1
|
Iwai N, Akaki K, Hia F, Li W, Yoshinaga M, Mino T, Takeuchi O. UPF1 plays critical roles in early B cell development. Nat Commun 2024; 15:5765. [PMID: 38982067 PMCID: PMC11233602 DOI: 10.1038/s41467-024-50032-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 06/26/2024] [Indexed: 07/11/2024] Open
Abstract
The ATP-dependent RNA helicase UPF1 plays a crucial role in various mRNA degradation pathways, most importantly in nonsense-mediated mRNA decay (NMD). Here, we show that UPF1 is upregulated during the early stages of B cell development and is important for early B cell development in the bone marrow. B-cell-specific Upf1 deletion in mice severely impedes the early to late LPre-B cell transition, in which VH-DHJH recombination occurs at the Igh gene. Furthermore, UPF1 is indispensable for VH-DHJH recombination, without affecting DH-JH recombination. Intriguingly, the genetic pre-arrangement of the Igh gene rescues the differentiation defect in early LPre-B cells under Upf1 deficient conditions. However, differentiation is blocked again following Ig light chain recombination, leading to a failure in development into immature B cells. Notably, UPF1 interacts with and regulates the expression of genes involved in immune responses, cell cycle control, NMD, and the unfolded protein response in B cells. Collectively, our findings underscore the critical roles of UPF1 during the early LPre-B cell stage and beyond, thus orchestrating B cell development.
Collapse
Affiliation(s)
- Noriki Iwai
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kotaro Akaki
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Fabian Hia
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Wei Li
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masanori Yoshinaga
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takashi Mino
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - Osamu Takeuchi
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| |
Collapse
|
2
|
Zhang R, Wang D, Ruan GX, Wang R, Li Y, Chen W, Huang H, Wang J, Meng L, Zhu Z, Lei D, Xu S, Ou X. Spliceosome component PHD finger 5A is essential for early B lymphopoiesis. Development 2024; 151:dev202247. [PMID: 38095286 DOI: 10.1242/dev.202247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/08/2023] [Indexed: 01/12/2024]
Abstract
The spliceosome, a multi-megadalton ribonucleoprotein complex, is essential for pre-mRNA splicing in the nucleus and ensuring genomic stability. Its precise and dynamic assembly is pivotal for its function. Spliceosome malfunctions can lead to developmental abnormalities and potentially contribute to tumorigenesis. The specific role of the spliceosome in B cell development is poorly understood. Here, we reveal that the spliceosomal U2 snRNP component PHD finger protein 5A (Phf5a) is vital for early B cell development. Loss of Phf5a results in pronounced defects in B cell development, causing an arrest at the transition from pre-pro-B to early pro-B cell stage in the bone marrow of mutant mice. Phf5a-deficient B cells exhibit impaired immunoglobulin heavy (IgH) chain expression due to defective V-to-DJ gene rearrangement. Mechanistically, our findings suggest that Phf5a facilitates IgH gene rearrangement by regulating the activity of recombination-activating gene endonuclease and influencing chromatin interactions at the Igh locus.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Daoqin Wang
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Gui-Xin Ruan
- Medical School, Taizhou University, Taizhou 318000, China
| | - Ruisi Wang
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuxing Li
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wenjing Chen
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hengjun Huang
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jing Wang
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Limin Meng
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhijian Zhu
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Dengfeng Lei
- Department of Ophthalmology, Southern University of Science and Technology Hospital, Shenzhen 518055, China
| | - Shengli Xu
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos, Singapore 138648, Republic of Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 2 Medical Drive MD9, Singapore 117593, Republic of Singapore
| | - Xijun Ou
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
3
|
Mielczarek O, Rogers CH, Zhan Y, Matheson LS, Stubbington MJT, Schoenfelder S, Bolland DJ, Javierre BM, Wingett SW, Várnai C, Segonds-Pichon A, Conn SJ, Krueger F, Andrews S, Fraser P, Giorgetti L, Corcoran AE. Intra- and interchromosomal contact mapping reveals the Igh locus has extensive conformational heterogeneity and interacts with B-lineage genes. Cell Rep 2023; 42:113074. [PMID: 37676766 PMCID: PMC10548092 DOI: 10.1016/j.celrep.2023.113074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/28/2023] [Accepted: 08/18/2023] [Indexed: 09/09/2023] Open
Abstract
To produce a diverse antibody repertoire, immunoglobulin heavy-chain (Igh) loci undergo large-scale alterations in structure to facilitate juxtaposition and recombination of spatially separated variable (VH), diversity (DH), and joining (JH) genes. These chromosomal alterations are poorly understood. Uncovering their patterns shows how chromosome dynamics underpins antibody diversity. Using tiled Capture Hi-C, we produce a comprehensive map of chromatin interactions throughout the 2.8-Mb Igh locus in progenitor B cells. We find that the Igh locus folds into semi-rigid subdomains and undergoes flexible looping of the VH genes to its 3' end, reconciling two views of locus organization. Deconvolution of single Igh locus conformations using polymer simulations identifies thousands of different structures. This heterogeneity may underpin the diversity of V(D)J recombination events. All three immunoglobulin loci also participate in a highly specific, developmentally regulated network of interchromosomal interactions with genes encoding B cell-lineage factors. This suggests a model of interchromosomal coordination of B cell development.
Collapse
Affiliation(s)
- Olga Mielczarek
- Nuclear Dynamics Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Carolyn H Rogers
- Nuclear Dynamics Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK; Immunology Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Yinxiu Zhan
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Louise S Matheson
- Nuclear Dynamics Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK; Immunology Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Michael J T Stubbington
- Nuclear Dynamics Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Stefan Schoenfelder
- Nuclear Dynamics Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Daniel J Bolland
- Nuclear Dynamics Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK; Immunology Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Biola M Javierre
- Nuclear Dynamics Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Steven W Wingett
- Bioinformatics Group, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Csilla Várnai
- Nuclear Dynamics Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Anne Segonds-Pichon
- Bioinformatics Group, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Simon J Conn
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
| | - Felix Krueger
- Bioinformatics Group, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Simon Andrews
- Bioinformatics Group, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Peter Fraser
- Nuclear Dynamics Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Luca Giorgetti
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Anne E Corcoran
- Nuclear Dynamics Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK; Immunology Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK.
| |
Collapse
|
4
|
Bhat KH, Priyadarshi S, Naiyer S, Qu X, Farooq H, Kleiman E, Xu J, Lei X, Cantillo JF, Wuerffel R, Baumgarth N, Liang J, Feeney AJ, Kenter AL. An Igh distal enhancer modulates antigen receptor diversity by determining locus conformation. Nat Commun 2023; 14:1225. [PMID: 36869028 PMCID: PMC9984487 DOI: 10.1038/s41467-023-36414-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 01/31/2023] [Indexed: 03/05/2023] Open
Abstract
The mouse Igh locus is organized into a developmentally regulated topologically associated domain (TAD) that is divided into subTADs. Here we identify a series of distal VH enhancers (EVHs) that collaborate to configure the locus. EVHs engage in a network of long-range interactions that interconnect the subTADs and the recombination center at the DHJH gene cluster. Deletion of EVH1 reduces V gene rearrangement in its vicinity and alters discrete chromatin loops and higher order locus conformation. Reduction in the rearrangement of the VH11 gene used in anti-PtC responses is a likely cause of the observed reduced splenic B1 B cell compartment. EVH1 appears to block long-range loop extrusion that in turn contributes to locus contraction and determines the proximity of distant VH genes to the recombination center. EVH1 is a critical architectural and regulatory element that coordinates chromatin conformational states that favor V(D)J rearrangement.
Collapse
Affiliation(s)
- Khalid H Bhat
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL, 60612-7344, USA
- SKUAST Kashmir, Division of Basic Science and Humanities, Faculty of Agriculture, Wadura Sopore-193201, Wadoora, India
| | - Saurabh Priyadarshi
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL, 60612-7344, USA
| | - Sarah Naiyer
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL, 60612-7344, USA
| | - Xinyan Qu
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL, 60612-7344, USA
- Medpace, Cincinnati, Ohio, 45227, USA
| | - Hammad Farooq
- Department of Bioengineering, University of Illinois Colleges of Engineering and Medicine, Chicago, IL, 60612-7344, USA
| | - Eden Kleiman
- Department of Immunology and Microbiology, IMM-22, Scripps Research, La Jolla, CA, 92037, USA
- Crown Bioscience, San Diego, CA, 92127, USA
| | - Jeffery Xu
- Department of Immunology and Microbiology, IMM-22, Scripps Research, La Jolla, CA, 92037, USA
- Brookwood Baptist Health General Surgery Residency, Birmingham, AL, 35211, USA
| | - Xue Lei
- Department of Bioengineering, University of Illinois Colleges of Engineering and Medicine, Chicago, IL, 60612-7344, USA
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Jose F Cantillo
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL, 60612-7344, USA
- Immunotek, S.L. Alcala de Henares, Spain
| | - Robert Wuerffel
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL, 60612-7344, USA
- 10441 Circle Dr. Apt 47C, Oak Lawn, IL, 60453, USA
| | - Nicole Baumgarth
- W. Harry Feinstone Dept. Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, USA
| | - Jie Liang
- Department of Bioengineering, University of Illinois Colleges of Engineering and Medicine, Chicago, IL, 60612-7344, USA
| | - Ann J Feeney
- Department of Immunology and Microbiology, IMM-22, Scripps Research, La Jolla, CA, 92037, USA
| | - Amy L Kenter
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL, 60612-7344, USA.
| |
Collapse
|
5
|
Zhu N, Zhang F, Zhou H, Ma W, Mao H, Wang M, Ke Z, Wang J, Qi L. Mechanisms of Immune-Related Long Non-Coding RNAs in Spleens of Mice Vaccinated with 23-Valent Pneumococcal Polysaccharide Vaccine (PPV23). Vaccines (Basel) 2023; 11:vaccines11030529. [PMID: 36992112 DOI: 10.3390/vaccines11030529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/05/2023] [Accepted: 02/21/2023] [Indexed: 02/27/2023] Open
Abstract
The 23-valent pneumococcal vaccine (PPV23) is a classical common vaccine used to prevent pneumococcal disease. In past decades, it was thought that vaccination with this vaccine induces humoral immunity, thereby reducing the disease associated with infection with 23 common serotypes of Streptococcus pneumoniae (Sp). However, for this polysaccharide vaccine, the mechanism of immune response at the transcriptional level has not been fully studied. To identify the lncRNAs (long noncoding RNAs) and mRNAs in spleens related to immunity after PPV23 vaccination in mice, high-throughput RNA sequencing of spleens between a PPV23 treatment group and a control group were performed and evaluated in this study. The RNA-seq results identified a total of 41,321 mRNAs and 34,375 lncRNAs, including 55 significantly differentially expressed (DE) mRNAs and 389 DE lncRNAs (p < 0.05) between the two groups. GO and KEGG annotation analysis indicated that the target genes of DE lncRNAs and DE mRNAs were related to T-cell costimulation, positive regulation of alpha–beta T-cell differentiation, the CD86 biosynthetic process, and the PI3K-Akt signaling pathway, indicating that the polysaccharide component antigens of PPV23 might activate a cellular immune response during the PPV23 immunization process. Moreover, we found that Trim35 (tripartite motif containing 35), a target gene of lncRNA MSTRG.9127, was involved in regulating immunity. Our study provides a catalog of lncRNAs and mRNAs associated with immune cells’ proliferation and differentiation, and they deserve further study to deepen the understanding of the biological processes in the regulation of PPV23 during humoral immunity and cellular immunity.
