1
|
Ma J, Wang S, Zhang P, Zheng S, Li X, Li J, Pei H. Emerging roles for fatty acid oxidation in cancer. Genes Dis 2025; 12:101491. [PMID: 40290117 PMCID: PMC12022645 DOI: 10.1016/j.gendis.2024.101491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 11/09/2024] [Indexed: 04/30/2025] Open
Abstract
Fatty acid oxidation (FAO) denotes the mitochondrial aerobic process responsible for breaking down fatty acids (FAs) into acetyl-CoA units. This process holds a central position in the cancer metabolic landscape, with certain tumor cells relying primarily on FAO for energy production. Over the past decade, mounting evidence has underscored the critical role of FAO in various cellular processes such as cell growth, epigenetic modifications, tissue-immune homeostasis, cell signal transduction, and more. FAO is tightly regulated by multiple evolutionarily conserved mechanisms, and any dysregulation can predispose to cancer development. In this view, we summarize recent findings to provide an updated understanding of the multifaceted roles of FAO in tumor development, metastasis, and the response to cancer therapy. Additionally, we explore the regulatory mechanisms of FAO, laying the groundwork for potential therapeutic interventions targeting FAO in cancers within the metabolic landscape.
Collapse
Affiliation(s)
- Jialin Ma
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Shuxian Wang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Pingfeng Zhang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Sihao Zheng
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Xiangpan Li
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Juanjuan Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Huadong Pei
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|
2
|
Liu D, Liu L, Zhao X, Zhang X, Chen X, Che X, Wu G. A comprehensive review on targeting diverse immune cells for anticancer therapy: Beyond immune checkpoint inhibitors. Crit Rev Oncol Hematol 2025; 210:104702. [PMID: 40122356 DOI: 10.1016/j.critrevonc.2025.104702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/02/2025] [Accepted: 03/07/2025] [Indexed: 03/25/2025] Open
Abstract
Although immune checkpoint inhibitors (ICIs) have revolutionized cancer treatment, primary resistance and acquired resistance continue to limit their efficacy for many patients. To address resistance and enhance the anti-tumor activity within the tumor immune microenvironment (TIME), numerous therapeutic strategies targeting both innate and adaptive immune cells have emerged. These include combination therapies with ICIs, chimeric antigen receptor T-cell (CAR-T), chimeric antigen receptor macrophages (CAR-Ms) or chimeric antigen receptor natural killer cell (CAR-NK) therapy, colony stimulating factor 1 receptor (CSF1R) inhibitors, dendritic cell (DC) vaccines, toll-like receptor (TLR) agonists, cytokine therapies, and chemokine inhibition. These approaches underscore the significant potential of the TIME in cancer treatment. This article provides a comprehensive and up-to-date review of the mechanisms of action of various innate and adaptive immune cells within the TIME, as well as the therapeutic strategies targeting each immune cell type, aiming to deepen the understanding of their therapeutic potential.
Collapse
Affiliation(s)
- Dequan Liu
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Lei Liu
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xinming Zhao
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xiaoman Zhang
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xiaochi Chen
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| | - Xiangyu Che
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| | - Guangzhen Wu
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| |
Collapse
|
3
|
Ma Q, Zhu Y, Zhang D, Su X, Jiang C, Zhang Y, Zhang X, Han N, Shu G, Yin G, Wang M. Reprogramming and targeting of cholesterol metabolism in tumor-associated macrophages. J Mater Chem B 2025; 13:5494-5520. [PMID: 40266660 DOI: 10.1039/d5tb00236b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Cholesterol, as a major component of cell membranes, is closely related to the metabolic regulation of cells and organisms; tumor-associated macrophages play an important push role in tumor progression. We know that tumor-associated macrophages are polarized from macrophages, and the abnormalities of cholesterol metabolism that may be induced during their polarization are worth discussing. This manuscript focuses on metabolic abnormalities in tumor-associated macrophages, and first provides a basic summary of the regulatory mechanisms of abnormal macrophage polarization. Subsequently, it comprehensively describes the features of abnormal glucose, lipid and cholesterol metabolism in TAMs as well as the different regulatory pathways. Then, the paper also discusses the link between abnormal cholesterol metabolism in TAMs and tumors, chronic diseases and aging. Finally, the paper summarizes cancer therapeutic strategies targeting cholesterol metabolism that are already in clinical trials, as well as nanomaterials capable of targeting cholesterol metabolism that are in the research stage, in the hope of providing value for the design of targeting materials. Overall, elucidating metabolic abnormalities in tumor-associated macrophages, particularly cholesterol metabolism, could provide assistance in tumor therapy and the design of targeted drugs.
Collapse
Affiliation(s)
- Qiaoluo Ma
- Department of Pathology, Xiangya Hospital, Xiangya School of Basic Medical Sciences, Central South University, Changsha, China.
| | - Ying Zhu
- Department of Pathology, Xiangya Hospital, Xiangya School of Basic Medical Sciences, Central South University, Changsha, China.
| | - Dongya Zhang
- Department of Pathology, Xiangya Hospital, Xiangya School of Basic Medical Sciences, Central South University, Changsha, China.
| | - Xiaohan Su
- Department of Pathology, Xiangya Hospital, Xiangya School of Basic Medical Sciences, Central South University, Changsha, China.
| | - Can Jiang
- Department of Pathology, Xiangya Hospital, Xiangya School of Basic Medical Sciences, Central South University, Changsha, China.
| | - Yuzhu Zhang
- Department of Pathology, Xiangya Hospital, Xiangya School of Basic Medical Sciences, Central South University, Changsha, China.
| | - Xingting Zhang
- Department of Pathology, Xiangya Hospital, Xiangya School of Basic Medical Sciences, Central South University, Changsha, China.
| | - Na Han
- Department of Pathology, Xiangya Hospital, Xiangya School of Basic Medical Sciences, Central South University, Changsha, China.
| | - Guang Shu
- Department of Pathology, Xiangya Hospital, Xiangya School of Basic Medical Sciences, Central South University, Changsha, China.
| | - Gang Yin
- Department of Pathology, Xiangya Hospital, Xiangya School of Basic Medical Sciences, Central South University, Changsha, China.
| | - Maonan Wang
- Department of Pathology, Xiangya Hospital, Xiangya School of Basic Medical Sciences, Central South University, Changsha, China.
| |
Collapse
|
4
|
Wang Y, Zhu N, Liu J, Chen F, Song Y, Ma Y, Yang Z, Wang D. Role of tumor microenvironment in ovarian cancer metastasis and clinical advancements. J Transl Med 2025; 23:539. [PMID: 40369674 PMCID: PMC12079989 DOI: 10.1186/s12967-025-06508-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 04/16/2025] [Indexed: 05/16/2025] Open
Abstract
Ovarian cancer (OC) is the most lethal gynecological malignancy worldwide, characterized by heterogeneity at the molecular, cellular and anatomical levels. Most patients are diagnosed at an advanced stage, characterized by widespread peritoneal metastasis. Despite optimal cytoreductive surgery and platinum-based chemotherapy, peritoneal spread and recurrence of OC are common, resulting in poor prognoses. The overall survival of patients with OC has not substantially improved over the past few decades, highlighting the urgent necessity of new treatment options. Unlike the classical lymphatic and hematogenous metastasis observed in other malignancies, OC primarily metastasizes through widespread peritoneal seeding. Tumor cells (the "seeds") exhibit specific affinities for certain organ microenvironments (the "soil"), and metastatic foci can only form when there is compatibility between the "seeds" and "soil." Recent studies have highlighted the tumor microenvironment (TME) as a critical factor influencing the interactions between the "seeds" and "soil," with ascites and the local peritoneal microenvironment playing pivotal roles in the initiation and progression of OC. Prior to metastasis, the interplay among tumor cells, immunosuppressive cells, and stromal cells leads to the formation of an immunosuppressive pre-metastatic niche in specific sites. This includes characteristic alterations in tumor cells, recruitment and functional anomalies of immune cells, and dysregulation of stromal cell distribution and function. TME-mediated crosstalk between cancer and stromal cells drives tumor progression, therapy resistance, and metastasis. In this review, we summarize the current knowledge on the onset and metastatic progression of OC. We provide a comprehensive discussion of the characteristics and functions of TME related to OC metastasis, as well as its association with peritoneal spread. We also outline ongoing relevant clinical trials, aiming to offer new insights for identifying potential effective biomarkers and therapeutic targets in future clinical practice.
Collapse
Affiliation(s)
- Yang Wang
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, People's Republic of China
| | - Na Zhu
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, People's Republic of China
| | - Jing Liu
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, People's Republic of China
| | - Fang Chen
- Department of Gynecology, People's Hospital of Liaoning Province, Shenyang, Liaoning Province, 110016, People's Republic of China
| | - Yang Song
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, No.36, Sanhao Street, Heping District, Shenyang, Liaoning, 110004, People's Republic of China
| | - Yue Ma
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, People's Republic of China.
| | - Zhuo Yang
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, People's Republic of China.
| | - Danbo Wang
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, People's Republic of China.
| |
Collapse
|
5
|
Abbaspour A, Martinez Cavazos AL, Patel R, Yang N, McGregor SM, Brooks EG, Masters KS, Kreeger PK. Collagen fiber density observed in metastatic ovarian cancer promotes tumor cell adhesion. Acta Biomater 2025:S1742-7061(25)00360-5. [PMID: 40374134 DOI: 10.1016/j.actbio.2025.05.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 05/06/2025] [Accepted: 05/12/2025] [Indexed: 05/17/2025]
Abstract
Collagen type I, a key structural component of the extracellular matrix (ECM), is frequently altered in cancer, with altered fiber organization at the primary tumor site linked to metastasis and poor patient outcomes. Here, we demonstrate that collagen fibers are also altered in metastatic sites such as the omentum of patients with high-grade serous ovarian cancer (HGSOC). Specifically, we observed a significant increase in fiber density, alignment, and width. To determine if the increase in fiber density supports metastasis, we used a semi-interpenetrating methacrylated gelatin (gelMA) network in combination with increasing fibrillar collagen. Cancer cells had significantly increased adhesion as collagen fiber density increased. To determine the responsible mechanisms, we used orthogonal systems to examine 1) the different adhesion peptides exposed in collagen (GFOGER) and gelatin (RGD), and 2) the physical structure of fibers. Cells had minimal response to GFOGER, either alone or in combination with RGD, suggesting that increased adhesion did not result from this collagen-specific interaction. Cell adhesion was significantly higher on electrospun PCL-gelatin fibers compared to flat PCL-gelatin substrates, suggesting that increased cell adhesion resulted from fiber structure. We next investigated the cellular mechanisms involved in increased adhesion on gelMA/coll and found that actin polymerization, but not myosin II contractility, was needed. We further demonstrated that cells on fibrous gels had more robust actin polymerization, and that this resulted in greater adhesion strength. Combined, these results suggest that the increase in collagen fibers with tumor metastasis will support the development of additional metastases. STATEMENT OF SIGNIFICANCE: This work advances the evaluation of the matrisome of the omentum, the most common metastatic site in advanced ovarian cancer by characterizing how collagen fibers change with disease progression. To examine the effect of collagen fibers on metastasis, we utilized a suite of in vitro biomaterials to identify a novel role for collagen fibers in supporting cell adhesion through increased actin dynamics during nascent adhesion formation, which results in increased adhesion strength at later times.
Collapse
Affiliation(s)
- Ali Abbaspour
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Ana L Martinez Cavazos
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Roshan Patel
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Ning Yang
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, 1111 Highland Ave, WIMR 5037, Madison, WI 53705, USA
| | - Stephanie M McGregor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, 1111 Highland Ave, WIMR 5037, Madison, WI 53705, USA; University of Wisconsin Carbone Cancer Center, Madison, WI 53705, USA
| | - Erin G Brooks
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, 1111 Highland Ave, WIMR 5037, Madison, WI 53705, USA
| | - Kristyn S Masters
- Department of Bioengineering, University of Colorado-Denver, 13001 E 17th Pl Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Pamela K Kreeger
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, 1111 Highland Ave, WIMR 5037, Madison, WI 53705, USA; University of Wisconsin Carbone Cancer Center, Madison, WI 53705, USA.
| |
Collapse
|
6
|
Slattery K, Yao CH, Mylod E, Scanlan J, Scott B, Crowley JP, McGowan O, McManus G, Brennan M, O'Brien K, Glennon K, Corry E, Treacy A, Argüello RJ, Gardiner CM, Haigis MC, Brennan DJ, Lynch L. Uptake of lipids from ascites drives NK cell metabolic dysfunction in ovarian cancer. Sci Immunol 2025; 10:eadr4795. [PMID: 40344087 DOI: 10.1126/sciimmunol.adr4795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/26/2024] [Accepted: 04/16/2025] [Indexed: 05/11/2025]
Abstract
High-grade serous ovarian cancer (HGSOC) remains an urgent unmet clinical need, with more than 70% of patients presenting with metastatic disease. Many patients develop large volumes of ascites, which promotes metastasis and is associated with poor therapeutic response and survival. Immunotherapy trials have shown limited success, highlighting the need to better understand HGSOC immunology. Here, we analyzed cytotoxic lymphocytes [natural killer (NK), T, and innate T cells] from patients with HGSOC and observed widespread dysfunction across primary and metastatic sites. Although nutrient rich, ascites was immunosuppressive for all lymphocyte subsets. NK cell dysfunction was driven by uptake of polar lipids, with associated dysregulation in lipid storage. Phosphatidylcholine was a key immunosuppressive metabolite, disrupting NK cell membrane order and cytotoxicity. Blocking lipid uptake through SR-B1 protected NK cell antitumor functions in ascites. These findings offer insights into immune suppression in HGSOC and have important implications for the design of future immunotherapies.
Collapse
Affiliation(s)
- Karen Slattery
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Cong-Hui Yao
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Eimear Mylod
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - John Scanlan
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Barry Scott
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Joseph Patrick Crowley
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Orla McGowan
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Gavin McManus
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Martin Brennan
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
- Ludwig Cancer Research Institute, Princeton Branch, Princeton University, Princeton, NJ, USA
| | - Katie O'Brien
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Kate Glennon
- UCD-Gynaecological Oncology Group, School of Medicine, Mater Misericordiae University Hospital, University College Dublin, Dublin, Ireland
| | - Edward Corry
- UCD-Gynaecological Oncology Group, School of Medicine, Mater Misericordiae University Hospital, University College Dublin, Dublin, Ireland
| | - Ann Treacy
- UCD-Gynaecological Oncology Group, School of Medicine, Mater Misericordiae University Hospital, University College Dublin, Dublin, Ireland
| | - Rafael J Argüello
- Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Clair M Gardiner
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Marcia C Haigis
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Donal J Brennan
- UCD-Gynaecological Oncology Group, School of Medicine, Mater Misericordiae University Hospital, University College Dublin, Dublin, Ireland
- Systems Biology Ireland, UCD School of Medicine, Belfield, Dublin, Ireland
| | - Lydia Lynch
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
- Ludwig Cancer Research Institute, Princeton Branch, Princeton University, Princeton, NJ, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| |
Collapse
|
7
|
Solsona‐Vilarrasa E, Vousden KH. Obesity, white adipose tissue and cancer. FEBS J 2025; 292:2189-2207. [PMID: 39496581 PMCID: PMC12062788 DOI: 10.1111/febs.17312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 09/27/2024] [Accepted: 10/17/2024] [Indexed: 11/06/2024]
Abstract
White adipose tissue (WAT) is crucial for whole-body energy homeostasis and plays an important role in metabolic and hormonal regulation. While healthy WAT undergoes controlled expansion and contraction to meet the body's requirements, dysfunctional WAT in conditions like obesity is characterized by excessive tissue expansion, alterations in lipid homeostasis, inflammation, hypoxia, and fibrosis. Obesity is strongly associated with an increased risk of numerous cancers, with obesity-induced WAT dysfunction influencing cancer development through various mechanisms involving both systemic and local interactions between adipose tissue and tumors. Unhealthy obese WAT affects circulating levels of free fatty acids and factors like leptin, adiponectin, and insulin, altering systemic lipid metabolism and inducing inflammation that supports tumor growth. Similar mechanisms are observed locally in an adipose-rich tumor microenvironment (TME), where WAT cells can also trigger extracellular matrix remodeling, thereby enhancing the TME's ability to promote tumor growth. Moreover, tumors reciprocally interact with WAT, creating a bidirectional communication that further enhances tumorigenesis. This review focuses on the complex interplay between obesity, WAT dysfunction, and primary tumor growth, highlighting potential targets for therapeutic intervention.
Collapse
|
8
|
Pan Y, Chen L, Shen J, Hong S, Guan X, Ma X, Tang R, Lu M, Sun F, Shang S, Dai Y, Zhou Z, Zhang S, Yang J. GANT61 Modulates Autophagy and Lipid Metabolism in Ovarian Cancer. Cell Prolif 2025:e70051. [PMID: 40308074 DOI: 10.1111/cpr.70051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/02/2025] [Accepted: 04/16/2025] [Indexed: 05/02/2025] Open
Abstract
GANT61 induced autophagy via the AKT pathway and promoted the accumulation of lipid droplets in both cell lines. The molecular mechanism behind this lipid accumulation appears to involve the mediation of SREBP1. Furthermore, the combination of GANT61 with CQ/Fatostatin significantly inhibited the proliferation and clonogenicity of SKOV3 and SKOV3PTX cells.
