1
|
Shi X, He X, Xu C. Charge-based immunoreceptor signalling in health and disease. Nat Rev Immunol 2025; 25:298-311. [PMID: 39528837 DOI: 10.1038/s41577-024-01105-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2024] [Indexed: 11/16/2024]
Abstract
Immunoreceptors have crucial roles in sensing environmental signals and initiating immune responses to protect the host. Dysregulation of immunoreceptor signalling can therefore lead to a range of diseases, making immunoreceptor-based therapies a promising frontier in biomedicine. A common feature of various immunoreceptors is the basic-residue-rich sequence (BRS), which is a largely unexplored aspect of immunoreceptor signalling. The BRS is typically located in the cytoplasmic juxtamembrane region of immunoreceptors, where it forms dynamic interactions with neighbouring charged molecules to regulate signalling. Loss or gain of the basic residues in an immunoreceptor BRS has been linked to severe human diseases, such as immunodeficiency and autoimmunity. In this Perspective, we describe the role of BRSs in various immunoreceptors, elucidating their signalling mechanisms and biological functions. Furthermore, we highlight pathogenic mutations in immunoreceptor BRSs and discuss the potential of leveraging BRS signalling in engineered T cell-based therapies.
Collapse
Affiliation(s)
- Xiaoshan Shi
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Xing He
- Key Laboratory of Multi-Cell Systems, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Chenqi Xu
- Key Laboratory of Multi-Cell Systems, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
2
|
Yu Y, Zhu C, Wang X, Shi Y, Gao Y, Yu Z. hERG activators exhibit antitumor effects in breast cancer through calcineurin and β-catenin-mediated signaling pathways. Front Pharmacol 2025; 16:1545300. [PMID: 39917621 PMCID: PMC11799564 DOI: 10.3389/fphar.2025.1545300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 01/06/2025] [Indexed: 02/09/2025] Open
Abstract
Background Breast cancer remains a leading cause of mortality among women worldwide, with existing therapeutic options often accompanied by significant side effects and a persistent risk of disease recurrence. This highlights the need for novel drug candidates with new mechanisms of action by targeting alternative signaling pathways. While hERG channel is notoriously regarded as an off-target due to drug-induced cardiotoxicity, its therapeutic potential as a drug target remains largely unexplored. Methods This study investigated the role of hERG in breast cancer progression and its impact on patient survival. The anti-proliferative, anti-migratory, anti-invasive and pro-apoptotic effects of hERG activators were evaluated using the Cell Counting Kit-8, wound healing assay, transwell assay and cell apoptosis assay, respectively. Western blotting, Ca2+ imaging and immunofluorescence assays were employed to study their antitumor mechanisms of actions. Results We identified two novel hERG activators, SDUY429 and SDUY436, which effectively inhibited the proliferation and migration of MDA-MB-231 and MCF-7 cells. In addition, SDUY436 demonstrated significant anti-invasive and pro-apoptotic effects in MDA-MB-231 cells. Mechanistically, the anti-proliferative activity of hERG activators were mediated through calcineurin activation via enhanced calcium ion influx, which facilitated the nuclear translocation of nuclear factor of activated T cells (NFAT) and upregulated p21Waf/Cip expression. Furthermore, both SDUY429 and SDUY436 remarkably suppressed the migration and invasion of MDA-MB-231 cells by downregulating the protein kinase B (AKT)/glycogen synthase kinase-3 beta (GSK3β)/β-catenin signaling pathway. The observed reduction in phospho-AKT-Ser473 (pAKTS473) expression resulted in the decreased levels of phospho-GSK3β-Ser9 (pGSK3βS9), thereby limiting the nuclear localization of β-catenin, which led to the inhibition of cell migration and invasion. Notably, combining SDUY429 or SDUY436 with the AKT inhibitor MK-2206 produced synergistic anti-proliferative effects. Conclusion These findings suggest that hERG activators hold promise as new potential therapeutic agents for the treatment of breast cancer, paving the way for future investigations into their clinical applications.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhiyi Yu
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
3
|
Bhat MF, Srdanović S, Sundberg LR, Einarsdóttir HK, Marjomäki V, Dekker FJ. Impact of HDAC inhibitors on macrophage polarization to enhance innate immunity against infections. Drug Discov Today 2024; 29:104193. [PMID: 39332483 DOI: 10.1016/j.drudis.2024.104193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/26/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
Innate immunity plays an important role in host defense against pathogenic infections. It involves macrophage polarization into either the pro-inflammatory M1 or the anti-inflammatory M2 phenotype, influencing immune stimulation or suppression, respectively. Epigenetic changes during immune reactions contribute to long-term innate immunity imprinting on macrophage polarization. It is becoming increasingly evident that epigenetic modulators, such as histone deacetylase (HDAC) inhibitors (HDACi), enable the enhancement of innate immunity by tailoring macrophage polarization in response to immune stressors. In this review, we summarize current literature on the impact of HDACi and other epigenetic modulators on the functioning of macrophages during diseases that have a strong immune component, such as infections. Depending on the disease context and the chosen therapeutic intervention, HDAC1, HDAC2, HDAC3, HDAC6, or HDAC8 are particularly important in influencing macrophage polarization towards either M1 or M2 phenotypes. We anticipate that therapeutic strategies based on HDAC epigenetic mechanisms will provide a unique approach to boost immunity against disease challenges, including resistant infections.
Collapse
Affiliation(s)
- Mohammad Faizan Bhat
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - Sonja Srdanović
- Akthelia Pharmaceuticals, Grandagardi 16, 101 Reykjavik, Iceland
| | - Lotta-Riina Sundberg
- Department of Biological and Environmental Sciences and Nanoscience Center, 40014 University of Jyväskylä, Jyväskylä, Finland
| | | | - Varpu Marjomäki
- Department of Biological and Environmental Sciences and Nanoscience Center, 40014 University of Jyväskylä, Jyväskylä, Finland
| | - Frank J Dekker
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, the Netherlands.
| |
Collapse
|
4
|
Tronik-Le Roux D, Daouya M, Poras I, Desgrandchamps F, Carosella ED. HLA-G neo-expression modifies genetic programs governing tumor cell lines. Cancer Immunol Immunother 2024; 73:247. [PMID: 39358558 PMCID: PMC11447172 DOI: 10.1007/s00262-024-03768-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 06/25/2024] [Indexed: 10/04/2024]
Abstract
The development of immunotherapies has proved to be clinically encouraging to re-establish the immune function modified by the expression of immune inhibitory molecules in tumors. However, there are still patients with poor survival rates following treatment. The elucidation of molecular mechanisms triggered by the neo-expression of particular IC in tumors would constitute a major step toward better understanding tumor evolution and would help to design future clinical protocols. To this end, we investigate the modifications triggered by the neo-expression of the immune checkpoints HLA-G in ccRCC tumor cells. We demonstrate, for the first time, that HLA-G modifies key genes implicated mainly in tumor development, angiogenesis, calcium flow and mitochondria dynamics. The involvement of HLA-G on the expression of genes belonging to these pathways such as ADAM-12, NCAM1 and NRP1 was confirmed by the CRISPR/Cas9-mediated edition of HLA-G. The data reveal multifaceted roles of HLA-G in tumor cells which are far beyond the well-known function of HLA-G in the immune anti-tumor response. This warrants further investigation of HLA-G and these new partners in tumors of different origin so as to propose future new treatments to improve health patient's outcome.
Collapse
Affiliation(s)
- Diana Tronik-Le Roux
- CEA Commissariat À L'Énergie Atomique Et Aux Énergies Alternatives/Atomic Energy and Alternative Energies Agency, HIRD Hematology and Immunology Research Division, Saint-Louis Hospital, 1 Avenue Claude Vellefaux, 75010, Paris, France.
- UMRS Unité Mixte de Recherche Et de Service 976HIPI, Human Immunology Pathophysiology Immunotherapie Unit, IRSL Institut de Recherche Saint Louis, University of Paris, Saint-Louis Hospital, 1 Avenue Claude Vellefaux, 75010, Paris, France.
| | - Marina Daouya
- CEA Commissariat À L'Énergie Atomique Et Aux Énergies Alternatives/Atomic Energy and Alternative Energies Agency, HIRD Hematology and Immunology Research Division, Saint-Louis Hospital, 1 Avenue Claude Vellefaux, 75010, Paris, France
- UMRS Unité Mixte de Recherche Et de Service 976HIPI, Human Immunology Pathophysiology Immunotherapie Unit, IRSL Institut de Recherche Saint Louis, University of Paris, Saint-Louis Hospital, 1 Avenue Claude Vellefaux, 75010, Paris, France
| | - Isabelle Poras
- CEA Commissariat À L'Énergie Atomique Et Aux Énergies Alternatives/Atomic Energy and Alternative Energies Agency, HIRD Hematology and Immunology Research Division, Saint-Louis Hospital, 1 Avenue Claude Vellefaux, 75010, Paris, France
- UMRS Unité Mixte de Recherche Et de Service 976HIPI, Human Immunology Pathophysiology Immunotherapie Unit, IRSL Institut de Recherche Saint Louis, University of Paris, Saint-Louis Hospital, 1 Avenue Claude Vellefaux, 75010, Paris, France
| | - François Desgrandchamps
- CEA Commissariat À L'Énergie Atomique Et Aux Énergies Alternatives/Atomic Energy and Alternative Energies Agency, HIRD Hematology and Immunology Research Division, Saint-Louis Hospital, 1 Avenue Claude Vellefaux, 75010, Paris, France
- Department of Urology, Saint-Louis Hospital, 1 Avenue Claude Vellefaux, 75010, Paris, France
| | - Edgardo D Carosella
- CEA Commissariat À L'Énergie Atomique Et Aux Énergies Alternatives/Atomic Energy and Alternative Energies Agency, HIRD Hematology and Immunology Research Division, Saint-Louis Hospital, 1 Avenue Claude Vellefaux, 75010, Paris, France.
- UMRS Unité Mixte de Recherche Et de Service 976HIPI, Human Immunology Pathophysiology Immunotherapie Unit, IRSL Institut de Recherche Saint Louis, University of Paris, Saint-Louis Hospital, 1 Avenue Claude Vellefaux, 75010, Paris, France.
| |
Collapse
|
5
|
Zhang C, Shi G, Meng Q, Hu R, Li Y, Hu G, Wang K, Huang M. An approach based on a combination of toxicological experiments and in silico predictions to investigate the adverse outcome pathway (AOP) of paraquat neuro-immunotoxicity. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134607. [PMID: 38761765 DOI: 10.1016/j.jhazmat.2024.134607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/30/2024] [Accepted: 05/11/2024] [Indexed: 05/20/2024]
Abstract
Paraquat (PQ) exposure is strongly associated with neurotoxicity. However, research on the neurotoxicity mechanisms of PQ varies in terms of endpoints of toxic assessment, resulting in a great challenge to understand the early neurotoxic effects of PQ. In this study, we developed an adverse outcome pathway (AOP) to investigate PQ-induced neuro-immunotoxicity from an immunological perspective, combining of traditional toxicology methods and computer simulations. In vivo, PQ can microstructurally lead to an early synaptic loss in the brain mice, which is a large degree regarded as a main reason for cognitive impairment to mice behavior. Both in vitro and in vivo demonstrated synapse loss is caused by excessive activation of the complement C1q/C3-CD11b pathway, which mediates microglial phagocytosis dysfunction. Additionally, the interaction between PQ and C1q was validated by molecular simulation docking. Our findings extend the AOP framework related to PQ neurotoxicity from a neuro-immunotoxic perspective, highlighting C1q activation as the initiating event for PQ-induced neuro-immunotoxicity. In addition, downstream complement cascades induce abnormal microglial phagocytosis, resulting in reduced synaptic density and subsequent non-motor dysfunction. These findings deepen our understanding of neurotoxicity and provide a theoretical basis for ecological risk assessment of PQ.
Collapse
Affiliation(s)
- Chunhui Zhang
- School of Public Health, Ningxia Medical University, China; Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, the Street of Shengli, Xingqing District, Yinchuan, Ningxia, China
| | - Ge Shi
- School of Public Health, Ningxia Medical University, China; Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, the Street of Shengli, Xingqing District, Yinchuan, Ningxia, China
| | - Qi Meng
- School of Public Health, Ningxia Medical University, China; Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, the Street of Shengli, Xingqing District, Yinchuan, Ningxia, China
| | - Rong Hu
- School of Public Health, Ningxia Medical University, China; Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, the Street of Shengli, Xingqing District, Yinchuan, Ningxia, China
| | - Yang Li
- School of Public Health, Ningxia Medical University, China; Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, the Street of Shengli, Xingqing District, Yinchuan, Ningxia, China
| | - Guiling Hu
- School of Public Health, Ningxia Medical University, China; Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, the Street of Shengli, Xingqing District, Yinchuan, Ningxia, China
| | - Kaidong Wang
- School of Public Health, Ningxia Medical University, China; Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, the Street of Shengli, Xingqing District, Yinchuan, Ningxia, China.
| | - Min Huang
- School of Public Health, Ningxia Medical University, China; Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, the Street of Shengli, Xingqing District, Yinchuan, Ningxia, China.
| |
Collapse
|
6
|
Shen Y, Zhang R, Jiang X, Yang J. Generation of a blockage monoclonal antibody of LILRB1 against HLA-G. Protein Expr Purif 2024; 213:106363. [PMID: 37683901 DOI: 10.1016/j.pep.2023.106363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
Leukocyte immunoglobulin like receptor B1 (LILRB1) is widely expressed in immune cells as an immunosuppressive receptor. Tumor cells highly express the ligand HLA-G, which inhibits the function of immune cells by binding to LILRB1, to achieve immune escape. LILRB1 is a potential immunotherapeutic target. This study developed a monoclonal antibody named B1M023 (B1M023 mAb) that could bind LILRB1 with high affinity at both protein and cellular levels, while not bind to other leukocyte immunoglobulin like receptors (LILRs). Moreover, B1M023 mAb could block the binding of LILRB1 to HLA-G, promote activation and IFN-γ secretion of T cells. These results indicate that B1M023 mAb has potential applications in concomitant diagnosis and tumor immunotherapy.
