1
|
Liu C, Chen L, Cong Y, Cheng L, Shuai Y, Lv F, Chen K, Song Y, Xing Y. Protein phosphatase 1 regulatory subunit 15 A promotes translation initiation and induces G2M phase arrest during cuproptosis in cancers. Cell Death Dis 2024; 15:149. [PMID: 38365764 PMCID: PMC10873343 DOI: 10.1038/s41419-024-06489-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/18/2024]
Abstract
Copper ions play a crucial role as cofactors for essential enzymes in cellular processes. However, when the intracellular concentration of copper ions exceeds the homeostatic threshold, they become toxic to cells. In our study, we demonstrated that elesclomol, as a carrier of copper ions, caused an upregulation of protein phosphatase 1 regulatory subunit 15 A (PPP1R15A), which plays a role in regulating substrate selectivity of protein phosphatase 1 during cuproptosis. Mechanistically, we investigated that PPP1R15A activated translation initiation by dephosphorylating eukaryotic translation initiation factor 2 subunit alpha at the S51 residue through protein phosphatase 1 and phosphorylating eukaryotic translation initiation factor 4E binding protein 1 at the T70 residue. In addition, PPP1R15A reduced H3K4 methylation by altering the phosphorylation of histone methyltransferases, which led to the silencing of MYC and G2M phase arrest.
Collapse
Affiliation(s)
- Chunyu Liu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Liang Chen
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Yukun Cong
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Lulin Cheng
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Yujun Shuai
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Fang Lv
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Kang Chen
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Yarong Song
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.
| | - Yifei Xing
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.
| |
Collapse
|
2
|
Corda PO, Bollen M, Ribeiro D, Fardilha M. Emerging roles of the Protein Phosphatase 1 (PP1) in the context of viral infections. Cell Commun Signal 2024; 22:65. [PMID: 38267954 PMCID: PMC10807198 DOI: 10.1186/s12964-023-01468-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/30/2023] [Indexed: 01/26/2024] Open
Abstract
Protein Phosphatase 1 (PP1) is a major serine/threonine phosphatase in eukaryotes, participating in several cellular processes and metabolic pathways. Due to their low substrate specificity, PP1's catalytic subunits do not exist as free entities but instead bind to Regulatory Interactors of Protein Phosphatase One (RIPPO), which regulate PP1's substrate specificity and subcellular localization. Most RIPPOs bind to PP1 through combinations of short linear motifs (4-12 residues), forming highly specific PP1 holoenzymes. These PP1-binding motifs may, hence, represent attractive targets for the development of specific drugs that interfere with a subset of PP1 holoenzymes. Several viruses exploit the host cell protein (de)phosphorylation machinery to ensure efficient virus particle formation and propagation. While the role of many host cell kinases in viral life cycles has been extensively studied, the targeting of phosphatases by viral proteins has been studied in less detail. Here, we compile and review what is known concerning the role of PP1 in the context of viral infections and discuss how it may constitute a putative host-based target for the development of novel antiviral strategies.
Collapse
Affiliation(s)
- Pedro O Corda
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Mathieu Bollen
- Department of Cellular and Molecular Medicine, Laboratory of Biosignaling & Therapeutics, Katholieke Universiteit Leuven, Louvain, Belgium
| | - Daniela Ribeiro
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal.
| | - Margarida Fardilha
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
3
|
Hicks D, Giresh K, Wrischnik LA, Weiser DC. The PPP1R15 Family of eIF2-alpha Phosphatase Targeting Subunits (GADD34 and CReP). Int J Mol Sci 2023; 24:17321. [PMID: 38139150 PMCID: PMC10743859 DOI: 10.3390/ijms242417321] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
The vertebrate PPP1R15 family consists of the proteins GADD34 (growth arrest and DNA damage-inducible protein 34, the product of the PPP1R15A gene) and CReP (constitutive repressor of eIF2α phosphorylation, the product of the PPP1R15B gene), both of which function as targeting/regulatory subunits for protein phosphatase 1 (PP1) by regulating subcellular localization, modulating substrate specificity and assembling complexes with target proteins. The primary cellular function of these proteins is to facilitate the dephosphorylation of eukaryotic initiation factor 2-alpha (eIF2α) by PP1 during cell stress. In this review, we will provide a comprehensive overview of the cellular function, biochemistry and pharmacology of GADD34 and CReP, starting with a brief introduction of eIF2α phosphorylation via the integrated protein response (ISR). We discuss the roles GADD34 and CReP play as feedback inhibitors of the unfolded protein response (UPR) and highlight the critical function they serve as inhibitors of the PERK-dependent branch, which is particularly important since it can mediate cell survival or cell death, depending on how long the stressful stimuli lasts, and GADD34 and CReP play key roles in fine-tuning this cellular decision. We briefly discuss the roles of GADD34 and CReP homologs in model systems and then focus on what we have learned about their function from knockout mice and human patients, followed by a brief review of several diseases in which GADD34 and CReP have been implicated, including cancer, diabetes and especially neurodegenerative disease. Because of the potential importance of GADD34 and CReP in aspects of human health and disease, we will discuss several pharmacological inhibitors of GADD34 and/or CReP that show promise as treatments and the controversies as to their mechanism of action. This review will finish with a discussion of the biochemical properties of GADD34 and CReP, their regulation and the additional interacting partners that may provide insight into the roles these proteins may play in other cellular pathways. We will conclude with a brief outline of critical areas for future study.
Collapse
Affiliation(s)
- Danielle Hicks
- Department of Science, Mathematics and Engineering, Modesto Junior College, Modesto, CA 95350, USA
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, USA
| | - Krithika Giresh
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, USA
| | - Lisa A. Wrischnik
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, USA
| | - Douglas C. Weiser
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, USA
| |
Collapse
|
4
|
CUEDC2 Drives β-Catenin Nuclear Translocation and Promotes Triple-Negative Breast Cancer Tumorigenesis. Cells 2022; 11:cells11193067. [PMID: 36231027 PMCID: PMC9563079 DOI: 10.3390/cells11193067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
Hyperactivation of Wnt signaling is crucial in tumor formation. Fully elucidating the molecular details of how the cancer-specific Wnt signaling pathway is activated or contributes to tumorigenesis will help in determining future treatment strategies. Here, we aimed to explore the contribution of CUEDC2, a novel CUE-domain-containing protein, to the activation of Wnt signaling and the tumorigenesis of triple-negative breast cancer (TNBC) and to determine the underlying mechanisms. TNBC patient samples and disease-free survival (DFS) data were used to determine the association between CUEDC2 and TNBC progression. The effects of CUEDC2 on TNBC were examined in TNBC cells in vitro and in subcutaneous xenograft tumors in vivo. Gene knockdown, immunoprecipitation plus liquid chromatography–tandem mass spectrometry, pull-down, co-immunoprecipitation, localized surface plasmon resonance, and nuclear translocation analysis were used to uncover the mechanisms of CUEDC2 in regulating Wnt signaling and TNBC development. CUEDC2 is sufficient to maintain the hyperactivation of Wnt signaling required for TNBC tumorigenesis. The contribution of CUEDC2 plays a major role in determining the outcome of oncogenic Wnt signaling both in vitro and in vivo. Mechanistically, the CUE domain in CUEDC2 directly bound to the ARM (7–9) domain in β-catenin, promoted β-catenin nuclear translocation and enhanced the expression of β-catenin targeted genes. More importantly, an 11-amino-acid competitive peptide targeting the CUE domain in CUEDC2 blocked the interactions of CUEDC2 and β-catenin and abrogated the malignant phenotype of TNBC cells in vitro and in vivo. We observed that TNBC patients who exhibited higher levels of CUEDC2 showed marked hyperactivation of the Wnt signaling pathway and poor clinical outcomes, highlighting the clinical relevance of our findings. CUEDC2 promotes TNBC tumor growth by enhancing Wnt signaling through directly binding to β-catenin and accelerating its nuclear translocation. Targeting the interactions of CUEDC2 and β-catenin may be a valuable strategy for combating TNBC.
Collapse
|
5
|
Elimination of negative feedback in TLR signalling allows rapid and hypersensitive detection of microbial contaminants. Sci Rep 2021; 11:24414. [PMID: 34952917 PMCID: PMC8709846 DOI: 10.1038/s41598-021-03618-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/24/2021] [Indexed: 11/17/2022] Open
Abstract
The exquisite specificity of Toll-like receptors (TLRs) to sense microbial molecular signatures is used as a powerful tool to pinpoint microbial contaminants. Various cellular systems, from native human blood cells to transfected cell lines exploit TLRs as pyrogen detectors in biological preparations. However, slow cellular responses and limited sensitivity have hampered the replacement of animal-based tests such as the rabbit pyrogen test or lipopolysaccharide detection by Limulus amoebocyte lysate. Here, we report a novel human cell-based approach to boost detection of microbial contaminants by TLR-expressing cells. By genetic and pharmacologic elimination of negative control circuits, TLR-initiated cellular responses to bacterial molecular patterns were accelerated and significantly elevated. Combining depletion of protein phosphatase PP2ACA and pharmacological inhibition of PP1 in the optimized reporter cells further enhanced the sensitivity to allow detection of bacterial lipoprotein at 30 picogram/ml. Such next-generation cellular monitoring is poised to replace animal-based testing for microbial contaminants.
Collapse
|
6
|
Histone deacetylase 5 deacetylates the phosphatase PP2A for positively regulating NF-κB signaling. J Biol Chem 2021; 297:101380. [PMID: 34740611 PMCID: PMC8634046 DOI: 10.1016/j.jbc.2021.101380] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/10/2021] [Accepted: 11/01/2021] [Indexed: 12/11/2022] Open
Abstract
Histone deacetylase 5 (HDAC5) has been reported to have a strong regulatory function in the proinflammatory response, but the mechanism is still unknown. Here, we identified HDAC5 as a positive regulator of NF-κB signaling in vivo. HDAC5-deficient mice exhibited enhanced survival in response to LPS challenge. Using LPS, TNFα, different kinds of viruses, hydrogen peroxide, or ultraviolet stimulation, we demonstrate that HDAC5-mediated regulation of NF-κB occurs in manners both dependent on and independent of IKK, an upstream kinase in the NF-κB signaling pathway. Deficiency in HDAC5 impaired the phosphorylation of IKKβ, subsequent phosphorylation of the NF-κB inhibitor protein IκBα and NF-κB subunit p65. We also show that the phosphatase PP2A repressed transcriptional activation of NF-κB by decreasing phosphorylation of IKKβ, p65, and IκBα. In vitro deacetylation experiments and site-directed mutagenesis experiments indicated that HDAC5 directly deacetylated PP2Ac at Lys136, which resulted in the deactivation of PP2A. Our data add mechanistic insight into the cross talk between epigenetic and posttranslational modifications regulating NF-κB signaling and protein phosphatase activation that mediate survival in response to inflammatory challenges.
Collapse
|
7
|
Inhibitory feedback control of NF-κB signalling in health and disease. Biochem J 2021; 478:2619-2664. [PMID: 34269817 PMCID: PMC8286839 DOI: 10.1042/bcj20210139] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 12/14/2022]
Abstract
Cells must adapt to changes in their environment to maintain cell, tissue and organismal integrity in the face of mechanical, chemical or microbiological stress. Nuclear factor-κB (NF-κB) is one of the most important transcription factors that controls inducible gene expression as cells attempt to restore homeostasis. It plays critical roles in the immune system, from acute inflammation to the development of secondary lymphoid organs, and also has roles in cell survival, proliferation and differentiation. Given its role in such critical processes, NF-κB signalling must be subject to strict spatiotemporal control to ensure measured and context-specific cellular responses. Indeed, deregulation of NF-κB signalling can result in debilitating and even lethal inflammation and also underpins some forms of cancer. In this review, we describe the homeostatic feedback mechanisms that limit and ‘re-set’ inducible activation of NF-κB. We first describe the key components of the signalling pathways leading to activation of NF-κB, including the prominent role of protein phosphorylation and protein ubiquitylation, before briefly introducing the key features of feedback control mechanisms. We then describe the array of negative feedback loops targeting different components of the NF-κB signalling cascade including controls at the receptor level, post-receptor signalosome complexes, direct regulation of the critical ‘inhibitor of κB kinases’ (IKKs) and inhibitory feedforward regulation of NF-κB-dependent transcriptional responses. We also review post-transcriptional feedback controls affecting RNA stability and translation. Finally, we describe the deregulation of these feedback controls in human disease and consider how feedback may be a challenge to the efficacy of inhibitors.
Collapse
|
8
|
Ghatak D, Datta A, Roychowdhury T, Chattopadhyay S, Roychoudhury S. MicroRNA-324-5p-CUEDC2 Axis Mediates Gain-of-Function Mutant p53-Driven Cancer Stemness. Mol Cancer Res 2021; 19:1635-1650. [PMID: 34257080 DOI: 10.1158/1541-7786.mcr-20-0717] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 05/21/2021] [Accepted: 07/06/2021] [Indexed: 11/16/2022]
Abstract
Regulation of cancer stemness has recently emerged as a new gain-of-function (GOF) property of mutant p53. In this study, we identify miR-324-5p as a critical epigenetic regulator of cancer stemness and demonstrate its role in mediating GOF-mutant p53-driven stemness phenotypes. We report that miR-324-5p is upregulated in human cancer cell lines and non-small cell lung carcinoma (NSCLC) tumors carrying TP53 GOF mutations. Mechanistically, we show that GOF mutant p53 upregulates miR-324-5p expression via c-Myc, an oncogenic transcription factor in cancer cells. Our experimental results suggest that miR-324-5p-induced CSC phenotypes stem from the downregulation of CUEDC2, a downstream target gene of miR-324-5p. Accordingly, CUEDC2 complementation diminishes elevated CSC marker expression in miR-324-5p-overexpressing cancer cells. We further demonstrate that mutant p53 cancer cells maintain a low level of CUEDC2 that is rescued upon miR-324-5p inhibition. Importantly, we identify CUEDC2 downregulation as a novel characteristic feature of TP53-mutated human cancers. We show that activation of NF-κB due to downregulation of CUEDC2 by miR-324-5p imparts stemness in GOF mutant p53 cancer cells. Finally, we provide evidence that TP53 mutations coupled with high miR-324-5p expression predict poor prognosis in patients with lung adenocarcinoma. Thus, our study delineates an altered miR-324-5p-CUEDC2-NF-κB pathway as a novel regulator of GOF mutant p53-driven cancer stemness. IMPLICATIONS: Our findings implicate miRNA-324-5p as a novel epigenetic modifier of human cancer stemness.