Collapse
Affiliation(s)
- Yibin Pan
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, People's Republic of China
- Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Hangzhou, People's Republic of China
| | - Lingfeng Chen
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, People's Republic of China
- Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Hangzhou, People's Republic of China
- Department of Obstetrics and Gynecology, Wenling First People's Hospital, Wenling, People's Republic of China
| | - Jinlu Shen
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, People's Republic of China
- Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Hangzhou, People's Republic of China
| | - Shihao Hong
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, People's Republic of China
- Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Hangzhou, People's Republic of China
| | - Xiaojing Guan
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, People's Republic of China
- Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Hangzhou, People's Republic of China
| | - Xudong Ma
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, People's Republic of China
- Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Hangzhou, People's Republic of China
| | - Rongrong Tang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, People's Republic of China
- Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Hangzhou, People's Republic of China
| | - Meifei Lu
- Department of Pharmacy, the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Fangying Sun
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, People's Republic of China
- Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Hangzhou, People's Republic of China
| | - Shanliang Shang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, People's Republic of China
- Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Hangzhou, People's Republic of China
| | - Yongdong Dai
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, People's Republic of China
- Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Hangzhou, People's Republic of China
| | - Zhaokai Zhou
- Department of Urology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| | - Songying Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, People's Republic of China
- Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Hangzhou, People's Republic of China
| | - Jianhua Yang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, People's Republic of China
- Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Hangzhou, People's Republic of China
| |
Collapse
|
9
|
Krawiec A, Pietrasik J, Pietrasik Z, Mikuła-Pietrasik J, Książek K. Unveiling the role of extracellular matrix elements and regulators in shaping ovarian cancer growth and metastasis. Cell Signal 2025; 132:111843. [PMID: 40318796 DOI: 10.1016/j.cellsig.2025.111843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/18/2025] [Accepted: 04/29/2025] [Indexed: 05/07/2025]
Abstract
Epithelial ovarian cancer (EOC) progression is determined by numerous intracellular interactions and the interplay between malignant cells, normal cells, and the tumor acellular microenvironment, formed largely by the extracellular matrix (ECM). The structure and biochemical functioning of various ECM components, along with the activity of agents that regulate ECM remodeling, impact the disease's expansion (adhesion, proliferation, invasion), spread, and response to therapy. It is important to note that the involvement of ECM components and their regulators in the progression of EOC is bidirectional and distinctly depends on a particular tissue context. In certain situations, certain components of the ECM enhance the activity of cancer cells, but in other scenarios, they suppress it. In this review, we summarize the newest knowledge regarding diverse aspects of ECM engagement in EOC pathophysiology and chemotherapy. Moreover, we delineate conditions that exacerbate the pro-cancerous properties of ECM, including diabetes-associated glycation, aging, and cellular senescence. We also explore methods to therapeutically alter the properties of the ECM, which could be beneficial in ovarian cancer prevention and treatment.
Collapse
Affiliation(s)
- Adrianna Krawiec
- Poznan University of Medical Sciences, Department of Pathophysiology of Ageing and Civilization Diseases, Święcickiego 4 Str, 60-781 Poznań, Poland.
| | - Joanna Pietrasik
- Poznan University of Medical Sciences, Department of Pathophysiology of Ageing and Civilization Diseases, Święcickiego 4 Str, 60-781 Poznań, Poland
| | - Zofia Pietrasik
- Poznan University of Medical Sciences, Department of Pathophysiology of Ageing and Civilization Diseases, Święcickiego 4 Str, 60-781 Poznań, Poland
| | - Justyna Mikuła-Pietrasik
- Poznan University of Medical Sciences, Department of Pathophysiology of Ageing and Civilization Diseases, Święcickiego 4 Str, 60-781 Poznań, Poland.
| | - Krzysztof Książek
- Poznan University of Medical Sciences, Department of Pathophysiology of Ageing and Civilization Diseases, Święcickiego 4 Str, 60-781 Poznań, Poland.
| |
Collapse
|
10
|
Fukuda Y, Koga C, Minami S, Ishikawa S, Gakuhara A, Fukuda S, Haraguchi N, Hida J, Wakasa T, Kimura Y. Pancreatic Fat Accumulation Impacts Postoperative Survival in Patients With Pancreatic Ductal Adenocarcinoma. World J Surg 2025; 49:1327-1335. [PMID: 40181477 PMCID: PMC12058435 DOI: 10.1002/wjs.12576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 03/08/2025] [Accepted: 03/22/2025] [Indexed: 04/05/2025]
Abstract
BACKGROUND Pancreatic fat accumulation, that is, fatty pancreas (FP), has gained attention because it contributes to pancreatic carcinogenesis. However, the impact of FP on the survival of patients with pancreatic cancer has not yet been elucidated. METHODS Overall, 87 consecutive patients who were pathologically diagnosed with pancreatic ductal adenocarcinoma and underwent potentially curative pancreatectomy were eligible for analysis. Histological pancreatic fat fraction (HPFF) was evaluated using hematoxylin & eosin-stained slides of tumor and non-tumor sections of the resected specimen, and quantified using imaging analysis software. The optimal HPFF value threshold for FP presence was determined using receiver operating characteristics curve analysis. The prognostic significance of FP was identified by a Cox proportional hazard model adjusted for the established prognostic covariates. RESULTS Fat accumulation within the invasive tumor front was scarce, with the median value for HPFF being 10.1% in the non-tumor portion (range: 2.2%-45.8%). Patients with FP (HPFF value ≥ 11.3%) in the non-tumor portion had significantly inferior overall survival (OS) and recurrence-free survival (RFS) than those without FP (HPFF value < 11.3%) (log-rank test: p = 0.012 and p = 0.00060, respectively). In the multivariate analyses, the presence of FP emerged as an independent inferior prognostic indicator (OS: hazard ratio [HR] 2.32, p = 0.0015; PFS: HR 2.33, p = 0.00080), together with lymph node metastases, presence of lymphatic involvement, and absence of adjuvant chemotherapy. CONCLUSION The present study indicates a possible prognostic role for pancreatic fat accumulation in patients with pancreatic adenocarcinoma.
Collapse
Affiliation(s)
- Yasunari Fukuda
- Department of Gastroenterological SurgeryKindai University Nara HospitalNaraJapan
| | - Chikato Koga
- Department of Gastroenterological SurgeryKindai University Nara HospitalNaraJapan
| | - Soichiro Minami
- Department of Gastroenterological SurgeryKindai University Nara HospitalNaraJapan
| | - Satoshi Ishikawa
- Department of Gastroenterological SurgeryKindai University Nara HospitalNaraJapan
| | - Atsushi Gakuhara
- Department of Gastroenterological SurgeryKindai University Nara HospitalNaraJapan
| | - Shuichi Fukuda
- Department of Gastroenterological SurgeryKindai University Nara HospitalNaraJapan
| | - Naotsugu Haraguchi
- Department of Gastroenterological SurgeryKindai University Nara HospitalNaraJapan
| | - Jinichi Hida
- Department of Gastroenterological SurgeryKindai University Nara HospitalNaraJapan
| | - Tomoko Wakasa
- Department of PathologyKindai University Nara HospitalNaraJapan
| | - Yutaka Kimura
- Department of Gastroenterological SurgeryKindai University Nara HospitalNaraJapan
| |
Collapse
|
11
|
Zhong X, Bilal M, Zhou Y, Yang X, Qin Z, Li Q, Yang Y, Han TL, Li M. Elucidating the role of fatty acid reprogramming in ovarian cancer: insights cross-talk between blood, subcutaneous fat, and ovarian cancer tissues. Front Oncol 2025; 15:1530487. [PMID: 40371224 PMCID: PMC12074969 DOI: 10.3389/fonc.2025.1530487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 04/10/2025] [Indexed: 05/16/2025] Open
Abstract
Introduction Aberrant fatty acid (FA) metabolism is increasingly recognized as a significant factor in ovarian cancer (OC) progression, although the comprehensive metabolic alterations across different body tissues remain unclear. Methods In this study, sixteen OC patients and twenty-nine non-cancer (NC) patients were recruited for metabolic profiling using a global and targeted metabolomic strategy based on a gas chromatography-hydrogen flame ionization detector (GC-FID). The patient survival was followed up to 3 years, and PFS was calculated. Results Our findings revealed distinct metabolite profiles that differentiate OC from NC groups across all sample types. We found seven, nine, and thirteen significant metabolites in subcutaneous fat, plasma, and ovarian tissue respectively. In particular, docosahexaenoic acid (DHA) and arachidonic acid (AA) levels were notably elevated in all sample types of OC patients. Furthermore, receiver operating characteristic (ROC) analysis highlight that three plasma FA showed the best specificity and sensitivity in differentiating the OC group from the NC group (Area Under The Curve, AUC > 0.89), including caprylic acid, myristoleic acid, and tetracosaenoic acid. Most of the significant FA in subcutaneous fat and ovarian tissue showed a high risk of OC. However, caprylic acid and tetracosanoic acid were identified as protective factors in the plasma sample. We also found that high levels of linoelaidic acid in subcutaneous fat and palmitelaidic acid in ovarian tissue were associated with poor prognosis. Pathway analysis indicated upregulation of fatty acid synthesis, inflammatory signaling, and ferroptosis pathways in OC patients. Discussion This study reveals a coordinated reprogramming of FA metabolism across multiple biospecimens in OC patients. Our results suggest that specific fatty acids may contribute to OC progression through dysregulation of fatty acid synthesis, inflammatory signaling, and ferroptosis. These findings offer mechanistic insights into OC progression and highlighting potential biomarkers and targeted therapeutic interventions.
Collapse
Affiliation(s)
- Xiaocui Zhong
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Mamona Bilal
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yanqiu Zhou
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaojia Yang
- Department of Occupational and Environmental Hygiene, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China
| | - Zuchao Qin
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qibing Li
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yang Yang
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ting-Li Han
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Min Li
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
12
|
Skrabalak I, Rajtak A, Malachowska B, Skrzypczak N, Skalina KA, Guha C, Kotarski J, Okla K. Therapy resistance: Modulating evolutionarily conserved heat shock protein machinery in cancer. Cancer Lett 2025; 616:217571. [PMID: 39986370 DOI: 10.1016/j.canlet.2025.217571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/16/2025] [Accepted: 02/17/2025] [Indexed: 02/24/2025]
Abstract
Therapy resistance is a major barrier to achieving a cure in cancer patients, often resulting in relapses and mortality. Heat shock proteins (HSPs) are a group of evolutionarily conserved proteins that play a prominent role in the progression of cancer and drug resistance. HSP synthesis is upregulated in cancer cells, facilitating adaptation to various tumor microenvironment (TME) stressors, including nutrient deprivation, exposure to DNA-damaging agents, hypoxia, and immune responses. In this review, we present background information about HSP-mediated cancer therapy resistance. Within this context, we emphasize recent progress in the understanding of HSP machinery, exploring the therapeutic potential of HSPs in cancer treatment.
Collapse
Affiliation(s)
- Ilona Skrabalak
- The First Department of Oncologic Gynecology and Gynecology, Medical University of Lublin, Lublin, Poland
| | - Alicja Rajtak
- The First Department of Oncologic Gynecology and Gynecology, Medical University of Lublin, Lublin, Poland; IOA, 3 Lotnicza St, 20-322 Lublin, Poland
| | - Beata Malachowska
- Department of Radiation Oncology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Natalia Skrzypczak
- Department of Pathology and Clinical Laboratories, University of Michigan, Ann Arbor, MI, USA
| | - Karin A Skalina
- Department of Radiation Oncology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Chandan Guha
- Department of Radiation Oncology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Jan Kotarski
- The First Department of Oncologic Gynecology and Gynecology, Medical University of Lublin, Lublin, Poland
| | - Karolina Okla
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA; IOA, 3 Lotnicza St, 20-322 Lublin, Poland.
| |
Collapse
|
13
|
Shaw P, Dey Bhowmik A, Gopinatha Pillai MS, Robbins N, Dwivedi SKD, Rao G. Anoikis resistance in Cancer: Mechanisms, therapeutic strategies, potential targets, and models for enhanced understanding. Cancer Lett 2025; 624:217750. [PMID: 40294841 DOI: 10.1016/j.canlet.2025.217750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 04/01/2025] [Accepted: 04/26/2025] [Indexed: 04/30/2025]
Abstract
Anoikis, defined as programmed cell death triggered by the loss of cell-extracellular matrix (ECM) and cell-cell interactions, is crucial for maintaining tissue homeostasis and preventing aberrant cell migration. Cancer cells, however, display anoikis resistance (AR) which in turn enables cancer metastasis. AR results from alterations in apoptotic signaling, metabolic reprogramming, autophagy modulation, and epigenetic changes, allowing cancer cells to survive in detached conditions. In this review we describe the mechanisms underlying both anoikis and AR, focusing on intrinsic and extrinsic pathways, disrupted cell-ECM interactions, and autophagy in cancer. Recent findings (i.e., between 2014 and 2024) on epigenetic regulation of AR and its role in metastasis are discussed. Therapeutic strategies targeting AR, including chemical inhibitors, are highlighted alongside a network analysis of 122 proteins reported to be associated with AR which identifies 53 hub proteins as potential targets. We also evaluate in vitro and in vivo models for studying AR, emphasizing their role in advancing metastasis research. Our overall goal is to guide future studies and therapeutic developments to counter cancer metastasis.
Collapse
Affiliation(s)
- Pallab Shaw
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences, Oklahoma City, 73104, Oklahoma, USA; Department of Pathology, The University of Oklahoma Health Sciences, Oklahoma City, 73104, Oklahoma, USA
| | - Arpan Dey Bhowmik
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences, Oklahoma City, 73104, Oklahoma, USA; Department of Obstetrics and Gynecology, The University of Oklahoma Health Sciences, Oklahoma City, 73104, Oklahoma, USA
| | - Mohan Shankar Gopinatha Pillai
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences, Oklahoma City, 73104, Oklahoma, USA; Department of Obstetrics and Gynecology, The University of Oklahoma Health Sciences, Oklahoma City, 73104, Oklahoma, USA
| | - Nathan Robbins
- James E. Hurley School of Science and Mathematics, Oklahoma Baptist University, Shawnee, OK, USA
| | - Shailendra Kumar Dhar Dwivedi
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences, Oklahoma City, 73104, Oklahoma, USA; Department of Obstetrics and Gynecology, The University of Oklahoma Health Sciences, Oklahoma City, 73104, Oklahoma, USA
| | - Geeta Rao
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences, Oklahoma City, 73104, Oklahoma, USA; Department of Pathology, The University of Oklahoma Health Sciences, Oklahoma City, 73104, Oklahoma, USA.
| |
Collapse
|
14
|
Gurung S, Budden T, Mallela K, Jenkins B, von Kriegsheim A, Manrique E, Millán-Esteban D, Romero-Camarero I, Amaral F, Craig S, Durao P, Pozniak J, Stennett L, Smith D, Ashton G, Baker A, Zeng K, Fruhwirth G, Sanz-Moreno V, Marques J, Koulman A, Marine JC, Somervaille TCP, Motta L, Gaudy-Marqueste C, Nagore E, Virós A. Stromal lipid species dictate melanoma metastasis and tropism. Cancer Cell 2025:S1535-6108(25)00138-2. [PMID: 40280124 DOI: 10.1016/j.ccell.2025.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 08/14/2024] [Accepted: 04/01/2025] [Indexed: 04/29/2025]
Abstract
Cancer cells adapt to signals in the tumor microenvironment (TME), but the TME cues that impact metastasis and tropism are still incompletely understood. We show that abundant stromal lipids from young subcutaneous adipocytes, including phosphatidylcholines, are taken up by melanoma cells, where they upregulate melanoma PI3K-AKT signaling, fatty acid oxidation, oxidative phosphorylation (OXPHOS) leading to oxidative stress, resulting in decreased metastatic burden. High OXPHOS melanoma cells predominantly seed the lung and brain; decreasing oxidative stress with antioxidants shifts tropism from the lung to the liver. By contrast, the aged TME provides fewer total lipids but is rich in ceramides, leading to lower OXPHOS and high metastatic burden. Aged TME ceramides taken up by melanoma cells activate the S1P-STAT3-IL-6 signaling axis and promote liver tropism. Inhibiting OXPHOS in the young TME or blocking the IL-6 receptor in the aged TME reduces the age-specific patterns of metastasis imposed by lipid availability.