Collapse
Affiliation(s)
- Yunlong Shen
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Ruirui Zhang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Xiaohua Jiang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Jinliang Yang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
7
|
Chen H, Fan L, Guo Q, Wong MY, Yu F, Foxe N, Wang W, Nessim A, Carling G, Liu B, Lopez-Lee C, Huang Y, Amin S, Patel T, Mok SA, Song WM, Zhang B, Ma Q, Fu H, Gan L, Luo W. DAP12 deficiency alters microglia-oligodendrocyte communication and enhances resilience against tau toxicity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.26.563970. [PMID: 37961594 PMCID: PMC10634844 DOI: 10.1101/2023.10.26.563970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Pathogenic tau accumulation fuels neurodegeneration in Alzheimer's disease (AD). Enhancing aging brain's resilience to tau pathology would lead to novel therapeutic strategies. DAP12 (DNAX-activation protein 12) is critically involved in microglial immune responses. Previous studies have showed that mice lacking DAP12 in tauopathy mice exhibit higher tau pathology but are protected from tau-induced cognitive deficits. However, the exact mechanism remains elusive. Our current study uncovers a novel resilience mechanism via microglial interaction with oligodendrocytes. Despite higher tau inclusions, Dap12 deletion curbs tau-induced brain inflammation and ameliorates myelin and synapse loss. Specifically, removal of Dap12 abolished tau-induced disease-associated clusters in microglia (MG) and intermediate oligodendrocytes (iOli), which are spatially correlated with tau pathology in AD brains. Our study highlights the critical role of interactions between microglia and oligodendrocytes in tau toxicity and DAP12 signaling as a promising target for enhancing resilience in AD.
Collapse
Affiliation(s)
- Hao Chen
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Li Fan
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Qi Guo
- Department of Biomedical Informatics, College of Medicine, Ohio State University, Columbus, OH 43210 USA
| | - Man Ying Wong
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Fangmin Yu
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Nessa Foxe
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | | | - Aviram Nessim
- The State University of New York at Stony Brook, Long Island, New York, USA
| | - Gillian Carling
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Program of Neuroscience, Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA
| | - Bangyan Liu
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Program of Neuroscience, Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA
| | - Chloe Lopez-Lee
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Program of Neuroscience, Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA
| | - Yige Huang
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Program of Neuroscience, Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA
| | - Sadaf Amin
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Tark Patel
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB Canada
| | - Sue-Ann Mok
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB Canada
| | - Won-min Song
- Department of Genetics and Genomic Sciences, Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Qin Ma
- Department of Biomedical Informatics, College of Medicine, Ohio State University, Columbus, OH 43210 USA
| | - Hongjun Fu
- Department of Neuroscience, College of Medicine, Ohio State University, Columbus, OH 43210 USA
| | - Li Gan
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Millburn High School, New Jersey, NJ, USA
| | - Wenjie Luo
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
8
|
Chen H, Fan L, Guo Q, Wong MY, Yu F, Foxe N, Wang W, Nessim A, Carling G, Liu B, Lopez-Lee C, Huang Y, Amin S, Mok SA, Song WM, Zhang B, Ma Q, Fu H, Gan L, Luo W. DAP12 deficiency alters microglia-oligodendrocyte communication and enhances resilience against tau toxicity. RESEARCH SQUARE 2023:rs.3.rs-3454358. [PMID: 37961627 PMCID: PMC10635319 DOI: 10.21203/rs.3.rs-3454358/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Pathogenic tau accumulation fuels neurodegeneration in Alzheimer's disease (AD). Enhancing aging brain's resilience to tau pathology would lead to novel therapeutic strategies. DAP12 (DNAX-activation protein 12) is critically involved in microglial immune responses. Previous studies have showed that mice lacking DAP12 in tauopathy mice exhibit higher tau pathology but are protected from tau-induced cognitive deficits. However, the exact mechanism remains elusive. Our current study uncovers a novel resilience mechanism via microglial interaction with oligodendrocytes. Despite higher tau inclusions, Dap12 deletion curbs tau-induced brain inflammation and ameliorates myelin and synapse loss. Specifically, removal of Dap12 abolished tau-induced disease-associated clusters in microglia (MG) and intermediate oligodendrocytes (iOli), which are spatially correlated with tau pathology in AD brains. Our study highlights the critical role of interactions between microglia and oligodendrocytes in tau toxicity and DAP12 signaling as a promising target for enhancing resilience in AD.
Collapse
Affiliation(s)
- Hao Chen
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Li Fan
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Qi Guo
- Department of Biomedical Informatics, College of Medicine, Ohio State University, Columbus, OH 43210 USA
| | - Man Ying Wong
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Fangmin Yu
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Nessa Foxe
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | | | - Aviram Nessim
- The State University of New York at Stony Brook, Long Island, New York, USA
| | - Gillian Carling
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Program of Neuroscience, Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA
| | - Bangyan Liu
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Program of Neuroscience, Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA
| | - Chloe Lopez-Lee
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Program of Neuroscience, Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA
| | - Yige Huang
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Program of Neuroscience, Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA
| | - Sadaf Amin
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Sue-Ann Mok
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB Canada
| | - Won-min Song
- Department of Genetics and Genomic Sciences, Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Qin Ma
- Department of Biomedical Informatics, College of Medicine, Ohio State University, Columbus, OH 43210 USA
| | - Hongjun Fu
- Department of Neuroscience, College of Medicine, Ohio State University, Columbus, OH 43210 USA
| | - Li Gan
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Millburn High School, New Jersey, NJ, USA
| | - Wenjie Luo
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
9
|
Rinaldi DA, Kanagy WK, Kaye HC, Grattan RM, Lucero SR, Pérez MP, Wester MJ, Lidke KA, Wilson BS, Lidke DS. Antigen Geometry Tunes Mast Cell Signaling Through Distinct FcεRI Aggregation and Structural Changes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.04.552060. [PMID: 37609336 PMCID: PMC10441289 DOI: 10.1101/2023.08.04.552060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Immunoreceptor tyrosine-based activation motif (ITAM)-containing Fc receptors are critical components of the innate and adaptive immune systems. FcεRI mediates the allergic response via crosslinking of IgE-bound receptors by multivalent antigens. Yet, the underlying molecular mechanisms that govern the response of FcεRI to specific antigens remain poorly understood. We compared responses induced by two antigens with distinct geometries, high valency DNP-BSA and trivalent DF3, and found unique secretion and receptor phosphorylation profiles that are due to differential recruitment of Lyn and SHIP1. To understand how these two antigens can cause such markedly different outcomes, we used direct stochastic optical reconstruction microscopy (dSTORM) super-resolution imaging combined with Bayesian Grouping of Localizations (BaGoL) analysis to compare the nanoscale characteristics of FcεRI aggregates. DF3 aggregates were found to be smaller and more densely packed than DNP-BSA aggregates. Using lifetime-based Förster resonance energy transfer (FRET) measurements, we discovered that FcεRI subunits undergo structural rearrangements upon crosslinking with either antigen, and in response to interaction with monovalent antigen presented on a supported lipid bilayer. The extent of conformational change is positively correlated with signaling efficiency. Finally, we provide evidence for forces in optimizing FcεRI signaling, such that immobilizing DF3 on a rigid surface promoted degranulation while increasing DNP-BSA flexibility lowered degranulation. These results provide a link between the physical attributes of allergens, including size, shape, valency, and flexibility, and FcεRI signaling strength. Thus, the antigen modulates mast cell outcomes by creating unique aggregate geometries that tune FcεRI conformation, phosphorylation and signaling partner recruitment.
Collapse
Affiliation(s)
- Derek A. Rinaldi
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131
| | - William K. Kanagy
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131
- Present address: Department of Immunology, University of Minnesota, Minneapolis, MN 55455
| | - Hannah C. Kaye
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131
| | - Rachel M. Grattan
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131
| | - Shayna R. Lucero
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131
| | | | - Michael J. Wester
- Department Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131
| | - Keith A. Lidke
- Department Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131
| | - Bridget S. Wilson
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131
| | - Diane S. Lidke
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131
| |
Collapse
|
10
|
Furuya H, Nguyen CT, Gu R, Hsieh SL, Maverakis E, Adamopoulos IE. Interleukin-23 Regulates Inflammatory Osteoclastogenesis via Activation of CLEC5A(+) Osteoclast Precursors. Arthritis Rheumatol 2023; 75:1477-1489. [PMID: 36787107 PMCID: PMC10423744 DOI: 10.1002/art.42478] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 01/12/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023]
Abstract
OBJECTIVE To investigate the role of interleukin-23 (IL-23) in pathologic bone remodeling in inflammatory arthritis. METHODS In this study we investigated the role of IL-23 in osteoclast differentiation and activation using in vivo gene transfer techniques in wild-type and myeloid DNAX-activation protein 12-associating lectin-1 (MDL-1)-deficient mice, and by performing in vitro and in vivo osteoclastogenesis assays using spectral flow cytometry, micro-computed tomography analysis, Western blotting, and immunoprecipitation. RESULTS Herein, we show that IL-23 induces the expansion of a myeloid osteoclast precursor population and supports osteoclastogenesis and bone resorption in inflammatory arthritis. Genetic ablation of C-type lectin domain family member 5A, also known as MDL-1, prevents the induction of osteoclast precursors by IL-23 that is associated with bone destruction, as commonly observed in inflammatory arthritis. Moreover, osteoclasts derived from the bone marrow of MDL-1-deficient mice showed impaired osteoclastogenesis, and MDL-1-/- mice had increased bone mineral density. CONCLUSION Our data show that IL-23 signaling regulates the availability of osteoclast precursors in inflammatory arthritis that could be effectively targeted for the treatment of inflammatory bone loss in inflammatory arthritis.
Collapse
Affiliation(s)
- Hiroki Furuya
- Department of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School
| | - Cuong Thach Nguyen
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis
| | - Ran Gu
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis
| | - Shie-Liang Hsieh
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, Taiwan
| | - Emanual Maverakis
- Department of Dermatology, University of California, Davis, Sacramento, CA, USA
| | - Iannis E Adamopoulos
- Department of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis
| |
Collapse
|
11
|
Park SJ, Jang JW, Moon EY. Bisphenol A-induced autophagy ameliorates human B cell death through Nrf2-mediated regulation of Atg7 and Beclin1 expression by Syk activation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 260:115061. [PMID: 37257343 DOI: 10.1016/j.ecoenv.2023.115061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/12/2023] [Accepted: 05/21/2023] [Indexed: 06/02/2023]
Abstract
The widely used plasticizer bisphenol A (BPA) is known as an endocrine-disrupting chemical (EDC). Many studies have shown that BPA contributes to diseases involving immune system alterations, but the underlying mechanisms have yet to be elucidated. We previously reported that BPA at concentration of 100 μM caused human B cell death in accordance with an increase in nuclear factor (erythroid-derived 2)-like 2(Nrf2) expression. Autophagy is a cellular process that degraded and recycles cytoplasmic constituents. Here, we investigated whether BPA induces autophagy through Nrf2, which is associated with regulation of B cell death using human WiL2-NS lymphoblast B cells. Then, cell viability was assessed by various assays using trypan blue, MTT or Celltiter glo luminescent substrate and DAPI. When WiL2-NS cells were treated with BPA, cell viability was decreased and LC3 autophagy cargo protein/puncta was increased. BPA-induced autophagy was confirmed by the modification of LC3 puncta formation or autophagy flux turnover with the treatment of hydroxychloroquine(HCQ), NH4Cl and PI3K inhibitors including 3-methyladenine(3-MA), LY294002 and wortmannin. BPA treatment increased the expression of autophagy-related gene(Atg)7 and Beclin1 as well as Nrf2 induced by the production of reactive oxygen species (ROS). The inhibition of autophagy with siAtg7 or siBeclin1 and Nrf2 depletion aggravated BPA-induced cell death. BPA enhanced the bound of Nrf2 to the specific region on Beclin1 and Atg7 promoter. Spleen tyrosine kinase(Syk) activity was enhanced in response to BPA treatment. Bay61-3606, Syk inhibitor, decreased LC3 and the expression of Atg7 and Beclin1, leading to the increase of BPA-induced B cell death. The results suggest that BPA-induced autophagy ameliorates human B cell death through Nrf2-mediated regulation of Atg7 and Beclin1 expression.
Collapse
Affiliation(s)
- So-Jeong Park
- Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul 05006, the Republic of Korea
| | - Ju-Won Jang
- Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul 05006, the Republic of Korea
| | - Eun-Yi Moon
- Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul 05006, the Republic of Korea.
| |
Collapse
|
12
|
Gao Q, Mo S, Han C, Liao X, Yang C, Wang X, Liang T, He Y, Chen Z, Zhu G, Su H, Ye X, Peng T. Comprehensive analysis of LILR family genes expression and tumour-infiltrating immune cells in early-stage pancreatic ductal adenocarcinoma. IET Syst Biol 2023; 17:39-57. [PMID: 36748687 PMCID: PMC10116025 DOI: 10.1049/syb2.12058] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/26/2022] [Accepted: 01/08/2023] [Indexed: 02/08/2023] Open
Abstract
Leucocyte immunoglobulin-like receptors (LILRs) are closely related to tumourigenesis, but their clinical value in early-stage pancreatic ductal adenocarcinoma (PDAC) after pancreaticoduodenectomy remains unknown. Kaplan-Meier and Cox proportional hazards regression models is used to investigate the association between LILR expression and prognosis in tumour biopsies and peripheral blood mononuclear cells. Risk score was calculated for each patient based on the prognostic model. DAVID, STRING, GeneMANIA, and GSEA were used to conduct pathway and functional analyses. The CIBERSORT algorithm is used to analyse tumour-infiltrating immune cells. Survival analysis showed that high levels of LILRA4 (p = 0.006) and LILRB4 (p = 0.04) were significantly associated with better overall survival. High levels of LILRA2 (p = 0.008) and LILRB4 (p = 0.038) were significantly associated with better relapse-free survival. JAK-STAT signalling pathway, regulation of T cell activation, regulation of the immune effector process, and tumour necrosis factor superfamily cytokine production were involved in molecular mechanisms that affected poor prognoses in the high-risk group in GSEA. CIBERSORT demonstrated that the high-risk group had significantly higher infiltrating fraction of memory-activated CD4 T cells and activated NK cells and lower fraction of resting dendritic cells and neutrophils. LILRB4 plays crucial roles in affecting the clinical outcomes of early-stage PDAC.