Collapse
Affiliation(s)
- Dishari Ghatak
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, India
| | - Arindam Datta
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, India
| | - Tanaya Roychowdhury
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, India
| | - Samit Chattopadhyay
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, India.,Department of Biological Sciences, BITS-Pilani, K K Birla Goa Campus, Goa, India
| | - Susanta Roychoudhury
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, India. .,Division of Research, Saroj Gupta Cancer Center and Research Institute, Thakurpukur, Kolkata, India
| |
Collapse
|
9
|
Epithelial PBLD attenuates intestinal inflammatory response and improves intestinal barrier function by inhibiting NF-κB signaling. Cell Death Dis 2021; 12:563. [PMID: 34059646 PMCID: PMC8166876 DOI: 10.1038/s41419-021-03843-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023]
Abstract
Intestinal barrier function defects and dysregulation of intestinal immune responses are two key contributory factors in the pathogenesis of ulcerative colitis (UC). Phenazine biosynthesis-like domain-containing protein (PBLD) was recently identified as a tumor suppressor in gastric cancer, hepatocellular carcinoma, and breast cancer; however, its role in UC remains unclear. Therefore, we analyzed colonic tissue samples from patients with UC and constructed specific intestinal epithelial PBLD-deficient (PBLDIEC-/-) mice to investigate the role of this protein in UC pathogenesis. We found that epithelial PBLD was decreased in patients with UC and was correlated with levels of tight junction (TJ) and inflammatory proteins. PBLDIEC-/- mice were more susceptible to dextran sulfate sodium (DSS)- and 2,4,6-trinitrobenzene sulfonic acid-induced colitis compared with wild-type (WT) mice. In DSS-induced colitis, PBLDIEC-/- mice had impaired intestinal barrier function and greater immune cell infiltration in colonic tissue than WT mice. Furthermore, TJ proteins were markedly reduced in PBLDIEC-/- mice compared with WT mice with colitis. Nuclear factor (NF)-κB activation was markedly elevated and resulted in higher expression levels of downstream effectors (C-C motif chemokine ligand 20, interleukin [IL]-1β, IL-6, and tumor necrosis factor [TNF]-α) in colonic epithelial cells isolated from PBLDIEC-/- mice than WT mice with colitis. PBLD overexpression in intestinal epithelial cells (IECs) consistently inhibited TNF-α/interferon-γ-induced intestinal barrier disruption and TNF-α-induced inflammatory responses via the suppression of NF-κB. In addition, IKK inhibition (IKK-16) rescued excessive inflammatory responses induced by TNF-α in PBLD knockdown FHC cells. Co-immunoprecipitation assays showed that PBLD may interact with IKKα and IKKβ, thus inhibiting NF-κB signaling, decreasing inflammatory mediator production, attenuating colonic inflammation, and improving intestinal barrier function. Modulating PBLD expression may provide a novel approach for treatment in patients with UC.
Collapse
|
10
|
Seumen CHT, Grimm TM, Hauck CR. Protein phosphatases in TLR signaling. Cell Commun Signal 2021; 19:45. [PMID: 33882943 PMCID: PMC8058998 DOI: 10.1186/s12964-021-00722-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/10/2021] [Indexed: 02/06/2023] Open
Abstract
Toll-like receptors (TLRs) are critical sensors for the detection of potentially harmful microbes. They are instrumental in initiating innate and adaptive immune responses against pathogenic organisms. However, exaggerated activation of TLR receptor signaling can also be responsible for the onset of autoimmune and inflammatory diseases. While positive regulators of TLR signaling, such as protein serine/threonine kinases, have been studied intensively, only little is known about phosphatases, which counterbalance and limit TLR signaling. In this review, we summarize protein phosphorylation events and their roles in the TLR pathway and highlight the involvement of protein phosphatases as negative regulators at specific steps along the TLR-initiated signaling cascade. Then, we focus on individual phosphatase families, specify the function of individual enzymes in TLR signaling in more detail and give perspectives for future research. A better understanding of phosphatase-mediated regulation of TLR signaling could provide novel access points to mitigate excessive immune activation and to modulate innate immune signaling.![]() Video Abstract
Collapse
Affiliation(s)
- Clovis H T Seumen
- Lehrstuhl Zellbiologie, Universität Konstanz, Universitätsstraße 10, Postablage 621, 78457, Konstanz, Germany
| | - Tanja M Grimm
- Lehrstuhl Zellbiologie, Universität Konstanz, Universitätsstraße 10, Postablage 621, 78457, Konstanz, Germany.,Konstanz Research School Chemical Biology, Universität Konstanz, 78457, Konstanz, Germany
| | - Christof R Hauck
- Lehrstuhl Zellbiologie, Universität Konstanz, Universitätsstraße 10, Postablage 621, 78457, Konstanz, Germany. .,Konstanz Research School Chemical Biology, Universität Konstanz, 78457, Konstanz, Germany.
| |
Collapse
|
11
|
Lannoy V, Côté-Biron A, Asselin C, Rivard N. Phosphatases in toll-like receptors signaling: the unfairly-forgotten. Cell Commun Signal 2021; 19:10. [PMID: 33494775 PMCID: PMC7829650 DOI: 10.1186/s12964-020-00693-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/01/2020] [Indexed: 02/07/2023] Open
Abstract
Over the past 2 decades, pattern recognition receptors (PRRs) have been shown to be on the front line of many illnesses such as autoimmune, inflammatory, and neurodegenerative diseases as well as allergies and cancer. Among PRRs, toll-like receptors (TLRs) are the most studied family. Dissecting TLRs signaling turned out to be advantageous to elaborate efficient treatments to cure autoimmune and chronic inflammatory disorders. However, a broad understanding of TLR effectors is required to propose a better range of cures. In addition to kinases and E3 ubiquitin ligases, phosphatases emerge as important regulators of TLRs signaling mediated by NF-κB, type I interferons (IFN I) and Mitogen-Activated Protein Kinases signaling pathways. Here, we review recent knowledge on TLRs signaling modulation by different classes and subclasses of phosphatases. Thus, it becomes more and more evident that phosphatases could represent novel therapeutic targets to control pathogenic TLRs signaling. Video Abstract.
Collapse
Affiliation(s)
- Valérie Lannoy
- Department of Immunology and Cell Biology, Cancer Research Pavilion, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3201, rue Jean Mignault, Sherbrooke, QC, J1E4K8, Canada
| | - Anthony Côté-Biron
- Department of Immunology and Cell Biology, Cancer Research Pavilion, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3201, rue Jean Mignault, Sherbrooke, QC, J1E4K8, Canada
| | - Claude Asselin
- Department of Immunology and Cell Biology, Cancer Research Pavilion, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3201, rue Jean Mignault, Sherbrooke, QC, J1E4K8, Canada
| | - Nathalie Rivard
- Department of Immunology and Cell Biology, Cancer Research Pavilion, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3201, rue Jean Mignault, Sherbrooke, QC, J1E4K8, Canada.
| |
Collapse
|
12
|
Huang Y, Xiao X, Xiao H, Hu Z, Tan F. CUEDC2 ablation enhances the efficacy of mesenchymal stem cells in ameliorating cerebral ischemia/reperfusion insult. Aging (Albany NY) 2021; 13:4335-4356. [PMID: 33494071 PMCID: PMC7906146 DOI: 10.18632/aging.202394] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 11/13/2020] [Indexed: 12/12/2022]
Abstract
Mesenchymal stem cell (MSC) therapy has been reported to be a promising therapeutic option for cerebral ischemia/reperfusion (I/R) insult. However, the poor survival rate of engrafted MSCs under unfavorable cerebral I/R-induced microenvironment inhibits their efficiency during clinical application. CUE domain-containing 2(CUECD2) exhibits its protective role on cardiomyocytes by mediating the antioxidant capacity. Our study explored the functional role of CUEDC2 in cerebral I/R challenge and determined whether CUECD2-modified MSCs could improve the efficacy of treatment of the insulted neurons. We also evaluated the possible mechanisms involved in cerebral I/R condition. Cerebral I/R stimulation suppressed CUEDC2 levels in brain tissues and neurons. siRNA-CUEDC2 in neurons significantly inhibited cerebral I/R-induced apoptosis and oxidative stress levels in vitro. Moreover, siRNA-CUEDC2 in the MSCs group remarkably enhanced the therapeutic efficacies in cerebral I/R-induced neuron injury and brain tissue impairment when compared to the non-genetic MSCs treatment group. At the molecular level, siRNA-CUEDC2 in MSCs markedly enhanced its antioxidant and anti-inflammatory effect in co-cultured neurons by upregulating glutathione peroxidase 1 (GPX1) expression levels while suppressing NF-kB activation. These findings provide a novel strategy for the utilization of MSCs to promote cerebral ischemic stroke outcomes.
Collapse
Affiliation(s)
- Yan Huang
- National Health Commission Key Laboratory of Birth Defects Research, Prevention, and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, Changsha 410008, Hunan, P.R. China.,Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, P.R. China.,Hunan Provincial Key Laboratory of Neurorestoration, Changsha 410003, Hunan, P.R. China
| | - Xia Xiao
- National Health Commission Key Laboratory of Birth Defects Research, Prevention, and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, Changsha 410008, Hunan, P.R. China
| | - Han Xiao
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, P.R. China
| | - Zhiping Hu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, P.R. China
| | - Fengbo Tan
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, P.R. China
| |
Collapse
|
13
|
Cui Y, Song Y, Yan S, Cao M, Huang J, Jia D, Liu Y, Zhang S, Fan W, Cai L, Li C, Xing Y. CUEDC1 inhibits epithelial-mesenchymal transition via the TβRI/Smad signaling pathway and suppresses tumor progression in non-small cell lung cancer. Aging (Albany NY) 2020; 12:20047-20068. [PMID: 33099540 PMCID: PMC7655170 DOI: 10.18632/aging.103329] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 08/15/2020] [Indexed: 12/15/2022]
Abstract
Lung cancer remains the most lethal cancer worldwide because of its high metastasis potential. Epithelial-mesenchymal transition (EMT) is known as the first step of the metastasis cascade, but the potential regulatory mechanisms of EMT have not been clearly established. In this study, we first found that low CUEDC1 expression correlated with lymph node metastasis in non-small cell lung cancer (NSCLC) patients using immunohistochemistry (IHC). CUEDC1 knockdown promoted the metastasis of NSCLC cells and EMT process and activated TβRI/Smad signaling pathway. Overexpression of CUEDC1 decreased the metastatic potential of lung cancer cells and inhibited the EMT process and inactivated TβRI/Smad signaling pathway. Immunoprecipitation (IP) assays showed that Smurf2 is a novel CUEDC1-interacting protein. Furthermore, CUEDC1 could regulate Smurf2 expression through the degradation of Smurf2. Overexpression of Smurf2 abolished CUEDC1 knockdown induced-EMT and the activation of TβRI/Smad signaling pathway, while siRNA Smurf2 reversed CUEDC1 overexpression-mediated regulation of EMT and TβRI/Smad signaling pathway. Additionally, CUEDC1 inhibited proliferation and promoted apoptosis of NSCLC cells. In vivo, CUEDC1-knockdown cells promoted metastasis and tumor growth compared with control cells. In conclusion, our findings indicate that the crucial role of CUEDC1 in NSCLC progression and provide support for its clinical investigation for therapeutic approaches.
Collapse
Affiliation(s)
- Yue Cui
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yang Song
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shi Yan
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Mengru Cao
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jian Huang
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Dexin Jia
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yuechao Liu
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Shuai Zhang
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Weina Fan
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Li Cai
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Chunhong Li
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Ying Xing
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
14
|
LncRNA BCYRN1 inhibits glioma tumorigenesis by competitively binding with miR-619-5p to regulate CUEDC2 expression and the PTEN/AKT/p21 pathway. Oncogene 2020; 39:6879-6892. [PMID: 32978519 PMCID: PMC7644463 DOI: 10.1038/s41388-020-01466-x] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 08/05/2020] [Accepted: 09/10/2020] [Indexed: 12/13/2022]
Abstract
Glioma is the most common malignant tumor in the central nervous system. Altered long noncoding RNAs (lncRNAs) are playing regulatory roles in physiological and pathogenic processes in cancer. Here, we uncovered a differentially expressed lncRNA called brain cytoplasmic RNA 1 (BCYRN1), and elucidated its function and molecular mechanism in the progression and development of glioma. Three fresh tumor tissues from glioma patients and three normal brain tissues from craniocerebral trauma patients were prepared for high-throughput RNA sequencing. Differential RNA transcripts and BCYRN1 were identified by RT-qPCR in glioma samples and controls. CCK-8, colony formation assays, flow cytometry, TUNEL assays, cell migration assays, wound-healing assays, and xenograft model were established to investigate the biological function of BCYRN1 both in vitro and in vivo. Various bioinformatics analysis, dual-luciferase reporter assays, biotinylated RNA pulldown assays, and rescue experiments were conducted to reveal the underlying mechanisms of competitive endogenous RNAs (ceRNAs). 183 lncRNAs were identified with significant dysregulation in glioma and randomly selected differential RNAs were further confirmed by RT-qPCR. Among them, BCYRN1 was the most downregulated lncRNA, and its low expression positively correlated with glioma progression. Functionally, BCYRN1 overexpression inhibited cell proliferation, migration in glioma cell lines, whereas BCYRN1 depletion resulted in the opposite way. MiR-619-5p was further confirmed as the direct target of BCYRN1. Mechanistically, miR-619-5p specifically targeted the CUE domain containing protein 2 (CUEDC2), and BCYRN1/miR-619-5p suppressed glioma tumorigenesis by inactivating PTEN/AKT/p21 pathway in a CUEDC2-dependent manner. Overall, our data presented that the reduced expression of BCYRN1 was associated with poor patient outcome in glioma. BCYRN1 functioned as a ceRNA to inhibit glioma progression by sponging miR-619-5p to regulate CUEDC2 expression and PTEN/AKT/p21 pathway. Our results indicated that BCYRN1 exerted tumor suppressor potential and might be a candidate in the diagnosis and treatment of glioma.