Collapse
Affiliation(s)
- Shilpa Gurung
- Skin Cancer and Ageing Lab, Cancer Research UK Manchester Institute, the University of Manchester, Manchester, UK
| | - Timothy Budden
- Skin Cancer and Ageing Lab, Cancer Research UK Manchester Institute, the University of Manchester, Manchester, UK
| | - Karthik Mallela
- Skin Cancer and Ageing Lab, Cancer Research UK Manchester Institute, the University of Manchester, Manchester, UK
| | - Benjamin Jenkins
- Wellcome Trust - MRC Institute of Metabolic Science Metabolic Research Laboratories, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK; Medical Research Council Human Nutrition Research, Elsie Widdowson Laboratory, University of Cambridge, Fulbourn Road, Cambridge CB1 9NL, UK
| | - Alex von Kriegsheim
- CRUK Scotland Centre, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Esperanza Manrique
- School of Medicine, Universidad Católica de Valencia, San Vicente Mártir, 46001 Valencia, Spain; Department of Dermatology, Fundación Instituto Valenciano de Oncología, 46009 Valencia, Spain
| | - David Millán-Esteban
- School of Medicine, Universidad Católica de Valencia, San Vicente Mártir, 46001 Valencia, Spain; Department of Dermatology, Fundación Instituto Valenciano de Oncología, 46009 Valencia, Spain
| | - Isabel Romero-Camarero
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M20 4GJ, UK
| | - Fabio Amaral
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M20 4GJ, UK
| | - Sarah Craig
- Skin Cancer and Ageing Lab, Cancer Research UK Manchester Institute, the University of Manchester, Manchester, UK
| | - Pedro Durao
- Skin Cancer and Ageing Lab, Cancer Research UK Manchester Institute, the University of Manchester, Manchester, UK
| | - Joanna Pozniak
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium; Department of Oncology, KU Leuven, Leuven, Belgium
| | - Laura Stennett
- Imaging Therapies and Cancer Group, Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Studies, King's College London, Guy's Campus, London, UK; School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, UK
| | - Duncan Smith
- Proteomics, Cancer Research UK Manchester Institute, The University of Manchester, Manchester SK10 4TG, UK
| | - Garry Ashton
- Histology, Cancer Research UK Manchester Institute, The University of Manchester, Manchester SK10 4TG, UK
| | - Alex Baker
- Visualisation, Irradiation & Analysis, Cancer Research UK Manchester Institute, The University of Manchester, Manchester SK10 4TG, UK
| | - Kang Zeng
- Visualisation, Irradiation & Analysis, Cancer Research UK Manchester Institute, The University of Manchester, Manchester SK10 4TG, UK
| | - Gilbert Fruhwirth
- Imaging Therapies and Cancer Group, Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Studies, King's College London, Guy's Campus, London, UK; School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, UK
| | - Victoria Sanz-Moreno
- Cytoskeleton and Metastasis Team, The Breast Cancer Now Toby Robins Research Centre Division of Breast Cancer Research, The Institute of Cancer Research, Chester Beatty Laboratories, London SW3 6JB, UK; Centre for Tumour Microenvironment at Barts Cancer Institute, Queen Mary University of London, Charterhouse Square Campus, John Vane Science Centre, London, UK
| | - Jair Marques
- CRUK Scotland Centre, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Albert Koulman
- Wellcome Trust - MRC Institute of Metabolic Science Metabolic Research Laboratories, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK; Medical Research Council Human Nutrition Research, Elsie Widdowson Laboratory, University of Cambridge, Fulbourn Road, Cambridge CB1 9NL, UK
| | - Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium; Department of Oncology, KU Leuven, Leuven, Belgium
| | - Tim C P Somervaille
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M20 4GJ, UK
| | - Luisa Motta
- Department of Histopathology, Salford Royal NHS Foundation Trust, The University of Manchester, Manchester, UK
| | - Caroline Gaudy-Marqueste
- Aix Marseille University, APHM, CRCM Inserm U1068, CNRS U7258, CHU Timone, Dermatology and Skin Cancer Department, Marseille, France
| | - Eduardo Nagore
- School of Medicine, Universidad Católica de Valencia, San Vicente Mártir, 46001 Valencia, Spain; Department of Dermatology, Fundación Instituto Valenciano de Oncología, 46009 Valencia, Spain
| | - Amaya Virós
- Skin Cancer and Ageing Lab, Cancer Research UK Manchester Institute, the University of Manchester, Manchester, UK; NIHR Manchester Biomedical Research Centre, Manchester, UK; Department of Dermatology, Salford Royal NHS Foundation Trust, The University of Manchester, Manchester, UK.
| |
Collapse
|
15
|
Karasová M, Jobst M, Framke D, Bergen J, Meier-Menches S, Keppler B, Koellensperger G, Zanghellini J, Gerner C, Del Favero G. Mechanical cues rewire lipid metabolism and support chemoresistance in epithelial ovarian cancer cell lines OVCAR3 and SKOV3. Cell Commun Signal 2025; 23:193. [PMID: 40264231 PMCID: PMC12016438 DOI: 10.1186/s12964-025-02144-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 03/07/2025] [Indexed: 04/24/2025] Open
Abstract
Epithelial ovarian cancer (EOC) is one of the deadliest cancers in women, and acquired chemoresistance is a major contributor of aggressive phenotypes. Overcoming treatment failure and disease recurrence is therefore an ambitious goal. Ovarian cancer develops in a biophysically challenging environment where the cells are constantly exposed to mechanical deformation originating in the abdomen and shear stress caused by the accumulation of ascitic fluid in the peritoneal cavity. Therefore, mechanical stimulation can be seen as an inseparable part of the tumor microenvironment. The role of biomechanics in shaping tumor metabolism is emerging and promises to be a real game changer in the field of cancer biology. Focusing on two different epithelial ovarian cancer cell lines (SKOV3 and OVCAR3), we explored the impact of shear stress on cellular behavior driven by mechanosensitive transcription factors (TFs). Here, we report data linking physical triggers to the alteration of lipid metabolism, ultimately supporting increased chemoresistance. Mechanistically, shear stress induced adaptation of cell membrane and actin cytoskeleton which were accompanied by the regulation of nuclear translocation of SREBP2 and YAP1. This was associated with increased cholesterol uptake/biosynthesis and decreased sensitivity to the ruthenium-based anticancer drug BOLD-100. Overall, the present study contributes to shedding light on the molecular pathways connecting mechanical cues, tumor metabolism and drug responsiveness.
Collapse
Affiliation(s)
- Martina Karasová
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Str. 38-40, Vienna, 1090, Austria
| | - Maximilian Jobst
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Str. 38-40, Vienna, 1090, Austria
- Doctoral School of Chemistry (DoSChem), Faculty of Chemistry, University of Vienna, Währinger Str. 42, Vienna, 1090, Austria
| | - Denise Framke
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Str. 38-40, Vienna, 1090, Austria
| | - Janice Bergen
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Str. 38-40, Vienna, 1090, Austria
- Doctoral School of Chemistry (DoSChem), Faculty of Chemistry, University of Vienna, Währinger Str. 42, Vienna, 1090, Austria
| | - Samuel Meier-Menches
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 38, Vienna, 1090, Austria
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 42, Vienna, 1090, Austria
| | - Bernhard Keppler
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 42, Vienna, 1090, Austria
| | - Gunda Koellensperger
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 38, Vienna, 1090, Austria
| | - Jürgen Zanghellini
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 38, Vienna, 1090, Austria
| | - Christopher Gerner
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 38, Vienna, 1090, Austria
| | - Giorgia Del Favero
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Str. 38-40, Vienna, 1090, Austria.
| |
Collapse
|
16
|
Gao A, Zou J, Zeng T, Qin M, Tang X, Yi T, Song G, Zhong J, Zeng Y, Zhou W, Gao Q, Zhang Q, Zhang J, Li Y. IGF2BP3/ESM1/KLF10/BECN1 positive feedback loop: a novel therapeutic target in ovarian cancer via lipid metabolism reprogramming. Cell Death Dis 2025; 16:308. [PMID: 40240362 PMCID: PMC12003649 DOI: 10.1038/s41419-025-07571-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 02/28/2025] [Accepted: 03/18/2025] [Indexed: 04/18/2025]
Abstract
Ovarian cancer (OC) is often detected at an advanced stage and has a high recurrence rate after surgery or chemotherapy. Thus, it is essential to develop new strategies for OC treatment. This study tended to investigate the effects of endothelial cell-specific molecule 1 (ESM1) in OC. The impact of ESM1 on lipid metabolism was investigated through the regulation of ESM1 expression. Differential genes regulated by ESM1 were screened by mRNA sequencing. The role of autophagy in ESM1 regulation on lipid metabolism was explored using autophagy inhibitor chloroquine (CQ). Co-IP, dual-luciferase reporter assay, actinomycin D treatment assay, and others were used to analyze the mechanism of ESM1 regulation on lipid metabolism. The xenograft mouse model was constructed to explore the impact of ESM1 regulation on OC development. The regulatory mechanism of ESM1 in OC patient samples was verified by using microarray analysis and the Log-rank (Mantel-Cox) test. After ESM1 silencing, cholesterol synthesis decreased and lipolysis increased. mRNA sequencing revealed that ESM1 regulation on lipid metabolism was related to Beclin 1 (BECN1). In vitro experiments, ESM1 inhibited lipolysis by suppressing BECN1-mediated autophagy. BECN1 expression was regulated by the transcription factor Kruppel-like factor 10 (KLF10). The competitive binding between BECN1 and HSPA5 promoted the ubiquitination degradation of HMGCR, thereby inhibiting cholesterol production. The intervention experiment with exogenous cholesterol showed a positive correlation between m6A reader IGF2BP3 expression and cholesterol content. Mechanistically, IGF2BP3 regulated the stability of ESM1 mRNA. In vivo experiments, ESM1 modified by m6A methylation promoted cholesterol synthesis and inhibited lipolysis. High expression of ESM1 predicted poor prognosis in OC patients. ESM1 regulated lipid metabolism through IGF2BP3/ESM1/KLF10/BECN1 positive feedback, which was a promising target for OC treatment.
Collapse
Affiliation(s)
- Anbo Gao
- Clinical Research Institute, The Second Affiliated Hospital, University of South China, Hengyang, Hunan, China
- Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Juan Zou
- Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Assisted Reproductive Centre, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan, China
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Tian Zeng
- Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Assisted Reproductive Centre, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan, China
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Mei Qin
- Department of Gynecology, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan, China
| | - Xing Tang
- Department of Assisted Reproductive Centre, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan, China
- Department of Gynecology, The Second Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Ting Yi
- Department of Trauma Center, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan, China
| | - Guangming Song
- Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Gynecology, The Second Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Jie Zhong
- Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Gynecology, The Second Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Yuhuan Zeng
- Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Gynecology, The Second Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Wenchao Zhou
- Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Assisted Reproductive Centre, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan, China
| | - Qin Gao
- Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Assisted Reproductive Centre, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan, China
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Qunfeng Zhang
- Hengyang Medical School, University of South China, Hengyang, Hunan, China.
- Department of Gynecology, The Second Affiliated Hospital, University of South China, Hengyang, Hunan, China.
| | - Juan Zhang
- Department of Assisted Reproductive Centre, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan, China.
| | - Yukun Li
- Hengyang Medical School, University of South China, Hengyang, Hunan, China.
- Department of Assisted Reproductive Centre, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan, China.
| |
Collapse
|
17
|
Zhang Y, Zhu WL, Wu M, Gao TY, Hu HX, Xu ZY. Using bioinformatics methods to elucidate fatty acid-binding protein 4 as a potential biomarker for colon adenocarcinoma. World J Gastrointest Oncol 2025; 17:103113. [PMID: 40235911 PMCID: PMC11995352 DOI: 10.4251/wjgo.v17.i4.103113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/07/2025] [Accepted: 02/14/2025] [Indexed: 03/25/2025] Open
Abstract
BACKGROUND Colon adenocarcinoma (COAD) ranks second in terms of cancer-related deaths. We found that fatty acid-binding protein 4 (FABP4), which is related to cell adhesion and immunity, affects the occurrence and development of COAD. This study focused on the possibility of using FABP4 as a biomarker for COAD and constructed a nomogram for predicting the survival of COAD patients. AIM To verify the possibility of using FABP4 as a biomarker for COAD. METHODS A total of 453 COAD tissue samples, along with 41 normal tissue samples, were obtained from The Cancer Genome Atlas database. The difference in FABP4 expression between COAD tissues and normal tissues was analyzed, and the results were verified by immunohistochemistry. The WGCNA algorithm links FABP4 expression with an enrichment analysis and with immune cell infiltration pathways. The biological functions of FABP4 and its coexpressed genes were explored through enrichment analyses. The ESTIMATE, CIBERSORT and ssGSEA methods were used for the immune infiltration analysis. Finally, risk scores were calculated by a Cox analysis. A nomogram was constructed by combining risk scores with routine clinicopathological factors. We assessed the accuracy of survival predictions based on the C-index. The C-index ranges from 0.5 to 1.0, and in general, a C-index value greater than 0.65 indicates a reasonable estimate. The results were validated using the Gene Expression Omnibus (GEO) database. RESULTS FABP4 was significantly differentially expressed in COAD. It is a promising auxiliary biomarker for screening and diagnosis. Enrichment analyses suggested that FABP4 may influence the invasion and progression of COAD through cell adhesion. The immunological analysis revealed that FABP4 expression in COAD was significantly positively correlated with immune cell infiltration. Moreover, a nomogram to predict the survival of COAD patients was successfully constructed by integrating the calculated risk scores of 15 candidate genes and routine clinicopathological factors. This nomogram could effectively predict 1-year, 3-year, and 5-year survival (C-index = 0.786) and was verified (C-index = 0.73). CONCLUSION This study established FABP4 as an effective biomarker for screening, assisting in the diagnosis and determining the prognosis.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Medical Engineering, Wannan Medical College, Wuhu 241002, Anhui Province, China
| | - Wen-Li Zhu
- Seven Inpatient Ward, The Fourth People's Hospital of Wuhu, Wuhu 241002, Anhui Province, China
| | - Min Wu
- Sixteen Inpatient Ward, The Fourth People's Hospital of Wuhu, Wuhu 241002, Anhui Province, China
| | - Tian-Yuan Gao
- Department of Pathology, The Second Affiliated Hospital of Wannan Medical College, Wuhu 241000, Anhui Province, China
| | - Hui-Xian Hu
- Department of Medical Engineering, Wannan Medical College, Wuhu 241002, Anhui Province, China
| | - Zheng-Yuan Xu
- Department of Medical Engineering, Wannan Medical College, Wuhu 241002, Anhui Province, China
| |
Collapse
|
18
|
Bessot A, Gunter J, McGovern J, Bock N. Bone marrow adipocytes in cancer: Mechanisms, models, and therapeutic implications. Biomaterials 2025; 322:123341. [PMID: 40315628 DOI: 10.1016/j.biomaterials.2025.123341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 04/02/2025] [Accepted: 04/12/2025] [Indexed: 05/04/2025]
Abstract
Adipose tissue is the primary site of energy storage in the body and a key regulator of metabolism. However, different adipose depots exhibit distinct molecular and phenotypic characteristics that have yet to be fully unraveled. While initially considered inert, bone marrow adipocytes (BMAs) have been recognized as key regulators of bone homeostasis, and more recently bone pathologies, although many unknowns remain. In this review, we summarize the current knowledge on BMAs, focusing on their distinct characteristics, functional significance in bone physiology and metabolism, as well as their emerging role in cancer pathogenesis. We present and discuss the current methodologies for investigating BMA-cancer interactions, encompassing both in vitro 3D culture systems and in vivo models, and their limitations in accurately replicating the phenotypes and biological processes of the human species. We highlight the imperative for advancing towards humanized models to better mimic the complexities of human physiology and disease progression. Finally, therapeutic strategies targeting metabolism or BMA-secreted factors, such as anti-cholesterol drugs, hold considerable promise in cancer treatment. We present the synergistic avenue of combining conventional cancer therapies with agents targeting adipocyte signaling to amplify treatment efficacy. Developing preclinical models that more faithfully replicate human pathological and physiological processes will lead to more accurate mechanistic understanding of the role of BMAs in bone metastasis and lead to more relevant preclinical drug screening.
Collapse
Affiliation(s)
- Agathe Bessot
- School of Biomedical Sciences, Faculty of Health, and Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, 4102, Australia; Centre for Biomedical Technologies, QUT, Brisbane, QLD, 4000, Australia; Max Planck Queensland Centre for the Materials Science of Extracellular Matrices, Brisbane, QLD, 4000, Australia
| | - Jennifer Gunter
- School of Biomedical Sciences, Faculty of Health, and Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, 4102, Australia; Australian Prostate Cancer Research Centre (APCRC-Q), QUT, Brisbane, QLD, 4102, Australia; Centre for Genomics and Personalised Health, QUT, Brisbane, QLD, 4102, Australia
| | - Jacqui McGovern
- School of Biomedical Sciences, Faculty of Health, and Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, 4102, Australia; Centre for Biomedical Technologies, QUT, Brisbane, QLD, 4000, Australia; Max Planck Queensland Centre for the Materials Science of Extracellular Matrices, Brisbane, QLD, 4000, Australia; Australian Research Council (ARC) Training Centre for Cell and Tissue Engineering Technologies (CTET), QUT, Brisbane, QLD, 4000, Australia
| | - Nathalie Bock
- School of Biomedical Sciences, Faculty of Health, and Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, 4102, Australia; Centre for Biomedical Technologies, QUT, Brisbane, QLD, 4000, Australia; Max Planck Queensland Centre for the Materials Science of Extracellular Matrices, Brisbane, QLD, 4000, Australia; Australian Prostate Cancer Research Centre (APCRC-Q), QUT, Brisbane, QLD, 4102, Australia; Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD, 4000, Australia.
| |
Collapse
|
19
|
Icard P, Alifano M, Simula L. Citrate oscillations during cell cycle are a targetable vulnerability in cancer cells. Biochim Biophys Acta Rev Cancer 2025; 1880:189313. [PMID: 40216092 DOI: 10.1016/j.bbcan.2025.189313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 04/01/2025] [Accepted: 04/01/2025] [Indexed: 04/20/2025]
Abstract
Cell cycle progression is timely interconnected with oscillations in cellular metabolism. Here, we first describe how these metabolic oscillations allow cycling cells to meet the bioenergetic needs specifically for each phase of the cell cycle. In parallel, we highlight how the cytosolic level of citrate is dynamically regulated during these different phases, being low in G1 phase, increasing in S phase, peaking in G2/M, and decreasing in mitosis. Of note, in cancer cells, a dysregulation of such citrate oscillation can support cell cycle progression by promoting a deregulated Warburg effect (aerobic glycolysis), activating oncogenic signaling pathways (such as PI3K/AKT), and promoting acetyl-CoA production via alternative routes, such as overconsumption of acetate. Then, we review how administration of sodium citrate (at high doses) arrests the cell cycle in G0/G1 or G2/M, inhibits glycolysis and PI3K/AKT, induces apoptosis, and significantly reduces tumor growth in various in vivo models. Last, we reason on the possibility to implement citrate administration to reinforce the effectiveness of cell cycle inhibitors to better cure cancer.
