1
|
Jiang M, Yu Z, Lan X. VitTCR: A deep learning method for peptide recognition prediction. iScience 2024; 27:109770. [PMID: 38711451 PMCID: PMC11070698 DOI: 10.1016/j.isci.2024.109770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 01/21/2024] [Accepted: 04/15/2024] [Indexed: 05/08/2024] Open
Abstract
This study introduces VitTCR, a predictive model based on the vision transformer (ViT) architecture, aimed at identifying interactions between T cell receptors (TCRs) and peptides, crucial for developing cancer immunotherapies and vaccines. VitTCR converts TCR-peptide interactions into numerical AtchleyMaps using Atchley factors for prediction, achieving AUROC (0.6485) and AUPR (0.6295) values. Benchmark analysis indicates VitTCR's performance is comparable to other models, with further comparative studies suggested to understand its effectiveness in varied contexts. Additionally, integrating a positional bias weight matrix (PBWM), derived from amino acid contact probabilities in structurally resolved pMHC-TCR complexes, slightly improves VitTCR's accuracy. The model's predictions show weak yet statistically significant correlations with immunological factors like T cell clonal expansion and activation percentages, underscoring the biological relevance of VitTCR's predictive capabilities. VitTCR emerges as a valuable computational tool for predicting TCR-peptide interactions, offering insights for immunotherapy and vaccine development.
Collapse
Affiliation(s)
- Mengnan Jiang
- School of Medicine, Tsinghua University, Beijing 100084, China
| | - Zilan Yu
- School of Medicine, Tsinghua University, Beijing 100084, China
- Centre for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xun Lan
- School of Medicine, Tsinghua University, Beijing 100084, China
- Centre for Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Tsinghua University, Beijing, China
- MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing 100084, China
| |
Collapse
|
2
|
Kocyła AM, Czogalla A, Wessels I, Rink L, Krężel A. A combined biochemical and cellular approach reveals Zn 2+-dependent hetero- and homodimeric CD4 and Lck assemblies in T cells. Structure 2024; 32:292-303.e7. [PMID: 38157858 DOI: 10.1016/j.str.2023.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/25/2023] [Accepted: 11/30/2023] [Indexed: 01/03/2024]
Abstract
The CD4 or CD8 co-receptors' interaction with the protein-tyrosine kinase Lck initiates the tyrosine phosphorylation cascade leading to T cell activation. A critical question is: to what extent are co-receptors and Lck coupled? Our contribution concerns Zn2+, indispensable for CD4- and CD8-Lck formation. We combined biochemical and cellular approaches to show that dynamic fluctuations of free Zn2+ in physiological ranges influence Zn(CD4)2 and Zn(CD4)(Lck) species formation and their ratio, although the same Zn(Cys)2(Cys)2 cores. Moreover, we demonstrated that the affinity of Zn2+ to CD4 and CD4-Lck species differs significantly. Increased intracellular free Zn2+ concentration in T cells causes higher CD4 partitioning in the plasma membrane. We additionally found that CD4 palmitoylation decreases the specificity of CD4-Lck formation in the reconstituted membrane model. Our findings help elucidate co-receptor-Lck coupling stoichiometry and demonstrate that intracellular free Zn2+ has a major role in the interplay between CD4 dimers and CD4-Lck assembly.
Collapse
Affiliation(s)
- Anna M Kocyła
- Department of Chemical Biology, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland
| | - Aleksander Czogalla
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland
| | - Inga Wessels
- Institute of Immunology, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany
| | - Lothar Rink
- Institute of Immunology, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany
| | - Artur Krężel
- Department of Chemical Biology, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland.
| |
Collapse
|
3
|
Yin T, Wang G, Wang L, Mudgal P, Wang E, Pan CC, Alexander PB, Wu H, Cao C, Liang Y, Tan L, Huang D, Chong M, Chen R, Lim BJW, Xiang K, Xue W, Wan L, Hu H, Loh YH, Wang XF, Li QJ. Breaking NGF-TrkA immunosuppression in melanoma sensitizes immunotherapy for durable memory T cell protection. Nat Immunol 2024; 25:268-281. [PMID: 38195702 PMCID: PMC11377935 DOI: 10.1038/s41590-023-01723-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 11/29/2023] [Indexed: 01/11/2024]
Abstract
Melanoma cells, deriving from neuroectodermal melanocytes, may exploit the nervous system's immune privilege for growth. Here we show that nerve growth factor (NGF) has both melanoma cell intrinsic and extrinsic immunosuppressive functions. Autocrine NGF engages tropomyosin receptor kinase A (TrkA) on melanoma cells to desensitize interferon γ signaling, leading to T and natural killer cell exclusion. In effector T cells that upregulate surface TrkA expression upon T cell receptor activation, paracrine NGF dampens T cell receptor signaling and effector function. Inhibiting NGF, either through genetic modification or with the tropomyosin receptor kinase inhibitor larotrectinib, renders melanomas susceptible to immune checkpoint blockade therapy and fosters long-term immunity by activating memory T cells with low affinity. These results identify the NGF-TrkA axis as an important suppressor of anti-tumor immunity and suggest larotrectinib might be repurposed for immune sensitization. Moreover, by enlisting low-affinity T cells, anti-NGF reduces acquired resistance to immune checkpoint blockade and prevents melanoma recurrence.
Collapse
Affiliation(s)
- Tao Yin
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| | - Guoping Wang
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| | - Liuyang Wang
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | | | - Ergang Wang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Christopher C Pan
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | | | | | | | - Yaosi Liang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Lianmei Tan
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - De Huang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Mengyang Chong
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Rui Chen
- Hervor Therapeutics, Hangzhou, China
| | - Bryan Jian Wei Lim
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| | - Kun Xiang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Wei Xue
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lixin Wan
- Department of Molecular Oncology and Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Hailan Hu
- Zhejiang University School of Brain Science and Brain Medicine, Hangzhou, China
| | - Yuin-Han Loh
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Xiao-Fan Wang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA.
| | - Qi-Jing Li
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA.
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
| |
Collapse
|
4
|
Lee HN, Lee SE, Inn KS, Seong J. Optical sensing and control of T cell signaling pathways. Front Physiol 2024; 14:1321996. [PMID: 38269062 PMCID: PMC10806162 DOI: 10.3389/fphys.2023.1321996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 12/20/2023] [Indexed: 01/26/2024] Open
Abstract
T cells regulate adaptive immune responses through complex signaling pathways mediated by T cell receptor (TCR). The functional domains of the TCR are combined with specific antibodies for the development of chimeric antigen receptor (CAR) T cell therapy. In this review, we first overview current understanding on the T cell signaling pathways as well as traditional methods that have been widely used for the T cell study. These methods, however, are still limited to investigating dynamic molecular events with spatiotemporal resolutions. Therefore, genetically encoded biosensors and optogenetic tools have been developed to study dynamic T cell signaling pathways in live cells. We review these cutting-edge technologies that revealed dynamic and complex molecular mechanisms at each stage of T cell signaling pathways. They have been primarily applied to the study of dynamic molecular events in TCR signaling, and they will further aid in understanding the mechanisms of CAR activation and function. Therefore, genetically encoded biosensors and optogenetic tools offer powerful tools for enhancing our understanding of signaling mechanisms in T cells and CAR-T cells.
Collapse
Affiliation(s)
- Hae Nim Lee
- Brain Science Institute, Korea Institute of Science and Technoloy, Seoul, Republic of Korea
- Department of Converging Science and Technology, Kyung Hee University, Seoul, Republic of Korea
| | - Seung Eun Lee
- Department of Pharmacology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kyung-Soo Inn
- Department of Converging Science and Technology, Kyung Hee University, Seoul, Republic of Korea
| | - Jihye Seong
- Department of Pharmacology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Wide River Institute of Immunology, Seoul National University, Hongcheon, Republic of Korea
| |
Collapse
|
5
|
Platzer R, Hellmeier J, Göhring J, Perez ID, Schatzlmaier P, Bodner C, Focke‐Tejkl M, Schütz GJ, Sevcsik E, Stockinger H, Brameshuber M, Huppa JB. Monomeric agonist peptide/MHCII complexes activate T-cells in an autonomous fashion. EMBO Rep 2023; 24:e57842. [PMID: 37768718 PMCID: PMC10626418 DOI: 10.15252/embr.202357842] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/04/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Molecular crowding of agonist peptide/MHC class II complexes (pMHCIIs) with structurally similar, yet per se non-stimulatory endogenous pMHCIIs is postulated to sensitize T-cells for the recognition of single antigens on the surface of dendritic cells and B-cells. When testing this premise with the use of advanced live cell microscopy, we observe pMHCIIs as monomeric, randomly distributed entities diffusing rapidly after entering the APC surface. Synaptic TCR engagement of highly abundant endogenous pMHCIIs is low or non-existent and affects neither TCR engagement of rare agonist pMHCII in early and advanced synapses nor agonist-induced TCR-proximal signaling. Our findings highlight the capacity of single freely diffusing agonist pMHCIIs to elicit the full T-cell response in an autonomous and peptide-specific fashion with consequences for adaptive immunity and immunotherapeutic approaches.
Collapse
Affiliation(s)
- René Platzer
- Center for Pathophysiology, Infectiology, Immunology, Institute for Hygiene and Applied ImmunologyMedical University of ViennaViennaAustria
| | - Joschka Hellmeier
- TU Wien, Institute of Applied PhysicsViennaAustria
- Present address:
Max Planck Institute of Biochemistry, Molecular Imaging and BionanotechnologyMartinsriedGermany
| | - Janett Göhring
- Center for Pathophysiology, Infectiology, Immunology, Institute for Hygiene and Applied ImmunologyMedical University of ViennaViennaAustria
| | - Iago Doel Perez
- Center for Pathophysiology, Infectiology, Immunology, Institute for Hygiene and Applied ImmunologyMedical University of ViennaViennaAustria
- Present address:
Takeda Manufacturing Austria AGViennaAustria
| | - Philipp Schatzlmaier
- Center for Pathophysiology, Infectiology, Immunology, Institute for Hygiene and Applied ImmunologyMedical University of ViennaViennaAustria
| | - Clara Bodner
- TU Wien, Institute of Applied PhysicsViennaAustria
| | - Margarete Focke‐Tejkl
- Center for Pathophysiology, Infectiology, Immunology, Institute for Pathophysiology and Allergy ResearchMedical University of ViennaViennaAustria
| | | | - Eva Sevcsik
- TU Wien, Institute of Applied PhysicsViennaAustria
| | - Hannes Stockinger
- Center for Pathophysiology, Infectiology, Immunology, Institute for Hygiene and Applied ImmunologyMedical University of ViennaViennaAustria
| | | | - Johannes B Huppa
- Center for Pathophysiology, Infectiology, Immunology, Institute for Hygiene and Applied ImmunologyMedical University of ViennaViennaAustria
| |
Collapse
|
6
|
Grailer J, Cheng ZJ, Hartnett J, Slater M, Fan F, Cong M. A Novel Cell-based Luciferase Reporter Platform for the Development and Characterization of T-Cell Redirecting Therapies and Vaccine Development. J Immunother 2023; 46:96-106. [PMID: 36809225 PMCID: PMC9988225 DOI: 10.1097/cji.0000000000000453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/23/2023] [Indexed: 02/23/2023]
Abstract
T-cell immunotherapies are promising strategies to generate T-cell responses towards tumor-derived or pathogen-derived antigens. Adoptive transfer of T cells genetically modified to express antigen receptor transgenes has shown promise for the treatment of cancer. However, the development of T-cell redirecting therapies relies on the use of primary immune cells and is hampered by the lack of easy-to-use model systems and sensitive readouts to facilitate candidate screening and development. Particularly, testing T-cell receptor (TCR)-specific responses in primary T cells and immortalized T cells is confounded by the presence of endogenous TCR expression which results in mixed alpha/beta TCR pairings and compresses assay readouts. Herein, we describe the development of a novel cell-based TCR knockout (TCR-KO) reporter assay platform for the development and characterization of T-cell redirecting therapies. CRISPR/Cas9 was used to knockout the endogenous TCR chains in Jurkat cells stably expressing a human interleukin-2 promoter-driven luciferase reporter gene to measure TCR signaling. Reintroduction of a transgenic TCR into the TCR-KO reporter cells results in robust antigen-specific reporter activation compared with parental reporter cells. The further development of CD4/CD8 double-positive and double-negative versions enabled low-avidity and high-avidity TCR screening with or without major histocompatibility complex bias. Furthermore, stable TCR-expressing reporter cells generated from TCR-KO reporter cells exhibit sufficient sensitivity to probe in vitro T-cell immunogenicity of protein and nucleic acid-based vaccines. Therefore, our data demonstrated that TCR-KO reporter cells can be a useful tool for the discovery, characterization, and deployment of T-cell immunotherapy.