Collapse
|
15
|
Xu S, Huang S, Li D, Zou Q, Yuan Y, Yang Z. Comparison of ADAM19 and CUEDC2 expression in EHCC and their clinicopathological significance. Biomark Med 2020; 14:1573-1584. [PMID: 32960074 DOI: 10.2217/bmm-2020-0321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background: To evaluate the expression and clinicopathological significance of a disintegrin and metalloproteinases 19 (ADAM19) CUE domain containing protein 2 (CUEDC2) in extrahepatic cholangiocarcinoma (EHCC). Materials & methods: Immunostaining of ADAM19 and CUEDC2 was performed by EnVision immunohistochemistry in benign and malignant biliary tract tissues. Result: The expression of ADAM19 and CUEDC2 were significantly higher in EHCC (p < 0.05). ADAM19 expression was positive correlated with CUEDC2 expression in EHCC (p < 0.05). The overall survival time of those with positive expression of ADAM19 and CUEDC2 was lower (p < 0.001). Both positive expression of ADAM19 and CUEDC2 were independent prognostic factors in EHCC. Conclusion: ADAM19 and CUEDC2 have a positive correlation to the pathogenesis and dismal prognosis in EHCC.
Collapse
Affiliation(s)
- Shu Xu
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, PR China
| | - Shengfu Huang
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, PR China
| | - Daiqiang Li
- Department of Pathology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, PR China
| | - Qiong Zou
- Department of Pathology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, PR China
| | - Yuan Yuan
- Department of Pathology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, PR China
| | - Zhulin Yang
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, PR China
| |
Collapse
|
16
|
Protein phosphatase 1 in tumorigenesis: is it worth a closer look? Biochim Biophys Acta Rev Cancer 2020; 1874:188433. [PMID: 32956763 DOI: 10.1016/j.bbcan.2020.188433] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/26/2020] [Accepted: 09/12/2020] [Indexed: 02/06/2023]
Abstract
Cancer cells take advantage of signaling cascades to meet their requirements for sustained growth and survival. Cell signaling is tightly controlled by reversible protein phosphorylation mechanisms, which require the counterbalanced action of protein kinases and protein phosphatases. Imbalances on this system are associated with cancer development and progression. Protein phosphatase 1 (PP1) is one of the most relevant protein phosphatases in eukaryotic cells. Despite the widely recognized involvement of PP1 in key biological processes, both in health and disease, its relevance in cancer has been largely neglected. Here, we provide compelling evidence that support major roles for PP1 in tumorigenesis.
Collapse
|
17
|
Eiermann N, Haneke K, Sun Z, Stoecklin G, Ruggieri A. Dance with the Devil: Stress Granules and Signaling in Antiviral Responses. Viruses 2020; 12:v12090984. [PMID: 32899736 PMCID: PMC7552005 DOI: 10.3390/v12090984] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/31/2020] [Accepted: 08/31/2020] [Indexed: 02/07/2023] Open
Abstract
Cells have evolved highly specialized sentinels that detect viral infection and elicit an antiviral response. Among these, the stress-sensing protein kinase R, which is activated by double-stranded RNA, mediates suppression of the host translation machinery as a strategy to limit viral replication. Non-translating mRNAs rapidly condensate by phase separation into cytosolic stress granules, together with numerous RNA-binding proteins and components of signal transduction pathways. Growing evidence suggests that the integrated stress response, and stress granules in particular, contribute to antiviral defense. This review summarizes the current understanding of how stress and innate immune signaling act in concert to mount an effective response against virus infection, with a particular focus on the potential role of stress granules in the coordination of antiviral signaling cascades.
Collapse
Affiliation(s)
- Nina Eiermann
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (N.E.); (K.H.); (G.S.)
| | - Katharina Haneke
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (N.E.); (K.H.); (G.S.)
| | - Zhaozhi Sun
- Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research (CIID), University of Heidelberg, 69120 Heidelberg, Germany;
| | - Georg Stoecklin
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (N.E.); (K.H.); (G.S.)
| | - Alessia Ruggieri
- Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research (CIID), University of Heidelberg, 69120 Heidelberg, Germany;
- Correspondence:
| |
Collapse
|
18
|
CUEDC2 controls osteoblast differentiation and bone formation via SOCS3-STAT3 pathway. Cell Death Dis 2020; 11:344. [PMID: 32393737 PMCID: PMC7214468 DOI: 10.1038/s41419-020-2562-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 04/28/2020] [Accepted: 04/28/2020] [Indexed: 01/08/2023]
Abstract
The CUE domain-containing 2 (CUEDC2) protein plays critical roles in many biological processes, such as the cell cycle, inflammation, and tumorigenesis. However, whether CUEDC2 is involved in osteoblast differentiation and plays a role in bone regeneration remains unknown. This study investigated the role of CUEDC2 in osteogenesis and its underlying molecular mechanisms. We found that CUEDC2 is expressed in bone tissues. The expression of CUEDC2 decreased during bone development and BMP2-induced osteoblast differentiation. The overexpression of CUEDC2 suppressed the osteogenic differentiation of precursor cells, while the knockdown of CUEDC2 showed the opposite effect. In vivo studies showed that the overexpression of CUEDC2 decreased bone parameters (bone volume, bone area, and bone mineral density) during ectopic bone formation, whereas its knockdown increased bone volume and the reconstruction percentage of critical-size calvarial defects. We found that CUEDC2 affects STAT3 activation by regulating SOCS3 protein stability. Treatment with a chemical inhibitor of STAT3 abolished the promoting effect of CUEDC2 silencing on osteoblast differentiation. Together, we suggest that CUEDC2 functions as a key regulator of osteoblast differentiation and bone formation by targeting the SOCS3–STAT3 pathway. CUEDC2 manipulation could serve as a therapeutic strategy for controlling bone disease and regeneration.
Collapse
|
19
|
Insulin signaling pathway and related molecules: Role in neurodegeneration and Alzheimer's disease. Neurochem Int 2020; 135:104707. [PMID: 32092326 DOI: 10.1016/j.neuint.2020.104707] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases. Its major pathological hallmarks, neurofibrillary tangles (NFT), and amyloid-β plaques can result from dysfunctional insulin signaling. Insulin is an important growth factor that regulates cell growth, energy utilization, mitochondrial function, autophagy, oxidative stress, synaptic plasticity, and cognitive function. Insulin and its downstream signaling molecules are located majorly in the regions of cortex and hippocampus. The major molecules involved in impaired insulin signaling include IRS, PI3K, Akt, and GSK-3β. Activation or inactivation of these major molecules through increased or decreased phosphorylation plays a role in insulin signaling abnormalities or insulin resistance. Insulin resistance, therefore, is considered as a major culprit in generating the hallmarks of AD arising from neuroinflammation and oxidative stress, etc. Moreover, caspases, Nrf2, and NF-κB influence this pathway in an indirect way. Various studies also suggest a strong link between Diabetes Mellitus and AD due to the impairment of insulin signaling pathway. Moreover, studies also depict a strong correlation of other neurodegenerative diseases such as Parkinson's disease and Huntington's disease with insulin resistance. Hence this review will provide an insight into the role of insulin signaling pathway and related molecules as therapeutic targets in AD and other neurodegenerative diseases.
Collapse
|
20
|
Ma LY, Liu SF, Du JH, Niu Y, Hou PF, Shu Q, Ma RR, Wu SD, Qu QM, Lv YL. Chronic ghrelin administration suppresses IKK/NF-κB/BACE1 mediated Aβ production in primary neurons and improves cognitive function via upregulation of PP1 in STZ-diabetic rats. Neurobiol Learn Mem 2020; 169:107155. [PMID: 31904547 DOI: 10.1016/j.nlm.2019.107155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 11/19/2019] [Accepted: 12/31/2019] [Indexed: 01/19/2023]
Abstract
Diabetic rats display cognition impairments accompanied by activation of NF-κB signalling and increased Aβ expression. Ghrelin has been suggested to improve cognition in diabetic rats. In this study, we investigated the role of ghrelin on cognition and NF-κB mediated Aβ production in diabetic rats. A diabetic rat model was established with streptozotocin (STZ) injection, and diabetic rats were intracerebroventricularly administered with ghrelin or (D-lys3)-GHRP-6 (DG). Our results showed that diabetic rats had cognition impairment in the Morris water maze test, accompanied by the higher expression of Aβ in the hippocampus. Western blot analysis showed that diabetic rats exhibited significantly decreased levels of GHSR-1a and protein phosphatase 1 (PP1) in the hippocampus and increased activation of the IKK/NF-κB/BACE1 pathway. Chronic ghrelin administration upregulated hippocampal PP1 expression, suppressed IKK/NF-κB/BACE1 mediated Aβ production, and improved cognition in STZ-induced diabetic rats. These effects were reversed by DG. Then, primary rat hippocampal neurons were isolated and treated with high glucose, followed by Ghrelin and DG, PP1 or IKK. Similar to the in vivo results, high glucose suppressed the expression levels of GHSR-1a and PP1, activated the IKK/NF-κB/BACE1 pathway, increased Aβ production. Ghrelin suppressed IKK/NF-κB/BACE1 induced Aβ production. This improvement was reversed by DG and a PP1 antagonist and was enhanced by the IKK antagonist. Our findings indicated that chronic ghrelin administration can suppress IKK/NF-κB/BACE1 mediated Aβ production in primary neurons with high glucose treatment and improve the cognition via PP1 upregulation in diabetic rats.
Collapse
Affiliation(s)
- Lou-Yan Ma
- The Second Department of Geriatrics, Ninth Hospital of Xi'an, Xi'an, China
| | - Song-Fang Liu
- Department of Endocrinology, Ninth Hospital of Xi'an, Xi'an, China
| | - Jun-Hui Du
- Department of Ophthalmology, Ninth Hospital of Xi'an, Xi'an, China
| | - Yu Niu
- Department of Endocrinology, Ninth Hospital of Xi'an, Xi'an, China
| | - Peng-Fei Hou
- Department of Neurosurgery, Ninth Hospital of Xi'an, Xi'an, China
| | - Qing Shu
- Department of Pharmacy, Ninth Hospital of Xi'an, Xi'an, China
| | - Ran-Ran Ma
- Department of Neurology, Ninth Hospital of Xi'an, Xi'an, China
| | - Song-Di Wu
- Department of Neurology, First Hospital of Xi'an, Xi'an, China.
| | - Qiu-Min Qu
- Department of Neurology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Ya-Li Lv
- Department of Neurology, Fourth Hospital of Xi'an, Xi'an, China.
| |
Collapse
|
21
|
Wang H, Chen Z, Wang S, Gao X, Qian M, Qiu W, Zhang Z, Zhang S, Qi Y, Sun X, Xue H, Guo X, Zhao R, Li G. TGFβ1-induced beta-site APP-cleaving enzyme 2 upregulation promotes tumorigenesis through the NF-κB signalling pathway in human gliomas. Mol Oncol 2020; 14:407-425. [PMID: 31856384 PMCID: PMC6998390 DOI: 10.1002/1878-0261.12623] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 12/04/2019] [Accepted: 12/17/2019] [Indexed: 01/05/2023] Open
Abstract
Gliomas are the most common primary malignant tumours of the central nervous system, and new molecular biomarkers are urgently needed for diagnosis and targeted therapy. Here, we report that increased beta-site APP-cleaving enzyme 2 (BACE2) expression is associated with increases in the grade of human glioma, the incidence of the mesenchymal molecular glioblastoma multiforme subtype and the likelihood of poor prognoses for patients. BACE2 knockdown suppressed cell invasion, cell migration and tumour growth both in vitro and in vivo, while BACE2 overexpression promoted the mesenchymal transition and cell proliferation. Furthermore, TGFβ1 stimulated BACE2 expression through Smad-dependent signalling, which modulated TNF-α-induced NF-κB activity through the PP1A/IKK pathway to promote tumorigenesis in both U87MG and U251 cells. Our study indicated that BACE2 plays a significant role in glioma development. Therefore, BACE2 is a potential therapeutic target for human gliomas due to its function and ability to be regulated.
