1
|
Arana ÁJ, Sánchez L. Knockout, Knockdown, and the Schrödinger Paradox: Genetic Immunity to Phenotypic Recapitulation in Zebrafish. Genes (Basel) 2024; 15:1164. [PMID: 39336755 PMCID: PMC11431394 DOI: 10.3390/genes15091164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
Previous research has highlighted significant phenotypic discrepancies between knockout and knockdown approaches in zebrafish, raising concerns about the reliability of these methods. However, our study suggests that these differences are not as pronounced as was once believed. By carefully examining the roles of maternal and zygotic gene contributions, we demonstrate that these factors significantly influence phenotypic outcomes, often accounting for the observed discrepancies. Our findings emphasize that morpholinos, despite their potential off-target effects, can be effective tools when used with rigorous controls. We introduce the concept of graded maternal contribution, which explains how the uneven distribution of maternal mRNA and proteins during gametogenesis impacts phenotypic variability. Our research categorizes genes into three types-susceptible, immune, and "Schrödinger" (conditional)-based on their phenotypic expression and interaction with genetic compensation mechanisms. This distinction provides new insights into the paradoxical outcomes observed in genetic studies. Ultimately, our work underscores the importance of considering both maternal and zygotic contributions, alongside rigorous experimental controls, to accurately interpret gene function and the mechanisms underlying disease. This study advocates for the continued use of morpholinos in conjunction with advanced genetic tools like CRISPR/Cas9, stressing the need for a meticulous experimental design to optimize the utility of zebrafish in genetic research and therapeutic development.
Collapse
|
2
|
Itoh T, Uehara M, Yura S, Wang JC, Fujii Y, Nakanishi A, Shimizu T, Hibi M. Foxp and Skor family proteins control differentiation of Purkinje cells from Ptf1a- and Neurog1-expressing progenitors in zebrafish. Development 2024; 151:dev202546. [PMID: 38456494 PMCID: PMC11057878 DOI: 10.1242/dev.202546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/01/2024] [Indexed: 03/09/2024]
Abstract
Cerebellar neurons, such as GABAergic Purkinje cells (PCs), interneurons (INs) and glutamatergic granule cells (GCs) are differentiated from neural progenitors expressing proneural genes, including ptf1a, neurog1 and atoh1a/b/c. Studies in mammals previously suggested that these genes determine cerebellar neuron cell fate. However, our studies on ptf1a;neurog1 zebrafish mutants and lineage tracing of ptf1a-expressing progenitors have revealed that the ptf1a/neurog1-expressing progenitors can generate diverse cerebellar neurons, including PCs, INs and a subset of GCs in zebrafish. The precise mechanisms of how each cerebellar neuron type is specified remains elusive. We found that genes encoding the transcriptional regulators Foxp1b, Foxp4, Skor1b and Skor2, which are reportedly expressed in PCs, were absent in ptf1a;neurog1 mutants. foxp1b;foxp4 mutants showed a strong reduction in PCs, whereas skor1b;skor2 mutants completely lacked PCs, and displayed an increase in immature GCs. Misexpression of skor2 in GC progenitors expressing atoh1c suppressed GC fate. These data indicate that Foxp1b/4 and Skor1b/2 function as key transcriptional regulators in the initial step of PC differentiation from ptf1a/neurog1-expressing neural progenitors, and that Skor1b and Skor2 control PC differentiation by suppressing their differentiation into GCs.
Collapse
Affiliation(s)
- Tsubasa Itoh
- Department of Biological Science, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya, Aichi 464-8602, Japan
| | - Mari Uehara
- Department of Biological Science, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya, Aichi 464-8602, Japan
| | - Shinnosuke Yura
- Department of Biological Science, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya, Aichi 464-8602, Japan
| | - Jui Chun Wang
- Department of Biological Science, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya, Aichi 464-8602, Japan
| | - Yukimi Fujii
- Department of Biological Science, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya, Aichi 464-8602, Japan
| | - Akiko Nakanishi
- Department of Biological Science, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya, Aichi 464-8602, Japan
| | - Takashi Shimizu
- Department of Biological Science, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya, Aichi 464-8602, Japan
| | - Masahiko Hibi
- Department of Biological Science, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya, Aichi 464-8602, Japan
| |
Collapse
|
3
|
Omori Y, Burgess SM. The Goldfish Genome and Its Utility for Understanding Gene Regulation and Vertebrate Body Morphology. Methods Mol Biol 2024; 2707:335-355. [PMID: 37668923 DOI: 10.1007/978-1-0716-3401-1_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Goldfish, widely viewed as an ornamental fish, is a member of Cyprinidae family and has a very long history in research for both genetics and physiology studies. Among Cyprinidae, the chromosomal locations of orthologs and the amino acid sequences are usually highly conserved. Adult goldfish are 1000 times larger than adult zebrafish (who are in the same family of fishes), which can make it easier to perform several types of experiments compared to their zebrafish cousins. Comparing mutant phenotypes in orthologous genes between goldfish and zebrafish can often be very informative and provide a deeper insight into the gene function than studying the gene in either species alone. Comparative genomics and phenotypic comparisons between goldfish and zebrafish will provide new opportunities for understanding the development and evolution of body forms in the vertebrate lineage.
Collapse
Affiliation(s)
- Yoshihiro Omori
- Laboratory of Functional Genomics, Graduate School of Bioscience, Nagahama Institute of Bioscience and Technology, Nagahama, Japan.
| | - Shawn M Burgess
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA.
| |
Collapse
|
4
|
Parvez S, Zhang T, Peterson RT. Scalable CRISPR Screens in Zebrafish Using MIC-Drop. Methods Mol Biol 2024; 2707:319-334. [PMID: 37668922 DOI: 10.1007/978-1-0716-3401-1_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
CRISPR-Cas9 is a powerful tool to interrogate gene function in a targeted and systematic manner. Although the technology has been scaled up for large-scale genetic screens in cell culture, similar scale screens in vivo have been extremely challenging due to the cost, labor, and time required to generate and keep track of thousands of mutant animals. We reported the development of Multiplexed Intermixed CRISPR Droplets (MIC-Drop), a platform that makes large-scale reverse genetic screens possible in zebrafish. In this chapter, we provide a detailed protocol to conduct large-scale genetic screens using this novel platform.
Collapse
Affiliation(s)
- Saba Parvez
- Department of Pharmacology & Toxicology, University of Utah, Salt Lake City, UT, USA
| | - Tejia Zhang
- Department of Pharmacology & Toxicology, University of Utah, Salt Lake City, UT, USA
| | - Randall T Peterson
- Department of Pharmacology & Toxicology, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
5
|
Altbürger C, Rath M, Armbruster D, Driever W. Neurog1 and Olig2 integrate patterning and neurogenesis signals in development of zebrafish dopaminergic and glutamatergic dual transmitter neurons. Dev Biol 2024; 505:85-98. [PMID: 37944224 DOI: 10.1016/j.ydbio.2023.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 10/02/2023] [Accepted: 10/20/2023] [Indexed: 11/12/2023]
Abstract
Dopaminergic neurons develop in distinct neural domains by integrating local patterning and neurogenesis signals. While the proneural proteins Neurog1 and Olig2 have been previously linked to development of dopaminergic neurons, their dependence on local prepatterning and specific contributions to dopaminergic neurogenesis are not well understood. Here, we show that both transcription factors are differentially required for the development of defined dopaminergic glutamatergic subpopulations in the zebrafish posterior tuberculum, which are homologous to A11 dopaminergic neurons in mammals. Both Olig2 and Neurog1 are expressed in otpa expressing progenitor cells and appear to act upstream of Otpa during dopaminergic neurogenesis. Our epistasis analysis confirmed that Neurog1 acts downstream of Notch signaling, while Olig2 acts downstream of Shh, but upstream and/or in parallel to Notch signaling during neurogenesis of A11-type dopaminergic clusters. Furthermore, we identified Olig2 to be an upstream regulator of neurog1 in dopaminergic neurogenesis. This regulation occurs through Olig2-dependent repression of the proneural repressor and Notch target gene her2. Our study reveals how Neurog1 and Olig2 integrate local patterning signals, including Shh, with Notch neurogenic selection signaling, to specify the progenitor population and initiate neurogenesis and differentiation of A11-type dopaminergic neurons.
Collapse
Affiliation(s)
- Christian Altbürger
- Department of Developmental Biology, Faculty of Biology, Albert-Ludwigs-University of Freiburg, 79104 Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
| | - Meta Rath
- Department of Developmental Biology, Faculty of Biology, Albert-Ludwigs-University of Freiburg, 79104 Freiburg, Germany
| | - Daniel Armbruster
- Department of Developmental Biology, Faculty of Biology, Albert-Ludwigs-University of Freiburg, 79104 Freiburg, Germany; MeInBio Research Training Group, University of Freiburg, 79104 Freiburg, Germany
| | - Wolfgang Driever
- Department of Developmental Biology, Faculty of Biology, Albert-Ludwigs-University of Freiburg, 79104 Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
6
|
Wang L. Zebrafish as a model for study of disorders in pyrimidine nucleotide metabolism. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2023; 43:722-733. [PMID: 38153103 DOI: 10.1080/15257770.2023.2298742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 12/29/2023]
Abstract
Pyrimidine nucleotides are not only the building blocks of DNA and RNA but also participate in multiple cellular metabolic processes, including protein, lipid and polysaccharide biosynthesis. Pyrimidine nucleotides are synthesized by two distinct pathways-the de novo and salvage pathways. Disorders in pyrimidine nucleotide metabolism cause severe neurodegenerative disorders in human. For example, deficiency in thymidylate kinase, an essential enzyme in dTTP synthesis, causes severe microcephaly in human patients. Zebrafish mutants selected by insertion mutagenesis that results in inactive enzymes in pyrimidine metabolism showed also neurological and developmental disorders. In this work I have summarized current data on neurological and developmental disorders caused by defects in enzymes in pyrimidine nucleotide metabolism in zebrafish and compared to human. All these data suggest that zebrafish is a useful animal model to study pathogenic mechanism of neurological disorders due to defect in pyrimidine nucleotide metabolism.
Collapse
Affiliation(s)
- Liya Wang
- Department of Anatomy, Physiology and Biochemistry, The Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
7
|
Lozovska A, Korovesi AG, Duarte P, Casaca A, Assunção T, Mallo M. The control of transitions along the main body axis. Curr Top Dev Biol 2023; 159:272-308. [PMID: 38729678 DOI: 10.1016/bs.ctdb.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Although vertebrates display a large variety of forms and sizes, the mechanisms controlling the layout of the basic body plan are substantially conserved throughout the clade. Following gastrulation, head, trunk, and tail are sequentially generated through the continuous addition of tissue at the caudal embryonic end. Development of each of these major embryonic regions is regulated by a distinct genetic network. The transitions from head-to-trunk and from trunk-to-tail development thus involve major changes in regulatory mechanisms, requiring proper coordination to guarantee smooth progression of embryonic development. In this review, we will discuss the key cellular and embryological events associated with those transitions giving particular attention to their regulation, aiming to provide a cohesive outlook of this important component of vertebrate development.
Collapse
Affiliation(s)
| | | | - Patricia Duarte
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, Oeiras, Portugal
| | - Ana Casaca
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, Oeiras, Portugal
| | - Tereza Assunção
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, Oeiras, Portugal
| | - Moises Mallo
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, Oeiras, Portugal.
| |
Collapse
|
8
|
Jin Z, Wang D, Lv H, Wu B, Li Z, Guo X, Wang H, Yang S. Loss of the adaptor protein Sh3bgrl initiates ovarian fibrosis in zebrafish. FEBS Lett 2023; 597:2643-2655. [PMID: 37698355 DOI: 10.1002/1873-3468.14733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/19/2023] [Accepted: 08/23/2023] [Indexed: 09/13/2023]
Abstract
Ovarian fibrosis is a reproduction obstacle leading to female infertility in vertebrates, but the cause underlying the cellular events is unclear. Here, we found that the small adaptor protein SH3-domain-binding glutamate-rich protein like (Sh3bgrl) plays an important role in female reproduction in zebrafish. Two sh3bgrl mutant alleles that result in sh3bgrl depletion contribute to female spawning inability. Comparative transcriptome analysis revealed that sh3bgrl knockout mechanistically causes the upregulation of genes associated with extracellular matrix (ECM) and fiber generation in the zebrafish ovary. Consequently, extra ECM or fibers accumulate and are deposited in the ovary, resulting in eventual spawning inability. Our findings thus provide insights into understanding the underlying mechanism of infertility by ovarian fibrosis and provide a novel and valuable model to study female reproduction abnormality.