Collapse
|
7
|
Rushdi MN, Pan V, Li K, Choi HK, Travaglino S, Hong J, Griffitts F, Agnihotri P, Mariuzza RA, Ke Y, Zhu C. Cooperative binding of T cell receptor and CD4 to peptide-MHC enhances antigen sensitivity. Nat Commun 2022; 13:7055. [PMID: 36396644 PMCID: PMC9671906 DOI: 10.1038/s41467-022-34587-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 10/29/2022] [Indexed: 11/19/2022] Open
Abstract
Antigen recognition by the T cell receptor (TCR) of CD4+ T cells can be greatly enhanced by the coreceptor CD4. Yet, understanding of the molecular mechanism is hindered by the ultra-low affinity of CD4 binding to class-II peptide-major histocompatibility complexes (pMHC). Here we show, using two-dimensional (2D) mechanical-based assays, that the affinity of CD4-pMHC interaction is 3-4 logs lower than that of cognate TCR-pMHC interactions, and it is more susceptible to increased dissociation by forces (slip bond). In contrast, CD4 binds TCR-pre-bound pMHC at 3-6 logs higher affinity, forming TCR-pMHC-CD4 tri-molecular bonds that are prolonged by force (catch bond), and modulated by protein mobility on the cell membrane, indicating profound TCR-CD4 cooperativity. Consistent with a tri-crystal structure, using DNA origami as a molecular ruler to titrate spacing between TCR and CD4 we show that 7-nm proximity optimizes TCR-pMHC-CD4 tri-molecular bond formation with pMHC. Our results thus provide deep mechanistic insight into CD4 enhancement of TCR antigen recognition.
Collapse
Affiliation(s)
- Muaz Nik Rushdi
- grid.213917.f0000 0001 2097 4943Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA USA ,grid.213917.f0000 0001 2097 4943Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA USA ,grid.419673.e0000 0000 9545 2456Present Address: Medtronic CO., Minneapolis, MN USA
| | - Victor Pan
- grid.213917.f0000 0001 2097 4943Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA USA ,grid.213917.f0000 0001 2097 4943Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA USA ,grid.510306.10000 0004 5907 6472Present Address: Intellia Therapeutics, Cambridge, MA USA
| | - Kaitao Li
- grid.213917.f0000 0001 2097 4943Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA USA ,grid.213917.f0000 0001 2097 4943Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA USA
| | - Hyun-Kyu Choi
- grid.213917.f0000 0001 2097 4943Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA USA ,grid.213917.f0000 0001 2097 4943Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA USA
| | - Stefano Travaglino
- grid.213917.f0000 0001 2097 4943Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA USA ,grid.213917.f0000 0001 2097 4943Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA USA
| | - Jinsung Hong
- grid.213917.f0000 0001 2097 4943Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA USA ,grid.213917.f0000 0001 2097 4943Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA USA ,grid.417587.80000 0001 2243 3366Present Address: Food and Drug Administration, Silver Spring, MD USA
| | - Fletcher Griffitts
- grid.213917.f0000 0001 2097 4943Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA USA ,grid.213917.f0000 0001 2097 4943Georgia W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA USA
| | - Pragati Agnihotri
- grid.440664.40000 0001 0313 4029W. M. Keck Laboratory for Structural Biology, Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD USA ,grid.164295.d0000 0001 0941 7177Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD USA ,grid.281126.e0000 0004 0612 4549Present Address: Advanced Bioscience Laboratories, Rockville, MD USA
| | - Roy A. Mariuzza
- grid.440664.40000 0001 0313 4029W. M. Keck Laboratory for Structural Biology, Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD USA ,grid.164295.d0000 0001 0941 7177Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD USA
| | - Yonggang Ke
- grid.213917.f0000 0001 2097 4943Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA USA ,grid.189967.80000 0001 0941 6502Medical Scientist Training Program, Emory University School of Medicine, Atlanta, GA USA
| | - Cheng Zhu
- grid.213917.f0000 0001 2097 4943Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA USA ,grid.213917.f0000 0001 2097 4943Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA USA ,grid.213917.f0000 0001 2097 4943Georgia W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA USA
| |
Collapse
|
8
|
Kayesh MEH, Hashem MA, Maetani F, Goto A, Nagata N, Kasori A, Imanishi T, Tsukiyama-Kohara K. Molecular Insights into Innate Immune Response in Captive Koala Peripheral Blood Mononuclear Cells Co-Infected with Multiple Koala Retrovirus Subtypes. Pathogens 2022; 11:pathogens11080911. [PMID: 36015032 PMCID: PMC9414840 DOI: 10.3390/pathogens11080911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
Koala retrovirus (KoRV) exists in both endogenous and exogenous forms and has appeared as a major threat to koala health and conservation. Currently, there are twelve identified KoRV subtypes: an endogenous subtype (KoRV-A) and eleven exogenous subtypes (KoRV-B to -I, KoRV-K, -L, and -M). However, information about subtype-related immune responses in koalas against multiple KoRV infections is limited. In this study, we investigated KoRV-subtype (A, B, C, D, and F)-related immunophenotypic changes, including CD4, CD8b, IFN-γ, IL-6, and IL-10 mRNA expression, in peripheral blood mononuclear cells (PBMCs) obtained from captive koalas (n = 37) infected with multiple KoRV subtypes (KoRV-A to F) reared in seven Japanese zoos. Based on KoRV subtype infection profiles, no significant difference in CD4 and CD8b mRNA expression was observed in the study populations. Based on the different KoRV subtype infections, we found that the IFN-γ mRNA expression in koala PMBCs differs insignificantly (p = 0.0534). In addition, IL-6 and IL-10 mRNA expression also did not vary significantly in koala PBMCs based on KoRV subtype differences. We also investigated the Toll-like receptors (TLRs) response, including TLR2–10, and TLR13 mRNA in koala PBMCs infected with multiple KoRV subtypes. Significant differential expression of TLR5, 7, 9, 10, and 13 mRNA was observed in the PBMCs from koalas infected with different KoRV subtypes. Therefore, based on the findings of this study, it is assumed that co-infection of multiple KoRV subtypes might modify the host innate immune response, including IFN-γ and TLRs responses. However, to have a more clear understanding regarding the effect of multiple KoRV subtypes on host cytokines and TLR response and pathogenesis, further large-scale studies including the koalas negative for KoRV and koalas infected with other KoRV subtypes (KoRV-A to -I, KoRV-K, -L and -M) are required.
Collapse
Affiliation(s)
- Mohammad Enamul Hoque Kayesh
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan
- Department of Microbiology and Public Health, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal 8210, Bangladesh
| | - Md Abul Hashem
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan
| | | | - Atsushi Goto
- Awaji Farm Park England Hill Zoo, Minamiawaji 665-0443, Japan
| | | | | | | | - Kyoko Tsukiyama-Kohara
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan
- Correspondence: ; Tel.: +81-99-285-3589
| |
Collapse
|
9
|
Efficient Isolation of Lymphocytes and Myogenic Cells from the Tissue of Muscle Regeneration. Cells 2022; 11:cells11111754. [PMID: 35681449 PMCID: PMC9179359 DOI: 10.3390/cells11111754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/22/2022] [Accepted: 05/24/2022] [Indexed: 02/05/2023] Open
Abstract
Isolation of both lymphocytes and myogenic cells from muscle tissue is required for elucidating the cellular and molecular mechanisms of muscle regeneration. Here, we aimed to establish an optimal method obtaining a high yield of lymphocytes during muscle regeneration. After the muscle injury, we observed higher infiltration of lymphocytic cells in the muscle on day 3 after injury. Then, we compared two different white blood cell isolation methods, the Percoll gradient and CD45-magnetic bead methods, to assess the percentage and number of T and B cells. Flow cytometry analysis showed that the CD45-magnetic bead method has a better efficiency in isolating CD4+, CD8+ T cells, and B cells from injured muscle tissues of wild-type and mdx mice than that by the Percoll gradient method. Moreover, we found that the CD45-negative fraction from wild-type and mdx mice includes myogenic cells. In conclusion, we report that the CD45-magnetic bead method is suitable to isolate T and B cells during muscle regeneration with higher purity and yield and can also isolate myogenic cells within the same sample. This method provides a technical basis for further studies on muscle regeneration, involving lymphocytes and muscle cells, with a wide range of clinical applications.
Collapse
|
10
|
Simulation of receptor triggering by kinetic segregation shows role of oligomers and close-contacts. Biophys J 2022; 121:1660-1674. [PMID: 35367423 PMCID: PMC9117938 DOI: 10.1016/j.bpj.2022.03.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/07/2022] [Accepted: 03/28/2022] [Indexed: 11/23/2022] Open
Abstract
The activation of T cells, key players of the immune system, involves local evacuation of phosphatase CD45 from a region of the T cell's surface, segregating it from the T cell receptor. What drives this evacuation? In the presence of antigen, what ensures evacuation happens in the subsecond timescales necessary to initiate signaling? In the absence of antigen, what mechanisms ensure that evacuation does not happen spontaneously, which could cause signaling errors? Phenomena known to influence spatial organization of CD45 or similar surface molecules include diffusive motion in the lipid bilayer, oligomerization reactions, and mechanical compression against a nearby surface, such as that of the cell presenting the antigen. Computer simulations can investigate hypothesized spatiotemporal mechanisms of T cell signaling. The challenge to computational studies of evacuation is that the base process, spontaneous evacuation by simple diffusion, is in the extreme rare event limit, meaning direct stochastic simulation is unfeasible. Here, we combine particle-based spatial stochastic simulation with the weighted ensemble method for rare events to compute the mean first passage time for cell surface availability by surface reorganization of CD45. We confirm mathematical estimates that, at physiological concentrations, spontaneous evacuation is extremely rare, roughly 300 years. We find that dimerization decreases the time required for evacuation. A weak bimolecular interaction (dissociation constant estimate 460 μM) is sufficient for an order of magnitude reduction of spontaneous evacuation times, and oligomerization to hexamers reduces times to below 1 s. This introduces a mechanism whereby externally induced CD45 oligomerization could significantly modify T cell function. For large regions of close contact, such as those induced by large microvilli, molecular size and compressibility imply a nonzero reentry probability of 60%, decreasing evacuation times. Simulations show that these reduced evacuation times are still unrealistically long (even with a fourfold variation centered around previous estimates of parameters), suggesting that a yet-to-be-described mechanism, besides compressional exclusion at a close contact, drives evacuation.
Collapse
|
11
|
Al-Aghbar MA, Jainarayanan AK, Dustin ML, Roffler SR. The interplay between membrane topology and mechanical forces in regulating T cell receptor activity. Commun Biol 2022; 5:40. [PMID: 35017678 PMCID: PMC8752658 DOI: 10.1038/s42003-021-02995-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 12/21/2021] [Indexed: 12/20/2022] Open
Abstract
T cells are critically important for host defense against infections. T cell activation is specific because signal initiation requires T cell receptor (TCR) recognition of foreign antigen peptides presented by major histocompatibility complexes (pMHC) on antigen presenting cells (APCs). Recent advances reveal that the TCR acts as a mechanoreceptor, but it remains unclear how pMHC/TCR engagement generates mechanical forces that are converted to intracellular signals. Here we propose a TCR Bending Mechanosignal (TBM) model, in which local bending of the T cell membrane on the nanometer scale allows sustained contact of relatively small pMHC/TCR complexes interspersed among large surface receptors and adhesion molecules on the opposing surfaces of T cells and APCs. Localized T cell membrane bending is suggested to increase accessibility of TCR signaling domains to phosphorylation, facilitate selective recognition of agonists that form catch bonds, and reduce noise signals associated with slip bonds.
Collapse
Affiliation(s)
- Mohammad Ameen Al-Aghbar
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Department of Translational Medicine, Sidra Medicine, Doha, Qatar
| | - Ashwin K Jainarayanan
- Interdisciplinary Bioscience Doctoral Training Program and Exeter College, University of Oxford, Oxford, UK
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Michael L Dustin
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK.
| | - Steve R Roffler
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
12
|
Thapa P, Guyer RS, Yang AY, Parks CA, Brusko TM, Brusko M, Connors TJ, Farber DL. Infant T cells are developmentally adapted for robust lung immune responses through enhanced T cell receptor signaling. Sci Immunol 2021; 6:eabj0789. [PMID: 34890254 PMCID: PMC8765725 DOI: 10.1126/sciimmunol.abj0789] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Infants require coordinated immune responses to prevent succumbing to multiple infectious challenges during early life, particularly in the respiratory tract. The mechanisms by which infant T cells are functionally adapted for these responses are not well understood. Here, we demonstrated using an in vivo mouse cotransfer model that infant T cells generated greater numbers of lung-homing effector cells in response to influenza infection compared with adult T cells in the same host, due to augmented T cell receptor (TCR)–mediated signaling. Mouse infant T cells showed increased sensitivity to low antigen doses, originating at the interface between T cells and antigen-bearing accessory cells—through actin-mediated mobilization of signaling molecules to the immune synapse. This enhanced signaling was also observed in human infant versus adult T cells. Our findings provide a mechanism for how infants control pathogen load and dissemination, which is important for designing developmentally targeted strategies for promoting immune responses at this vulnerable life stage.