Collapse
Affiliation(s)
- Huizhi Wang
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, Shandong Province, China.,Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong Province, China.,Shandong Key Laboratory of Brain Function Remodeling, Shandong University, Jinan, Shandong Province, China
| | - Zihang Chen
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, Shandong Province, China.,Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong Province, China.,Shandong Key Laboratory of Brain Function Remodeling, Shandong University, Jinan, Shandong Province, China
| | - Shaobo Wang
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, Shandong Province, China.,Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong Province, China.,Shandong Key Laboratory of Brain Function Remodeling, Shandong University, Jinan, Shandong Province, China
| | - Xiao Gao
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, Shandong Province, China.,Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong Province, China.,Shandong Key Laboratory of Brain Function Remodeling, Shandong University, Jinan, Shandong Province, China
| | - Mingyu Qian
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, Shandong Province, China.,Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong Province, China.,Shandong Key Laboratory of Brain Function Remodeling, Shandong University, Jinan, Shandong Province, China
| | - Wei Qiu
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, Shandong Province, China.,Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong Province, China.,Shandong Key Laboratory of Brain Function Remodeling, Shandong University, Jinan, Shandong Province, China
| | - Zongpu Zhang
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, Shandong Province, China.,Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong Province, China.,Shandong Key Laboratory of Brain Function Remodeling, Shandong University, Jinan, Shandong Province, China
| | - Shouji Zhang
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, Shandong Province, China.,Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong Province, China.,Shandong Key Laboratory of Brain Function Remodeling, Shandong University, Jinan, Shandong Province, China
| | - Yanhua Qi
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, Shandong Province, China.,Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong Province, China.,Shandong Key Laboratory of Brain Function Remodeling, Shandong University, Jinan, Shandong Province, China
| | - Xiaopeng Sun
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong Province, China.,Shandong Key Laboratory of Brain Function Remodeling, Shandong University, Jinan, Shandong Province, China.,Department of Neurosurgery, Dezhou People's Hospital, Dezhou, Shandong Province, China
| | - Hao Xue
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, Shandong Province, China.,Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong Province, China.,Shandong Key Laboratory of Brain Function Remodeling, Shandong University, Jinan, Shandong Province, China
| | - Xing Guo
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, Shandong Province, China.,Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong Province, China.,Shandong Key Laboratory of Brain Function Remodeling, Shandong University, Jinan, Shandong Province, China
| | - Rongrong Zhao
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, Shandong Province, China.,Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong Province, China.,Shandong Key Laboratory of Brain Function Remodeling, Shandong University, Jinan, Shandong Province, China
| | - Gang Li
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, Shandong Province, China.,Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong Province, China.,Shandong Key Laboratory of Brain Function Remodeling, Shandong University, Jinan, Shandong Province, China
| |
Collapse
|
22
|
Wu H, Liu H, Zhao X, Zheng Y, Liu B, Zhang L, Gao C. IKIP Negatively Regulates NF-κB Activation and Inflammation through Inhibition of IKKα/β Phosphorylation. THE JOURNAL OF IMMUNOLOGY 2019; 204:418-427. [PMID: 31826938 DOI: 10.4049/jimmunol.1900626] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 11/07/2019] [Indexed: 01/27/2023]
Abstract
Stringent regulation of the transcription factor NF-κB signaling is essential for the activation of host immune responses and maintaining homeostasis, yet the molecular mechanisms involved in its tight regulation are not completely understood. In this study, we report that IKK-interacting protein (IKIP) negatively regulates NF-κB activation. IKIP interacted with IKKα/β to block its association with NEMO, thereby inhibiting the phosphorylation of IKKα/β and the activation of NF-κB. Upon LPS, TNF-α, and IL-1β stimulation, IKIP-deficient macrophages exhibited more and prolonged IKKα/β phosphorylation, IκB, and p65 phosphorylation and production of NF-κB-responsive genes. Moreover, IKIP-deficient mice were more susceptible to LPS-induced septic shock and dextran sodium sulfate-induced colitis. Our study identifies a previously unrecognized role for IKIP in the negative regulation of NF-κB activation by inhibition of IKKα/β phosphorylation through the disruption of IKK complex formation.
Collapse
Affiliation(s)
- Haifeng Wu
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan 250012, China; and
| | - Hansen Liu
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan 250012, China; and
| | - Xueying Zhao
- Department of Transfusion, The Second Hospital of Shandong University, Jinan 250000, China
| | - Yi Zheng
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan 250012, China; and
| | - Bingyu Liu
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan 250012, China; and
| | - Lei Zhang
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan 250012, China; and
| | - Chengjiang Gao
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan 250012, China; and
| |
Collapse
|
23
|
Imai J, Otani M, Sakai T. Distinct Subcellular Compartments of Dendritic Cells Used for Cross-Presentation. Int J Mol Sci 2019; 20:ijms20225606. [PMID: 31717517 PMCID: PMC6888166 DOI: 10.3390/ijms20225606] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/29/2019] [Accepted: 11/06/2019] [Indexed: 02/06/2023] Open
Abstract
Dendritic cells (DCs) present exogenous protein-derived peptides on major histocompatibility complex class I molecules to prime naïve CD8+ T cells. This DC specific ability, called cross-presentation (CP), is important for the activation of cell-mediated immunity and the induction of self-tolerance. Recent research revealed that endoplasmic reticulum-associated degradation (ERAD), which was first identified as a part of the unfolded protein response—a quality control system in the ER—plays a pivotal role in the processing of exogenous proteins in CP. Moreover, DCs express a variety of immuno-modulatory molecules and cytokines to regulate T cell activation in response to the environment. Although both CP and immuno-modulation are indispensable, contrasting ER conditions are required for their correct activity. Since ERAD substrates are unfolded proteins, their accumulation may result in ER stress, impaired cell homeostasis, and eventually apoptosis. In contrast, activation of the unfolded protein response should be inhibited for DCs to express immuno-modulatory molecules and cytokines. Here, we review recent advances on antigen CP, focusing on intracellular transport routes for exogenous antigens and distinctive subcellular compartments involved in ERAD.
Collapse
Affiliation(s)
- Jun Imai
- Correspondence: ; Tel.: +81-27-352-1180
| | | | | |
Collapse
|
24
|
Wang A, Li J, Zhou T, Li T, Cai H, Shi H, Liu A. CUEDC2 Contributes to Cisplatin-Based Chemotherapy Resistance in Ovarian Serious Carcinoma by Regulating p38 MAPK Signaling. J Cancer 2019; 10:1800-1807. [PMID: 31205536 PMCID: PMC6547988 DOI: 10.7150/jca.29889] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 02/07/2019] [Indexed: 12/22/2022] Open
Abstract
Chemoresistance remains an obstacle to the successful treatment of ovarian carcinoma. CUE domain-containing 2 (CUEDC2) plays critical roles in tumor genesis and overexpresses in many solid cancers, including ovarian serous carcinoma. In previous study, we found that overexpression of CUEDC2 might be a promising biomarker to evaluate the progression and to predict likely relapse of serous ovarian carcinoma. In present study, we found that higher expression of CUEDC2 was associated with higher resistance to cisplatin. The overall survival (OS) and disease-free survival time (DFS) of patients with cisplatin resistant was shorter than that of those with cisplatin sensitive, respectively, and the cisplatin sensitivity was independent predictor of a shorter OS time and DFS time. Knockdown of CUEDC2 by small interfering RNA enhanced the cisplatin sensitivity of serous ovarian carcinoma cells in SKOV3 cell lines. Furthermore, the phosphorylation of p38 MAPK were obviously increased after CUEDC2 knockdown, while p38 MAPK signaling contributes to cell growth and cell apoptosis. Our data suggest that CUEDC2 takes part in cisplatin-based chemotherapy resistance by regulating p38 MAPK signaling. And CUEDC2 is a promising biomarker and therapeutic target of cisplatin resistance in ovarian serous carcinoma.
Collapse
Affiliation(s)
- Aichun Wang
- Department of Pathology, People's Liberation Army General Hospital, Beijing, 100853, China.,Department of Pathology, Haidian Maternal & Children Health Hospital, Beijing, 100080, China
| | - Jinhang Li
- Department of Pathology, People's Liberation Army General Hospital, Beijing, 100853, China
| | - Tao Zhou
- National Center of Biomedical Analysis, Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Tao Li
- National Center of Biomedical Analysis, Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Hong Cai
- National Center of Biomedical Analysis, Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Huaiyin Shi
- Department of Pathology, People's Liberation Army General Hospital, Beijing, 100853, China
| | - Aijun Liu
- Department of Pathology, People's Liberation Army General Hospital, Beijing, 100853, China
| |
Collapse
|
25
|
Zhang R, Li X, Wei L, Qin Y, Fang J. Lemur tyrosine kinase 2 acts as a positive regulator of NF-κB activation and colon cancer cell proliferation. Cancer Lett 2019; 454:70-77. [PMID: 30980866 DOI: 10.1016/j.canlet.2019.04.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/01/2019] [Accepted: 04/05/2019] [Indexed: 11/29/2022]
Abstract
Lemur tyrosine kinase 2 (LMTK2) belongs to both protein kinase and tyrosine kinase families. LMTK2 is less studied and little is known about its function. Here we demonstrate that LMTK2 modulates NF-κB activity and functions to promote colonic tumorigenesis. We found that LMTK2 protein was abundant in colon cancer cells and LMTK2 knockdown (LMTK2-KD) inhibited proliferation of colon cancer cells through inactivating NF-κB. In unstimulated condition, LMTK2 modulated NF-κB through inhibiting phosphorylation of p65 at Ser468. Mechanistically, LMTK2 phosphorylated protein phosphatase 1A (PP1A) to prevent PP1A from dephosphorylating p-GSK3β(Ser9). The p-GSK3β(Ser9) could not phosphorylate p65 at Ser468, which maintained the basal NF-κB activity. LMTK2 also modulated TNFα-activated NF-κB. LMTK2-KD repressed TNFα-induced IKKβ phosphorylation, IκBα degradation and NF-κB activation, implying that LMTK2 modulates TNFα-activated NF-κB via IKK. These results suggest that LMTK2 modulates basal and TNFα-induced NF-κB activities in different mechanisms. Animal studies show that LMTK2-KD suppressed colon cancer cell xenograft growth, decreased PP1A phosphorylation and increased p-p65(Ser468). Our results reveal the role and underlying mechanism of LMTK2 in colonic tumorigenesis and suggest that LMTK2 may serve as a potential target for chemotherapy of colon cancer.
Collapse
Affiliation(s)
- Rongjing Zhang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institute for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xiuxiu Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institute for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Lumin Wei
- Ruijin Hospital, Shanghai Jiaotong University, Shanghai, 200025, China
| | - Yanqing Qin
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institute for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jing Fang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, 266061, China; Cancer Institute, Qingdao University, 26601, Qingdao, 266061, China.
| |
Collapse
|
26
|
Elevated pre-activation basal level of nuclear NF-κB in native macrophages accelerates LPS-induced translocation of cytosolic NF-κB into the cell nucleus. Sci Rep 2019; 9:4563. [PMID: 30872589 PMCID: PMC6418260 DOI: 10.1038/s41598-018-36052-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 11/08/2018] [Indexed: 02/01/2023] Open
Abstract
Signaling via Toll-like receptor 4 (TLR4) in macrophages constitutes an essential part of the innate immune response to bacterial infections. Detailed and quantified descriptions of TLR4 signal transduction would help to understand and exploit the first-line response of innate immune defense. To date, most mathematical modelling studies were performed on transformed cell lines. However, properties of primary macrophages differ significantly. We therefore studied TLR4-dependent activation of NF-κB transcription factor in bone marrow-derived and peritoneal primary macrophages. We demonstrate that the kinetics of NF-κB phosphorylation and nuclear translocation induced by a wide range of bacterial lipopolysaccharide (LPS) concentrations in primary macrophages is much faster than previously reported for macrophage cell lines. We used a comprehensive combination of experiments and mathematical modeling to understand the mechanisms of this rapid response. We found that elevated basal NF-κB in the nuclei of primary macrophages is a mechanism increasing native macrophage sensitivity and response speed to the infection. Such pre-activated state of macrophages accelerates the NF-κB translocation kinetics in response to low agonist concentrations. These findings enabled us to refine and construct a new model combining both NF-κB phosphorylation and translocation processes and predict the existence of a negative feedback loop inactivating phosphorylated NF-κB.
Collapse
|
27
|
Liu C, Zhou Y, Li M, Wang Y, Yang L, Yang S, Feng Y, Wang Y, Wang Y, Ren F, Li J, Dong Z, Chin YE, Fu X, Wu L, Chang Z. Absence of GdX/UBL4A Protects against Inflammatory Diseases by Regulating NF-кB Signaling in Macrophages and Dendritic Cells. Am J Cancer Res 2019; 9:1369-1384. [PMID: 30867837 PMCID: PMC6401509 DOI: 10.7150/thno.32451] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 12/29/2022] Open
Abstract
Nuclear factor-kappa B (NF-κB) activation is critical for innate immune responses. However, cellular-intrinsic regulation of NF-κB activity during inflammatory diseases remains incompletely understood. Ubiquitin-like protein 4A (UBL4A, GdX) is a small adaptor protein involved in protein folding, biogenesis and transcription. Yet, whether GdX has a role during innate immune response is largely unknown. Methods: To investigate the involvement of GdX in innate immunity, we challenged GdX-deficient mice with lipopolysaccharides (LPS). To investigate the underlying mechanism, we performed RNA sequencing, real-time PCR, ELISA, luciferase reporter assay, immunoprecipitation and immunoblot analyses, flow cytometry, and structure analyses. To investigate whether GdX functions in inflammatory bowel disease, we generated dendritic cell (DC), macrophage (Mφ), epithelial-cell specific GdX-deficient mice and induced colitis with dextran sulfate sodium. Results: GdX enhances DC and Mφ-mediated innate immune defenses by positively regulating NF-κB signaling. GdX-deficient mice were resistant to LPS-induced endotoxin shock and DSS-induced colitis. DC- or Mφ- specific GdX-deficient mice displayed alleviated mucosal inflammation. The production of pro-inflammatory cytokines by GdX-deficient DCs and Mφ was reduced. Mechanistically, we found that tyrosine-protein phosphatase non-receptor type 2 (PTPN2, TC45) and protein phosphatase 2A (PP2A) form a complex with RelA (p65) to mediate its dephosphorylation whereas GdX interrupts the TC45/PP2A/p65 complex formation and restrict p65 dephosphorylation by trapping TC45. Conclusion: Our study provides a mechanism by which NF-κB signaling is positively regulated by an adaptor protein GdX in DC or Mφ to maintain the innate immune response. Targeting GdX could be a strategy to reduce over-activated immune response in inflammatory diseases.