Collapse
Affiliation(s)
- Ziwei Jin
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Dongxia Wang
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Haimei Lv
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bo Wu
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zhe Li
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiaoling Guo
- Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Haihe Wang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Shulan Yang
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
9
|
Ulhaq ZS, Okamoto K, Ogino Y, Tse WKF. Dysregulation of Spliceosomes Complex Induces Retinitis Pigmentosa-Like Characteristics in sf3b4-Depleted Zebrafish. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1223-1233. [PMID: 37263342 DOI: 10.1016/j.ajpath.2023.05.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/15/2023] [Accepted: 05/19/2023] [Indexed: 06/03/2023]
Abstract
The SF3B4 gene encodes a highly conserved protein that plays a critical role in mRNA splicing. Mutations in this gene are known to cause Nager syndrome, a rare craniofacial disorder. Although SF3B4 expression is detected in the optic vesicle before it is detected in the limb and somite, the role of SF3B4 in the eye is not well understood. This study investigated the function of sf3b4 in the retina by performing transcriptome profiles, immunostaining, and behavioral analysis of sf3b4-/- mutant zebrafish. Results from this study suggest that dysregulation of the spliceosome complex affects not only craniofacial development but also retinogenesis. Zebrafish lacking functional sf3b4 displayed characteristics similar to retinitis pigmentosa (RP), marked by severe retinal pigment epithelium defects and rod degeneration. Pathway analysis revealed altered retinol metabolism and retinoic acid signaling in the sf3b4-/- mutants. Supplementation of retinoic acid rescued key cellular phenotypes observed in the sf3b4-/- mutants, offering potential therapeutic strategies for RP in the future. In conclusion, this study sheds light on the previously unknown role of SF3B4 in retinogenesis and provides insights into the underlying mechanisms of RP.
Collapse
Affiliation(s)
- Zulvikar Syambani Ulhaq
- Laboratory of Developmental Disorders and Toxicology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka, Japan; Research Center for Pre-clinical and Clinical Medicine, National Research and Innovation Agency, Republic of Indonesia, Cibinong, Indonesia.
| | - Keigo Okamoto
- Laboratory of Aquatic Molecular Developmental Biology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Yukiko Ogino
- Laboratory of Aquatic Molecular Developmental Biology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - William Ka Fai Tse
- Laboratory of Developmental Disorders and Toxicology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
10
|
Parvez S, Brandt ZJ, Peterson RT. Large-scale F0 CRISPR screens in vivo using MIC-Drop. Nat Protoc 2023; 18:1841-1865. [PMID: 37069311 PMCID: PMC10419324 DOI: 10.1038/s41596-023-00821-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 01/26/2023] [Indexed: 04/19/2023]
Abstract
The zebrafish is a powerful model system for studying animal development, for modeling genetic diseases, and for large-scale in vivo functional genetics. Because of its ease of use and its high efficiency in targeted gene perturbation, CRISPR-Cas9 has recently gained prominence as the tool of choice for genetic manipulation in zebrafish. However, scaling up the technique for high-throughput in vivo functional genetics has been a challenge. We recently developed a method, Multiplexed Intermixed CRISPR Droplets (MIC-Drop), that makes large-scale CRISPR screening in zebrafish possible. Here, we outline the step-by-step protocol for performing functional genetic screens in zebrafish by using MIC-Drop. MIC-Drop uses multiplexed single-guide RNAs to generate biallelic mutations in injected zebrafish embryos, allowing genetic screens to be performed in F0 animals. Combining microfluidics and DNA barcoding enables simultaneous targeting of tens to hundreds of genes from a single injection needle, while also enabling retrospective and rapid identification of the genotype responsible for an observed phenotype. The primary target audiences for MIC-Drop are developmental biologists, zebrafish geneticists, and researchers interested in performing in vivo functional genetic screens in a vertebrate model system. MIC-Drop will also prove useful in the hands of chemical biologists seeking to identify targets of small molecules that cause phenotypic changes in zebrafish. By using MIC-Drop, a typical screen of 100 genes can be conducted within 2-3 weeks by a single user.
Collapse
Affiliation(s)
- Saba Parvez
- Department of Pharmacology & Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
| | - Zachary J Brandt
- Department of Pharmacology & Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
| | - Randall T Peterson
- Department of Pharmacology & Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
11
|
Patel P, Nandi A, Verma SK, Kaushik N, Suar M, Choi EH, Kaushik NK. Zebrafish-based platform for emerging bio-contaminants and virus inactivation research. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162197. [PMID: 36781138 PMCID: PMC9922160 DOI: 10.1016/j.scitotenv.2023.162197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/23/2023] [Accepted: 02/08/2023] [Indexed: 05/27/2023]
Abstract
Emerging bio-contaminants such as viruses have affected health and environment settings of every country. Viruses are the minuscule entities resulting in severe contagious diseases like SARS, MERS, Ebola, and avian influenza. Recent epidemic like the SARS-CoV-2, the virus has undergone mutations strengthen them and allowing to escape from the remedies. Comprehensive knowledge of viruses is essential for the development of targeted therapeutic and vaccination treatments. Animal models mimicking human biology like non-human primates, rats, mice, and rabbits offer competitive advantage to assess risk of viral infections, chemical toxins, nanoparticles, and microbes. However, their economic maintenance has always been an issue. Furthermore, the redundancy of experimental results due to aforementioned aspects is also in examine. Hence, exploration for the alternative animal models is crucial for risk assessments. The current review examines zebrafish traits and explores the possibilities to monitor emerging bio-contaminants. Additionally, a comprehensive picture of the bio contaminant and virus particle invasion and abatement mechanisms in zebrafish and human cells is presented. Moreover, a zebrafish model to investigate the emerging viruses such as coronaviridae and poxviridae has been suggested.
Collapse
Affiliation(s)
- Paritosh Patel
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897 Seoul, South Korea
| | - Aditya Nandi
- School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Suresh K Verma
- School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India; Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - Neha Kaushik
- Department of Biotechnology, College of Engineering, The University of Suwon, 18323 Hwaseong, Republic of Korea
| | - Mrutyunjay Suar
- School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Eun Ha Choi
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897 Seoul, South Korea.
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897 Seoul, South Korea.
| |
Collapse
|
12
|
Bradford YM, Van Slyke CE, Howe DG, Fashena D, Frazer K, Martin R, Paddock H, Pich C, Ramachandran S, Ruzicka L, Singer A, Taylor R, Tseng WC, Westerfield M. From multiallele fish to nonstandard environments, how ZFIN assigns phenotypes, human disease models, and gene expression annotations to genes. Genetics 2023; 224:iyad032. [PMID: 36864549 PMCID: PMC10158835 DOI: 10.1093/genetics/iyad032] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/13/2023] [Indexed: 03/04/2023] Open
Abstract
Danio rerio is a model organism used to investigate vertebrate development. Manipulation of the zebrafish genome and resultant gene products by mutation or targeted knockdown has made the zebrafish a good system for investigating gene function, providing a resource to investigate genetic contributors to phenotype and human disease. Phenotypic outcomes can be the result of gene mutation, targeted knockdown of gene products, manipulation of experimental conditions, or any combination thereof. Zebrafish have been used in various genetic and chemical screens to identify genetic and environmental contributors to phenotype and disease outcomes. The Zebrafish Information Network (ZFIN, zfin.org) is the central repository for genetic, genomic, and phenotypic data that result from research using D. rerio. Here we describe how ZFIN annotates phenotype, expression, and disease model data across various experimental designs, how we computationally determine wild-type gene expression, the phenotypic gene, and how these results allow us to propagate gene expression, phenotype, and disease model data to the correct gene, or gene related entity.
Collapse
Affiliation(s)
- Yvonne M Bradford
- The Institute of Neuroscience, University of Oregon, Eugene, OR 97403-1254, USA
| | - Ceri E Van Slyke
- The Institute of Neuroscience, University of Oregon, Eugene, OR 97403-1254, USA
| | - Douglas G Howe
- The Institute of Neuroscience, University of Oregon, Eugene, OR 97403-1254, USA
| | - David Fashena
- The Institute of Neuroscience, University of Oregon, Eugene, OR 97403-1254, USA
| | - Ken Frazer
- The Institute of Neuroscience, University of Oregon, Eugene, OR 97403-1254, USA
| | - Ryan Martin
- The Institute of Neuroscience, University of Oregon, Eugene, OR 97403-1254, USA
| | - Holly Paddock
- The Institute of Neuroscience, University of Oregon, Eugene, OR 97403-1254, USA
| | - Christian Pich
- The Institute of Neuroscience, University of Oregon, Eugene, OR 97403-1254, USA
| | | | - Leyla Ruzicka
- The Institute of Neuroscience, University of Oregon, Eugene, OR 97403-1254, USA
| | - Amy Singer
- The Institute of Neuroscience, University of Oregon, Eugene, OR 97403-1254, USA
| | - Ryan Taylor
- The Institute of Neuroscience, University of Oregon, Eugene, OR 97403-1254, USA
| | - Wei-Chia Tseng
- The Institute of Neuroscience, University of Oregon, Eugene, OR 97403-1254, USA
| | - Monte Westerfield
- The Institute of Neuroscience, University of Oregon, Eugene, OR 97403-1254, USA
| |
Collapse
|
13
|
Hawkins MR, Wingert RA. Zebrafish as a Model to Study Retinoic Acid Signaling in Development and Disease. Biomedicines 2023; 11:biomedicines11041180. [PMID: 37189798 DOI: 10.3390/biomedicines11041180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/06/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
Retinoic acid (RA) is a metabolite of vitamin A (retinol) that plays various roles in development to influence differentiation, patterning, and organogenesis. RA also serves as a crucial homeostatic regulator in adult tissues. The role of RA and its associated pathways are well conserved from zebrafish to humans in both development and disease. This makes the zebrafish a natural model for further interrogation into the functions of RA and RA-associated maladies for the sake of basic research, as well as human health. In this review, we explore both foundational and recent studies using zebrafish as a translational model for investigating RA from the molecular to the organismal scale.
Collapse
Affiliation(s)
- Matthew R Hawkins
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Rebecca A Wingert
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
14
|
Henke K, Farmer DT, Niu X, Kraus JM, Galloway JL, Youngstrom DW. Genetically engineered zebrafish as models of skeletal development and regeneration. Bone 2023; 167:116611. [PMID: 36395960 PMCID: PMC11080330 DOI: 10.1016/j.bone.2022.116611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/01/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022]
Abstract
Zebrafish (Danio rerio) are aquatic vertebrates with significant homology to their terrestrial counterparts. While zebrafish have a centuries-long track record in developmental and regenerative biology, their utility has grown exponentially with the onset of modern genetics. This is exemplified in studies focused on skeletal development and repair. Herein, the numerous contributions of zebrafish to our understanding of the basic science of cartilage, bone, tendon/ligament, and other skeletal tissues are described, with a particular focus on applications to development and regeneration. We summarize the genetic strengths that have made the zebrafish a powerful model to understand skeletal biology. We also highlight the large body of existing tools and techniques available to understand skeletal development and repair in the zebrafish and introduce emerging methods that will aid in novel discoveries in skeletal biology. Finally, we review the unique contributions of zebrafish to our understanding of regeneration and highlight diverse routes of repair in different contexts of injury. We conclude that zebrafish will continue to fill a niche of increasing breadth and depth in the study of basic cellular mechanisms of skeletal biology.
Collapse
Affiliation(s)
- Katrin Henke
- Department of Orthopaedics, Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - D'Juan T Farmer
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA; Department of Orthopaedic Surgery, University of California, Los Angeles, CA 90095, USA.
| | - Xubo Niu
- Center for Regenerative Medicine, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Jessica M Kraus
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA.
| | - Jenna L Galloway
- Center for Regenerative Medicine, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Daniel W Youngstrom
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA.
| |
Collapse
|
15
|
MacRae CA, Peterson RT. Zebrafish as a Mainstream Model for In Vivo Systems Pharmacology and Toxicology. Annu Rev Pharmacol Toxicol 2023; 63:43-64. [PMID: 36151053 DOI: 10.1146/annurev-pharmtox-051421-105617] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Pharmacology and toxicology are part of a much broader effort to understand the relationship between chemistry and biology. While biomedicine has necessarily focused on specific cases, typically of direct human relevance, there are real advantages in pursuing more systematic approaches to characterizing how health and disease are influenced by small molecules and other interventions. In this context, the zebrafish is now established as the representative screenable vertebrate and, through ongoing advances in the available scale of genome editing and automated phenotyping, is beginning to address systems-level solutions to some biomedical problems. The addition of broader efforts to integrate information content across preclinical model organisms and the incorporation of rigorous analytics, including closed-loop deep learning, will facilitate efforts to create systems pharmacology and toxicology with the ability to continuously optimize chemical biological interactions around societal needs. In this review, we outline progress toward this goal.
Collapse
Affiliation(s)
- Calum A MacRae
- Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts, USA;
| | | |
Collapse
|
16
|
Wu M, Xu J, Zhang Y, Wen Z. Learning from Zebrafish Hematopoiesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1442:137-157. [PMID: 38228963 DOI: 10.1007/978-981-99-7471-9_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Hematopoiesis is a complex process that tightly regulates the generation, proliferation, differentiation, and maintenance of hematopoietic cells. Disruptions in hematopoiesis can lead to various diseases affecting both hematopoietic and non-hematopoietic systems, such as leukemia, anemia, thrombocytopenia, rheumatoid arthritis, and chronic granuloma. The zebrafish serves as a powerful vertebrate model for studying hematopoiesis, offering valuable insights into both hematopoietic regulation and hematopoietic diseases. In this chapter, we present a comprehensive overview of zebrafish hematopoiesis, highlighting its distinctive characteristics in hematopoietic processes. We discuss the ontogeny and modulation of both primitive and definitive hematopoiesis, as well as the microenvironment that supports hematopoietic stem/progenitor cells. Additionally, we explore the utility of zebrafish as a disease model and its potential in drug discovery, which not only advances our understanding of the regulatory mechanisms underlying hematopoiesis but also facilitates the exploration of novel therapeutic strategies for hematopoietic diseases.