Collapse
Affiliation(s)
- Puspa Thapa
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York NY 10032
| | - Rebecca S. Guyer
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York NY 10032
| | - Alexander Y. Yang
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York NY 10032
| | - Christopher A. Parks
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY 10032
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032
| | - Todd M. Brusko
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL 32611
| | - Maigan Brusko
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL 32611
| | - Thomas J. Connors
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032
| | - Donna L. Farber
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York NY 10032
- Department of Surgery, Columbia University Irving Medical Center, New York, NY 10032
| |
Collapse
|
13
|
T Cell Subsets and Natural Killer Cells in the Pathogenesis of Nonalcoholic Fatty Liver Disease. Int J Mol Sci 2021; 22:ijms222212190. [PMID: 34830072 PMCID: PMC8623596 DOI: 10.3390/ijms222212190] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/06/2021] [Accepted: 11/09/2021] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a condition characterized by hepatic accumulation of excess lipids. T cells are commonly classified into various subsets based on their surface markers including T cell receptors, type of antigen presentation and pathophysiological functions. Several studies have implicated various T cell subsets and natural killer (NK) cells in the progression of NAFLD. While NK cells are mainly components of the innate hepatic immune system, the majority of T cell subsets can be part of both the adaptive and innate systems. Several studies have reported that various stages of NAFLD are accompanied by the accumulation of distinct T cell subsets and NK cells with different functions and phenotypes observed usually resulting in proinflammatory effects. More importantly, the overall stimulation of the intrahepatic T cell subsets is directly influenced by the homeostasis of the gut microbiota. Similarly, NK cells have been found to accumulate in the liver in response to pathogens and tumors. In this review, we discussed the nature and pathophysiological roles of T cell subsets including γδ T cells, NKT cells, Mucosal-associated invariant T (MAIT) cells as well as NK cells in NAFLD.
Collapse
|
14
|
Lattice Light-Sheet Microscopy Multi-dimensional Analyses (LaMDA) of T-Cell Receptor Dynamics Predict T-Cell Signaling States. Cell Syst 2021; 10:433-444.e5. [PMID: 32437685 DOI: 10.1016/j.cels.2020.04.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 02/29/2020] [Accepted: 04/21/2020] [Indexed: 12/19/2022]
Abstract
Lattice light-sheet microscopy provides large amounts of high-dimensional, high-spatiotemporal resolution imaging data of cell surface receptors across the 3D surface of live cells, but user-friendly analysis pipelines are lacking. Here, we introduce lattice light-sheet microscopy multi-dimensional analyses (LaMDA), an end-to-end pipeline comprised of publicly available software packages that combines machine learning, dimensionality reduction, and diffusion maps to analyze surface receptor dynamics and classify cellular signaling states without the need for complex biochemical measurements or other prior information. We use LaMDA to analyze images of T-cell receptor (TCR) microclusters on the surface of live primary T cells under resting and stimulated conditions. We observe global spatial and temporal changes of TCRs across the 3D cell surface, accurately differentiate stimulated cells from unstimulated cells, precisely predict attenuated T-cell signaling after CD4 and CD28 receptor blockades, and reliably discriminate between structurally similar TCR ligands. All instructions needed to implement LaMDA are included in this paper.
Collapse
|
15
|
Abhimanyu, Ontiveros CO, Guerra-Resendez RS, Nishiguchi T, Ladki M, Hilton IB, Schlesinger LS, DiNardo AR. Reversing Post-Infectious Epigenetic-Mediated Immune Suppression. Front Immunol 2021; 12:688132. [PMID: 34163486 PMCID: PMC8215363 DOI: 10.3389/fimmu.2021.688132] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/17/2021] [Indexed: 12/20/2022] Open
Abstract
The immune response must balance the pro-inflammatory, cell-mediated cytotoxicity with the anti-inflammatory and wound repair response. Epigenetic mechanisms mediate this balance and limit host immunity from inducing exuberant collateral damage to host tissue after severe and chronic infections. However, following treatment for these infections, including sepsis, pneumonia, hepatitis B, hepatitis C, HIV, tuberculosis (TB) or schistosomiasis, detrimental epigenetic scars persist, and result in long-lasting immune suppression. This is hypothesized to be one of the contributing mechanisms explaining why survivors of infection have increased all-cause mortality and increased rates of unrelated secondary infections. The mechanisms that induce epigenetic-mediated immune suppression have been demonstrated in-vitro and in animal models. Modulation of the AMP-activated protein kinase (AMPK)-mammalian target of rapamycin (mTOR), nuclear factor of activated T cells (NFAT) or nuclear receptor (NR4A) pathways is able to block or reverse the development of detrimental epigenetic scars. Similarly, drugs that directly modify epigenetic enzymes, such as those that inhibit histone deacetylases (HDAC) inhibitors, DNA hypomethylating agents or modifiers of the Nucleosome Remodeling and DNA methylation (NuRD) complex or Polycomb Repressive Complex (PRC) have demonstrated capacity to restore host immunity in the setting of cancer-, LCMV- or murine sepsis-induced epigenetic-mediated immune suppression. A third clinically feasible strategy for reversing detrimental epigenetic scars includes bioengineering approaches to either directly reverse the detrimental epigenetic marks or to modify the epigenetic enzymes or transcription factors that induce detrimental epigenetic scars. Each of these approaches, alone or in combination, have ablated or reversed detrimental epigenetic marks in in-vitro or in animal models; translational studies are now required to evaluate clinical applicability.
Collapse
Affiliation(s)
- Abhimanyu
- The Global Tuberculosis Program, William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Immigrant and Global Health, Baylor College of Medicine, Houston, TX, United States
| | - Carlos O Ontiveros
- Host-Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, TX, United States.,UT Health San Antonio, San Antonio, TX, United States
| | - Rosa S Guerra-Resendez
- Systems, Synthetic, and Physical Biology Graduate Program, Rice University, Houston, TX, United States
| | - Tomoki Nishiguchi
- The Global Tuberculosis Program, William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Immigrant and Global Health, Baylor College of Medicine, Houston, TX, United States
| | - Malik Ladki
- The Global Tuberculosis Program, William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Immigrant and Global Health, Baylor College of Medicine, Houston, TX, United States
| | - Isaac B Hilton
- Systems, Synthetic, and Physical Biology Graduate Program, Rice University, Houston, TX, United States.,Department of Bioengineering, Rice University, Houston, TX, United States.,Department of BioSciences, Rice University, Houston, TX, United States
| | - Larry S Schlesinger
- Host-Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Andrew R DiNardo
- The Global Tuberculosis Program, William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Immigrant and Global Health, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW TCRαβ+CD4-CD8- double-negative T (DNT) cells, a principal subset of mature T lymphocytes, have been closely linked with autoimmune/inflammatory conditions. However, controversy persists regarding their ontogeny and function. Here, we present an overview on DNT cells in different autoimmune diseases to advance a deeper understanding of the contribution of this population to disease pathogenesis. RECENT FINDINGS DNT cells have been characterized in various chronic inflammatory diseases and they have been proposed to display pathogenic or regulatory function. The tissue location of DNT cells and the effector cytokines they produce bespeak to their active involvement in chronic inflammatory diseases. SUMMARY By producing various cytokines, expanded DNT cells in inflamed tissues contribute to the pathogenesis of a variety of autoimmune inflammatory diseases. However, it is unclear whether this population represents a stable lineage consisting of different subsets similar to CD4+ T helper cell subset. Better understanding of the possible heterogeneity and plasticity of DNT cells is needed to reveal interventional therapeutic opportunities.
Collapse
Affiliation(s)
- Hao Li
- Division of Rheumatology and Clinical Immunology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
17
|
Apte SH, Minigo G, Groves PL, Spargo JC, Plebanski M, Grigg MJ, Kenangalem E, Burel JG, Loughland JR, Flanagan KL, Piera KA, William T, Price RN, Woodberry T, Barber BE, Anstey NM, Doolan DL. A population of CD4 hiCD38 hi T cells correlates with disease severity in patients with acute malaria. Clin Transl Immunology 2020; 9:e1209. [PMID: 33282291 PMCID: PMC7684974 DOI: 10.1002/cti2.1209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 09/08/2020] [Accepted: 10/20/2020] [Indexed: 01/12/2023] Open
Abstract
OBJECTIVE CD4+ T cells are critical mediators of immunity to Plasmodium spp. infection, but their characteristics during malarial episodes and immunopathology in naturally infected adults are poorly defined. Flow cytometric analysis of PBMCs from patients with either P. falciparum or P. knowlesi malaria revealed a pronounced population of CD4+ T cells co-expressing very high levels of CD4 and CD38 we have termed CD4hiCD38hi T cells. We set out to gain insight into the function of these novel cells. METHODS CD4+ T cells from 18 patients with P. falciparum or P. knowlesi malaria were assessed by flow cytometry and sorted into populations of CD4hiCD38hi or CD4norm T cells. Gene expression in the sorted populations was assessed by qPCR and NanoString. RESULTS CD4hiCD38hi T cells expressed high levels of CD4 mRNA and canonical type 1 regulatory T-cell (TR1) genes including IL10, IFNG, LAG3 and HAVCR2 (TIM3), and other genes with relevance to cell migration and immunomodulation. These cells increased in proportion to malaria disease severity and were absent after parasite clearance with antimalarials. CONCLUSION In naturally infected adults with acute malaria, a prominent population of type 1 regulatory T cells arises that can be defined by high co-expression of CD4 and CD38 (CD4hiCD38hi) and that correlates with disease severity in patients with falciparum malaria. This study provides fundamental insights into T-cell biology, including the first evidence that CD4 expression is modulated at the mRNA level. These findings have important implications for understanding the balance between immunity and immunopathology during malaria.
Collapse
Affiliation(s)
- Simon H Apte
- Infectious Diseases ProgramQIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia,Present address:
Queensland Lung Transplant Service, The Prince Charles HospitalChermsideQLDAustralia
| | - Gabriela Minigo
- Global and Tropical Health DivisionMenzies School of Health ResearchCasuarinaNTAustralia,Charles Darwin UniversityDarwinNTAustralia
| | - Penny L Groves
- Infectious Diseases ProgramQIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia
| | - Jessie C Spargo
- Global and Tropical Health DivisionMenzies School of Health ResearchCasuarinaNTAustralia,Charles Darwin UniversityDarwinNTAustralia
| | - Magdalena Plebanski
- Department of Immunology and PathologyMonash UniversityPrahranVICAustralia,School of Health and Biomedical SciencesRMIT UniversityBundooraVICAustralia
| | - Mathew J Grigg
- Global and Tropical Health DivisionMenzies School of Health ResearchCasuarinaNTAustralia,Charles Darwin UniversityDarwinNTAustralia
| | - Enny Kenangalem
- Papuan Health and Community Development FoundationTimikaIndonesia
| | - Julie G Burel
- Infectious Diseases ProgramQIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia,Present address:
La Jolla Institute for ImmunologyLa JollaCAUSA
| | - Jessica R Loughland
- Infectious Diseases ProgramQIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia,Global and Tropical Health DivisionMenzies School of Health ResearchCasuarinaNTAustralia,Charles Darwin UniversityDarwinNTAustralia
| | - Katie L Flanagan
- Department of Immunology and PathologyMonash UniversityPrahranVICAustralia,School of Health and Biomedical SciencesRMIT UniversityBundooraVICAustralia,School of MedicineUniversity of TasmaniaLauncestonTASAustralia
| | - Kim A Piera
- Global and Tropical Health DivisionMenzies School of Health ResearchCasuarinaNTAustralia,Charles Darwin UniversityDarwinNTAustralia
| | - Timothy William
- School of MedicineUniversity of TasmaniaLauncestonTASAustralia
| | - Ric N Price
- Global and Tropical Health DivisionMenzies School of Health ResearchCasuarinaNTAustralia,Nuffield Department of Clinical MedicineCentre for Tropical Medicine and Global HealthUniversity of OxfordOxfordUK,Mahidol‐Oxford Tropical Medicine Research UnitFaculty of Tropical MedicineMahidol UniversityBangkokThailand
| | - Tonia Woodberry
- Global and Tropical Health DivisionMenzies School of Health ResearchCasuarinaNTAustralia,Charles Darwin UniversityDarwinNTAustralia
| | - Bridget E Barber
- Infectious Diseases ProgramQIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia,Global and Tropical Health DivisionMenzies School of Health ResearchCasuarinaNTAustralia,Charles Darwin UniversityDarwinNTAustralia
| | - Nicholas M Anstey
- Global and Tropical Health DivisionMenzies School of Health ResearchCasuarinaNTAustralia
| | - Denise L Doolan
- Infectious Diseases ProgramQIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia,Centre for Molecular TherapeuticsAustralian Institute of Tropical Health & MedicineJames Cook UniversityCairnsQLDAustralia
| |
Collapse
|
18
|
Mørch AM, Bálint Š, Santos AM, Davis SJ, Dustin ML. Coreceptors and TCR Signaling - the Strong and the Weak of It. Front Cell Dev Biol 2020; 8:597627. [PMID: 33178706 PMCID: PMC7596257 DOI: 10.3389/fcell.2020.597627] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 09/28/2020] [Indexed: 12/02/2022] Open
Abstract
The T-cell coreceptors CD4 and CD8 have well-characterized and essential roles in thymic development, but how they contribute to immune responses in the periphery is unclear. Coreceptors strengthen T-cell responses by many orders of magnitude - beyond a million-fold according to some estimates - but the mechanisms underlying these effects are still debated. T-cell receptor (TCR) triggering is initiated by the binding of the TCR to peptide-loaded major histocompatibility complex (pMHC) molecules on the surfaces of other cells. CD4 and CD8 are the only T-cell proteins that bind to the same pMHC ligand as the TCR, and can directly associate with the TCR-phosphorylating kinase Lck. At least three mechanisms have been proposed to explain how coreceptors so profoundly amplify TCR signaling: (1) the Lck recruitment model and (2) the pseudodimer model, both invoked to explain receptor triggering per se, and (3) two-step coreceptor recruitment to partially triggered TCRs leading to signal amplification. More recently it has been suggested that, in addition to initiating or augmenting TCR signaling, coreceptors effect antigen discrimination. But how can any of this be reconciled with TCR signaling occurring in the absence of CD4 or CD8, and with their interactions with pMHC being among the weakest specific protein-protein interactions ever described? Here, we review each theory of coreceptor function in light of the latest structural, biochemical, and functional data. We conclude that the oldest ideas are probably still the best, i.e., that their weak binding to MHC proteins and efficient association with Lck allow coreceptors to amplify weak incipient triggering of the TCR, without comprising TCR specificity.