Collapse
Affiliation(s)
- Qiang Gao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shutian Mo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chuangye Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, China
| | - Xiwen Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chengkun Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiangkun Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Tianyi Liang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yongfei He
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zijun Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Guangzhi Zhu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, China
| | - Hao Su
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, China
| | - Xinping Ye
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, China
| | - Tao Peng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, China
| |
Collapse
|
13
|
Haure-Mirande JV, Audrain M, Ehrlich ME, Gandy S. Microglial TYROBP/DAP12 in Alzheimer's disease: Transduction of physiological and pathological signals across TREM2. Mol Neurodegener 2022; 17:55. [PMID: 36002854 PMCID: PMC9404585 DOI: 10.1186/s13024-022-00552-w] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 06/27/2022] [Indexed: 02/01/2023] Open
Abstract
TYROBP (also known as DAP12 or KARAP) is a transmembrane adaptor protein initially described as a receptor-activating subunit component of natural killer (NK) cells. TYROBP is expressed in numerous cell types, including peripheral blood monocytes, macrophages, dendritic cells, and osteoclasts, but a key point of recent interest is related to the critical role played by TYROBP in the function of many receptors expressed on the plasma membrane of microglia. TYROBP is the downstream adaptor and putative signaling partner for several receptors implicated in Alzheimer's disease (AD), including SIRP1β, CD33, CR3, and TREM2. TYROBP has received much of its current notoriety because of its importance in brain homeostasis by signal transduction across those receptors. In this review, we provide an overview of evidence indicating that the biology of TYROBP extends beyond its interaction with these four ligand-binding ectodomain-intramembranous domain molecules. In addition to reviewing the structure and localization of TYROBP, we discuss our recent progress using mouse models of either cerebral amyloidosis or tauopathy that were engineered to be TYROBP-deficient or TYROBP-overexpressing. Remarkably, constitutively TYROBP-deficient mice provided a model of genetic resilience to either of the defining proteinopathies of AD. Learning behavior and synaptic electrophysiological function were preserved at normal physiological levels even in the face of robust cerebral amyloidosis (in APP/PSEN1;Tyrobp-/- mice) or tauopathy (in MAPTP301S;Tyrobp-/- mice). A fundamental underpinning of the functional synaptic dysfunction associated with each proteotype was an accumulation of complement C1q. TYROBP deficiency prevented C1q accumulation associated with either proteinopathy. Based on these data, we speculate that TYROBP plays a key role in the microglial sensome and the emergence of the disease-associated microglia (DAM) phenotype. TYROBP may also play a key role in the loss of markers of synaptic integrity (e.g., synaptophysin-like immunoreactivity) that has long been held to be the feature of human AD molecular neuropathology that most closely correlates with concurrent clinical cognitive function.
Collapse
Affiliation(s)
| | - Mickael Audrain
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Michelle E. Ehrlich
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Sam Gandy
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
- Department of Psychiatry and the NIA-Designated Mount Sinai Alzheimer’s Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
- James J Peters VA Medical Center, New York, Bronx NY 10468 USA
| |
Collapse
|
14
|
Li Y, Lv C, Yu Y, Wu B, Zhang Y, Lang Q, Liang Z, Zhong C, Shi Y, Han S, Xu F, Tian Y. KIR3DL3-HHLA2 and TMIGD2-HHLA2 pathways: The dual role of HHLA2 in immune responses and its potential therapeutic approach for cancer immunotherapy. J Adv Res 2022; 47:137-150. [PMID: 35933091 PMCID: PMC10173190 DOI: 10.1016/j.jare.2022.07.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 06/15/2022] [Accepted: 07/29/2022] [Indexed: 10/16/2022] Open
Abstract
BACKGROUND T cells and natural killer (NK) cells are essential components of the immune system and are regulated by coinhibitory and costimulatory molecules in which the B7 family and CD28 family play significant roles. Previous immune checkpoint studies on B7/CD28 family members, such as PD-1, have led to remarkable success in cancer immunotherapy. However, there is still a need to find new immune checkpoint molecules. Recent studies have demonstrated that HHLA2 exerts inhibitory and stimulatory functions on the immune system by binding to different receptors on different sites. However, the pathways between HHLA2 and its two receptors on T cells and NK cells remain controversial. AIM OF REVIEW Here, we reviewed recent studies about HHLA2 ligand interactions with KIR3DL3 and TMIGD2. We focused on elucidating the pathways between KIR3DL3/TMIGD2 and HHLA2 as well as their function in tumour progression. We also addressed the relationship between HHLA2 expression and the clinical prognosis of cancer patients. KEY SCIENTIFIC CONCEPTS OF REVIEW KIR3DL3/TMIGD2-HHLA2 may represent novel pathways within the tumour microenvironment and serve as crucial immune checkpoints for developing novel therapeutic drugs against human cancer.
Collapse
Affiliation(s)
- Yang Li
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Chao Lv
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Yang Yu
- Department of General Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, Liaoning Province, China
| | - Baokang Wu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Yizhou Zhang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Qi Lang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Zhiyun Liang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Chongli Zhong
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Yu Shi
- The First Clinical College of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Shukun Han
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Feng Xu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Yu Tian
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China.
| |
Collapse
|
15
|
Querrey M, Chiu S, Lecuona E, Wu Q, Sun H, Anderson M, Kelly M, Ravi S, Misharin AV, Kreisel D, Bharat A, Budinger GS. CD11b suppresses TLR activation of nonclassical monocytes to reduce primary graft dysfunction after lung transplantation. J Clin Invest 2022; 132:157262. [PMID: 35838047 PMCID: PMC9282933 DOI: 10.1172/jci157262] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 05/25/2022] [Indexed: 02/03/2023] Open
Abstract
Primary graft dysfunction (PGD) is the leading cause of postoperative mortality in lung transplant recipients and the most important risk factor for development of chronic lung allograft dysfunction. The mechanistic basis for the variability in the incidence and severity of PGD between lung transplant recipients is not known. Using a murine orthotopic vascularized lung transplant model, we found that redundant activation of Toll-like receptors 2 and 4 (TLR2 and -4) on nonclassical monocytes activates MyD88, inducing the release of the neutrophil attractant chemokine CXCL2. Deletion of Itgam (encodes CD11b) in nonclassical monocytes enhanced their production of CXCL2 and worsened PGD, while a CD11b agonist, leukadherin-1, administered only to the donor lung prior to lung transplantation, abrogated CXCL2 production and PGD. The damage-associated molecular pattern molecule HMGB1 was increased in peripheral blood samples from patients undergoing lung transplantation after reperfusion and induced CXCL2 production in nonclassical monocytes via TLR4/MyD88. An inhibitor of HMGB1 administered to the donor and recipient prior to lung transplantation attenuated PGD. Our findings suggest that CD11b acts as a molecular brake to prevent neutrophil recruitment by nonclassical monocytes following lung transplantation, revealing an attractive therapeutic target in the donor lung to prevent PGD in lung transplant recipients.
Collapse
Affiliation(s)
- Melissa Querrey
- Division of Pulmonary and Critical Care Medicine and,Division of Thoracic Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Stephen Chiu
- Division of Thoracic Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Emilia Lecuona
- Division of Thoracic Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Qiang Wu
- Division of Thoracic Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Haiying Sun
- Division of Thoracic Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Megan Anderson
- Division of Thoracic Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Megan Kelly
- Division of Thoracic Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Sowmya Ravi
- Division of Thoracic Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | | | - Daniel Kreisel
- Department of Surgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Ankit Bharat
- Division of Thoracic Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - G.R. Scott Budinger
- Division of Pulmonary and Critical Care Medicine and,Division of Thoracic Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
16
|
Aoun M, Cai X, Xu B, Lahore GF, Bonner MY, He Y, Bäckdahl L, Holmdahl R. Glycan Activation of Clec4b Induces Reactive Oxygen Species Protecting against Neutrophilia and Arthritis. Antioxidants (Basel) 2021; 11:12. [PMID: 35052516 PMCID: PMC8773064 DOI: 10.3390/antiox11010012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/13/2021] [Accepted: 12/16/2021] [Indexed: 11/24/2022] Open
Abstract
Animal models for complex diseases are needed to position and analyze the function of interacting genes. Previous positional cloning identified Ncf1 and Clec4b to be major regulators of arthritis models in rats. Here, we investigate epistasis between Ncf1 and Clec4b, two major regulators of arthritis in rats. We find that Clec4b and Ncf1 exert an additive effect on arthritis given by their joint ability to regulate neutrophils. Both genes are highly expressed in neutrophils, together regulating neutrophil availability and their capacity to generate reactive oxygen species. Using a glycan array, we identify key ligands of Clec4b and demonstrate that Clec4b-specific stimulation triggers neutrophils into oxidative burst. Our observations highlight Clec4b as an important regulator of neutrophils and demonstrate how epistatic interactions affect the susceptibility to, and severity of, autoimmune arthritis.
Collapse
Affiliation(s)
- Mike Aoun
- Department Medical Biochemistry and Biophysics, Division Medical Inflammation Research, Karolinska Institute, 171 77 Stockholm, Sweden; (M.A.); (X.C.); (B.X.); (G.F.L.); (M.Y.B.); (Y.H.); (L.B.)
| | - Xiaojie Cai
- Department Medical Biochemistry and Biophysics, Division Medical Inflammation Research, Karolinska Institute, 171 77 Stockholm, Sweden; (M.A.); (X.C.); (B.X.); (G.F.L.); (M.Y.B.); (Y.H.); (L.B.)
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| | - Bingze Xu
- Department Medical Biochemistry and Biophysics, Division Medical Inflammation Research, Karolinska Institute, 171 77 Stockholm, Sweden; (M.A.); (X.C.); (B.X.); (G.F.L.); (M.Y.B.); (Y.H.); (L.B.)
| | - Gonzalo Fernandez Lahore
- Department Medical Biochemistry and Biophysics, Division Medical Inflammation Research, Karolinska Institute, 171 77 Stockholm, Sweden; (M.A.); (X.C.); (B.X.); (G.F.L.); (M.Y.B.); (Y.H.); (L.B.)
| | - Michael Yi Bonner
- Department Medical Biochemistry and Biophysics, Division Medical Inflammation Research, Karolinska Institute, 171 77 Stockholm, Sweden; (M.A.); (X.C.); (B.X.); (G.F.L.); (M.Y.B.); (Y.H.); (L.B.)
| | - Yibo He
- Department Medical Biochemistry and Biophysics, Division Medical Inflammation Research, Karolinska Institute, 171 77 Stockholm, Sweden; (M.A.); (X.C.); (B.X.); (G.F.L.); (M.Y.B.); (Y.H.); (L.B.)
| | - Liselotte Bäckdahl
- Department Medical Biochemistry and Biophysics, Division Medical Inflammation Research, Karolinska Institute, 171 77 Stockholm, Sweden; (M.A.); (X.C.); (B.X.); (G.F.L.); (M.Y.B.); (Y.H.); (L.B.)
| | - Rikard Holmdahl
- Department Medical Biochemistry and Biophysics, Division Medical Inflammation Research, Karolinska Institute, 171 77 Stockholm, Sweden; (M.A.); (X.C.); (B.X.); (G.F.L.); (M.Y.B.); (Y.H.); (L.B.)
- The Second Affiliated Hospital of Xi’an Jiaotong University, Xibei Hospital, Xi’an 710004, China
| |
Collapse
|
17
|
Abdallah F, Coindre S, Gardet M, Meurisse F, Naji A, Suganuma N, Abi-Rached L, Lambotte O, Favier B. Leukocyte Immunoglobulin-Like Receptors in Regulating the Immune Response in Infectious Diseases: A Window of Opportunity to Pathogen Persistence and a Sound Target in Therapeutics. Front Immunol 2021; 12:717998. [PMID: 34594332 PMCID: PMC8478328 DOI: 10.3389/fimmu.2021.717998] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/25/2021] [Indexed: 12/19/2022] Open
Abstract
Immunoregulatory receptors are essential for orchestrating an immune response as well as appropriate inflammation in infectious and non-communicable diseases. Among them, leukocyte immunoglobulin-like receptors (LILRs) consist of activating and inhibitory receptors that play an important role in regulating immune responses modulating the course of disease progression. On the one hand, inhibitory LILRs constitute a safe-guard system that mitigates the inflammatory response, allowing a prompt return to immune homeostasis. On the other hand, because of their unique capacity to attenuate immune responses, pathogens use inhibitory LILRs to evade immune recognition, thus facilitating their persistence within the host. Conversely, the engagement of activating LILRs triggers immune responses and the production of inflammatory mediators to fight microbes. However, their heightened activation could lead to an exacerbated immune response and persistent inflammation with major consequences on disease outcome and autoimmune disorders. Here, we review the genetic organisation, structure and ligands of LILRs as well as their role in regulating the immune response and inflammation. We also discuss the LILR-based strategies that pathogens use to evade immune responses. A better understanding of the contribution of LILRs to host-pathogen interactions is essential to define appropriate treatments to counteract the severity and/or persistence of pathogens in acute and chronic infectious diseases lacking efficient treatments.