Collapse
Affiliation(s)
- Mei Wu
- Affiliated Hospital of Guangdong Medical University and Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Jin Xu
- South China University of Technology, School of Medicine, Guangzhou, Guangdong, China.
| | - Yiyue Zhang
- South China University of Technology, School of Medicine, Guangzhou, Guangdong, China.
| | - Zilong Wen
- Southern University of Science and Technology, School of Life Sciences, Shenzhen, Guangdong, China.
| |
Collapse
|
17
|
Dsilva P, Pai P, Shetty MG, Babitha KS. The role of histone deacetylases in embryonic development. Mol Reprod Dev 2023; 90:14-26. [PMID: 36534913 DOI: 10.1002/mrd.23659] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 09/16/2022] [Accepted: 11/26/2022] [Indexed: 12/23/2022]
Abstract
The basic units of chromatin are nucleosomes, that are made up of DNA wrapped around histone cores. Histone lysine residue is a common location for posttranslational modifications, with acetylation being the second most prevalent. Histone acetyltransferases (HATs/KATs) and histone deacetylases (HDACs/KDACs) regulate histone acetylation, which is important in gene expression control. HDACs/KDACs regulate gene expressions through the repression of the transcription machinery. HDAC/KDAC isoforms play a major role during various stages of embryo development and neurogenesis. In specific, class I and II HDACs/KDACs are involved in cardiac muscle differentiation and development. An insight into different pathways and genes associated with embryonic development, the effect of HDAC/KDAC activity during the embryonic stem cell differentiation, preimplantation, embryo development, gastrulation, and the role of different HDAC/KDAC inhibitors during the process of embryogenesis is summarized in the present review article.
Collapse
Affiliation(s)
- Priyanka Dsilva
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Padmini Pai
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Manasa Gangadhar Shetty
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Kampa S Babitha
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
18
|
El Chekie MR, Nemer G, Khalil A, Macari AT, Ghafari JG. Novel genes linked to Class II Division 1 malocclusion with mandibular micrognathism. Am J Orthod Dentofacial Orthop 2022; 163:667-676.e3. [PMID: 36581475 DOI: 10.1016/j.ajodo.2022.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 04/01/2022] [Accepted: 04/01/2022] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Mandibular micrognathism (MM) is an underdeveloped mandible resulting from complex interactions between genetic and environmental factors. Prior research focused mainly on the genetic determinants of mandibular retrognathism, not necessarily reflecting micrognathism, thus supporting the need to study MM. This study aimed to explore the inheritance pattern and identify the candidate genes involved in the development and familial transmission of MM. METHODS Diagnosing probands with MM was based on clinical and lateral cephalometric data. The pedigrees were drawn for 11 identified families, 5 of whom accepted to undergo detailed data and biospecimen collection. These families included 15 MM and 13 non-MM subjects over 2-3 generations. The procedure involved the withdrawal of 5 mL of blood. Genomic DNA was isolated from blood cells to investigate protein-coding regions via whole exome sequencing. Standardized filtering steps were employed, and candidate genes were identified. RESULTS Most of the pedigrees suggested a Mendelian inheritance pattern and segregated in an autosomal-dominant manner. One of the families, which also underwent biospecimen, displayed an X-linked inheritance pattern of the trait. Genetic screening disclosed 8 potentially novel genes (GLUD2, ADGRG4, ARSH, TGIF1, FGFR3, ZNF181, INTS7, and WNT6). None of the recognized exonic regions were previously reported. CONCLUSIONS Eight novel genes were identified in association with MM in the largest number of families reported to date. The genes were X-linked in 1 family, a finding previously not observed in mandibular genetics.
Collapse
Affiliation(s)
- Michelle R El Chekie
- Division of Orthodontics and Dentofacial Orthopedics, American University of Beirut Medical Center, Beirut, Lebanon
| | - Georges Nemer
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Athar Khalil
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Anthony T Macari
- Division of Orthodontics and Dentofacial Orthopedics, American University of Beirut Medical Center, Beirut, Lebanon.
| | - Joseph G Ghafari
- Division of Orthodontics and Dentofacial Orthopedics, American University of Beirut Medical Center, Beirut, Lebanon Department of Orthodontics and Dentofacial Orthopedics, University of Pennsylvania, Philadelphia, Penn
| |
Collapse
|
19
|
Weeks O, Miller BM, Pepe-Mooney BJ, Oderberg IM, Freeburg SH, Smith CJ, North TE, Goessling W. Embryonic alcohol exposure disrupts the ubiquitin-proteasome system. JCI Insight 2022; 7:e156914. [PMID: 36477359 PMCID: PMC9746913 DOI: 10.1172/jci.insight.156914] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 10/26/2022] [Indexed: 12/12/2022] Open
Abstract
Ethanol (EtOH) is a commonly encountered teratogen that can disrupt organ development and lead to fetal alcohol spectrum disorders (FASDs); many mechanisms of developmental toxicity are unknown. Here, we used transcriptomic analysis in an established zebrafish model of embryonic alcohol exposure (EAE) to identify the ubiquitin-proteasome system (UPS) as a critical target of EtOH during development. Surprisingly, EAE alters 20S, 19S, and 11S proteasome gene expression and increases ubiquitylated protein load. EtOH and its metabolite acetaldehyde decrease proteasomal peptidase activity in a cell type-specific manner. Proteasome 20S subunit β 1 (psmb1hi2939Tg) and proteasome 26S subunit, ATPase 6 (psmc6hi3593Tg), genetic KOs define the developmental impact of decreased proteasome function. Importantly, loss of psmb1 or psmc6 results in widespread developmental abnormalities resembling EAE phenotypes, including growth restriction, abnormal craniofacial structure, neurodevelopmental defects, and failed hepatopancreas maturation. Furthermore, pharmacologic inhibition of chymotrypsin-like proteasome activity potentiates the teratogenic effects of EAE on craniofacial structure, the nervous system, and the endoderm. Our studies identify the proteasome as a target of EtOH exposure and signify that UPS disruptions contribute to craniofacial, neurological, and endodermal phenotypes in FASDs.
Collapse
Affiliation(s)
- Olivia Weeks
- Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Bess M. Miller
- Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Brian J. Pepe-Mooney
- Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Isaac M. Oderberg
- Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Scott H. Freeburg
- Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Colton J. Smith
- Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Trista E. North
- Stem Cell Program, Department of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | - Wolfram Goessling
- Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
20
|
Cai Y, Zhang W, Fu Y, Shan Z, Xu J, Wang P, Kong F, Jin J, Yan H, Ge X, Wang Y, You X, Chen J, Li X, Chen W, Chen X, Ma J, Tang X, Zhang J, Bao Y, Jiang L, Wang H, Wan J. Du13 encodes a C 2 H 2 zinc-finger protein that regulates Wx b pre-mRNA splicing and microRNA biogenesis in rice endosperm. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1387-1401. [PMID: 35560858 PMCID: PMC9241381 DOI: 10.1111/pbi.13821] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/27/2022] [Accepted: 03/10/2022] [Indexed: 05/07/2023]
Abstract
Amylose content is a crucial physicochemical property responsible for the eating and cooking quality of rice (Oryza sativa L.) grain and is mainly controlled by the Waxy (Wx) gene. Previous studies have identified several Dull genes that modulate the expression of the Wxb allele in japonica rice by affecting the splicing efficiency of the Wxb pre-mRNA. Here, we uncover dual roles for a novel Dull gene in pre-mRNA splicing and microRNA processing. We isolated the dull mutant, du13, with a dull endosperm and low amylose content. Map-based cloning showed that Du13 encodes a C2 H2 zinc-finger protein. Du13 coordinates with the nuclear cap-binding complex to regulate the splicing of Wxb transcripts in rice endosperm. Moreover, Du13 also regulates alternative splicing of other protein-coding transcripts and affects the biogenesis of a subset of microRNAs. Our results reveal an evolutionarily conserved link between pre-mRNA splicing and microRNA biogenesis in rice endosperm. Our findings also provide new insights into the functions of Dull genes in rice and expand our knowledge of microRNA biogenesis in monocots.
Collapse
Affiliation(s)
- Yue Cai
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
| | - Wenwei Zhang
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
| | - Yushuang Fu
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
| | - Zhuangzhuang Shan
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
| | - Jiahuan Xu
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
| | - Peng Wang
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
| | - Fei Kong
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
| | - Jie Jin
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
| | - Haigang Yan
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
| | - Xinyuan Ge
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
| | - Yongxiang Wang
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
| | - Xiaoman You
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
| | - Jie Chen
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
| | - Xin Li
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
| | - Weiwei Chen
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
| | - Xingang Chen
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
| | - Jing Ma
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
| | - Xiaojie Tang
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
| | - Jie Zhang
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
| | - Yiqun Bao
- College of Life SciencesNanjing Agricultural UniversityNanjingChina
| | - Ling Jiang
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
| | - Haiyang Wang
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Jianmin Wan
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
21
|
Rusterholz TDS, Hofmann C, Bachmann-Gagescu R. Insights Gained From Zebrafish Models for the Ciliopathy Joubert Syndrome. Front Genet 2022; 13:939527. [PMID: 35846153 PMCID: PMC9280682 DOI: 10.3389/fgene.2022.939527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 05/26/2022] [Indexed: 12/04/2022] Open
Abstract
Cilia are quasi-ubiquitous microtubule-based sensory organelles, which play vital roles in signal transduction during development and cell homeostasis. Dysfunction of cilia leads to a group of Mendelian disorders called ciliopathies, divided into different diagnoses according to clinical phenotype constellation and genetic causes. Joubert syndrome (JBTS) is a prototypical ciliopathy defined by a diagnostic cerebellar and brain stem malformation termed the “Molar Tooth Sign” (MTS), in addition to which patients display variable combinations of typical ciliopathy phenotypes such as retinal dystrophy, fibrocystic renal disease, polydactyly or skeletal dystrophy. Like most ciliopathies, JBTS is genetically highly heterogeneous with ∼40 associated genes. Zebrafish are widely used to model ciliopathies given the high conservation of ciliary genes and the variety of specialized cilia types similar to humans. In this review, we compare different existing JBTS zebrafish models with each other and describe their contributions to our understanding of JBTS pathomechanism. We find that retinal dystrophy, which is the most investigated ciliopathy phenotype in zebrafish ciliopathy models, is caused by distinct mechanisms according to the affected gene. Beyond this, differences in phenotypes in other organs observed between different JBTS-mutant models suggest tissue-specific roles for proteins implicated in JBTS. Unfortunately, the lack of systematic assessment of ciliopathy phenotypes in the mutants described in the literature currently limits the conclusions that can be drawn from these comparisons. In the future, the numerous existing JBTS zebrafish models represent a valuable resource that can be leveraged in order to gain further insights into ciliary function, pathomechanisms underlying ciliopathy phenotypes and to develop treatment strategies using small molecules.
Collapse
Affiliation(s)
- Tamara D. S. Rusterholz
- Institute of Medical Genetics, University of Zurich, Schlieren, Switzerland
- Department of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
| | - Claudia Hofmann
- Institute of Medical Genetics, University of Zurich, Schlieren, Switzerland
- Department of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
| | - Ruxandra Bachmann-Gagescu
- Institute of Medical Genetics, University of Zurich, Schlieren, Switzerland
- Department of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
- *Correspondence: Ruxandra Bachmann-Gagescu,
| |
Collapse
|
22
|
Abstract
Heart disease is the leading cause of death worldwide. Despite decades of research, most heart pathologies have limited treatments, and often the only curative approach is heart transplantation. Thus, there is an urgent need to develop new therapeutic approaches for treating cardiac diseases. Animal models that reproduce the human pathophysiology are essential to uncovering the biology of diseases and discovering therapies. Traditionally, mammals have been used as models of cardiac disease, but the cost of generating and maintaining new models is exorbitant, and the studies have very low throughput. In the last decade, the zebrafish has emerged as a tractable model for cardiac diseases, owing to several characteristics that made this animal popular among developmental biologists. Zebrafish fertilization and development are external; embryos can be obtained in high numbers, are cheap and easy to maintain, and can be manipulated to create new genetic models. Moreover, zebrafish exhibit an exceptional ability to regenerate their heart after injury. This review summarizes 25 years of research using the zebrafish to study the heart, from the classical forward screenings to the contemporary methods to model mutations found in patients with cardiac disease. We discuss the advantages and limitations of this model organism and introduce the experimental approaches exploited in zebrafish, including forward and reverse genetics and chemical screenings. Last, we review the models used to induce cardiac injury and essential ideas derived from studying natural regeneration. Studies using zebrafish have the potential to accelerate the discovery of new strategies to treat cardiac diseases.