Collapse
Affiliation(s)
- Alexander M. Mørch
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Štefan Bálint
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Ana Mafalda Santos
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Simon J. Davis
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Michael L. Dustin
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
19
|
Mudd JC, Lai S, Shah S, Rahmberg A, Flynn JK, Starke CE, Perkins MR, Ransier A, Darko S, Douek DC, Hirsch VM, Cameron M, Brenchley JM. Epigenetic silencing of CD4 expression in nonpathogenic SIV infection in African green monkeys. JCI Insight 2020; 5:139043. [PMID: 32841214 PMCID: PMC7526541 DOI: 10.1172/jci.insight.139043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 08/13/2020] [Indexed: 01/19/2023] Open
Abstract
African green monkeys (AGMs) are natural hosts of SIV that postthymically downregulate CD4 to maintain a large population of CD4-CD8aa+ virus-resistant cells with Th functionality, which can result in AGMs becoming apparently cured of SIVagm infection. To understand the mechanisms of this process, we performed genome-wide transcriptional analysis on T cells induced to downregulate CD4 in vitro from AGMs and closely related patas monkeys and T cells that maintain CD4 expression from rhesus macaques. In T cells that downregulated CD4, pathway analysis revealed an atypical regulation of the DNA methylation machinery, which was reversible when pharmacologically targeted with 5-aza-2 deoxycytidine. This signature was driven largely by the dioxygenase TET3, which became downregulated with loss of CD4 expression. CpG motifs within the AGM CD4 promoter region became methylated during CD4 downregulation in vitro and were stably imprinted in AGM CD4-CD8aa+ T cells sorted directly ex vivo. These results suggest that AGMs use epigenetic mechanisms to durably silence the CD4 gene. Manipulation of these mechanisms could provide avenues for modulating SIV and HIV-1 entry receptor expression in hosts that become progressively infected with SIV, which could lead to novel therapeutic interventions aimed to reduce HIV viremia in vivo.
Collapse
Affiliation(s)
- Joseph C Mudd
- Barrier Immunity Section, Laboratory of Viral Diseases, Division of Intramural Research
| | - Stephen Lai
- Barrier Immunity Section, Laboratory of Viral Diseases, Division of Intramural Research
| | - Sanjana Shah
- Barrier Immunity Section, Laboratory of Viral Diseases, Division of Intramural Research
| | - Andrew Rahmberg
- Barrier Immunity Section, Laboratory of Viral Diseases, Division of Intramural Research
| | - Jacob K Flynn
- Barrier Immunity Section, Laboratory of Viral Diseases, Division of Intramural Research
| | - Carly E Starke
- Barrier Immunity Section, Laboratory of Viral Diseases, Division of Intramural Research
| | - Molly R Perkins
- Barrier Immunity Section, Laboratory of Viral Diseases, Division of Intramural Research
| | - Amy Ransier
- Human Immunology Section, Vaccine Research Center, and
| | - Sam Darko
- Human Immunology Section, Vaccine Research Center, and
| | | | - Vanessa M Hirsch
- Nonhuman Primate Virology Section, Laboratory of Molecular Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Mark Cameron
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Jason M Brenchley
- Barrier Immunity Section, Laboratory of Viral Diseases, Division of Intramural Research
| |
Collapse
|
20
|
Llorente García I, Marsh M. A biophysical perspective on receptor-mediated virus entry with a focus on HIV. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2020; 1862:183158. [PMID: 31863725 PMCID: PMC7156917 DOI: 10.1016/j.bbamem.2019.183158] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 12/14/2022]
Abstract
As part of their entry and infection strategy, viruses interact with specific receptor molecules expressed on the surface of target cells. The efficiency and kinetics of the virus-receptor interactions required for a virus to productively infect a cell is determined by the biophysical properties of the receptors, which are in turn influenced by the receptors' plasma membrane (PM) environments. Currently, little is known about the biophysical properties of these receptor molecules or their engagement during virus binding and entry. Here we review virus-receptor interactions focusing on the human immunodeficiency virus type 1 (HIV), the etiological agent of acquired immunodeficiency syndrome (AIDS), as a model system. HIV is one of the best characterised enveloped viruses, with the identity, roles and structure of the key molecules required for infection well established. We review current knowledge of receptor-mediated HIV entry, addressing the properties of the HIV cell-surface receptors, the techniques used to measure these properties, and the macromolecular interactions and events required for virus entry. We discuss some of the key biophysical principles underlying receptor-mediated virus entry and attempt to interpret the available data in the context of biophysical mechanisms. We also highlight crucial outstanding questions and consider how new tools might be applied to advance understanding of the biophysical properties of viral receptors and the dynamic events leading to virus entry.
Collapse
Affiliation(s)
| | - Mark Marsh
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, UK
| |
Collapse
|
21
|
Matson CA, Singh NJ. Manipulating the TCR signaling network for cellular immunotherapy: Challenges & opportunities. Mol Immunol 2020; 123:64-73. [PMID: 32422416 DOI: 10.1016/j.molimm.2020.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 02/24/2020] [Accepted: 04/11/2020] [Indexed: 02/06/2023]
Abstract
T cells can help confer protective immunity by eliminating infections and tumors or drive immunopathology by damaging host cells. Both outcomes require a series of steps from the activation of naïve T cells to their clonal expansion, differentiation and migration to tissue sites. In addition to specific recognition of the antigen via the T cell receptor (TCR), multiple accessory signals from costimulatory molecules, cytokines and metabolites also influence each step along the progression of the T cell response. Current efforts to modify effector T cell function in many clinical contexts focus on the latter - which encompass antigen-independent and broad, contextual regulators. Not surprisingly, such approaches are often accompanied by adverse events, as they also affect T cells not relevant to the specific treatment. In contrast, fine tuning T cell responses by precisely targeting antigen-specific TCR signals has the potential to radically alter therapeutic strategies in a focused manner. Development of such approaches, however, requires a better understanding of functioning of the TCR and the biochemical signaling network coupled to it. In this article, we review some of the recent advances which highlight important roles of TCR signals throughout the activation and differentiation of T cells during an immune response. We discuss how, an appreciation of specific signaling modalities and variant ligands that influence the function of the TCR has the potential to influence design principles for the next generation of pharmacologic and cellular therapies, especially in the context of tumor immunotherapies involving adoptive cell transfers.
Collapse
Affiliation(s)
- Courtney A Matson
- Department of Microbiology & Immunology, University of Maryland School of Medicine, 685 W Baltimore St, HSF1, Room 380, Baltimore, MD 21201, United States
| | - Nevil J Singh
- Department of Microbiology & Immunology, University of Maryland School of Medicine, 685 W Baltimore St, HSF1, Room 380, Baltimore, MD 21201, United States.
| |
Collapse
|
22
|
Hui E. Understanding T cell signaling using membrane reconstitution. Immunol Rev 2020; 291:44-56. [PMID: 31402497 DOI: 10.1111/imr.12767] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 04/02/2019] [Indexed: 12/31/2022]
Abstract
T cells are central players of our immune system, as their functions range from killing tumorous and virus-infected cells to orchestrating the entire immune response. In order for T cells to divide and execute their functions, they must be activated by antigen-presenting cells (APCs) through a cell-cell junction. Extracellular interactions between receptors on T cells and their ligands on APCs trigger signaling cascades comprised of protein-protein interactions, enzymatic reactions, and spatial reorganization events, to either stimulate or repress T cell activation. Plasma membrane is the major platform for T cell signaling. Recruitment of cytosolic proteins to membrane-bound receptors is a common critical step in many signaling pathways. Membranes decrease the dimensionality of protein-protein interactions to enable weak yet biologically important interactions. Membrane resident proteins can phase separate into micro-islands that promote signaling by enriching or excluding signal regulators. Moreover, some membrane lipids can either mediate or regulate cell signaling by interacting with signaling proteins. While it is critical to investigate T cell signaling in a cellular environment, the large number of signaling pathways involved and potential crosstalk have made it difficult to obtain precise, quantitative information on T cell signaling. Reconstitution of purified proteins to model membranes provides a complementary avenue for T cell signaling research. Here, I review recent progress in studying T cell signaling using membrane reconstitution approaches.
Collapse
Affiliation(s)
- Enfu Hui
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, La Jolla, California
| |
Collapse
|
23
|
Chandran SS, Klebanoff CA. T cell receptor-based cancer immunotherapy: Emerging efficacy and pathways of resistance. Immunol Rev 2020; 290:127-147. [PMID: 31355495 PMCID: PMC7027847 DOI: 10.1111/imr.12772] [Citation(s) in RCA: 202] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 05/09/2019] [Indexed: 12/13/2022]
Abstract
Adoptive cell transfer (ACT) using chimeric antigen receptor (CAR)-modified T cells can induce durable remissions in patients with refractory B-lymphoid cancers. By contrast, results applying CAR-modified T cells to solid malignancies have been comparatively modest. Alternative strategies to redirect T cell specificity and cytolytic function are therefore necessary if ACT is to serve a greater role in human cancer treatments. T cell receptors (TCRs) are antigen recognition structures physiologically expressed by all T cells that have complementary, and in some cases superior, properties to CARs. Unlike CARs, TCRs confer recognition to epitopes derived from proteins residing within any subcellular compartment, including the membrane, cytoplasm and nucleus. This enables TCRs to detect a broad universe of targets, such as neoantigens, cancer germline antigens, and viral oncoproteins. Moreover, because TCRs have evolved to efficiently detect and amplify antigenic signals, these receptors respond to epitope densities many fold smaller than required for CAR-signaling. Herein, we summarize recent clinical data demonstrating that TCR-based immunotherapies can mediate regression of solid malignancies, including immune-checkpoint inhibitor refractory cancers. These trials simultaneously highlight emerging mechanisms of TCR resistance. We conclude by discussing how TCR-based immunotherapies can achieve broader dissemination through innovations in cell manufacturing and non-viral genome integration techniques.
Collapse
Affiliation(s)
- Smita S Chandran
- Center for Cell Engineering and Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY.,Parker Institute for Cancer Immunotherapy, New York, NY
| | - Christopher A Klebanoff
- Center for Cell Engineering and Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY.,Parker Institute for Cancer Immunotherapy, New York, NY.,Weill Cornell Medical College, New York, NY
| |
Collapse
|
24
|
Abstract
Advances in academic and clinical studies during the last several years have resulted in practical outcomes in adoptive immune therapy of cancer. Immune cells can be programmed with molecular modules that increase their therapeutic potency and specificity. It has become obvious that successful immunotherapy must take into account the full complexity of the immune system and, when possible, include the use of multifactor cell reprogramming that allows fast adjustment during the treatment. Today, practically all immune cells can be stably or transiently reprogrammed against cancer. Here, we review works related to T cell reprogramming, as the most developed field in immunotherapy. We discuss factors that determine the specific roles of αβ and γδ T cells in the immune system and the structure and function of T cell receptors in relation to other structures involved in T cell target recognition and immune response. We also discuss the aspects of T cell engineering, specifically the construction of synthetic T cell receptors (synTCRs) and chimeric antigen receptors (CARs) and the use of engineered T cells in integrative multifactor therapy of cancer.