Collapse
Affiliation(s)
- Philippe Icard
- Université de Normandie, UNICAEN, Inserm U1086 Interdisciplinary Research Unit for Cancer Prevention and Treatment, Caen, France; Thoracic Surgery Department, Cochin Hospital, APHP-Centre, Université Paris-Descartes, Paris, France.
| | - Marco Alifano
- Thoracic Surgery Department, Cochin Hospital, APHP-Centre, Université Paris-Descartes, Paris, France; Inserm U1138, Integrative Cancer Immunology, University of Paris, 75006 Paris, France
| | - Luca Simula
- Institut Cochin, Inserm U1016, CNRS UMR8104, Université Paris-Cité, Paris 75014, France
| |
Collapse
|
20
|
Seyfried TN, Lee DC, Duraj T, Ta NL, Mukherjee P, Kiebish M, Arismendi-Morillo G, Chinopoulos C. The Warburg hypothesis and the emergence of the mitochondrial metabolic theory of cancer. J Bioenerg Biomembr 2025:10.1007/s10863-025-10059-w. [PMID: 40199815 DOI: 10.1007/s10863-025-10059-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 03/20/2025] [Indexed: 04/10/2025]
Abstract
Otto Warburg originally proposed that cancer arose from a two-step process. The first step involved a chronic insufficiency of mitochondrial oxidative phosphorylation (OxPhos), while the second step involved a protracted compensatory energy synthesis through lactic acid fermentation. His extensive findings showed that oxygen consumption was lower while lactate production was higher in cancerous tissues than in non-cancerous tissues. Warburg considered both oxygen consumption and extracellular lactate as accurate markers for ATP production through OxPhos and glycolysis, respectively. Warburg's hypothesis was challenged from findings showing that oxygen consumption remained high in some cancer cells despite the elevated production of lactate suggesting that OxPhos was largely unimpaired. New information indicates that neither oxygen consumption nor lactate production are accurate surrogates for quantification of ATP production in cancer cells. Warburg also did not know that a significant amount of ATP could come from glutamine-driven mitochondrial substrate level phosphorylation in the glutaminolysis pathway with succinate produced as end product, thus confounding the linkage of oxygen consumption to the origin of ATP production within mitochondria. Moreover, new information shows that cytoplasmic lipid droplets and elevated aerobic lactic acid fermentation are both biomarkers for OxPhos insufficiency. Warburg's original hypothesis can now be linked to a more complete understanding of how OxPhos insufficiency underlies dysregulated cancer cell growth. These findings can also address several questionable assumptions regarding the origin of cancer thus allowing the field to advance with more effective therapeutic strategies for a less toxic metabolic management and prevention of cancer.
Collapse
Affiliation(s)
- Thomas N Seyfried
- Biology Department, Boston College, 140 Commonwealth Ave, Chestnut Hill, Boston, MA, 02467, USA.
| | - Derek C Lee
- Biology Department, Boston College, 140 Commonwealth Ave, Chestnut Hill, Boston, MA, 02467, USA
| | - Tomas Duraj
- Biology Department, Boston College, 140 Commonwealth Ave, Chestnut Hill, Boston, MA, 02467, USA
| | - Nathan L Ta
- Biology Department, Boston College, 140 Commonwealth Ave, Chestnut Hill, Boston, MA, 02467, USA
| | - Purna Mukherjee
- Biology Department, Boston College, 140 Commonwealth Ave, Chestnut Hill, Boston, MA, 02467, USA
| | | | - Gabriel Arismendi-Morillo
- Facultad de Medicina, Instituto de Investigaciones Biológicas, Universidad del Zulia, Maracaibo, Venezuela
- Department of Medicine, Faculty of Health Sciences, University of Deusto, Bilbao (Bizkaia), Spain
| | - Christos Chinopoulos
- Department of Medical Biochemistry, Semmelweis University, Budapest, 1094, Hungary
| |
Collapse
|
21
|
Liu S, Liu C, He Y, Li J. Benign non-immune cells in tumor microenvironment. Front Immunol 2025; 16:1561577. [PMID: 40248695 PMCID: PMC12003390 DOI: 10.3389/fimmu.2025.1561577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 02/24/2025] [Indexed: 04/19/2025] Open
Abstract
The tumor microenvironment (TME) is a highly complex and continuous evolving ecosystem, consisting of a diverse array of cellular and non-cellular components. Among these, benign non-immune cells, including cancer-associated fibroblasts (CAFs), adipocytes, endothelial cells (ECs), pericytes (PCs), Schwann cells (SCs) and others, are crucial factors for tumor development. Benign non-immune cells within the TME interact with both tumor cells and immune cells. These interactions contribute to tumor progression through both direct contact and indirect communication. Numerous studies have highlighted the role that benign non-immune cells exert on tumor progression and potential tumor-promoting mechanisms via multiple signaling pathways and factors. However, these benign non-immune cells may play different roles across cancer types. Therefore, it is important to understand the potential roles of benign non-immune cells within the TME based on tumor heterogeneity. A deep understanding allows us to develop novel cancer therapies by targeting these cells. In this review, we will introduce several types of benign non-immune cells that exert on different cancer types according to tumor heterogeneity and their roles in the TME.
Collapse
Affiliation(s)
- Shaowen Liu
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Chunhui Liu
- The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
- Henan Key Laboratory of Molecular Pathology, Zhengzhou, China
| | - Yuan He
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jun Li
- Henan Key Laboratory of Molecular Pathology, Zhengzhou, China
- Department of Molecular Pathology, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
22
|
Domagalski M, Olszańska J, Pietraszek‐Gremplewicz K, Nowak D. The role of adipogenic niche resident cells in colorectal cancer progression in relation to obesity. Obes Rev 2025; 26:e13873. [PMID: 39763022 PMCID: PMC11884973 DOI: 10.1111/obr.13873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 10/03/2024] [Accepted: 11/05/2024] [Indexed: 03/08/2025]
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide and has one of the highest mortality rates. Considering its nonlinear etiology, many risk factors are associated with CRC formation and development, with obesity at the forefront. Obesity is regarded as one of the key environmental risk determinants for the pathogenesis of CRC. Excessive food intake and a sedentary lifestyle, together with genetic predispositions, lead to the overgrowth of adipose tissue along with a disruption in the number and function of its building cells. Adipose tissue-resident cells may constitute part of the CRC microenvironment. Alterations in their physiology and secretory profiles observed in obesity may further contribute to CRC progression, and despite similar localization, their contributions are not equivalent. They can interact with CRC cells, either directly or indirectly, influencing various processes that contribute to tumorigenesis. The main aim of this review is to provide insights into the diversity of adipose tissue resident cells, namely, adipocytes, adipose stromal cells, and immunological cells, regarding the role of particular cell types in co-forming the CRC microenvironment. The scope of this study was also devoted to the abnormalities in adipose tissue physiology observed in obesity states and their impact on CRC development.
Collapse
Affiliation(s)
- Mikołaj Domagalski
- Department of Cell Pathology, Faculty of BiotechnologyUniversity of WroclawWroclawPoland
| | - Joanna Olszańska
- Department of Cell Pathology, Faculty of BiotechnologyUniversity of WroclawWroclawPoland
| | | | - Dorota Nowak
- Department of Cell Pathology, Faculty of BiotechnologyUniversity of WroclawWroclawPoland
| |
Collapse
|
23
|
Raos D, Vučemilo Paripović N, Ozretić P, Sabol M. Current status of in vitro models for rare gynaecological cancer research. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2025; 51:108549. [PMID: 39048342 DOI: 10.1016/j.ejso.2024.108549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024]
Abstract
Gynaecological cancers originate within the female reproductive system and are classified according to the site in the reproductive system where they arise. However, over 50 % of these malignancies are categorized as rare, encompassing 30 distinct histological subtypes, which complicates their diagnosis and treatment. The focus of this review is to give an overview of established in vitro models for the investigation of rare gynaecological cancers, as well as an overview of available online databases that contain detailed descriptions of cell line characteristics. Cell lines represent the main models for the research of carcinogenesis, drug resistance, pharmacodynamics and novel therapy treatment options. Nowadays, classic 2D cell models are increasingly being replaced with 3D cell models, such as spheroids, organoids, and tumoroids because they provide a more accurate representation of numerous tumour characteristics, and their response to therapy differs from the response of adherent cell lines. It is crucial to use the correct cell line model, as rare tumour types can show characteristics that differ from the most common tumour types and can therefore respond unexpectedly to classic treatment. Additionally, some cell lines have been misclassified or misidentified, which could lead to false results. Even though rare gynaecological cancers are rare, this review will demonstrate that there are available options for investigation of such cancers in vitro on biologically relevant models.
Collapse
Affiliation(s)
- Dora Raos
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička Cesta 54, 10 000, Zagreb, Croatia.
| | | | - Petar Ozretić
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička Cesta 54, 10 000, Zagreb, Croatia.
| | - Maja Sabol
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička Cesta 54, 10 000, Zagreb, Croatia.
| |
Collapse
|
24
|
Altea-Manzano P, Decker-Farrell A, Janowitz T, Erez A. Metabolic interplays between the tumour and the host shape the tumour macroenvironment. Nat Rev Cancer 2025; 25:274-292. [PMID: 39833533 DOI: 10.1038/s41568-024-00786-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/10/2024] [Indexed: 01/22/2025]
Abstract
Metabolic reprogramming of cancer cells and the tumour microenvironment are pivotal characteristics of cancers, and studying these processes offer insights and avenues for cancer diagnostics and therapeutics. Recent advancements have underscored the impact of host systemic features, termed macroenvironment, on facilitating cancer progression. During tumorigenesis, these inherent features of the host, such as germline genetics, immune profile and the metabolic status, influence how the body responds to cancer. In parallel, as cancer grows, it induces systemic effects beyond the primary tumour site and affects the macroenvironment, for example, through inflammation, the metabolic end-stage syndrome of cachexia, and metabolic dysregulation. Therefore, understanding the intricate metabolic interplay between the tumour and the host is a growing frontier in advancing cancer diagnosis and therapy. In this Review, we explore the specific contribution of the metabolic fitness of the host to cancer initiation, progression and response to therapy. We then delineate the complex metabolic crosstalk between the tumour, the microenvironment and the host, which promotes disease progression to metastasis and cachexia. The metabolic relationships among the host, cancer pathogenesis and the consequent responsive systemic manifestations during cancer progression provide new perspectives for mechanistic cancer therapy and improved management of patients with cancer.
Collapse
Affiliation(s)
| | | | | | - Ayelet Erez
- Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
25
|
Zhang Y, Li T, Liu A, Cheng Y, Meng F, Zhang R, Lao J, Liu Y, Xu N, Ge Y. IL-15/IL-15Rα-secreting bioengineered adipocytes reactivate NK/CD8 + T cells in ovarian and colon cancer ascites. Int J Biol Macromol 2025; 304:140559. [PMID: 39914546 DOI: 10.1016/j.ijbiomac.2025.140559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/26/2025] [Accepted: 01/30/2025] [Indexed: 02/13/2025]
Abstract
Malignant ascites (MA) presents a complex clinical challenge, linked inextricably to poor prognosis, chemoresistance, and metastasis of peritoneal carcinomatosis (PC). However, standard therapeutic approaches for managing or preventing MA secondary to PC remain unavailable. Here we display that a bioengineered adipocyte, encapsulating long-chain fatty acids and concurrently secreting IL-15 and IL-15 receptor α (IL-15Rα), markedly extends the half-life and bioactivity of IL-15. The bioengineered adipocyte consists of an IL-15-P2A-IL-15Rα-T2A-mCherry cDNA sequence stable transfected 3T3-F442A preadipocyte cell line and dcosahexaenoic acid (DHA) are simultaneously encapsulated in the lipid droplets of mature adipocytes, which release it into the MA upon tumor cell-triggered lipolysis. We demonstrate that the bioengineered adipocytes led to specific expansion and activation of NK/CD8+ T cells response to the IL-15/IL-15Rα complex in MA, thereby reversing immuno-suppressive phenotype of ascitic immune cells and enabling them to recognize and attack cancer cells. This synergistic therapeutic strategy exhibits therapeutical manipulation of the ascitic immune cells, restores normal immune functioning, and suppresses cancer cell metastasis and tumor growth in ovarian cancer and colon cancer, all while minimizing systemic adverse effects.
Collapse
Affiliation(s)
- Yuanxin Zhang
- College of Biological and Food Engineering, Jilin Institute of Chemical Technology, Jilin, Jilin 132022, China; Center for Biomedical Research and Innovation, Jilin Institute of Chemical Technology, Jilin, Jilin 132022, China.
| | - Tong Li
- College of Biological and Food Engineering, Jilin Institute of Chemical Technology, Jilin, Jilin 132022, China; Center for Biomedical Research and Innovation, Jilin Institute of Chemical Technology, Jilin, Jilin 132022, China
| | - Aiping Liu
- College of Biological and Food Engineering, Jilin Institute of Chemical Technology, Jilin, Jilin 132022, China; Center for Biomedical Research and Innovation, Jilin Institute of Chemical Technology, Jilin, Jilin 132022, China
| | - Yaqing Cheng
- College of Biological and Food Engineering, Jilin Institute of Chemical Technology, Jilin, Jilin 132022, China; Center for Biomedical Research and Innovation, Jilin Institute of Chemical Technology, Jilin, Jilin 132022, China
| | - Fanwei Meng
- College of Biological and Food Engineering, Jilin Institute of Chemical Technology, Jilin, Jilin 132022, China; Center for Biomedical Research and Innovation, Jilin Institute of Chemical Technology, Jilin, Jilin 132022, China
| | - Renwen Zhang
- College of Biological and Food Engineering, Jilin Institute of Chemical Technology, Jilin, Jilin 132022, China; Center for Biomedical Research and Innovation, Jilin Institute of Chemical Technology, Jilin, Jilin 132022, China
| | - Jun Lao
- College of Biological and Food Engineering, Jilin Institute of Chemical Technology, Jilin, Jilin 132022, China; Center for Biomedical Research and Innovation, Jilin Institute of Chemical Technology, Jilin, Jilin 132022, China
| | - Yihan Liu
- College of Biological and Food Engineering, Jilin Institute of Chemical Technology, Jilin, Jilin 132022, China; Center for Biomedical Research and Innovation, Jilin Institute of Chemical Technology, Jilin, Jilin 132022, China
| | - Ning Xu
- College of Biological and Food Engineering, Jilin Institute of Chemical Technology, Jilin, Jilin 132022, China; Center for Biomedical Research and Innovation, Jilin Institute of Chemical Technology, Jilin, Jilin 132022, China
| | - Yakun Ge
- College of Biological and Food Engineering, Jilin Institute of Chemical Technology, Jilin, Jilin 132022, China; Center for Biomedical Research and Innovation, Jilin Institute of Chemical Technology, Jilin, Jilin 132022, China.
| |
Collapse
|
26
|
Lusk HJ, Haughan MA, Bergsten TM, Burdette JE, Sanchez LM. Branched-Chain Amino Acid Catabolism Promotes Ovarian Cancer Cell Proliferation via Phosphorylation of mTOR. CANCER RESEARCH COMMUNICATIONS 2025; 5:569-579. [PMID: 40066850 PMCID: PMC11973964 DOI: 10.1158/2767-9764.crc-24-0532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/24/2025] [Accepted: 03/06/2025] [Indexed: 03/19/2025]
Abstract
SIGNIFICANCE This study uncovers altered amino acid metabolism, specifically increased BCAA catabolism, at the interface of ovarian cancer cells and omental tissue in a coculture model of HGSOC secondary metastasis. Enhanced BCAA catabolism promotes cancer cell proliferation through mTOR signaling, presenting potential therapeutic value. These findings deepen our understanding of HGSOC pathogenesis and the metastatic tumor microenvironment, offering insights for developing new treatment strategies.
Collapse
Affiliation(s)
- Hannah J. Lusk
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California
| | - Monica A. Haughan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois
| | - Tova M. Bergsten
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois
| | - Joanna E. Burdette
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois
| | - Laura M. Sanchez
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California
| |
Collapse
|
27
|
La Civita E, Sirica R, Crocetto F, Ferro M, Lasorsa F, Lucarelli G, Imbimbo C, Formisano P, Beguinot F, Terracciano D. FABP4-mediated ERK phosphorylation promotes renal cancer cell migration. BMC Cancer 2025; 25:575. [PMID: 40159492 PMCID: PMC11956428 DOI: 10.1186/s12885-025-13989-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 03/21/2025] [Indexed: 04/02/2025] Open
Abstract
Clear cell Carcinoma (ccRCC) is the most common and lethal subtype among renal cancers. In the present study we investigated the potential role of fatty acid-binding protein 4 (FABP4), also known as adipocyte FABP (A-FABP) or aP2 on ccRCC progression. Firstly, we found that FABP4 median serum levels were significantly higher in ccRCC patients compared to HD. Based on this result and to evaluate whether FABP4 plays a role on renal cancer malignant phenotype, we analyzed proliferation and migration in 786-O and ACHN cell lines using recombinant FABP4. We found that FABP4 significantly increased cell migration, whereas it had no significant effect on proliferation. As FABP4 is mainly expressed by adipocytes, we measured FABP4 adipocyte conditioned media (Ad-CM) levels showing that Ad-CM from ccRCC (Ad-CM ccRCC) had significantly higher mean values compared to Ad-CM obtained from Healthy Donors (HD). To assess the effects of adipocyte-released FABP-4, on cancer malignant phenotype we evaluated 786-O and ACHN proliferation and migration, using Ad-CM from ccRCC and Ad-CM from HD alone or in combination with FABP4 inhibitor BMS309403. Our results showed that Ad-CM enhanced cell proliferation in ACHN, but not in 786-O and on cell motility in both cell lines and this effect was partially reverted by BMS309403 in both cell lines. Moreover, in both cell lines, FABP4 effect was associated with an increased ERK phosphorylation. Collectively these data support the role of FABP4 in ccRCC progression and its potential use as noninvasive biomarker and therapeutic target for ccRCC.