Collapse
Affiliation(s)
- Florence Abdallah
- Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | - Sixtine Coindre
- Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | - Margaux Gardet
- Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | - Florian Meurisse
- Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | - Abderrahim Naji
- Department of Environmental Medicine, Cooperative Medicine Unit, Research and Education Faculty, Medicine Science Cluster, Kochi Medical School, Kochi University, Nankoku-City, Japan
| | - Narufumi Suganuma
- Department of Environmental Medicine, Cooperative Medicine Unit, Research and Education Faculty, Medicine Science Cluster, Kochi Medical School, Kochi University, Nankoku-City, Japan
| | - Laurent Abi-Rached
- Aix-Marseille University, IRD, APHM, MEPHI, IHU Mediterranean Infection, SNC5039 CNRS, Marseille, France.,SNC5039 CNRS, Marseille, France
| | - Olivier Lambotte
- Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France.,Public-Hospital Assistance of Paris, Department of Internal Medicine and Clinical Immunology, Paris-Saclay University Hospital Group, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Benoit Favier
- Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| |
Collapse
|
18
|
Jiang Y, Zhang C, Long L, Ge L, Guo J, Fan Z, Yu G. A Comprehensive Analysis of SE-lncRNA/mRNA Differential Expression Profiles During Chondrogenic Differentiation of Human Bone Marrow Mesenchymal Stem Cells. Front Cell Dev Biol 2021; 9:721205. [PMID: 34589487 PMCID: PMC8475951 DOI: 10.3389/fcell.2021.721205] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 08/12/2021] [Indexed: 01/22/2023] Open
Abstract
Objective: Articular cartilage injury is common and difficult to treat clinically because of the characteristics of the cartilage. Bone marrow-derived mesenchymal stem cell (BMSC)-mediated cartilage regeneration is a promising therapy for treating articular cartilage injury. BMSC differentiation is controlled by numerous molecules and signaling pathways in the microenvironment at both the transcriptional and post-transcriptional levels. However, the possible function of super enhancer long non-coding RNAs (SE-lncRNAs) in the chondrogenic differentiation of BMSCs is still unclear. Our intention was to explore the expression profile of SE-lncRNAs and potential target genes regulated by SE-lncRNAs during chondrogenic differentiation in BMSCs. Materials and Methods: In this study, we conducted a human Super-Enhancer LncRNA Microarray to investigate the differential expression profile of SE-lncRNAs and mRNAs during chondrogenic differentiation of BMSCs. Subsequent bioinformatic analysis was performed to clarify the important signaling pathways, SE-lncRNAs, and mRNAs associated with SE-lncRNAs regulating the chondrogenic differentiation of BMSCs. Results: A total of 77 SE-lncRNAs were identified, of which 47 were upregulated and 30 were downregulated during chondrogenic differentiation. A total of 308 mRNAs were identified, of which 245 were upregulated and 63 were downregulated. Some pathways, such as focal adhesion, extracellular matrix (ECM)–receptor interaction, transforming growth factor-β (TGF-β) signaling pathway, and PI3K–Akt signaling pathway, were identified as the key pathways that may be implicated in the chondrogenic differentiation of BMSCs. Moreover, five potentially core regulatory mRNAs (PMEPA1, ENC1, TES, CDK6, and ADIRF) and 37 SE-lncRNAs in chondrogenic differentiation were identified by bioinformatic analysis. Conclusion: We assessed the differential expression levels of SE-lncRNAs and mRNAs, along with the chondrogenic differentiation of BMSCs. By analyzing the interactions and co-expression, we identified the core SE-lncRNAs and mRNAs acting as regulators of the chondrogenic differentiation potential of BMSCs. Our study also provided novel insights into the mechanism of BMSC chondrogenic and cartilage regeneration.
Collapse
Affiliation(s)
- Yu Jiang
- Department of Stomatology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Chen Zhang
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Lujue Long
- Hunan Key Laboratory of Oral Health Research, Hunan 3D Printing Engineering Research Center of Oral Care, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Hunan, China
| | - Lihua Ge
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Jing Guo
- The Key Laboratory of Oral Biomedicine, The Affiliated Stomatological Hospital of Nanchang University, Nanchang, China
| | - Zhipeng Fan
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China.,Research Unit of Tooth Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| | - Guoxia Yu
- Department of Stomatology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| |
Collapse
|
19
|
Abstract
Skewing of type I interferon (IFN) production and responses is a hallmark of systemic lupus erythematosus (SLE). Genetic and environmental contributions to IFN production lead to aberrant innate and adaptive immune activation even before clinical development of disease. Basic and translational research in this arena continues to identify contributions of IFNs to disease pathogenesis, and several promising therapeutic options for targeting of type I IFNs and their signaling pathways are in development for treatment of SLE patients.
Collapse
Affiliation(s)
- Sirisha Sirobhushanam
- Department of Internal Medicine, Division of Rheumatology, University of Michigan, 5568 MSRB 2, 1150 West Medical Center Drive, Ann Arbor, MI 49109, USA
| | - Stephanie Lazar
- Department of Internal Medicine, Division of Rheumatology, University of Michigan, 5568 MSRB 2, 1150 West Medical Center Drive, Ann Arbor, MI 49109, USA
| | - J Michelle Kahlenberg
- Department of Internal Medicine, Division of Rheumatology, University of Michigan, 5570A MSRB 2, 1150 West Medical Center Drive, Ann Arbor, MI 49109, USA; Department of Dermatology, University of Michigan, 5570A MSRB 2, 1150 West Medical Center Drive, Ann Arbor, MI 49109, USA.
| |
Collapse
|
20
|
Zuo Y, Deng GM. Fc Gamma Receptors as Regulators of Bone Destruction in Inflammatory Arthritis. Front Immunol 2021; 12:688201. [PMID: 34248975 PMCID: PMC8262610 DOI: 10.3389/fimmu.2021.688201] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/09/2021] [Indexed: 12/29/2022] Open
Abstract
Bone erosion is one of the primary features of inflammatory arthritis and is caused by excessive differentiation and activation of osteoclasts. Fc gamma receptors (FcγRs) have been implicated in osteoclastogenesis. Our recent studies demonstrate that joint-deposited lupus IgG inhibited RANKL-induced osteoclastogenesis. FcγRI is required for RANKL-induced osteoclastogenesis and lupus IgG-induced signaling transduction. We reviewed the results of studies that analyzed the association between FcγRs and bone erosion in inflammatory arthritis. The analysis revealed the dual roles of FcγRs in bone destruction in inflammatory arthritis. Thus, IgG/FcγR signaling molecules may serve as potential therapeutic targets against bone erosion.
Collapse
Affiliation(s)
- Yuyue Zuo
- Department of Rheumatology and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guo-Min Deng
- Department of Rheumatology and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
21
|
Zeng KQ, Gong FY, Pan XH, Miao J, Gong Z, Wang J, Zhong Q, Dai XQ, Gao XM. IgG Immunocomplexes Drive the Differentiation of a Novel Subset of Osteoclasts Independent of RANKL and Inflammatory Cytokines. J Bone Miner Res 2021; 36:1174-1188. [PMID: 33651383 DOI: 10.1002/jbmr.4281] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 12/14/2022]
Abstract
Potentiation of receptor activator of NF-κB ligand (RANKL)-induced osteoclastogenesis by IgG immunocomplexes (ICs) is generally considered an important pathway leading to cartilage and bone destruction in rheumatoid arthritis (RA). However, whether IgG ICs possess pro-osteoclastogenic potential independent of RANKL and inflammatory cytokines is unclear. Here we demonstrate that by fully cross-linking human FcγRIIa (hFcγRIIa) or co-ligating hFcγRIIa and TLR4, IgG ICs alone could drive the differentiation of human blood monocytes into nuclear factor of activated T cells cytoplasmic 1 (NFATc1-negative nonclassical osteoclasts (NOCs). Surprisingly, IgG ICs could also overrule RANKL-induced classical osteoclast (COC) differentiation in vitro. In mouse model of collagen-induced arthritis, hFcγRIIa-transgenic, but not nontransgenic control, mice suffered from cartilage/bone destruction accompanied by the presence of NFATc1- NOCs lining the eroded cartilage surface in affected joints. Our results not only identify a novel subset of IC-induced NOCs but also provide a possible explanation for the uncoupling of FcγR-mediated cartilage destruction from RANKL-related bone erosion in autoinflammatory arthritis. © 2021 American Society for Bone and Mineral Research (ASBMR)..
Collapse
Affiliation(s)
- Ke-Qin Zeng
- Institute of Biology and Medical Sciences, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China.,Department of Rheumatology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Fang-Yuan Gong
- Institute of Biology and Medical Sciences, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China.,Key Laboratory of Systemic Biology of Suzhou, Suzhou, China
| | - Xiao-Hua Pan
- Institute of Biology and Medical Sciences, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Jie Miao
- Institute of Biology and Medical Sciences, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Zheng Gong
- Institute of Biology and Medical Sciences, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Jun Wang
- Institute of Biology and Medical Sciences, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China.,Key Laboratory of Systemic Biology of Suzhou, Suzhou, China
| | - Qiao Zhong
- Department of Laboratory Medicine, Suzhou Municipal Hospital, Suzhou, China
| | - Xia-Qiu Dai
- Institute of Biology and Medical Sciences, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China.,Key Laboratory of Systemic Biology of Suzhou, Suzhou, China
| | - Xiao-Ming Gao
- Institute of Biology and Medical Sciences, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China.,Key Laboratory of Systemic Biology of Suzhou, Suzhou, China
| |
Collapse
|
22
|
TREM2 is a receptor for non-glycosylated mycolic acids of mycobacteria that limits anti-mycobacterial macrophage activation. Nat Commun 2021; 12:2299. [PMID: 33863908 PMCID: PMC8052348 DOI: 10.1038/s41467-021-22620-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 03/17/2021] [Indexed: 01/10/2023] Open
Abstract
Mycobacterial cell-wall glycolipids elicit an anti-mycobacterial immune response via FcRγ-associated C-type lectin receptors, including Mincle, and caspase-recruitment domain family member 9 (CARD9). Additionally, mycobacteria harbor immuno-evasive cell-wall lipids associated with virulence and latency; however, a mechanism of action is unclear. Here, we show that the DAP12-associated triggering receptor expressed on myeloid cells 2 (TREM2) recognizes mycobacterial cell-wall mycolic acid (MA)-containing lipids and suggest a mechanism by which mycobacteria control host immunity via TREM2. Macrophages respond to glycosylated MA-containing lipids in a Mincle/FcRγ/CARD9-dependent manner to produce inflammatory cytokines and recruit inducible nitric oxide synthase (iNOS)-positive mycobactericidal macrophages. Conversely, macrophages respond to non-glycosylated MAs in a TREM2/DAP12-dependent but CARD9-independent manner to recruit iNOS-negative mycobacterium-permissive macrophages. Furthermore, TREM2 deletion enhances Mincle-induced macrophage activation in vitro and inflammation in vivo and accelerates the elimination of mycobacterial infection, suggesting that TREM2-DAP12 signaling counteracts Mincle-FcRγ-CARD9-mediated anti-mycobacterial immunity. Mycobacteria, therefore, harness TREM2 for immune evasion. Mycobacterial cell wall lipids can drive immunoevasion, but underlying mechanisms are incompletely understood. Here the authors show TREM2 is a pattern recognition receptor that binds non-glycosylated mycolic acid-containing lipids and inhibits Mincle-induced anti-mycobacterial macrophage responses.
Collapse
|
23
|
Nedeva IR, Vitale M, Elson A, Hoyland JA, Bella J. Role of OSCAR Signaling in Osteoclastogenesis and Bone Disease. Front Cell Dev Biol 2021; 9:641162. [PMID: 33912557 PMCID: PMC8072347 DOI: 10.3389/fcell.2021.641162] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 03/15/2021] [Indexed: 11/13/2022] Open
Abstract
Formation of mature bone-resorbing cells through osteoclastogenesis is required for the continuous remodeling and repair of bone tissue. In aging and disease this process may become aberrant, resulting in excessive bone degradation and fragility fractures. Interaction of receptor-activator of nuclear factor-κB (RANK) with its ligand RANKL activates the main signaling pathway for osteoclastogenesis. However, compelling evidence indicates that this pathway may not be sufficient for the production of mature osteoclast cells and that co-stimulatory signals may be required for both the expression of osteoclast-specific genes and the activation of osteoclasts. Osteoclast-associated receptor (OSCAR), a regulator of osteoclast differentiation, provides one such co-stimulatory pathway. This review summarizes our present knowledge of osteoclastogenesis signaling and the role of OSCAR in the normal production of bone-resorbing cells and in bone disease. Understanding the signaling mechanism through this receptor and how it contributes to the production of mature osteoclasts may offer a more specific and targeted approach for pharmacological intervention against pathological bone resorption.
Collapse
Affiliation(s)
- Iva R Nedeva
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Mattia Vitale
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Ari Elson
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | - Judith A Hoyland
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Jordi Bella
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
24
|
Lee JW, Lee IH, Iimura T, Kong SW. Two macrophages, osteoclasts and microglia: from development to pleiotropy. Bone Res 2021; 9:11. [PMID: 33568650 PMCID: PMC7875961 DOI: 10.1038/s41413-020-00134-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 12/11/2022] Open
Abstract
Tissue-resident macrophages are highly specialized to their tissue-specific microenvironments, activated by various inflammatory signals and modulated by genetic and environmental factors. Osteoclasts and microglia are distinct tissue-resident cells of the macrophage lineage in bone and brain that are responsible for pathological changes in osteoporosis and Alzheimer’s disease (AD), respectively. Osteoporosis is more frequently observed in individuals with AD compared to the prevalence in general population. Diagnosis of AD is often delayed until underlying pathophysiological changes progress and cause irreversible damages in structure and function of brain. As such earlier diagnosis and intervention of individuals at higher risk would be indispensable to modify clinical courses. Pleiotropy is the phenomenon that a genetic variant affects multiple traits and the genetic correlation between two traits could suggest a shared molecular mechanism. In this review, we discuss that the Pyk2-mediated actin polymerization pathway in osteoclasts and microglia in bone and brain, respectively, is the horizontal pleiotropic mediator of shared risk factors for osteoporosis and AD.
Collapse
Affiliation(s)
- Ji-Won Lee
- Department of Nephrology, Transplant Research Program, Boston Children's Hospital, Boston, MA, 02115, USA.,Department of Pharmacology, Graduate School of Dental Medicine, Hokkaido University, Sapporo, 060-8586, Japan
| | - In-Hee Lee
- Computational Health Informatics Program, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Tadahiro Iimura
- Department of Pharmacology, Graduate School of Dental Medicine, Hokkaido University, Sapporo, 060-8586, Japan
| | - Sek Won Kong
- Computational Health Informatics Program, Boston Children's Hospital, Boston, MA, 02115, USA. .,Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
25
|
Katan M, Cockcroft S. Phospholipase C families: Common themes and versatility in physiology and pathology. Prog Lipid Res 2020; 80:101065. [PMID: 32966869 DOI: 10.1016/j.plipres.2020.101065] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/14/2020] [Accepted: 09/17/2020] [Indexed: 12/20/2022]
Abstract
Phosphoinositide-specific phospholipase Cs (PLCs) are expressed in all mammalian cells and play critical roles in signal transduction. To obtain a comprehensive understanding of these enzymes in physiology and pathology, a detailed structural, biochemical, cell biological and genetic information is required. In this review, we cover all these aspects to summarize current knowledge of the entire superfamily. The families of PLCs have expanded from 13 enzymes to 16 with the identification of the atypical PLCs in the human genome. Recent structural insights highlight the common themes that cover not only the substrate catalysis but also the mechanisms of activation. This involves the release of autoinhibitory interactions that, in the absence of stimulation, maintain classical PLC enzymes in their inactive forms. Studies of individual PLCs provide a rich repertoire of PLC function in different physiologies. Furthermore, the genetic studies discovered numerous mutated and rare variants of PLC enzymes and their link to human disease development, greatly expanding our understanding of their roles in diverse pathologies. Notably, substantial evidence now supports involvement of different PLC isoforms in the development of specific cancer types, immune disorders and neurodegeneration. These advances will stimulate the generation of new drugs that target PLC enzymes, and will therefore open new possibilities for treatment of a number of diseases where current therapies remain ineffective.
