germany; (H.W.); (C.H.); (K.E.); (A.M.-T.)
| | - Hubert Schorle
- Department of Developmental Pathology, Institute of Pathology, University Hospital Bonn, 53127 Bonn, Germany;
| | - Daniel Nettersheim
- Department of Urology, Urological Research Lab, Translational UroOncology, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| | - Artur Mayerhofer
- Anatomy III, Cell Biology, Biomedical Center, Ludwig Maximillian University of Munich, 82152 Planegg, Martinsried, Germany; (H.W.); (C.H.); (K.E.); (A.M.-T.)
| | - Annette Müller-Taubenberger
- Anatomy III, Cell Biology, Biomedical Center, Ludwig Maximillian University of Munich, 82152 Planegg, Martinsried, Germany; (H.W.); (C.H.); (K.E.); (A.M.-T.)
| |
Collapse
|
29
|
S. UK, Sankar S, Younes S, D. TK, Ahmad MN, Okashah SS, Kamaraj B, Al-Subaie AM, C. GPD, Zayed H. Deciphering the Role of Filamin B Calponin-Homology Domain in Causing the Larsen Syndrome, Boomerang Dysplasia, and Atelosteogenesis Type I Spectrum Disorders via a Computational Approach. Molecules 2020; 25:E5543. [PMID: 33255942 PMCID: PMC7730838 DOI: 10.3390/molecules25235543] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022] Open
Abstract
Filamins (FLN) are a family of actin-binding proteins involved in regulating the cytoskeleton and signaling phenomenon by developing a network with F-actin and FLN-binding partners. The FLN family comprises three conserved isoforms in mammals: FLNA, FLNB, and FLNC. FLNB is a multidomain monomer protein with domains containing an actin-binding N-terminal domain (ABD 1-242), encompassing two calponin-homology domains (assigned CH1 and CH2). Primary variants in FLNB mostly occur in the domain (CH2) and surrounding the hinge-1 region. The four autosomal dominant disorders that are associated with FLNB variants are Larsen syndrome, atelosteogenesis type I (AOI), atelosteogenesis type III (AOIII), and boomerang dysplasia (BD). Despite the intense clustering of FLNB variants contributing to the LS-AO-BD disorders, the genotype-phenotype correlation is still enigmatic. In silico prediction tools and molecular dynamics simulation (MDS) approaches have offered the potential for variant classification and pathogenicity predictions. We retrieved 285 FLNB missense variants from the UniProt, ClinVar, and HGMD databases in the current study. Of these, five and 39 variants were located in the CH1 and CH2 domains, respectively. These variants were subjected to various pathogenicity and stability prediction tools, evolutionary and conservation analyses, and biophysical and physicochemical properties analyses. Molecular dynamics simulation (MDS) was performed on the three candidate variants in the CH2 domain (W148R, F161C, and L171R) that were predicted to be the most pathogenic. The MDS analysis results showed that these three variants are highly compact compared to the native protein, suggesting that they could affect the protein on the structural and functional levels. The computational approach demonstrates the differences between the FLNB mutants and the wild type in a structural and functional context. Our findings expand our knowledge on the genotype-phenotype correlation in FLNB-related LS-AO-BD disorders on the molecular level, which may pave the way for optimizing drug therapy by integrating precision medicine.
Collapse
Affiliation(s)
- Udhaya Kumar S.
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India; (U.K.S.); (S.S.); (T.K.D.)
| | - Srivarshini Sankar
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India; (U.K.S.); (S.S.); (T.K.D.)
| | - Salma Younes
- Department of Biomedical Sciences, College of Health and Sciences, Qatar University, QU Health, Doha 2713, Qatar; (S.Y.); (M.N.A.); (S.S.O.)
| | - Thirumal Kumar D.
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India; (U.K.S.); (S.S.); (T.K.D.)
| | - Muneera Naseer Ahmad
- Department of Biomedical Sciences, College of Health and Sciences, Qatar University, QU Health, Doha 2713, Qatar; (S.Y.); (M.N.A.); (S.S.O.)
| | - Sarah Samer Okashah
- Department of Biomedical Sciences, College of Health and Sciences, Qatar University, QU Health, Doha 2713, Qatar; (S.Y.); (M.N.A.); (S.S.O.)
| | - Balu Kamaraj
- Department of Neuroscience Technology, College of Applied Medical Sciences in Jubail, Imam Abdulrahman Bin Faisal University, Jubail 35816, Saudi Arabia;
| | - Abeer Mohammed Al-Subaie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - George Priya Doss C.
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India; (U.K.S.); (S.S.); (T.K.D.)
| | - Hatem Zayed
- Department of Biomedical Sciences, College of Health and Sciences, Qatar University, QU Health, Doha 2713, Qatar; (S.Y.); (M.N.A.); (S.S.O.)
| |
Collapse
|
30
|
Arora V, Pal S, Kulshreshtha S, Verma IC. A Further Case of Larsen's Syndrome: Clinical and Genotypic Challenges in Diagnosis. J Pediatr Genet 2020; 11:298-303. [DOI: 10.1055/s-0040-1718540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/06/2020] [Indexed: 10/23/2022]
Abstract
AbstractLarsen's syndrome is characterized by dislocation of multiple large joints, digital anomalies, craniofacial dysmorphism, and short stature. In this paper, we describe a case of a 5-month-old boy with a triad of cardinal features in association with other signs. The diagnosis was confirmed by exome sequencing, which led to the identification of a novel missense variant NM_001457.4:c.4928C > G (p.Ala1643Gly) in the FLNB gene. We describe the role of protein modelling for the establishment of pathogenicity of this variant. We also outline the challenges in genetic diagnosis due to variable expressivity of the variant and discuss the clinicogenetic profile of previously reported patients with Larsen's syndrome in India.
Collapse
Affiliation(s)
- Veronica Arora
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - Swasti Pal
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - Samarth Kulshreshtha
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - Ishwar C. Verma
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| |
Collapse
|
31
|
Zeng L, Li Z, Pan L, Li H, Wu J, Yuan X, Li Z, Liang D, Wu L. Novel GZF1 pathogenic variants identified in two Chinese patients with Larsen syndrome. Clin Genet 2020; 99:281-285. [PMID: 33009817 DOI: 10.1111/cge.13856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/08/2020] [Accepted: 09/24/2020] [Indexed: 11/26/2022]
Abstract
GZF1 was recently reported as a genetic factor associated with Larsen syndrome. Two patients presenting hip dislocation, scoliosis and severe myopia, as well as hearing loss and other abnormal features, were found to carry two novel compounds heterozygous variants in GZF1 (c.397400del, p. Leu133fs; and c.1474del, p. Met492fs) through whole-exome sequencing. The mRNA expression level of L133fs-GZF1 did not significantly differ from that of WT-GZF1. However, no HA-conjugated mutant protein was detected by western blotting, which was also confirmed by immunofluorescence staining. In addition, both mRNA transcription and protein expression levels of M492fs-GZF1 were significantly lower than those of wild type, and HA-tagged M492fs-GZF1 was mainly distributed in the cytoplasm of HEK 293 T cells. These results suggested that the two variants could lead to loss of function of GZF1. Our study was the second to report the association between GZF1 variants and Larsen syndrome. We also provided functional evidence for the pathogenicity of GZF1 variants, which expands the mutation spectrum and offers a basis for functional research on the role of GZF1 in the development of Larsen syndrome.