Collapse
Affiliation(s)
- Nan Zhu
- School of Biological and Chemical Engineering, NingboTech University, Qianhunan Road 1, Ningbo 315100, China
- Aimei Vacin BioPharm (Zhejiang) Co., Ltd., Ningbo 315000, China
| | - Fan Zhang
- School of Biological and Chemical Engineering, NingboTech University, Qianhunan Road 1, Ningbo 315100, China
- Aimei Vacin BioPharm (Zhejiang) Co., Ltd., Ningbo 315000, China
| | - Huan Zhou
- School of Biological and Chemical Engineering, NingboTech University, Qianhunan Road 1, Ningbo 315100, China
- Aimei Vacin BioPharm (Zhejiang) Co., Ltd., Ningbo 315000, China
| | - Wei Ma
- School of Biological and Chemical Engineering, NingboTech University, Qianhunan Road 1, Ningbo 315100, China
- Aimei Vacin BioPharm (Zhejiang) Co., Ltd., Ningbo 315000, China
| | - Haiguang Mao
- School of Biological and Chemical Engineering, NingboTech University, Qianhunan Road 1, Ningbo 315100, China
| | - Mengting Wang
- School of Biological and Chemical Engineering, NingboTech University, Qianhunan Road 1, Ningbo 315100, China
| | - Zhijian Ke
- School of Biological and Chemical Engineering, NingboTech University, Qianhunan Road 1, Ningbo 315100, China
| | - Jinbo Wang
- School of Biological and Chemical Engineering, NingboTech University, Qianhunan Road 1, Ningbo 315100, China
| | - Lili Qi
- School of Biological and Chemical Engineering, NingboTech University, Qianhunan Road 1, Ningbo 315100, China
| |
Collapse
|
6
|
Martin OA, Thomas M, Marquet M, Bruzeau C, Garot A, Brousse M, Bender S, Carrion C, Choi JE, Vuong BQ, Gearhart PJ, Maul RW, Le Noir S, Pinaud E. The IgH Eµ-MAR regions promote UNG-dependent error-prone repair to optimize somatic hypermutation. Front Immunol 2023; 14:1030813. [PMID: 36865553 PMCID: PMC9971809 DOI: 10.3389/fimmu.2023.1030813] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 01/13/2023] [Indexed: 02/16/2023] Open
Abstract
Intoduction Two scaffold/matrix attachment regions (5'- and 3'-MARsEµ ) flank the intronic core enhancer (cEµ) within the immunoglobulin heavy chain locus (IgH). Besides their conservation in mice and humans, the physiological role of MARsEµ is still unclear and their involvement in somatic hypermutation (SHM) has never been deeply evaluated. Methods Our study analyzed SHM and its transcriptional control in a mouse model devoid of MARsEµ , further combined to relevant models deficient for base excision repair and mismatch repair. Results We observed an inverted substitution pattern in of MARsEµ -deficient animals: SHM being decreased upstream from cEµ and increased downstream of it. Strikingly, the SHM defect induced by MARsEµ -deletion was accompanied by an increase of sense transcription of the IgH V region, excluding a direct transcription-coupled effect. Interestingly, by breeding to DNA repair-deficient backgrounds, we showed that the SHM defect, observed upstream from cEµ in this model, was not due to a decrease in AID deamination but rather the consequence of a defect in base excision repair-associated unfaithful repair process. Discussion Our study pointed out an unexpected "fence" function of MARsEµ regions in limiting the error-prone repair machinery to the variable region of Ig gene loci.
Collapse
Affiliation(s)
- Ophélie A Martin
- Laboratoire Contrôle de la Réponse Immune B et des Lymphoproliférations (CRIBL), Université de Limoges, CNRS Unité Mixte de Recherche 7276, Inserm Unité 1262, Limoges, France
| | - Morgane Thomas
- Laboratoire Contrôle de la Réponse Immune B et des Lymphoproliférations (CRIBL), Université de Limoges, CNRS Unité Mixte de Recherche 7276, Inserm Unité 1262, Limoges, France
| | - Marie Marquet
- Laboratoire Contrôle de la Réponse Immune B et des Lymphoproliférations (CRIBL), Université de Limoges, CNRS Unité Mixte de Recherche 7276, Inserm Unité 1262, Limoges, France
| | - Charlotte Bruzeau
- Laboratoire Contrôle de la Réponse Immune B et des Lymphoproliférations (CRIBL), Université de Limoges, CNRS Unité Mixte de Recherche 7276, Inserm Unité 1262, Limoges, France
| | - Armand Garot
- Laboratoire Contrôle de la Réponse Immune B et des Lymphoproliférations (CRIBL), Université de Limoges, CNRS Unité Mixte de Recherche 7276, Inserm Unité 1262, Limoges, France
| | - Mylène Brousse
- Laboratoire Contrôle de la Réponse Immune B et des Lymphoproliférations (CRIBL), Université de Limoges, CNRS Unité Mixte de Recherche 7276, Inserm Unité 1262, Limoges, France
| | - Sébastien Bender
- Laboratoire Contrôle de la Réponse Immune B et des Lymphoproliférations (CRIBL), Université de Limoges, CNRS Unité Mixte de Recherche 7276, Inserm Unité 1262, Limoges, France.,Centre Hospitalier Universitaire Dupuytren, Service d'Immunopathologie, Limoges, France
| | - Claire Carrion
- Laboratoire Contrôle de la Réponse Immune B et des Lymphoproliférations (CRIBL), Université de Limoges, CNRS Unité Mixte de Recherche 7276, Inserm Unité 1262, Limoges, France
| | - Jee Eun Choi
- The Graduate Center, The City University of New York, New York, NY, United States
| | - Bao Q Vuong
- The Graduate Center, The City University of New York, New York, NY, United States
| | - Patricia J Gearhart
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Robert W Maul
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Sandrine Le Noir
- Laboratoire Contrôle de la Réponse Immune B et des Lymphoproliférations (CRIBL), Université de Limoges, CNRS Unité Mixte de Recherche 7276, Inserm Unité 1262, Limoges, France
| | - Eric Pinaud
- Laboratoire Contrôle de la Réponse Immune B et des Lymphoproliférations (CRIBL), Université de Limoges, CNRS Unité Mixte de Recherche 7276, Inserm Unité 1262, Limoges, France
| |
Collapse
|
7
|
The role of chromatin loop extrusion in antibody diversification. Nat Rev Immunol 2022; 22:550-566. [PMID: 35169260 PMCID: PMC9376198 DOI: 10.1038/s41577-022-00679-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2022] [Indexed: 12/15/2022]
Abstract
Cohesin mediates chromatin loop formation across the genome by extruding chromatin between convergently oriented CTCF-binding elements. Recent studies indicate that cohesin-mediated loop extrusion in developing B cells presents immunoglobulin heavy chain (Igh) variable (V), diversity (D) and joining (J) gene segments to RAG endonuclease through a process referred to as RAG chromatin scanning. RAG initiates V(D)J recombinational joining of these gene segments to generate the large number of different Igh variable region exons that are required for immune responses to diverse pathogens. Antigen-activated mature B cells also use chromatin loop extrusion to mediate the synapsis, breakage and end joining of switch regions flanking Igh constant region exons during class-switch recombination, which allows for the expression of different antibody constant region isotypes that optimize the functions of antigen-specific antibodies to eliminate pathogens. Here, we review recent advances in our understanding of chromatin loop extrusion during V(D)J recombination and class-switch recombination at the Igh locus.
Collapse
|
8
|
Calcagno G, Ouzren N, Kaminski S, Ghislin S, Frippiat JP. Chronic Hypergravity Induces a Modification of Histone H3 Lysine 27 Trimethylation at TCRβ Locus in Murine Thymocytes. Int J Mol Sci 2022; 23:7133. [PMID: 35806138 PMCID: PMC9267123 DOI: 10.3390/ijms23137133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 11/16/2022] Open
Abstract
Gravity changes are major stressors encountered during spaceflight that affect the immune system. We previously evidenced that hypergravity exposure during gestation affects the TCRβ repertoire of newborn pups. To identify the mechanisms underlying this observation, we studied post-translational histone modifications. We first showed that among the four studied post-translational histone H3 modifications, only lysine 27 trimethylation (H3K27me3) is downregulated in the thymus of mice exposed to 2× g for 21 days. We then asked whether the TCRβ locus chromatin structure is altered by hypergravity exposure. ChIP studies performed on four Vβ segments of the murine double-negative SCIET27 thymic cell line, which corresponds to the last maturation stage before V(D)J recombination, revealed increases in H3K27me3 after 2× g exposure. Finally, we evaluated the implication for the EZH2 methyltransferase in the regulation of the H3K27me3 level at these Vβ segments by treating SCIET27 cells with the GSK126-specific inhibitor. These experiments showed that the downregulation of H3K27me3 contributes to the regulation of the Vβ germline transcript expression that precedes V(D)J recombination. These data show that modifications of H3K27me3 at the TCRβ locus likely contribute to an explanation of why the TCR repertoire is affected by gravity changes and imply, for the first time, EZH2 in the regulation of the TCRβ locus chromatin structure.
Collapse
|
9
|
Laffleur B, Batista CR, Zhang W, Lim J, Yang B, Rossille D, Wu L, Estrella J, Rothschild G, Pefanis E, Basu U. RNA exosome drives early B cell development via noncoding RNA processing mechanisms. Sci Immunol 2022; 7:eabn2738. [PMID: 35658015 DOI: 10.1126/sciimmunol.abn2738] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
B cell development is linked to successful V(D)J recombination, allowing B cell receptor expression and ultimately antibody secretion for adaptive immunity. Germline noncoding RNAs (ncRNAs) are produced at immunoglobulin (Ig) loci during V(D)J recombination, but their function and posttranscriptional regulation are incompletely understood. Patients with trichohepatoenteric syndrome, characterized by RNA exosome pathway component mutations, exhibit lymphopenia, thus demonstrating the importance of ncRNA surveillance in B cell development in humans. To understand the role of RNA exosome in early B cell development in greater detail, we generated mouse models harboring a B cell-specific cre allele (Mb1cre), coupled to conditional inversion-deletion alleles of one RNA exosome core component (Exosc3) or RNase catalytic subunits (Exosc10 or Dis3). We noticed increased expression of RNA exosome subunits during V(D)J recombination, whereas a B cell developmental blockade at the pro-B cell stage was observed in the different knockout mice, overlapping with a lack of productive rearrangements of VDJ genes at the Ig heavy chain (Igh). This unsuccessful recombination prevented differentiation into pre-B cells, with accumulation of ncRNAs and up-regulation of the p53 pathway. Introduction of a prearranged Igh VDJ allele partly rescued the pre-B cell population in Dis3-deficient cells, although V-J recombination defects were observed at Ig light chain kappa (Igκ), preventing subsequent B cell development. These observations demonstrated that the RNA exosome complex is important for Igh and Igκ recombination and establish the relevance of RNA processing for optimal diversification at these loci during B cell development.