Collapse
|
28
|
Protein Phosphatase 1α and Cofilin Regulate Nuclear Translocation of NF-κB and Promote Expression of the Anti-Inflammatory Cytokine Interleukin-10 by T Cells. Mol Cell Biol 2018; 38:MCB.00041-18. [PMID: 30181394 DOI: 10.1128/mcb.00041-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 08/23/2018] [Indexed: 02/07/2023] Open
Abstract
While several protein serine/threonine kinases control cytokine production by T cells, the roles of serine/threonine phosphatases are largely unexplored. Here, we analyzed the involvement of protein phosphatase 1α (PP1α) in cytokine synthesis following costimulation of primary human T cells. Small interfering RNA (siRNA)-mediated knockdown of PP1α (PP1KD) or expression of a dominant negative PP1α (D95N-PP1) drastically diminished interleukin-10 (IL-10) production. Focusing on a key transcriptional activator of human IL-10, we demonstrate that nuclear translocation of NF-κB was significantly inhibited in PP1KD or D95N-PP1 cells. Interestingly, knockdown of cofilin, a known substrate of PP1 containing a nuclear localization signal, also prevented nuclear accumulation of NF-κB. Expression of a constitutively active nonphosphorylatable S3A-cofilin in D95N-PP1 cells restored nuclear translocation of NF-κB and IL-10 expression. Subpopulation analysis revealed that defective nuclear translocation of NF-κB was most prominent in CD4+ CD45RA- CXCR3- T cells that included IL-10-producing TH2 cells. Together these findings reveal novel functions for PP1α and its substrate cofilin in T cells namely the regulation of the nuclear translocation of NF-κB and promotion of IL-10 production. These data suggest that stimulation of PP1α could limit the overwhelming immune responses seen in chronic inflammatory diseases.
Collapse
|
29
|
Suppression of NF-κB Activity: A Viral Immune Evasion Mechanism. Viruses 2018; 10:v10080409. [PMID: 30081579 PMCID: PMC6115930 DOI: 10.3390/v10080409] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/29/2018] [Accepted: 08/02/2018] [Indexed: 12/20/2022] Open
Abstract
Nuclear factor-κB (NF-κB) is an important transcription factor that induces the expression of antiviral genes and viral genes. NF-κB activation needs the activation of NF-κB upstream molecules, which include receptors, adaptor proteins, NF-κB (IκB) kinases (IKKs), IκBα, and NF-κB dimer p50/p65. To survive, viruses have evolved the capacity to utilize various strategies that inhibit NF-κB activity, including targeting receptors, adaptor proteins, IKKs, IκBα, and p50/p65. To inhibit NF-κB activation, viruses encode several specific NF-κB inhibitors, including NS3/4, 3C and 3C-like proteases, viral deubiquitinating enzymes (DUBs), phosphodegron-like (PDL) motifs, viral protein phosphatase (PPase)-binding proteins, and small hydrophobic (SH) proteins. Finally, we briefly describe the immune evasion mechanism of human immunodeficiency virus 1 (HIV-1) by inhibiting NF-κB activity in productive and latent infections. This paper reviews a viral mechanism of immune evasion that involves the suppression of NF-κB activation to provide new insights into and references for the control and prevention of viral diseases.
Collapse
|
30
|
Wu QY, Zhu YY, Liu Y, Wei F, Tong YX, Cao J, Zhou P, Niu MS, Li ZY, Zeng LY, Li F, Xu KL. CUEDC2, a novel interacting partner of the SOCS1 protein, plays important roles in the leukaemogenesis of acute myeloid leukaemia. Cell Death Dis 2018; 9:774. [PMID: 29991678 PMCID: PMC6039501 DOI: 10.1038/s41419-018-0812-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 06/14/2018] [Accepted: 06/21/2018] [Indexed: 01/06/2023]
Abstract
Downregulation of suppressor of cytokine signalling-1 (SOCS1) is one of the vital reasons for JAK1-STAT3 pathway activation in acute myeloid leukaemia (AML). CUE domain-containing 2 (CUEDC2) was a novel interacting partner of SOCS1 and a positive correlation between the expression of CUEDC2 and SOCS1 was confirmed in primary AML cells and AML cell lines without SOCS1 promoter methylation. We aimed to explore roles of CUEDC2 in regulating ubiquitin-mediated degradation of SOCS1 in the leukaemogenesis of AML.According to in vitro experiments, CUEDC2 overexpression increased the level of SOCS1 protein, suppressed JAK1-STAT3 pathway activation. The suppression of this pathway inhibited AML cells' proliferation by causing G1 arrest and enhanced AML cells' sensitivity to cytarabine and idarubicin. Similarity, downregulation of CUEDC2 produced opposite results. Knockout or low expression of CUEDC2 in mouse or AML patients displayed lower overall survival and event-free survival rates, compared with these mouse and AML patients had high-CUEDC2 expression. Mechanistic studies revealed that CUEDC2 overexpression attenuated SOCS1 ubiquitination, facilitated its stabilisation by enhancing SOCS1, Elongin C and Cullin-2 (CUL2) interactions, thus inhibited JAK1-STAT3 pathway and leukaemogenesis of AML. Therefore, our novel findings indicated that CUEDC2 interacted with SOCS1 to suppress SOCS1's ubiquitin-mediated degradation, JAK1-STAT3 pathway activation and leukaemogenesis of AML.
Collapse
Affiliation(s)
- Qing-Yun Wu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yuan-Yuan Zhu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yang Liu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Fang Wei
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yu-Xue Tong
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jiang Cao
- Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ping Zhou
- Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ming-Shan Niu
- Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhen-Yu Li
- Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ling-Yu Zeng
- Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Feng Li
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China.
| | - Kai-Lin Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China. .,Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
31
|
Li P, Jin Y, Qi F, Wu F, Luo S, Cheng Y, Montgomery RR, Qian F. SIRT6 Acts as a Negative Regulator in Dengue Virus-Induced Inflammatory Response by Targeting the DNA Binding Domain of NF-κB p65. Front Cell Infect Microbiol 2018; 8:113. [PMID: 29686974 PMCID: PMC5900784 DOI: 10.3389/fcimb.2018.00113] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 03/22/2018] [Indexed: 01/01/2023] Open
Abstract
Dengue virus (DENV) is a mosquito-borne single-stranded RNA virus causing human disease with variable severity. The production of massive inflammatory cytokines in dengue patients has been associated with dengue disease severity. However, the regulation of these inflammatory responses remains unclear. In this study, we report that SIRT6 is a negative regulator of innate immune responses during DENV infection. Silencing of Sirt6 enhances DENV-induced proinflammatory cytokine and chemokine production. Overexpression of SIRT6 inhibits RIG-I-like receptor (RLR) and Toll-like receptor 3 (TLR3) mediated NF-κB activation. The sirtuin core domain of SIRT6 is required for the inhibition of NF-κB p65 function. SIRT6 interacts with the DNA binding domain of p65 and competes with p65 to occupy the Il6 promoter during DENV infection. Collectively, our study demonstrates that SIRT6 negatively regulates DENV-induced inflammatory response via RLR and TLR3 signaling pathways.
Collapse
Affiliation(s)
- Pengcheng Li
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Yufei Jin
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Fei Qi
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Fangyi Wu
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Susu Luo
- Institute of Biothermal Science and Technology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yuanjiu Cheng
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Ruth R. Montgomery
- Program on Human Translational Immunology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Feng Qian
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
32
|
Gallardo F, Bertran J, López-Arribillaga E, González J, Menéndez S, Sánchez I, Colomo L, Iglesias M, Garrido M, Santamaría-Babí LF, Torres F, Pujol RM, Bigas A, Espinosa L. Novel phosphorylated TAK1 species with functional impact on NF-κB and β-catenin signaling in human Cutaneous T-cell lymphoma. Leukemia 2018; 32:2211-2223. [PMID: 29511289 PMCID: PMC6170395 DOI: 10.1038/s41375-018-0066-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 12/12/2017] [Accepted: 01/19/2018] [Indexed: 02/08/2023]
Abstract
Cutaneous T-cell lymphomas (CTCLs) represent different subtypes of lymphoproliferative disorders with no curative therapies for the advanced forms of the disease (namely mycosis fungoides and the leukemic variant, Sézary syndrome). Molecular events leading to CTCL progression are heterogeneous, however recent DNA and RNA sequencing studies highlighted the importance of NF-κB and β-catenin pathways. We here show that the kinase TAK1, known as essential in B-cell lymphoma, is constitutively activated in CTCL cells, but tempered by the MYPT1/PP1 phosphatase complex. Blocking PP1 activity, both pharmacologically and genetically, resulted in TAK1 hyperphosphorylation at residues T344, S389, T444, and T511, which have functional impact on canonical NF-κB signaling. Inhibition of TAK1 precluded NF-κB and β-catenin signaling and induced apoptosis of CTCL cell lines and primary Sézary syndrome cells both in vitro and in vivo. Detection of phosphorylated TAK1 at T444 and T344 is associated with the presence of lymphoma in a set of 60 primary human samples correlating with NF-κB and β-catenin activation. These results identified TAK1 as a potential biomarker and therapeutic target for CTCL therapy.
Collapse
Affiliation(s)
- Fernando Gallardo
- Dermatology Department, Parc de Salut Mar-Hospital del Mar, Barcelona, Spain
| | - Joan Bertran
- Faculty of Sciences and Technology, Bioinformatics and Medical Statistics Group, University of Vic - Central University of Catalonia, 08500, Vic, Spain
| | - Erika López-Arribillaga
- Stem Cells and Cancer Research Laboratory, CIBERONC, Institut Hospital del Mar Investigacions Mèdiques (IMIM), 08003, Barcelona, Spain
| | - Jéssica González
- Stem Cells and Cancer Research Laboratory, CIBERONC, Institut Hospital del Mar Investigacions Mèdiques (IMIM), 08003, Barcelona, Spain
| | - Silvia Menéndez
- Molecular Therapy of Cancer Group, Parc de Salut Mar-Hospital del Mar, 08003, Barcelona, Spain
| | - Ignacio Sánchez
- Pathology Department, Parc de Salut Mar-Hospital del Mar, Barcelona, Spain
| | - Luis Colomo
- Pathology Department, Parc de Salut Mar-Hospital del Mar, Barcelona, Spain
| | - Mar Iglesias
- Pathology Department, Parc de Salut Mar-Hospital del Mar, Barcelona, Spain
| | - Marta Garrido
- Stem Cells and Cancer Research Laboratory, CIBERONC, Institut Hospital del Mar Investigacions Mèdiques (IMIM), 08003, Barcelona, Spain
| | - Luis Francisco Santamaría-Babí
- Translational Immunology, Department of Cellular Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Ferran Torres
- Biostatistics and Data Management Platform, IDIBAPS, Hospital Clínic, Biostatistics Unit. Faculty of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ramon M Pujol
- Dermatology Department, Parc de Salut Mar-Hospital del Mar, Barcelona, Spain
| | - Anna Bigas
- Stem Cells and Cancer Research Laboratory, CIBERONC, Institut Hospital del Mar Investigacions Mèdiques (IMIM), 08003, Barcelona, Spain.
| | - Lluís Espinosa
- Stem Cells and Cancer Research Laboratory, CIBERONC, Institut Hospital del Mar Investigacions Mèdiques (IMIM), 08003, Barcelona, Spain.
| |
Collapse
|
33
|
Reverendo M, Mendes A, Argüello RJ, Gatti E, Pierre P. At the crossway of ER-stress and proinflammatory responses. FEBS J 2018; 286:297-310. [PMID: 29360216 DOI: 10.1111/febs.14391] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/12/2018] [Accepted: 01/18/2018] [Indexed: 12/13/2022]
Abstract
Immune cells detect specific microbes or damage to tissue integrity in order to initiate efficient immune responses. Abnormal accumulation of proteins in the endoplasmic reticulum (ER) can be seen as a sign of cellular malfunction and stress that triggers a collection of conserved emergency rescue programs. These different signaling cascades, which favor ER proteostasis and promote cell survival, are collectively known as the unfolded protein response (UPR). In recent years, a synergy between the UPR and inflammatory cytokine production has been unraveled, with different branches of the UPR entering in a cross-talk with specialized microbe sensing pathways, which turns on or amplify inflammatory cytokines production. Complementary to this synergetic activity, UPR induction alone, can itself be seen as a danger signal, and triggers directly or indirectly inflammation in different cellular and pathological models, this independently of the presence of pathogens. Here, we discuss recent advances on the nature of these cross-talks and how innate immunity, metabolism dysregulation, and ER-signaling pathways intersect in specialized immune cells, such as dendritic cells (DCs), and contribute to the pathogenesis of inflammatory diseases.