Collapse
Affiliation(s)
- Lanlan Zeng
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Zhibin Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Lijuan Pan
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Hongyan Li
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Jiayu Wu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Xiying Yuan
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Zhuo Li
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Desheng Liang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Lingqian Wu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| |
Collapse
|
32
|
Kaynak M, Meuffels DE. Knee arthrodesis for a congenital luxation with Larsen syndrome. BMJ Case Rep 2020; 13:13/6/e232109. [PMID: 32487529 DOI: 10.1136/bcr-2019-232109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
A 31-year-old woman with known Larsen syndrome presented with congenital chronic luxation of her right knee with increasing instability symptoms, which limited her daily activities. We refrained from a constrained knee arthroplasty due to her relatively young age and decided to perform a knee arthrodesis. Knee arthrodesis is a viable lifelong-lasting operative treatment alternative for specific instability-related knee disease. The knee arthrodesis was performed by double plating with an additional fixation of the patella. At 1-yearfollow-up, she was able to walk without limitations and did not experience any pain with complete consolidation of the arthrodesis. At 2-year follow-up, she performed all her daily activities without limitations. Both the Knee injury and Osteoarthritis Outcome Score (KOOS) and the International Knee Documentation Committee subjective knee form (IKDC) improved at 2-year follow-up (KOOS: 61.3; IKDC: 56.3) compared with 1-year follow-up (KOOS: 52; IKDC: 40.2).
Collapse
Affiliation(s)
- Mustafa Kaynak
- Orthopaedic Surgery, Erasmus MC, Rotterdam, The Netherlands
| | | |
Collapse
|
33
|
Zhao S, Zhang Y, Chen W, Li W, Wang S, Wang L, Zhao Y, Lin M, Ye Y, Lin J, Zheng Y, Liu J, Zhao H, Yan Z, Yang Y, Huang Y, Lin G, Chen Z, Zhang Z, Liu S, Jin L, Wang Z, Chen J, Niu Y, Li X, Wu Y, Wang Y, Du R, Gao N, Zhao H, Yang Y, Liu Y, Tian Y, Li W, Zhao Y, Liu J, Yu B, Zhang N, Yu K, Yang X, Li S, Xu Y, Hu J, Liu Z, Shen J, Zhang S, Su J, Khanshour AM, Kidane YH, Ramo B, Rios JJ, Liu P, Sutton VR, Posey JE, Wu Z, Qiu G, Wise CA, Zhang F, Lupski JR, Zhang J, Wu N. Diagnostic yield and clinical impact of exome sequencing in early-onset scoliosis (EOS). J Med Genet 2020; 58:41-47. [PMID: 32381727 DOI: 10.1136/jmedgenet-2019-106823] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/17/2020] [Accepted: 03/13/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND Early-onset scoliosis (EOS), defined by an onset age of scoliosis less than 10 years, conveys significant health risk to affected children. Identification of the molecular aetiology underlying patients with EOS could provide valuable information for both clinical management and prenatal screening. METHODS In this study, we consecutively recruited a cohort of 447 Chinese patients with operative EOS. We performed exome sequencing (ES) screening on these individuals and their available family members (totaling 670 subjects). Another cohort of 13 patients with idiopathic early-onset scoliosis (IEOS) from the USA who underwent ES was also recruited. RESULTS After ES data processing and variant interpretation, we detected molecular diagnostic variants in 92 out of 447 (20.6%) Chinese patients with EOS, including 8 patients with molecular confirmation of their clinical diagnosis and 84 patients with molecular diagnoses of previously unrecognised diseases underlying scoliosis. One out of 13 patients with IEOS from the US cohort was molecularly diagnosed. The age at presentation, the number of organ systems involved and the Cobb angle were the three top features predictive of a molecular diagnosis. CONCLUSION ES enabled the molecular diagnosis/classification of patients with EOS. Specific clinical features/feature pairs are able to indicate the likelihood of gaining a molecular diagnosis through ES.
Collapse
Affiliation(s)
- Sen Zhao
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Yuanqiang Zhang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Graduate School, Peking Union Medical College, Beijing, China
| | - Weisheng Chen
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Graduate School, Peking Union Medical College, Beijing, China.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Weiyu Li
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Life Sciences, Shanghai, China
| | - Shengru Wang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, China
| | - Lianlei Wang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Graduate School, Peking Union Medical College, Beijing, China
| | - Yanxue Zhao
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Mao Lin
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Graduate School, Peking Union Medical College, Beijing, China
| | - Yongyu Ye
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Department of Orthopedic Surgery, First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
| | - Jiachen Lin
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Graduate School, Peking Union Medical College, Beijing, China
| | - Yu Zheng
- School of Finance, Southwestern University of Finance and Economics, Chengdu, Sichuan, China
| | - Jiaqi Liu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Department of Breast Surgical Oncology, National Cancer Center/Cancer Hospital,Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hengqiang Zhao
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Graduate School, Peking Union Medical College, Beijing, China.,School of Ophthalmology & Optometry and Eye Hospital, School of BiomedicalEngineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zihui Yan
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Graduate School, Peking Union Medical College, Beijing, China
| | - Yongxin Yang
- Machine Intelligence Group, University of Edinburgh, Edinburgh, UK
| | - Yingzhao Huang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Guanfeng Lin
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Zefu Chen
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Zhen Zhang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Sen Liu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Lichao Jin
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Zhaoyang Wang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Jingdan Chen
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Yuchen Niu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center, Peking Union Medical College Hospital, Peking UnionMedical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoxin Li
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center, Peking Union Medical College Hospital, Peking UnionMedical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yong Wu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Yipeng Wang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Renqian Du
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Na Gao
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Hong Zhao
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Ying Yang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Ying Liu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Ye Tian
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Wenli Li
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yu Zhao
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jia Liu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Bin Yu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Na Zhang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Keyi Yu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xu Yang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Shugang Li