Collapse
Affiliation(s)
- Brice Laffleur
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Carolina R Batista
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Wanwei Zhang
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Junghyun Lim
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Biao Yang
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Delphine Rossille
- Universite of Rennes, INSERM, EFS Bretagne, CHU Rennes, UMR 1236, Rennes, France
| | - Lijing Wu
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Jerson Estrella
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Gerson Rothschild
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | - Uttiya Basu
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| |
Collapse
|
10
|
Ruan GX, Li Y, Chen W, Huang H, Zhang R, Chen C, Lam KP, Xu S, Ou X. The spliceosome component Usp39 controls B cell development by regulating immunoglobulin gene rearrangement. Cell Rep 2022; 38:110338. [PMID: 35139388 DOI: 10.1016/j.celrep.2022.110338] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 11/18/2021] [Accepted: 01/13/2022] [Indexed: 12/17/2022] Open
Abstract
The spliceosome is a large ribonucleoprotein complex responsible for pre-mRNA splicing and genome stability maintenance. Disruption of the spliceosome activity may lead to developmental disorders and tumorigenesis. However, the physiological role that the spliceosome plays in B cell development and function is still poorly defined. Here, we demonstrate that ubiquitin-specific peptidase 39 (Usp39), a spliceosome component of the U4/U6.U5 tri-snRNP complex, is essential for B cell development. Ablation of Usp39 in B cell lineage blocks pre-pro-B to pro-B cell transition in the bone marrow, leading to a profound reduction of mature B cells in the periphery. We show that Usp39 specifically regulates immunoglobulin gene rearrangement in a spliceosome-dependent manner, which involves modulating chromatin interactions at the Igh locus. Moreover, our results indicate that Usp39 deletion reduces the pre-malignant B cells in Eμ-Myc transgenic mice and significantly improves their survival.
Collapse
Affiliation(s)
- Gui-Xin Ruan
- Harbin Institute of Technology, Harbin 150001, China; Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuxing Li
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wenjing Chen
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hengjun Huang
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Rui Zhang
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Changxu Chen
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Kong-Peng Lam
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore; Departments of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore; Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Shengli Xu
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Xijun Ou
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
11
|
Morrison TA, Hudson WH, Chisolm DA, Kanno Y, Shih HY, Ahmed R, Henao-Mejia J, Hafner M, O'Shea JJ. Evolving Views of Long Noncoding RNAs and Epigenomic Control of Lymphocyte State and Memory. Cold Spring Harb Perspect Biol 2022; 14:a037952. [PMID: 34001528 PMCID: PMC8725624 DOI: 10.1101/cshperspect.a037952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Not simply an attribute of the adaptive immune system, immunological memory can be viewed on multiple levels. Accordingly, the molecular basis of memory comprises multiple mechanisms. The advent of new sequencing technologies has greatly enhanced the understanding of gene regulation and lymphocyte specification, and improved measurement of chromatin states affords new insights into the epigenomic and transcriptomic programs that underlie memory. Beyond canonical genes, the involvement of long noncoding RNAs (lncRNAs) is becoming increasingly apparent, and it appears that there are more than two to three times as many lncRNAs as protein-coding genes. lncRNAs can directly interact with DNA, RNA, and proteins, and a single lncRNA can contain multiple modular domains and thus interact with different classes of molecules. Yet, most lncRNAs have not been tested for function, and even fewer knockout mice have been generated. It is therefore timely to consider new potential mechanisms that may contribute to immune memory.
Collapse
Affiliation(s)
- Tasha A Morrison
- Lymphocyte Cell Biology Section, Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - William H Hudson
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Danielle A Chisolm
- Lymphocyte Cell Biology Section, Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Yuka Kanno
- Lymphocyte Cell Biology Section, Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Han-Yu Shih
- Neuro-Immune Regulome Unit, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Rafi Ahmed
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Jorge Henao-Mejia
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Markus Hafner
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - John J O'Shea
- Lymphocyte Cell Biology Section, Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
12
|
Baizan-Edge A, Stubbs BA, Stubbington MJT, Bolland DJ, Tabbada K, Andrews S, Corcoran AE. IL-7R signaling activates widespread V H and D H gene usage to drive antibody diversity in bone marrow B cells. Cell Rep 2021; 36:109349. [PMID: 34260907 PMCID: PMC8293627 DOI: 10.1016/j.celrep.2021.109349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/05/2021] [Accepted: 06/15/2021] [Indexed: 01/09/2023] Open
Abstract
Generation of the primary antibody repertoire requires V(D)J recombination of hundreds of gene segments in the immunoglobulin heavy chain (Igh) locus. The role of interleukin-7 receptor (IL-7R) signaling in Igh recombination has been difficult to partition from its role in B cell survival and proliferation. With a detailed description of the Igh repertoire in murine IL-7Rα-/- bone marrow B cells, we demonstrate that IL-7R signaling profoundly influences VH gene selection during VH-to-DJH recombination. We find skewing toward 3' VH genes during de novo VH-to-DJH recombination more severe than the fetal liver (FL) repertoire and uncover a role for IL-7R signaling in DH-to-JH recombination. Transcriptome and accessibility analyses suggest reduced expression of B lineage transcription factors (TFs) and targets and loss of DH and VH antisense transcription in IL-7Rα-/- B cells. Thus, in addition to its roles in survival and proliferation, IL-7R signaling shapes the Igh repertoire by activating underpinning mechanisms.
Collapse
Affiliation(s)
- Amanda Baizan-Edge
- Nuclear Dynamics Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Bryony A Stubbs
- Nuclear Dynamics Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Michael J T Stubbington
- Nuclear Dynamics Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Daniel J Bolland
- Nuclear Dynamics Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK; Lymphocyte Signaling and Development Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Kristina Tabbada
- Nuclear Dynamics Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK; Lymphocyte Signaling and Development Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Simon Andrews
- Bioinformatics Group, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Anne E Corcoran
- Nuclear Dynamics Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK; Lymphocyte Signaling and Development Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK.
| |
Collapse
|
13
|
Liu Y, Sun P, Zhao Y, Liu B. The role of long non-coding RNAs and downstream signaling pathways in leukemia progression. Hematol Oncol 2020; 39:27-40. [PMID: 32621547 DOI: 10.1002/hon.2776] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/22/2020] [Accepted: 06/25/2020] [Indexed: 01/17/2023]
Abstract
The study of long non-coding RNAs (lncRNA) is a newly established field and our knowledge about them is rapidly growing. These kinds of RNAs are unchanged parts of the genome throughout evolution, that modulate cell growth, differentiation, and apoptosis during diverse physiological and pathological processes including leukemia development. They have the capability to be useful biomarkers for the diagnosis, clinical typing, prognosis, as well as potential therapeutic targets. In this study, we summarized the role of lncRNAs in the expression and function of white blood cells and oncogenic transformation into four main types of leukemia.
Collapse
Affiliation(s)
- Yadong Liu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Penghao Sun
- Department of Andrology, The First Hospital of Jilin University, Changchun, China
| | - Yuhao Zhao
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Bin Liu
- Department of Hand Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
14
|
Oudinet C, Braikia FZ, Dauba A, Khamlichi AA. Recombination may occur in the absence of transcription in the immunoglobulin heavy chain recombination centre. Nucleic Acids Res 2020; 48:3553-3566. [PMID: 32086526 PMCID: PMC7144927 DOI: 10.1093/nar/gkaa108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 02/06/2020] [Accepted: 02/19/2020] [Indexed: 12/18/2022] Open
Abstract
Developing B cells undergo V(D)J recombination to generate a vast repertoire of Ig molecules. V(D)J recombination is initiated by the RAG1/RAG2 complex in recombination centres (RCs), where gene segments become accessible to the complex. Whether transcription is the causal factor of accessibility or whether it is a side product of other processes that generate accessibility remains a controversial issue. At the IgH locus, V(D)J recombination is controlled by Eμ enhancer, which directs the transcriptional, epigenetic and recombinational events in the IgH RC. Deletion of Eμ enhancer affects both transcription and recombination, making it difficult to conclude if Eμ controls the two processes through the same or different mechanisms. By using a mouse line carrying a CpG-rich sequence upstream of Eμ enhancer and analyzing transcription and recombination at the single-cell level, we found that recombination could occur in the RC in the absence of detectable transcription, suggesting that Eμ controls transcription and recombination through distinct mechanisms. Moreover, while the normally Eμ-dependent transcription and demethylating activities were impaired, recruitment of chromatin remodeling complexes was unaffected. RAG1 was efficiently recruited, thus compensating for the defective transcription-associated recruitment of RAG2, and providing a mechanistic basis for RAG1/RAG2 assembly to initiate V(D)J recombination.
Collapse
Affiliation(s)
- Chloé Oudinet
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, Université Paul Sabatier, 31077 Toulouse, France
| | - Fatima-Zohra Braikia
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, Université Paul Sabatier, 31077 Toulouse, France
| | - Audrey Dauba
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, Université Paul Sabatier, 31077 Toulouse, France
| | - Ahmed Amine Khamlichi
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, Université Paul Sabatier, 31077 Toulouse, France
| |
Collapse
|
15
|
Zhou Y, Zhu Y, Xie Y, Ma X. The Role of Long Non-coding RNAs in Immunotherapy Resistance. Front Oncol 2019; 9:1292. [PMID: 31850199 PMCID: PMC6892777 DOI: 10.3389/fonc.2019.01292] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 11/07/2019] [Indexed: 02/05/2023] Open
Abstract
T-cell-based immunotherapies, particularly immune checkpoint inhibitors, are promising treatments for various cancers. However, a large subset of patients develop primary or secondary resistance upon treatment. Although the detailed mechanisms remain unclear, immune escape via alterations in both cancer and tumor microenvironment has been identified as critical causes of immune resistance. Moreover, some long non-coding RNAs (lncRNAs), named as immune-related lncRNAs, have been recognized as regulators of immune cell-specific gene expression that mediate immune processes. These immune-related lncRNAs may play a vital role in immunotherapy resistance. Herein, we summarize current immune-related lncRNAs and their underlying roles in immune resistance to provide strategies for future research and therapeutic alternatives to overcome immunotherapy resistance.
Collapse
Affiliation(s)
- Yuwen Zhou
- State Key Laboratory of Biotherapy, Department of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yajuan Zhu
- State Key Laboratory of Biotherapy, Department of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yao Xie
- Department of Dermatovenerology, West China Hospital, Sichuan University, Chengdu, China
| | - Xuelei Ma
- State Key Laboratory of Biotherapy, Department of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
16
|
Chen J, Ao L, Yang J. Long non-coding RNAs in diseases related to inflammation and immunity. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:494. [PMID: 31700930 DOI: 10.21037/atm.2019.08.37] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Long non-coding RNAs (lncRNAs) have been key regulators of gene expression in innate and adaptive immunity. Although lncRNAs have been reported to be associated with some diseases, its expression and function in diseases related to inflammation and immunity are still unknown. We reviewed how lncRNA regulated transcription and controlled the function and balance of the cells in the immune response. In addition, we discussed the impacts and challenges of lncRNAs on immunity in diseases.
Collapse
Affiliation(s)
- Jiao Chen
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan 430000, China.,Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan 430000, China
| | - Liangfei Ao
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan 430000, China.,Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan 430000, China
| | - Jing Yang
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan 430000, China.,Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan 430000, China
| |
Collapse
|
17
|
Long noncoding RNAs are involved in multiple immunological pathways in response to vaccination. Proc Natl Acad Sci U S A 2019; 116:17121-17126. [PMID: 31399544 PMCID: PMC6708379 DOI: 10.1073/pnas.1822046116] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Understanding the mechanisms of vaccine-elicited protection contributes to the development of new vaccines. The emerging field of systems vaccinology provides detailed information on host responses to vaccination and has been successfully applied to study the molecular mechanisms of several vaccines. Long noncoding RNAs (lncRNAs) are crucially involved in multiple biological processes, but their role in vaccine-induced immunity has not been explored. We performed an analysis of over 2,000 blood transcriptome samples from 17 vaccine cohorts to identify lncRNAs potentially involved with antibody responses to influenza and yellow fever vaccines. We have created an online database where all results from this analysis can be accessed easily. We found that lncRNAs participate in distinct immunological pathways related to vaccine-elicited responses. Among them, we showed that the expression of lncRNA FAM30A was high in B cells and correlates with the expression of immunoglobulin genes located in its genomic vicinity. We also identified altered expression of these lncRNAs in RNA-sequencing (RNA-seq) data from a cohort of children following immunization with intranasal live attenuated influenza vaccine, suggesting a common role across several diverse vaccines. Taken together, these findings provide evidence that lncRNAs have a significant impact on immune responses induced by vaccination.