Collapse
Affiliation(s)
- Evelina La Civita
- Department of Translational Medical Sciences, University of Naples "Federico II", Naples, 80131, Italy
| | - Rosa Sirica
- Department of Translational Medical Sciences, University of Naples "Federico II", Naples, 80131, Italy
| | - Felice Crocetto
- Department of Neurosciences, Sciences of Reproduction and Odontostomatology, University of Naples "Federico II", Naples, 80131, Italy
| | - Matteo Ferro
- Unit of Urology, Department of Health Science, University of Milan, ASST Santi Paolo and Carlo, Milan, 20142, Italy
| | - Francesco Lasorsa
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari "Aldo Moro", Bari, 70124, Italy
| | - Giuseppe Lucarelli
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari "Aldo Moro", Bari, 70124, Italy
| | - Ciro Imbimbo
- Department of Neurosciences, Sciences of Reproduction and Odontostomatology, University of Naples "Federico II", Naples, 80131, Italy
| | - Pietro Formisano
- Department of Translational Medical Sciences, University of Naples "Federico II", Naples, 80131, Italy
| | - Francesco Beguinot
- Department of Translational Medical Sciences, University of Naples "Federico II", Naples, 80131, Italy
| | - Daniela Terracciano
- Department of Translational Medical Sciences, University of Naples "Federico II", Naples, 80131, Italy.
| |
Collapse
|
28
|
Grigoraș A, Amalinei C. The Role of Perirenal Adipose Tissue in Carcinogenesis-From Molecular Mechanism to Therapeutic Perspectives. Cancers (Basel) 2025; 17:1077. [PMID: 40227577 PMCID: PMC11987925 DOI: 10.3390/cancers17071077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 04/15/2025] Open
Abstract
Perirenal adipose tissue (PRAT) exhibits particular morphological features, with its activity being mainly related to thermogenesis. However, an expanded PRAT area seems to play a significant role in cardiovascular diseases, diabetes mellitus, and chronic kidney disease pathogenesis. Numerous studies have demonstrated that PRAT may support cancer progression and invasion, mainly in obese patients. The mechanism underlying these processes is of dysregulation of PRAT's secretion of adipokines and pro-inflammatory cytokines, such as leptin, adiponectin, chemerin, apelin, omentin-1, vistatin, nesfatin-1, and other pro-inflammatory cytokines, modulated by tumor cells. Cancer cells may also induce a metabolic reprogramming of perirenal adipocytes, leading to increased lipids and lactate transfer to the tumor microenvironment, contributing to cancer growth in a hypoxic milieu. In addition, the PRAT browning process has been specifically detected in renal cell carcinoma (RCC), being characterized by upregulated expression of brown/beige adipocytes markers (UCP1, PPAR-ɣ, c/EBPα, and PGC1α) and downregulated white fat cells markers, such as LEPTIN, SHOX2, HOXC8, and HOXC9. Considering its multifaceted role in cancer, modulation of PRAT's role in tumor progression may open new directions for oncologic therapy improvement. Considering the increasing evidence of the relationship between PRAT and tumor cells, our review aims to provide a comprehensive analysis of the perirenal adipocytes' impact on tumor progression and metastasis.
Collapse
Affiliation(s)
- Adriana Grigoraș
- Department of Morphofunctional Sciences I, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Department of Histopathology, Institute of Legal Medicine, 700455 Iasi, Romania
| | - Cornelia Amalinei
- Department of Morphofunctional Sciences I, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Department of Histopathology, Institute of Legal Medicine, 700455 Iasi, Romania
| |
Collapse
|
29
|
Kantapan J, Katsube T, Wang B. High-Fat Diet and Altered Radiation Response. BIOLOGY 2025; 14:324. [PMID: 40282189 PMCID: PMC12024794 DOI: 10.3390/biology14040324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/11/2025] [Accepted: 03/19/2025] [Indexed: 04/29/2025]
Abstract
High-fat diets (HFDs) have become increasingly prevalent in modern societies, driving rising rates of obesity and metabolic syndrome. Concurrently, radiation exposure from medical treatments and environmental sources poses health risks shaped by both biological and environmental factors. This review explores the intersection between HFDs and radiation sensitivity/susceptibility, focusing on how diet-induced metabolic alterations influence the body's response to radiation. Evidence from preclinical and clinical studies indicates that HFDs significantly alter metabolism, leading to increased oxidative stress and immune system dysregulation. These metabolic changes can exacerbate radiation-induced oxidative stress, inflammation, and DNA damage, potentially increasing radiation sensitivity in normal tissues. Conversely, obesity and HFD-induced metabolic disruptions may activate cellular pathways involved in DNA repair, cell survival, and inflammatory responses, fostering tumor resistance and modifying the tumor microenvironment, which may impair the efficacy of radiation therapy in cancer treatment. Understanding the interplay between diet and radiation exposure is critical for optimizing public health guidelines and improving therapeutic outcomes. These findings underscore the need for further research into dietary interventions that may mitigate radiation-associated risks.
Collapse
Affiliation(s)
- Jiraporn Kantapan
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Takanori Katsube
- Institute for Radiological Science, National Institutes for Quantum Science and Technology (QST), Chiba 263-8555, Japan;
| | - Bing Wang
- Institute for Radiological Science, National Institutes for Quantum Science and Technology (QST), Chiba 263-8555, Japan;
| |
Collapse
|
30
|
Jiang X, Xiong Y, Yu J, Avellino A, Liu S, Han X, Wang Z, Shilyansky JS, Curry MA, Hao J, Sauter ER, Huang Y, Sugg SL, Li B. Expression profiles of FABP4 and FABP5 in breast cancer: clinical implications and perspectives. Discov Oncol 2025; 16:357. [PMID: 40106183 PMCID: PMC11923334 DOI: 10.1007/s12672-025-02117-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 03/11/2025] [Indexed: 03/22/2025] Open
Abstract
The incidence of breast cancer continues to rise each year despite significant advances in diagnosis and treatment. Obesity-associated dysregulated lipid metabolism is believed to contribute to the increasing risk of breast cancer. However, the mechanisms linking lipid dysregulation to breast cancer risk and progression remain to be determined. The family of fatty acid binding proteins (FABPs) evolves to facilitate lipid transport and metabolism. As the predominant isoforms of FABP members expressed in breast tissue, adipose FABP (A-FABP, also known as FABP4) and epithelial FABP (E-FABP, FABP5) have been shown to play critical roles in breast carcinogenesis. In this study, we collected surgical breast tissue samples from 96 women with different subtypes of breast cancer and comprehensively analyzed the expression pattens of FABP4 and FABP5. We found that distinct expression profiles of FABP4 and FABP5 were associated with their unique roles in breast cancer development. FABP4, mainly expressed in breast stroma, especially in adipose tissue, likely supported neighboring tumor cell lymphovascular invasion through secretion from adipocytes. In contrast, FABP5, primarily expressed in epithelial-derived tumor cells, could promote tumor metastasis by enhancing lipid metabolism. Thus, elevated levels of FABP4 and FABP5 may serve as poor prognostic markers for breast cancer. Inhibiting the activity of FABP4 and/or FABP5 may offer a novel strategy for breast cancer therapy.
Collapse
Affiliation(s)
- Xingshan Jiang
- Department of Pathology, University of Iowa, 431 Newton Road, Iowa City, IA, 52242, USA
| | - Yiqin Xiong
- Department of Pathology, University of Iowa, 431 Newton Road, Iowa City, IA, 52242, USA
| | - Jianyu Yu
- Department of Pathology, University of Iowa, 431 Newton Road, Iowa City, IA, 52242, USA
| | - Anthony Avellino
- Department of Pathology, University of Iowa, 431 Newton Road, Iowa City, IA, 52242, USA
| | - Shanshan Liu
- Department of Pathology, University of Iowa, 431 Newton Road, Iowa City, IA, 52242, USA
| | - Xiaochun Han
- Department of Pathology, University of Iowa, 431 Newton Road, Iowa City, IA, 52242, USA
| | - Zhaohua Wang
- Department of Pathology, University of Iowa, 431 Newton Road, Iowa City, IA, 52242, USA
| | - Jonathan S Shilyansky
- Department of Pathology, University of Iowa, 431 Newton Road, Iowa City, IA, 52242, USA
| | - Melissa A Curry
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| | - Jiaqing Hao
- Department of Pathology, University of Iowa, 431 Newton Road, Iowa City, IA, 52242, USA
| | | | - Yi Huang
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - Sonia L Sugg
- Department of Surgery, University of Iowa, Iowa City, IA, USA
| | - Bing Li
- Department of Pathology, University of Iowa, 431 Newton Road, Iowa City, IA, 52242, USA.
| |
Collapse
|
31
|
Qi M, Zhao X, Fan R, Lin J, Li Z, Liu N, Sun X, Xu D, Zheng J, Liu D, Zhou R, Rong M, Ostrikov KK. Plasma-activated saline hyperthermic perfusion-induced pyroptosis boosts peritoneal carcinomatosis immunotherapy. Free Radic Biol Med 2025; 230:177-189. [PMID: 39914684 DOI: 10.1016/j.freeradbiomed.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 02/01/2025] [Accepted: 02/03/2025] [Indexed: 02/22/2025]
Abstract
Peritoneal carcinomatosis (PC) is a common metastatic cancer with limited treatment options. Herein, we present a novel strategy for the combined treatment of PC involving plasma-activated saline (PAS) and hyperthermic intraperitoneal perfusion. PAS revealed a strong cytotoxic effect because of reactive oxygen species (ROS) in two-dimensional cultures and three-dimensional tumor spheroids of PC-related cell lines. Notably, PAS induced Gasdermin E (GSDME)-dependent pyroptosis and immunogenic cell death in vitro. PAS-enhanced hyperthermic intraperitoneal perfusion (PE-HIP) increased the number of CD3+, CD4+ and CD8+ T cells, while decreased the number of regulatory T cells, indicating that PAS stimulated T cell-based immune responses in vivo. Moreover, PE-HIP significantly inhibited tumor growth and improved survival in a PC-mice model, with no significant toxic side effects. Meanwhile, vaccination with PAS-induced cell pyroptosis activated systemic antitumor immunity to prevent subcutaneous tumor growth. Overall, PE-HIP can serve as a new approach for PC treatment by ROS-assisted cancer immunotherapy.
Collapse
Affiliation(s)
- Miao Qi
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an, 710049, PR China; School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Xinyi Zhao
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Runze Fan
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Jiao Lin
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Zhuo Li
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Na Liu
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Medical Science Center, Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Xuejun Sun
- Department of General Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Dehui Xu
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an, 710049, PR China; School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, PR China; Department of Dermatology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, PR China.
| | - Jianbao Zheng
- Department of General Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China.
| | - Dingxin Liu
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an, 710049, PR China.
| | - Renwu Zhou
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Mingzhe Rong
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Kostya Ken Ostrikov
- Centre for Materials Science, and Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| |
Collapse
|
32
|
Lin G, Liu Q, Xie C, Ding K, Mo G, Zeng L, Zhang F, Liu R, Lu L, Hong W, Mao Y, Su H, Li S. Upregulated FSP1 by GPD1/1L mediated lipid droplet accumulation enhances ferroptosis resistance and peritoneal metastasis in gastric cancer. Cell Commun Signal 2025; 23:132. [PMID: 40075460 PMCID: PMC11899195 DOI: 10.1186/s12964-025-02126-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
To successfully metastasize, cancer cells must evade detachment induced cell death, known as anoikis. Unraveling the mechanisms that gastric cancer (GC) circumvent anoikis and achieve peritoneal metastasis especially during unanchored growth, could significantly improve patient outcomes. Our study reveals that GC cells exhibit increased lipid peroxidation, MDA production, and cell death during suspension culture, which can be mitigated by the intervention with liproxstatin-1 and ferrostatin-1. We discovered that oleic acid (OA) or adipocytes stimulate lipid accumulation in GC cells, thereby inhibiting lipid peroxidation and cell death. Lipid mass spectrometry confirmed an upregulation of triglyceride synthesis, indicating that the accumulation of lipid droplet may confer resistance to ferroptosis during suspension growth. In vitro assays demonstrated that OA not only induces lipid droplet accumulation but also upregulates the expression of ferroptosis suppressor protein 1 (FSP1), a process that can be abrogated by the double knockout of GPD1/1L genes. Additionally, we have demonstrated that a decrease in the ubiquitination of FSP1 in GC cells upon lipid droplet accumulation, as well as silencing or pharmacological targeting FSP1, promotes ferroptosis and disrupts the peritoneal metastatic potential of GC cells. Collectively, our findings highlight the potential of FSP1 as a promising therapeutic target for metastatic gastric cancer.
Collapse
Affiliation(s)
- Guoliang Lin
- Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Qingnan Liu
- Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Chengjie Xie
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Ke Ding
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Guanghua Mo
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Lu Zeng
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Fan Zhang
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - RuiXuan Liu
- Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Lei Lu
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Wei Hong
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Yuling Mao
- Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Haibo Su
- Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China.
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, 511436, PR China.
| | - Shuai Li
- Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China.
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, 511436, PR China.
| |
Collapse
|
33
|
Turlej E, Domaradzka A, Radzka J, Drulis-Fajdasz D, Kulbacka J, Gizak A. Cross-Talk Between Cancer and Its Cellular Environment-A Role in Cancer Progression. Cells 2025; 14:403. [PMID: 40136652 PMCID: PMC11940884 DOI: 10.3390/cells14060403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/27/2025] [Accepted: 03/06/2025] [Indexed: 03/27/2025] Open
Abstract
The tumor microenvironment is a dynamic and complex three-dimensional network comprising the extracellular matrix and diverse non-cancerous cells, including fibroblasts, adipocytes, endothelial cells and various immune cells (lymphocytes T and B, NK cells, dendritic cells, monocytes/macrophages, myeloid-derived suppressor cells, and innate lymphoid cells). A constantly and rapidly growing number of studies highlight the critical role of these cells in shaping cancer survival, metastatic potential and therapy resistance. This review provides a synthesis of current knowledge on the modulating role of the cellular microenvironment in cancer progression and response to treatment.
Collapse
Affiliation(s)
- Eliza Turlej
- Departament of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; (E.T.); (A.D.); (J.R.)
| | - Aleksandra Domaradzka
- Departament of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; (E.T.); (A.D.); (J.R.)
| | - Justyna Radzka
- Departament of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; (E.T.); (A.D.); (J.R.)
| | - Dominika Drulis-Fajdasz
- Departament of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; (E.T.); (A.D.); (J.R.)
| | - Julita Kulbacka
- Departament of Molecular and Cellular Biology, Faculty of Pharmacy, Wrocław Medical University, Borowska 211A, 50-556 Wrocław, Poland;
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania
| | - Agnieszka Gizak
- Departament of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; (E.T.); (A.D.); (J.R.)
| |
Collapse
|
34
|
Xu J, Cai Z, Pang Z, Chen J, Zhu K, Wang D, Tu J. Smilax glabra Flavonoids Inhibit AMPK Activation and Induce Ferroptosis in Obesity-Associated Colorectal Cancer. Int J Mol Sci 2025; 26:2476. [PMID: 40141120 PMCID: PMC11942472 DOI: 10.3390/ijms26062476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 03/06/2025] [Accepted: 03/08/2025] [Indexed: 03/28/2025] Open
Abstract
Smilax glabra flavonoids (SGF), the active components of Smilax glabra Roxb., have been demonstrated to exhibit antioxidant activity and metabolic benefits in obesity, leading us to further explore their antitumor effects in obesity-related colorectal cancer (CRC). This study investigated the antiproliferative effects of SGF on obesity-related CRC by using a murine colon adenocarcinoma MC38 cell line. The underlying mechanisms were further explored via RNA-Seq and bioinformatics analysis in combination with experimental validation. SGF was proven to possess cytotoxic effects against MC38 cells, indicated by the inhibition of proliferation and migration, especially in an adipocyte-rich environment. In line with this, SGF exhibited much stronger antiproliferative effects on MC38-transplanted tumors in obese mice. Transcriptomics analysis showed that the cytotoxic effects of SGF might be related to the AMPK pathway and ferroptosis. On this basis, SGF was confirmed to induce ferroptosis and dictate ferroptosis sensitivity in a high-fat context mimicked by a two-step conditioned medium (CM) transfer experiment or a Transwell coculture system. The results of Western blotting validated that SGF suppressed the phosphorylation of AMPK, accompanied by alterations in the biomarkers of ferroptosis. These results demonstrate that SGF exerts in vitro and in vivo antiproliferative effects in obesity-associated CRC through inhibiting AMPK activation, thereby driving ferroptosis.
Collapse
Affiliation(s)
- Jianqin Xu
- Laboratory Animal Research Center, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (J.X.); (Z.C.); (Z.P.); (J.C.); (K.Z.)
| | - Zhaowei Cai
- Laboratory Animal Research Center, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (J.X.); (Z.C.); (Z.P.); (J.C.); (K.Z.)