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yuan Xu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jianhua Hu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Zhe Liu
- Laboratory of Clinical Genetics, Peking Union Medical College Hospital, Peking UnionMedical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jianxiong Shen
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Shuyang Zhang
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Department of Cardiology, Peking Union Medical College Hospital, Peking UnionMedical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jianzhong Su
- School of Ophthalmology & Optometry and Eye Hospital, School of BiomedicalEngineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Anas M Khanshour
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, Texas, USA
| | - Yared H Kidane
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, Texas, USA
| | - Brandon Ramo
- Department of Orthopaedic Surgery, Scottish Rite for Children, Dallas, Texas, USA
| | - Jonathan J Rios
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, Texas, USA.,McDermott Center for Human Growth and Development, Department of Pediatrics and Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Baylor Genetics, Houston, Texas, USA
| | - V Reid Sutton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Baylor Genetics, Houston, Texas, USA.,Texas Children's Hospital, Houston, Texas, USA
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Zhihong Wu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, China.,Medical Research Center, Peking Union Medical College Hospital, Peking UnionMedical College and Chinese Academy of Medical Sciences, Beijing, China
| | | | - Carol A Wise
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, Texas, USA.,McDermott Center for Human Growth and Development, Department of Pediatrics and Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| | - Feng Zhang
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Life Sciences, Shanghai, China
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Texas Children's Hospital, Houston, Texas, USA.,Departments of Pediatrics, Baylor College of Medicine, Houston, Texas, USA.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
| | - Jianguo Zhang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China .,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, China
| | - Nan Wu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China .,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, China
| | | |
Collapse
|
34
|
Jiang H, Liang S, He K, Hu J, Xu E, Lin T, Meng Y, Zhao J, Ma J, Gao R, Wang C, Yang F, Zhou X. Exome sequencing analysis identifies frequent oligogenic involvement and FLNB variants in adolescent idiopathic scoliosis. J Med Genet 2020; 57:405-413. [PMID: 32381728 PMCID: PMC7279190 DOI: 10.1136/jmedgenet-2019-106411] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 12/09/2019] [Accepted: 12/21/2019] [Indexed: 01/08/2023]
Abstract
Background Adolescent idiopathic scoliosis (AIS) is a genetically heterogeneous disease characterised by three-dimensional deformity of the spine in the absence of a congenital spinal anomaly or neurological musculoskeletal disorder. The clinical variability and incomplete penetrance of some genes linked with AIS indicate that this disease constitutes an oligogenic trait. Objective We aimed to explore the oligogenic nature of this disease and identify novel AIS genes. Methods We analysed rare damaging variants within AIS-associated genes by using exome sequencing in 40 AIS trios and 183 sporadic patients. Results Multiple variants within AIS-associated genes were identified in eight AIS trios, and five individuals harboured rare damaging variants in the FLNB gene. The patients showed more frequent oligogenicity than the controls. In the gene-based burden test, the top signal resided in FLNB. In functional studies, we found that the AIS-associated FLNB variants altered the protein’s conformation and subcellular localisation and its interaction with other proteins (TTC26 and OFD1) involved in AIS. The most compelling evidence of an oligogenic basis was that the number of rare damaging variants was recognised as an independent prognostic factor for curve progression in Cox regression analysis. Conclusion Our data indicate that AIS is an oligogenic disease and identify FLNB as a susceptibility gene for AIS.
Collapse
Affiliation(s)
- Heng Jiang
- Department of Orthopedics, Changzheng hospital, Second Military Medical University, Shanghai, China
| | - Shulun Liang
- Department of Orthopedics, Changzheng hospital, Second Military Medical University, Shanghai, China
| | - Kai He
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Jinghua Hu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Enjie Xu
- Department of Orthopedics, Changzheng hospital, Second Military Medical University, Shanghai, China
| | - Tao Lin
- Department of Orthopedics, Changzheng hospital, Second Military Medical University, Shanghai, China
| | - Yichen Meng
- Department of Orthopedics, Changzheng hospital, Second Military Medical University, Shanghai, China
| | - Jianquan Zhao
- Department of Orthopedics, Changzheng hospital, Second Military Medical University, Shanghai, China
| | - Jun Ma
- Department of Orthopedics, Changzheng hospital, Second Military Medical University, Shanghai, China
| | - Rui Gao
- Department of Orthopedics, Changzheng hospital, Second Military Medical University, Shanghai, China
| | - Ce Wang
- Department of Orthopedics, Changzheng hospital, Second Military Medical University, Shanghai, China
| | - Fu Yang
- Department of Medical Genetics, Second Military Medical University, Shangahi, China.,Department of Cell Engineering, Shanghai Key Laboratory of Cell Engineering, Shanghai, China
| | - Xuhui Zhou
- Department of Orthopedics, Changzheng hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
35
|
Harris AR, Belardi B, Jreij P, Wei K, Shams H, Bausch A, Fletcher DA. Steric regulation of tandem calponin homology domain actin-binding affinity. Mol Biol Cell 2019; 30:3112-3122. [PMID: 31693446 PMCID: PMC6938246 DOI: 10.1091/mbc.e19-06-0317] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 10/03/2019] [Accepted: 10/29/2019] [Indexed: 11/11/2022] Open
Abstract
Tandem calponin homology (CH1-CH2) domains are common actin-binding domains in proteins that interact with and organize the actin cytoskeleton. Despite regions of high sequence similarity, CH1-CH2 domains can have remarkably different actin-binding properties, with disease-associated point mutants known to increase as well as decrease affinity for F-actin. To investigate features that affect CH1-CH2 affinity for F-actin in cells and in vitro, we perturbed the utrophin actin-binding domain by making point mutations at the CH1-CH2 interface, replacing the linker domain, and adding a polyethylene glycol (PEG) polymer to CH2. Consistent with a previous model describing CH2 as a steric negative regulator of actin binding, we find that utrophin CH1-CH2 affinity is both increased and decreased by modifications that change the effective "openness" of CH1 and CH2 in solution. We also identified interface mutations that caused a large increase in affinity without changing solution "openness," suggesting additional influences on affinity. Interestingly, we also observe nonuniform subcellular localization of utrophin CH1-CH2 that depends on the N-terminal flanking region but not on bulk affinity. These observations provide new insights into how small sequence changes, such as those found in diseases, can affect CH1-CH2 binding properties.