Collapse
Affiliation(s)
- Marisa Reverendo
- Aix Marseille Université, CNRS, INSERM, CIML, Marseille cedex 9, France.,International Associated Laboratory (LIA) CNRS 'Mistra', Marseille cedex 9, France
| | - Andreia Mendes
- Aix Marseille Université, CNRS, INSERM, CIML, Marseille cedex 9, France.,International Associated Laboratory (LIA) CNRS 'Mistra', Marseille cedex 9, France
| | - Rafael J Argüello
- Aix Marseille Université, CNRS, INSERM, CIML, Marseille cedex 9, France
| | - Evelina Gatti
- Aix Marseille Université, CNRS, INSERM, CIML, Marseille cedex 9, France.,International Associated Laboratory (LIA) CNRS 'Mistra', Marseille cedex 9, France.,Institute for Research in Biomedicine (iBiMED) and Ilidio Pinho Foundation, Department of Medical Sciences, University of Aveiro, Portugal
| | - Philippe Pierre
- Aix Marseille Université, CNRS, INSERM, CIML, Marseille cedex 9, France.,International Associated Laboratory (LIA) CNRS 'Mistra', Marseille cedex 9, France.,Institute for Research in Biomedicine (iBiMED) and Ilidio Pinho Foundation, Department of Medical Sciences, University of Aveiro, Portugal
| |
Collapse
|
34
|
Perego J, Mendes A, Bourbon C, Camosseto V, Combes A, Liu H, Manh TPV, Dalet A, Chasson L, Spinelli L, Bardin N, Chiche L, Santos MAS, Gatti E, Pierre P. Guanabenz inhibits TLR9 signaling through a pathway that is independent of eIF2α dephosphorylation by the GADD34/PP1c complex. Sci Signal 2018; 11:11/514/eaam8104. [PMID: 29363586 DOI: 10.1126/scisignal.aam8104] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Endoplasmic reticulum (ER) stress triggers or amplifies inflammatory signals and cytokine production in immune cells. Upon the resolution of ER stress, the inducible phosphatase 1 cofactor GADD34 promotes the dephosphorylation of the initiation factor eIF2α, thereby enabling protein translation to resume. Several aminoguanidine compounds, such as guanabenz, perturb the eIF2α phosphorylation-dephosphorylation cycle and protect different cell or tissue types from protein misfolding and degeneration. We investigated how pharmacological interference with the eIF2α pathway could be beneficial to treat autoinflammatory diseases dependent on proinflammatory cytokines and type I interferons (IFNs), the production of which is regulated by GADD34 in dendritic cells (DCs). In mouse and human DCs and B cells, guanabenz prevented the activation of Toll-like receptor 9 (TLR9) by CpG oligodeoxynucleotides or DNA-immunoglobulin complexes in endosomes. In vivo, guanabenz protected mice from CpG oligonucleotide-dependent cytokine shock and decreased autoimmune symptom severity in a chemically induced model of systemic lupus erythematosus. However, we found that guanabenz exerted its inhibitory effect independently of GADD34 activity on eIF2α and instead decreased the abundance of CH25H, a cholesterol hydroxylase linked to antiviral immunity. Our results therefore suggest that guanabenz and similar compounds could be used to treat type I IFN-dependent pathologies and that CH25H could be a therapeutic target to control these diseases.
Collapse
Affiliation(s)
- Jessica Perego
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), 13008 Marseille, France
| | - Andreia Mendes
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), 13008 Marseille, France.,International Associated Laboratory (LIA) CNRS "Mistra," 13008 Marseille, France
| | - Clarisse Bourbon
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), 13008 Marseille, France
| | - Voahirana Camosseto
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), 13008 Marseille, France.,International Associated Laboratory (LIA) CNRS "Mistra," 13008 Marseille, France
| | - Alexis Combes
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), 13008 Marseille, France
| | - Hong Liu
- Sanofi, Cambridge, MA 02139, USA
| | - Thien-Phong Vu Manh
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), 13008 Marseille, France
| | - Alexandre Dalet
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), 13008 Marseille, France
| | - Lionel Chasson
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), 13008 Marseille, France
| | - Lionel Spinelli
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), 13008 Marseille, France
| | - Nathalie Bardin
- Laboratoire d'Immunologie, Hôpital de la Conception, 13005 Marseille, France.,Aix Marseille Université, INSERM, VRCM, 13005 Marseille, France
| | | | - Manuel A S Santos
- International Associated Laboratory (LIA) CNRS "Mistra," 13008 Marseille, France.,Institute for Research in Biomedicine (iBiMED) and Aveiro Health Sciences Program University of Aveiro, 3810-193 Aveiro, Portugal
| | - Evelina Gatti
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), 13008 Marseille, France. .,International Associated Laboratory (LIA) CNRS "Mistra," 13008 Marseille, France.,Institute for Research in Biomedicine (iBiMED) and Aveiro Health Sciences Program University of Aveiro, 3810-193 Aveiro, Portugal
| | - Philippe Pierre
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), 13008 Marseille, France. .,International Associated Laboratory (LIA) CNRS "Mistra," 13008 Marseille, France.,Institute for Research in Biomedicine (iBiMED) and Aveiro Health Sciences Program University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
35
|
Proteomic analysis of chicken embryo fibroblast cells infected with recombinant H5N1 avian influenza viruses with and without NS1 eIF4GI binding domain. Oncotarget 2017; 9:8350-8367. [PMID: 29492200 PMCID: PMC5823584 DOI: 10.18632/oncotarget.23615] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 10/28/2017] [Indexed: 01/07/2023] Open
Abstract
Non-structural 1 (NS1) protein is a key virulence factor that regulates replication of influenza virus. A recombinant H5N1 virus lacking the eIF4GI-binding domain of NS1 (rNS1-SD30) exhibits significantly lower pathogenicity than H5N1 virus with an intact eIF4GI-binding domain (rNS1-wt). To further investigate this phenomenon, we performed comparative proteomics analyses to profile host proteins in chicken embryo fibroblasts (CEFs) infected with rNS1-wt and rNS1-SD30 viruses. In total, 81 differentially expressed (DE) proteins were identified at 12, 24, and 36 h post-infection. These proteins are mainly involved in the cytoskeletal, apoptotic and stress responses, transcription regulation, transport and metabolic processes, mRNA processing and splicing, and cellular signal transduction. Overexpression of DE proteins revealed that ANXA7 suppresses propagation of rNS1-SD30, but not rNS1-wt viruses. Moreover, ALDH7A1, ANXA7, and DCTN2 strongly enhanced IFN-β promoter activity induced by chicken MDA5 (chMDA5), and in the case of ANXA7, also by the rNS1-SD30 viral strain. NS1-wt co-transfection suppressed the ANXA7-mediated increase in IFN-β promoter activity induced by chMDA5. These findings highlight the role of NS1 eIF4GI binding domain in H5N1 pathogenicity, and may contribute to the design of antiviral strategies to reduce the high morbidity and mortality associated with this pathogen.
Collapse
|
36
|
Chew CL, Conos SA, Unal B, Tergaonkar V. Noncoding RNAs: Master Regulators of Inflammatory Signaling. Trends Mol Med 2017; 24:66-84. [PMID: 29246760 DOI: 10.1016/j.molmed.2017.11.003] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/13/2017] [Accepted: 11/14/2017] [Indexed: 12/15/2022]
Abstract
Inflammatory signaling underlies many diseases, from arthritis to cancer. Our understanding of inflammation has thus far been limited to the world of proteins, because we are only just beginning to understand the role that noncoding RNAs (ncRNA) might play. It is now clear that ncRNA do not constitute transcriptional 'noise' but instead harbor physiological functions in controlling signaling pathways. In this review, we cover the newly discovered mechanisms and functions of ncRNAs in the regulation of inflammatory signaling. We also describe advances in experimental techniques allowing this field of research to take root. These findings have opened new avenues for putative therapeutic intervention in inflammatory diseases, which may be seen translated into clinical outcomes in the future.
Collapse
Affiliation(s)
- Chen Li Chew
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore 138673, Singapore; These authors contributed equally
| | - Stephanie Ana Conos
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore 138673, Singapore; These authors contributed equally
| | - Bilal Unal
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore 138673, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore 117597, Singapore
| | - Vinay Tergaonkar
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore 138673, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore 117597, Singapore; Cancer Science Institute of Singapore, Singapore 117599, Singapore; Centre for Cancer Biology (University of South Australia and SA Pathology), Adelaide, SA 5000, Australia.
| |
Collapse
|
37
|
Tsuchiya Y, Osaki K, Kanamoto M, Nakao Y, Takahashi E, Higuchi T, Kamata H. Distinct B subunits of PP2A regulate the NF-κB signalling pathway through dephosphorylation of IKKβ, IκBα and RelA. FEBS Lett 2017; 591:4083-4094. [PMID: 29139553 PMCID: PMC5767752 DOI: 10.1002/1873-3468.12912] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 10/04/2017] [Accepted: 10/25/2017] [Indexed: 12/23/2022]
Abstract
PP2A is composed of a scaffolding subunit (A), a catalytic subunit (C) and a regulatory subunit (B) that is classified into four families including B, B′, B′′ and B′′′/striatin. Here, we found that a distinct PP2A complex regulates NF‐κB signalling by dephosphorylation of IKKβ, IκBα and RelA/p65. The PP2A core enzyme AC dimer and the holoenzyme AB′′′C trimer dephosphorylate IKKβ, IκBα and RelA, whereas the ABC trimer dephosphorylates IκBα but not IKKβ and RelA in cells. In contrast, AB′C and AB′′C trimers have little effect on dephosphorylation of these signalling proteins. These results suggest that different forms of PP2A regulate NF‐κB pathway signalling through multiple steps each in a different manner, thereby finely tuning NF‐κB‐ and IKKβ‐mediated cellular responses.
Collapse
Affiliation(s)
- Yoshihiro Tsuchiya
- Laboratory of Biomedical Chemistry, Department of Molecular Medical Science, Graduate School of Biomedical Science, Hiroshima University, Japan
| | - Keiko Osaki
- Laboratory of Biomedical Chemistry, Department of Molecular Medical Science, Graduate School of Biomedical Science, Hiroshima University, Japan
| | - Mayu Kanamoto
- Laboratory of Biomedical Chemistry, Department of Molecular Medical Science, Graduate School of Biomedical Science, Hiroshima University, Japan
| | - Yuki Nakao
- Laboratory of Biomedical Chemistry, Department of Molecular Medical Science, Graduate School of Biomedical Science, Hiroshima University, Japan
| | - Ena Takahashi
- Laboratory of Biomedical Chemistry, Department of Molecular Medical Science, Graduate School of Biomedical Science, Hiroshima University, Japan
| | - Toru Higuchi
- Laboratory of Biomedical Chemistry, Department of Molecular Medical Science, Graduate School of Biomedical Science, Hiroshima University, Japan
| | - Hideaki Kamata
- Laboratory of Biomedical Chemistry, Department of Molecular Medical Science, Graduate School of Biomedical Science, Hiroshima University, Japan
| |
Collapse
|
38
|
Goh CW, Lee IC, Sundaram JR, George SE, Yusoff P, Brush MH, Sze NSK, Shenolikar S. Chronic oxidative stress promotes GADD34-mediated phosphorylation of the TAR DNA-binding protein TDP-43, a modification linked to neurodegeneration. J Biol Chem 2017; 293:163-176. [PMID: 29109149 DOI: 10.1074/jbc.m117.814111] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 11/01/2017] [Indexed: 12/28/2022] Open
Abstract
Oxidative and endoplasmic reticulum (ER) stresses are hallmarks of the pathophysiology of ALS and other neurodegenerative diseases. In these stresses, different kinases phosphorylate eukaryotic initiation factor eIF2α, enabling the translation of stress response genes; among these is GADD34, the protein product of which recruits the α-isoform of protein phosphatase 1 catalytic subunit (PP1α) and eIF2α to assemble a phosphatase complex catalyzing eIF2α dephosphorylation and resumption of protein synthesis. Aberrations in this pathway underlie the aforementioned disorders. Previous observations indicating that GADD34 is induced by arsenite, a thiol-directed oxidative stressor, in the absence of eIF2α phosphorylation suggest other roles for GADD34. Here, we report that arsenite-induced oxidative stress differs from thapsigargin- or tunicamycin-induced ER stress in promoting GADD34 transcription and the preferential translation of its mRNA in the absence of eIF2α phosphorylation. Arsenite also stabilized GADD34 protein, slowing its degradation. In response to oxidative stress, but not ER stress, GADD34 recruited TDP-43, and enhanced cytoplasmic distribution and cysteine modifications of TDP-43 promoted its binding to GADD34. Arsenite also recruited a TDP-43 kinase, casein kinase-1ϵ (CK1ϵ), to GADD34. Concomitant with TDP-43 aggregation and proteolysis after prolonged arsenite exposure, GADD34-bound CK1ϵ catalyzed TDP-43 phosphorylations at serines 409/410, which were diminished or absent in GADD34-/- cells. Our findings highlight that the phosphatase regulator, GADD34, also functions as a kinase scaffold in response to chronic oxidative stress and recruits CK1ϵ and oxidized TDP-43 to facilitate its phosphorylation, as seen in TDP-43 proteinopathies.
Collapse
Affiliation(s)
- Catherine Wenhui Goh
- Signature Research Programs in Neuroscience and Behavioural Disorders, Singapore 169857, Singapore
| | - Irene Chengjie Lee
- Signature Research Programs in Neuroscience and Behavioural Disorders, Singapore 169857, Singapore; Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Jeyapriya Rajameenakshi Sundaram
- Signature Research Programs in Neuroscience and Behavioural Disorders, Singapore 169857, Singapore; Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Simi Elizabeth George
- Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Permeen Yusoff
- Signature Research Programs in Neuroscience and Behavioural Disorders, Singapore 169857, Singapore; Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Matthew Hayden Brush
- Ontology Development group, Oregon Health and Science University, Portland, Oregon 97239
| | - Newman Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, Singapore 639798, Singapore
| | - Shirish Shenolikar
- Signature Research Programs in Neuroscience and Behavioural Disorders, Singapore 169857, Singapore; Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore 169857, Singapore; Department of Psychiatry and Behavioral Sciences and Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina 27710.
| |
Collapse
|
39
|
Wang JC, Zhu Y, Wu L, Dong E. Progress in Pharmacological Sciences in China. Mol Pharmacol 2017; 92:188-192. [PMID: 28404616 DOI: 10.1124/mol.116.108167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 04/04/2017] [Indexed: 11/22/2022] Open
Abstract
Pharmacology is the science that investigates the interactions between organisms and drugs and their mechanisms. Pharmacology plays a translational role in modern medicine, bridging basic research and the clinic. With its economy booming, China has invested an enormous amount of financial and human resources in pharmacological research in the recent decade. As a result, major breakthroughs have been achieved in both basic and clinical research, with the discovery of many potential drug targets and biomarkers that has made a sizable contribution to the overall advancement of pharmacological sciences. In this article, we review recent research efforts and representative scientific achievements and discuss future challenges and directions for the pharmacological sciences in China.