Collapse
Affiliation(s)
- Juan Manuel González-Rosa
- Cardiovascular Research Center, Massachusetts General Hospital Research Institute, Harvard Medical School, Charlestown, MA
| |
Collapse
|
23
|
Blackwell DL, Fraser SD, Caluseriu O, Vivori C, Tyndall AV, Lamont RE, Parboosingh JS, Innes AM, Bernier FP, Childs SJ. Hnrnpul1 controls transcription, splicing, and modulates skeletal and limb development in vivo. G3 GENES|GENOMES|GENETICS 2022; 12:6553027. [PMID: 35325113 PMCID: PMC9073674 DOI: 10.1093/g3journal/jkac067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/15/2022] [Indexed: 11/17/2022]
Abstract
Mutations in RNA-binding proteins can lead to pleiotropic phenotypes including craniofacial, skeletal, limb, and neurological symptoms. Heterogeneous nuclear ribonucleoproteins (hnRNPs) are involved in nucleic acid binding, transcription, and splicing through direct binding to DNA and RNA, or through interaction with other proteins in the spliceosome. We show a developmental role for Hnrnpul1 in zebrafish, resulting in reduced body and fin growth and missing bones. Defects in craniofacial tendon growth and adult-onset caudal scoliosis are also seen. We demonstrate a role for Hnrnpul1 in alternative splicing and transcriptional regulation using RNA-sequencing, particularly of genes involved in translation, ubiquitination, and DNA damage. Given its cross-species conservation and role in splicing, it would not be surprising if it had a role in human development. Whole-exome sequencing detected a homozygous frameshift variant in HNRNPUL1 in 2 siblings with congenital limb malformations, which is a candidate gene for their limb malformations. Zebrafish Hnrnpul1 mutants suggest an important developmental role of hnRNPUL1 and provide motivation for exploring the potential conservation of ancient regulatory circuits involving hnRNPUL1 in human development.
Collapse
Affiliation(s)
- Danielle L Blackwell
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB T2N 4N1, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Sherri D Fraser
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB T2N 4N1, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Oana Caluseriu
- Department of Medical Genetics, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Claudia Vivori
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona 08002, Spain
| | - Amanda V Tyndall
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Medical Genetics, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Ryan E Lamont
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Medical Genetics, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Jillian S Parboosingh
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Medical Genetics, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - A Micheil Innes
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Medical Genetics, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - François P Bernier
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Medical Genetics, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Sarah J Childs
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB T2N 4N1, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
24
|
Frisk JH, Örn S, Pejler G, Eriksson S, Wang L. Differential expression of enzymes in thymidylate biosynthesis in zebrafish at different developmental stages: implications for dtymk mutation-caused neurodegenerative disorders. BMC Neurosci 2022; 23:19. [PMID: 35346037 PMCID: PMC8962455 DOI: 10.1186/s12868-022-00704-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 03/14/2022] [Indexed: 11/15/2022] Open
Abstract
Background Deoxythymidine triphosphate (dTTP) is an essential building block of DNA, and defects in enzymes involved in dTTP synthesis cause neurodegenerative disorders. For instance, mutations in DTYMK, the gene coding for thymidylate kinase (TMPK), cause severe microcephaly in human. However, the mechanism behind this is not well-understood. Here we used the zebrafish model and studied (i) TMPK, an enzyme required for both the de novo and the salvage pathways of dTTP synthesis, and (ii) thymidine kinases (TK) of the salvage pathway in order to understand their role in neuropathology. Results Our findings reveal that maternal-stored dNTPs are only sufficient for 6 cell division cycles, and the levels of dNTPs are inversely correlated to cell cycle length during early embryogenesis. TMPK and TK activities are prominent in the cytosol of embryos, larvae and adult fish and brain contains the highest TMPK activity. During early development, TMPK activity increased gradually from 6 hpf and a profound increase was observed at 72 hpf, and TMPK activity reached its maximal level at 96 hpf, and remained at high level until 144 hpf. The expression of dtymk encoded Dtymk protein correlated to its mRNA expression and neuronal development but not to the TMPK activity detected. However, despite the high TMPK activity detected at later stages of development, the Dtymk protein was undetectable. Furthermore, the TMPK enzyme detected at later stages showed similar biochemical properties as the Dtymk enzyme but was not recognized by the Dtymk specific antibody. Conclusions Our results suggest that active dNTP synthesis in early embryogenesis is vital and that Dtymk is essential for neurodevelopment, which is supported by a recent study of dtymk knockout zebrafish with neurological disorder and lethal outcomes. Furthermore, there is a novel TMPK-like enzyme expressed at later stages of development. Supplementary Information The online version contains supplementary material available at 10.1186/s12868-022-00704-0.
Collapse
|
25
|
Verkerke H, Dias-Baruffi M, Cummings RD, Arthur CM, Stowell SR. Galectins: An Ancient Family of Carbohydrate Binding Proteins with Modern Functions. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2442:1-40. [PMID: 35320517 DOI: 10.1007/978-1-0716-2055-7_1] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Galectins are a large family of carbohydrate binding proteins with members in nearly every lineage of multicellular life. Through tandem and en-mass genome duplications, over 15 known vertebrate galectins likely evolved from a single common ancestor extant in pre-chordate lineages. While galectins have divergently evolved numerous functions, some of which do not involve carbohydrate recognition, the vast majority of the galectins have retained the conserved ability to bind variably modified polylactosamine (polyLacNAc) residues on glycans that modify proteins and lipids on the surface of host cells and pathogens. In addition to their direct role in microbial killing, many proposed galectin functions in the immune system and cancer involve crosslinking glycosylated receptors and modifying signaling pathways or sensitivity to antigen from the outside in. However, a large body of work has uncovered intracellular galectin functions mediated by carbohydrate- and non-carbohydrate-dependent interactions. In the cytoplasm, galectins can tune intracellular kinase and G-protein-coupled signaling cascades important for nutrient sensing, cell cycle progression, and transformation. Particularly, but interconnected pathways, cytoplasmic galectins serve the innate immune system as sensors of endolysosomal damage, recruiting and assembling the components of autophagosomes during intracellular infection through carbohydrate-dependent and -independent activities. In the nucleus, galectins participate in pre-mRNA splicing perhaps through interactions with non-coding RNAs required for assembly of spliceosomes. Together, studies of galectin function paint a picture of a functionally dynamic protein family recruited during eons of evolution to regulate numerous essential cellular processes in the context of multicellular life.
Collapse
Affiliation(s)
- Hans Verkerke
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Harvard Glycomics Center, Harvard Medical School, Boston, MA, USA
| | - Marcelo Dias-Baruffi
- Department of Clinical Analysis, Toxicological and Bromatological, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Connie M Arthur
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Harvard Glycomics Center, Harvard Medical School, Boston, MA, USA
| | - Sean R Stowell
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA. .,Harvard Glycomics Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
26
|
Vanoevelen JM, Bierau J, Grashorn JC, Lambrichs E, Kamsteeg EJ, Bok LA, Wevers RA, van der Knaap MS, Bugiani M, Frisk JH, Colnaghi R, O'Driscoll M, Hellebrekers DMEI, Rodenburg R, Ferreira CR, Brunner HG, van den Wijngaard A, Abdel-Salam GMH, Wang L, Stumpel CTRM. DTYMK is essential for genome integrity and neuronal survival. Acta Neuropathol 2022; 143:245-262. [PMID: 34918187 PMCID: PMC8742820 DOI: 10.1007/s00401-021-02394-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 12/03/2021] [Accepted: 12/03/2021] [Indexed: 11/28/2022]
Abstract
Nucleotide metabolism is a complex pathway regulating crucial cellular processes such as nucleic acid synthesis, DNA repair and proliferation. This study shows that impairment of the biosynthesis of one of the building blocks of DNA, dTTP, causes a severe, early-onset neurodegenerative disease. Here, we describe two unrelated children with bi-allelic variants in DTYMK, encoding dTMPK, which catalyzes the penultimate step in dTTP biosynthesis. The affected children show severe microcephaly and growth retardation with minimal neurodevelopment. Brain imaging revealed severe cerebral atrophy and disappearance of the basal ganglia. In cells of affected individuals, dTMPK enzyme activity was minimal, along with impaired DNA replication. In addition, we generated dtymk mutant zebrafish that replicate this phenotype of microcephaly, neuronal cell death and early lethality. An increase of ribonucleotide incorporation in the genome as well as impaired responses to DNA damage were observed in dtymk mutant zebrafish, providing novel pathophysiological insights. It is highly remarkable that this deficiency is viable as an essential component for DNA cannot be generated, since the metabolic pathway for dTTP synthesis is completely blocked. In summary, by combining genetic and biochemical approaches in multiple models we identified loss-of-function of DTYMK as the cause of a severe postnatal neurodegenerative disease and highlight the essential nature of dTTP synthesis in the maintenance of genome stability and neuronal survival.
Collapse
Affiliation(s)
- Jo M Vanoevelen
- Department of Clinical Genetics, Maastricht University Medical Centre+, 6229 ER, Maastricht, The Netherlands.
- GROW-School for Oncology and Developmental Biology, 6229 ER, Maastricht, The Netherlands.
| | - Jörgen Bierau
- Department of Clinical Genetics, Maastricht University Medical Centre+, 6229 ER, Maastricht, The Netherlands
| | - Janine C Grashorn
- Department of Clinical Genetics, Maastricht University Medical Centre+, 6229 ER, Maastricht, The Netherlands
| | - Ellen Lambrichs
- Department of Clinical Genetics, Maastricht University Medical Centre+, 6229 ER, Maastricht, The Netherlands
| | - Erik-Jan Kamsteeg
- Department of Human Genetics, Radboud UMC, 6525 GA, Nijmegen, The Netherlands
| | - Levinus A Bok
- Department of Pediatrics, Màxima Medical Center, 5504 DB, Veldhoven, The Netherlands
| | - Ron A Wevers
- Translational Metabolic Laboratory, Radboud UMC, 6525 GA, Nijmegen, The Netherlands
| | | | - Marianna Bugiani
- Department of Neuropathology, VUMC, 1105 AZ, Amsterdam, The Netherlands
| | - Junmei Hu Frisk
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, 75007, Uppsala, Sweden
| | - Rita Colnaghi
- Genome Damage and Stability Centre, University of Sussex, Brighton, BN1 9RH, UK
| | - Mark O'Driscoll
- Genome Damage and Stability Centre, University of Sussex, Brighton, BN1 9RH, UK
| | - Debby M E I Hellebrekers
- Department of Clinical Genetics, Maastricht University Medical Centre+, 6229 ER, Maastricht, The Netherlands
| | - Richard Rodenburg
- Translational Metabolic Laboratory, Radboud UMC, 6525 GA, Nijmegen, The Netherlands
| | - Carlos R Ferreira
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Han G Brunner
- Department of Clinical Genetics, Maastricht University Medical Centre+, 6229 ER, Maastricht, The Netherlands
- Department of Human Genetics, Radboud UMC, 6525 GA, Nijmegen, The Netherlands
- GROW-School for Oncology and Developmental Biology, 6229 ER, Maastricht, The Netherlands
- MHENS School of Neuroscience, 6229 ER, Maastricht, The Netherlands
- Donders Institute of Neuroscience, Radboud UMC, 6525 GA, Nijmegen, The Netherlands
| | - Arthur van den Wijngaard
- Department of Clinical Genetics, Maastricht University Medical Centre+, 6229 ER, Maastricht, The Netherlands
| | - Ghada M H Abdel-Salam
- Department of Clinical Genetics, Human Genetics and Genome Research Division, National Research Centre, Cairo, 12311, Egypt
| | - Liya Wang
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, 75007, Uppsala, Sweden
| | - Constance T R M Stumpel
- Department of Clinical Genetics, Maastricht University Medical Centre+, 6229 ER, Maastricht, The Netherlands.
| |
Collapse
|
27
|
Wadugu BA, Nonavinkere Srivatsan S, Heard A, Alberti MO, Ndonwi M, Liu J, Grieb S, Bradley J, Shao J, Ahmed T, Shirai CL, Khanna A, Fei DL, Miller CA, Graubert TA, Walter MJ. U2af1 is a haplo-essential gene required for hematopoietic cancer cell survival in mice. J Clin Invest 2021; 131:141401. [PMID: 34546980 DOI: 10.1172/jci141401] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/16/2021] [Indexed: 11/17/2022] Open
Abstract
Somatic mutations in the spliceosome gene U2AF1 are common in patients with myelodysplastic syndromes. U2AF1 mutations that code for the most common amino acid substitutions are always heterozygous, and the retained WT allele is expressed, suggesting that mutant hematopoietic cells may require the residual WT allele to be viable. We show that hematopoiesis and RNA splicing in U2af1 heterozygous knockout mice were similar to those in control mice, but that deletion of the WT allele in U2AF1(S34F) heterozygous mutant-expressing hematopoietic cells (i.e., hemizygous mutant) was lethal. These results confirm that U2AF1 mutant hematopoietic cells are dependent on the expression of WT U2AF1 for survival in vivo and that U2AF1 is a haplo-essential cancer gene. Mutant U2AF1(S34F)-expressing cells were also more sensitive to reduced expression of WT U2AF1 than nonmutant cells. Furthermore, mice transplanted with leukemia cells expressing mutant U2AF1 had significantly reduced tumor burden and improved survival after the WT U2af1 allele was deleted compared with when it was not deleted. These results suggest that selectively targeting the WT U2AF1 allele in heterozygous mutant cells could induce cancer cell death and be a therapeutic strategy for patients harboring U2AF1 mutations.