Collapse
Affiliation(s)
- Andrew R. Harris
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720
| | - Brian Belardi
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720
| | - Pamela Jreij
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720
| | - Kathy Wei
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720
| | - Hengameh Shams
- Department of Mechanical Engineering, University of California, Berkeley, Berkeley, CA 94720
| | - Andreas Bausch
- Lehrstuhl für Biophysik (E27), Technische Universität München, Garching 85748, Germany
| | - Daniel A. Fletcher
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
- Chan Zuckerberg Biohub, San Francisco, CA 94158
| |
Collapse
|
36
|
Hickey SE, Koboldt DC, Mosher TM, Brennan P, Schmalz BA, Crist E, McBride KL, Adler BH, White P, Wilson RK. Novel in-frame FLNB deletion causes Larsen syndrome in a three-generation pedigree. Cold Spring Harb Mol Case Stud 2019; 5:mcs.a004176. [PMID: 31836586 PMCID: PMC6913154 DOI: 10.1101/mcs.a004176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 08/23/2019] [Indexed: 11/29/2022] Open
Abstract
A 4-yr-old female with congenital knee dislocations and joint laxity was noted to have a strong maternal family history comprising multiple individuals with knee problems and clubfeet. As the knee issues were the predominant clinical features, clinical testing included sequencing of LMX1B, TBX2, and TBX4, which identified no significant variants. Research genome sequencing was performed in the proband, parents, and maternal grandfather. A heterozygous in-frame deletion in FLNB c. 5468_5470delAGG, which predicts p.(Glu1823del), segregated with the disease. The variant is rare in the gnomAD database, removes a residue that is evolutionarily conserved, and is predicted to alter protein length. Larsen syndrome may present with pathology that primarily involves one joint and thus may be difficult to differentiate clinically from other skeletal dysplasias or arthrogryposis syndromes. The p.(Glu1823del) variant maps to a filamin repeat domain where other disease-causing variants are clustered, consistent with a probable gain-of-function mechanism. It has reportedly been observed in two individuals in the gnomAD database, suggesting that mild presentations of Larsen syndrome, like the individual reported here, may be underdiagnosed in the general population.
Collapse
Affiliation(s)
- Scott E Hickey
- Department of Pediatrics, The Ohio State University, Columbus, Ohio 43205, USA.,Division of Genetic and Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio 43205, USA
| | - Daniel C Koboldt
- Department of Pediatrics, The Ohio State University, Columbus, Ohio 43205, USA.,Institute for Genomic Medicine at Nationwide Children's Hospital, Columbus, Ohio 43205, USA
| | - Theresa Mihalic Mosher
- Department of Pediatrics, The Ohio State University, Columbus, Ohio 43205, USA.,Division of Genetic and Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio 43205, USA.,Institute for Genomic Medicine at Nationwide Children's Hospital, Columbus, Ohio 43205, USA
| | - Patrick Brennan
- Institute for Genomic Medicine at Nationwide Children's Hospital, Columbus, Ohio 43205, USA
| | - Beth A Schmalz
- Division of Genetic and Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio 43205, USA
| | - Erin Crist
- Institute for Genomic Medicine at Nationwide Children's Hospital, Columbus, Ohio 43205, USA
| | - Kim L McBride
- Department of Pediatrics, The Ohio State University, Columbus, Ohio 43205, USA.,Division of Genetic and Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio 43205, USA.,Center for Cardiovascular Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio 43205, USA
| | - Brent H Adler
- Department of Pediatrics, The Ohio State University, Columbus, Ohio 43205, USA
| | - Peter White
- Department of Pediatrics, The Ohio State University, Columbus, Ohio 43205, USA.,Division of Genetic and Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio 43205, USA
| | - Richard K Wilson
- Department of Pediatrics, The Ohio State University, Columbus, Ohio 43205, USA.,Division of Genetic and Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio 43205, USA
| |
Collapse
|
37
|
Chan CJ, Chau YJ, Woo SB, Luk HM, Lo IF. Familial patellar dislocation associated with t(15;20) (q24;q13.1). J Orthop Surg (Hong Kong) 2019; 26:2309499018777026. [PMID: 29848182 DOI: 10.1177/2309499018777026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Patellar instability is a common debilitating injury affecting young active individuals. It accounts for approximately 3% of all knee injuries. We report a family, of which five members across three generations, who suffered from autosomal dominant familial recurrent patellar dislocation as well as short stature. All of them have recurrent patellar dislocations before the age of 15. The affected patients in all three generations have been genetically screened. Genotypical evaluation revealed a balanced translocation of chromosomes 15 and 20.
Collapse
Affiliation(s)
- Cm Jimmy Chan
- 1 Department of Orthopaedics and Traumatology, Yan Chai Hospital, Shatin, Hong Kong, China
| | - Ym Jackie Chau
- 2 Department of Orthopaedics and Traumatology, Kwong Wah Hospital, 25 Waterloo Road, Hong Kong, China
| | - S B Woo
- 2 Department of Orthopaedics and Traumatology, Kwong Wah Hospital, 25 Waterloo Road, Hong Kong, China
| | - H M Luk
- 3 Department of Health, Clinical Genetic Service, Kowloon, Hong Kong, China
| | - Ivan Fm Lo
- 3 Department of Health, Clinical Genetic Service, Kowloon, Hong Kong, China
| |
Collapse
|
38
|
Abstract
PURPOSE Congenital clubfoot is a serious birth defect that affects nearly 0.1% of all births. Though there is strong evidence for a genetic basis of isolated clubfoot, aside from a handful of associations, much of the heritability remains unexplained. METHODS By systematically examining the genes involved in syndromic clubfoot, we may find new candidate genes and pathways to investigate in isolated clubfoot. RESULTS In addition to the expected enrichment of extracellular matrix and transforming growth factor beta (TGF-β) signalling genes, we find many genes involved in syndromic clubfoot encode peroxisomal matrix proteins, as well as enzymes necessary for sulfation of proteoglycans, an important part of connective tissue. Further, the association of Filamin B with isolated clubfoot as well as syndromic clubfoot is an encouraging finding. CONCLUSION We should examine these categories for enrichment in isolated clubfoot patients to increase our understanding of the underlying biology and pathophysiology of this deformity. Understanding the spectrum of syndromes that have clubfoot as a feature enables a better understanding of the underlying pathophysiology of the disorder and directs future genetic screening efforts toward certain genes and genetic pathways. LEVEL OF EVIDENCE V.
Collapse
Affiliation(s)
- B. Sadler
- Department of Neurology, Washington University in St. Louis, St Louis, Missouri, USA
| | - C. A. Gurnett
- Department of Neurology, Washington University in St. Louis, St Louis, Missouri, USA
| | - M. B. Dobbs
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, Missouri, USA,Correspondence should be sent to Matthew B. Dobbs, MD, 1 Children’s Place, Suite 4S-60, Department of Orthopedic Surgery, 660 S Euclid Ave, Campus Box 8233, Washington University in St Louis, St Louis, Missouri 63110, USA. E-mail:
| |
Collapse
|
39
|
Kodra N, Diamonstein C, Hauser NS. A case study of atypical Larsen syndrome with absent hallmark joint dislocations. Mol Genet Genomic Med 2019; 7:e648. [PMID: 30916490 PMCID: PMC6503063 DOI: 10.1002/mgg3.648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/24/2019] [Accepted: 02/20/2019] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND A family with skeletal and craniofacial anomalies is presented. Whole-exome sequencing (WES) analysis indicated a diagnosis of Larsen syndrome, although their clinical presentation does not include the hallmark joint dislocations typically observed in Larsen syndrome. METHODS Patient consent for the sharing of de-identified clinical and genetic information, along with use of photographs for publication, was obtained. WES and variant segregation analysis by WES were performed by commercial laboratory, GeneDx (Gaithersburg, MD), on peripheral blood samples from the proband, her brother, and her parents using methods detailed on their website for test XomeDx Whole Exome Sequencing Trio (https://www.genedx.com/test-catalog/available-tests/xomedx-whole-exome-sequencing-trio/). WES uses next-generation sequencing (NGS) technology to assess for variants within the coding regions, or exons, of approximately 23,000 genes. For the FLNB gene (NM_001457.3), 100% of the coding region was covered at a minimum of 10x. GeneDx uses Sanger sequencing to confirm NGS variants. RESULTS WES revealed a heterozygous pathogenic variant, p.Glu227Lys (c.679G>A), in the FLNB gene in three out of the four family members tested. This variant is associated with Larsen syndrome, a skeletal dysplasia condition with a wide range of phenotypic variability that usually includes congenital joint dislocations. CONCLUSION This is a highly unusual presentation of Larsen syndrome in which the identifying hallmark trait is absent in the patients' phenotypes.