Collapse
|
18
|
Abstract
Vast repertoires of unique antigen receptors are created in developing lymphocytes. The antigen receptor loci contain many variable (V), diversity (D), and joining (J) gene segments that are arrayed across very large genomic expanses and are joined to form variable-region exons. This process creates the potential for an organism to respond to large numbers of different pathogens. Here, we consider the underlying molecular mechanisms that favor some V genes for recombination prior to selection of the final antigen receptor repertoire. We discuss chromatin structures that form in antigen receptor loci to permit spatial proximity among the V, D, and J gene segments and how these relate to the generation of antigen receptor diversity.
Collapse
Affiliation(s)
- Amy L Kenter
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL, 60612-7344, USA
| | - Ann J Feeney
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| |
Collapse
|
19
|
Line-1: Implications in the etiology of cancer, clinical applications, and pharmacologic targets. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2018; 778:51-60. [DOI: 10.1016/j.mrrev.2018.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 09/15/2018] [Accepted: 09/17/2018] [Indexed: 11/21/2022]
|
20
|
Khamlichi AA, Feil R. Parallels between Mammalian Mechanisms of Monoallelic Gene Expression. Trends Genet 2018; 34:954-971. [PMID: 30217559 DOI: 10.1016/j.tig.2018.08.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/06/2018] [Accepted: 08/16/2018] [Indexed: 02/06/2023]
Abstract
Different types of monoallelic gene expression are present in mammals, some of which are highly flexible, whereas others are more rigid. These include allelic exclusion at antigen receptor loci, the expression of olfactory receptor genes, genomic imprinting, X-chromosome inactivation, and random monoallelic expression (MAE). Although these processes play diverse biological roles, and arose through different selective pressures, the underlying epigenetic mechanisms show striking resemblances. Regulatory transcriptional events are important in all systems, particularly in the specification of MAE. Combined with comparative studies between species, this suggests that the different MAE systems found in mammals may have evolved from analogous ancestral processes.
Collapse
Affiliation(s)
- Ahmed Amine Khamlichi
- Institute of Pharmacology and Structural Biology (IPBS), Centre National de la Recherche Scientifique (CNRS) and Paul Sabatier University (UPS), 205 route de Narbonne, 31077 Toulouse, France.
| | - Robert Feil
- Institute of Molecular Genetics of Montpellier (IGMM), CNRS and the University of Montpellier, 1919 route de Mende, 34293 Montpellier, France.
| |
Collapse
|
21
|
Loguercio S, Barajas-Mora EM, Shih HY, Krangel MS, Feeney AJ. Variable Extent of Lineage-Specificity and Developmental Stage-Specificity of Cohesin and CCCTC-Binding Factor Binding Within the Immunoglobulin and T Cell Receptor Loci. Front Immunol 2018; 9:425. [PMID: 29593713 PMCID: PMC5859386 DOI: 10.3389/fimmu.2018.00425] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 02/16/2018] [Indexed: 12/19/2022] Open
Abstract
CCCTC-binding factor (CTCF) is largely responsible for the 3D architecture of the genome, in concert with the action of cohesin, through the creation of long-range chromatin loops. Cohesin is hypothesized to be the main driver of these long-range chromatin interactions by the process of loop extrusion. Here, we performed ChIP-seq for CTCF and cohesin in two stages each of T and B cell differentiation and examined the binding pattern in all six antigen receptor (AgR) loci in these lymphocyte progenitors and in mature T and B cells, ES cells, and fibroblasts. The four large AgR loci have many bound CTCF sites, most of which are only occupied in lymphocytes, while only the CTCF sites at the end of each locus near the enhancers or J genes tend to be bound in non-lymphoid cells also. However, despite the generalized lymphocyte restriction of CTCF binding in AgR loci, the Igκ locus is the only locus that also shows significant lineage-specificity (T vs. B cells) and developmental stage-specificity (pre-B vs. pro-B) in CTCF binding. We show that cohesin binding shows greater lineage- and stage-specificity than CTCF at most AgR loci, providing more specificity to the loops. We also show that the culture of pro-B cells in IL7, a common practice to expand the number of cells before ChIP-seq, results in a CTCF-binding pattern resembling pre-B cells, as well as other epigenetic and transcriptional characteristics of pre-B cells. Analysis of the orientation of the CTCF sites show that all sites within the large V portions of the Igh and TCRβ loci have the same orientation. This suggests either a lack of requirement for convergent CTCF sites creating loops, or indicates an absence of any loops between CTCF sites within the V region portion of those loci but only loops to the convergent sites at the D-J-enhancer end of each locus. The V region portions of the Igκ and TCRα/δ loci, by contrast, have CTCF sites in both orientations, providing many options for creating CTCF-mediated convergent loops throughout the loci. CTCF/cohesin loops, along with transcription factors, drives contraction of AgR loci to facilitate the creation of a diverse repertoire of antibodies and T cell receptors.
Collapse
Affiliation(s)
- Salvatore Loguercio
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - E. Mauricio Barajas-Mora
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States
| | - Han-Yu Shih
- Department of Immunology, Duke University Medical Center, Durham, NC, United States
| | - Michael S. Krangel
- Department of Immunology, Duke University Medical Center, Durham, NC, United States
| | - Ann J. Feeney
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States
| |
Collapse
|
22
|
Aranburu A, Höök N, Gerasimcik N, Corleis B, Ren W, Camponeschi A, Carlsten H, Grimsholm O, Mårtensson IL. Age-associated B cells expanded in autoimmune mice are memory cells sharing H-CDR3-selected repertoires. Eur J Immunol 2018; 48:509-521. [PMID: 29266242 DOI: 10.1002/eji.201747127] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 11/07/2017] [Accepted: 12/07/2017] [Indexed: 11/10/2022]
Abstract
Age-associated B cells (ABCs) represent a distinct cell population expressing low levels of CD21 (CD21-/low ). The Ig repertoire expressed by ABCs in aged mice is diverse and exhibits signs of somatic hypermutation (SHM). A CD21-/low B-cell population is expanded in autoimmune diseases, e.g. systemic lupus erythematosus, as well as in lupus-prone NZB/W mice and in mice lacking a pre-B cell receptor (SLC-/- ). However, the nature of the CD21-/low B cells (hereafter ABCs) in autoimmunity is not well understood. Here we show that in young SLC-/- mice, the vast majority of the ABCs express memory B-cell (MBC) markers in contrast to wild-type controls. A similar population is present in lupus-prone MRL mice before and at disease onset. In SLC-/- mice, a majority of the ABCs are IgM+ , their VH genes have undergone SHM, show clonal diversification and clonal restriction at the H-CDR3 level. ABC hybridomas, established from SLC-/- mice, secrete typical lupus autoantibodies, e.g. anti-Smith antigen, and some of those that bind to DNA comprise a H-CDR3 that is identical to previously described IgM anti-DNA antibodies from lupus-prone mice. Together, these results reveal that ABCs in autoimmune mice are comprised of autoreactive MBCs expressing highly restricted H-CDR3 repertoires.
Collapse
Affiliation(s)
- Alaitz Aranburu
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
| | - Nina Höök
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
| | - Natalija Gerasimcik
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
| | - Bjorn Corleis
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Weicheng Ren
- Division of Clinical Immunology and Transfusion Medicine, Karolinska Institutet at Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Alessandro Camponeschi
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
| | - Hans Carlsten
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
| | - Ola Grimsholm
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden.,B Cell Physiopathology Unit, Immunology Research Area, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Inga-Lill Mårtensson
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
23
|
Dong Y, Wu C, Zhao X, Zhang P, Zhang H, Zheng M, Li S, Jiao J, Yu X, Lv Z, Ji Y. Epigenetic modifications of the V H region after DJ H recombination in Pro-B cells. Immunology 2017; 152:218-231. [PMID: 28502113 DOI: 10.1111/imm.12758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 04/27/2017] [Accepted: 05/08/2017] [Indexed: 12/19/2022] Open
Abstract
The variable region of murine immunoglobulin heavy chain (Igh) is assembled by sequential DH -JH and VH -DJH recombination. The accessibility of the Igh locus determines the order of rearrangement. Because of the large number of VH genes and the lack of a suitable model, the epigenetic modifications of VH genes after DJH recombination have not previously been characterized. Here, we employed two v-Abl pro-B cell lines, in which the Igh locus is in germline and DJH -recombined configurations, respectively. The DJH junction displays the characteristics of a recombination centre, such as high levels of activation-associated histone modifications and recombination-activating gene protein (RAG) binding in DJH -rearranged pro-B cells, which extend the recombination centre model proposed for the germline Igh locus. The different domains of the VH region have distinct epigenetic characteristics after DJH recombination. Distal VH genes have higher levels of active histone modifications, germline transcription and Pax5 binding, and good quality recombination signal sequences. Proximal VH genes are relatively close to the DJH recombination centre, which partially compensates for the low levels of the above active epigenetic modifications. DJH recombination centre might serve as a cis-acting element to regulate the accessibility of the VH region. Furthermore, we demonstrate that RAG weakly binds to functional VH genes, which is the first detailed assessment of RAG dynamic binding to VH genes. We provide a way for VH -DJH recombination in which the VH gene is brought into close proximity with the DJH recombination centre for RAG binding by a Pax5-dependent chromosomal compaction event, and held in this position for subsequent cleavage and VH -DJH joining.
Collapse
Affiliation(s)
- Yanying Dong
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, Shaanxi, China
| | - Caijun Wu
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, Shaanxi, China
| | - Xiaohui Zhao
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, Shaanxi, China
| | - Ping Zhang
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, Shaanxi, China
| | - Hua Zhang
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, Shaanxi, China
| | - Mingzhe Zheng
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, Shaanxi, China
| | - Shichang Li
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, Shaanxi, China
| | - Junna Jiao
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, Shaanxi, China
| | - Xiaozhuo Yu
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, Shaanxi, China
| | - Zhuangwei Lv
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, Shaanxi, China
| | - Yanhong Ji
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, Shaanxi, China
| |
Collapse
|
24
|
Abstract
The discovery of long noncoding RNAs (lncRNA) has provided a new perspective on gene regulation in diverse biological contexts. lncRNAs are remarkably versatile molecules that interact with RNA, DNA, or proteins to promote or restrain the expression of protein-coding genes. Activation of immune cells is associated with dynamic changes in expression of genes, the products of which combat infectious microorganisms, initiate repair, and resolve inflammatory responses in cells and tissues. Recent evidence indicates that lncRNAs play important roles in directing the development of diverse immune cells and controlling the dynamic transcriptional programs that are a hallmark of immune cell activation. The importance of these molecules is underscored by their newly recognized roles in inflammatory diseases. In this review, we discuss the contribution of lncRNAs in the development and activation of immune cells and their roles in immune-related diseases. We also discuss challenges faced in identifying biological functions for this large and complex class of genes.