Collapse
Affiliation(s)
| | | | - Amanda Heard
- Division of Oncology, Department of Medicine and
| | - Michael O Alberti
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | - Jie Liu
- Division of Oncology, Department of Medicine and
| | - Sarah Grieb
- Division of Oncology, Department of Medicine and
| | | | - Jin Shao
- Division of Oncology, Department of Medicine and
| | - Tanzir Ahmed
- Division of Oncology, Department of Medicine and
| | | | - Ajay Khanna
- Division of Oncology, Department of Medicine and
| | - Dennis L Fei
- Department of Medicine, Meyer Cancer Center, Weill Cornell Medicine, New York, New York, USA.,Cancer Biology Section, Cancer Genetics Branch, National Human Genome Research Institute, Bethesda, Maryland, USA
| | | | - Timothy A Graubert
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
28
|
Messina A, Potrich D, Schiona I, Sovrano VA, Vallortigara G. The Sense of Number in Fish, with Particular Reference to Its Neurobiological Bases. Animals (Basel) 2021; 11:ani11113072. [PMID: 34827804 PMCID: PMC8614421 DOI: 10.3390/ani11113072] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/13/2021] [Accepted: 10/22/2021] [Indexed: 01/29/2023] Open
Abstract
Simple Summary The ability to deal with quantity, both discrete (numerosities) and continuous (spatial or temporal extent) developed from an evolutionarily conserved system for approximating numerical magnitude. Non-symbolic number cognition based on an approximate sense of magnitude has been documented in a variety of vertebrate species, including fish. Fish, in particular zebrafish, are widely used as models for the investigation of the genetics and molecular mechanisms of behavior, and thus may be instrumental to development of a neurobiology of number cognition. We review here the behavioural studies that have permitted to identify numerical abilities in fish, and the current status of the research related to the neurobiological bases of these abilities with special reference to zebrafish. Combining behavioural tasks with molecular genetics, molecular biology and confocal microscopy, a role of the retina and optic tectum in the encoding of continuous magnitude in larval zebrafish has been reported, while the thalamus and the dorso-central subdivision of pallium in the encoding of discrete magnitude (number) has been documented in adult zebrafish. Research in fish, in particular zebrafish, may reveal instrumental for identifying and characterizing the molecular signature of neurons involved in quantity discrimination processes of all vertebrates, including humans. Abstract It is widely acknowledged that vertebrates can discriminate non-symbolic numerosity using an evolutionarily conserved system dubbed Approximate Number System (ANS). Two main approaches have been used to assess behaviourally numerosity in fish: spontaneous choice tests and operant training procedures. In the first, animals spontaneously choose between sets of biologically-relevant stimuli (e.g., conspecifics, food) differing in quantities (smaller or larger). In the second, animals are trained to associate a numerosity with a reward. Although the ability of fish to discriminate numerosity has been widely documented with these methods, the molecular bases of quantities estimation and ANS are largely unknown. Recently, we combined behavioral tasks with molecular biology assays (e.g c-fos and egr1 and other early genes expression) showing that the thalamus and the caudal region of dorso-central part of the telencephalon seem to be activated upon change in numerousness in visual stimuli. In contrast, the retina and the optic tectum mainly responded to changes in continuous magnitude such as stimulus size. We here provide a review and synthesis of these findings.
Collapse
Affiliation(s)
- Andrea Messina
- Centre for Mind/Brain Sciences, University of Trento, 38068 Rovereto, Italy; (D.P.); (I.S.); (V.A.S.)
- Correspondence: (A.M.); (G.V.)
| | - Davide Potrich
- Centre for Mind/Brain Sciences, University of Trento, 38068 Rovereto, Italy; (D.P.); (I.S.); (V.A.S.)
| | - Ilaria Schiona
- Centre for Mind/Brain Sciences, University of Trento, 38068 Rovereto, Italy; (D.P.); (I.S.); (V.A.S.)
| | - Valeria Anna Sovrano
- Centre for Mind/Brain Sciences, University of Trento, 38068 Rovereto, Italy; (D.P.); (I.S.); (V.A.S.)
- Department of Psychology and Cognitive Science, University of Trento, 38068 Rovereto, Italy
| | - Giorgio Vallortigara
- Centre for Mind/Brain Sciences, University of Trento, 38068 Rovereto, Italy; (D.P.); (I.S.); (V.A.S.)
- Correspondence: (A.M.); (G.V.)
| |
Collapse
|
29
|
Hoffmann N, Peters J. Functions of the (pro)renin receptor (Atp6ap2) at molecular and system levels: pathological implications in hypertension, renal and brain development, inflammation, and fibrosis. Pharmacol Res 2021; 173:105922. [PMID: 34607004 DOI: 10.1016/j.phrs.2021.105922] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/16/2021] [Accepted: 09/29/2021] [Indexed: 12/13/2022]
Abstract
The (pro)renin receptor [(P)RR, Atp6ap2] was initially discovered as a membrane-bound binding partner of prorenin and renin. A soluble (P)RR has additional paracrine effects and is involved in metabolic syndrome and kidney damage. Meanwhile it is clear that most of the effects of the (P)RR are independent of prorenin. In the kidney, (P)RR plays an important role in renal dysfunction by activating proinflammatory and profibrotic molecules. In the brain, (P)RR is expressed in cardiovascular regulatory nuclei and is linked to hypertension. (P)RR is known to be an essential component of the v-ATPase as a key accessory protein and plays an important role in kidney, brain and heart via regulating the pH of the extracellular space and intracellular compartments. V-ATPase and (P)RR together act on WNT and mTOR signalling pathways, which are responsible for cellular homeostasis and autophagy. (P)RR through its role in v-ATPase assembly and function is also important for fast recycling endocytosis by megalin. In the kidney, megalin together with v-ATPase and (P)RR is crucial for endocytic uptake of components of the RAS and their intracellular processing. In the brain, (P)RR, v-ATPases and megalin are important regulators both during development and in the adult. All three proteins are associated with diseases such as XLMR, XMRE, X-linked parkinsonism and epilepsy, cognitive disorders with Parkinsonism, spasticity, intellectual disability, and Alzheimer's Disease which are characterized by impaired neuronal function and/or neuronal loss. The present review focusses on the relevant effects of Atp6ap2 without assigning them necessarily to the RAS. Mechanistically, many effects can be well explained by the role of Atp6ap2 for v-ATPase assembly and function. Furthermore, application of a soluble (P)RR analogue as new therapeutic option is discussed.
Collapse
Affiliation(s)
- Nadin Hoffmann
- Institute of Physiology, University Medicine Greifswald, Friedrich-Ludwig-Jahn-Str. 15A, 17475, Greifswald, Germany
| | - Jörg Peters
- Institute of Physiology, University Medicine Greifswald, Friedrich-Ludwig-Jahn-Str. 15A, 17475, Greifswald, Germany.
| |
Collapse
|
30
|
Wang C, Liu S, Tang KFJ, Zhang Q. Natural infection of covert mortality nodavirus affects Zebrafish (Danio rerio). JOURNAL OF FISH DISEASES 2021; 44:1315-1324. [PMID: 34101847 DOI: 10.1111/jfd.13390] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/22/2021] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
Covert mortality nodavirus (CMNV), a novel aquatic pathogen, causes viral covert mortality disease (VCMD) in shrimps and also known to infect farmed marine fish. To date, there has no report regarding the ability of this virus to infect freshwater fish. In this study, we screened and discovered CMNV-positive freshwater zebrafish individuals by reverse transcription-nested PCR (RT-nPCR). The sequence of CMNV amplicons from zebrafish was found to share 99% identity with RNA-dependent RNA polymerase (RdRp) gene of the original CMNV isolate. Histopathological examination of the CMNV-positive zebrafish samples revealed extensive vacuolation and karyopyknosis lesions in the retina of the eye and the midbrain mesencephalon. CMNV-like virus particles were visualized in these tissues under transmission electron microscope. Different degrees of pathological damages were also found in muscle, gills, thymus and ovarian tissues. Strong positive signals of CMNV probe were observed in these infected tissues by in situ hybridization. Overall, all results indicated that zebrafish, an acknowledged model organism, could be infected naturally by CMNV. Thus, it is needed to pay close attention to the possible interference of CMNV whether in assessment of toxic substances, or in studying the developmental characterization and the nerval function, when zebrafish was used as model animal.
Collapse
Affiliation(s)
- Chong Wang
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Shuang Liu
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Kathy F J Tang
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Qingli Zhang
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| |
Collapse
|
31
|
Campos TL, Korhonen PK, Hofmann A, Gasser RB, Young ND. Harnessing model organism genomics to underpin the machine learning-based prediction of essential genes in eukaryotes - Biotechnological implications. Biotechnol Adv 2021; 54:107822. [PMID: 34461202 DOI: 10.1016/j.biotechadv.2021.107822] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/17/2021] [Accepted: 08/24/2021] [Indexed: 12/17/2022]
Abstract
The availability of high-quality genomes and advances in functional genomics have enabled large-scale studies of essential genes in model eukaryotes, including the 'elegant worm' (Caenorhabditis elegans; Nematoda) and the 'vinegar fly' (Drosophila melanogaster; Arthropoda). However, this is not the case for other, much less-studied organisms, such as socioeconomically important parasites, for which functional genomic platforms usually do not exist. Thus, there is a need to develop innovative techniques or approaches for the prediction, identification and investigation of essential genes. A key approach that could enable the prediction of such genes is machine learning (ML). Here, we undertake an historical review of experimental and computational approaches employed for the characterisation of essential genes in eukaryotes, with a particular focus on model ecdysozoans (C. elegans and D. melanogaster), and discuss the possible applicability of ML-approaches to organisms such as socioeconomically important parasites. We highlight some recent results showing that high-performance ML, combined with feature engineering, allows a reliable prediction of essential genes from extensive, publicly available 'omic data sets, with major potential to prioritise such genes (with statistical confidence) for subsequent functional genomic validation. These findings could 'open the door' to fundamental and applied research areas. Evidence of some commonality in the essential gene-complement between these two organisms indicates that an ML-engineering approach could find broader applicability to ecdysozoans such as parasitic nematodes or arthropods, provided that suitably large and informative data sets become/are available for proper feature engineering, and for the robust training and validation of algorithms. This area warrants detailed exploration to, for example, facilitate the identification and characterisation of essential molecules as novel targets for drugs and vaccines against parasitic diseases. This focus is particularly important, given the substantial impact that such diseases have worldwide, and the current challenges associated with their prevention and control and with drug resistance in parasite populations.
Collapse
Affiliation(s)
- Tulio L Campos
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia; Bioinformatics Core Facility, Instituto Aggeu Magalhães, Fundação Oswaldo Cruz (IAM-Fiocruz), Recife, Pernambuco, Brazil
| | - Pasi K Korhonen
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Andreas Hofmann
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Robin B Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Neil D Young
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
32
|
Zebrafish Cdx4 regulates neural crest cell specification and migratory behaviors in the posterior body. Dev Biol 2021; 480:25-38. [PMID: 34389276 DOI: 10.1016/j.ydbio.2021.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/17/2021] [Accepted: 08/09/2021] [Indexed: 02/07/2023]
Abstract
The neural crest (NC) is a transient multipotent cell population that migrates extensively to produce a remarkable array of vertebrate cell types. NC cell specification progresses in an anterior to posterior fashion, resulting in distinct, axial-restricted subpopulations. The anterior-most, cranial, population of NC is specified as gastrulation concludes and neurulation begins, while more posterior populations become specified as the body elongates. The mechanisms that govern development of the more posterior NC cells remain incompletely understood. Here, we report a key role for zebrafish Cdx4, a homeodomain transcription factor, in the development of posterior NC cells. We demonstrate that cdx4 is expressed in trunk NC cell progenitors, directly binds NC cell-specific enhancers in the NC GRN, and regulates expression of the key NC development gene foxd3 in the posterior body. Moreover, cdx4 mutants show disruptions to the segmental pattern of trunk NC cell migration due to loss of normal leader/follower cell dynamics. Finally, using cell transplantation to generate chimeric specimens, we show that Cdx4 does not function in the paraxial mesoderm-the environment adjacent to which crest migrates-to influence migratory behaviors. We conclude that cdx4 plays a critical, and likely tissue autonomous, role in the establishment of trunk NC migratory behaviors. Together, our results indicate that cdx4 functions as an early NC specifier gene in the posterior body of zebrafish embryos.