Collapse
Affiliation(s)
- Neslida Kodra
- Inova Translational Medicine Institute, Inova Fairfax Hospital, Virginia
| | - Callie Diamonstein
- Inova Translational Medicine Institute, Inova Fairfax Hospital, Virginia
| | - Natalie S Hauser
- Inova Translational Medicine Institute, Inova Fairfax Hospital, Virginia
| |
Collapse
|
40
|
Identification of a homozygous frameshift variant in RFLNA in a patient with a typical phenotype of spondylocarpotarsal synostosis syndrome. J Hum Genet 2019; 64:467-471. [PMID: 30796325 DOI: 10.1038/s10038-019-0581-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/10/2019] [Accepted: 02/11/2019] [Indexed: 01/24/2023]
Abstract
Spondylocarpotarsal synostosis syndrome, a rare syndromic skeletal disorder characterized by disrupted vertebral segmentation with vertebral fusion, scoliosis, short stature, and carpal/tarsal synostosis, has been associated with biallelic truncating mutations in the filamin B gene or monoallelic mutations in the myosin heavy chain 3 gene. We herein report the case of a patient with a typical phenotype of spondylocarpotarsal synostosis syndrome who had a homozygous frameshift mutation in the refilin A gene (RFLNA) [c.241delC, p.(Leu81Cysfs*111)], which encodes one of the filamin-binding proteins. Refilins, filamins, and myosins play critical roles in forming perinuclear actin caps, which change the nuclear morphology during cell migration and differentiation. The present study implies that RFLNA is an additional causative gene for spondylocarpotarsal synostosis syndrome in humans and a defect in forming actin bundles and perinuclear actin caps may be a critical mechanism for the development of spondylocarpotarsal synostosis syndrome.
Collapse
|
41
|
Klein C, Bulaid Y, Deroussen F, Plancq MC, Printemps C, Gouron R. Congenital dislocation of the knee in a three-year-old-child with Larsen syndrome: Treatment with a hexapod-type external fixator. Knee 2018; 25:966-971. [PMID: 30111500 DOI: 10.1016/j.knee.2018.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/03/2018] [Accepted: 07/03/2018] [Indexed: 02/02/2023]
Abstract
Congenital knee dislocation (CDK) is a rare condition, and its treatment is subject to debate. Here, we report on a new treatment for CDK (using a hexapod-type external fixator, HEF) in a three-year-old child with Larsen syndrome and grade III anterior dislocations of both knees. The left knee was treated with serial splints, whereas an HEF was used to treat an irreducible dislocation of the right knee. Two HEF aluminium rings were applied surgically. The procedure involved a distraction of the knee, then tibial posterior translation, and lastly progressive flexion. The clinical and radiological outcomes were good; after four years of follow-up, the right knee had stabilized and had a range of motion of 110°. We conclude that as an innovative, effective option for the management of CDK, the use of an HEF may constitute a relatively advantageous alternative to quadriceps tenotomy.
Collapse
Affiliation(s)
- Céline Klein
- Department of Paediatric Orthopaedic Surgery, Amiens University Hospital, Amiens, France; Jules Verne University of Picardie, Amiens, France.
| | - Yassine Bulaid
- Department of Paediatric Orthopaedic Surgery, Amiens University Hospital, Amiens, France; Jules Verne University of Picardie, Amiens, France
| | - François Deroussen
- Department of Paediatric Orthopaedic Surgery, Amiens University Hospital, Amiens, France; Jules Verne University of Picardie, Amiens, France
| | - Marie-Christine Plancq
- Department of Paediatric Orthopaedic Surgery, Amiens University Hospital, Amiens, France; Jules Verne University of Picardie, Amiens, France
| | - Camille Printemps
- Department of Paediatric Orthopaedic Surgery, Amiens University Hospital, Amiens, France; Jules Verne University of Picardie, Amiens, France
| | - Richard Gouron
- Department of Paediatric Orthopaedic Surgery, Amiens University Hospital, Amiens, France; Jules Verne University of Picardie, Amiens, France
| |
Collapse
|
42
|
A novel truncating mutation in MYH3 causes spondylocarpotarsal synostosis syndrome with basilar invagination. J Hum Genet 2018; 63:1277-1281. [PMID: 30228365 DOI: 10.1038/s10038-018-0513-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 08/14/2018] [Accepted: 08/20/2018] [Indexed: 11/08/2022]
Abstract
Spondylocarpotarsal synostosis syndrome (SCT) is a rare group of skeletal dysplasias, characterized by disproportionate short stature with a short trunk, abnormal segmentation of the spine with vertebral fusion, scoliosis and lordosis, carpal and tarsal synostosis, and mild facial dysmorphisms. While the majority of the cases show autosomal recessive inheritance, only a few cases of vertical transmissions, with MYH3 mutations, have been reported. Here we report a case with typical SCT, carrying a novel heterozygous mutation in MYH3. This observation supports the hypothesis of a pathogenic link between autosomal dominant SCT and heterozygous mutations in MYH3. Of note, our case showed basilar invagination on brain magnetic resonance imaging at the age of 10 years. Basilar invagination could be a rare complication of both autosomal recessive and dominant SCT, indicating that prompt investigation are warranted for SCT patients.