Collapse
Affiliation(s)
- Samuel G Katz
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | | |
Collapse
|
25
|
Konstorum A, Vella AT, Adler AJ, Laubenbacher RC. A mathematical model of combined CD8 T cell costimulation by 4-1BB (CD137) and OX40 (CD134) receptors. Sci Rep 2019; 9:10862. [PMID: 31350431 PMCID: PMC6659676 DOI: 10.1038/s41598-019-47333-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 07/11/2019] [Indexed: 02/07/2023] Open
Abstract
Combined agonist stimulation of the TNFR costimulatory receptors 4-1BB (CD137) and OX40(CD134) has been shown to generate supereffector CD8 T cells that clonally expand to greater levels, survive longer, and produce a greater quantity of cytokines compared to T cells stimulated with an agonist of either costimulatory receptor individually. In order to understand the mechanisms for this effect, we have created a mathematical model for the activation of the CD8 T cell intracellular signaling network by mono- or dual-costimulation. We show that supereffector status is generated via downstream interacting pathways that are activated upon engagement of both receptors, and in silico simulations of the model are supported by published experimental results. The model can thus be used to identify critical molecular targets of T cell dual-costimulation in the context of cancer immunotherapy.
Collapse
Affiliation(s)
- Anna Konstorum
- Center for Quantitative Medicine, School of Medicine, UConn Health, 263 Farmington Ave., Farmington, CT, USA.
| | - Anthony T Vella
- Department of Immunology, School of Medicine, UConn Health, 263 Farmington Ave., Farmington, CT, USA
| | - Adam J Adler
- Department of Immunology, School of Medicine, UConn Health, 263 Farmington Ave., Farmington, CT, USA
| | - Reinhard C Laubenbacher
- Center for Quantitative Medicine, School of Medicine, UConn Health, 263 Farmington Ave., Farmington, CT, USA.,Jackson Laboratory for Genomic Medicine, 263 Farmington Ave., Farmington, CT, USA
| |
Collapse
|
26
|
Beyond TCR Signaling: Emerging Functions of Lck in Cancer and Immunotherapy. Int J Mol Sci 2019; 20:ijms20143500. [PMID: 31315298 PMCID: PMC6679228 DOI: 10.3390/ijms20143500] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/08/2019] [Accepted: 07/12/2019] [Indexed: 01/10/2023] Open
Abstract
In recent years, the lymphocyte-specific protein tyrosine kinase (Lck) has emerged as one of the key molecules regulating T-cell functions. Studies using Lck knock-out mice or Lck-deficient T-cell lines have shown that Lck regulates the initiation of TCR signaling, T-cell development, and T-cell homeostasis. Because of the crucial role of Lck in T-cell responses, strategies have been employed to redirect Lck activity to improve the efficacy of chimeric antigen receptors (CARs) and to potentiate T-cell responses in cancer immunotherapy. In addition to the well-studied role of Lck in T cells, evidence has been accumulated suggesting that Lck is also expressed in the brain and in tumor cells, where it actively takes part in signaling processes regulating cellular functions like proliferation, survival and memory. Therefore, Lck has emerged as a novel druggable target molecule for the treatment of cancer and neuronal diseases. In this review, we will focus on these new functions of Lck.
Collapse
|
27
|
Abstract
T cells initiate and regulate adaptive immune responses that can clear infections. To do this, they use their T cell receptors (TCRs) to continually scan the surfaces of other cells for cognate peptide antigens presented on major histocompatibility complexes (pMHCs). Experimental work has established that as few 1-10 pMHCs are sufficient to activate T cells. This sensitivity is remarkable in light of a number of factors, including the observation that the TCR and pMHC are short molecules relative to highly abundant long surface molecules, such as CD45, that can hinder initial binding, and moreover, the TCR/pMHC interaction is of weak affinity with solution lifetimes of approximately 1 second. Here, we review experimental and mathematical work that has contributed to uncovering molecular mechanisms of T cell sensitivity. We organize the mechanisms by where they act in the pathway to activate T cells, namely mechanisms that (a) promote TCR/pMHC binding, (b) induce rapid TCR signaling, and (c) amplify TCR signaling. We discuss work showing that high sensitivity reduces antigen specificity unless molecular feedbacks are invoked. We conclude by summarizing a number of open questions.
Collapse
Affiliation(s)
| | - Omer Dushek
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| |
Collapse
|
28
|
Glatzová D, Cebecauer M. Dual Role of CD4 in Peripheral T Lymphocytes. Front Immunol 2019; 10:618. [PMID: 31001252 PMCID: PMC6454155 DOI: 10.3389/fimmu.2019.00618] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/08/2019] [Indexed: 01/07/2023] Open
Abstract
The interaction of T-cell receptors (TCRs) with self- and non-self-peptides in the major histocompatibility complex (MHC) stimulates crucial signaling events, which in turn can activate T lymphocytes. A variety of accessory molecules further modulate T-cell signaling. Of these, the CD4 and CD8 coreceptors make the most critical contributions to T cell sensitivity in vivo. Whereas, CD4 function in T cell development is well-characterized, its role in peripheral T cells remains incompletely understood. It was originally suggested that CD4 stabilizes weak interactions between TCRs and peptides in the MHC and delivers Lck kinases to that complex. The results of numerous experiments support the latter role, indicating that the CD4-Lck complex accelerates TCR-triggered signaling and controls the availability of the kinase for TCR in the absence of the ligand. On the other hand, extremely low affinity of CD4 for MHC rules out its ability to stabilize the receptor-ligand complex. In this review, we summarize the current knowledge on CD4 in T cells, with a special emphasis on the spatio-temporal organization of early signaling events and the relevance for CD4 function. We further highlight the capacity of CD4 to interact with the MHC in the absence of TCR. It drives the adhesion of T cells to the cells that express the MHC. This process is facilitated by the CD4 accumulation in the tips of microvilli on the surface of unstimulated T cells. Based on these observations, we suggest an alternative model of CD4 role in T-cell activation.
Collapse
Affiliation(s)
- Daniela Glatzová
- Department of Biophysical Chemistry, J. Heyrovsky Institute of Physical Chemistry of the Czech Academy of Sciences, Prague, Czechia
- Laboratory of Leukocyte Signaling, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Marek Cebecauer
- Department of Biophysical Chemistry, J. Heyrovsky Institute of Physical Chemistry of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
29
|
Harrison DL, Fang Y, Huang J. T-Cell Mechanobiology: Force Sensation, Potentiation, and Translation. FRONTIERS IN PHYSICS 2019; 7:45. [PMID: 32601597 PMCID: PMC7323161 DOI: 10.3389/fphy.2019.00045] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A T cell is a sensitive self-referential mechanical sensor. Mechanical forces influence the recognition, activation, differentiation, and function throughout the lifetime of a T cell. T cells constantly perceive and respond to physical stimuli through their surface receptors, cytoskeleton, and subcellular structures. Surface receptors receive physical cues in the form of forces generated through receptor-ligand binding events, which are dynamically regulated by contact tension, shear stress, and substrate rigidity. The resulting mechanotransduction not only influences T-cell recognition and signaling but also possibly modulates cell metabolism and gene expression. Moreover, forces also dynamically regulate the deformation, organization, and translocation of cytoskeleton and subcellular structures, leading to changes in T-cell mobility, migration, and infiltration. However, the roles and mechanisms of how mechanical forces modulate T-cell recognition, signaling, metabolism, and gene expression, are largely unknown and underappreciated. Here, we review recent technological and scientific advances in T-cell mechanobiology, discuss possible roles and mechanisms of T-cell mechanotransduction, and propose new research directions of this emerging field in health and disease.
Collapse
Affiliation(s)
- Devin L. Harrison
- The Graduate Program in Biophysical Sciences, The University of Chicago, Chicago, IL, United States
| | - Yun Fang
- The Graduate Program in Biophysical Sciences, The University of Chicago, Chicago, IL, United States
- Section of Pulmonary and Critical Care, Department of Medicine, The University of Chicago, Chicago, IL, United States
| | - Jun Huang
- The Graduate Program in Biophysical Sciences, The University of Chicago, Chicago, IL, United States
- Institute for Molecular Engineering, The University of Chicago, Chicago, IL, United States
| |
Collapse
|
30
|
Zhao X, Sankaran S, Yap J, Too CT, Ho ZZ, Dolton G, Legut M, Ren EC, Sewell AK, Bertoletti A, MacAry PA, Brzostek J, Gascoigne NRJ. Nonstimulatory peptide-MHC enhances human T-cell antigen-specific responses by amplifying proximal TCR signaling. Nat Commun 2018; 9:2716. [PMID: 30006605 PMCID: PMC6045629 DOI: 10.1038/s41467-018-05288-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 05/12/2018] [Indexed: 01/02/2023] Open
Abstract
Foreign antigens are presented by antigen-presenting cells in the presence of abundant endogenous peptides that are nonstimulatory to the T cell. In mouse T cells, endogenous, nonstimulatory peptides have been shown to enhance responses to specific peptide antigens, a phenomenon termed coagonism. However, whether coagonism also occurs in human T cells is unclear, and the molecular mechanism of coagonism is still under debate since CD4 and CD8 coagonism requires different interactions. Here we show that the nonstimulatory, HIV-derived peptide GAG enhances a specific human cytotoxic T lymphocyte response to HBV-derived epitopes presented by HLA-A*02:01. Coagonism in human T cells requires the CD8 coreceptor, but not T-cell receptor (TCR) binding to the nonstimulatory peptide–MHC. Coagonists enhance the phosphorylation and recruitment of several molecules involved in the TCR-proximal signaling pathway, suggesting that coagonists promote T-cell responses to antigenic pMHC by amplifying TCR-proximal signaling. Coagonism, the ability of nonstimulatory antigens to promote T-cell activation, has been reported in mice. Here the authors show that coagonism also occurs in human CD8 T cells, in which a nonstimulatory HIV GAG peptide enhances a specific T-cell response to a hepatitis B virus epitope by amplifying T-cell receptor signals.
Collapse
Affiliation(s)
- Xiang Zhao
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore, 117545, Singapore
| | - Shvetha Sankaran
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore, 117545, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore, 28 Medical Drive, Centre for Life Sciences, Level 3, Singapore, 117456, Singapore
| | - Jiawei Yap
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore, 117545, Singapore
| | - Chien Tei Too
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore, 117545, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore, 28 Medical Drive, Centre for Life Sciences, Level 3, Singapore, 117456, Singapore
| | - Zi Zong Ho
- Emerging Infectious Diseases Program, Duke-NUS Graduate Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Garry Dolton
- Division of Infection and Immunity, Cardiff University School of Medicine, Henry Wellcome Building, University Hospital Wales, Heath Park, Cardiff, CF14 4XN, United Kingdom
| | - Mateusz Legut
- Division of Infection and Immunity, Cardiff University School of Medicine, Henry Wellcome Building, University Hospital Wales, Heath Park, Cardiff, CF14 4XN, United Kingdom
| | - Ee Chee Ren
- Singapore Immunology Network, A*STAR, 8A Biomedical Grove, Immunos #03-06, Singapore, 138648, Singapore
| | - Andrew K Sewell
- Division of Infection and Immunity, Cardiff University School of Medicine, Henry Wellcome Building, University Hospital Wales, Heath Park, Cardiff, CF14 4XN, United Kingdom.,Systems Immunity Research Institute, Cardiff University, Tenovus Building, Cardiff, CF14 4XN, United Kingdom
| | - Antonio Bertoletti
- Emerging Infectious Diseases Program, Duke-NUS Graduate Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Paul A MacAry
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore, 117545, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore, 28 Medical Drive, Centre for Life Sciences, Level 3, Singapore, 117456, Singapore.,NUS Graduate School for Integrative Sciences and Engineering (NGS), National University of Singapore, Centre for Life Sciences (CeLS), #05-01, 28 Medical Drive, Singapore, 117456, Singapore
| | - Joanna Brzostek
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore, 117545, Singapore.
| | - Nicholas R J Gascoigne
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore, 117545, Singapore. .,Immunology Programme, Life Sciences Institute, National University of Singapore, 28 Medical Drive, Centre for Life Sciences, Level 3, Singapore, 117456, Singapore. .,NUS Graduate School for Integrative Sciences and Engineering (NGS), National University of Singapore, Centre for Life Sciences (CeLS), #05-01, 28 Medical Drive, Singapore, 117456, Singapore.