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Ziyao Pang
- Laboratory Animal Research Center, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (J.X.); (Z.C.); (Z.P.); (J.C.); (K.Z.)
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jiayan Chen
- Laboratory Animal Research Center, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (J.X.); (Z.C.); (Z.P.); (J.C.); (K.Z.)
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Keyan Zhu
- Laboratory Animal Research Center, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (J.X.); (Z.C.); (Z.P.); (J.C.); (K.Z.)
| | - Dejun Wang
- Laboratory Animal Research Center, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (J.X.); (Z.C.); (Z.P.); (J.C.); (K.Z.)
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jue Tu
- Laboratory Animal Research Center, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (J.X.); (Z.C.); (Z.P.); (J.C.); (K.Z.)
| |
Collapse
|
35
|
Wan M, Pan S, Shan B, Diao H, Jin H, Wang Z, Wang W, Han S, Liu W, He J, Zheng Z, Pan Y, Han X, Zhang J. Lipid metabolic reprograming: the unsung hero in breast cancer progression and tumor microenvironment. Mol Cancer 2025; 24:61. [PMID: 40025508 PMCID: PMC11874147 DOI: 10.1186/s12943-025-02258-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/02/2025] [Indexed: 03/04/2025] Open
Abstract
Aberrant lipid metabolism is a well-recognized hallmark of cancer. Notably, breast cancer (BC) arises from a lipid-rich microenvironment and depends significantly on lipid metabolic reprogramming to fulfill its developmental requirements. In this review, we revisit the pivotal role of lipid metabolism in BC, underscoring its impact on the progression and tumor microenvironment. Firstly, we delineate the overall landscape of lipid metabolism in BC, highlighting its roles in tumor progression and patient prognosis. Given that lipids can also act as signaling molecules, we next describe the lipid signaling exchanges between BC cells and other cellular components in the tumor microenvironment. Additionally, we summarize the therapeutic potential of targeting lipid metabolism from the aspects of lipid metabolism processes, lipid-related transcription factors and immunotherapy in BC. Finally, we discuss the possibilities and problems associated with clinical applications of lipid‑targeted therapy in BC, and propose new research directions with advances in spatiotemporal multi-omics.
Collapse
Affiliation(s)
- Mengting Wan
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Shuaikang Pan
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- School of Medical Oncology, Wan Nan Medical College, Wuhu, Anhui, China
| | - Benjie Shan
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Haizhou Diao
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Hongwei Jin
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- School of Medical Oncology, Anhui Medical University, Hefei, China
| | - Ziqi Wang
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Wei Wang
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- School of Medical Oncology, Wan Nan Medical College, Wuhu, Anhui, China
| | - Shuya Han
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Wan Liu
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Jiaying He
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- Graduate School of Bengbu Medical University, Bengbu, Anhui Province, China
| | - Zihan Zheng
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- School of Medical Oncology, Anhui Medical University, Hefei, China
| | - Yueyin Pan
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China.
| | - Xinghua Han
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China.
| | - Jinguo Zhang
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
36
|
Winkelkotte AM, Al-Shami K, Chaves-Filho AB, Vogel FCE, Schulze A. Interactions of Fatty Acid and Cholesterol Metabolism with Cellular Stress Response Pathways in Cancer. Cold Spring Harb Perspect Med 2025; 15:a041548. [PMID: 38951029 PMCID: PMC11875093 DOI: 10.1101/cshperspect.a041548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Lipids have essential functions as structural components of cellular membranes, as efficient energy storage molecules, and as precursors of signaling mediators. While deregulated glucose and amino acid metabolism in cancer have received substantial attention, the roles of lipids in the metabolic reprogramming of cancer cells are less well understood. However, since the first description of de novo fatty acid biosynthesis in cancer tissues almost 70 years ago, numerous studies have investigated the complex functions of altered lipid metabolism in cancer. Here, we will summarize the mechanisms by which oncogenic signaling pathways regulate fatty acid and cholesterol metabolism to drive rapid proliferation and protect cancer cells from environmental stress. The review also discusses the role of fatty acid metabolism in metabolic plasticity required for the adaptation to changing microenvironments during cancer progression and the connections between fatty acid and cholesterol metabolism and ferroptosis.
Collapse
Affiliation(s)
- Alina M Winkelkotte
- Division of Tumor Metabolism and Microenvironment, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Kamal Al-Shami
- Division of Tumor Metabolism and Microenvironment, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Adriano B Chaves-Filho
- Division of Tumor Metabolism and Microenvironment, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Institute of Chemistry, University of São Paulo, 05508000 São Paulo, Brazil
| | - Felix C E Vogel
- Division of Tumor Metabolism and Microenvironment, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Almut Schulze
- Division of Tumor Metabolism and Microenvironment, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
37
|
Xu M, Xie P, Liu S, Gao X, Yang S, Hu Z, Zhao Y, Yi Y, Dong Q, Bruns C, Kong X, Hung MC, Ren N, Zhou C. LCAT deficiency promotes hepatocellular carcinoma progression and lenvatinib resistance by promoting triglyceride catabolism and fatty acid oxidation. Cancer Lett 2025; 612:217469. [PMID: 39842501 DOI: 10.1016/j.canlet.2025.217469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 01/12/2025] [Accepted: 01/15/2025] [Indexed: 01/24/2025]
Abstract
Lecithin cholesterol acyltransferase (LCAT), a crucial enzyme in lipid metabolism, plays important yet poorly understood roles in tumours, especially in hepatocellular carcinoma (HCC). In this study, our investigation revealed that LCAT is a key downregulated metabolic gene and an independent risk factor for poor prognosis in patients with HCC. Functional experiments showed that LCAT inhibited HCC cell proliferation, migration and invasion. Mechanistically, LCAT interacts with caveolin-1 (CAV1) to promote the binding of CAV1 to PRKACA and inhibit its phosphorylation, thereby inhibiting triglyceride (TAG) catabolism. On the other hand, LCAT inhibits fatty acid oxidation (FAO) by interacting with CPT1A to promote its ubiquitination and degradation. These events result in an inadequate supply of raw materials and energy and inhibit the malignant behaviours of HCC cells. In addition, LCAT is a reliable predictive biomarker for the efficacy of lenvatinib treatment in HCC patients, and the inhibition of FAO can increase lenvatinib sensitivity in patients with LCATlow HCC. This study revealed that LCAT plays a critical role in the regulation of lipid metabolic reprogramming and is a reliable predictive biomarker for the efficacy of lenvatinib treatment in HCC patients.
Collapse
Affiliation(s)
- Min Xu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, PR China
| | - Peiyi Xie
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, PR China
| | - Shaoqing Liu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, PR China; Department of Breast Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, P.R. China
| | - Xukang Gao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, PR China
| | - Shiguang Yang
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer of Shanghai Municipal Health Commission, Shanghai, 201199, PR China; Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, 201199, PR China; Department of Hepatobiliary and Pancreatic Surgery, Minhang Hospital, Fudan University, Shanghai, 201199, PR China
| | - Zhiqiu Hu
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer of Shanghai Municipal Health Commission, Shanghai, 201199, PR China; Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, 201199, PR China; Department of Hepatobiliary and Pancreatic Surgery, Minhang Hospital, Fudan University, Shanghai, 201199, PR China
| | - Yue Zhao
- Department of General, Visceral, Cancer and Transplantation Surgery, University Hospital of Cologne, Kerpener Straße 62, 50937, Cologne, Germany
| | - Yong Yi
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, PR China
| | - Qiongzhu Dong
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer of Shanghai Municipal Health Commission, Shanghai, 201199, PR China; Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, 201199, PR China
| | - Christiane Bruns
- Department of General, Visceral, Cancer and Transplantation Surgery, University Hospital of Cologne, Kerpener Straße 62, 50937, Cologne, Germany
| | - Xiaoni Kong
- Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China.
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences, Institute of Biochemistry and Molecular Biology, Research Center for Cancer Biology, Cancer Biology and Precision Therapeutics Center, and Center for Molecular Medicine, China Medical University, Taichung, 40402, Taiwan.
| | - Ning Ren
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, PR China.
| | - Chenhao Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, PR China.
| |
Collapse
|
38
|
Bathe OF. Tumor metabolism as a factor affecting diversity in cancer cachexia. Am J Physiol Cell Physiol 2025; 328:C908-C920. [PMID: 39870605 DOI: 10.1152/ajpcell.00677.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 09/21/2024] [Accepted: 01/20/2025] [Indexed: 01/29/2025]
Abstract
Cancer cachexia is a multifaceted metabolic syndrome characterized by muscle wasting, fat redistribution, and metabolic dysregulation, commonly associated with advanced cancer but sometimes also evident in early-stage disease. More subtle body composition changes have also been reported in association with cancer, including sarcopenia, myosteatosis, and increased fat radiodensity. Emerging evidence reveals that body composition changes including sarcopenia, myosteatosis, and increased fat radiodensity, arise from distinct biological mechanisms and significantly impact survival outcomes. Importantly, these features often occur independently, with their combined presence exacerbating poor prognoses. Tumor plays a pivotal role in driving these host changes, either by acting as a metabolic parasite or by releasing mediators that disrupt normal tissue function. This review explores the diversity of tumor metabolism. It highlights the potential for tumor-specific metabolic phenotypes to influence systemic effects, including fat redistribution and sarcopenia. Addressing this tumor-host metabolic interplay requires personalized approaches that disrupt tumor metabolism while preserving host health. Promising strategies include targeted pharmacological interventions and anticachexia agents like growth differentiation factor 15 (GDF-15) inhibitors. Nutritional modifications such as ketogenic diets and omega-3 fatty acid supplementation also merit further investigation. In addition to preserving muscle, these therapies will need to be evaluated for their capability to improve survival and quality of life. This review underscores the need for further research into tumor-driven metabolic effects on the host and the development of integrative treatment strategies to address the interconnected challenges of cancer progression and cachexia.
Collapse
Affiliation(s)
- Oliver F Bathe
- Department of Surgery and Oncology, University of Calgary, Calgary, Alberta, Canada
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
39
|
Jin N, Qian YY, Jiao XF, Wang Z, Li X, Pan W, Jiang JK, Huang P, Wang SY, Jin P, Gao QL, Liu D, Xia Y. Niraparib restricts intraperitoneal metastases of ovarian cancer by eliciting CD36-dependent ferroptosis. Redox Biol 2025; 80:103528. [PMID: 39922130 PMCID: PMC11851289 DOI: 10.1016/j.redox.2025.103528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 02/01/2025] [Indexed: 02/10/2025] Open
Abstract
Ovarian cancer (OC) is prone to peritoneum or omentum dissemination, thus giving rise to the formidable challenge of unresectable surgery and a dismal survival rate. Although niraparib holds a pivotal role in the maintenance treatment of OC, its effect on suppressing metastases during primary intervention remains enigmatic. Recently, we initiated a prospective clinical study (NCT04507841) in order to evaluate the therapeutic efficacy of neoadjuvant niraparib monotherapy for advanced OC with homologous recombination deficiency. An analysis of patient tumor burden before and after the niraparib challenge showed a remarkable vulnerability of OC intraperitoneal metastases to niraparib exposure. This killing capacity of niraparib was closely associated with the accumulation of fatty acids within the abdomen, which was confirmed by the increased susceptibility of tumor cells to niraparib treatment in the presence of fatty acids. In the context of abundant fatty acids, niraparib elevated intracellular levels of fatty acids and lipid peroxidation, leading to subsequent tumor cell ferroptosis in a p53 and BRCA-independent manner. Notably, under niraparib exposure, a critical fatty acid transporter CD36 was dramatically upregulated in tumors, facilitating excessive uptake of fatty acids. Pharmacological inhibition of either ferroptosis or CD36 impaired the anti-tumor activity of niraparib both in vitro and in murine intraperitoneal ID8 tumor models. Our findings demonstrate ferroptosis as a novel mechanism underlying the regression of OC metastases induced by niraparib, thereby offering tantalizing prospects for the frontline application of this agent in the management of OC.
Collapse
Affiliation(s)
- Ning Jin
- Cancer Biology Research Center (Key Laboratory of Chinese Ministry of Education), Tongji Hospital Tongji Medical College Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
- Department of Gynecology and Obstetrics, Tongji Hospital Tongji Medical College Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yi-yu Qian
- Cancer Biology Research Center (Key Laboratory of Chinese Ministry of Education), Tongji Hospital Tongji Medical College Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
- Department of Gynecology and Obstetrics, Tongji Hospital Tongji Medical College Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiao-fei Jiao
- Cancer Biology Research Center (Key Laboratory of Chinese Ministry of Education), Tongji Hospital Tongji Medical College Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
- Department of Gynecology and Obstetrics, Tongji Hospital Tongji Medical College Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhen Wang
- Department of Obstetrics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Clinical Medicine Research Centre of Prenatal Diagnosis and Birth Health in Hubei Province, Wuhan, Hubei, China
| | - Xin Li
- Cancer Biology Research Center (Key Laboratory of Chinese Ministry of Education), Tongji Hospital Tongji Medical College Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
- Department of Gynecology and Obstetrics, Tongji Hospital Tongji Medical College Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wen Pan
- Cancer Biology Research Center (Key Laboratory of Chinese Ministry of Education), Tongji Hospital Tongji Medical College Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
- Department of Gynecology and Obstetrics, Tongji Hospital Tongji Medical College Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jin-kai Jiang
- Cancer Biology Research Center (Key Laboratory of Chinese Ministry of Education), Tongji Hospital Tongji Medical College Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
- Department of Gynecology and Obstetrics, Tongji Hospital Tongji Medical College Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Pu Huang
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Si-yuan Wang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ping Jin
- Cancer Biology Research Center (Key Laboratory of Chinese Ministry of Education), Tongji Hospital Tongji Medical College Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
- Department of Gynecology and Obstetrics, Tongji Hospital Tongji Medical College Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qing-lei Gao
- Cancer Biology Research Center (Key Laboratory of Chinese Ministry of Education), Tongji Hospital Tongji Medical College Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
- Department of Gynecology and Obstetrics, Tongji Hospital Tongji Medical College Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dan Liu
- Cancer Biology Research Center (Key Laboratory of Chinese Ministry of Education), Tongji Hospital Tongji Medical College Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
- Department of Gynecology and Obstetrics, Tongji Hospital Tongji Medical College Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yu Xia
- Cancer Biology Research Center (Key Laboratory of Chinese Ministry of Education), Tongji Hospital Tongji Medical College Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
- Department of Gynecology and Obstetrics, Tongji Hospital Tongji Medical College Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
40
|
Tang L, Peng S, Zhuang X, He Y, Song Y, Nie H, Zheng C, Pan Z, Lam AK, He M, Shi X, Li B, Xu WW. Tumor Metastasis: Mechanistic Insights and Therapeutic Intervention. MEDCOMM – ONCOLOGY 2025; 4. [DOI: 10.1002/mog2.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 01/10/2025] [Indexed: 03/04/2025]
Abstract
ABSTRACTMetastasis remains a leading cause of cancer‐related deaths, defined by a complex, multi‐step process in which tumor cells spread and form secondary growths in distant tissues. Despite substantial progress in understanding metastasis, the molecular mechanisms driving this process and the development of effective therapies remain incompletely understood. Elucidating the molecular pathways governing metastasis is essential for the discovery of innovative therapeutic targets. The rapid advancements in sequencing technologies and the expansion of biological databases have significantly deepened our understanding of the molecular drivers of metastasis and associated drug resistance. This review focuses on the molecular drivers of metastasis, particularly the roles of genetic mutations, epigenetic changes, and post‐translational modifications in metastasis progression. We also examine how the tumor microenvironment influences metastatic behavior and explore emerging therapeutic strategies, including targeted therapies and immunotherapies. Finally, we discuss future research directions, stressing the importance of novel treatment approaches and personalized strategies to overcome metastasis and improve patient outcomes. By integrating contemporary insights into the molecular basis of metastasis and therapeutic innovation, this review provides a comprehensive framework to guide future research and clinical advancements in metastatic cancer.
