1
|
Zhang J, Hu X, Geng Y, Xiang L, Wu Y, Li Y, Yang L, Zhou K. Exploring the role of parthanatos in CNS injury: Molecular insights and therapeutic approaches. J Adv Res 2025; 70:271-286. [PMID: 38704090 PMCID: PMC11976428 DOI: 10.1016/j.jare.2024.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Central nervous system (CNS) injury causes severe organ damage due to both damage resulting from the injury and subsequent cell death. However, there are currently no effective treatments for countering the irreversible loss of cell function. Parthanatos is a poly (ADP-ribose) polymerase 1 (PARP-1)-dependent form of programmed cell death that is partly responsible for neural cell death. Consequently, the mechanism by which parthanatos promotes CNS injury has attracted significant scientific interest. AIM OF REVIEW Our review aims to summarize the potential role of parthanatos in CNS injury and its molecular and pathophysiological mechanisms. Understanding the role of parthanatos and related molecules in CNS injury is crucial for developing effective treatment strategies and identifying important directions for future in-depth research. KEY SCIENTIFIC CONCEPTS OF REVIEW Parthanatos (from Thanatos, the personification of death according to Greek mythology) is a type of programmed cell death that is initiated by the overactivation of PARP-1. This process triggers a cascade of reactions, including the accumulation of poly(ADP-ribose) (PAR), the nuclear translocation of apoptosis-inducing factor (AIF) after its release from mitochondria, and subsequent massive DNA fragmentation caused by migration inhibitory factor (MIF) forming a complex with AIF. Secondary molecular mechanisms, such as excitotoxicity and oxidative stress-induced overactivation of PARP-1, significantly exacerbate neuronal damage following initial mechanical injury to the CNS. Furthermore, parthanatos is not only associated with neuronal damage but also interacts with various other types of cell death. This review focuses on the latest research concerning the parthanatos cell death pathway, particularly considering its regulatory mechanisms and functions in CNS damage. We highlight the associations between parthanatos and different cell types involved in CNS damage and discuss potential therapeutic agents targeting the parthanatos pathway.
Collapse
Affiliation(s)
- Jiacheng Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
| | - Xinli Hu
- Department of Orthopedics, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Yibo Geng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
| | - Linyi Xiang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
| | - Yuzhe Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
| | - Yao Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China.
| | - Liangliang Yang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325027, China.
| | - Kailiang Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China.
| |
Collapse
|
2
|
Yang L, Guttman L, Dawson VL, Dawson TM. Parthanatos: Mechanisms, modulation, and therapeutic prospects in neurodegenerative disease and stroke. Biochem Pharmacol 2024; 228:116174. [PMID: 38552851 PMCID: PMC11410548 DOI: 10.1016/j.bcp.2024.116174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/16/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
Parthanatos is a cell death signaling pathway that has emerged as a compelling target for pharmaceutical intervention. It plays a pivotal role in the neuron loss and neuroinflammation that occurs in Parkinson's Disease (PD), Alzheimer's Disease (AD), Huntington's Disease (HD), Amyotrophic Lateral Sclerosis (ALS), and stroke. There are currently no treatments available to humans to prevent cell death in any of these diseases. This review provides an in-depth examination of the current understanding of the Parthanatos mechanism, with a particular focus on its implications in neuroinflammation and various diseases discussed herein. Furthermore, we thoroughly review potential intervention targets within the Parthanatos pathway. We dissect recent progress in inhibitory strategies, complimented by a detailed structural analysis of key Parthanatos executioners, PARP-1, AIF, and MIF, along with an assessment of their established inhibitors. We hope to introduce a new perspective on the feasibility of targeting components within the Parthanatos pathway, emphasizing its potential to bring about transformative outcomes in therapeutic interventions. By delineating therapeutic opportunities and known targets, we seek to emphasize the imperative of blocking Parthanatos as a precursor to developing disease-modifying treatments. This comprehensive exploration aims to catalyze a paradigm shift in our understanding of potential neurodegenerative disease therapeutics, advocating for the pursuit of effective interventions centered around Parthanatos inhibition.