Collapse
Affiliation(s)
- Matilda Katan
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, UK
| | - Shamshad Cockcroft
- Department of Neuroscience, Physiology and Pharmacology, Division of Biosciences, University College London, 21 University Street, London WC1E 6JJ, UK.
| |
Collapse
|
26
|
Coletta S, Salvi V, Della Bella C, Bertocco A, Lonardi S, Trevellin E, Fassan M, D'Elios MM, Vermi W, Vettor R, Cagnin S, Sozzani S, Codolo G, de Bernard M. The immune receptor CD300e negatively regulates T cell activation by impairing the STAT1-dependent antigen presentation. Sci Rep 2020; 10:16501. [PMID: 33020563 PMCID: PMC7536427 DOI: 10.1038/s41598-020-73552-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/17/2020] [Indexed: 12/14/2022] Open
Abstract
CD300e is a surface receptor, expressed by myeloid cells, involved in the tuning of immune responses. CD300e engagement was reported to provide the cells with survival signals, to trigger the expression of activation markers and the release of pro-inflammatory cytokines. Hence, CD300e is considered an immune activating receptor. In this study, we demonstrate that the ligation of CD300e in monocytes hampers the expression of the human leukocyte antigen (HLA) class II, affecting its synthesis. This effect, which is associated with the transcription impairment of the signal transducer and activator of transcription 1 (STAT1), overcomes the capacity of interferon gamma (IFN-γ) to promote the expression of the antigen-presenting molecules. Importantly, the decreased expression of HLA-II on the surface of CD300e-activated monocytes negatively impacts their capacity to activate T cells in an antigen-specific manner. Notably, unlike in vitro- differentiated macrophages which do not express CD300e, the immune receptor is expressed by tissue macrophages. Taken together, our findings argue against the possibility that this molecule should be considered an activating immune receptor sensu stricto. Moreover, our results support the notion that CD300e might be a new player in the regulation of the expansion of T cell-mediated responses.
Collapse
Affiliation(s)
- Sara Coletta
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131, Padova, Italy
| | - Valentina Salvi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Chiara Della Bella
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Ambra Bertocco
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131, Padova, Italy
| | - Silvia Lonardi
- Department of Molecular and Translational Medicine, Section of Pathology, University of Brescia, Brescia, Italy
| | - Elisabetta Trevellin
- Department of Medicine, Clinica Medica 3a, Azienda Ospedaliera Di Padova, University of Padova, Padova, Italy
| | - Matteo Fassan
- Department of Medicine, Clinica Medica 3a, Azienda Ospedaliera Di Padova, University of Padova, Padova, Italy
| | - Mario M D'Elios
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - William Vermi
- Department of Molecular and Translational Medicine, Section of Pathology, University of Brescia, Brescia, Italy
| | - Roberto Vettor
- Department of Medicine, Clinica Medica 3a, Azienda Ospedaliera Di Padova, University of Padova, Padova, Italy
| | - Stefano Cagnin
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131, Padova, Italy
- CRIBI Biotechnology Center, University of Padova, Padova, Italy
| | - Silvano Sozzani
- Laboratory Affiliated To Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Gaia Codolo
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131, Padova, Italy.
| | - Marina de Bernard
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131, Padova, Italy.
| |
Collapse
|
27
|
Kubota M, Iizasa E, Chuuma Y, Kiyohara H, Hara H, Yoshida H. Adjuvant activity of Mycobacteria-derived mycolic acids. Heliyon 2020; 6:e04064. [PMID: 32490252 PMCID: PMC7260583 DOI: 10.1016/j.heliyon.2020.e04064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 04/29/2020] [Accepted: 05/21/2020] [Indexed: 12/20/2022] Open
Abstract
Successful vaccination, especially with safe vaccines such as component/subunit vaccines, requires proper activation of innate immunity and, for this purpose, adjuvant is used. For clinical use, alum is frequently used while, for experimental use, CFA, containing Mycobacterial components, was often used. In this report, we demonstrated that mycolic acids (MA), major and essential lipid components of the bacterial cell wall of the genus Mycobacterium, has adjuvant activity. MA plus model antigen-immunization induced sufficient humoral response, which was largely comparable to conventional CFA plus antigen-immunization. Importantly, while CFA plus antigen-immunization induced Th17-biased severe and destructive inflammatory responses at the injected site, MA plus antigen-immunization induced Th1-biased mild inflammation at the site. MA induced dendritic cell activation by co-stimulatory molecule induction as well as inflammatory cytokine/chemokine induction. MA plus antigen-immunization successfully protected mice from tumor progression both in prevention and in therapy models. We thus submit that MA is a promising adjuvant candidate material for clinical purposes and for experimental purposes from a perspective of animal welfare.
Collapse
Affiliation(s)
- Mio Kubota
- Division of Molecular and Cellular Immunoscience, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, 849-8501, Japan
- Saga-ken Medical Center Koseikan, Saga, 840-8571, Japan
| | - Ei'ichi Iizasa
- Division of Molecular and Cellular Immunoscience, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, 849-8501, Japan
- Department of Immunology, Graduate School of Medical and Dental Sciences, Kagoshima University, 890-8544, Japan
| | - Yasushi Chuuma
- Research and Development Department, Japan BCG Laboratory, Kiyose, Tokyo, 204-0022, Japan
| | - Hideyasu Kiyohara
- Research and Development Department, Japan BCG Laboratory, Kiyose, Tokyo, 204-0022, Japan
| | - Hiromitsu Hara
- Division of Molecular and Cellular Immunoscience, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, 849-8501, Japan
- Department of Immunology, Graduate School of Medical and Dental Sciences, Kagoshima University, 890-8544, Japan
| | - Hiroki Yoshida
- Division of Molecular and Cellular Immunoscience, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, 849-8501, Japan
- Corresponding author.
| |
Collapse
|
28
|
An Ancient BCR-like Signaling Promotes ICP Production and Hemocyte Phagocytosis in Oyster. iScience 2020; 23:100834. [PMID: 31982779 PMCID: PMC6994640 DOI: 10.1016/j.isci.2020.100834] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/24/2019] [Accepted: 01/08/2020] [Indexed: 12/11/2022] Open
Abstract
BCR/TCR-based adaptive immune systems arise in the jawed vertebrates, and B cell receptors (BCRs) play an important role in the clonal selection of B cells and their differentiation into antibody-secreting plasma cells. The existence of BCR-like molecule and the activation mechanism of the downstream response are still not clear in invertebrates. In this study, an ancient BCR-like molecule (designated as CgIgR) with an immunoreceptor tyrosine-based activation motif (ITAM) in its cytoplasmic tail was identified from the Pacific oyster Crassostrea gigas to investigate its involvement in immune response. CgIgR could bind different bacteria through five extracellular Ig domains and formed dimers. The activated CgIgR recruited CgSyk to promote CgERK phosphorylation. The CgIgR-mediated signaling promoted the production of immunoglobulin domain-containing proteins (CgICP-2 and CgLRRIG-1) through inducing CgH3K4me2. The produced CgICPs eventually facilitated hemocytes to phagocytize and eliminate V. splendidus. This study proposed that there was an ancient BCR-like molecule and BCR-like signaling in molluscs. An ancient BCR-like molecule (defined as CgIgR) was identified from C. gigas We propose IgR-mediated signaling induces CgERK activity in oyster IgR-mediated signaling induced CgH3K4me2 to promote the production of CgICPs CgICPs facilitated the hemocytes to phagocytize and eliminate V. splendidus
Collapse
|
29
|
Ascone G, Di Ceglie I, Walgreen B, Sloetjes AW, Lindhout E, Bot I, van de Loo FAJ, Koenders MI, van der Kraan PM, Blom AB, van den Bosch MHJ, van Lent PLEM. High LDL levels lessen bone destruction during antigen-induced arthritis by inhibiting osteoclast formation and function. Bone 2020; 130:115140. [PMID: 31712132 DOI: 10.1016/j.bone.2019.115140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/27/2019] [Accepted: 11/04/2019] [Indexed: 01/05/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease, characterized by severe joint inflammation and bone destruction as the result of increased numbers and activity of osteoclasts. RA is often associated with metabolic syndrome, whereby elevated levels of LDL are oxidized into oxLDL, which might affect osteoclastogenesis. In this study, we induced antigen-induced arthritis (AIA) in Apoe-/- mice, which spontaneously develop high LDL levels, to investigate the effects of high LDL/oxLDL levels on osteoclast differentiation and bone destruction. Whereas basal levels of bone resorption were comparable between naive WT and Apoe-/- mice, induction of AIA resulted in a significant reduction of bone destruction in Apoe-/- mice as compared to WT controls. In line with that, the TRAP+ area on the cortical bone was significantly decreased. The absence of Apoe did affect neither the numbers of CD11b+Ly6Chigh and CD11b-/Ly6Chigh osteoclast precursors (OCPs) in the BM of naïve mice nor their in vitro osteoclastogenic potential as indicated by comparable mRNA expression of osteoclast markers. Addition of oxLDL, but not LDL, to pre-osteoclasts from day 3 and mature osteoclasts from day 6 of osteoclastogenesis strongly reduced the number of TRAP+ osteoclasts and their resorptive capacity. This coincided with a decreased expression of various osteoclast markers. Interestingly, oxLDL significantly lowered the expression of osteoclast-associated receptor (Oscar) and the DNAX adaptor protein-12 encoding gene Tyrobp, which regulate the immunoreceptor tyrosine-based activation motif (ITAM) co-stimulation pathway that is strongly involved in osteoclastogenesis. Collectively, our findings suggest that under inflammatory conditions in the joint, high LDL levels lessen bone destruction during AIA, probably by formation of oxLDL that inhibits osteoclast formation and activity through modulation of the ITAM-signaling.
Collapse
Affiliation(s)
- G Ascone
- Department of Experimental Rheumatology, Radboud University Medical Center, Radboud Institute of Molecular Life Sciences (RIMLS), Nijmegen, the Netherlands.
| | - I Di Ceglie
- Department of Experimental Rheumatology, Radboud University Medical Center, Radboud Institute of Molecular Life Sciences (RIMLS), Nijmegen, the Netherlands.
| | - B Walgreen
- Department of Experimental Rheumatology, Radboud University Medical Center, Radboud Institute of Molecular Life Sciences (RIMLS), Nijmegen, the Netherlands.
| | - A W Sloetjes
- Department of Experimental Rheumatology, Radboud University Medical Center, Radboud Institute of Molecular Life Sciences (RIMLS), Nijmegen, the Netherlands.
| | - E Lindhout
- Future Diagnostics Solutions (FDx), Wijchen, the Netherlands.
| | - I Bot
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden, the Netherlands.
| | - F A J van de Loo
- Department of Experimental Rheumatology, Radboud University Medical Center, Radboud Institute of Molecular Life Sciences (RIMLS), Nijmegen, the Netherlands.
| | - M I Koenders
- Department of Experimental Rheumatology, Radboud University Medical Center, Radboud Institute of Molecular Life Sciences (RIMLS), Nijmegen, the Netherlands.
| | - P M van der Kraan
- Department of Experimental Rheumatology, Radboud University Medical Center, Radboud Institute of Molecular Life Sciences (RIMLS), Nijmegen, the Netherlands.
| | - A B Blom
- Department of Experimental Rheumatology, Radboud University Medical Center, Radboud Institute of Molecular Life Sciences (RIMLS), Nijmegen, the Netherlands.
| | - M H J van den Bosch
- Department of Experimental Rheumatology, Radboud University Medical Center, Radboud Institute of Molecular Life Sciences (RIMLS), Nijmegen, the Netherlands.
| | - P L E M van Lent
- Department of Experimental Rheumatology, Radboud University Medical Center, Radboud Institute of Molecular Life Sciences (RIMLS), Nijmegen, the Netherlands.
| |
Collapse
|
30
|
Wei ZM, Wang Z, Wan XJ, Li XJ, Li YX, Bai Y, Yang X, Yang Y, Jiao SC, Liu ZF. FcRγ deficiency improves survival in experimental sepsis by down-regulating TLR4 signaling pathway. Immunol Res 2019; 67:77-83. [PMID: 30552619 DOI: 10.1007/s12026-018-9039-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Fc receptor common γ signaling chain (FcRγ), a common subunit shared by Fc receptors (FcγRI, III, IV, FcαRI, and FcεRI), is an important immune regulator both in innate and adaptive immunity. Previous studies have shown that FcRγ was a potential target of inflammatory diseases, whereas the role of FcRγ in sepsis has been poorly understood. In this study, we found that deficiency of FcRγ resulted in increased survival in lipopolysaccharide (LPS)/D-galactosamine and E. coli-induced sepsis in mice. This protective effect was characterized by decreased TNF-α, IL-6, and IL-10. Further experiments in bone marrow-derived macrophages (BMDMs) in vitro also showed that FcRγ deficiency resulted in decreased production of TNF-α, IL-6, and IL-10 upon LPS stimulation. The mechanism study showed that FcRγ was physiologically associated with toll-like receptor 4 (TLR4), and tyrosine phosphorylation of FcRγ mediated TLR4 signaling pathway, followed by increased ERK phosphorylation upon LPS stimulation. Our results suggest that FcRγ might be a potential therapeutic target of sepsis.