Collapse
Affiliation(s)
- Jian-Cheng Wang
- Department of Health Sciences, National Natural Science Foundation of China (J.-C.W., Y.Z., L.W., E.D.) and School of Pharmaceutical Sciences, Peking University (J.-C.W.), Beijing, China
| | - Yuangui Zhu
- Department of Health Sciences, National Natural Science Foundation of China (J.-C.W., Y.Z., L.W., E.D.) and School of Pharmaceutical Sciences, Peking University (J.-C.W.), Beijing, China
| | - Lei Wu
- Department of Health Sciences, National Natural Science Foundation of China (J.-C.W., Y.Z., L.W., E.D.) and School of Pharmaceutical Sciences, Peking University (J.-C.W.), Beijing, China
| | - Erdan Dong
- Department of Health Sciences, National Natural Science Foundation of China (J.-C.W., Y.Z., L.W., E.D.) and School of Pharmaceutical Sciences, Peking University (J.-C.W.), Beijing, China
| |
Collapse
|
40
|
Li F, Tang C, Jin D, Guan L, Wu Y, Liu X, Wu X, Wu QY, Gao D. CUEDC2 suppresses glioma tumorigenicity by inhibiting the activation of STAT3 and NF-κB signaling pathway. Int J Oncol 2017; 51:115-127. [PMID: 28534933 PMCID: PMC5467786 DOI: 10.3892/ijo.2017.4009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 03/27/2017] [Indexed: 12/23/2022] Open
Abstract
CUEDC2, a CUE domain containing 2 protein, plays critical roles in many biological processes, such as cell cycle, inflammation and tumorigenesis. However, whether CUEDC2 was involved in tumorigenesis of glioma and the possible mechanism remains to be elucidated. In the present study, our results implied that the expression of CUEDC2 was lower in the glioma tissue and glioma cell lines than that of normal tissue and asctrocyte cells. Downregulation of endogenous CUEDC2 in glioma U251 cell lines by RNAi promoted the tumor cells proliferation, migration, invasion and glioma neurosphere formation, while, overexpression of CUEDC2 showed the opposite effect. Further studies showed that overexpression of CUEDC2 suppressed the activation and nuclear translocation of phosphorylated-STAT3 (p-STAT3) but the level of p-STAT3 increased after interfering with the expression of CUEDC2. Moreover, CUEDC2 expression has an inhibitory effect on the activation of NF-κB. Thus, our studies suggested that the decreased expression of CUEDC2 in glioma led to the activation of transcription factor STAT3 and NF-κB signaling pathway which may be related to the tumorigenicity in glioma.
Collapse
Affiliation(s)
- Feng Li
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Chuanxi Tang
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Dan Jin
- School of Nursing, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Li Guan
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Yue Wu
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Xinfeng Liu
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Xiuxiang Wu
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Qing Yun Wu
- Laboratory of Transplantation and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Dianshuai Gao
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| |
Collapse
|
41
|
Gao S, Wu J, Liang L, Xu R. RNF8 negatively regulates NF-kappaB signaling by targeting IkappaB kinase: implications for the regulation of inflammation signaling. Biochem Biophys Res Commun 2017; 488:189-195. [PMID: 28499869 DOI: 10.1016/j.bbrc.2017.05.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 05/05/2017] [Indexed: 10/19/2022]
Abstract
Persistent or excess activation of NF-κB leads to cancer, autoimmune and inflammatory diseases. Therefore, activated NF-κB needs to be terminated after induction, which highlights the physiological significance of NF-κB-negative regulators. However, the molecular mechanisms that negatively regulate NF-κB are not well understood. Here, we report that Ring Finger Protein 8 (RNF8), an E3 ubiquitin ligase, inhibits TNFα-mediated NF-κB activation by targeting IκB kinase (IKK). Upon TNFα stimulation, RNF8 binds to the catalytic subunits of IKK complex, resulting in inhibition of IKKα/β phosphorylation and subsequent NF-κB activation. RNF8 targets the IKK complex in a manner independent of its RING domain. We further provide evidence that the silencing of RNF8 results in enhanced TNFα-induced IKK activation, and an increase expression of NF-κB-induced inflammatory cytokine IL-8. Our study identifies a previously unrecognized role for RNF8 in the negative regulation of NF-κB activation by targeting and deactivating the IKK complex.
Collapse
Affiliation(s)
- Shijuan Gao
- Beijing Anzhen Hospital, Capital Medical University, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Collaborative Innovative Research Center for Cardiovascular Diseases, Beijing 100029, China.
| | - Jiaoxiang Wu
- School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lili Liang
- The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Ruixue Xu
- The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| |
Collapse
|
42
|
Das A, Arifuzzaman S, Kim SH, Lee YS, Jung KH, Chai YG. FTY720 (fingolimod) regulates key target genes essential for inflammation in microglial cells as defined by high-resolution mRNA sequencing. Neuropharmacology 2017; 119:1-14. [PMID: 28373076 DOI: 10.1016/j.neuropharm.2017.03.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/29/2017] [Accepted: 03/30/2017] [Indexed: 12/23/2022]
Abstract
Although microglial cells have an essential role in the host defense of the brain, the abnormal activation of microglia can lead to devastating outcomes, such as neuroinflammation and neurodegeneration. Emerging evidence indicates that FTY720 (fingolimod), an FDA-approved drug, has beneficial effects on brain cells in the central nervous system (CNS) and, more recently, immunosuppressive activities in microglia via modulation of the sphingosine 1 phosphate (S1P) 1 receptor. However, the exact molecular aspects of FTY720 contribution in microglia remain largely unaddressed. To understand the molecular mechanisms underlying the roles of FTY720 in microglia, we performed gene expression profiling in resting, FTY720, LPS and LPS + FTY720 challenged primary microglial (PM) cells isolated from 3-day-old ICR mice, and we identified FTY720 target genes and co-regulated modules that were critical in inflammation. By examining RNA sequencing and binding motif datasets from FTY720 suppressed LPS-induced inflammatory mediators, we also identified unexpected relationships between the inducible transcription factors (TFs), motif strength, and the transcription of key inflammatory mediators. Furthermore, we showed that FTY720 controls important inflammatory genes targets by modulating STAT1 and IRF8 levels at their promoter site. Our unprecedented findings demonstrate that FTY720 could be a useful therapeutic application for neuroinflammatory diseases associated with microglia activation, as well as provide a rich resource and framework for future analyses of FTY720 effects on microglia interaction.
Collapse
Affiliation(s)
- Amitabh Das
- Institute of Natural Science & Technology, Hanyang University, Ansan, 15588, Republic of Korea.
| | - Sarder Arifuzzaman
- Department of Bionanotechnology, Hanyang University, Seoul, 04673, Republic of Korea.
| | - Sun Hwa Kim
- Department of Molecular & Life Sciences, Hanyang University, Ansan, 15588, Republic of Korea.
| | - Young Seek Lee
- Department of Molecular & Life Sciences, Hanyang University, Ansan, 15588, Republic of Korea.
| | - Kyoung Hwa Jung
- Institute of Natural Science & Technology, Hanyang University, Ansan, 15588, Republic of Korea.
| | - Young Gyu Chai
- Department of Bionanotechnology, Hanyang University, Seoul, 04673, Republic of Korea; Department of Molecular & Life Sciences, Hanyang University, Ansan, 15588, Republic of Korea.
| |
Collapse
|
43
|
Zhong X, Tian S, Zhang X, Diao X, Dong F, Yang J, Li Z, Sun L, Wang L, He X, Wu G, Hu X, Wang L, Song L, Zhang H, Pan X, Li A, Gao P. CUE domain-containing protein 2 promotes the Warburg effect and tumorigenesis. EMBO Rep 2017; 18:809-825. [PMID: 28325773 DOI: 10.15252/embr.201643617] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 02/05/2017] [Accepted: 02/15/2017] [Indexed: 12/12/2022] Open
Abstract
Cancer progression depends on cellular metabolic reprogramming as both direct and indirect consequence of oncogenic lesions; however, the underlying mechanisms are still poorly understood. Here, we report that CUEDC2 (CUE domain-containing protein 2) plays a vital role in facilitating aerobic glycolysis, or Warburg effect, in cancer cells. Mechanistically, we show that CUEDC2 upregulates the two key glycolytic proteins GLUT3 and LDHA via interacting with the glucocorticoid receptor (GR) or 14-3-3ζ, respectively. We further demonstrate that enhanced aerobic glycolysis is essential for the role of CUEDC2 to drive cancer progression. Moreover, using tissue microarray analysis, we show a correlation between the aberrant expression of CUEDC2, and GLUT3 and LDHA in clinical HCC samples, further demonstrating a link between CUEDC2 and the Warburg effect during cancer development. Taken together, our findings reveal a previously unappreciated function of CUEDC2 in cancer cell metabolism and tumorigenesis, illustrating how close oncogenic lesions are intertwined with metabolic alterations promoting cancer progression.
Collapse
Affiliation(s)
- Xiuying Zhong
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, Innovation Center for Cell Signaling Network, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Shengya Tian
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, Innovation Center for Cell Signaling Network, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Xiang Zhang
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, Innovation Center for Cell Signaling Network, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Xinwei Diao
- Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Fangting Dong
- Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Jie Yang
- Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Zhaoyong Li
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, Innovation Center for Cell Signaling Network, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Linchong Sun
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, Innovation Center for Cell Signaling Network, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Lin Wang
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, Innovation Center for Cell Signaling Network, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Xiaoping He
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, Innovation Center for Cell Signaling Network, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Gongwei Wu
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, Innovation Center for Cell Signaling Network, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Xin Hu
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, Innovation Center for Cell Signaling Network, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Lihua Wang
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, Innovation Center for Cell Signaling Network, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Libing Song
- State Key Laboratory of Oncology in Southern China and Departments of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Huafeng Zhang
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, Innovation Center for Cell Signaling Network, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Xin Pan
- Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Ailing Li
- Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Ping Gao
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, Innovation Center for Cell Signaling Network, School of Life Sciences, University of Science and Technology of China, Hefei, China
| |
Collapse
|
44
|
Bodanapu R, Gupta SK, Basha PO, Sakthivel K, Sreelakshmi Y, Sharma R. Nitric Oxide Overproduction in Tomato shr Mutant Shifts Metabolic Profiles and Suppresses Fruit Growth and Ripening. FRONTIERS IN PLANT SCIENCE 2016; 7:1714. [PMID: 27965677 PMCID: PMC5124567 DOI: 10.3389/fpls.2016.01714] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 10/31/2016] [Indexed: 05/23/2023]
Abstract
Nitric oxide (NO) plays a pivotal role in growth and disease resistance in plants. It also acts as a secondary messenger in signaling pathways for several plant hormones. Despite its clear role in regulating plant development, its role in fruit development is not known. In an earlier study, we described a short root (shr) mutant of tomato, whose phenotype results from hyperaccumulation of NO. The molecular mapping localized shr locus in 2.5 Mb region of chromosome 9. The shr mutant showed sluggish growth, with smaller leaves, flowers and was less fertile than wild type. The shr mutant also showed reduced fruit size and slower ripening of the fruits post-mature green stage to the red ripe stage. Comparison of the metabolite profiles of shr fruits with wild-type fruits during ripening revealed a significant shift in the patterns. In shr fruits intermediates of the tricarboxylic acid (TCA) cycle were differentially regulated than WT indicating NO affected the regulation of TCA cycle. The accumulation of several amino acids, particularly tyrosine, was higher, whereas most fatty acids were downregulated in shr fruits. Among the plant hormones at one or more stages of ripening, ethylene, Indole-3-acetic acid and Indole-3-butyric acid increased in shr, whereas abscisic acid declined. Our analyses indicate that the retardation of fruit growth and ripening in shr mutant likely results from the influence of NO on central carbon metabolism and endogenous phytohormones levels.
Collapse
|
45
|
McDermott JE, Mitchell HD, Gralinski LE, Eisfeld AJ, Josset L, Bankhead A, Neumann G, Tilton SC, Schäfer A, Li C, Fan S, McWeeney S, Baric RS, Katze MG, Waters KM. The effect of inhibition of PP1 and TNFα signaling on pathogenesis of SARS coronavirus. BMC SYSTEMS BIOLOGY 2016; 10:93. [PMID: 27663205 PMCID: PMC5035469 DOI: 10.1186/s12918-016-0336-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 09/08/2016] [Indexed: 12/19/2022]
Abstract
BACKGROUND The complex interplay between viral replication and host immune response during infection remains poorly understood. While many viruses are known to employ anti-immune strategies to facilitate their replication, highly pathogenic virus infections can also cause an excessive immune response that exacerbates, rather than reduces pathogenicity. To investigate this dichotomy in severe acute respiratory syndrome coronavirus (SARS-CoV), we developed a transcriptional network model of SARS-CoV infection in mice and used the model to prioritize candidate regulatory targets for further investigation. RESULTS We validated our predictions in 18 different knockout (KO) mouse strains, showing that network topology provides significant predictive power to identify genes that are important for viral infection. We identified a novel player in the immune response to virus infection, Kepi, an inhibitory subunit of the protein phosphatase 1 (PP1) complex, which protects against SARS-CoV pathogenesis. We also found that receptors for the proinflammatory cytokine tumor necrosis factor alpha (TNFα) promote pathogenesis, presumably through excessive inflammation. CONCLUSIONS The current study provides validation of network modeling approaches for identifying important players in virus infection pathogenesis, and a step forward in understanding the host response to an important infectious disease. The results presented here suggest the role of Kepi in the host response to SARS-CoV, as well as inflammatory activity driving pathogenesis through TNFα signaling in SARS-CoV infections. Though we have reported the utility of this approach in bacterial and cell culture studies previously, this is the first comprehensive study to confirm that network topology can be used to predict phenotypes in mice with experimental validation.