Collapse
Affiliation(s)
- Liu Yang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Lauren Guttman
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
3
|
Yan W, Wang C, Zhao Y, Jiang Y, Sun M. Involvement of Calpain in Neurovascular Unit Damage through Up-regulating PARP-NF-κB Signaling during Experimental Ischemic Stroke. Mol Neurobiol 2024; 61:8104-8122. [PMID: 38472651 DOI: 10.1007/s12035-024-04092-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 03/03/2024] [Indexed: 03/14/2024]
Abstract
Calpain and PARP-NF-κB signaling are reported to participate in the ischemic brain injury. In this study, it was investigated whether calpain was contributed to the neurovascular unit (NVU) damage through up-regulating PARP-NF-κB signaling during experimental ischemic stroke. Male Sprague-Dawley rats were suffered from 90 min of middle cerebral artery occlusion, followed by reperfusion. The NVU damage was evaluated by the permeability of blood-brain barrier (BBB), the degradation of proteins in extracellular matrix and tight junctions, and ultrastructural changes. The inflammatory response was determined by the expression of inflammatory genes driven by PARP-NF-κB signaling and the activities of myeloperoxidase (MPO). Treatment with MDL 28,170, a calpain inhibitor, improved neurological functions, reduced TUNEL staining index, lessened brain swelling, and decreased infarct volume in ischemic rats. Moreover, it reduced the BBB permeability, enhanced the levels of laminin, collagen IV and occludin, and attenuated the ultrastructural damage of NVU in penumbra and core after induction of ischemia. Meanwhile, it enhanced the levels of cytosolic IκBα, lessened the levels of nuclear PARP and NF-κB p65, reduced the levels of ICAM-1, TNF-α, IL-1β, MMP-9, and MMP-2,and suppressed the activities of MPO in penumbra and core. These data showed that calpain inhibition suppressed PARP-NF-κB signaling-mediated inflammatory response, reduced NVU damage, and protected brain against ischemic stroke, suggesting the involvement of calpain in the NVU damage through up-regulating PARP-NF-κB signaling during brain ischemia.
Collapse
Affiliation(s)
- Wenhao Yan
- Department of Pediatrics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Chunyang Wang
- Department of Neuropharmacology, Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, 119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Yumei Zhao
- Department of Neuropharmacology, Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, 119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Yingying Jiang
- Department of Neuropharmacology, Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, 119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Ming Sun
- Department of Neuropharmacology, Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, 119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China.
| |
Collapse
|
4
|
Choi DH, Choi IA, Lee J. Role of NADPH Oxidases in Stroke Recovery. Antioxidants (Basel) 2024; 13:1065. [PMID: 39334724 PMCID: PMC11428334 DOI: 10.3390/antiox13091065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
Stroke is one of the most significant causes of death and long-term disability globally. Overproduction of reactive oxygen species by NADPH oxidase (NOX) plays an important role in exacerbating oxidative stress and causing neuronal damage after a stroke. There is growing evidence that NOX inhibition prevents ischemic injury and that the role of NOX in brain damage or recovery depends on specific post-stroke phases. In addition to studies on post-stroke neuroprotection by NOX inhibition, recent reports have also demonstrated the role of NOX in stroke recovery, a critical process for brain adaptation and functional reorganization after a stroke. Therefore, in this review, we investigated the role of NOX in stroke recovery with the aim of integrating preclinical findings into potential therapeutic strategies to improve stroke recovery.