Collapse
Affiliation(s)
- Zhi-Min Wei
- Department of Oncology, General Hospital of Chinese PLA, 28 Fuxing Road, Beijing, 100853, China
| | - Zhuo Wang
- State Key Laboratory of Natural Medicines, Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, 211198, China.,School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xiao-Jian Wan
- Department of Anesthesiology and Intensive Care Medicine, Changhai Hospital, Second Military Medical University, 800 Xiangyin Rd, Yangpu Qu, Shanghai, China
| | - Xian-Jing Li
- State Key Laboratory of Natural Medicines, Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, 211198, China
| | - Yi-Xing Li
- State Key Laboratory of Natural Medicines, Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, 211198, China
| | - Yang Bai
- State Key Laboratory of Natural Medicines, Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, 211198, China
| | - Xue Yang
- State Key Laboratory of Natural Medicines, Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, 211198, China
| | - Yong Yang
- State Key Laboratory of Natural Medicines, Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, 211198, China.
| | - Shun-Chang Jiao
- Department of Oncology, General Hospital of Chinese PLA, 28 Fuxing Road, Beijing, 100853, China.
| | - Zhe-Feng Liu
- Department of Oncology, General Hospital of Chinese PLA, 28 Fuxing Road, Beijing, 100853, China.
| |
Collapse
|
31
|
Ganjoo A, Prabhakar C. In silico structural anatomization of spleen tyrosine kinase inhibitors: Pharmacophore modeling, 3D QSAR analysis and molecular docking studies. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.04.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
32
|
Grötsch B, Lux A, Rombouts Y, Hoffmann AC, Andreev D, Nimmerjahn F, Xiang W, Scherer HU, Schett G, Bozec A. Fra1 Controls Rheumatoid Factor Autoantibody Production by Bone Marrow Plasma Cells and the Development of Autoimmune Bone Loss. J Bone Miner Res 2019; 34:1352-1365. [PMID: 30779858 DOI: 10.1002/jbmr.3705] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/21/2019] [Accepted: 02/05/2019] [Indexed: 11/11/2022]
Abstract
Next to proinflammatory cytokines, autoimmunity has been identified as a key trigger for osteoclast activation and bone loss. IgG-rheumatoid factor (IgG-RF) immune complexes, which are present in patients with rheumatoid arthritis, were shown to boost osteoclast differentiation. To date, the regulation of IgG-RF production in the absence of inflammatory triggers is unknown. Herein, we describe Fra1 as a key checkpoint that controls IgG-RF production by plasma cells and regulates autoimmune-mediated bone loss. Fra1 deficiency in B cells (Fra1ΔBcell ) led to increased IgG1-producing bone marrow plasma cells, enhanced IgG-RF production, and increased bone loss associated with elevated osteoclast numbers after immunization. The effect of IgG-RF on osteoclasts in vitro and on osteoclasts associated with bone loss in vivo was dependent on FcγR, especially FcγR3. Furthermore, immunization of WT mice with T-cell-dependent antigens induced a significant and robust decrease in Fra1 expression in bone marrow B cells, which was followed by increased IgG1 production and the induction of osteoclast-mediated bone loss. Overall, these data identify Fra1 as a key mediator of IgG-RF production and autoimmune-mediated bone loss. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Bettina Grötsch
- Department of Medicine 3, Rheumatology and Immunology, Friedrich Alexander University Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Anja Lux
- Division of Genetics, University of Erlangen-Nuremberg, Friedrich Alexander University Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Yoann Rombouts
- Leiden University Medical Center, Leiden, The Netherlands.,Institut de Pharmacologie et de Biologie Structurale, CNRS/University of Toulouse, France
| | - Anna-Carin Hoffmann
- Institute of Biochemistry, Friedrich Alexander University Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Darja Andreev
- Department of Medicine 3, Rheumatology and Immunology, Friedrich Alexander University Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Falk Nimmerjahn
- Division of Genetics, University of Erlangen-Nuremberg, Friedrich Alexander University Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Wei Xiang
- Institute of Biochemistry, Friedrich Alexander University Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | | | - Georg Schett
- Department of Medicine 3, Rheumatology and Immunology, Friedrich Alexander University Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Aline Bozec
- Department of Medicine 3, Rheumatology and Immunology, Friedrich Alexander University Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
33
|
Nonmuscle Myosin Heavy Chain IIA Recognizes Sialic Acids on Sialylated RNA Viruses To Suppress Proinflammatory Responses via the DAP12-Syk Pathway. mBio 2019; 10:mBio.00574-19. [PMID: 31064828 PMCID: PMC6509187 DOI: 10.1128/mbio.00574-19] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
NMHC-IIA, a subunit of nonmuscle myosin IIA (NM-IIA), takes part in diverse physiological processes, including cell movement, cell shape maintenance, and signal transduction. Recently, NMHC-IIA has been demonstrated to be a receptor or factor contributing to viral infections. Here, we identified that NMHC-IIA recognizes sialic acids on sialylated RNA viruses, vesicular stomatitis virus (VSV) and porcine reproductive and respiratory syndrome virus (PRRSV). Upon recognition, NMHC-IIA associates with the transmembrane region of DAP12 to recruit Syk. Activation of the DAP12-Syk pathway impairs the host antiviral proinflammatory cytokine production and signaling cascades. More importantly, sialic acid mimics and sialylated RNA viruses enable the antagonism of LPS-triggered proinflammatory responses through engaging the NMHC-IIA–DAP12-Syk pathway. These results actually support that NMHC-IIA is involved in negative modulation of the host innate immune system, which provides a molecular basis for prevention and control of the sialylated RNA viruses and treatment of inflammatory diseases. Viral infections induce proinflammatory signaling cascades and inflammatory cytokine production, which is precisely regulated for host benefits. In the current study, we unravel a previously unappreciated role of nonmuscle myosin heavy chain IIA (NMHC-IIA) as a negative regulator in inflammatory responses. We identified that cell surface NMHC-IIA recognized sialic acids on sialylated RNA viruses during early infections and interacted with an immune adaptor DNAX activation protein of 12 kDa (DAP12) to recruit downstream spleen tyrosine kinase (Syk), leading to suppressed virus-triggered proinflammatory responses. More importantly, recognition of sialylated RNA viruses or sialic acid mimics by NMHC-IIA was shown to inhibit lipopolysaccharide (LPS)-induced proinflammatory responses via the DAP12-Syk pathway. These findings uncover a novel negative regulation mechanism of proinflammatory responses and provide a molecular basis to design anti-inflammatory drugs.
Collapse
|
34
|
Swidergall M. Candida albicans at Host Barrier Sites: Pattern Recognition Receptors and Beyond. Pathogens 2019; 8:E40. [PMID: 30934602 PMCID: PMC6471378 DOI: 10.3390/pathogens8010040] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 03/19/2019] [Accepted: 03/21/2019] [Indexed: 12/29/2022] Open
Abstract
Over the last decades, fungal infections have emerged as a growing threat to human health. Although the human body is at potential risk, various body sites host several commensal fungal species, including Candida albicans. In healthy individuals, C. albicans colonizes different mucosal surfaces without causing harm, while under diverse circumstances the fungus can proliferate and cause disease. In this context, the understanding of host⁻C. albicans interactions in health and during infection may lead to novel therapeutic approaches. Importantly, host cells express pattern recognition receptors (PRRs), which sense conserved fungal structures and orchestrate innate immune responses. Herein, important findings on the topic of the recognition of C. albicans at host barrier sites are discussed. This review briefly summarizes the importance and functions of myeloid PRRs, reviews the fungal recognition and biology of stromal cells, and highlights important C. albicans virulence attributes during site-specific proliferation and invasion.
Collapse
Affiliation(s)
- Marc Swidergall
- Division of Infectious Diseases, Harbor-UCLA Medical Center, Torrance, CA 90502, USA.
- Institute for Infection and Immunity, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA.
| |
Collapse
|
35
|
Cis interaction between sialylated FcγRIIA and the αI-domain of Mac-1 limits antibody-mediated neutrophil recruitment. Nat Commun 2018; 9:5058. [PMID: 30498196 PMCID: PMC6265255 DOI: 10.1038/s41467-018-07506-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 11/07/2018] [Indexed: 12/14/2022] Open
Abstract
Vascular-deposited IgG immune complexes promote neutrophil recruitment, but how this process is regulated is still unclear. Here we show that the CD18 integrin Mac-1, in its bent state, interacts with the IgG receptor FcγRIIA in cis to reduce the affinity of FcγRIIA for IgG and inhibit FcγRIIA-mediated neutrophil recruitment under flow. The Mac-1 rs1143679 lupus-risk variant reverses Mac-1 inhibition of FcγRIIA, as does a Mac-1 ligand and a mutation in Mac-1’s ligand binding αI-domain. Sialylated complex glycans on FcγRIIA interact with the αI-domain via divalent cations, and this interaction is required for FcγRIIA inhibition by Mac-1. Human neutrophils deficient in CD18 integrins exhibit augmented FcγRIIA-dependent recruitment to IgG-coated endothelium. In mice, CD18 integrins on neutrophils dampen IgG-mediated neutrophil accumulation in the kidney. In summary, cis interaction between sialylated FcγRIIA and the αI-domain of Mac-1 alters the threshold for IgG-mediated neutrophil recruitment. A disruption of this interaction may increase neutrophil influx in autoimmune diseases. Deposited immune complexes (IC) promote neutrophil recruitment, but the fine tuning of this process is still unclear. Here the authors show that the cis interaction of the IC receptor, FcγRIIA and CD18 integrin, Mac-1, on the neutrophil surface modulates neutrophil adhesion, with FcγRIIA sialylation specifically implicated in this interaction.
Collapse
|
36
|
Kang X, Cui C, Wang C, Wu G, Chen H, Lu Z, Chen X, Wang L, Huang J, Geng H, Zhao M, Chen Z, Müschen M, Wang HY, Zhang CC. CAMKs support development of acute myeloid leukemia. J Hematol Oncol 2018; 11:30. [PMID: 29482582 PMCID: PMC5828341 DOI: 10.1186/s13045-018-0574-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 02/12/2018] [Indexed: 01/19/2023] Open
Abstract
Background We recently identified the human leukocyte immunoglobulin-like receptor B2 (LILRB2) and its mouse ortholog-paired Ig-like receptor (PirB) as receptors for several angiopoietin-like proteins (Angptls). We also demonstrated that PirB is important for the development of acute myeloid leukemia (AML), but exactly how an inhibitory receptor such as PirB can support cancer development is intriguing. Results Here, we showed that the activation of Ca (2+)/calmodulin-dependent protein kinases (CAMKs) is coupled with PirB signaling in AML cells. High expression of CAMKs is associated with a poor overall survival probability in patients with AML. Knockdown of CAMKI or CAMKIV decreased human acute leukemia development in vitro and in vivo. Mouse AML cells that are defective in PirB signaling had decreased activation of CAMKs, and the forced expression of CAMK partially rescued the PirB-defective phenotype in the MLL-AF9 AML mouse model. The inhibition of CAMK kinase activity or deletion of CAMKIV significantly slowed AML development and decreased the AML stem cell activity. We also found that CAMKIV acts through the phosphorylation of one of its well-known target (CREB) in AML cells. Conclusion CAMKs are essential for the growth of human and mouse AML. The inhibition of CAMK signaling may become an effective strategy for treating leukemia. Electronic supplementary material The online version of this article (10.1186/s13045-018-0574-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xunlei Kang
- Departments of Physiology and Developmental Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA. .,Center for Precision Medicine, Department of Medicine, University of Missouri, 1 Hospital Drive, Columbia, MO, 65212, USA.
| | - Changhao Cui
- Departments of Physiology and Developmental Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA.,School of Life Science and Medicine, Dalian University of Technology, Liaoning, 124221, China
| | - Chen Wang
- Center for Precision Medicine, Department of Medicine, University of Missouri, 1 Hospital Drive, Columbia, MO, 65212, USA.,Department of Hematology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Guojin Wu
- Departments of Physiology and Developmental Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Heyu Chen
- Departments of Physiology and Developmental Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Zhigang Lu
- Departments of Physiology and Developmental Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Xiaoli Chen
- Departments of Physiology and Developmental Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Li Wang
- School of Life Science and Medicine, Dalian University of Technology, Liaoning, 124221, China
| | - Jie Huang
- Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, MO, 65409, USA
| | - Huimin Geng
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Meng Zhao
- Department of Hematology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhengshan Chen
- Department of Systems Biology, Beckman Research Institute, Monrovia, CA, 91016, USA
| | - Markus Müschen
- Department of Systems Biology, Beckman Research Institute, Monrovia, CA, 91016, USA
| | - Huan-You Wang
- Department of Pathology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Cheng Cheng Zhang
- Departments of Physiology and Developmental Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA.
| |
Collapse
|
37
|
Receptors That Inhibit Macrophage Activation: Mechanisms and Signals of Regulation and Tolerance. J Immunol Res 2018; 2018:8695157. [PMID: 29607331 PMCID: PMC5828319 DOI: 10.1155/2018/8695157] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 11/07/2017] [Accepted: 11/20/2017] [Indexed: 12/14/2022] Open
Abstract
A variety of receptors perform the function of attenuating or inhibiting activation of cells in which they are expressed. Examples of these kinds of receptors include TIM-3 and PD-1, among others that have been widely studied in cells of lymphoid origin and, though to a lesser degree, in other cell lines. Today, several studies describe the function of these molecules as part of the diverse mechanisms of immune tolerance that exist in the immune system. This review analyzes the function of some of these proteins in monocytes and macrophages and as well as their participation as inhibitory molecules or elements of immunological tolerance that also act in innate defense mechanisms. We chose the receptors TIM-3, PD-1, CD32b, and CD200R because these molecules have distinct functional characteristics that provide examples of the different regulating mechanisms in monocytes and macrophages.
Collapse
|
38
|
Pan YG, Yu YL, Lin CC, Lanier LL, Chu CL. FcεRI γ-Chain Negatively Modulates Dectin-1 Responses in Dendritic Cells. Front Immunol 2017; 8:1424. [PMID: 29163499 PMCID: PMC5663849 DOI: 10.3389/fimmu.2017.01424] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 10/13/2017] [Indexed: 12/15/2022] Open
Abstract
The inhibitory effect of immunoreceptor tyrosine-based activation motif (ITAM)-containing adapters DAP12 and FcεRI γ-chain (FcRγ) has been found in many immune functions. Herein, we have further explored the role of these adapters in C-type lectin receptors response. We identified that FcRγ, but not DAP12, could negatively regulate the Dectin-1 responses in dendritic cells (DCs). Loss of FcRγ or both DAP12 and FcRγ enhanced the maturation and cytokine production in DCs upon Dectin-1 activation compared to normal cells, whereas DCs lacking only DAP12 showed little changes. In addition, increments of T cell activation and T helper 17 polarization induced by FcRγ-deficient DCs were observed both in vitro and in vivo. Examining the Dectin-1 signaling, we revealed that the activations of several signaling molecules were augmented in FcRγ-deficient DCs stimulated with Dectin-1 ligands. Furthermore, we demonstrated that the association of phosphatases SHP-1 and PTEN with FcRγ may contribute to the negative regulation of FcRγ in Dectin-1 activation in DCs. These results extend the inhibitory effect of ITAM-containing adapters to Dectin-1 response in immune functions, even though Dectin-1 contains an ITAM-like intracellular domain. According to the role of Dectin-1 in responding to microbes and tumor cells, our finding may have applications in the development of vaccine and cancer therapy.