Collapse
|
33
|
ARS2/SRRT: at the nexus of RNA polymerase II transcription, transcript maturation and quality control. Biochem Soc Trans 2021; 49:1325-1336. [PMID: 34060620 DOI: 10.1042/bst20201008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 01/26/2023]
Abstract
ARS2/SRRT is an essential eukaryotic protein that has emerged as a critical factor in the sorting of functional from non-functional RNA polymerase II (Pol II) transcripts. Through its interaction with the Cap Binding Complex (CBC), it associates with the cap of newly made RNAs and acts as a hub for competitive exchanges of protein factors that ultimately determine the fate of the associated RNA. The central position of the protein within the nuclear gene expression machinery likely explains why its depletion causes a broad range of phenotypes, yet an exact function of the protein remains elusive. Here, we consider the literature on ARS2/SRRT with the attempt to garner the threads into a unifying working model for ARS2/SRRT function at the nexus of Pol II transcription, transcript maturation and quality control.
Collapse
|
34
|
Sheets L, Holmgren M, Kindt KS. How Zebrafish Can Drive the Future of Genetic-based Hearing and Balance Research. J Assoc Res Otolaryngol 2021; 22:215-235. [PMID: 33909162 PMCID: PMC8110678 DOI: 10.1007/s10162-021-00798-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/23/2021] [Indexed: 02/06/2023] Open
Abstract
Over the last several decades, studies in humans and animal models have successfully identified numerous molecules required for hearing and balance. Many of these studies relied on unbiased forward genetic screens based on behavior or morphology to identify these molecules. Alongside forward genetic screens, reverse genetics has further driven the exploration of candidate molecules. This review provides an overview of the genetic studies that have established zebrafish as a genetic model for hearing and balance research. Further, we discuss how the unique advantages of zebrafish can be leveraged in future genetic studies. We explore strategies to design novel forward genetic screens based on morphological alterations using transgenic lines or behavioral changes following mechanical or acoustic damage. We also outline how recent advances in CRISPR-Cas9 can be applied to perform reverse genetic screens to validate large sequencing datasets. Overall, this review describes how future genetic studies in zebrafish can continue to advance our understanding of inherited and acquired hearing and balance disorders.
Collapse
Affiliation(s)
- Lavinia Sheets
- Department of Otolaryngology-Head & Neck Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Melanie Holmgren
- Department of Otolaryngology-Head & Neck Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Katie S Kindt
- Section On Sensory Cell Development and Function, National Institutes On Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, USA.
| |
Collapse
|
35
|
Jia H, Xue S, Lei L, Fan M, Peng S, Li T, Nagarajan R, Carver B, Ma Z, Deng J, Yan L. A semi-dominant NLR allele causes whole-seedling necrosis in wheat. PLANT PHYSIOLOGY 2021; 186:483-496. [PMID: 33576803 PMCID: PMC8154059 DOI: 10.1093/plphys/kiab058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/26/2021] [Indexed: 05/26/2023]
Abstract
Programmed cell death (PCD) and apoptosis have key functions in development and disease resistance in diverse organisms; however, the induction of necrosis remains poorly understood. Here, we identified a semi-dominant mutant allele that causes the necrotic death of the entire seedling (DES) of wheat (Triticum aestivum L.) in the absence of any pathogen or external stimulus. Positional cloning of the lethal allele mDES1 revealed that this premature death via necrosis was caused by a point mutation from Asp to Asn at amino acid 441 in a nucleotide-binding leucine-rich repeat protein containing nucleotide-binding domain and leucine-rich repeats. The overexpression of mDES1 triggered necrosis and PCD in transgenic plants. However, transgenic wheat harboring truncated wild-type DES1 proteins produced through gene editing that exhibited no significant developmental defects. The point mutation in mDES1 did not cause changes in this protein in the oligomeric state, but mDES1 failed to interact with replication protein A leading to abnormal mitotic cell division. DES1 is an ortholog of Sr35, which recognizes a Puccinia graminis f. sp. tritici stem rust disease effector in wheat, but mDES1 gained function as a direct inducer of plant death. These findings shed light on the intersection of necrosis, apoptosis, and autoimmunity in plants.
Collapse
Affiliation(s)
- Haiyan Jia
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK 74078, USA
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Jiangsu, Nanjing 210095, China
| | - Shulin Xue
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK 74078, USA
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Jiangsu, Nanjing 210095, China
| | - Lei Lei
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Min Fan
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK 74078, USA
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Jiangsu, Nanjing 210095, China
| | - Shuxia Peng
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Tian Li
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Ragupathi Nagarajan
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Brett Carver
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Zhengqiang Ma
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Jiangsu, Nanjing 210095, China
| | - Junpeng Deng
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Liuling Yan
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
36
|
Taberner L, Bañón A, Alsina B. Sensory Neuroblast Quiescence Depends on Vascular Cytoneme Contacts and Sensory Neuronal Differentiation Requires Initiation of Blood Flow. Cell Rep 2021; 32:107903. [PMID: 32668260 DOI: 10.1016/j.celrep.2020.107903] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 04/02/2020] [Accepted: 06/23/2020] [Indexed: 02/08/2023] Open
Abstract
In many organs, stem cell function depends on communication with their niche partners. Cranial sensory neurons develop in close proximity to blood vessels; however, whether vasculature is an integral component of their niches is yet unknown. Here, two separate roles for vasculature in cranial sensory neurogenesis in zebrafish are uncovered. The first involves precise spatiotemporal endothelial-neuroblast cytoneme contacts and Dll4-Notch signaling to restrain neuroblast proliferation. The second, instead, requires blood flow to trigger a transcriptional response that modifies neuroblast metabolic status and induces sensory neuron differentiation. In contrast, no role of sensory neurogenesis in vascular development is found, suggesting unidirectional signaling from vasculature to sensory neuroblasts. Altogether, we demonstrate that the cranial vasculature constitutes a niche component of the sensory ganglia that regulates the pace of their growth and differentiation dynamics.
Collapse
Affiliation(s)
- Laura Taberner
- Developmental Biology Unit, Department of Experimental and Health Sciences, Universitat Pompeu Fabra-Parc de Recerca Biomèdica de Barcelona, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Aitor Bañón
- Developmental Biology Unit, Department of Experimental and Health Sciences, Universitat Pompeu Fabra-Parc de Recerca Biomèdica de Barcelona, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Berta Alsina
- Developmental Biology Unit, Department of Experimental and Health Sciences, Universitat Pompeu Fabra-Parc de Recerca Biomèdica de Barcelona, Dr. Aiguader 88, 08003 Barcelona, Spain.
| |
Collapse
|
37
|
Translation elongation factor 1A2 is encoded by one of four closely related eef1a genes and is dispensable for survival in zebrafish. Biosci Rep 2021; 40:221899. [PMID: 31950975 PMCID: PMC6997148 DOI: 10.1042/bsr20194191] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 12/14/2022] Open
Abstract
Zebrafish are valuable model organisms for the study of human single-gene disorders: they are genetically manipulable, their development is well understood, and mutant lines with measurable, disease-appropriate phenotypic abnormalities can be used for high throughput drug screening approaches. However, gene duplication events in zebrafish can result in redundancy of gene function, masking loss-of-function phenotypes and thus confounding this approach to disease modelling. Furthermore, recent studies have yielded contrasting results depending on whether specific genes are targeted using genome editing to make mutant lines, or whether morpholinos are used (morphants). De novo missense mutations in the human gene EEF1A2, encoding a tissue-specific translation elongation factor, cause severe neurodevelopmental disorders; there is a real need for a model system to study these disorders and we wanted to explore the possibility of a zebrafish model. We identified four eef1a genes and examined their developmental and tissue-specific expression patterns: eef1a1l1 is first to be expressed while eef1a2 is only detected later during development. We then determined the effects of introducing null mutations into translation elongation factor 1A2 (eEF1A2) in zebrafish using CRISPR/Cas9 gene editing, in order to compare the results with previously described morphants, and with severe neurodegenerative lethal phenotype of eEF1A2-null mice. In contrast with both earlier analyses in zebrafish using morpholinos and with the mouse eEF1A2-null mice, disruption of the eef1a2 gene in zebrafish is compatible with normal lifespan. The resulting lines, however, may provide a valuable platform for studying the effects of expression of mutant human eEF1A2 mRNA.
Collapse
|
38
|
Corkins ME, Krneta-Stankic V, Kloc M, Miller RK. Aquatic models of human ciliary diseases. Genesis 2021; 59:e23410. [PMID: 33496382 PMCID: PMC8593908 DOI: 10.1002/dvg.23410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/08/2021] [Accepted: 01/09/2021] [Indexed: 11/06/2022]
Abstract
Cilia are microtubule-based structures that either transmit information into the cell or move fluid outside of the cell. There are many human diseases that arise from malfunctioning cilia. Although mammalian models provide vital insights into the underlying pathology of these diseases, aquatic organisms such as Xenopus and zebrafish provide valuable tools to help screen and dissect out the underlying causes of these diseases. In this review we focus on recent studies that identify or describe different types of human ciliopathies and outline how aquatic organisms have aided our understanding of these diseases.
Collapse
Affiliation(s)
- Mark E. Corkins
- Department of Pediatrics, Pediatric Research Center, UTHealth McGovern Medical School, Houston Texas 77030
| | - Vanja Krneta-Stankic
- Department of Pediatrics, Pediatric Research Center, UTHealth McGovern Medical School, Houston Texas 77030
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Program in Genes & Development, Houston Texas 77030
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Program in Genetics & Epigenetics, Houston, Texas 77030
| | - Malgorzata Kloc
- Houston Methodist, Research Institute, Houston Texas 77030
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston Texas 77030
| | - Rachel K. Miller
- Department of Pediatrics, Pediatric Research Center, UTHealth McGovern Medical School, Houston Texas 77030
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Program in Genetics & Epigenetics, Houston, Texas 77030
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston Texas 77030
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Program in Biochemistry & Cell Biology, Houston Texas 77030
| |
Collapse
|
39
|
Aguillon R, Madelaine R, Aguirrebengoa M, Guturu H, Link S, Dufourcq P, Lecaudey V, Bejerano G, Blader P, Batut J. Morphogenesis is transcriptionally coupled to neurogenesis during peripheral olfactory organ development. Development 2020; 147:226001. [PMID: 33144399 DOI: 10.1242/dev.192971] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 10/28/2020] [Indexed: 01/04/2023]
Abstract
Sense organs acquire their distinctive shapes concomitantly with the differentiation of sensory cells and neurons necessary for their function. Although our understanding of the mechanisms controlling morphogenesis and neurogenesis in these structures has grown, how these processes are coordinated remains largely unexplored. Neurogenesis in the zebrafish olfactory epithelium requires the bHLH proneural transcription factor Neurogenin 1 (Neurog1). To address whether Neurog1 also controls morphogenesis, we analysed the migratory behaviour of early olfactory neural progenitors in neurog1 mutant embryos. Our results indicate that the oriented movements of these progenitors are disrupted in this context. Morphogenesis is similarly affected by mutations in the chemokine receptor gene, cxcr4b, suggesting it is a potential Neurog1 target gene. We find that Neurog1 directly regulates cxcr4b through an E-box cluster located just upstream of the cxcr4b transcription start site. Our results suggest that proneural transcription factors, such as Neurog1, directly couple distinct aspects of nervous system development.
Collapse
Affiliation(s)
- Raphaël Aguillon
- Centre de Biologie du Développement (CBD, UMR5547), Centre de Biologie Intégrative (CBI, FR 3743), Université de Toulouse, CNRS, UPS, 31062, France
| | - Romain Madelaine
- Centre de Biologie du Développement (CBD, UMR5547), Centre de Biologie Intégrative (CBI, FR 3743), Université de Toulouse, CNRS, UPS, 31062, France
| | - Marion Aguirrebengoa
- BigA Core Facility, Centre de Biologie Intégrative (CBI, FR 3743), Université de Toulouse, CNRS, UPS, 31062, France
| | - Harendra Guturu
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Sandra Link
- BIOSS Centre for Biological Signalling Studies, Albert Ludwigs University of Freiburg, D-79104 Freiburg im Breisgau, Germany
| | - Pascale Dufourcq
- Centre de Biologie du Développement (CBD, UMR5547), Centre de Biologie Intégrative (CBI, FR 3743), Université de Toulouse, CNRS, UPS, 31062, France
| | - Virginie Lecaudey
- BIOSS Centre for Biological Signalling Studies, Albert Ludwigs University of Freiburg, D-79104 Freiburg im Breisgau, Germany
| | - Gill Bejerano
- Department of Developmental Biology, Department of Computer Science, Department of Pediatrics, Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA
| | - Patrick Blader
- Centre de Biologie du Développement (CBD, UMR5547), Centre de Biologie Intégrative (CBI, FR 3743), Université de Toulouse, CNRS, UPS, 31062, France
| | - Julie Batut
- Centre de Biologie du Développement (CBD, UMR5547), Centre de Biologie Intégrative (CBI, FR 3743), Université de Toulouse, CNRS, UPS, 31062, France
| |
Collapse
|
40
|
Vona B, Doll J, Hofrichter MAH, Haaf T, Varshney GK. Small fish, big prospects: using zebrafish to unravel the mechanisms of hereditary hearing loss. Hear Res 2020; 397:107906. [PMID: 32063424 PMCID: PMC7415493 DOI: 10.1016/j.heares.2020.107906] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/13/2020] [Accepted: 01/29/2020] [Indexed: 12/16/2022]
Abstract
Over the past decade, advancements in high-throughput sequencing have greatly enhanced our knowledge of the mutational signatures responsible for hereditary hearing loss. In its present state, the field has a largely uncensored view of protein coding changes in a growing number of genes that have been associated with hereditary hearing loss, and many more that have been proposed as candidate genes. Sequencing data can now be generated using methods that have become widespread and affordable. The greatest hurdles facing the field concern functional validation of uncharacterized genes and rapid application to human diseases, including hearing and balance disorders. To date, over 30 hearing-related disease models exist in zebrafish. New genome editing technologies, including CRISPR/Cas9 will accelerate the functional validation of hearing loss genes and variants in zebrafish. Here, we discuss current progress in the field and recent advances in genome editing approaches.