Collapse
Affiliation(s)
- Maninjay K Atianand
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605;
| | - Daniel R Caffrey
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605;
| | - Katherine A Fitzgerald
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605;
| |
Collapse
|
25
|
Laffleur B, Basu U, Lim J. RNA Exosome and Non-coding RNA-Coupled Mechanisms in AID-Mediated Genomic Alterations. J Mol Biol 2017; 429:3230-3241. [PMID: 28069372 DOI: 10.1016/j.jmb.2016.12.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/21/2016] [Accepted: 12/27/2016] [Indexed: 12/31/2022]
Abstract
The eukaryotic RNA exosome is a well-conserved protein complex with ribonuclease activity implicated in RNA metabolism. Various families of non-coding RNAs have been identified as substrates of the complex, underscoring its role as a non-coding RNA processing/degradation unit. However, the role of RNA exosome and its RNA processing activity on DNA mutagenesis/alteration events have not been investigated until recently. B lymphocytes use two DNA alteration mechanisms, class switch recombination (CSR) and somatic hypermutation (SHM), to re-engineer their antibody gene expressing loci until a tailored antibody gene for a specific antigen is satisfactorily generated. CSR and SHM require the essential activity of the DNA activation-induced cytidine deaminase (AID). Causing collateral damage to the B-cell genome during CSR and SHM, AID induces unwanted (and sometimes oncogenic) mutations at numerous non-immunoglobulin gene sequences. Recent studies have revealed that AID's DNA mutator activity is regulated by the RNA exosome complex, thus providing an example of a mechanism that relates DNA mutagenesis to RNA processing. Here, we review the emergent functions of RNA exosome during CSR, SHM, and other chromosomal alterations in B cells, and discuss implications relevant to mechanisms that maintain B-cell genomic integrity.
Collapse
Affiliation(s)
- Brice Laffleur
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Uttiya Basu
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY, USA.
| | - Junghyun Lim
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| |
Collapse
|
26
|
Heinäniemi M, Vuorenmaa T, Teppo S, Kaikkonen MU, Bouvy-Liivrand M, Mehtonen J, Niskanen H, Zachariadis V, Laukkanen S, Liuksiala T, Teittinen K, Lohi O. Transcription-coupled genetic instability marks acute lymphoblastic leukemia structural variation hotspots. eLife 2016; 5. [PMID: 27431763 PMCID: PMC4951197 DOI: 10.7554/elife.13087] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 06/09/2016] [Indexed: 12/11/2022] Open
Abstract
Progression of malignancy to overt disease requires multiple genetic hits. Activation-induced deaminase (AID) can drive lymphomagenesis by generating off-target DNA breaks at loci that harbor highly active enhancers and display convergent transcription. The first active transcriptional profiles from acute lymphoblastic leukemia (ALL) patients acquired here reveal striking similarity at structural variation (SV) sites. Specific transcriptional features, namely convergent transcription and Pol2 stalling, were detected at breakpoints. The overlap was most prominent at SV with recognition motifs for the recombination activating genes (RAG). We present signal feature analysis to detect vulnerable regions and quantified from human cells how convergent transcription contributes to R-loop generation and RNA polymerase stalling. Wide stalling regions were characterized by high DNAse hypersensitivity and unusually broad H3K4me3 signal. Based on 1382 pre-B-ALL patients, the ETV6-RUNX1 fusion positive patients had over ten-fold elevation in RAG1 while high expression of AID marked pre-B-ALL lacking common cytogenetic changes.
Collapse
Affiliation(s)
- Merja Heinäniemi
- School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Tapio Vuorenmaa
- School of Medicine, University of Eastern Finland, Kuopio, Finland.,A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Susanna Teppo
- School of Medicine, University of Tampere, Tampere, Finland
| | - Minna U Kaikkonen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | | | - Juha Mehtonen
- School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Henri Niskanen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Vasilios Zachariadis
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | - Olli Lohi
- School of Medicine, University of Tampere, Tampere, Finland.,Tampere University Hospital, Tampere, Finland
| |
Collapse
|
27
|
Li YJ, Kukita A, Kyumoto-Nakamura Y, Kukita T. Extremely High Expression of Antisense RNA for Wilms' Tumor 1 in Active Osteoclasts: Suppression of Wilms' Tumor 1 Protein Expression during Osteoclastogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:2317-25. [PMID: 27393793 DOI: 10.1016/j.ajpath.2016.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 04/21/2016] [Accepted: 05/09/2016] [Indexed: 01/08/2023]
Abstract
Wilms' tumor 1 (WT1), a zinc-finger transcription regulator of the early growth response family, identified as the product of a tumor suppressor gene of Wilms' tumors, bears potential ability to induce macrophage differentiation in blood cell differentiation. Herein, we examined the involvement of WT1 in the regulation of osteoclastogenesis. We detected a high level of WT1 protein expression in osteoclast precursors; however, WT1 expression was markedly suppressed during osteoclastogenesis. We examined expression of WT1 transcripts in bone tissue by RNA in situ hybridization. We found a high level of antisense transcripts in osteoclasts actively resorbing bone in mandible of newborn rats. Expression of antisense WT1 RNA in mandible was also confirmed by Northern blot analysis and strand-specific RT-PCR. Overexpression of antisense WT1 RNA in RAW-D cells, an osteoclast precursor cell line, resulted in a marked enhancement of osteoclastogenesis, suggesting that antisense WT1 RNA functions to suppress expression of WT1 protein in osteoclastogenesis. High level expression of antisense WT1 RNA may contribute to commitment to osteoclastogenesis, and may allow osteoclasts to maintain or stabilize their differentiation state.
Collapse
Affiliation(s)
- Yin-Ji Li
- Division of Molecular Cell Biology and Oral Anatomy, Division of Oral Biological Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Akiko Kukita
- Department of Microbiology, Faculty of Medicine, Saga University, Saga, Japan
| | - Yukari Kyumoto-Nakamura
- Division of Molecular Cell Biology and Oral Anatomy, Division of Oral Biological Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Toshio Kukita
- Division of Molecular Cell Biology and Oral Anatomy, Division of Oral Biological Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
28
|
Bolland DJ, Koohy H, Wood AL, Matheson LS, Krueger F, Stubbington MJT, Baizan-Edge A, Chovanec P, Stubbs BA, Tabbada K, Andrews SR, Spivakov M, Corcoran AE. Two Mutually Exclusive Local Chromatin States Drive Efficient V(D)J Recombination. Cell Rep 2016; 15:2475-87. [PMID: 27264181 PMCID: PMC4914699 DOI: 10.1016/j.celrep.2016.05.020] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 03/01/2016] [Accepted: 05/02/2016] [Indexed: 12/02/2022] Open
Abstract
Variable (V), diversity (D), and joining (J) (V(D)J) recombination is the first determinant of antigen receptor diversity. Understanding how recombination is regulated requires a comprehensive, unbiased readout of V gene usage. We have developed VDJ sequencing (VDJ-seq), a DNA-based next-generation-sequencing technique that quantitatively profiles recombination products. We reveal a 200-fold range of recombination efficiency among recombining V genes in the primary mouse Igh repertoire. We used machine learning to integrate these data with local chromatin profiles to identify combinatorial patterns of epigenetic features that associate with active VH gene recombination. These features localize downstream of VH genes and are excised by recombination, revealing a class of cis-regulatory element that governs recombination, distinct from expression. We detect two mutually exclusive chromatin signatures at these elements, characterized by CTCF/RAD21 and PAX5/IRF4, which segregate with the evolutionary history of associated VH genes. Thus, local chromatin signatures downstream of VH genes provide an essential layer of regulation that determines recombination efficiency. VDJ-seq enables precise quantification of antibody V(D)J recombination products Two distinct cis-regulatory designs characterize actively recombining V genes Putative recombination regulatory elements map downstream of mouse Igh V genes Recombination regulatory architecture reflects the V genes’ evolutionary history
Collapse
Affiliation(s)
- Daniel J Bolland
- Nuclear Dynamics Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Hashem Koohy
- Nuclear Dynamics Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Andrew L Wood
- Nuclear Dynamics Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Louise S Matheson
- Nuclear Dynamics Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Felix Krueger
- Bioinformatics Group, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Michael J T Stubbington
- Nuclear Dynamics Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Amanda Baizan-Edge
- Nuclear Dynamics Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Peter Chovanec
- Nuclear Dynamics Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Bryony A Stubbs
- Nuclear Dynamics Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Kristina Tabbada
- Nuclear Dynamics Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Simon R Andrews
- Bioinformatics Group, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Mikhail Spivakov
- Nuclear Dynamics Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK.
| | - Anne E Corcoran
- Nuclear Dynamics Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK.
| |
Collapse
|
29
|
Jain S, Thakkar N, Chhatai J, Pal Bhadra M, Bhadra U. Long non-coding RNA: Functional agent for disease traits. RNA Biol 2016; 14:522-535. [PMID: 27229269 DOI: 10.1080/15476286.2016.1172756] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
In recent years, long non-coding RNAs (lncRNAs) have attracted the attention of researchers with their involvement in all facets of life. LncRNAs are transcripts of more than 200 nucleotides which lack defined protein coding potential. Although they do not code for proteins, a large number of them are involved in regulating gene expression and translation. The presence of numerous lncRNAs in the human genome has prompted us to investigate the contribution of these molecules to human biology and medicine. In this review, we present the potential role of lncRNAs interlinked to different human diseases and genetic disorders. We also describe their role in cellular differentiation and aging and discuss their potential importance as biomarkers and as therapeutic agents.
Collapse
Affiliation(s)
- Sriyans Jain
- a Functional Genomics and Gene Silencing Group , CSIR- Center for Cellular and Molecular Biology , Hyderabad , India
| | - Nirav Thakkar
- a Functional Genomics and Gene Silencing Group , CSIR- Center for Cellular and Molecular Biology , Hyderabad , India
| | - Jagamohan Chhatai
- a Functional Genomics and Gene Silencing Group , CSIR- Center for Cellular and Molecular Biology , Hyderabad , India
| | - Manika Pal Bhadra
- b Centre for Chemical Biology , Indian Institute for Chemical Technology , Hyderabad , India
| | - Utpal Bhadra
- a Functional Genomics and Gene Silencing Group , CSIR- Center for Cellular and Molecular Biology , Hyderabad , India
| |
Collapse
|
30
|
Rougemaille M, Libri D. Control of cryptic transcription in eukaryotes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 702:122-31. [PMID: 21713682 DOI: 10.1007/978-1-4419-7841-7_10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Over the last few years, the development of large-scale technologies has radically modified our conception of genome-wide transcriptional control by unveiling an unexpected high complexity of the eukaryotic transcriptome. In organisms ranging from yeast to human, a considerable number of novel small RNA species have been discovered in regions that were previously thought to be incompatible with high levels of transcription. Intriguingly, these transcripts, which are rapidly targeted for degradation by the exosome, appear to be devoid of any coding potential and may be the consequence of unwanted transcription events. However, the notion that an important fraction of these RNAs represent by-products of regulatory transcription is progressively emerging. In this chapter, we discuss the recent advances made in our understanding of the shape of the eukaryotic transcriptome. We also focus on the molecular mechanisms that cells exploit to prevent cryptic transcripts from interfering with the expression of protein-coding genes. Finally, we summarize data obtained in different systems suggesting that such RNAs may play a critical role in the regulation of gene expression as well as the evolution of genomes.