Collapse
Affiliation(s)
- Lin Tang
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, The Affiliated Traditional Chinese Medicine Hospital Guangzhou Medical University Guangzhou China
| | - Shao‐Cong Peng
- State Key Laboratory of Respiratory Disease, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes The Fifth Affiliated Hospital of Guangzhou Medical University Guangzhou China
| | - Xiao‐Wan Zhuang
- State Key Laboratory of Respiratory Disease, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes The Fifth Affiliated Hospital of Guangzhou Medical University Guangzhou China
| | - Yan He
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, The Affiliated Traditional Chinese Medicine Hospital Guangzhou Medical University Guangzhou China
| | - Yu‐Xiang Song
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, The Affiliated Traditional Chinese Medicine Hospital Guangzhou Medical University Guangzhou China
| | - Hao Nie
- Department of Radiation Oncology, The Fifth Affiliated Hospital Guangzhou Medical University Guangzhou China
| | - Can‐Can Zheng
- State Key Laboratory of Respiratory Disease, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes The Fifth Affiliated Hospital of Guangzhou Medical University Guangzhou China
| | - Zhen‐Yu Pan
- Department of Radiation Oncology, The Affiliated Huizhou Hospital Guangzhou Medical University Huizhou China
| | - Alfred King‐Yin Lam
- Cancer Molecular Pathology and Griffith Medical School Griffith University Gold Coast Queensland Australia
| | - Ming‐Liang He
- Department of Biomedical Sciences City University of Hong Kong Hong Kong China
| | - Xing‐Yuan Shi
- Department of Radiation Oncology, The Fifth Affiliated Hospital Guangzhou Medical University Guangzhou China
| | - Bin Li
- State Key Laboratory of Respiratory Disease, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes The Fifth Affiliated Hospital of Guangzhou Medical University Guangzhou China
| | - Wen Wen Xu
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, The Affiliated Traditional Chinese Medicine Hospital Guangzhou Medical University Guangzhou China
| |
Collapse
|
41
|
Wang L, Luo N, Zhu J, Sulaiman Z, Yang W, Hu K, Ai G, Yang W, Shao X, Jin S, Zhang X, Fan Y, Deng D, Cheng Z, Gao Z. Peritoneal adipose stem cell-derived extracellular vesicles mediate the regulation of ovarian cancer cell proliferation and migration through EGFR-NF-κB signaling. Genes Dis 2025; 12:101283. [PMID: 39759123 PMCID: PMC11699730 DOI: 10.1016/j.gendis.2024.101283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 02/18/2024] [Accepted: 02/28/2024] [Indexed: 01/07/2025] Open
Abstract
Peritoneal dissemination frequently develops in patients with ovarian cancer (OC) and is associated with recurrence and metastasis. However, the cellular components and mechanisms supporting OC peritoneal metastasis are poorly understood. To elucidate these, we utilized RNA sequencing to investigate the cellular composition and function. Insights from transcriptome analyses suggested that OC cells from malignant ascites persisted in a quiescent state of low metabolic activity and after metastases to the peritoneum, arrested OC cells were reactivated and induced back to the cell cycle, suggesting that the peritoneum served as a favor tumor microenvironment. To elucidate the mechanisms, we then developed long-range migration and competitive inhibition assays and showed that peritoneal adipose-derived stem cells-derived extracellular vesicles (ADSCs-EVs) mediated preferential migration of OC cells toward peritoneal ADSCs but not other representative cells from the peritoneal cavity. In line with phenotypic changes, transcriptomic analysis revealed that patient peritoneal ADSCs-EVs stimulated the expression of numerous genes associated with OC cell proliferation and migration; among them, the epidermal growth factor receptor (EGFR) and nuclear factor kappa B (NF-κB) signaling pathways were highly enriched. We also found that peritoneal ADSCs produced and secreted key EGFR signaling molecules, including EGF and EGFR, into ADSCs-EVs. Upon fusion with OC cells, ADSCs-EVs up-regulated the EGFR-NF-κB axis and promoted OC cell proliferation and migration. Interference with either ADSCs-EVs production or EGFR signaling abolished the proliferation and migration effect. The results show that ADSCs modulate OC cell proliferation and migration at multiple layers, constituting a key mechanism in OC progression.
Collapse
Affiliation(s)
- Lian Wang
- Department of Gynecology and Obstetrics, Gynecologic Minimally Invasive Surgery Research Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
- Department of Anesthesiology, Shanghai Gongli Hospital, Naval Military Medical University, Shanghai 200135, China
- Shanghai Engineering Research Center of Organ Repair, Shanghai University School of Medicine, Shanghai 200444, China
| | - Ning Luo
- Department of Gynecology and Obstetrics, Gynecologic Minimally Invasive Surgery Research Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Jihui Zhu
- Department of Gynecology and Obstetrics, Gynecologic Minimally Invasive Surgery Research Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Zubaidan Sulaiman
- Department of Gynecology and Obstetrics, Gynecologic Minimally Invasive Surgery Research Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Wenhan Yang
- Department of Anesthesiology, Shanghai Gongli Hospital, Naval Military Medical University, Shanghai 200135, China
- Shanghai Engineering Research Center of Organ Repair, Shanghai University School of Medicine, Shanghai 200444, China
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Shanghai University School of Medicine, Nantong, Jiangsu 216002, China
| | - Ke Hu
- Department of Anesthesiology, Shanghai Gongli Hospital, Naval Military Medical University, Shanghai 200135, China
- Shanghai Engineering Research Center of Organ Repair, Shanghai University School of Medicine, Shanghai 200444, China
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Shanghai University School of Medicine, Nantong, Jiangsu 216002, China
| | - Guihai Ai
- Department of Gynecology and Obstetrics, Gynecologic Minimally Invasive Surgery Research Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Weihong Yang
- Department of Gynecology and Obstetrics, Gynecologic Minimally Invasive Surgery Research Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Xiaowen Shao
- Department of Gynecology and Obstetrics, Gynecologic Minimally Invasive Surgery Research Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Shengkai Jin
- Department of Anesthesiology, Shanghai Gongli Hospital, Naval Military Medical University, Shanghai 200135, China
- Shanghai Engineering Research Center of Organ Repair, Shanghai University School of Medicine, Shanghai 200444, China
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Shanghai University School of Medicine, Nantong, Jiangsu 216002, China
| | - Xue Zhang
- Department of Dermatology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Yantao Fan
- Department of Anesthesiology, Shanghai Gongli Hospital, Naval Military Medical University, Shanghai 200135, China
| | - Dan Deng
- Department of Dermatology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Zhongping Cheng
- Department of Gynecology and Obstetrics, Gynecologic Minimally Invasive Surgery Research Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Zhengliang Gao
- Department of Anesthesiology, Shanghai Gongli Hospital, Naval Military Medical University, Shanghai 200135, China
- Shanghai Engineering Research Center of Organ Repair, Shanghai University School of Medicine, Shanghai 200444, China
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Shanghai University School of Medicine, Nantong, Jiangsu 216002, China
- China-Japan Friendship Medical Research Institute, School of Medicine, Shanghai University, Shanghai 200444, China
| |
Collapse
|
42
|
Campos-Bayardo TI, Román-Rojas D, García-Sánchez A, Cardona-Muñoz EG, Sánchez-Lozano DI, Totsuka-Sutto S, Gómez-Hermosillo LF, Casillas-Moreno J, Andrade-Sierra J, Pazarín-Villaseñor L, Campos-Pérez W, Martínez-López E, Miranda-Díaz AG. The Role of TLRs in Obesity and Its Related Metabolic Disorders. Int J Mol Sci 2025; 26:2229. [PMID: 40076851 PMCID: PMC11900219 DOI: 10.3390/ijms26052229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
Obesity affects the adaptability of adipose tissue (AT), impairing its ability to regulate energy and metabolism. Obesity is associated with many metabolic disorders, including dyslipidemia, hypertension, sleep disorders, non-alcoholic liver disease, and some types of cancer. Toll-like receptors (TLRs) are important in obesity and related metabolic disorders. TLRs are pattern-recognizing receptors (PRRs) involved in the innate immune system and recognize pathogen-associated molecular patterns (PAMPs) and endogenous ligands. TLRs, especially TLR2 and TLR4, are activated by fatty acids, endotoxins, and other ligands. TLR2 and TLR4 activation triggers inflammatory responses. Chronic inflammation driven by TLR activation is a hallmark of obesity and metabolic diseases. The inflammatory response triggered by TLR activation alters insulin signaling, contributing to insulin resistance, a key feature of metabolic syndrome and type 2 diabetes. Modulation of TLR activity through lifestyle changes (diet and exercise), obesity surgery, and pharmacological agents is under study as a possible therapeutic approach to controlling obesity and its complications.
Collapse
Affiliation(s)
- Tannia Isabel Campos-Bayardo
- Department of Physiology, University Center of Health Sciences, University of Guadalajara, Guadalajara 44360, Jalisco, Mexico; (T.I.C.-B.); (D.R.-R.); (A.G.-S.); (E.G.C.-M.); (D.I.S.-L.); (S.T.-S.)
| | - Daniel Román-Rojas
- Department of Physiology, University Center of Health Sciences, University of Guadalajara, Guadalajara 44360, Jalisco, Mexico; (T.I.C.-B.); (D.R.-R.); (A.G.-S.); (E.G.C.-M.); (D.I.S.-L.); (S.T.-S.)
| | - Andrés García-Sánchez
- Department of Physiology, University Center of Health Sciences, University of Guadalajara, Guadalajara 44360, Jalisco, Mexico; (T.I.C.-B.); (D.R.-R.); (A.G.-S.); (E.G.C.-M.); (D.I.S.-L.); (S.T.-S.)
| | - Ernesto Germán Cardona-Muñoz
- Department of Physiology, University Center of Health Sciences, University of Guadalajara, Guadalajara 44360, Jalisco, Mexico; (T.I.C.-B.); (D.R.-R.); (A.G.-S.); (E.G.C.-M.); (D.I.S.-L.); (S.T.-S.)
| | - Daniela Itzel Sánchez-Lozano
- Department of Physiology, University Center of Health Sciences, University of Guadalajara, Guadalajara 44360, Jalisco, Mexico; (T.I.C.-B.); (D.R.-R.); (A.G.-S.); (E.G.C.-M.); (D.I.S.-L.); (S.T.-S.)
| | - Sylvia Totsuka-Sutto
- Department of Physiology, University Center of Health Sciences, University of Guadalajara, Guadalajara 44360, Jalisco, Mexico; (T.I.C.-B.); (D.R.-R.); (A.G.-S.); (E.G.C.-M.); (D.I.S.-L.); (S.T.-S.)
| | - Luis Francisco Gómez-Hermosillo
- Department of Laparoscopic Surgery, Hospital Civil de Guadalajara, “Juan I Menchaca”, Guadalajara 44360, Jalisco, Mexico; (L.F.G.-H.); (J.C.-M.)
| | - Jorge Casillas-Moreno
- Department of Laparoscopic Surgery, Hospital Civil de Guadalajara, “Juan I Menchaca”, Guadalajara 44360, Jalisco, Mexico; (L.F.G.-H.); (J.C.-M.)
| | - Jorge Andrade-Sierra
- Department of Nephrology, National Medical Center of the West, Mexican Social Security Institute, Guadalajara 44340, Jalisco, Mexico; (J.A.-S.); (L.P.-V.)
| | - Leonardo Pazarín-Villaseñor
- Department of Nephrology, National Medical Center of the West, Mexican Social Security Institute, Guadalajara 44340, Jalisco, Mexico; (J.A.-S.); (L.P.-V.)
| | - Wendy Campos-Pérez
- Department of Molecular Biology and Genomics, Institute of Nutrigenetics and Translational Nutrigenomics, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico; (W.C.-P.); (E.M.-L.)
| | - Erika Martínez-López
- Department of Molecular Biology and Genomics, Institute of Nutrigenetics and Translational Nutrigenomics, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico; (W.C.-P.); (E.M.-L.)
| | - Alejandra Guillermina Miranda-Díaz
- Department of Physiology, University Center of Health Sciences, University of Guadalajara, Guadalajara 44360, Jalisco, Mexico; (T.I.C.-B.); (D.R.-R.); (A.G.-S.); (E.G.C.-M.); (D.I.S.-L.); (S.T.-S.)
| |
Collapse
|
43
|
Li A, Qi F, Zeng Y, Liu R, Cai H, He M, Li D, Gu Y, Liu J. Cryoshocked Adipocytes Mediated Dual-Modal Strategy Combining Photodynamic Therapy and Triptolide Palmitate for Pulmonary Metastatic Melanoma Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2414307. [PMID: 39804941 PMCID: PMC11884613 DOI: 10.1002/advs.202414307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/19/2024] [Indexed: 01/16/2025]
Abstract
Pulmonary metastasis represents one of the most prevalent forms of metastasis in advanced melanoma, with mortality rates reaching 70%. Current treatments including chemotherapy, targeted therapy, and immunotherapy frequently exhibit limited efficacy or present high costs. To address these clinical needs, this study presents a biomimetic drug delivery system (Ce6-pTP-CsA) utilizing cryoshocked adipocytes (CsA) encapsulating the prodrug triptolide palmitate (pTP) and the photosensitizer Ce6, exploiting the characteristic of tumor cells to recruit and lipolyze adipocytes for energy. CsA substantially enhances the drug-loading capacity of adipocytes, with its particle size characteristics enabling targeted delivery of pTP to the lungs. The combination of photodynamic therapy (PDT) and pTP activates the caspase cascade, promoting apoptosis in tumor cells. Notably, the cleavage of disulfide bonds in pTP depletes glutathione (GSH), reducing its scavenging effect on reactive oxygen species (ROS) and enhancing the efficacy of PDT. Results demonstrate that Ce6-pTP-CsA effectively inhibits the proliferation and invasion of pulmonary metastatic melanoma cells in vitro and induces apoptosis, while significantly suppressing lung metastasis of SCID mice models in vivo. In conclusion, this novel biomimetic drug delivery system based on adipocytes provides a promising strategy for targeted therapy in pulmonary metastatic melanoma.
Collapse
Affiliation(s)
- Aixue Li
- Department of PharmacyFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
- College of PharmacyShandong University of Traditional Chinese MedicineJinanShandong250355China
| | - Fu Qi
- Department of PharmacyTongji HospitalSchool of MedicineTongji UniversityShanghai200092China
| | - Yuanye Zeng
- Department of PharmacyFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Rongmei Liu
- Department of PharmacyFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
- College of PharmacyShandong University of Traditional Chinese MedicineJinanShandong250355China
| | - Huanhuan Cai
- Department of PharmacyFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
- College of PharmacyShandong University of Traditional Chinese MedicineJinanShandong250355China
| | - Mengyuan He
- Department of PharmacyFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
- College of PharmacyShandong University of Traditional Chinese MedicineJinanShandong250355China
| | - Dan Li
- Department of PharmacyFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Yongwei Gu
- Department of PharmacyFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Jiyong Liu
- Department of PharmacyFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
- College of PharmacyShandong University of Traditional Chinese MedicineJinanShandong250355China
| |
Collapse
|
44
|
Shi J, Han W, Wang J, Kong X. Anti-Tumor Strategies Targeting Nutritional Deprivation: Challenges and Opportunities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2415550. [PMID: 39895165 DOI: 10.1002/adma.202415550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/04/2025] [Indexed: 02/04/2025]
Abstract
Higher and richer nutrient requirements are typical features that distinguish tumor cells from AU: cells, ensuring adequate substrates and energy sources for tumor cell proliferation and migration. Therefore, nutrient deprivation strategies based on targeted technologies can induce impaired cell viability in tumor cells, which are more sensitive than normal cells. In this review, nutrients that are required by tumor cells and related metabolic pathways are introduced, and anti-tumor strategies developed to target nutrient deprivation are described. In addition to tumor cells, the nutritional and metabolic characteristics of other cells in the tumor microenvironment (including macrophages, neutrophils, natural killer cells, T cells, and cancer-associated fibroblasts) and related new anti-tumor strategies are also summarized. In conclusion, recent advances in anti-tumor strategies targeting nutrient blockade are reviewed, and the challenges and prospects of these anti-tumor strategies are discussed, which are of theoretical significance for optimizing the clinical application of tumor nutrition deprivation strategies.
Collapse
Affiliation(s)
- Jinsheng Shi
- Qingdao Key Lab of Common Diseases, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, Shandong, 266000, China
| | - Wei Han
- Qingdao Key Lab of Common Diseases, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, Shandong, 266000, China
| | - Jie Wang
- Pharmacy Department, Qingdao Traditional Chinese Medicine Hospital (Qingdao Hiser Hospital), Qingdao, Shandong, 266000, China
| | - Xiaoying Kong
- Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao, Shandong, 266071, China
| |
Collapse
|
45
|
Li Y, Liu F, Cai Q, Deng L, Ouyang Q, Zhang XHF, Zheng J. Invasion and metastasis in cancer: molecular insights and therapeutic targets. Signal Transduct Target Ther 2025; 10:57. [PMID: 39979279 PMCID: PMC11842613 DOI: 10.1038/s41392-025-02148-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 12/24/2024] [Accepted: 01/16/2025] [Indexed: 02/22/2025] Open
Abstract
The progression of malignant tumors leads to the development of secondary tumors in various organs, including bones, the brain, liver, and lungs. This metastatic process severely impacts the prognosis of patients, significantly affecting their quality of life and survival rates. Research efforts have consistently focused on the intricate mechanisms underlying this process and the corresponding clinical management strategies. Consequently, a comprehensive understanding of the biological foundations of tumor metastasis, identification of pivotal signaling pathways, and systematic evaluation of existing and emerging therapeutic strategies are paramount to enhancing the overall diagnostic and treatment capabilities for metastatic tumors. However, current research is primarily focused on metastasis within specific cancer types, leaving significant gaps in our understanding of the complex metastatic cascade, organ-specific tropism mechanisms, and the development of targeted treatments. In this study, we examine the sequential processes of tumor metastasis, elucidate the underlying mechanisms driving organ-tropic metastasis, and systematically analyze therapeutic strategies for metastatic tumors, including those tailored to specific organ involvement. Subsequently, we synthesize the most recent advances in emerging therapeutic technologies for tumor metastasis and analyze the challenges and opportunities encountered in clinical research pertaining to bone metastasis. Our objective is to offer insights that can inform future research and clinical practice in this crucial field.
Collapse
Affiliation(s)
- Yongxing Li
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, China
| | - Fengshuo Liu
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- McNair Medical Institute, Baylor College of Medicine, Houston, TX, USA
- Graduate School of Biomedical Science, Cancer and Cell Biology Program, Baylor College of Medicine, Houston, TX, USA
| | - Qingjin Cai
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, China
| | - Lijun Deng
- Department of Medicinal Chemistry, Third Military Medical University (Army Medical University), Chongqing, China
| | - Qin Ouyang
- Department of Medicinal Chemistry, Third Military Medical University (Army Medical University), Chongqing, China.
| | - Xiang H-F Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA.