Collapse
|
43
|
Cameron-Christie SR, Wells CF, Simon M, Wessels M, Tang CZN, Wei W, Takei R, Aarts-Tesselaar C, Sandaradura S, Sillence DO, Cordier MP, Veenstra-Knol HE, Cassina M, Ludwig K, Trevisson E, Bahlo M, Markie DM, Jenkins ZA, Robertson SP. Recessive Spondylocarpotarsal Synostosis Syndrome Due to Compound Heterozygosity for Variants in MYH3. Am J Hum Genet 2018; 102:1115-1125. [PMID: 29805041 PMCID: PMC5992117 DOI: 10.1016/j.ajhg.2018.04.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 04/13/2018] [Indexed: 11/23/2022] Open
Abstract
Spondylocarpotarsal synostosis syndrome (SCTS) is characterized by intervertebral fusions and fusion of the carpal and tarsal bones. Biallelic mutations in FLNB cause this condition in some families, whereas monoallelic variants in MYH3, encoding embryonic heavy chain myosin 3, have been implicated in dominantly inherited forms of the disorder. Here, five individuals without FLNB mutations from three families were hypothesized to be affected by recessive SCTS on account of sibling recurrence of the phenotype. Initial whole-exome sequencing (WES) showed that all five were heterozygous for one of two independent splice-site variants in MYH3. Despite evidence indicating that three of the five individuals shared two allelic haplotypes encompassing MYH3, no second variant could be located in the WES datasets. Subsequent genome sequencing of these three individuals demonstrated a variant altering a 5' UTR splice donor site (rs557849165 in MYH3) not represented by exome-capture platforms. When the cohort was expanded to 16 SCTS-affected individuals without FLNB mutations, nine had truncating mutations transmitted by unaffected parents, and six inherited the rs557849165 variant in trans, an observation at odds with the population allele frequency for this variant. The rs557849165 variant disrupts splicing in the 5' UTR but is still permissive of MYH3 translational initiation, albeit with reduced efficiency. Although some MYH3 variants cause dominant SCTS, these data indicate that others (notably truncating variants) do not, except in the context of compound heterozygosity for a second hypomorphic allele. These observations make genetic diagnosis challenging in the context of simplex presentations of the disorder.
Collapse
Affiliation(s)
- Sophia R Cameron-Christie
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand
| | - Constance F Wells
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand; Paris Diderot University, Sorbonne Paris Cité, Faculty of Medicine, Paris 75007, France; Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Centre de Référence Anomalies du Développement et Syndromes Malformatifs, Centre Hospitalier Universitaire de Montpellier, Université de Montpellier 34295, Montpellier Cedex 5, France
| | - Marleen Simon
- Department of Genetics, University Medical Center Utrecht, 3508 GA Utrecht, the Netherlands; Department of Clinical Genetics, Erasmus Medical Center, Rotterdam 3015 CE, the Netherlands
| | - Marja Wessels
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam 3015 CE, the Netherlands
| | - Candy Z N Tang
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand
| | - Wenhua Wei
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand
| | - Riku Takei
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand
| | | | - Sarah Sandaradura
- Department of Clinical Genetics Children's Hospital at Westmead, Sydney, NSW 2145, Australia; Discipline of Child and Adolescent Health, University of Sydney, Sydney, NSW 2006, Australia
| | - David O Sillence
- Department of Clinical Genetics Children's Hospital at Westmead, Sydney, NSW 2145, Australia; Discipline of Genetic Medicine, University of Sydney, Sydney, NSW 2006, Australia
| | - Marie-Pierre Cordier
- Clinical Genetics, Hôpital Femme Mère Enfant, Hôpitaux de Lyon, Lyon 69677, France
| | - Hermine E Veenstra-Knol
- Department of Medical Genetics, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, the Netherlands
| | - Matteo Cassina
- Clinical Genetics Unit, Department of Women's and Children's Health, University of Padova, Padova 35128, Italy
| | - Kathrin Ludwig
- Cardiovascular Pathology Unit, University Hospital of Padova, Padova 35128, Italy
| | - Eva Trevisson
- Clinical Genetics Unit, Department of Women's and Children's Health, University of Padova, Padova 35128, Italy
| | - Melanie Bahlo
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, University of Melbourne, Melbourne, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Melbourne, VIC 3052, Australia
| | - David M Markie
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand
| | - Zandra A Jenkins
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand
| | - Stephen P Robertson
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand.
| |
Collapse
|
44
|
Rehder H, Laccone F, Kircher SG, Schild RL, Rapp C, Bald R, Schulze B, Behunova J, Neesen J, Schoner K. Piepkorn type of osteochondrodysplasia: Defining the severe end of FLNB-related skeletal disorders in three fetuses and a 106-year-old exhibit. Am J Med Genet A 2018; 176:1559-1568. [PMID: 29797497 PMCID: PMC6585644 DOI: 10.1002/ajmg.a.38828] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 03/13/2018] [Accepted: 04/06/2018] [Indexed: 01/11/2023]
Abstract
The Piepkorn type of lethal osteochondrodysplasia (POCD) is a rare and lethal dwarfing condition. Four cases have been reported to date. The characteristic features are distinctly shortened "flipper-like" limbs, polysyndactyly, excessive underossification, especially of the limb bones and vertebrae, and large (giant) chondrocytes in the cartilaginous bone primordia. These characteristics allowed the diagnosis of Piepkorn type of osteochondrodysplasia in four new cases, three fetuses of 15 to 22 weeks and one 106-year-old museum exhibit. Piepkorn type of osteochondrodysplasia has been assigned to the giant cell chondrodysplasias such as atelosteogenesis type 1 (AO1) and boomerang dysplasia (BD). Analysis of the Filamin B gene in 3p14.3, which is associated with these disorders, allowed the identification of the first FLNB mutations in Piepkorn type of osteochondrodysplasia. The heterozygous missense mutations, found in the three fetuses, were located in exons 28 and 29, encoding the immunoglobulin-like repeat region R15, one of three mutational hot spots in dominant FLNB-related skeletal disorders. Direct preparations and alcian blue staining revealed single upper and lower arm and leg bone primordia, preaxial oligodactyly, and polysyndactyly with complete fusion and doubling of the middle and end phalanges II-V to produce eight distal finger rays. Considering the unique clinical features and the extent of underossification, Piepkorn type of osteochondrodysplasia can be regarded as a distinct entity within the AO1-BD-POCD continuum.