Collapse
Affiliation(s)
- Mathieu Rougemaille
- LEA Laboratory of Nuclear RNA Metabolism, Centre de Génétique Moléculaire, CNRS-UPR2167, Gif-sur-Yvette, France,
| | | |
Collapse
|
31
|
Long noncoding RNAs: a potent source of regulation in immunity and disease. Immunol Cell Biol 2016; 93:277-83. [PMID: 25776990 DOI: 10.1038/icb.2015.2] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 12/06/2014] [Indexed: 12/14/2022]
Abstract
The discovery of functional long noncoding RNAs (lncRNAs) coupled with the ever-increasing accessibility of genomic and transcriptomic technology has led to an explosion of functional and mechanistic investigation and discovery into what was once dismissed as junk DNA. Over the past decade, a significant number of lncRNAs have been found to be involved in a diverse array of processes: from epigenetic modulation, both repressive and activating; to protein scaffolding; to miRNA sequestration; to competitive inhibition; and more. The broad character of these mechanisms means that lncRNAs have the potential for regulation across all biological processes-not least of which are immunity and disease. A number of lncRNAs operating within these two contexts have already been identified and characterized, but untold more remain yet to be discovered. This review aims to provide an overview of the current state of research on lncRNAs involved in immune modulation and disease, with an emphasis on their mechanism and discovery.
Collapse
|
32
|
Liu R, Luo F, Liu X, Wang L, Yang J, Deng Y, Huang E, Qian J, Lu Z, Jiang X, Zhang D, Chu Y. Biological Response Modifier in Cancer Immunotherapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 909:69-138. [PMID: 27240457 DOI: 10.1007/978-94-017-7555-7_2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Biological response modifiers (BRMs) emerge as a lay of new compounds or approaches used in improving cancer immunotherapy. Evidences highlight that cytokines, Toll-like receptor (TLR) signaling, and noncoding RNAs are of crucial roles in modulating antitumor immune response and cancer-related chronic inflammation, and BRMs based on them have been explored. In particular, besides some cytokines like IFN-α and IL-2, several Toll-like receptor (TLR) agonists like BCG, MPL, and imiquimod are also licensed to be used in patients with several malignancies nowadays, and the first artificial small noncoding RNA (microRNA) mimic, MXR34, has entered phase I clinical study against liver cancer, implying their potential application in cancer therapy. According to amounts of original data, this chapter will review the regulatory roles of TLR signaling, some noncoding RNAs, and several key cytokines in cancer and cancer-related immune response, as well as the clinical cases in cancer therapy based on them.
Collapse
Affiliation(s)
- Ronghua Liu
- Department of Immunology, Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, No.138, Yi Xue Yuan Rd., mail box 226, Shanghai, 200032, People's Republic of China.,Biotherapy Research Center, Fudan University, Shanghai, 200032, China
| | - Feifei Luo
- Biotherapy Research Center, Fudan University, Shanghai, 200032, China.,Department of Digestive Diseases of Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaoming Liu
- Department of Immunology, Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, No.138, Yi Xue Yuan Rd., mail box 226, Shanghai, 200032, People's Republic of China.,Department of Dermatology, Shenzhen Hospital, Peking University, Shenzhen, Guangdong, 518036, China
| | - Luman Wang
- Department of Immunology, Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, No.138, Yi Xue Yuan Rd., mail box 226, Shanghai, 200032, People's Republic of China.,Biotherapy Research Center, Fudan University, Shanghai, 200032, China
| | - Jiao Yang
- Department of Immunology, Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, No.138, Yi Xue Yuan Rd., mail box 226, Shanghai, 200032, People's Republic of China.,Biotherapy Research Center, Fudan University, Shanghai, 200032, China
| | - Yuting Deng
- Department of Immunology, Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, No.138, Yi Xue Yuan Rd., mail box 226, Shanghai, 200032, People's Republic of China.,Biotherapy Research Center, Fudan University, Shanghai, 200032, China
| | - Enyu Huang
- Department of Immunology, Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, No.138, Yi Xue Yuan Rd., mail box 226, Shanghai, 200032, People's Republic of China.,Biotherapy Research Center, Fudan University, Shanghai, 200032, China
| | - Jiawen Qian
- Department of Immunology, Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, No.138, Yi Xue Yuan Rd., mail box 226, Shanghai, 200032, People's Republic of China.,Biotherapy Research Center, Fudan University, Shanghai, 200032, China
| | - Zhou Lu
- Department of Immunology, Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, No.138, Yi Xue Yuan Rd., mail box 226, Shanghai, 200032, People's Republic of China.,Biotherapy Research Center, Fudan University, Shanghai, 200032, China
| | - Xuechao Jiang
- Department of Immunology, Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, No.138, Yi Xue Yuan Rd., mail box 226, Shanghai, 200032, People's Republic of China.,Biotherapy Research Center, Fudan University, Shanghai, 200032, China
| | - Dan Zhang
- Department of Immunology, Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, No.138, Yi Xue Yuan Rd., mail box 226, Shanghai, 200032, People's Republic of China.,Biotherapy Research Center, Fudan University, Shanghai, 200032, China
| | - Yiwei Chu
- Department of Immunology, Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, No.138, Yi Xue Yuan Rd., mail box 226, Shanghai, 200032, People's Republic of China. .,Biotherapy Research Center, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
33
|
De Kumar B, Krumlauf R. HOXs and lincRNAs: Two sides of the same coin. SCIENCE ADVANCES 2016; 2:e1501402. [PMID: 27034976 PMCID: PMC4805430 DOI: 10.1126/sciadv.1501402] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 11/28/2015] [Indexed: 05/13/2023]
Abstract
The clustered Hox genes play fundamental roles in regulation of axial patterning and elaboration of the basic body plan in animal development. There are common features in the organization and regulatory landscape of Hox clusters associated with their highly conserved functional roles. The presence of transcribed noncoding sequences embedded within the vertebrate Hox clusters is providing insight into a new layer of regulatory information associated with Hox genes.
Collapse
Affiliation(s)
- Bony De Kumar
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Robb Krumlauf
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
- Department of Anatomy and Cell Biology, Kansas University Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
34
|
Valadkhan S, Gunawardane LS. lncRNA-mediated regulation of the interferon response. Virus Res 2015; 212:127-36. [PMID: 26474526 PMCID: PMC4744491 DOI: 10.1016/j.virusres.2015.09.023] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 09/24/2015] [Accepted: 09/29/2015] [Indexed: 12/18/2022]
Abstract
A large number of lncRNAs are differentially expressed in response to IFN stimulation. Two IFN-induced lncRNAs act as negative regulators of the IFN response. Another IFN-induced lncRNA positively regulates the expression of its neighboring gene, BST2/Tetherin. Several virally-encoded lncRNAs increase viral pathogenicity by suppressing the IFN response.
The interferon (IFN) response is a critical arm of the innate immune response and a major host defense mechanism against viral infections. Following microbial encounter, a series of signaling events lead to transcriptional activation of the IFN genes, which in turn leads to significant changes in the cellular transcriptome by altering the expression of hundreds of target genes. Emerging evidence suggests that long non-coding RNAs (lncRNAs) constitute a major subgroup of the IFN target genes, and further, that the IFN response is subject to regulation by a large number of host- and pathogen-derived lncRNAs. While the vast majority of lncRNAs with potential roles in the IFN response remain unstudied, analysis of a very small subset provides a glimpse of the regulatory impact of this class of RNAs on IFN response.
Collapse
Affiliation(s)
- Saba Valadkhan
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106 USA.
| | - Lalith S Gunawardane
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106 USA.
| |
Collapse
|
35
|
Petri A, Dybkær K, Bøgsted M, Thrue CA, Hagedorn PH, Schmitz A, Bødker JS, Johnsen HE, Kauppinen S. Long Noncoding RNA Expression during Human B-Cell Development. PLoS One 2015; 10:e0138236. [PMID: 26394393 PMCID: PMC4578992 DOI: 10.1371/journal.pone.0138236] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 08/26/2015] [Indexed: 02/06/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) have emerged as important regulators of diverse cellular processes, but their roles in the developing immune system are poorly understood. In this study, we analysed lncRNA expression during human B-cell development by array-based expression profiling of eleven distinct flow-sorted B-cell subsets, comprising pre-B1, pre-B2, immature, naive, memory, and plasma cells from bone marrow biopsies (n = 7), and naive, centroblast, centrocyte, memory, and plasmablast cells from tonsil tissue samples (n = 6), respectively. A remapping strategy was used to assign the array probes to 37630 gene-level probe sets, reflecting recent updates in genomic and transcriptomic databases, which enabled expression profiling of 19579 long noncoding RNAs, comprising 3947 antisense RNAs, 5277 lincRNAs, 7625 pseudogenes, and 2730 additional lncRNAs. As a first step towards inferring the functions of the identified lncRNAs in developing B-cells, we analysed their co-expression with well-characterized protein-coding genes, a method known as “guilt by association”. By using weighted gene co-expression network analysis, we identified 272 lincRNAs, 471 antisense RNAs, 376 pseudogene RNAs, and 64 lncRNAs within seven sub-networks associated with distinct stages of B-cell development, such as early B-cell development, B-cell proliferation, affinity maturation of antibody, and terminal differentiation. These data provide an important resource for future studies on the functions of lncRNAs in development of the adaptive immune response, and the pathogenesis of B-cell malignancies that originate from distinct B-cell subpopulations.
Collapse
Affiliation(s)
- Andreas Petri
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
- Department of Haematology, Aalborg University Hospital, Aalborg, Denmark
| | - Karen Dybkær
- Department of Haematology, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
| | - Martin Bøgsted
- Department of Haematology, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
| | - Charlotte Albæk Thrue
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
- Department of Haematology, Aalborg University Hospital, Aalborg, Denmark
| | - Peter H. Hagedorn
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
- Department of Haematology, Aalborg University Hospital, Aalborg, Denmark
| | - Alexander Schmitz
- Department of Haematology, Aalborg University Hospital, Aalborg, Denmark
| | - Julie Støve Bødker
- Department of Haematology, Aalborg University Hospital, Aalborg, Denmark
| | - Hans Erik Johnsen
- Department of Haematology, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
| | - Sakari Kauppinen
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
- Department of Haematology, Aalborg University Hospital, Aalborg, Denmark
- * E-mail:
| |
Collapse
|
36
|
Outters P, Jaeger S, Zaarour N, Ferrier P. Long-Range Control of V(D)J Recombination & Allelic Exclusion: Modeling Views. Adv Immunol 2015; 128:363-413. [PMID: 26477371 DOI: 10.1016/bs.ai.2015.08.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Allelic exclusion of immunoglobulin (Ig) and T-cell receptor (TCR) genes ensures the development of B and T lymphocytes operating under the mode of clonal selection. This phenomenon associates asynchronous V(D)J recombination events at Ig or TCR alleles and inhibitory feedback control. Despite years of intense research, however, the mechanisms that sustain asymmetric choice in random Ig/TCR dual allele usage and the production of Ig/TCR monoallelic expressing B and T lymphocytes remain unclear and open for debate. In this chapter, we first recapitulate the biological evidence that almost from the start appeared to link V(D)J recombination and allelic exclusion. We review the theoretical models previously proposed to explain this connection. Finally, we introduce our own mathematical modeling views based on how the developmental dynamics of individual lymphoid cells combine to sustain allelic exclusion.