| |
Collapse
|
31
|
WEDAGEDERA JANAKR, BURROUGHS NJ. COMPARISON OF A DUAL STRATEGY FOR T-CELL ACTIVATION UNDER INHIBITION OF THE CD4 RECEPTOR. J BIOL SYST 2018. [DOI: 10.1142/s0218339018500158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We consider a stochastic model for T-cell activation proposed in Refs. [1] and [2] to compare the specificity and sensitivity of two different strategies for T-cell activation that utilize the history of phosphorylation of T-cell receptor (TCR). We compare these two strategies when the temporal signals/events that are essential for progressive T-cell activation are suppressed by blockade of CD4 receptor that may have caused by disease or therapeutic effects.3–6 We show that under these conditions, a threshold-strategy which is capable of maintaining a threshold (for total number of phosphorylated TCRs by time [Formula: see text]) for a further duration [Formula: see text] performs better in discriminating agonist peptides than a single-threshold strategy (reached by time [Formula: see text]) leading to T-cell activation using the Wentzell-Friedlin theory for large deviations for stochastic processes.7,8
Collapse
Affiliation(s)
- JANAK R. WEDAGEDERA
- Certara UK Limited, Simcyp Division, Level 2-Acero, 1 Concourse Way, Sheffield S1 2BJ, United Kingdom
| | - N. J. BURROUGHS
- Mathematics Institute and Warwick Systems, Biology Centre, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
32
|
James JR. Tuning ITAM multiplicity on T cell receptors can control potency and selectivity to ligand density. Sci Signal 2018; 11:11/531/eaan1088. [PMID: 29789296 DOI: 10.1126/scisignal.aan1088] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The T cell antigen receptor (TCR) recognizes peptides from pathogenic proteins bound in the major histocompatibility complex (MHC). To convert this binding event into downstream signaling, the TCR complex contains immunoreceptor tyrosine-based activation motifs (ITAMs) that act as docking sites for the cytoplasmic tyrosine kinase ZAP-70. Unique among antigen receptors, the TCR complex uses 10 ITAMs to transduce peptide-MHC binding to the cell interior. Using synthetic, drug-inducible receptor-ligand pairs, it was found that greater ITAM multiplicity primarily enhanced the efficiency with which ligand binding was converted into an intracellular signal. This manifested as an increase in the fraction of cells that became activated in response to antigen, and a more synchronous initiation of TCR-proximal signaling, rather than direct amplification of the intracellular signals. Exploiting these findings, the potency and selectivity of chimeric antigen receptors targeted against cancer were substantially enhanced by modulating the number of encoded ITAMs.
Collapse
Affiliation(s)
- John R James
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 OQH, UK.
| |
Collapse
|
33
|
|
34
|
Abstract
T cell receptors (TCRs) are protein complexes formed by six different polypeptides. In most T cells, TCRs are composed of αβ subunits displaying immunoglobulin-like variable domains that recognize peptide antigens associated with major histocompatibility complex molecules expressed on the surface of antigen-presenting cells. TCRαβ subunits are associated with the CD3 complex formed by the γ, δ, ε, and ζ subunits, which are invariable and ensure signal transduction. Here, we review how the expression and function of TCR complexes are orchestrated by several fine-tuned cellular processes that encompass (a) synthesis of the subunits and their correct assembly and expression at the plasma membrane as a single functional complex, (b) TCR membrane localization and dynamics at the plasma membrane and in endosomal compartments, (c) TCR signal transduction leading to T cell activation, and (d) TCR degradation. These processes balance each other to ensure efficient T cell responses to a variety of antigenic stimuli while preventing autoimmunity.
Collapse
Affiliation(s)
- Andrés Alcover
- Lymphocyte Cell Biology Unit, INSERM U1221, Department of Immunology, Institut Pasteur, Paris 75015, France; ,
| | - Balbino Alarcón
- Severo Ochoa Center for Molecular Biology, CSIC-UAM, Madrid 28049, Spain;
| | - Vincenzo Di Bartolo
- Lymphocyte Cell Biology Unit, INSERM U1221, Department of Immunology, Institut Pasteur, Paris 75015, France; ,
| |
Collapse
|
35
|
Kajita MK, Aihara K, Kobayashi TJ. Balancing specificity, sensitivity, and speed of ligand discrimination by zero-order ultraspecificity. Phys Rev E 2017; 96:012405. [PMID: 29347185 DOI: 10.1103/physreve.96.012405] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Indexed: 06/07/2023]
Abstract
Specific interactions between receptors and their target ligands in the presence of nontarget ligands are crucial for biological processes such as T cell ligand discrimination. To discriminate between the target and nontarget ligands, cells have to increase specificity to the target ligands by amplifying the small differences in affinity among ligands. In addition, sensitivity to the ligand concentration and quick discrimination are also important to detect low amounts of target ligands and facilitate fast cellular decision making after ligand recognition. In this work we propose a mechanism for nonlinear specificity amplification (ultraspecificity) based on zero-order saturating reactions, which was originally proposed to explain nonlinear sensitivity amplification (ultrasensitivity) to the ligand concentration. In contrast to the previously proposed proofreading mechanisms that amplify the specificity by a multistep reaction, our model can produce an optimal balance of specificity, sensitivity, and quick discrimination. Furthermore, we show that a model for insensitivity to a large number of nontarget ligands can be naturally derived from a model with the zero-order ultraspecificity. The zero-order ultraspecificity, therefore, may provide an alternative way to understand ligand discrimination from the viewpoint of nonlinear properties in biochemical reactions.
Collapse
Affiliation(s)
- Masashi K Kajita
- Department of Mathematical Informatics, Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan and Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-Ku, Tokyo 153-8505, Japan
| | - Kazuyuki Aihara
- Department of Mathematical Informatics, Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan and Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-Ku, Tokyo 153-8505, Japan
| | - Tetsuya J Kobayashi
- Department of Mathematical Informatics, Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan and Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-Ku, Tokyo 153-8505, Japan
| |
Collapse
|
36
|
Celada LJ, Rotsinger JE, Young A, Shaginurova G, Shelton D, Hawkins C, Drake WP. Programmed Death-1 Inhibition of Phosphatidylinositol 3-Kinase/AKT/Mechanistic Target of Rapamycin Signaling Impairs Sarcoidosis CD4 + T Cell Proliferation. Am J Respir Cell Mol Biol 2017; 56:74-82. [PMID: 27564547 DOI: 10.1165/rcmb.2016-0037oc] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Patients with progressive sarcoidosis exhibit increased expression of programmed death-1 (PD-1) receptor on their CD4+ T cells. Up-regulation of this marker of T cell exhaustion is associated with a reduction in the proliferative response to T cell receptor (TCR) stimulation, a defect that is reversed by PD-1 pathway blockade. Genome-wide association studies and microarray analyses have correlated signaling downstream from the TCR with sarcoidosis disease severity, but the mechanism is not yet known. Reduced phosphatidylinositol 3-kinase (PI3K)/AKT expression inhibits proliferation by inhibiting cell cycle progression. To test the hypothesis that PD-1 expression attenuates TCR-dependent activation of PI3K/AKT activity in progressive systemic sarcoidosis, we analyzed PI3K/AKT/mechanistic target of rapamycin (mTOR) expression at baseline and after PD-1 pathway blockade in CD4+ T cells isolated from patients with sarcoidosis and healthy control subjects. We confirmed an increased percentage of PD-1+ CD4+ T cells and reduced proliferative capacity in patients with sarcoidosis compared with healthy control subjects (P < 0.001). There was a negative correlation with PD-1 expression and proliferative capacity (r = -0.70, P < 0.001). Expression of key mediators of cell cycle progression, including PI3K and AKT, were significantly decreased. Gene and protein expression levels reverted to healthy control levels after PD-1 pathway blockade. Reduction in sarcoidosis CD4+ T cell proliferative capacity is secondary to altered expression of key mediators of cell cycle progression, including the PI3K/AKT/mTOR pathway, via PD-1 up-regulation. This supports the concept that PD-1 up-regulation drives the immunologic deficits associated with sarcoidosis severity by inducing signaling aberrancies in key mediators of cell cycle progression.
Collapse
Affiliation(s)
- Lindsay J Celada
- 1 Division of Infectious Diseases, Department of Medicine, and.,2 Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | | | - Anjuli Young
- 1 Division of Infectious Diseases, Department of Medicine, and
| | - Guzel Shaginurova
- 2 Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | | | | | - Wonder P Drake
- 1 Division of Infectious Diseases, Department of Medicine, and.,2 Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
37
|
Abstract
This is an exciting time for immunology because the future promises to be replete with exciting new discoveries that can be translated to improve health and treat disease in novel ways. Immunologists are attempting to answer increasingly complex questions concerning phenomena that range from the genetic, molecular, and cellular scales to that of organs, whole animals or humans, and populations of humans and pathogens. An important goal is to understand how the many different components involved interact with each other within and across these scales for immune responses to emerge, and how aberrant regulation of these processes causes disease. To aid this quest, large amounts of data can be collected using high-throughput instrumentation. The nonlinear, cooperative, and stochastic character of the interactions between components of the immune system as well as the overwhelming amounts of data can make it difficult to intuit patterns in the data or a mechanistic understanding of the phenomena being studied. Computational models are increasingly important in confronting and overcoming these challenges. I first describe an iterative paradigm of research that integrates laboratory experiments, clinical data, computational inference, and mechanistic computational models. I then illustrate this paradigm with a few examples from the recent literature that make vivid the power of bringing together diverse types of computational models with experimental and clinical studies to fruitfully interrogate the immune system.
Collapse
Affiliation(s)
- Arup K Chakraborty
- Institute for Medical Engineering and Science, Departments of Chemical Engineering, Physics, Chemistry, and Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; .,Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts 02139
| |
Collapse
|
38
|
Van Puyenbroeck V, Claeys E, Schols D, Bell TW, Vermeire K. A Proteomic Survey Indicates Sortilin as a Secondary Substrate of the ER Translocation Inhibitor Cyclotriazadisulfonamide (CADA). Mol Cell Proteomics 2016; 16:157-167. [PMID: 27998951 DOI: 10.1074/mcp.m116.061051] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 11/04/2016] [Indexed: 11/06/2022] Open
Abstract
The small molecule CADA was shown to down-modulate the expression of human CD4 in a signal peptide-dependent way through inhibition of its cotranslational translocation across the ER membrane. Previous studies characterizing general glycoprotein levels and the expression of 14 different cell surface receptors showed selectivity of CADA for human CD4. Here, a PowerBlot Western Array was used as a screen to analyze the proteome of CADA-treated SUP-T1 human CD4+ T lymphocytes. This high-throughput monoclonal antibody panel-based immunoblotting assay of cellular signaling proteins revealed that only a small subset of the 444 detected proteins was differentially expressed after treatment with CADA. Validation of these proteomic data with optimized immunoblot analysis confirmed the CADA-induced change in expression of the cell cycle progression regulator pRb2 and the transcription factor c-Jun. However, the up-regulation of pRb2 or down-modulation of c-Jun by CADA had no impact on cell cycle transition. Also, the reduced protein level of human CD4 did not inhibit T cell receptor signaling. Interestingly, the signal peptide-containing membrane protein sortilin was identified as a new substrate for CADA. Both cellular expression and in vitro cotranslational translocation of sortilin were significantly reduced by CADA, although to a lesser extent as compared with human CD4. Our data demonstrate that a small signal peptide-binding drug is able to down-modulate the expression of human CD4 and sortilin, apparently with low impact on the cellular proteome.
Collapse
Affiliation(s)
- Victor Van Puyenbroeck
- From the ‡KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000 Leuven, Belgium
| | - Elisa Claeys
- From the ‡KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000 Leuven, Belgium
| | - Dominique Schols
- From the ‡KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000 Leuven, Belgium
| | - Thomas W Bell
- §Department of Chemistry, University of Nevada, Reno, NV, USA
| | - Kurt Vermeire
- From the ‡KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000 Leuven, Belgium;
| |
Collapse
|
39
|
Abstract
Adoptive T-cell therapies have shown exceptional promise in the treatment of cancer, especially B-cell malignancies. Two distinct strategies have been used to redirect the activity of ex vivo engineered T cells. In one case, the well-known ability of the T-cell receptor (TCR) to recognize a specific peptide bound to a major histocompatibility complex molecule has been exploited by introducing a TCR against a cancer-associated peptide/human leukocyte antigen complex. In the other strategy, synthetic constructs called chimeric antigen receptors (CARs) that contain antibody variable domains (single-chain fragments variable) and signaling domains have been introduced into T cells. Whereas many reviews have described these two approaches, this review focuses on a few recent advances of significant interest. The early success of CARs has been followed by questions about optimal configurations of these synthetic constructs, especially for efficacy against solid tumors. Among the many features that are important, the dimensions and stoichiometries of CAR/antigen complexes at the synapse have recently begun to be appreciated. In TCR-mediated approaches, recent evidence that mutated peptides (neoantigens) serve as targets for endogenous T-cell responses suggests that these neoantigens may also provide new opportunities for adoptive T-cell therapies with TCRs.