Collapse
Affiliation(s)
- Helga Rehder
- Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria.,Institute of Pathology, Philipps University of Marburg, Marburg, Germany
| | - Franco Laccone
- Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Susanne G Kircher
- Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Ralf L Schild
- Department of Obstetrics, Diacovere Friederikenstift, Hannover, Germany
| | - Christiane Rapp
- Department of Praenatal Medicine, Klinikum Oldenburg, Oldenburg, Germany
| | - Rainer Bald
- Clinic of Gynaecology and Obstetrics, Klinikum Leverkusen, Leverkusen, Germany
| | | | - Jana Behunova
- Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Juergen Neesen
- Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Katharina Schoner
- Institute of Pathology, Philipps University of Marburg, Marburg, Germany
| |
Collapse
|
45
|
Bouman A, Waisfisz Q, Admiraal J, van de Loo M, van Rijn RR, Micha D, Oostra R, Mathijssen IB. Homozygous
DMRT2
variant associates with severe rib malformations in a newborn. Am J Med Genet A 2018; 176:1216-1221. [DOI: 10.1002/ajmg.a.38668] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 02/15/2018] [Accepted: 02/16/2018] [Indexed: 01/29/2023]
Affiliation(s)
- Arjan Bouman
- Department of Clinical GeneticsAcademic Medical CenterAmsterdam The Netherlands
- Department of Clinical GeneticsErasmus Medical CenterRotterdam The Netherlands
| | - Quinten Waisfisz
- Department of Clinical GeneticsVU University Medical CenterAmsterdam The Netherlands
| | - Jop Admiraal
- Department of NeonatologyEmma Children's HospitalAmsterdam The Netherlands
| | - Moniek van de Loo
- Department of NeonatologyEmma Children's HospitalAmsterdam The Netherlands
| | - Rick R. van Rijn
- Department of RadiologyAcademic Medical CenterAmsterdam The Netherlands
| | - Dimitra Micha
- Department of Clinical GeneticsVU University Medical CenterAmsterdam The Netherlands
| | - Roelof‐Jan Oostra
- Department of Anatomy, Embryology & PhysiologyAcademic Medical CenterAmsterdam The Netherlands
| | - Inge B. Mathijssen
- Department of Clinical GeneticsAcademic Medical CenterAmsterdam The Netherlands
| |
Collapse
|
46
|
Salian S, Shukla A, Shah H, Bhat SN, Bhat VR, Nampoothiri S, Shenoy R, Phadke SR, Hariharan SV, Girisha KM. Seven additional families with spondylocarpotarsal synostosis syndrome with novel biallelic deleterious variants in FLNB. Clin Genet 2018; 94:159-164. [PMID: 29566257 DOI: 10.1111/cge.13252] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/15/2018] [Accepted: 03/17/2018] [Indexed: 02/01/2023]
Abstract
The location and/or type of variants in FLNB result in a spectrum of osteochondrodysplasias ranging from mild forms, like spondylocarpotarsal synostosis syndrome and Larsen syndrome, to severe perinatal lethal forms, such as atelosteogenesis I and III and Boomerang dysplasia. Spondylocarpotarsal synostosis syndrome is characterized by disproportionate short stature, vertebral anomalies and fusion of carpal and tarsal bones. Biallelic loss-of-function variants in FLNB are known to cause spondylocarpotarsal synostosis syndrome and 9 families and 9 pathogenic variants have been reported so far. We report clinical features of 10 additional patients from 7 families with spondylocarpotarsal synostosis syndrome due to 7 novel deleterious variants in FLNB, thus expanding the clinical and molecular repertoire of spondylocarpotarsal synostosis syndrome. Our report validates key clinical (fused thoracic vertebrae and carpal and tarsal coalition) and molecular (truncating variants in FLNB) characteristics of this condition.
Collapse
Affiliation(s)
- S Salian
- Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - A Shukla
- Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - H Shah
- Department of Orthopedics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - S N Bhat
- Department of Orthopedics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - V R Bhat
- Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - S Nampoothiri
- Department of Pediatric Genetics, Amrita Institute of Medical Sciences and Research Centre, Cochin, Kerala, India
| | - R Shenoy
- Department of Pediatrics, KS Hegde Medical Academy, Mangalore, Karnataka, India
| | - S R Phadke
- Department of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - S V Hariharan
- Department of Pediatrics, Sree Avittom Thirunal Hospital, Government Medical College, Trivandrum, Kerala, India
| | - K M Girisha
- Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
47
|
Baudier J, Jenkins ZA, Robertson SP. The filamin-B–refilin axis – spatiotemporal regulators of the actin-cytoskeleton in development and disease. J Cell Sci 2018; 131:131/8/jcs213959. [DOI: 10.1242/jcs.213959] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
ABSTRACT
During development, cycles of spatiotemporal remodeling of higher-order networks of actin filaments contribute to control cell fate specification and differentiation. Programs for controlling these dynamics are hard-wired into actin-regulatory proteins. The filamin family of actin-binding proteins exert crucial mechanotransduction and signaling functions in tissue morphogenesis. Filamin-B (FLNB) is a key player in chondrocyte progenitor differentiation for endochondral ossification. Biallelic loss-of-function mutations or gain-of-function mutations in FLNB cause two groups of skeletal disorders that can be attributed to either the loss of repressive function on TGF-β signaling or a disruption in mechanosensory properties, respectively. In this Review, we highlight a unique family of vertebrate-specific short-lived filamin-binding proteins, the refilins (refilin-A and refilin-B), that modulate filamin-dependent actin crosslinking properties. Refilins are downstream TGF-β effectors in epithelial cells. Double knockout of both refilin-A and refilin-B in mice results in precocious ossification of some axial skeletal elements, leading to malformations that are similar to those seen in FLNB-deficient mice. Based on these findings, we present a model summarizing the role of refilins in regulating the mechanosensory functions of FLNB during skeletal development. We also discuss the possible contribution of refilins to FLNB-related skeletal pathologies that are associated with gain-of-function mutations.
Collapse
Affiliation(s)
- Jacques Baudier
- Aix Marseille Université, CNRS, IBDM, 13284 Marseille Cedex 07, France
- Institut de Biologie du Développement de Marseille-UMR CNRS 7288, Campus de Luminy-Case 907, 13288 Marseille Cedex 9, France
| | - Zandra A. Jenkins
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Stephen P. Robertson
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| |
Collapse
|
48
|
Li Y, Sun Y, Sun F, Hua R, Li C, Chen L, Guo D, Mu J. Mechanisms and Effects on HBV Replication of the Interaction between HBV Core Protein and Cellular Filamin B. Virol Sin 2018; 33:162-172. [PMID: 29594956 DOI: 10.1007/s12250-018-0023-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/12/2018] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV) infection is one of the major problems that threatens global health. There have been many studies on HBV, but the relationship between HBV and host factors is largely unexplored and more studies are needed to clarify these interactions. Filamin B is an actin-binding protein that acts as a cytoskeleton protein, and it is involved in cell development and several signaling pathways. In this study, we showed that filamin B interacted with HBV core protein, and the interaction promoted HBV replication. The interaction between filamin B and core protein was observed in HEK 293T, Huh7 and HepG2 cell lines by co-immunoprecipitation and co-localization immnofluoresence. Overexpression of filamin B increased the levels of HBV total RNAs and pre-genome RNA (pgRNA), and improved the secretion level of hepatitis B surface antigen (HBsAg) and hepatitis B e antigen (HBeAg). In contrast, filamin B knockdown inhibited HBV replication, decreased the level of HBV total RNAs and pgRNA, and reduced the secretion level of HBsAg and HBeAg. In addition, we found that filamin B and core protein may interact with each other via four blocks of argentine residues at the C-terminus of core protein. In conclusion, we identify filamin B as a novel host factor that can interact with core protein to promote HBV replication in hepatocytes. Our study provides new insights into the relationship between HBV and host factors and may provide new strategies for the treatment of HBV infection.