Collapse
Affiliation(s)
- Pernelle Outters
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288 Marseille, France
| | - Sébastien Jaeger
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288 Marseille, France
| | - Nancy Zaarour
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288 Marseille, France
| | - Pierre Ferrier
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288 Marseille, France.
| |
Collapse
|
37
|
Proudhon C, Hao B, Raviram R, Chaumeil J, Skok JA. Long-Range Regulation of V(D)J Recombination. Adv Immunol 2015; 128:123-82. [PMID: 26477367 DOI: 10.1016/bs.ai.2015.07.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Given their essential role in adaptive immunity, antigen receptor loci have been the focus of analysis for many years and are among a handful of the most well-studied genes in the genome. Their investigation led initially to a detailed knowledge of linear structure and characterization of regulatory elements that confer control of their rearrangement and expression. However, advances in DNA FISH and imaging combined with new molecular approaches that interrogate chromosome conformation have led to a growing appreciation that linear structure is only one aspect of gene regulation and in more recent years, the focus has switched to analyzing the impact of locus conformation and nuclear organization on control of recombination. Despite decades of work and intense effort from numerous labs, we are still left with an incomplete picture of how the assembly of antigen receptor loci is regulated. This chapter summarizes our advances to date and points to areas that need further investigation.
Collapse
Affiliation(s)
- Charlotte Proudhon
- Department of Pathology, New York University School of Medicine, New York, USA
| | - Bingtao Hao
- Department of Pathology, New York University School of Medicine, New York, USA
| | - Ramya Raviram
- Department of Pathology, New York University School of Medicine, New York, USA
| | - Julie Chaumeil
- Institut Curie, CNRS UMR3215, INSERM U934, Paris, France
| | - Jane A Skok
- Department of Pathology, New York University School of Medicine, New York, USA.
| |
Collapse
|
38
|
Ebert A, Hill L, Busslinger M. Spatial Regulation of V-(D)J Recombination at Antigen Receptor Loci. Adv Immunol 2015; 128:93-121. [PMID: 26477366 DOI: 10.1016/bs.ai.2015.07.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Lymphocytes express a diverse repertoire of antigen receptors, which are able to recognize a large variety of foreign pathogens. Functional antigen receptor genes are assembled by V(D)J recombination in immature B cells (Igh and Igk) and T cells (Tcr b and Tcra/d). V(D)J recombination takes place in the 3' proximal domain containing the D, J, and C gene segments, whereas 31 (Tcrb) to 200 (Igh) V genes are spread over a large region of 0.67 (Tcrb) to 3 (Igk) megabase pairs. The spatial regulation of V(D)J recombination has been best studied for the Igh locus, which undergoes reversible contraction by long-range looping in pro-B cells. This large-scale contraction brings distantly located VH genes into close proximity of the DJH-rearranged gene segment, which facilitates VH-DJH recombination. The B-cell-specific Pax5, ubiquitous YY1, and architectural CTCF/cohesin proteins regulate Igh locus contraction in pro-B cells by binding to multiple sites in the VH gene cluster. These regulators also control the pro-B-cell-specific activity of the distally located PAIR elements, which may be involved in the regulation of VH-DJH recombination by promoting locus contraction. Moreover, the large VH gene cluster of the Igh locus undergoes flexible long-range looping, which guarantees similar participation of all VH genes in VH-DJH recombination to generate a diverse antibody repertoire. Importantly, long-range looping is a more general regulatory principle, as other antigen receptor loci also undergo reversible contraction at the developmental stage, where they engage in V-(D)J recombination.
Collapse
Affiliation(s)
- Anja Ebert
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Louisa Hill
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Meinrad Busslinger
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria.
| |
Collapse
|
39
|
Inoue T, Morita M, Hijikata A, Fukuda-Yuzawa Y, Adachi S, Isono K, Ikawa T, Kawamoto H, Koseki H, Natsume T, Fukao T, Ohara O, Yamamoto T, Kurosaki T. CNOT3 contributes to early B cell development by controlling Igh rearrangement and p53 mRNA stability. ACTA ACUST UNITED AC 2015; 212:1465-79. [PMID: 26238124 PMCID: PMC4548056 DOI: 10.1084/jem.20150384] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 07/16/2015] [Indexed: 11/07/2022]
Abstract
Inoue et al. report that CNOT3, a subunit of the CCR4–NOT deadenylase complex regulating mRNA decay and translational repression, controls Igh gene rearrangement and destabilizes the mRNA of the tumor suppressor p53. Loss of CNOT3 results in a block of pro- to pre–B cell transition. The CCR4–NOT deadenylase complex plays crucial roles in mRNA decay and translational repression induced by poly(A) tail shortening. Although the in vitro activities of each component of this complex have been well characterized, its in vivo role in immune cells remains unclear. Here we show that mice lacking the CNOT3 subunit of this complex, specifically in B cells, have a developmental block at the pro- to pre–B cell transition. CNOT3 regulated generation of germline transcripts in the VH region of the immunoglobulin heavy chain (Igh) locus, compaction of the locus, and subsequent Igh gene rearrangement and destabilized tumor suppressor p53 mRNA. The developmental defect in the absence of CNOT3 could be partially rescued by ablation of p53 or introduction of a pre-rearranged Igh transgene. Thus, our data suggest that the CCR4–NOT complex regulates B cell differentiation by controlling Igh rearrangement and destabilizing p53 mRNA.
Collapse
Affiliation(s)
- Takeshi Inoue
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masahiro Morita
- Department of Biochemistry and Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec H3A 1A3, Canada Department of Biochemistry and Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec H3A 1A3, Canada
| | - Atsushi Hijikata
- Laboratory for Integrative Genomics, Laboratory for Developmental Genetics, Laboratory for Immune Regeneration, and Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa 230-0045, Japan
| | - Yoko Fukuda-Yuzawa
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Shungo Adachi
- Molecular Profiling Research Center for Drug Discovery (molprof), National Institute of Advanced Industrial Science and Technology (AIST), Koto-ku, Tokyo 135-0064, Japan
| | - Kyoichi Isono
- Laboratory for Integrative Genomics, Laboratory for Developmental Genetics, Laboratory for Immune Regeneration, and Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa 230-0045, Japan
| | - Tomokatsu Ikawa
- Laboratory for Integrative Genomics, Laboratory for Developmental Genetics, Laboratory for Immune Regeneration, and Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa 230-0045, Japan Laboratory for Lymphocyte Development, RIKEN Research Center for Allergy and Immunology, Yokohama, Kanagawa 230-0045, Japan
| | - Hiroshi Kawamoto
- Laboratory for Lymphocyte Development, RIKEN Research Center for Allergy and Immunology, Yokohama, Kanagawa 230-0045, Japan Department of Immunology, Institute for Frontier Medical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Haruhiko Koseki
- Laboratory for Integrative Genomics, Laboratory for Developmental Genetics, Laboratory for Immune Regeneration, and Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa 230-0045, Japan
| | - Tohru Natsume
- Molecular Profiling Research Center for Drug Discovery (molprof), National Institute of Advanced Industrial Science and Technology (AIST), Koto-ku, Tokyo 135-0064, Japan
| | - Taro Fukao
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Osamu Ohara
- Laboratory for Integrative Genomics, Laboratory for Developmental Genetics, Laboratory for Immune Regeneration, and Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa 230-0045, Japan
| | - Tadashi Yamamoto
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Tomohiro Kurosaki
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan Laboratory for Integrative Genomics, Laboratory for Developmental Genetics, Laboratory for Immune Regeneration, and Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
40
|
Developmental Switch in the Transcriptional Activity of a Long-Range Regulatory Element. Mol Cell Biol 2015. [PMID: 26195822 DOI: 10.1128/mcb.00509-15] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Eukaryotic gene expression is often controlled by distant regulatory elements. In developing B lymphocytes, transcription is associated with V(D)J recombination at immunoglobulin loci. This process is regulated by remote cis-acting elements. At the immunoglobulin heavy chain (IgH) locus, the 3' regulatory region (3'RR) promotes transcription in mature B cells. This led to the notion that the 3'RR orchestrates the IgH locus activity at late stages of B cell maturation only. However, long-range interactions involving the 3'RR were detected in early B cells, but the functional consequences of these interactions were unknown. Here we show that not only does the 3'RR affect transcription at distant sites within the IgH variable region but also it conveys a transcriptional silencing activity on both sense and antisense transcription. The 3'RR-mediated silencing activity is switched off upon completion of VH-DJH recombination. Our findings reveal a developmentally controlled, stage-dependent shift in the transcriptional activity of a master regulatory element.
Collapse
|
41
|
The Emerging Functions of Long Noncoding RNA in Immune Cells: Autoimmune Diseases. J Immunol Res 2015; 2015:848790. [PMID: 26090502 PMCID: PMC4451983 DOI: 10.1155/2015/848790] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 02/19/2015] [Indexed: 12/20/2022] Open
Abstract
The long noncoding RNAs (lncRNAs) are RNA transcripts more than 200 nucleotides in length, which do not encode proteins. The lncRNAs are emerging as an important regulator of biological process, such as chromatin remodeling, gene transcription, protein transport, and trafficking through diverse mechanisms. The lncRNAs play crucial role in various multigenetics human diseases including cancers and neurological diseases and currently its role in autoimmune diseases is attracting many researchers. Recent studies have reported that differentiation and activation of immune cells, T cells, B cells, macrophages, and NK cells have correlation with lncRNAs, which have also an essential role in autoimmune diseases such as rheumatoid arthritis and SLE. Therefore, elucidation of the roles of lncRNAs in autoimmunity could be beneficial to understand the pathogenesis of autoimmune diseases. In this review article we attempt to highlight the recent progress regarding lncRNAs studies and summarize its role in autoimmune diseases.
Collapse
|
42
|
Complete cis Exclusion upon Duplication of the Eμ Enhancer at the Immunoglobulin Heavy Chain Locus. Mol Cell Biol 2015; 35:2231-41. [PMID: 25896912 DOI: 10.1128/mcb.00294-15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Developing lymphocytes somatically diversify their antigen-receptor loci through V(D)J recombination. The process is associated with allelic exclusion, which results in monoallelic expression of an antigen receptor locus. Various cis-regulatory elements control V(D)J recombination in a developmentally regulated manner, but their role in allelic exclusion is still unclear. At the immunoglobulin heavy chain locus (IgH), the Eμ enhancer plays a critical role in V(D)J recombination. We generated a mouse line with a replacement mutation in the constant region of the locus that duplicates the Eμ enhancer and allows premature expression of the γ3 heavy chain. Strikingly, IgM expression was completely and specifically excluded in cis from the mutant allele. This cis exclusion recapitulated the main features of allelic exclusion, including differential exclusion of variable genes. Notably, sense and antisense transcription within the distal variable domain and distal V(H)-DJ(H) recombination were inhibited. cis exclusion was established and stably maintained despite an active endogenous Eμ enhancer. The data reveal the importance of the dynamic, developmental stage-dependent interplay between IgH locus enhancers and signaling in the induction and maintenance of allelic exclusion.
Collapse
|
43
|
Panzeri I, Rossetti G, Abrignani S, Pagani M. Long Intergenic Non-Coding RNAs: Novel Drivers of Human Lymphocyte Differentiation. Front Immunol 2015; 6:175. [PMID: 25926836 PMCID: PMC4397839 DOI: 10.3389/fimmu.2015.00175] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 03/28/2015] [Indexed: 12/29/2022] Open
Abstract
Upon recognition of a foreign antigen, CD4(+) naïve T lymphocytes proliferate and differentiate into subsets with distinct functions. This process is fundamental for the effective immune system function, as CD4(+) T cells orchestrate both the innate and adaptive immune response. Traditionally, this differentiation event has been regarded as the acquisition of an irreversible cell fate so that memory and effector CD4(+) T subsets were considered terminally differentiated cells or lineages. Consequently, these lineages are conventionally defined thanks to their prototypical set of cytokines and transcription factors. However, recent findings suggest that CD4(+) T lymphocytes possess a remarkable phenotypic plasticity, as they can often re-direct their functional program depending on the milieu they encounter. Therefore, new questions are now compelling such as which are the molecular determinants underlying plasticity and stability and how the balance between these two opposite forces drives the cell fate. As already mentioned, in some cases, the mere expression of cytokines and master regulators could not fully explain lymphocytes plasticity. We should consider other layers of regulation, including epigenetic factors such as the modulation of chromatin state or the transcription of non-coding RNAs, whose high cell-specificity give a hint on their involvement in cell fate determination. In this review, we will focus on the recent advances in understanding CD4(+) T lymphocytes subsets specification from an epigenetic point of view. In particular, we will emphasize the emerging importance of non-coding RNAs as key players in these differentiation events. We will also present here new data from our laboratory highlighting the contribution of long non-coding RNAs in driving human CD4(+) T lymphocytes differentiation.