Collapse
Affiliation(s)
- Yi-Gen Pan
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yen-Ling Yu
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli County, Taiwan
| | - Chi-Chien Lin
- Institute of Biomedical Sciences, National Chung Hsin University, Taichung, Taiwan
| | - Lewis L Lanier
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, United States.,The Parker Institute for Cancer Immunotherapy, University of California San Francisco, San Francisco, CA, United States
| | - Ching-Liang Chu
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
39
|
Okamoto K, Nakashima T, Shinohara M, Negishi-Koga T, Komatsu N, Terashima A, Sawa S, Nitta T, Takayanagi H. Osteoimmunology: The Conceptual Framework Unifying the Immune and Skeletal Systems. Physiol Rev 2017; 97:1295-1349. [DOI: 10.1152/physrev.00036.2016] [Citation(s) in RCA: 241] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 03/29/2017] [Accepted: 04/04/2017] [Indexed: 12/13/2022] Open
Abstract
The immune and skeletal systems share a variety of molecules, including cytokines, chemokines, hormones, receptors, and transcription factors. Bone cells interact with immune cells under physiological and pathological conditions. Osteoimmunology was created as a new interdisciplinary field in large part to highlight the shared molecules and reciprocal interactions between the two systems in both heath and disease. Receptor activator of NF-κB ligand (RANKL) plays an essential role not only in the development of immune organs and bones, but also in autoimmune diseases affecting bone, thus effectively comprising the molecule that links the two systems. Here we review the function, gene regulation, and signal transduction of osteoimmune molecules, including RANKL, in the context of osteoclastogenesis as well as multiple other regulatory functions. Osteoimmunology has become indispensable for understanding the pathogenesis of a number of diseases such as rheumatoid arthritis (RA). We review the various osteoimmune pathologies, including the bone destruction in RA, in which pathogenic helper T cell subsets [such as IL-17-expressing helper T (Th17) cells] induce bone erosion through aberrant RANKL expression. We also focus on cellular interactions and the identification of the communication factors in the bone marrow, discussing the contribution of bone cells to the maintenance and regulation of hematopoietic stem and progenitors cells. Thus the time has come for a basic reappraisal of the framework for understanding both the immune and bone systems. The concept of a unified osteoimmune system will be absolutely indispensable for basic and translational approaches to diseases related to bone and/or the immune system.
Collapse
Affiliation(s)
- Kazuo Okamoto
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan; Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Tokyo, Japan; Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Tomoki Nakashima
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan; Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Tokyo, Japan; Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Masahiro Shinohara
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan; Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Tokyo, Japan; Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Takako Negishi-Koga
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan; Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Tokyo, Japan; Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Noriko Komatsu
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan; Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Tokyo, Japan; Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Asuka Terashima
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan; Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Tokyo, Japan; Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Shinichiro Sawa
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan; Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Tokyo, Japan; Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Takeshi Nitta
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan; Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Tokyo, Japan; Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Hiroshi Takayanagi
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan; Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Tokyo, Japan; Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| |
Collapse
|
40
|
A Novel System for the Quantification of the ADCC Activity of Therapeutic Antibodies. J Immunol Res 2017; 2017:3908289. [PMID: 29104875 PMCID: PMC5635472 DOI: 10.1155/2017/3908289] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/19/2017] [Accepted: 08/01/2017] [Indexed: 11/23/2022] Open
Abstract
Novel ADCC effector cells expressing the V-variant or F-variant of FcγRIIIa (CD16a) and firefly luciferase under the control of a chimeric promoter incorporating recognition sequences for the principal transcription factors involved in FcγRIIIa signal transduction, together with novel target cells overexpressing a constant high level of the specific antigen recognized by rituximab, trastuzumab, cetuximab, infliximab, adalimumab, or etanercept, confer improved sensitivity, specificity, and dynamic range in an ADCC assay relative to effector cells expressing a NFAT-regulated reporter gene and wild-type target cells. The effector cells also contain a normalization gene rendering ADCC assays independent of cell number or serum matrix effects. The novel effector and target cells in a frozen thaw-and-use format exhibit low vial-to-vial and lot-to-lot variation in their performance characteristics reflected by CVs of 10% or less. Homologous control target cells in which the specific target gene has been invalidated by genome editing providing an ideal control and a means of correcting for nonspecific effects were observed with certain samples of human serum. The novel effector cells and target cells expressing noncleavable membrane-bound TNFα have been used to quantify ADCC activity in serum from patients with Crohn's disease treated with infliximab and to relate ADCC activity to drug levels.
Collapse
|
41
|
Benon A, Ya C, Martin L, Watrin C, Chounlamountri N, Jaaoini I, Honnorat J, Pellier-Monnin V, Noraz N. The Syk kinases orchestrate cerebellar granule cell tangential migration. Neuroscience 2017; 360:230-239. [DOI: 10.1016/j.neuroscience.2017.07.057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 07/21/2017] [Accepted: 07/21/2017] [Indexed: 01/03/2023]
|
42
|
Nguyen GT, Green ER, Mecsas J. Neutrophils to the ROScue: Mechanisms of NADPH Oxidase Activation and Bacterial Resistance. Front Cell Infect Microbiol 2017; 7:373. [PMID: 28890882 PMCID: PMC5574878 DOI: 10.3389/fcimb.2017.00373] [Citation(s) in RCA: 492] [Impact Index Per Article: 61.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 08/02/2017] [Indexed: 12/16/2022] Open
Abstract
Reactive oxygen species (ROS) generated by NADPH oxidase play an important role in antimicrobial host defense and inflammation. Their deficiency in humans results in recurrent and severe bacterial infections, while their unregulated release leads to pathology from excessive inflammation. The release of high concentrations of ROS aids in clearance of invading bacteria. Localization of ROS release to phagosomes containing pathogens limits tissue damage. Host immune cells, like neutrophils, also known as PMNs, will release large amounts of ROS at the site of infection following the activation of surface receptors. The binding of ligands to G-protein-coupled receptors (GPCRs), toll-like receptors, and cytokine receptors can prime PMNs for a more robust response if additional signals are encountered. Meanwhile, activation of Fc and integrin directly induces high levels of ROS production. Additionally, GPCRs that bind to the bacterial-peptide analog fMLP, a neutrophil chemoattractant, can both prime cells and trigger low levels of ROS production. Engagement of these receptors initiates intracellular signaling pathways, resulting in activation of downstream effector proteins, assembly of the NADPH oxidase complex, and ultimately, the production of ROS by this complex. Within PMNs, ROS released by the NADPH oxidase complex can activate granular proteases and induce the formation of neutrophil extracellular traps (NETs). Additionally, ROS can cross the membranes of bacterial pathogens and damage their nucleic acids, proteins, and cell membranes. Consequently, in order to establish infections, bacterial pathogens employ various strategies to prevent restriction by PMN-derived ROS or downstream consequences of ROS production. Some pathogens are able to directly prevent the oxidative burst of phagocytes using secreted effector proteins or toxins that interfere with translocation of the NADPH oxidase complex or signaling pathways needed for its activation. Nonetheless, these pathogens often rely on repair and detoxifying proteins in addition to these secreted effectors and toxins in order to resist mammalian sources of ROS. This suggests that pathogens have both intrinsic and extrinsic mechanisms to avoid restriction by PMN-derived ROS. Here, we review mechanisms of oxidative burst in PMNs in response to bacterial infections, as well as the mechanisms by which bacterial pathogens thwart restriction by ROS to survive under conditions of oxidative stress.
Collapse
Affiliation(s)
- Giang T Nguyen
- Graduate Program in Immunology, Sackler School of Graduate Biomedical Sciences, Tufts UniversityBoston, MA, United States
| | - Erin R Green
- Department of Molecular Biology and Microbiology, Tufts University School of MedicineBoston, MA, United States
| | - Joan Mecsas
- Graduate Program in Immunology, Sackler School of Graduate Biomedical Sciences, Tufts UniversityBoston, MA, United States.,Department of Molecular Biology and Microbiology, Tufts University School of MedicineBoston, MA, United States
| |
Collapse
|
43
|
Yue X, Ai J, Xu Y, Chen Y, Huang M, Yang X, Hu B, Zhang H, He C, Yang X, Tang W, Peng X, Dong L, Wang H, Fan J, Ding J, Geng M. Polymeric immunoglobulin receptor promotes tumor growth in hepatocellular carcinoma. Hepatology 2017; 65:1948-1962. [PMID: 28073159 DOI: 10.1002/hep.29036] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 11/23/2016] [Accepted: 12/26/2016] [Indexed: 12/14/2022]
Abstract
UNLABELLED Deregulation of the immune system is believed to contribute to cancer malignancy, which has led to recent therapeutic breakthroughs facilitating antitumor immunity. In a malignant setting, immunoglobulin receptors, which are fundamental components of the human immune system, fulfill paradoxical roles in cancer pathogenesis. This study describes a previously unrecognized pro-oncogenic function of polymeric immunoglobulin receptor (pIgR) in the promotion of cell transformation and proliferation. Mechanistically, pIgR overexpression is associated with YES proto-oncogene 1, Src family tyrosine kinase (Yes) activation, which is required for pIgR-induced oncogenic growth. Specifically, pIgR activates the Yes-DNAX-activating protein of 12 kDa-spleen tyrosine kinase-Rac1/CDC42-MEK (extracellular signal-regulated kinase kinase)/ERK (extracellular signal-regulated kinase) cascade in an immunoreceptor tyrosine-based activating motif (ITAM)-dependent manner to promote cell transformation and tumor growth, although pIgR itself does not contain an ITAM sequence. Additionally, the combination of pIgR and phosphorylated Yes (p-Yes) levels serves as a prognostic biomarker for hepatitis B surface antigen-positive and early-stage hepatocellular carcinoma (HCC) patients. Moreover, pharmacological targeting of MEK/ERK or Yes represents a therapeutic option for the subgroup of patients with pIgR/p-Yes-positive HCC based on our results with both cancer cell-line-based xenografts and primary patient-derived xenografts. CONCLUSION Our findings reveal the molecular mechanism by which pIgR promotes cancer malignancy, suggest the clinical potential of targeting this pathway in HCC, and provide new insight into the oncogenic role of immunoglobulin receptors. (Hepatology 2017;65:1948-1962).
Collapse
Affiliation(s)
- Xihua Yue
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Jing Ai
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Yang Xu
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, P.R. China
| | - Yi Chen
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Min Huang
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Xinying Yang
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Bo Hu
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, P.R. China
| | - Haotian Zhang
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Changxi He
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Xinrong Yang
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, P.R. China
| | - Weiguo Tang
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, P.R. China
| | - Xia Peng
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Liwei Dong
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, the Second Military Medical University, Shanghai, P.R. China
| | - Hongyang Wang
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, the Second Military Medical University, Shanghai, P.R. China
| | - Jia Fan
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, P.R. China
- Institute of Biomedical Sciences, Fudan University, Shanghai, P.R. China
| | - Jian Ding
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Meiyu Geng
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
| |
Collapse
|
44
|
Carlomagno S, Falco M, Bono M, Alicata C, Garbarino L, Mazzocco M, Moretta L, Moretta A, Sivori S. KIR3DS1-Mediated Recognition of HLA-*B51: Modulation of KIR3DS1 Responsiveness by Self HLA-B Allotypes and Effect on NK Cell Licensing. Front Immunol 2017; 8:581. [PMID: 28603523 PMCID: PMC5445109 DOI: 10.3389/fimmu.2017.00581] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 05/01/2017] [Indexed: 12/24/2022] Open
Abstract
Several studies described an association between killer-cell immunoglobulin-like receptor (KIR)/HLA gene combinations and clinical outcomes in various diseases. In particular, an important combined role for KIR3DS1 and HLA-B Bw4-I80 in controlling viral infections and a higher protection against leukemic relapses in donor equipped with activating KIRs in haplo-HSCT has been described. Here, we show that KIR3DS1 mediates positive signals upon recognition of HLA-B*51 (Bw4-I80) surface molecules on target cells and that this activation occurs only in Bw4-I80neg individuals, including those carrying particular KIR/HLA combination settings. In addition, killing of HLA-B*51 transfected target cells mediated by KIR3DS1+/NKG2A+ natural killer (NK) cell clones from Bw4-I80neg donors could be partially inhibited by antibody-mediated masking of KIR3DS1. Interestingly, KIR3DS1-mediated recognition of HLA-B*51 could be better appreciated under experimental conditions in which the function of NKG2D was reduced by mAb-mediated blocking. This experimental approach may mimic the compromised function of NKG2D occurring in certain viral infections. We also show that, in KIR3DS1+/NKG2A+ NK cell clones derived from an HLA-B Bw4-T80 donor carrying 2 KIR3DS1 gene copy numbers, the positive signal generated by the engagement of KIR3DS1 by HLA-B*51 resulted in a more efficient killing of HLA-B*51-transfected target cells. Moreover, in these clones, a direct correlation between KIR3DS1 and NKG2D surface density was detected, while the expression of NKp46 was inversely correlated with that of KIR3DS1. Finally, we analyzed KIR3DS1+/NKG2A+ NK cell clones from a HLA-B Bw4neg donor carrying cytoplasmic KIR3DL1. Although these clones expressed lower levels of surface KIR3DS1, they displayed responses comparable to those of NK cell clones derived from HLA-B Bw4neg donors that expressed surface KIR3DL1. Altogether these data suggest that, in particular KIR/HLA combinations, KIR3DS1 may play a role in the process of human NK cell education.