Collapse
Affiliation(s)
- Yilin Li
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Yishuang Sun
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Fuyun Sun
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Rong Hua
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Chenlin Li
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Lang Chen
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Deyin Guo
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China. .,School of Basic Medicine (Shenzhen), Sun Yat-sen University, Guangzhou, 510081, China.
| | - Jingfang Mu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| |
Collapse
|
49
|
Zhu LQ, Su GH, Dai J, Zhang WY, Yin CH, Zhang FY, Zhu ZH, Guo ZX, Fang JF, Zou CD, Chen XG, Zhang Y, Xu CY, Zhen YF, Wang XD. Whole genome sequencing of pairwise human subjects reveals DNA mutations specific to developmental dysplasia of the hip. Genomics 2018; 111:320-326. [PMID: 29486210 DOI: 10.1016/j.ygeno.2018.02.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 02/05/2018] [Accepted: 02/12/2018] [Indexed: 01/26/2023]
Abstract
Developmental dysplasia of the hip (DDH) is a common congenital malformation characterized by mismatch in shape between the femoral head and acetabulum, and leads to hip dysplasia. To date, the pathogenesis of DDH is poorly understood and may involve multiple factors, including genetic predisposition. However, comprehensive genetic analysis has not been applied to investigate a genetic component of DDH. In the present study, 10 pairs of healthy fathers and DDH daughters were enrolled to identify genetic hallmarks of DDH using high throughput whole genome sequencing. The DDH-specific DNA mutations were found in each patient. Overall 1344 genes contained DDH-specific mutations. Functional enrichment analysis showed that these genes played important roles in the cytoskeleton, microtubule cytoskeleton, sarcoplasm and microtubule associated complex. These functions affected osteoblast and osteoclast development. Therefore, we proposed that the DDH-specific mutations might affect bone development, and caused DDH. Our pairwise high throughput sequencing results comprehensively delineated genetic hallmarks of DDH. Further research into the biological impact of these mutations may inform the development of DDH diagnostic tools and allow neonatal gene screening.
Collapse
Affiliation(s)
- Lun-Qing Zhu
- Department of Orthopaedics, Children's Hospital of Soochow University, Suzhou 215000, China
| | - Guang-Hao Su
- Pediatric Institute of Soochow University, Children's Hospital of Soochow University, Suzhou 215000, China
| | - Jin Dai
- Department of Orthopaedics, Children's Hospital of Soochow University, Suzhou 215000, China
| | - Wen-Yan Zhang
- Department of Orthopaedics, Children's Hospital of Soochow University, Suzhou 215000, China
| | - Chun-Hua Yin
- Department of Orthopaedics, Children's Hospital of Soochow University, Suzhou 215000, China
| | - Fu-Yong Zhang
- Department of Orthopaedics, Children's Hospital of Soochow University, Suzhou 215000, China
| | - Zhen-Hua Zhu
- Department of Orthopaedics, Children's Hospital of Soochow University, Suzhou 215000, China
| | - Zhi-Xiong Guo
- Department of Orthopaedics, Children's Hospital of Soochow University, Suzhou 215000, China
| | - Jian-Feng Fang
- Department of Orthopaedics, Children's Hospital of Soochow University, Suzhou 215000, China
| | - Cheng-da Zou
- Department of Orthopaedics, Children's Hospital of Soochow University, Suzhou 215000, China
| | - Xing-Guang Chen
- Department of Orthopaedics, Children's Hospital of Soochow University, Suzhou 215000, China
| | - Ya Zhang
- Pediatric Institute of Soochow University, Children's Hospital of Soochow University, Suzhou 215000, China
| | - Cai-Ying Xu
- Department of Orthopaedics, Children's Hospital of Soochow University, Suzhou 215000, China
| | - Yun-Fang Zhen
- Department of Orthopaedics, Children's Hospital of Soochow University, Suzhou 215000, China.
| | - Xiao-Dong Wang
- Department of Orthopaedics, Children's Hospital of Soochow University, Suzhou 215000, China.
| |
Collapse
|
50
|
Lefebvre M, Dieux-Coeslier A, Baujat G, Schaefer E, Judith SO, Bazin A, Pinson L, Attie-Bitach T, Baumann C, Fradin M, Pierquin G, Julia S, Quélin C, Doray B, Berg S, Vincent-Delorme C, Lambert L, Bachmann N, Lacombe D, Isidor B, Laurent N, Joelle R, Blanchet P, Odent S, Kervran D, Leporrier N, Abel C, Segers K, Guiliano F, Ginglinger-Fabre E, Selicorni A, Goldenberg A, El Chehadeh S, Francannet C, Demeer B, Duffourd Y, Thauvin-Robinet C, Verloes A, Cormier-Daire V, Riviere JB, Faivre L, Thevenon J. Diagnostic strategy in segmentation defect of the vertebrae: a retrospective study of 73 patients. J Med Genet 2018; 55:422-429. [DOI: 10.1136/jmedgenet-2017-104939] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 01/02/2018] [Accepted: 01/21/2018] [Indexed: 11/04/2022]
Abstract
BackgroundSegmentation defects of the vertebrae (SDV) are non-specific features found in various syndromes. The molecular bases of SDV are not fully elucidated due to the wide range of phenotypes and classification issues. The genes involved are in the Notch signalling pathway, which is a key system in somitogenesis. Here we report on mutations identified in a diagnosis cohort of SDV. We focused on spondylocostal dysostosis (SCD) and the phenotype of these patients in order to establish a diagnostic strategy when confronted with SDV.Patients and methodsWe used DNA samples from a cohort of 73 patients and performed targeted sequencing of the five known SCD-causing genes (DLL3, MESP2, LFNG, HES7 and TBX6) in the first 48 patients and whole-exome sequencing (WES) in 28 relevant patients.ResultsTen diagnoses, including four biallelic variants in TBX6, two biallelic variants in LFNG and DLL3, and one in MESP2 and HES7, were made with the gene panel, and two diagnoses, including biallelic variants in FLNB and one variant in MEOX1, were made by WES. The diagnostic yield of the gene panel was 10/73 (13.7%) in the global cohort but 8/10 (80%) in the subgroup meeting the SCD criteria; the diagnostic yield of WES was 2/28 (8%).ConclusionAfter negative array CGH, targeted sequencing of the five known SCD genes should only be performed in patients who meet the diagnostic criteria of SCD. The low proportion of candidate genes identified by WES in our cohort suggests the need to consider more complex genetic architectures in cases of SDV.
Collapse
|