Collapse
Affiliation(s)
- Ilaria Panzeri
- Integrative Biology Unit, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", IRCCS Ospedale Maggiore Policlinico , Milano , Italy
| | - Grazisa Rossetti
- Integrative Biology Unit, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", IRCCS Ospedale Maggiore Policlinico , Milano , Italy
| | - Sergio Abrignani
- Integrative Biology Unit, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", IRCCS Ospedale Maggiore Policlinico , Milano , Italy
| | - Massimiliano Pagani
- Integrative Biology Unit, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", IRCCS Ospedale Maggiore Policlinico , Milano , Italy ; Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano , Milano , Italy
| |
Collapse
|
44
|
Tusi BK, Deng C, Salz T, Zeumer L, Li Y, So CWE, Morel LM, Qiu Y, Huang S. Setd1a regulates progenitor B-cell-to-precursor B-cell development through histone H3 lysine 4 trimethylation and Ig heavy-chain rearrangement. FASEB J 2015; 29:1505-15. [PMID: 25550471 PMCID: PMC4396605 DOI: 10.1096/fj.14-263061] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 12/08/2014] [Indexed: 12/21/2022]
Abstract
SETD1A is a member of trithorax-related histone methyltransferases that methylate lysine 4 at histone H3 (H3K4). We showed previously that Setd1a is required for mesoderm specification and hematopoietic lineage differentiation in vitro. However, it remains unknown whether or not Setd1a controls specific hematopoietic lineage commitment and differentiation during animal development. Here, we reported that homozygous Setd1a knockout (KO) mice are embryonic lethal. Loss of the Setd1a gene in the hematopoietic compartment resulted in a blockage of the progenitor B-cell-to-precursor B-cell development in bone marrow (BM) and B-cell maturation in spleen. The Setd1a-cKO (conditional knockout) mice exhibited an enlarged spleen with disrupted spleen architecture and leukocytopenia. Mechanistically, Setd1a deficiency in BM reduced the levels of H3K4me3 at critical B-cell gene loci, including Pax5 and Rag1/2, which are critical for the IgH (Ig heavy-chain) locus contractions and rearrangement. Subsequently, the differential long-range looped interactions of the enhancer Eμ with proximal 5' DH region and 3' regulatory regions as well as with Pax5-activated intergenic repeat elements and 5' distal VH genes were compromised by the Setd1a-cKO. Together, our findings revealed a critical role of Setd1a and its mediated epigenetic modifications in regulating the IgH rearrangement and B-cell development.
Collapse
Affiliation(s)
- Betsabeh Khoramian Tusi
- Departments of *Biochemistry & Molecular Biology, Pathology, Immunology & Laboratory Medicine, and Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, Florida, USA; Institute of Hematology, Jinan University Medical College, ShiPai, Guangzhou, China; and Department of Haematological Medicine, King's College London, London, United Kingdom
| | - Changwang Deng
- Departments of *Biochemistry & Molecular Biology, Pathology, Immunology & Laboratory Medicine, and Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, Florida, USA; Institute of Hematology, Jinan University Medical College, ShiPai, Guangzhou, China; and Department of Haematological Medicine, King's College London, London, United Kingdom
| | - Tal Salz
- Departments of *Biochemistry & Molecular Biology, Pathology, Immunology & Laboratory Medicine, and Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, Florida, USA; Institute of Hematology, Jinan University Medical College, ShiPai, Guangzhou, China; and Department of Haematological Medicine, King's College London, London, United Kingdom
| | - Leilani Zeumer
- Departments of *Biochemistry & Molecular Biology, Pathology, Immunology & Laboratory Medicine, and Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, Florida, USA; Institute of Hematology, Jinan University Medical College, ShiPai, Guangzhou, China; and Department of Haematological Medicine, King's College London, London, United Kingdom
| | - Yangqiu Li
- Departments of *Biochemistry & Molecular Biology, Pathology, Immunology & Laboratory Medicine, and Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, Florida, USA; Institute of Hematology, Jinan University Medical College, ShiPai, Guangzhou, China; and Department of Haematological Medicine, King's College London, London, United Kingdom
| | - Chi Wai Eric So
- Departments of *Biochemistry & Molecular Biology, Pathology, Immunology & Laboratory Medicine, and Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, Florida, USA; Institute of Hematology, Jinan University Medical College, ShiPai, Guangzhou, China; and Department of Haematological Medicine, King's College London, London, United Kingdom
| | - Laurence M Morel
- Departments of *Biochemistry & Molecular Biology, Pathology, Immunology & Laboratory Medicine, and Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, Florida, USA; Institute of Hematology, Jinan University Medical College, ShiPai, Guangzhou, China; and Department of Haematological Medicine, King's College London, London, United Kingdom
| | - Yi Qiu
- Departments of *Biochemistry & Molecular Biology, Pathology, Immunology & Laboratory Medicine, and Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, Florida, USA; Institute of Hematology, Jinan University Medical College, ShiPai, Guangzhou, China; and Department of Haematological Medicine, King's College London, London, United Kingdom
| | - Suming Huang
- Departments of *Biochemistry & Molecular Biology, Pathology, Immunology & Laboratory Medicine, and Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, Florida, USA; Institute of Hematology, Jinan University Medical College, ShiPai, Guangzhou, China; and Department of Haematological Medicine, King's College London, London, United Kingdom
| |
Collapse
|
45
|
|
46
|
|
47
|
Atianand MK, Fitzgerald KA. Long non-coding RNAs and control of gene expression in the immune system. Trends Mol Med 2014; 20:623-31. [PMID: 25262537 PMCID: PMC4252818 DOI: 10.1016/j.molmed.2014.09.002] [Citation(s) in RCA: 178] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 08/28/2014] [Accepted: 09/03/2014] [Indexed: 01/03/2023]
Abstract
The expression of lncRNAs in the immune system is cell type- and context-dependent. Several lncRNAs identified to date regulate immune gene expression. LncRNAs play crucial role in host–pathogen interactions. The majority of disease-associated SNPs lie in regulatory regions of the genome.
All cells of the immune system rely on a highly integrated and dynamic gene expression program that is controlled by both transcriptional and post-transcriptional mechanisms. Recently, non-coding RNAs, including long non-coding RNAs (lncRNAs), have emerged as important regulators of gene expression in diverse biological contexts. lncRNAs control gene expression in the nucleus by modulating transcription or via post-transcriptional mechanisms targeting the splicing, stability, or translation of mRNAs. Our knowledge of lncRNA biogenesis, their cell type-specific expression, and their versatile molecular functions is rapidly progressing in all areas of biology. We discuss here these exciting new regulators and highlight an emerging paradigm of lncRNA-mediated control of gene expression in the immune system.
Collapse
Affiliation(s)
- Maninjay K Atianand
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Katherine A Fitzgerald
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
48
|
Heward JA, Lindsay MA. Long non-coding RNAs in the regulation of the immune response. Trends Immunol 2014; 35:408-19. [PMID: 25113636 PMCID: PMC7106471 DOI: 10.1016/j.it.2014.07.005] [Citation(s) in RCA: 338] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 07/13/2014] [Accepted: 07/16/2014] [Indexed: 11/23/2022]
Abstract
Widespread changes in lncRNA expresssion are associated with the immune response. lncRNAs regulate the inflammatory response following activation of innate immunity. lncRNAs regulate T cell differentiation and migration. The action of long non-coding RNAs is mediated via diverse mechanisms.
It is increasingly clear that long non-coding RNAs (lncRNAs) regulate a variety biological responses, and that they do so by a diverse range of mechanisms. In the field of immunology, recent publications have shown widespread changes in the expression of lncRNAs during the activation of the innate immune response and T cell development, differentiation, and activation. These lncRNAs control important aspects of immunity such as production of inflammatory mediators, differentiation, and cell migration through regulating protein–protein interactions or via their ability to basepair with RNA and DNA. We review the current understanding of the mechanism of action of these immune-related lncRNAs, discuss their impact on physiological and pathological processes, and highlight important areas of inquiry at the intersection between immunology and lncRNA biology.
Collapse
Affiliation(s)
- James A Heward
- Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Mark A Lindsay
- Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK.
| |
Collapse
|
49
|
|
50
|
Marquet M, Garot A, Bender S, Carrion C, Rouaud P, Lecardeur S, Denizot Y, Cogné M, Pinaud E. The Eμ enhancer region influences H chain expression and B cell fate without impacting IgVH repertoire and immune response in vivo. THE JOURNAL OF IMMUNOLOGY 2014; 193:1171-83. [PMID: 24965776 DOI: 10.4049/jimmunol.1302868] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The IgH intronic enhancer region Eμ is a combination of both a 220-bp core enhancer element and two 310-350-bp flanking scaffold/matrix attachment regions named MARsEμ. In the mouse, deletion of the core-enhancer Eμ element mainly affects VDJ recombination with minor effects on class switch recombination. We carried out endogenous deletion of the full-length Eμ region (core plus MARsEμ) in the mouse genome to study VH gene repertoire and IgH expression in developing B-lineage cells. Despite a severe defect in VDJ recombination with partial blockade at the pro-B cell stage, Eμ deletion (core or full length) did not affect VH gene usage. Deletion of this regulatory region induced both a decrease of pre-B cell and newly formed B cell compartments and a strong orientation toward the marginal zone B cell subset. Because Igμ H chain expression was decreased in Eμ-deficient pre-B cells, we propose that modification of B cell homeostasis in deficient animals was caused by "weak" pre-B cell and BCR expression. Besides imbalances in B cell compartments, Ag-specific Ab responses were not impaired in animals carrying the Eμ deletion. In addition to its role in VDJ recombination, our study points out that the full-length Eμ region does not influence VH segment usage but ensures efficient Igμ-chain expression required for strong signaling through pre-B cells and newly formed BCRs and thus participates in B cell inflow and fate.
Collapse
Affiliation(s)
- Marie Marquet
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7276, Université de Limoges, 87025 Limoges, France
| | - Armand Garot
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7276, Université de Limoges, 87025 Limoges, France
| | - Sébastien Bender
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7276, Université de Limoges, 87025 Limoges, France; Centre Hospitalier Universitaire Dupuytren, Centre de Référence des Amyloses, 87042 Limoges, France; and
| | - Claire Carrion
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7276, Université de Limoges, 87025 Limoges, France
| | - Pauline Rouaud
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7276, Université de Limoges, 87025 Limoges, France
| | - Sandrine Lecardeur
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7276, Université de Limoges, 87025 Limoges, France
| | - Yves Denizot
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7276, Université de Limoges, 87025 Limoges, France
| | - Michel Cogné
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7276, Université de Limoges, 87025 Limoges, France; Institut Universitaire de France, 75005 Paris, France
| | - Eric Pinaud
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7276, Université de Limoges, 87025 Limoges, France;
| |
Collapse
|