Collapse
Affiliation(s)
- Jason E. McDermott
- Computational Biology and Bioinformatics Group, Pacific Northwest National Laboratory, Richland, WA 99354 USA
| | - Hugh D. Mitchell
- Computational Biology and Bioinformatics Group, Pacific Northwest National Laboratory, Richland, WA 99354 USA
| | - Lisa E. Gralinski
- Department of Epidemiology, University of North Carolina Chapel Hill, Chapel Hill, NC 27599 USA
| | - Amie J. Eisfeld
- Department of Pathobiological Sciences, School of Veterinary Medicine, Influenza Research Institute, University of Wisconsin-Madison, Madison, WI 53715 USA
| | - Laurence Josset
- Department of Microbiology, University of Washington, Seattle, WA 98195 USA
| | - Armand Bankhead
- Division of Biostatistics, Department of Public Health and Preventive Medicine, Oregon Health and Science University, Portland, OR 97239 USA
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239 USA
| | - Gabriele Neumann
- Department of Pathobiological Sciences, School of Veterinary Medicine, Influenza Research Institute, University of Wisconsin-Madison, Madison, WI 53715 USA
| | - Susan C. Tilton
- Computational Biology and Bioinformatics Group, Pacific Northwest National Laboratory, Richland, WA 99354 USA
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina Chapel Hill, Chapel Hill, NC 27599 USA
| | - Chengjun Li
- Department of Pathobiological Sciences, School of Veterinary Medicine, Influenza Research Institute, University of Wisconsin-Madison, Madison, WI 53715 USA
| | - Shufang Fan
- Department of Pathobiological Sciences, School of Veterinary Medicine, Influenza Research Institute, University of Wisconsin-Madison, Madison, WI 53715 USA
| | - Shannon McWeeney
- Division of Biostatistics, Department of Public Health and Preventive Medicine, Oregon Health and Science University, Portland, OR 97239 USA
| | - Ralph S. Baric
- Department of Epidemiology, University of North Carolina Chapel Hill, Chapel Hill, NC 27599 USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Michael G. Katze
- Department of Microbiology, University of Washington, Seattle, WA 98195 USA
| | - Katrina M. Waters
- Computational Biology and Bioinformatics Group, Pacific Northwest National Laboratory, Richland, WA 99354 USA
| |
Collapse
|
46
|
Wu C, Yang Y, Ou J, Zhu L, Zhao W, Cui J. LRRC14 attenuates Toll-like receptor-mediated NF-κB signaling through disruption of IKK complex. Exp Cell Res 2016; 347:65-73. [PMID: 27426725 DOI: 10.1016/j.yexcr.2016.07.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 07/11/2016] [Accepted: 07/13/2016] [Indexed: 12/24/2022]
Abstract
Activation of NF-κB signaling plays pivotal roles in innate immune responses against pathogens. It requires strict control to avert inflammatory diseases. However, the mechanisms underlying this tight regulation are not completely understood. Here, we identified LRRC14, a novel member of LRR (leucine-rich repeat) protein family, as a negative regulator in TLR signaling. Expression of LRRC14 resulted in decreased activation of NF-κB, whereas knockdown of LRRC14 enhanced NF-κB activation as well as the production of inflammatory cytokines. Mechanistically, LRRC14 bound to HLH domain of IKKβ to block its interaction with NEMO and thereby inhibiting the phosphorylation of IKKβ and NF-κB activation. In addition, our data showed that TLR signaling led to lower expression of LRRC14. Together, LRRC14 may function as a checkpoint to prevent overzealous inflammation.
Collapse
Affiliation(s)
- Chenglei Wu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yexin Yang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jiayu Ou
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Liang Zhu
- Hangzhou Normal University, Hang Zhou, China
| | - Wei Zhao
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jun Cui
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
47
|
CUEDC2 down-regulation is associated with tumor growth and poor prognosis in lung adenocarcinoma. Oncotarget 2016; 6:20685-96. [PMID: 26023733 PMCID: PMC4653035 DOI: 10.18632/oncotarget.3930] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 04/30/2015] [Indexed: 12/24/2022] Open
Abstract
CUE domain-containing 2 (CUEDC2) is a multi-functional protein, which regulates cell cycle, growth factor signaling and inflammation. We found that CUEDC2 was low in lung adenocarcinoma cell lines and lung adenocarcinoma tissues at both mRNA and protein levels. Low levels of CUEDC2 were correlated with a shorter survival time in patients with lung adenocarcinoma (p = 0.004). CUEDC2 expression was correlated with tumor T classification (P = 0.001) at clinical stage (P = 0.001) and tumor size (P = 0.033). Multivariate analysis suggested that CUEDC2 expression is an independent prognostic indicator for patients with lung adenocarcinoma. Ectopic expression of CUEDC2 decreased cell proliferation in vitro and inhibited tumor growth in nude mice in vivo. Knockdown of endogenous CUEDC2 by short hairpin RNAs (shRNAs) increased tumor growth. Inhibition of proliferation by CUEDC2 was associated with inactivation of the PI3K/Akt pathway, induction of p21 and down-regulation of cyclin D1. Our results suggest that decreased expression of CUEDC2 contributes to tumor growth in lung adenocarcinoma, leading to a poor clinical outcome.
Collapse
|
48
|
Mei ZZ, Chen XY, Hu SW, Wang N, Ou XL, Wang J, Luo HH, Liu J, Jiang Y. Kelch-like Protein 21 (KLHL21) Targets IκB Kinase-β to Regulate Nuclear Factor κ-Light Chain Enhancer of Activated B Cells (NF-κB) Signaling Negatively. J Biol Chem 2016; 291:18176-89. [PMID: 27387502 DOI: 10.1074/jbc.m116.715854] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Indexed: 01/07/2023] Open
Abstract
Activation of IKKβ is the key step in canonical activation of NF-κB signaling. Extensive work has provided insight into the mechanisms underlying IKKβ activation through the identification of context-specific regulators. However, the molecular processes responsible for its negative regulation are not completely understood. Here, we identified KLHL21, a member of the Kelch-like gene family, as a novel negative regulator of IKKβ. The expression of KLHL21 was rapidly down-regulated in macrophages upon treatment with proinflammatory stimuli. Overexpression of KLHL21 inhibited the activation of IKKβ and degradation of IκBα, whereas KLHL21 depletion via siRNA showed the opposite results. Coimmunoprecipitation assays revealed that KLHL21 specifically bound to the kinase domain of IKKβ via its Kelch domains and that this interaction was gradually attenuated upon TNFα treatment. Furthermore, KLHL21 did not disrupt the interaction between IKKβ and TAK1, TRAF2, or IκBα. Also, KLHL21 did not require its E3 ubiquitin ligase activity for IKKβ inhibition. Our findings suggest that KLHL21 may exert its inhibitory function by binding to the kinase domain and sequestering the region from potential IKKβ inducers. Taken together, our data clearly demonstrate that KLHL21 negatively regulates TNFα-activated NF-κB signaling via targeting IKKβ, providing new insight into the mechanisms underlying NF-κB regulation in cells.
Collapse
Affiliation(s)
- Zhu-Zhong Mei
- From the Key Laboratory of Transcriptomics and Proteomics of Ministry of Education of China, Department of Pathophysiology, Southern Medical University, Guangzhou 510515, China
| | - Xin-Yu Chen
- From the Key Laboratory of Transcriptomics and Proteomics of Ministry of Education of China, Department of Pathophysiology, Southern Medical University, Guangzhou 510515, China
| | - Shui-Wang Hu
- From the Key Laboratory of Transcriptomics and Proteomics of Ministry of Education of China, Department of Pathophysiology, Southern Medical University, Guangzhou 510515, China
| | - Ni Wang
- From the Key Laboratory of Transcriptomics and Proteomics of Ministry of Education of China, Department of Pathophysiology, Southern Medical University, Guangzhou 510515, China
| | - Xiao-Li Ou
- From the Key Laboratory of Transcriptomics and Proteomics of Ministry of Education of China, Department of Pathophysiology, Southern Medical University, Guangzhou 510515, China
| | - Jing Wang
- From the Key Laboratory of Transcriptomics and Proteomics of Ministry of Education of China, Department of Pathophysiology, Southern Medical University, Guangzhou 510515, China
| | - Hai-Hua Luo
- From the Key Laboratory of Transcriptomics and Proteomics of Ministry of Education of China, Department of Pathophysiology, Southern Medical University, Guangzhou 510515, China
| | - Jinghua Liu
- From the Key Laboratory of Transcriptomics and Proteomics of Ministry of Education of China, Department of Pathophysiology, Southern Medical University, Guangzhou 510515, China
| | - Yong Jiang
- From the Key Laboratory of Transcriptomics and Proteomics of Ministry of Education of China, Department of Pathophysiology, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
49
|
Jian Z, Liang B, Pan X, Xu G, Guo SS, Li T, Zhou T, Xiao YB, Li AL. CUEDC2 modulates cardiomyocyte oxidative capacity by regulating GPX1 stability. EMBO Mol Med 2016; 8:813-29. [PMID: 27286733 PMCID: PMC4931293 DOI: 10.15252/emmm.201506010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The irreversible loss of cardiomyocytes due to oxidative stress is the main cause of heart dysfunction following ischemia/reperfusion (I/R) injury and ageing-induced cardiomyopathy. Here, we report that CUEDC2, a CUE domain-containing protein, plays a critical role in oxidative stress-induced cardiac injury. Cuedc2(-/-) cardiomyocytes exhibited a greater resistance to oxidative stress-induced cell death. Loss of CUEDC2 enhanced the antioxidant capacity of cardiomyocytes, promoted reactive oxygen species (ROS) scavenging, and subsequently inhibited the redox-dependent activation of signaling pathways. Notably, CUEDC2 promoted E3 ubiquitin ligases tripartite motif-containing 33 (TRIM33)-mediated the antioxidant enzyme, glutathione peroxidase 1 (GPX1) ubiquitination, and proteasome-dependent degradation. Ablation of CUEDC2 upregulated the protein level of GPX1 in the heart significantly. Strikingly, in vivo, the infarct size of Cuedc2(-/-) heart was significantly decreased after I/R injury, and aged Cuedc2(-/-) mice preserved better heart function as the overall ROS levels in their hearts were significantly lower. Our results demonstrated a novel role of CUEDC2 in cardiomyocyte death regulation. Manipulating CUEDC2 level might be an attractive therapeutic strategy for promoting cardiomyocyte survival following oxidative stress-induced cardiac injury.
Collapse
Affiliation(s)
- Zhao Jian
- Institute of Cardiovascular Surgery, Xinqiao Hospital Third Military Medical University, Chongqing, China
| | - Bing Liang
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences National Center of Biomedical Analysis, Beijing, China
| | - Xin Pan
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences National Center of Biomedical Analysis, Beijing, China
| | - Guang Xu
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences National Center of Biomedical Analysis, Beijing, China
| | - Sai-Sai Guo
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences National Center of Biomedical Analysis, Beijing, China
| | - Ting Li
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences National Center of Biomedical Analysis, Beijing, China
| | - Tao Zhou
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences National Center of Biomedical Analysis, Beijing, China
| | - Ying-Bin Xiao
- Institute of Cardiovascular Surgery, Xinqiao Hospital Third Military Medical University, Chongqing, China
| | - Ai-Ling Li
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences National Center of Biomedical Analysis, Beijing, China
| |
Collapse
|
50
|
Nakajima S, Chi Y, Gao K, Kono K, Yao J. eIF2α-Independent Inhibition of TNF-α-Triggered NF-κB Activation by Salubrinal. Biol Pharm Bull 2016; 38:1368-74. [PMID: 26328492 DOI: 10.1248/bpb.b15-00312] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Salubrinal is a selective inhibitor of cellular complexes that dephosphorylate eukaryotic translation initiation factor 2α (eIF2α). In previous reports, salubrinal was shown to have the potential to inhibit the activation of nuclear factor-κB (NF-κB) by several stimuli. However, the effects of salubrinal on NF-κB signaling are largely unknown. In this study, we investigated whether and how salubrinal affects NF-κB activation induced by tumor necrosis factor (TNF)-α and interleukin (IL)-1β. We found that salubrinal selectively blocked TNF-α- but not IL-1β-induced activation of NF-κB. This inhibitory effect occurred upstream of transforming growth factor (TGF)-β-activated kinase 1 (TAK1). Further experiments revealed that salubrinal blocked TNF-α-triggered NF-κB activation independent of its action on eIF2α because knockdown of eIF2α by small interfering RNA (siRNA) did not reverse the inhibitory effect of salubrinal on NF-κB. Moreover, guanabenz, a selective inhibitor of the regulatory subunit of protein phosphatase (PP) 1, also preferentially inhibited TNF-α-triggered activation of NF-κB. These findings raise the possibility that salubrinal may selectively block TNF-α-triggered activation of the NF-κB pathway through inhibition of the PP1 complex.
Collapse
Affiliation(s)
- Shotaro Nakajima
- Department of Molecular Signaling, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi
| | | | | | | | | |
Collapse
|