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
- McNair Medical Institute, Baylor College of Medicine, Houston, TX, USA.
| | - Ji Zheng
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, China.
| |
Collapse
|
46
|
Zhang J, Ruan K, Chu Z, Wang X, Gu Y, Jin H, Zhang X, Liu Q, Yang J. Reprogramming of fatty acid metabolism: a hidden force regulating the occurrence and progression of cholangiocarcinoma. Cell Death Discov 2025; 11:72. [PMID: 39984452 PMCID: PMC11845788 DOI: 10.1038/s41420-025-02351-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 01/22/2025] [Accepted: 02/11/2025] [Indexed: 02/23/2025] Open
Abstract
Cholangiocarcinoma (CCA) is a malignant tumor that originates from the bile duct epithelium and with a poor outcome due to lack of effective early diagnostic methods. Surgical resection is the preferred method for cure, but treatment options are limited for advanced diseases, such as distant metastatic or locally progressive tumors. Therefore, it is urgent to explore other new treatment methods. As modern living standards rise, the acceptance of high-fat, high-protein, and high-carbohydrate diets is growing among the public, and the resulting metabolic abnormalities are intimately linked to the initiation and spread of tumors. Metabolic reprogramming is a key mechanism in the process of tumor development and progression and is closely related to cancer cell proliferation, metastasis and drug resistance. Fatty acid (FA) metabolism, an integral component of cancer cell metabolism, can provide an energy source for cancer cells and participate in cell signaling, the regulation of the immune response and the maintenance of homeostasis of the internal environment, which are closely linked to the development and progression of CCA. Therefore, a better understanding of FA metabolism may provide promising strategies for early diagnosis, prognostic assessment and targeted therapy for CCA patients. In this paper, we review the effects of FA metabolism on CCA development and progression, summarize related mechanisms and the existing clinical applications of targeted lipid metabolism in CCA, and explore new targets for CCA metabolic therapy.
Collapse
Affiliation(s)
- Jinglei Zhang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou First People's Hospital, Hangzhou, Zhejiang Province, 310053, China
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, Zhejiang Province, 310006, China
| | - Kaiyi Ruan
- Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China
| | - Zhuohuan Chu
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou First People's Hospital, Hangzhou, Zhejiang Province, 310053, China
| | - Xiang Wang
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, Zhejiang Province, 310006, China
| | - Ye Gu
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, Zhejiang Province, 310006, China
| | - Hangbin Jin
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, Zhejiang Province, 310006, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang Province, 310006, China
- Hangzhou Institute of Digestive Diseases, Hangzhou, Zhejiang Province, 310006, China
| | - Xiaofeng Zhang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou First People's Hospital, Hangzhou, Zhejiang Province, 310053, China
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, Zhejiang Province, 310006, China
- Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang Province, 310006, China
- Hangzhou Institute of Digestive Diseases, Hangzhou, Zhejiang Province, 310006, China
| | - Qiang Liu
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, Zhejiang Province, 310006, China.
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang Province, 310006, China.
- Hangzhou Institute of Digestive Diseases, Hangzhou, Zhejiang Province, 310006, China.
| | - Jianfeng Yang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou First People's Hospital, Hangzhou, Zhejiang Province, 310053, China.
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, Zhejiang Province, 310006, China.
- Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China.
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang Province, 310006, China.
- Hangzhou Institute of Digestive Diseases, Hangzhou, Zhejiang Province, 310006, China.
| |
Collapse
|
47
|
Goh KY, Tham SC, Cheng TYD, Nadarajah R, Goh RCH, Wong SL, Ho TH, Chew GK, Tan AWK, Rajesh H, Chua HL, Yong TT, Yu SL, Kang JM, Lau KW, Tay AZE, Mantoo S, Busmanis I, Chew SH, Lim TYK, Wong WL, Ng QJ, Wang J, Tay SK, Cheok CF, Lim DWT, Lim EH. Cell Migration in Endometriosis Responds to Omentum-Derived Molecular Cues Similar to Ovarian Cancer. Int J Mol Sci 2025; 26:1822. [PMID: 40076450 PMCID: PMC11899264 DOI: 10.3390/ijms26051822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/14/2025] [Accepted: 02/18/2025] [Indexed: 03/14/2025] Open
Abstract
Endometriosis is common and poses significant morbidity of lasting impact to young, pre-menopausal women, while ovarian cancer is a lethal gynecologic condition. Both conditions need better treatment. The human omentum is an apron of adipose tissue in the abdominopelvic cavity, the same space in which endometriosis and ovarian cancer manifest. We aim to determine molecular cues emitted by the omentum that aid the trans-coelomic spread of endometriosis and ovarian cancer in the abdomen-pelvic/peritoneal space. Endometriosis and ovarian cancer patients were prospectively recruited. Primary cell cultures of surgically-resected omentum, endometriosis and ovarian cancer were generated, and conditioned media (CM) from the omentum was derived. They were used for in vitro assays to evaluate the effect of the omentum on cell migration, angiogenesis and proliferation in endometriosis and ovarian cancer. Omental CM promoted cell migration in primary cultures of endometriosis and ovarian cancer. Omental CM contained high levels of HGF, SDF-1a, MCP-1, VEGF-A, IL-6 and IL-8. The observed cell migration was blocked by c-MET inhibition, suggesting that HGF/c-MET signaling mediates cell migration in endometriosis and ovarian cancer. Furthermore, PTTG1 was consistently upregulated in the migrated cells in both endometriosis and ovarian cancer. The omentum provides a favorable environment for trans-coelomic spread of endometriosis and ovarian cancer. HGF, c-MET and PTTG1 are potential therapeutic targets for inhibiting the abdomen-pelvic/peritoneal spread of endometriosis and ovarian cancer.
Collapse
Affiliation(s)
- Kah Yee Goh
- Division of Medical Oncology, National Cancer Centre Singapore, 30 Hospital Boulevard, Singapore 168583, Singapore
| | - Su Chin Tham
- Institute of Molecular and Cell Biology, A*STAR, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Terence You De Cheng
- Institute of Molecular and Cell Biology, A*STAR, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Ravichandran Nadarajah
- Department of Obstetrics & Gynaecology, Singapore General Hospital, Outram Road, Singapore 169608, Singapore
| | - Ronald Chin Hong Goh
- Department of Anatomical Pathology, Singapore General Hospital, Academia, College Road, Singapore 169856, Singapore
| | - Shing Lih Wong
- Department of Anatomical Pathology, Singapore General Hospital, Academia, College Road, Singapore 169856, Singapore
| | - Tew Hong Ho
- Department of Obstetrics & Gynaecology, Singapore General Hospital, Outram Road, Singapore 169608, Singapore
- Department of Gynaecological Oncology, KK Women’s and Children’s Hospital, 100 Bukit Timah Road, Singapore 229899, Singapore
| | - Ghee Kheng Chew
- Department of Obstetrics & Gynaecology, Singapore General Hospital, Outram Road, Singapore 169608, Singapore
| | - Andy Wei Keat Tan
- Department of Obstetrics & Gynaecology, Singapore General Hospital, Outram Road, Singapore 169608, Singapore
| | - Hemashree Rajesh
- Department of Obstetrics & Gynaecology, Singapore General Hospital, Outram Road, Singapore 169608, Singapore
| | - Hong Liang Chua
- Department of Obstetrics & Gynaecology, Singapore General Hospital, Outram Road, Singapore 169608, Singapore
| | - Tze Tein Yong
- Department of Obstetrics & Gynaecology, Singapore General Hospital, Outram Road, Singapore 169608, Singapore
| | - Su Ling Yu
- Department of Obstetrics & Gynaecology, Singapore General Hospital, Outram Road, Singapore 169608, Singapore
| | - Jia Min Kang
- Division of Medical Oncology, National Cancer Centre Singapore, 30 Hospital Boulevard, Singapore 168583, Singapore
| | - Kah Weng Lau
- Institute of Molecular and Cell Biology, A*STAR, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
- Department of Pathology, National University Hospital, 5 Lower Kent Ridge Road, Singapore 119074, Singapore
| | - Amos Zhi En Tay
- Department of Anatomical Pathology, Singapore General Hospital, Academia, College Road, Singapore 169856, Singapore
| | - Sangeeta Mantoo
- Department of Anatomical Pathology, Singapore General Hospital, Academia, College Road, Singapore 169856, Singapore
| | - Inny Busmanis
- Department of Anatomical Pathology, Singapore General Hospital, Academia, College Road, Singapore 169856, Singapore
| | - Sung Hock Chew
- Department of Pathology and Laboratory Medicine, KK Women’s and Children’s Hospital, 100 Bukit Timah Road, Singapore 229899, Singapore
| | - Timothy Yong Kuei Lim
- Department of Gynaecological Oncology, KK Women’s and Children’s Hospital, 100 Bukit Timah Road, Singapore 229899, Singapore
| | - Wai Loong Wong
- Department of Gynaecological Oncology, KK Women’s and Children’s Hospital, 100 Bukit Timah Road, Singapore 229899, Singapore
| | - Qiu Ju Ng
- Department of Gynaecological Oncology, KK Women’s and Children’s Hospital, 100 Bukit Timah Road, Singapore 229899, Singapore
| | - Junjie Wang
- Department of Gynaecological Oncology, KK Women’s and Children’s Hospital, 100 Bukit Timah Road, Singapore 229899, Singapore
| | - Sun Kuie Tay
- Department of Obstetrics & Gynaecology, Singapore General Hospital, Outram Road, Singapore 169608, Singapore
| | - Chit Fang Cheok
- Institute of Molecular and Cell Biology, A*STAR, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Lower Kent Ridge Road, Singapore 119074, Singapore
| | - Darren Wan-Teck Lim
- Division of Medical Oncology, National Cancer Centre Singapore, 30 Hospital Boulevard, Singapore 168583, Singapore
- Institute of Molecular and Cell Biology, A*STAR, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
- Office of Academic and Clinical Development, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Elaine Hsuen Lim
- Division of Medical Oncology, National Cancer Centre Singapore, 30 Hospital Boulevard, Singapore 168583, Singapore
| |
Collapse
|
48
|
Valdivia A, Isac AM, Cardenas H, Zhao G, Zhang Y, Huang H, Wei JJ, Cuello-Fredes M, Kato S, Gómez-Valenzuela F, Gourronc F, Klingelhutz A, Matei D. Complement activation at the interface between adipocytes and cancer cells drives tumor progression. JCI Insight 2025; 10:e184935. [PMID: 39964754 PMCID: PMC11949041 DOI: 10.1172/jci.insight.184935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 02/07/2025] [Indexed: 02/20/2025] Open
Abstract
The omentum is the primary site of metastasis for ovarian cancer (OC). Interactions between cancer cells and adipocytes drive an invasive and prometastatic phenotype. Here we studied cancer cell-adipocyte crosstalk by using a direct coculture model with immortalized human visceral nondiabetic pre-adipocytes (VNPADs) and OC cells. We demonstrated increased proliferation, invasiveness, and resistance to cisplatin of cocultured compared with monocultured OC cells. RNA sequencing of OC cells from coculture versus monoculture revealed significant transcriptomic changes, identifying over 200 differentially expressed genes common to OVCAR5 and OVCAR8 cell lines. Enriched pathways included PI3K/AKT and complement activation. Lipid transfer into OC cells from adipocytes induced upregulation of complement C3 and C5 proteins. Inhibiting C3 or C5 reversed the invasive phenotype and C3 knockdown reduced tumor progression in vivo. Increased C3 expression was observed in omental implants compared with primary ovarian tumors and C3 secretion was higher in OC ascites from high-BMI versus low-BMI patients. C3 upregulation in OC cells involved activation of the ATF4-mediated integrated stress response (ISR). Overall, adipocyte-cancer cell interactions promoted invasiveness and tumorigenesis via lipid transfer, activating the ISR, and upregulating complement proteins C3 and C5.
Collapse
Affiliation(s)
| | | | | | | | | | - Hao Huang
- Department of Obstetrics and Gynecology
| | - Jian-Jun Wei
- Department of Obstetrics and Gynecology
- Robert H. Lurie Comprehensive Cancer Center, and
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Mauricio Cuello-Fredes
- Department of Gynecology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Sumie Kato
- Department of Gynecology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Fernán Gómez-Valenzuela
- Department of Gynecology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Francoise Gourronc
- Department of Microbiology and Immunology, College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Aloysius Klingelhutz
- Department of Microbiology and Immunology, College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Daniela Matei
- Department of Obstetrics and Gynecology
- Robert H. Lurie Comprehensive Cancer Center, and
- Jesse Brown VA Medical Center, Chicago, Illinois, USA
| |
Collapse
|
49
|
Song J, Ok SM, Kwon EY, Kim HJ, Lee JY, Joo JY. Fatty Acid Binding Protein 4 Could Be a Linking Biomarker Between Periodontitis and Systemic Diseases. Biomedicines 2025; 13:402. [PMID: 40002815 PMCID: PMC11853709 DOI: 10.3390/biomedicines13020402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/04/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: This study aims to investigate the relationship between serum fatty acid-binding protein 4 (FABP4) levels and the severity of periodontitis in systemically healthy individuals. Additionally, the study examines whether non-surgical periodontal treatment can reduce FABP4 levels, establishing its potential as a biomarker linking periodontitis to systemic diseases. Methods: A total of 89 participants with stage I, II, or III periodontitis were recruited, excluding individuals with systemic diseases. Clinical parameters such as clinical attachment level (CAL), probing depth (PD), and gingival index (GI) were recorded. Serum FABP4 levels and Porphyromonas gingivalis (P. gingivalis) antibody titers were measured before and after periodontal treatment using ELISA kits. Statistical analysis included t-tests, correlation analysis, and multiple linear regression to assess changes in FABP4 levels and their association with clinical parameters. Results: FABP4 and P. gingivalis antibody titers significantly increased with the severity of periodontitis (p < 0.001). After non-surgical periodontal treatment, FABP4 levels significantly decreased across all stages of periodontitis. Moderate positive correlations were observed between FABP4 and CAL, PD, GI, and P. gingivalis antibody titers (p < 0.05). Multiple linear regression showed that FABP4 levels increased significantly with the progression of periodontitis, independent of age and sex. Conclusions: The study indicates that FABP4 is a potential biomarker for linking periodontitis to systemic conditions such as cardiovascular diseases and diabetes. Non-surgical periodontal treatment reduced FABP4 levels, potentially contributing to the improvement of systemic conditions associated with elevated FABP4. Further research should explore the role of FABP4 in patients with periodontitis and systemic diseases to strengthen its clinical relevance.
Collapse
Affiliation(s)
- Jiwon Song
- Department of Periodontology, Dental Research Institute, Pusan National University Dental Hospital, Yangsan 50612, Republic of Korea; (J.S.); (H.-J.K.); (J.-Y.L.)
| | - Soo-Min Ok
- Department of Oral Medicine, Dental Research Institute, Pusan National University Dental Hospital, Yangsan 50612, Republic of Korea;
| | - Eun-Young Kwon
- Department of Periodontology, Dental Clinic Center, Pusan National University Hospital, Busan 49241, Republic of Korea;
| | - Hyun-Joo Kim
- Department of Periodontology, Dental Research Institute, Pusan National University Dental Hospital, Yangsan 50612, Republic of Korea; (J.S.); (H.-J.K.); (J.-Y.L.)
- Department of Periodontology, Periodontal Disease Signaling Network Center, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
| | - Ju-Youn Lee
- Department of Periodontology, Dental Research Institute, Pusan National University Dental Hospital, Yangsan 50612, Republic of Korea; (J.S.); (H.-J.K.); (J.-Y.L.)
| | - Ji-Young Joo
- Department of Periodontology, Dental Research Institute, Pusan National University Dental Hospital, Yangsan 50612, Republic of Korea; (J.S.); (H.-J.K.); (J.-Y.L.)
- Department of Periodontology, Periodontal Disease Signaling Network Center, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
| |
Collapse
|
50
|
Mikhael S, Daoud G. Navigating Metabolic Challenges in Ovarian Cancer: Insights and Innovations in Drug Repurposing. Cancer Med 2025; 14:e70681. [PMID: 39969135 PMCID: PMC11837049 DOI: 10.1002/cam4.70681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/16/2025] [Accepted: 01/30/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Ovarian cancer (OC) is the most lethal gynecological malignancy and a major global health concern, often diagnosed at advanced stages with poor survival rates. Despite advancements in treatment, resistance to standard chemotherapy remains a critical challenge with limited treatment options available. In recent years, the role of metabolic reprogramming in OC has emerged as a key factor driving tumor progression, therapy resistance, and poor clinical outcomes. METHODS This review explores the intricate connections between metabolic syndrome, enhanced glycolysis, and altered lipid metabolism within OC cells, which fuel the aggressive nature of the disease. We discuss how metabolic pathways are rewired in OC to support uncontrolled cell proliferation, survival under hypoxic conditions, and evasion of cell death mechanisms, positioning metabolic alterations as central to disease progression. The review also highlights the potential of repurposed metabolic-targeting drugs, such as metformin and statins, which have shown promise in preclinical studies for their ability to disrupt these altered metabolic pathways. CONCLUSION Drug repurposing offers a promising strategy to overcome chemoresistance and improve patient outcomes. Future research should focus on unraveling the complex metabolic networks in OC to develop innovative, targeted therapies that can enhance treatment efficacy and patient survival.
Collapse
Affiliation(s)
- Sara Mikhael
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of MedicineAmerican University of BeirutBeirutLebanon
| | - Georges Daoud
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of MedicineAmerican University of BeirutBeirutLebanon
| |
Collapse
|