Collapse
Affiliation(s)
- Barbara Vona
- Department of Otolaryngology--Head & Neck Surgery, Tübingen Hearing Research Centre, Eberhard Karls University Tübingen, Tübingen, Germany.
| | - Julia Doll
- Institute of Human Genetics, Julius Maximilians University, Würzburg, Germany
| | | | - Thomas Haaf
- Institute of Human Genetics, Julius Maximilians University, Würzburg, Germany
| | - Gaurav K Varshney
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States.
| |
Collapse
|
41
|
Pseudouridylation defect due to DKC1 and NOP10 mutations causes nephrotic syndrome with cataracts, hearing impairment, and enterocolitis. Proc Natl Acad Sci U S A 2020; 117:15137-15147. [PMID: 32554502 DOI: 10.1073/pnas.2002328117] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
RNA modifications play a fundamental role in cellular function. Pseudouridylation, the most abundant RNA modification, is catalyzed by the H/ACA small ribonucleoprotein (snoRNP) complex that shares four core proteins, dyskerin (DKC1), NOP10, NHP2, and GAR1. Mutations in DKC1, NOP10, or NHP2 cause dyskeratosis congenita (DC), a disorder characterized by telomere attrition. Here, we report a phenotype comprising nephrotic syndrome, cataracts, sensorineural deafness, enterocolitis, and early lethality in two pedigrees: males with DKC1 p.Glu206Lys and two children with homozygous NOP10 p.Thr16Met. Females with heterozygous DKC1 p.Glu206Lys developed cataracts and sensorineural deafness, but nephrotic syndrome in only one case of skewed X-inactivation. We found telomere attrition in both pedigrees, but no mucocutaneous abnormalities suggestive of DC. Both mutations fall at the dyskerin-NOP10 binding interface in a region distinct from those implicated in DC, impair the dyskerin-NOP10 interaction, and disrupt the catalytic pseudouridylation site. Accordingly, we found reduced pseudouridine levels in the ribosomal RNA (rRNA) of the patients. Zebrafish dkc1 mutants recapitulate the human phenotype and show reduced 18S pseudouridylation, ribosomal dysregulation, and a cell-cycle defect in the absence of telomere attrition. We therefore propose that this human disorder is the consequence of defective snoRNP pseudouridylation and ribosomal dysfunction.
Collapse
|
42
|
Potassium Channel-Associated Bioelectricity of the Dermomyotome Determines Fin Patterning in Zebrafish. Genetics 2020; 215:1067-1084. [PMID: 32546498 PMCID: PMC7404225 DOI: 10.1534/genetics.120.303390] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 06/15/2020] [Indexed: 12/21/2022] Open
Abstract
The roles of bioelectric signaling in developmental patterning remain largely unknown, although recent work has implicated bioelectric signals in cellular processes such as proliferation and migration. Here, we report a mutation in the inwardly rectifying potassium channel (kir) gene, kcnj13/kir7.1, that causes elongation of the fins in the zebrafish insertional mutant Dhi2059. A viral DNA insertion into the noncoding region of kcnj13 results in transient activation and ectopic expression of kcnj13 in the somite and dermomyotome, from which the fin ray progenitors originate. We made an allele-specific loss-of-function kcnj13 mutant by CRISPR (clustered regularly interspaced short palindromic repeats) and showed that it could reverse the long-finned phenotype, but only when located on the same chromosome as the Dhi2059 viral insertion. Also, we showed that ectopic expression of kcnj13 in the dermomyotome of transgenic zebrafish produces phenocopies of the Dhi2059 mutant in a gene dosage-sensitive manner. Finally, to determine whether this developmental function is specific to kcnj13, we ectopically expressed three additional potassium channel genes: kcnj1b, kcnj10a, and kcnk9 We found that all induce the long-finned phenotype, indicating that this function is conserved among potassium channel genes. Taken together, our results suggest that dermomyotome bioelectricity is a new fin-patterning mechanism, and we propose a two-stage bioelectricity model for zebrafish fin patterning. This ion channel-regulated bioelectric developmental patterning mechanism may provide with us new insight into vertebrate morphological evolution and human congenital malformations.
Collapse
|
43
|
Zhang T, Peterson RT. Modeling Lysosomal Storage Diseases in the Zebrafish. Front Mol Biosci 2020; 7:82. [PMID: 32435656 PMCID: PMC7218095 DOI: 10.3389/fmolb.2020.00082] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 04/08/2020] [Indexed: 12/13/2022] Open
Abstract
Lysosomal storage diseases (LSDs) are a family of 70 metabolic disorders characterized by mutations in lysosomal proteins that lead to storage material accumulation, multiple-organ pathologies that often involve neurodegeneration, and early mortality in a significant number of patients. Along with the necessity for more effective therapies, there exists an unmet need for further understanding of disease etiology, which could uncover novel pathways and drug targets. Over the past few decades, the growth in knowledge of disease-associated pathways has been facilitated by studies in model organisms, as advancements in mutagenesis techniques markedly improved the efficiency of model generation in mammalian and non-mammalian systems. In this review we highlight non-mammalian models of LSDs, focusing specifically on the zebrafish, a vertebrate model organism that shares remarkable genetic and metabolic similarities with mammals while also conferring unique advantages such as optical transparency and amenability toward high-throughput applications. We examine published zebrafish LSD models and their reported phenotypes, address organism-specific advantages and limitations, and discuss recent technological innovations that could provide potential solutions.
Collapse
Affiliation(s)
- T Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, United States
| | - R T Peterson
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
44
|
Hu Z, Sun Y, Chen J, Zhao Y, Qiao H, Chen R, Wen X, Deng Y, Wen J. Deoxynivalenol globally affects the selection of 3' splice sites in human cells by suppressing the splicing factors, U2AF1 and SF1. RNA Biol 2020; 17:584-595. [PMID: 31992135 DOI: 10.1080/15476286.2020.1719750] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Deoxynivalenol (DON) is one of the most abundant mycotoxins and has adverse effects on several biological processes, posing risks of protein synthesis-disrupting effects and ribotoxic response. Therefore, chronic exposure to DON would fundamentally reshape the global expression pattern. Whether DON causes toxic effects on mRNA splicing, a fundamental biological process, remains unclear. In this study, we found that administration of the relative low dosage of DON dramatically changed the alternative splicing of pre-mRNA in HepG2 cells. The overall number of transcripts with aberrant selection of 3' splice sites was significantly increased in DON-exposed HepG2 cells. This effect was further confirmed in two other human cell lines, HEK293 and Caco-2, suggesting that this DON-induced alteration in splicing patterns was universal in human cells. Among these DON-induced changes in alternative splicing, the expression levels of two related splicing factors, SF1 and U2AF1, which are essential for 3' splice site recognitions, were strongly suppressed. Overexpression of either of the two splicing factors strongly alleviated the DON-induced aberrant selection of 3' splice sites. Moreover, SF1 was required for human cell proliferation in DON exposure, and the restoration of SF1 expression partially reinstated the proliferation potential for DON-treated cells. In conclusion, our study suggests that DON, even at a low dosage, has great potential to change gene expression globally by affecting not only protein synthesis but also mRNA processing in human cells.
Collapse
Affiliation(s)
- Zhangsheng Hu
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.,Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, P.R. China
| | - Yu Sun
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.,Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, P.R. China
| | - Jiongjie Chen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.,Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, P.R. China
| | - Yurong Zhao
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.,Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, P.R. China
| | - Han Qiao
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.,Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, P.R. China
| | - Ruohong Chen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.,Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, P.R. China
| | - Xianhui Wen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.,Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, P.R. China
| | - Yiqun Deng
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.,Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, P.R. China
| | - Jikai Wen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.,Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, P.R. China
| |
Collapse
|
45
|
Larson BT, Ruiz-Herrero T, Lee S, Kumar S, Mahadevan L, King N. Biophysical principles of choanoflagellate self-organization. Proc Natl Acad Sci U S A 2020; 117:1303-1311. [PMID: 31896587 PMCID: PMC6983409 DOI: 10.1073/pnas.1909447117] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Inspired by the patterns of multicellularity in choanoflagellates, the closest living relatives of animals, we quantify the biophysical processes underlying the morphogenesis of rosette colonies in the choanoflagellate Salpingoeca rosetta We find that rosettes reproducibly transition from an early stage of 2-dimensional (2D) growth to a later stage of 3D growth, despite the underlying variability of the cell lineages. Our perturbative experiments demonstrate the fundamental importance of a basally secreted extracellular matrix (ECM) for rosette morphogenesis and show that the interaction of the ECM with cells in the colony physically constrains the packing of proliferating cells and, thus, controls colony shape. Simulations of a biophysically inspired model that accounts for the size and shape of the individual cells, the fraction of ECM, and its stiffness relative to that of the cells suffices to explain our observations and yields a morphospace consistent with observations across a range of multicellular choanoflagellate colonies. Overall, our biophysical perspective on rosette development complements previous genetic perspectives and, thus, helps illuminate the interplay between cell biology and physics in regulating morphogenesis.
Collapse
Affiliation(s)
- Ben T Larson
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- Biophysics Graduate Group, University of California, Berkeley, CA 94720
| | - Teresa Ruiz-Herrero
- Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
| | - Stacey Lee
- University of California, Berkeley-University of California, San Francisco Graduate Program in Bioengineering, Department of Bioengineering, University of California, Berkeley, CA 94720
| | - Sanjay Kumar
- University of California, Berkeley-University of California, San Francisco Graduate Program in Bioengineering, Department of Bioengineering, University of California, Berkeley, CA 94720
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720
| | - L Mahadevan
- Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138;
- Department of Physics, Harvard University, Cambridge, MA 02138
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138
- Kavli Institute for NanoBio Science and Technology, Harvard University, Cambridge, MA 02138
| | - Nicole King
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720;
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| |
Collapse
|
46
|
Kainov YA, Makeyev EV. A transcriptome-wide antitermination mechanism sustaining identity of embryonic stem cells. Nat Commun 2020; 11:361. [PMID: 31953406 PMCID: PMC6969169 DOI: 10.1038/s41467-019-14204-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 12/11/2019] [Indexed: 11/29/2022] Open
Abstract
Eukaryotic gene expression relies on extensive crosstalk between transcription and RNA processing. Changes in this composite regulation network may provide an important means for shaping cell type-specific transcriptomes. Here we show that the RNA-associated protein Srrt/Ars2 sustains embryonic stem cell (ESC) identity by preventing premature termination of numerous transcripts at cryptic cleavage/polyadenylation sites in first introns. Srrt interacts with the nuclear cap-binding complex and facilitates recruitment of the spliceosome component U1 snRNP to cognate intronic positions. At least in some cases, U1 recruited in this manner inhibits downstream cleavage/polyadenylation events through a splicing-independent mechanism called telescripting. We further provide evidence that the naturally high expression of Srrt in ESCs offsets deleterious effects of retrotransposable sequences accumulating in its targets. Our work identifies Srrt as a molecular guardian of the pluripotent cell state. Besides its role in splicing, U1 snRNP can suppress pre-mRNA cleavage and polyadenylation. The authors show that the nuclear cap-binding complex component Srrt/Ars2 maintains embryonic stem cell identity by promoting U1 recruitment to first introns and preventing premature termination of multiple transcripts.