Collapse
Affiliation(s)
- Preeti Sharma
- Department of Biochemistry, University of Illinois, Urbana, IL, USA
| | - David M Kranz
- Department of Biochemistry, University of Illinois, Urbana, IL, USA
| |
Collapse
|
40
|
Phosphorylation of a Tyrosine Residue on Zap70 by Lck and Its Subsequent Binding via an SH2 Domain May Be a Key Gatekeeper of T Cell Receptor Signaling In Vivo. Mol Cell Biol 2016; 36:2396-402. [PMID: 27354065 DOI: 10.1128/mcb.00165-16] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 06/21/2016] [Indexed: 11/20/2022] Open
Abstract
The initiation of signaling in T lymphocytes in response to the binding of the T cell receptor (TCR) to cognate ligands is a key step in the emergence of adaptive immune responses. Conventional models posit that TCR signaling is initiated by the phosphorylation of receptor-associated immune receptor activation motifs (ITAMs). The cytoplasmic tyrosine kinase Zap70 binds to phosphorylated ITAMs, is subsequently activated, and then propagates downstream signaling. While evidence for such models is provided by experiments with cell lines, in vivo, Zap70 is bound to phosphorylated ITAMs in resting T cells. However, Zap70 is activated only upon TCR binding to cognate ligand. We report the results of computational studies of a new model for the initiation of TCR signaling that incorporates these in vivo observations. Importantly, the new model is shown to allow better and faster TCR discrimination between self-ligands and foreign ligands. The new model is consistent with many past experimental observations, and experiments that could further test the model are proposed.
Collapse
|
41
|
Moogk D, Zhong S, Yu Z, Liadi I, Rittase W, Fang V, Dougherty J, Perez-Garcia A, Osman I, Zhu C, Varadarajan N, Restifo NP, Frey AB, Krogsgaard M. Constitutive Lck Activity Drives Sensitivity Differences between CD8+ Memory T Cell Subsets. THE JOURNAL OF IMMUNOLOGY 2016; 197:644-54. [PMID: 27271569 DOI: 10.4049/jimmunol.1600178] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 05/04/2016] [Indexed: 12/16/2022]
Abstract
CD8(+) T cells develop increased sensitivity following Ag experience, and differences in sensitivity exist between T cell memory subsets. How differential TCR signaling between memory subsets contributes to sensitivity differences is unclear. We show in mouse effector memory T cells (TEM) that >50% of lymphocyte-specific protein tyrosine kinase (Lck) exists in a constitutively active conformation, compared with <20% in central memory T cells (TCM). Immediately proximal to Lck signaling, we observed enhanced Zap-70 phosphorylation in TEM following TCR ligation compared with TCM Furthermore, we observed superior cytotoxic effector function in TEM compared with TCM, and we provide evidence that this results from a lower probability of TCM reaching threshold signaling owing to the decreased magnitude of TCR-proximal signaling. We provide evidence that the differences in Lck constitutive activity between CD8(+) TCM and TEM are due to differential regulation by SH2 domain-containing phosphatase-1 (Shp-1) and C-terminal Src kinase, and we use modeling of early TCR signaling to reveal the significance of these differences. We show that inhibition of Shp-1 results in increased constitutive Lck activity in TCM to levels similar to TEM, as well as increased cytotoxic effector function in TCM Collectively, this work demonstrates a role for constitutive Lck activity in controlling Ag sensitivity, and it suggests that differential activities of TCR-proximal signaling components may contribute to establishing the divergent effector properties of TCM and TEM. This work also identifies Shp-1 as a potential target to improve the cytotoxic effector functions of TCM for adoptive cell therapy applications.
Collapse
Affiliation(s)
- Duane Moogk
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016
| | - Shi Zhong
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016
| | - Zhiya Yu
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Ivan Liadi
- Department of Chemical and Biomolecular Engineering, University of Houston, TX 77004
| | - William Rittase
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332
| | - Victoria Fang
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016; New York University Medical Scientist Training Program, New York, NY 10016
| | - Janna Dougherty
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016
| | - Arianne Perez-Garcia
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016
| | - Iman Osman
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016; Ronald Perelman Department of Dermatology, New York University School of Medicine, New York, NY 10016
| | - Cheng Zhu
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332
| | - Navin Varadarajan
- Department of Chemical and Biomolecular Engineering, University of Houston, TX 77004
| | - Nicholas P Restifo
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Alan B Frey
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016; and
| | - Michelle Krogsgaard
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016; Department of Pathology, New York University School of Medicine, New York, NY 10016
| |
Collapse
|
42
|
Jönsson P, Southcombe JH, Santos AM, Huo J, Fernandes RA, McColl J, Lever M, Evans EJ, Hudson A, Chang VT, Hanke T, Godkin A, Dunne PD, Horrocks MH, Palayret M, Screaton GR, Petersen J, Rossjohn J, Fugger L, Dushek O, Xu XN, Davis SJ, Klenerman D. Remarkably low affinity of CD4/peptide-major histocompatibility complex class II protein interactions. Proc Natl Acad Sci U S A 2016; 113:5682-7. [PMID: 27114505 PMCID: PMC4878507 DOI: 10.1073/pnas.1513918113] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The αβ T-cell coreceptor CD4 enhances immune responses more than 1 million-fold in some assays, and yet the affinity of CD4 for its ligand, peptide-major histocompatibility class II (pMHC II) on antigen-presenting cells, is so weak that it was previously unquantifiable. Here, we report that a soluble form of CD4 failed to bind detectably to pMHC II in surface plasmon resonance-based assays, establishing a new upper limit for the solution affinity at 2.5 mM. However, when presented multivalently on magnetic beads, soluble CD4 bound pMHC II-expressing B cells, confirming that it is active and allowing mapping of the native coreceptor binding site on pMHC II. Whereas binding was undetectable in solution, the affinity of the CD4/pMHC II interaction could be measured in 2D using CD4- and adhesion molecule-functionalized, supported lipid bilayers, yielding a 2D Kd of ∼5,000 molecules/μm(2) This value is two to three orders of magnitude higher than previously measured 2D Kd values for interacting leukocyte surface proteins. Calculations indicated, however, that CD4/pMHC II binding would increase rates of T-cell receptor (TCR) complex phosphorylation by threefold via the recruitment of Lck, with only a small, 2-20% increase in the effective affinity of the TCR for pMHC II. The affinity of CD4/pMHC II therefore seems to be set at a value that increases T-cell sensitivity by enhancing phosphorylation, without compromising ligand discrimination.
Collapse
Affiliation(s)
- Peter Jönsson
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom; Department of Chemistry, Lund University, SE-22100 Lund, Sweden
| | - Jennifer H Southcombe
- MRC Human Immunology Unit, University of Oxford, Oxford OX3 9DS, United Kingdom; Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom; Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Ana Mafalda Santos
- MRC Human Immunology Unit, University of Oxford, Oxford OX3 9DS, United Kingdom; Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Jiandong Huo
- MRC Human Immunology Unit, University of Oxford, Oxford OX3 9DS, United Kingdom; Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Ricardo A Fernandes
- MRC Human Immunology Unit, University of Oxford, Oxford OX3 9DS, United Kingdom; Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - James McColl
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Melissa Lever
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Edward J Evans
- MRC Human Immunology Unit, University of Oxford, Oxford OX3 9DS, United Kingdom; Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Alexander Hudson
- MRC Human Immunology Unit, University of Oxford, Oxford OX3 9DS, United Kingdom; Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Veronica T Chang
- MRC Human Immunology Unit, University of Oxford, Oxford OX3 9DS, United Kingdom; Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Tomáš Hanke
- MRC Human Immunology Unit, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Andrew Godkin
- Department of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom
| | - Paul D Dunne
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Mathew H Horrocks
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Matthieu Palayret
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Gavin R Screaton
- MRC Human Immunology Unit, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Jan Petersen
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, VIC 3800, Australia
| | - Jamie Rossjohn
- Department of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom; Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, VIC 3800, Australia
| | - Lars Fugger
- MRC Human Immunology Unit, University of Oxford, Oxford OX3 9DS, United Kingdom; Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom; Nuffield Department of Clinical Neurosciences, Division of Clinical Neurology, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Omer Dushek
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Xiao-Ning Xu
- MRC Human Immunology Unit, University of Oxford, Oxford OX3 9DS, United Kingdom;
| | - Simon J Davis
- MRC Human Immunology Unit, University of Oxford, Oxford OX3 9DS, United Kingdom; Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom;
| | - David Klenerman
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom;
| |
Collapse
|
43
|
Blas-Rus N, Bustos-Morán E, Pérez de Castro I, de Cárcer G, Borroto A, Camafeita E, Jorge I, Vázquez J, Alarcón B, Malumbres M, Martín-Cófreces NB, Sánchez-Madrid F. Aurora A drives early signalling and vesicle dynamics during T-cell activation. Nat Commun 2016; 7:11389. [PMID: 27091106 PMCID: PMC4838898 DOI: 10.1038/ncomms11389] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 03/21/2016] [Indexed: 01/09/2023] Open
Abstract
Aurora A is a serine/threonine kinase that contributes to the progression of mitosis by inducing microtubule nucleation. Here we have identified an unexpected role for Aurora A kinase in antigen-driven T-cell activation. We find that Aurora A is phosphorylated at the immunological synapse (IS) during TCR-driven cell contact. Inhibition of Aurora A with pharmacological agents or genetic deletion in human or mouse T cells severely disrupts the dynamics of microtubules and CD3ζ-bearing vesicles at the IS. The absence of Aurora A activity also impairs the activation of early signalling molecules downstream of the TCR and the expression of IL-2, CD25 and CD69. Aurora A inhibition causes delocalized clustering of Lck at the IS and decreases phosphorylation levels of tyrosine kinase Lck, thus indicating Aurora A is required for maintaining Lck active. These findings implicate Aurora A in the propagation of the TCR activation signal. Aurora A is a protein kinase that contributes to the progression of mitosis by stimulating microtubule nucleation. Here the authors show that Aurora A also functions during T cell activation by maintaining TCR signaling through Lck activation.
Collapse
Affiliation(s)
- Noelia Blas-Rus
- Servicio de Inmunología, Hospital Universitario de la Princesa, Instituto Investigación Sanitaria Princesa (IIS-IP), Universidad Autónoma de Madrid, C/ Diego de León 62, Madrid 28006, Spain
| | - Eugenio Bustos-Morán
- Cell-cell Communication Laboratory, Vascular Pathophysiology Area, Centro Nacional Investigaciones Cardiovasculares (CNIC), C/ Melchor Fdz Almagro 3, Madrid 28029, Spain
| | - Ignacio Pérez de Castro
- Cell Division and Cancer Group, Centro Nacional de Investigaciones Oncológicas (CNIO), C/ Melchor Fdz Almagro 3, Madrid 28029, Spain
| | - Guillermo de Cárcer
- Cell Division and Cancer Group, Centro Nacional de Investigaciones Oncológicas (CNIO), C/ Melchor Fdz Almagro 3, Madrid 28029, Spain
| | - Aldo Borroto
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, C/ Nicolás cabrera 1, Madrid 28049, Spain
| | - Emilio Camafeita
- Laboratory of Cardiovascular Proteomics, Centro Nacional Investigaciones Cardiovasculares (CNIC), C/ Melchor Fdz Almagro 3, Madrid 28029, Spain
| | - Inmaculada Jorge
- Laboratory of Cardiovascular Proteomics, Centro Nacional Investigaciones Cardiovasculares (CNIC), C/ Melchor Fdz Almagro 3, Madrid 28029, Spain
| | - Jesús Vázquez
- Laboratory of Cardiovascular Proteomics, Centro Nacional Investigaciones Cardiovasculares (CNIC), C/ Melchor Fdz Almagro 3, Madrid 28029, Spain
| | - Balbino Alarcón
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, C/ Nicolás cabrera 1, Madrid 28049, Spain
| | - Marcos Malumbres
- Cell Division and Cancer Group, Centro Nacional de Investigaciones Oncológicas (CNIO), C/ Melchor Fdz Almagro 3, Madrid 28029, Spain
| | - Noa B Martín-Cófreces
- Servicio de Inmunología, Hospital Universitario de la Princesa, Instituto Investigación Sanitaria Princesa (IIS-IP), Universidad Autónoma de Madrid, C/ Diego de León 62, Madrid 28006, Spain.,Cell-cell Communication Laboratory, Vascular Pathophysiology Area, Centro Nacional Investigaciones Cardiovasculares (CNIC), C/ Melchor Fdz Almagro 3, Madrid 28029, Spain
| | - Francisco Sánchez-Madrid
- Servicio de Inmunología, Hospital Universitario de la Princesa, Instituto Investigación Sanitaria Princesa (IIS-IP), Universidad Autónoma de Madrid, C/ Diego de León 62, Madrid 28006, Spain.,Cell-cell Communication Laboratory, Vascular Pathophysiology Area, Centro Nacional Investigaciones Cardiovasculares (CNIC), C/ Melchor Fdz Almagro 3, Madrid 28029, Spain
| |
Collapse
|
44
|
Harris DT, Kranz DM. Adoptive T Cell Therapies: A Comparison of T Cell Receptors and Chimeric Antigen Receptors. Trends Pharmacol Sci 2015; 37:220-230. [PMID: 26705086 DOI: 10.1016/j.tips.2015.11.004] [Citation(s) in RCA: 189] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 09/23/2015] [Accepted: 11/12/2015] [Indexed: 01/04/2023]
Abstract
The tumor-killing properties of T cells provide tremendous opportunities to treat cancer. Adoptive T cell therapies have begun to harness this potential by endowing a functionally diverse repertoire of T cells with genetically modified, tumor-specific recognition receptors. Normally, this antigen recognition function is mediated by an αβ T cell receptor (TCR), but the dominant therapeutic forms currently in development are synthetic constructs called chimeric antigen receptors (CARs). While CAR-based adoptive cell therapies are already showing great promise, their basic mechanistic properties have been studied in less detail compared with those of αβ TCRs. In this review, we compare and contrast various features of TCRs versus CARs, with a goal of highlighting issues that need to be addressed to fully exploit the therapeutic potential of both.