Collapse
Affiliation(s)
- Simona Carlomagno
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Genova, Italy
| | | | - Maria Bono
- Istituto Giannina Gaslini, Genova, Italy
| | - Claudia Alicata
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Genova, Italy.,Centro di Eccellenza per le Ricerche Biomediche, Università degli Studi di Genova, Genova, Italy
| | - Lucia Garbarino
- S.C. Laboratorio di Istocompatibilità e IBMDR, E.O. Ospedali Galliera, Genova, Italy
| | - Michela Mazzocco
- S.C. Laboratorio di Istocompatibilità e IBMDR, E.O. Ospedali Galliera, Genova, Italy
| | - Lorenzo Moretta
- Dipartimento di Immunologia, IRCCS Ospedale Bambin Gesù, Roma, Italy
| | - Alessandro Moretta
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Genova, Italy.,Centro di Eccellenza per le Ricerche Biomediche, Università degli Studi di Genova, Genova, Italy
| | - Simona Sivori
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Genova, Italy.,Centro di Eccellenza per le Ricerche Biomediche, Università degli Studi di Genova, Genova, Italy
| |
Collapse
|
45
|
Chiu YH, Schwarz E, Li D, Xu Y, Sheu TR, Li J, de Mesy Bentley KL, Feng C, Wang B, Wang JC, Albertorio-Saez L, Wood R, Kim M, Wang W, Ritchlin CT. Dendritic Cell-Specific Transmembrane Protein (DC-STAMP) Regulates Osteoclast Differentiation via the Ca 2+ /NFATc1 Axis. J Cell Physiol 2017; 232:2538-2549. [PMID: 27723141 DOI: 10.1002/jcp.25638] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 10/07/2016] [Indexed: 12/16/2022]
Abstract
DC-STAMP is a multi-pass transmembrane protein essential for cell-cell fusion between osteoclast precursors during osteoclast (OC) development. DC-STAMP-/- mice have mild osteopetrosis and form mononuclear cells with limited resorption capacity. The identification of an Immunoreceptor Tyrosine-based Inhibitory Motif (ITIM) on the cytoplasmic tail of DC-STAMP suggested a potential signaling function. The absence of a known DC-STAMP ligand, however, has hindered the elucidation of downstream signaling pathways. To address this problem, we engineered a light-activatable DC-STAMP chimeric molecule in which light exposure mimics ligand engagement that can be traced by downstream Ca2+ signaling. Deletion of the cytoplasmic ITIM resulted in a significant elevation in the amplitude and duration of intracellular Ca2+ flux. Decreased NFATc1 expression in DC-STAMP-/- cells was restored by DC-STAMP over-expression. Multiple biological phenotypes including cell-cell fusion, bone erosion, cell mobility, DC-STAMP cell surface distribution, and NFATc1 nuclear translocation were altered by deletion of the ITIM and adjacent amino acids. In contrast, mutations on each of the tyrosine residues surrounding the ITIM showed no effect on DC-STAMP function. Collectively, our results suggest that the ITIM on DC-STAMP is a functional motif that regulates osteoclast differentiation through the NFATc1/Ca2+ axis. J. Cell. Physiol. 232: 2538-2549, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ya-Hui Chiu
- Division of Allergy/Immunology and Rheumatology, The University of Rochester, Rochester, New York
| | - Edward Schwarz
- The Center for Musculoskeletal Research, The University of Rochester, Rochester, New York
| | - Dongge Li
- Division of Allergy/Immunology and Rheumatology, The University of Rochester, Rochester, New York
| | - Yuexin Xu
- Microbiology and Immunology, The University of Rochester, Rochester, New York
| | - Tzong-Ren Sheu
- The Center for Musculoskeletal Research, The University of Rochester, Rochester, New York
| | - Jinbo Li
- Pathology and Laboratory Medicine, School of Medicine and Dentistry, The University of Rochester, Rochester, New York
| | - Karen L de Mesy Bentley
- Microbiology and Immunology, The University of Rochester, Rochester, New York.,Pathology and Laboratory Medicine, School of Medicine and Dentistry, The University of Rochester, Rochester, New York
| | - Changyong Feng
- Biostatistic, The University of Rochester, Rochester, New York
| | - Baoli Wang
- Hormones and Development, Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Jhih-Cheng Wang
- Institution of Biomedical Engineering, National Cheng Kung University, Tainan City, Taiwan
| | - Liz Albertorio-Saez
- Division of Allergy/Immunology and Rheumatology, The University of Rochester, Rochester, New York
| | - Ronald Wood
- OB/GYN, Urology, Neuroscience, The University of Rochester, Rochester, New York
| | - Minsoo Kim
- Microbiology and Immunology, The University of Rochester, Rochester, New York
| | - Wensheng Wang
- 1st Affiliated Hospital, Xinxiang Medical University, Weihui City, Henan Province, China
| | - Christopher T Ritchlin
- Division of Allergy/Immunology and Rheumatology, The University of Rochester, Rochester, New York
| |
Collapse
|
46
|
Czirr E, Castello NA, Mosher KI, Castellano JM, Hinkson IV, Lucin KM, Baeza-Raja B, Ryu JK, Li L, Farina SN, Belichenko NP, Longo FM, Akassoglou K, Britschgi M, Cirrito JR, Wyss-Coray T. Microglial complement receptor 3 regulates brain Aβ levels through secreted proteolytic activity. J Exp Med 2017; 214:1081-1092. [PMID: 28298456 PMCID: PMC5379986 DOI: 10.1084/jem.20162011] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/31/2017] [Accepted: 02/03/2017] [Indexed: 12/20/2022] Open
Abstract
Czirr et al. report that microglia lacking complement receptor 3 display increased extracellular Aβ degrading activity and that targeting the receptor with a small molecule increases Aβ clearance in vivo, thus identifying a microglial receptor as a novel therapeutic target. Recent genetic evidence supports a link between microglia and the complement system in Alzheimer’s disease (AD). In this study, we uncovered a novel role for the microglial complement receptor 3 (CR3) in the regulation of soluble β-amyloid (Aβ) clearance independent of phagocytosis. Unexpectedly, ablation of CR3 in human amyloid precursor protein–transgenic mice results in decreased, rather than increased, Aβ accumulation. In line with these findings, cultured microglia lacking CR3 are more efficient than wild-type cells at degrading extracellular Aβ by secreting enzymatic factors, including tissue plasminogen activator. Furthermore, a small molecule modulator of CR3 reduces soluble Aβ levels and Aβ half-life in brain interstitial fluid (ISF), as measured by in vivo microdialysis. These results suggest that CR3 limits Aβ clearance from the ISF, illustrating a novel role for CR3 and microglia in brain Aβ metabolism and defining a potential new therapeutic target in AD.
Collapse
Affiliation(s)
- Eva Czirr
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305
| | - Nicholas A Castello
- Gladstone Institute of Neurological Disease, University of California, San Francisco, San Francisco, CA 94158
| | - Kira I Mosher
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305
| | - Joseph M Castellano
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305.,Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA 94305
| | - Izumi V Hinkson
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305.,Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA 94305.,Center for Tissue Regeneration, Repair, and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304
| | - Kurt M Lucin
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305
| | - Bernat Baeza-Raja
- Gladstone Institute of Neurological Disease, University of California, San Francisco, San Francisco, CA 94158
| | - Jae Kyu Ryu
- Gladstone Institute of Neurological Disease, University of California, San Francisco, San Francisco, CA 94158
| | - Lulin Li
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305.,Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA 94305.,Center for Tissue Regeneration, Repair, and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304
| | - Sasha N Farina
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305.,Center for Tissue Regeneration, Repair, and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304
| | - Nadia P Belichenko
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305
| | - Frank M Longo
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305
| | - Katerina Akassoglou
- Gladstone Institute of Neurological Disease, University of California, San Francisco, San Francisco, CA 94158.,Department of Neurology, University of California, San Francisco, San Francisco, CA 94158
| | - Markus Britschgi
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305
| | - John R Cirrito
- Department of Neurology, Washington University, St. Louis, MO 63110.,Knight Alzheimer's Disease Research Center, Washington University Medical Center, St. Louis, MO 63110.,Hope Center for Neurological Disorders, Washington University, St. Louis, MO 63110
| | - Tony Wyss-Coray
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305 .,Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA 94305.,Center for Tissue Regeneration, Repair, and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304
| |
Collapse
|
47
|
Differential long noncoding RNA/mRNA expression profiling and functional network analysis during osteogenic differentiation of human bone marrow mesenchymal stem cells. Stem Cell Res Ther 2017; 8:30. [PMID: 28173844 PMCID: PMC5297123 DOI: 10.1186/s13287-017-0485-6] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/22/2016] [Accepted: 01/20/2017] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are the most promising cell types for bone regeneration and repair due to their osteogenic potential. MSC differentiation is precisely regulated and orchestrated by the mechanical and molecular signals from the extracellular environment, involving complex pathways regulated at both the transcriptional and post-transcriptional levels. However, the potential role of long noncoding RNA (lncRNA) in the osteogenic differentiation of human MSCs remains largely unclear. METHODS Here, we undertook the survey of differential coding and noncoding transcript expression profiling and functional network analysis during osteogenic differentiation of human bone marrow mesenchymal stem cells (BMSCs) using human whole transcriptome microarray. The key pathways, mRNAs, and lncRNAs controlling osteogenic differentiation of BMSCs were identified by further bioinformatic analysis. The role of lncRNA in the osteogenic differentiation of MSCs was verified by lncRNA overexpression or knockdown methods. RESULTS A total of 1269 coding transcripts with 648 genes significantly upregulated and 621 genes downregulated, and 1408 lncRNAs with 785 lncRNAs significantly upregulated and 623 lncRNAs downregulated were detected along with osteogenic differentiation. Bioinformatic analysis identified that several pathways may be associated with osteogenic differentiation potentials of BMSCs, such as the MAPK signaling pathway, the Jak-STAT signaling pathway, the Toll-like receptor signaling pathway, and the TGF-beta signaling pathway, etc. Bioinformatic analysis also revealed 13 core regulatory genes including seven mRNAs (GPX3, TLR2, BDKRB1, FBXO5, BRCA1, MAP3K8, and SCARB1), and six lncRNAs (XR_111050, NR_024031, FR374455, FR401275, FR406817, and FR148647). Based on the analysis, we identified one lncRNA, XR_111050, that could enhance the osteogenic differentiation potentials of MSCs. CONCLUSIONS The potential regulatory mechanisms were identified using bioinformatic analyses. We further predicted the interactions of differentially expressed coding and noncoding genes, and identified core regulatory factors by co-expression networks during osteogenic differentiation of BMSCs. Our results could lead to a better understanding of the molecular mechanisms of genes and lncRNAs, and their cooperation underlying MSC osteogenic differentiation and bone formation. We identified that one lncRNA, XR_111050, could be a potential target for bone tissue engineering.
Collapse
|
48
|
Cote R, Lynn Eggink L, Kenneth Hoober J. CLEC receptors, endocytosis and calcium signaling. AIMS ALLERGY AND IMMUNOLOGY 2017. [DOI: 10.3934/allergy.2017.4.207] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
49
|
Thankam FG, Dilisio MF, Dougherty KA, Dietz NE, Agrawal DK. Triggering receptor expressed on myeloid cells and 5'adenosine monophosphate-activated protein kinase in the inflammatory response: a potential therapeutic target. Expert Rev Clin Immunol 2016; 12:1239-1249. [PMID: 27266327 PMCID: PMC5158012 DOI: 10.1080/1744666x.2016.1196138] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
INTRODUCTION The events in the cellular and molecular signaling triggered during inflammation mitigate tissue healing. The metabolic check-point control mediated by 5'-adenosine monophosphate-activated protein kinase (AMPK) is crucial for switching the cells into an activated state capable of mediating inflammatory events. The cell metabolism involved in the inflammatory response represents a potential therapeutic target for the pharmacologic management of inflammation. Areas covered: In this article, a critical review is presented on triggering receptor expressed on myeloid cell (TREM) receptors and their role in the inflammatory responses, as well as homeostasis between different TREM molecules and their regulation. Additionally, we discussed the relationship between TREM and AMPK to identify novel targets to limit the inflammatory response. Literature search was carried out from the National Library of Medicine's Medline database (using PubMed as the search engine) and Google Scholar and identified relevant studies up to 30 March 2016 using inflammation, TREM, AMPK, as the key words. Expert commentary: The prevention of phenotype switching of immune cells during inflammation by targeting AMPK and TREM-1 could be beneficial for developing novel management strategies for inflammation and associated complications.
Collapse
Affiliation(s)
- Finosh G Thankam
- Department of Clinical & Translational Science, Creighton University School of Medicine, Omaha, NE, USA
| | - Matthew F. Dilisio
- Department of Orthopedic Surgery, Creighton University School of Medicine, Omaha, NE, USA
| | | | - Nicholas E. Dietz
- Department of Pathology, Creighton University School of Medicine, Omaha, NE, USA
| | - Devendra K. Agrawal
- Department of Clinical & Translational Science, Creighton University School of Medicine, Omaha, NE, USA
| |
Collapse
|
50
|
Coordinated Regulation of Signaling Pathways during Macrophage Activation. Microbiol Spectr 2016; 4. [PMID: 27780013 DOI: 10.1128/microbiolspec.mchd-0025-2015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The functional and phenotypic diversity of macrophages has long been appreciated, and it is now clear that it reflects a complex interplay between hard-wired differentiation pathways and instructive signals in specific tissues (Lawrence T, Natoli G. 2011, Nat Rev Immunol11:750-761). Recent studies have begun to unravel the molecular basis for the integration of these intrinsic developmental pathways with extracellular signals from the tissue microenvironment that confer the distinct phenotypes of tissue-resident macrophages (Lavin Y et al. 2014. Cell159:1312-1326; Gosselin D et al. 2014. Cell159:1327-1340). Macrophage phenotype and function is particularly dynamic during inflammation or infection, as blood monocytes are recruited into tissues and differentiate into macrophages, and depending on the nature of the inflammatory stimulus, they may acquire distinct functional phenotypes (Xue J et al. 2014. Immunity40:274-288; Murray PJ et al. 2014. Immunity41:14-20). Furthermore, these functional activation states can be rapidly modified in response to a changing microenvironment. Here we will discuss several key signaling pathways that drive macrophage activation during the inflammatory response and discuss how these pathways are integrated to "fine-tune" macrophage phenotype and function.
Collapse
|