Collapse
Affiliation(s)
- Yaroslav A Kainov
- Centre for Developmental Neurobiology, King's College London, London, SE1 1UL, UK
| | - Eugene V Makeyev
- Centre for Developmental Neurobiology, King's College London, London, SE1 1UL, UK.
| |
Collapse
|
47
|
Espino-Saldaña AE, Rodríguez-Ortiz R, Pereida-Jaramillo E, Martínez-Torres A. Modeling Neuronal Diseases in Zebrafish in the Era of CRISPR. Curr Neuropharmacol 2020; 18:136-152. [PMID: 31573887 PMCID: PMC7324878 DOI: 10.2174/1570159x17666191001145550] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/04/2019] [Accepted: 09/29/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Danio rerio is a powerful experimental model for studies in genetics and development. Recently, CRISPR technology has been applied in this species to mimic various human diseases, including those affecting the nervous system. Zebrafish offer multiple experimental advantages: external embryogenesis, rapid development, transparent embryos, short life cycle, and basic neurobiological processes shared with humans. This animal model, together with the CRISPR system, emerging imaging technologies, and novel behavioral approaches, lay the basis for a prominent future in neuropathology and will undoubtedly accelerate our understanding of brain function and its disorders. OBJECTIVE Gather relevant findings from studies that have used CRISPR technologies in zebrafish to explore basic neuronal function and model human diseases. METHODS We systematically reviewed the most recent literature about CRISPR technology applications for understanding brain function and neurological disorders in D. rerio. We highlighted the key role of CRISPR in driving forward our understanding of particular topics in neuroscience. RESULTS We show specific advances in neurobiology when the CRISPR system has been applied in zebrafish and describe how CRISPR is accelerating our understanding of brain organization. CONCLUSION Today, CRISPR is the preferred method to modify genomes of practically any living organism. Despite the rapid development of CRISPR technologies to generate disease models in zebrafish, more efforts are needed to efficiently combine different disciplines to find the etiology and treatments for many brain diseases.
Collapse
Affiliation(s)
- Angeles Edith Espino-Saldaña
- Departamento de Neurobiología Celular y Molecular, Laboratorio de Neurobiología Molecular y Celular, Instituto de Neurobiología, Campus UNAM Juriquilla, Querétaro, Qro CP76230, México
- Universidad Autónoma de Querétaro, Facultad de Ciencias Naturales, Av. de las Ciencias S/N, Querétaro, Mexico
| | - Roberto Rodríguez-Ortiz
- CONACYT - Instituto de Neurobiología, Universidad Nacional Autónoma de México. Querétaro, Qro., México
| | - Elizabeth Pereida-Jaramillo
- Departamento de Neurobiología Celular y Molecular, Laboratorio de Neurobiología Molecular y Celular, Instituto de Neurobiología, Campus UNAM Juriquilla, Querétaro, Qro CP76230, México
| | - Ataúlfo Martínez-Torres
- Departamento de Neurobiología Celular y Molecular, Laboratorio de Neurobiología Molecular y Celular, Instituto de Neurobiología, Campus UNAM Juriquilla, Querétaro, Qro CP76230, México
| |
Collapse
|
48
|
Sun Y, Zhang B, Luo L, Shi DL, Wang H, Cui Z, Huang H, Cao Y, Shu X, Zhang W, Zhou J, Li Y, Du J, Zhao Q, Chen J, Zhong H, Zhong TP, Li L, Xiong JW, Peng J, Xiao W, Zhang J, Yao J, Yin Z, Mo X, Peng G, Zhu J, Chen Y, Zhou Y, Liu D, Pan W, Zhang Y, Ruan H, Liu F, Zhu Z, Meng A. Systematic genome editing of the genes on zebrafish Chromosome 1 by CRISPR/Cas9. Genome Res 2019; 30:gr.248559.119. [PMID: 31831591 PMCID: PMC6961580 DOI: 10.1101/gr.248559.119] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 11/06/2019] [Indexed: 02/05/2023]
Abstract
Genome editing by the well-established CRISPR/Cas9 technology has greatly facilitated our understanding of many biological processes. However, a complete whole-genome knockout for any species or model organism has rarely been achieved. Here, we performed a systematic knockout of all the genes (1333) on Chromosome 1 in zebrafish, successfully mutated 1029 genes, and generated 1039 germline-transmissible alleles corresponding to 636 genes. Meanwhile, by high-throughput bioinformatics analysis, we found that sequence features play pivotal roles in effective gRNA targeting at specific genes of interest, while the success rate of gene targeting positively correlates with GC content of the target sites. Moreover, we found that nearly one-fourth of all mutants are related to human diseases, and several representative CRISPR/Cas9-generated mutants are described here. Furthermore, we tried to identify the underlying mechanisms leading to distinct phenotypes between genetic mutants and antisense morpholino-mediated knockdown embryos. Altogether, this work has generated the first chromosome-wide collection of zebrafish genetic mutants by the CRISPR/Cas9 technology, which will serve as a valuable resource for the community, and our bioinformatics analysis also provides some useful guidance to design gene-specific gRNAs for successful gene editing.
Collapse
Affiliation(s)
- Yonghua Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China
| | - Bo Zhang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Peking University Genome Editing Research Center, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Lingfei Luo
- School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - De-Li Shi
- Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Han Wang
- Center for Circadian Clocks, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Zongbin Cui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China
| | - Honghui Huang
- School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Ying Cao
- School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Xiaodong Shu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, 510530, China
| | - Wenqing Zhang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Jianfeng Zhou
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266100, China
| | - Yun Li
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266100, China
| | - Jiulin Du
- State Key Laboratory of Neuroscience, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Qingshun Zhao
- Model Animal Research Center, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Jun Chen
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Hanbing Zhong
- Department of Biology, South University of Science and Technology of China, Shenzhen, Guangdong, 518055, China
| | - Tao P Zhong
- Institute of Biomedical Sciences, East China Normal University, Shanghai, 200062, China
| | - Li Li
- School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Jing-Wei Xiong
- College of Life Sciences, Institute of Molecular Medicine, Peking University, Beijing, 100871, China
| | - Jinrong Peng
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Wuhan Xiao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China
| | - Jian Zhang
- School of Life Sciences, Yunnan University, Kunming, Yunnan, 650091, China
| | - Jihua Yao
- School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Zhan Yin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China
| | - Xianming Mo
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Gang Peng
- Institutes of Brain Science, Fudan University, Shanghai, 200433, China
| | - Jun Zhu
- Sino-French Research Center for Life Sciences and Genomics, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yan Chen
- Institute of Health Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yong Zhou
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Dong Liu
- Department of Biology, South University of Science and Technology of China, Shenzhen, Guangdong, 518055, China
| | - Weijun Pan
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yiyue Zhang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Hua Ruan
- School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Feng Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zuoyan Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China
| | - Anming Meng
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
49
|
Fiordaliso SK, Iwata-Otsubo A, Ritter AL, Quesnel-Vallières M, Fujiki K, Nishi E, Hancarova M, Miyake N, Morton JEV, Lee S, Hackmann K, Bando M, Masuda K, Nakato R, Arakawa M, Bhoj E, Li D, Hakonarson H, Takeda R, Harr M, Keena B, Zackai EH, Okamoto N, Mizuno S, Ko JM, Valachova A, Prchalova D, Vlckova M, Pippucci T, Seiler C, Choi M, Matsumoto N, Di Donato N, Barash Y, Sedlacek Z, Shirahige K, Izumi K. Missense Mutations in NKAP Cause a Disorder of Transcriptional Regulation Characterized by Marfanoid Habitus and Cognitive Impairment. Am J Hum Genet 2019; 105:987-995. [PMID: 31587868 PMCID: PMC6848994 DOI: 10.1016/j.ajhg.2019.09.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/06/2019] [Indexed: 01/05/2023] Open
Abstract
NKAP is a ubiquitously expressed nucleoplasmic protein that is currently known as a transcriptional regulatory molecule via its interaction with HDAC3 and spliceosomal proteins. Here, we report a disorder of transcriptional regulation due to missense mutations in the X chromosome gene, NKAP. These mutations are clustered in the C-terminal region of NKAP where NKAP interacts with HDAC3 and post-catalytic spliceosomal complex proteins. Consistent with a role for the C-terminal region of NKAP in embryogenesis, nkap mutant zebrafish with a C-terminally truncated NKAP demonstrate severe developmental defects. The clinical features of affected individuals are highly conserved and include developmental delay, hypotonia, joint contractures, behavioral abnormalities, Marfanoid habitus, and scoliosis. In affected cases, transcriptome analysis revealed the presence of a unique transcriptome signature, which is characterized by the downregulation of long genes with higher exon numbers. These observations indicate the critical role of NKAP in transcriptional regulation and demonstrate that perturbations of the C-terminal region lead to developmental defects in both humans and zebrafish.
Collapse
Affiliation(s)
- Sarah K Fiordaliso
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Aiko Iwata-Otsubo
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Alyssa L Ritter
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Mathieu Quesnel-Vallières
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Katsunori Fujiki
- Laboratory of Genome Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Eriko Nishi
- Division of Medical Genetics, Nagano Children's Hospital, Azumino 399-8205, Japan
| | - Miroslava Hancarova
- Department of Biology and Medical Genetics, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague 15006, Czech Republic
| | - Noriko Miyake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Jenny E V Morton
- West Midlands Regional Clinical Genetics Service and Birmingham Health Partners, Birmingham Women's and Children's Hospitals NHS Foundation Trust, Edbaston, Birmingham B15 2TG, UK
| | - Sangmoon Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Karl Hackmann
- Institute for Clinical Genetics, TU Dresden, Dresden 01307, Germany
| | - Masashige Bando
- Laboratory of Genome Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Koji Masuda
- Laboratory of Genome Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Ryuichiro Nakato
- Laboratory of Genome Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Michiko Arakawa
- Division of Medical Genetics, Nagano Children's Hospital, Azumino 399-8205, Japan
| | - Elizabeth Bhoj
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Dong Li
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Hakon Hakonarson
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Ryojun Takeda
- Division of Medical Genetics, Nagano Children's Hospital, Azumino 399-8205, Japan
| | - Margaret Harr
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Beth Keena
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Elaine H Zackai
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nobuhiko Okamoto
- Department of Medical Genetics, Osaka Women's and Children's Hospital, Osaka 594-1101, Japan
| | - Seiji Mizuno
- Department of Clinical Genetics, Central Hospital, Aichi Developmental Disability Center, Aichi 480-0304, Japan
| | - Jung Min Ko
- Department of Pediatrics, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Alica Valachova
- Department of Medical Genetics, University Hospital Trencin, Trencin 91171, Slovakia
| | - Darina Prchalova
- Department of Biology and Medical Genetics, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague 15006, Czech Republic
| | - Marketa Vlckova
- Department of Biology and Medical Genetics, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague 15006, Czech Republic
| | - Tommaso Pippucci
- Medical Genetics Unit, Policlinico Sant'Orsola-Malpighi, University of Bologna, Bologna 40138, Italy
| | - Christoph Seiler
- Zebrafish Core Facility, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Murim Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Department of Pediatrics, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | | | - Yoseph Barash
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zdenek Sedlacek
- Department of Biology and Medical Genetics, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague 15006, Czech Republic
| | - Katsuhiko Shirahige
- Laboratory of Genome Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Kosuke Izumi
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Laboratory of Rare Disease Research, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo 113-8657, Japan.
| |
Collapse
|
50
|
Maldonado E, Rangel-Huerta E, González-Gómez R, Fajardo-Alvarado G, Morillo-Velarde PS. Octopus insularis as a new marine model for evolutionary developmental biology. Biol Open 2019; 8:bio046086. [PMID: 31666222 PMCID: PMC6899024 DOI: 10.1242/bio.046086] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/15/2019] [Indexed: 11/20/2022] Open
Abstract
Octopuses are intriguing organisms that, together with squids and cuttlefishes, form the extant coleoid cephalopods. This group includes many species that can potentially be used as models in the fields of biomedicine, developmental biology, evolution, neuroscience and even for robotics research. The purpose of this work is to first present a simple method for maintaining Octopus insularis embryos under a laboratory setup. Second, we show that these embryos are suitable for detailed analyses of specific traits that appear during developmental stages, including the eyes, hearts, arms, suckers, chromatophores and Kölliker's organs. Similar complex traits between cephalopods and vertebrates such as the visual, cardiovascular, neural and pigmentation systems are generally considered to be a result of parallel evolution. We propose that O. insularis embryos could be used as a model for evolutionary developmental biology (or EvoDevo) research, where comparisons of the morphogenetic steps in the building of equivalent organs between cephalopods and known vertebrate model systems could shed light on evolutionary convergences and deep homologies.
Collapse
Affiliation(s)
- Ernesto Maldonado
- EvoDevo Research Group, Unidad de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, México 77580
| | - Emma Rangel-Huerta
- EvoDevo Research Group, Unidad de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, México 77580
- Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, UNAM, México 77580
| | - Roberto González-Gómez
- Posgrado en Ecología y Pesquerías, Universidad Veracruzana, Boca del Río, Veracruz, México 94290
- Instituto de Ciencias Marinas y Pesquerías, Universidad Veracruzana, Boca del Río, Veracruz, México 94290
| | - Gabriel Fajardo-Alvarado
- Posgrado en Ecología y Pesquerías, Universidad Veracruzana, Boca del Río, Veracruz, México 94290
- Instituto de Ciencias Marinas y Pesquerías, Universidad Veracruzana, Boca del Río, Veracruz, México 94290
| | - Piedad S Morillo-Velarde
- Instituto de Ciencias Marinas y Pesquerías, Universidad Veracruzana, Boca del Río, Veracruz, México 94290
- CONACyT-Instituto de Ciencias Marinas y Pesquerías, Universidad Veracruzana, Boca del Río, Veracruz, México 94290
| |
Collapse
|