Collapse
Affiliation(s)
- Daniel T Harris
- Department of Biochemistry, University of Illinois, 600 S. Matthews Avenue, Urbana, IL 61801, USA
| | - David M Kranz
- Department of Biochemistry, University of Illinois, 600 S. Matthews Avenue, Urbana, IL 61801, USA.
| |
Collapse
|
45
|
Robinson RH, Meissler JJ, Fan X, Yu D, Adler MW, Eisenstein TK. A CB2-Selective Cannabinoid Suppresses T-Cell Activities and Increases Tregs and IL-10. J Neuroimmune Pharmacol 2015; 10:318-32. [PMID: 25980325 PMCID: PMC4528965 DOI: 10.1007/s11481-015-9611-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 04/26/2015] [Indexed: 01/03/2023]
Abstract
We have previously shown that agonists selective for the cannabinoid receptor 2 (CB2), including O-1966, inhibit the Mixed Lymphocyte Reaction (MLR), an in vitro correlate of organ graft rejection, predominantly through effects on T-cells. Current studies explored the mechanism of this immunosuppression by O-1966 using mouse spleen cells. Treatment with O-1966 dose-relatedly decreased levels of the active nuclear forms of the transcription factors NF-κB and NFAT in wild-type T-cells, but not T-cells from CB2 knockout (CB2R k/o) mice. Additionally, a gene expression profile of purified T-cells from MLR cultures generated using a PCR T-cell activation array showed that O-1966 decreased mRNA expression of CD40 ligand and CyclinD3, and increased mRNA expression of Src-like-adaptor 2 (SLA2), Suppressor of Cytokine Signaling 5 (SOCS5), and IL-10. The increase in IL-10 was confirmed by measuring IL-10 protein levels in MLR culture supernatants. Further, an increase in the percentage of regulatory T-cells (Tregs) was observed in MLR cultures. Pretreatment with anti-IL-10 resulted in a partial reversal of the inhibition of proliferation and blocked the increase of Tregs. Additionally, O-1966 treatment caused a dose-related decrease in the expression of CD4 in MLR cultures from wild-type, but not CB2R k/o, mice. These data support the potential of CB2-selective agonists as useful therapeutic agents to prolong graft survival in transplant patients, and strengthens their potential as a new class of immunosuppressive agents with broader applicability.
Collapse
MESH Headings
- Animals
- Anisoles/pharmacology
- Cannabinoid Receptor Agonists/pharmacology
- Coculture Techniques
- Cyclohexanols
- Dose-Response Relationship, Drug
- Female
- Interleukin-10/biosynthesis
- Mice
- Mice, Inbred C3H
- Mice, Inbred C57BL
- Mice, Knockout
- Receptor, Cannabinoid, CB2/agonists
- Receptor, Cannabinoid, CB2/metabolism
- T-Lymphocytes/drug effects
- T-Lymphocytes/metabolism
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/metabolism
Collapse
Affiliation(s)
- Rebecca H. Robinson
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA
- Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, PA 19140
| | - Joseph J. Meissler
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA
- Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, PA 19140
| | - Xiaoxuan Fan
- Manager, Flow Cytometry Facility, Temple University School of Medicine, Philadelphia, PA 19140
| | - Daohai Yu
- Department of Clinical Sciences, Temple University School of Medicine, Philadelphia, PA 19140
| | - Martin W. Adler
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140
| | - Toby K. Eisenstein
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA
- Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, PA 19140
| |
Collapse
|
46
|
Goodfellow HS, Frushicheva MP, Ji Q, Cheng DA, Kadlecek TA, Cantor AJ, Kuriyan J, Chakraborty AK, Salomon A, Weiss A. The catalytic activity of the kinase ZAP-70 mediates basal signaling and negative feedback of the T cell receptor pathway. Sci Signal 2015; 8:ra49. [PMID: 25990959 DOI: 10.1126/scisignal.2005596] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
T cell activation by antigens binding to the T cell receptor (TCR) must be properly regulated to ensure normal T cell development and effective immune responses to pathogens and transformed cells while avoiding autoimmunity. The Src family kinase Lck and the Syk family kinase ZAP-70 (ζ chain-associated protein kinase of 70 kD) are sequentially activated in response to TCR engagement and serve as critical components of the TCR signaling machinery that leads to T cell activation. We performed a mass spectrometry-based phosphoproteomic study comparing the quantitative differences in the temporal dynamics of phosphorylation in stimulated and unstimulated T cells with or without inhibition of ZAP-70 catalytic activity. The data indicated that the kinase activity of ZAP-70 stimulates negative feedback pathways that target Lck and thereby modulate the phosphorylation patterns of the immunoreceptor tyrosine-based activation motifs (ITAMs) of the CD3 and ζ chain components of the TCR and of signaling molecules downstream of Lck, including ZAP-70. We developed a computational model that provides a mechanistic explanation for the experimental findings on ITAM phosphorylation in wild-type cells, ZAP-70-deficient cells, and cells with inhibited ZAP-70 catalytic activity. This model incorporated negative feedback regulation of Lck activity by the kinase activity of ZAP-70 and predicted the order in which tyrosines in the ITAMs of TCR ζ chains must be phosphorylated to be consistent with the experimental data.
Collapse
Affiliation(s)
- Hanna Sjölin Goodfellow
- Howard Hughes Medical Institute, UCSF, San Francisco, CA 94143, USA.,Department of Medicine, UCSF, San Francisco, CA 94143, USA
| | - Maria P Frushicheva
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Qinqin Ji
- Department of Chemistry, Brown University, Providence, RI 02912, USA
| | - Debra A Cheng
- Howard Hughes Medical Institute, UCSF, San Francisco, CA 94143, USA.,Department of Medicine, UCSF, San Francisco, CA 94143, USA
| | - Theresa A Kadlecek
- Howard Hughes Medical Institute, UCSF, San Francisco, CA 94143, USA.,Department of Medicine, UCSF, San Francisco, CA 94143, USA
| | - Aaron J Cantor
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.,California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720, USA
| | - John Kuriyan
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.,California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720, USA.,Department of Chemistry, University of California, Berkeley, CA 94720, USA.,Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA.,Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Arup K Chakraborty
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Arthur Salomon
- Department of Chemistry, Brown University, Providence, RI 02912, USA.,Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Arthur Weiss
- Howard Hughes Medical Institute, UCSF, San Francisco, CA 94143, USA.,Department of Medicine, UCSF, San Francisco, CA 94143, USA
| |
Collapse
|
47
|
The coreceptor CD4 is expressed in distinct nanoclusters and does not colocalize with T-cell receptor and active protein tyrosine kinase p56lck. Proc Natl Acad Sci U S A 2015; 112:E1604-13. [PMID: 25829544 DOI: 10.1073/pnas.1503532112] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
CD4 molecules on the surface of T lymphocytes greatly augment the sensitivity and activation process of these cells, but how it functions is not fully understood. Here we studied the spatial organization of CD4, and its relationship to T-cell antigen receptor (TCR) and the active form of Src kinase p56lck (Lck) using single and dual-color photoactivated localization microscopy (PALM) and direct stochastic optical reconstruction microscopy (dSTORM). In nonactivated T cells, CD4 molecules are clustered in small protein islands, as are TCR and Lck. By dual-color imaging, we find that CD4, TCR, and Lck are localized in their separate clusters with limited interactions in the interfaces between them. Upon T-cell activation, the TCR and CD4 begin clustering together, developing into microclusters, and undergo a larger scale redistribution to form supramolecluar activation clusters (SMACs). CD4 and Lck localize in the inner TCR region of the SMAC, but this redistribution of disparate cluster structures results in enhanced segregation from each other. In nonactivated cells these preclustered structures and the limited interactions between them may serve to limit spontaneous and random activation events. However, the small sizes of these island structures also ensure large interfacial surfaces for potential interactions and signal amplification when activation is initiated. In the later activation stages, the increasingly larger clusters and their segregation from each other reduce the interfacial surfaces and could have a dampening effect. These highly differentiated spatial distributions of TCR, CD4, and Lck and their changes during activation suggest that there is a more complex hierarchy than previously thought.
Collapse
|
48
|
Madureira P, de Mello RA, de Vasconcelos A, Zhang Y. Immunotherapy for lung cancer: for whom the bell tolls? Tumour Biol 2015; 36:1411-1422. [PMID: 25736929 DOI: 10.1007/s13277-015-3285-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 02/18/2015] [Indexed: 12/14/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related death and accounts for approximately 30% of all cancer deaths. Despite the recent developments in personalized therapy, the prognosis in lung cancer is still very poor. Immunotherapy is now emerging as a new hope for patients with lung cancer. It is well known that standard chemotherapeutic regimens have devastating effects for the patient's immune system. Therefore, the aim of immunotherapy is to specifically enhance the immune response against the tumour. Recently, many trials addressed the role of such therapies for metastatic non-small cell lung cancer (NSCLC) treatment: ipilimumab, tremelimumab, nivolumab and pembrolizumab are immunotherapeutic agents of high relevance in this field. Anti-tumour vaccines, as well as dendritic cell-based therapies, have emerged as potent inducers of immune response against the tumour. Herein, we will review some of the most promising cancer immunotherapies, highlighting their advantages and try to understand, in an immunological perspective, the missteps associated with the current treatments for cancer.
Collapse
Affiliation(s)
- Pedro Madureira
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | | | | | | |
Collapse
|
49
|
Insights into the initiation of TCR signaling. Nat Immunol 2014; 15:798-807. [PMID: 25137454 DOI: 10.1038/ni.2940] [Citation(s) in RCA: 264] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 06/10/2014] [Indexed: 12/13/2022]
Abstract
The initiation of T cell antigen receptor signaling is a key step that can result in T cell activation and the orchestration of an adaptive immune response. Early events in T cell receptor signaling can distinguish between agonist and endogenous ligands with exquisite selectivity, and show extraordinary sensitivity to minute numbers of agonists in a sea of endogenous ligands. We review our current knowledge of models and crucial molecules that aim to provide a mechanistic explanation for these observations. Building on current understanding and a discussion of unresolved issues, we propose a molecular model for initiation of T cell receptor signaling that may serve as a useful guide for future studies.
Collapse
|
50
|
Liu YM, Luo J, Bennett C. Adaptive immunity: Based on the dual recognition responses of αβT cells. SELF NONSELF 2014; 1:62-66. [PMID: 21559178 DOI: 10.4161/self.1.1.10441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 10/22/2009] [Accepted: 10/27/2009] [Indexed: 11/19/2022]
Abstract
It is proposed that the recently reported second recognition mode of αβT cells allows an explanation of the evolutionary origin of adaptive immunity. The dual modes provide the mechanism of development/differentiation of αβT cells under the control of immune response (Ir) genes by which a given T-cell can distinguish one kind of MHC molecule (as 'self' phase, learned from its positive selection) from others (as 'nonself' phase) involved in antigen recognition. It is thus possible to re-explain the 'self'/'nonself' concept based on 'homotype (phase)'/'heterotype (phase)' recognition at the level of a single clone of T cells. Hence adaptive immunity is explained here as being derived from functions that ensure synchronous ontogeny and prevent the paradoxical (or retrograde) development of vertebrates.
Collapse
Affiliation(s)
- Yan-Ming Liu
- Tianjin University of Traditional Chinese Medicine; Tianjin, China
| | | | | |
Collapse
|