Collapse
Affiliation(s)
- Dong-Hee Choi
- Center for Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Republic of Korea
- Department of Medical Science, Konkuk University School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - In-Ae Choi
- Center for Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Republic of Korea
- Department of Occupational Therapy, Division of Health, Baekseok University, Cheonan-si 31065, Republic of Korea
| | - Jongmin Lee
- Center for Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Republic of Korea
- Department of Rehabilitation Medicine, Konkuk University School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
5
|
Moura RDD, Mattos PDD, Valente PF, Hoch NC. Molecular mechanisms of cell death by parthanatos: More questions than answers. Genet Mol Biol 2024; 47Suppl 1:e20230357. [PMID: 39356140 PMCID: PMC11445734 DOI: 10.1590/1678-4685-gmb-2023-0357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 06/16/2024] [Indexed: 10/03/2024] Open
Abstract
Regulated cell death by a non-apoptotic pathway known as parthanatos is increasingly recognised as a central player in pathological processes, including ischaemic tissue damage and neurodegenerative diseases. Parthanatos is activated under conditions that induce high levels of DNA damage, leading to hyperactivation of the DNA damage sensor PARP1. While this strict dependence on PARP1 activation is a defining feature of parthanatos that distinguishes it from other forms of cell death, the molecular events downstream of PARP1 activation remain poorly understood. In this mini-review, we highlight a number of important questions that remain to be answered about this enigmatic form of cell death.
Collapse
Affiliation(s)
- Rafael Dias de Moura
- Universidade de São Paulo, Instituto de Química, Departamento de Bioquímica, São Paulo, SP, Brasil
| | | | | | - Nícolas Carlos Hoch
- Universidade de São Paulo, Instituto de Química, Departamento de Bioquímica, São Paulo, SP, Brasil
| |
Collapse
|
6
|
Xu K, Yu Z, Lu T, Peng W, Gong Y, Chen C. PARP1 bound to XRCC2 promotes tumor progression in colorectal cancer. Discov Oncol 2024; 15:238. [PMID: 38907095 PMCID: PMC11192709 DOI: 10.1007/s12672-024-01112-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/19/2024] [Indexed: 06/23/2024] Open
Abstract
BACKGROUND By complexing poly (ADP-ribose) (PAR) in reaction to broke strand, PAR polymerase1 (PARP1) acts as the key enzyme participated in DNA repair. However, recent studies suggest that unrepaired DNA breaks results in persistent PARP1 activation, which leads to a progressively reduce in hexokinase1 (HK1) activity and cell death. PARP-1 is TCF-4/β-A novel co activator of gene transactivation induced by catenin may play a role in the development of colorectal cancer. The molecular mechanism of PARP1 remains elusive. METHODS 212 colorectal cancer (CRC) patients who had the operation at our hospital were recruited. PARP1 expression was evaluated by immunohistochemistry. Stable CRC cell lines with low or high PARP1 expression were constructed. Survival analysis was computed based on PARP1 expression. The cell proliferation was tested by CCK-8 and Colony formation assay. The interaction of PARP1 and XRCC2 was detected by immunoprecipitation (IP) analysis. RESULTS Compared with matching adjacent noncancerous tissue, PARP1 was upregulated in CRC tissue which was correlated with the degree of differentiation, TNM stage, depth of invasion, metastasis, and survival. In addition, after constructing CRC stable cell lines with abnormal expression of PARP1, we found that overexpression of PARP1 promoted proliferation, and demonstrated the interaction between PARP1 and XRCC2 in CRC cells through immunoprecipitation (IP) analysis. Moreover, the inhibitor of XRCC2 can suppress the in vitro proliferation arousing by upregulation of PARP1. CONCLUSIONS PARP1 was upregulated in CRC cells and promoted cell proliferation. Furthermore, the expression status of PARP1 was significantly correlated with some clinicopathological features and 5-year survival.
Collapse
Affiliation(s)
- Kaiwu Xu
- Department of Gastrointestinal Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, People's Republic of China
| | - Zhige Yu
- Department of Gastrointestinal Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, People's Republic of China
| | - Tailiang Lu
- Department of Gastrointestinal Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, People's Republic of China
| | - Wei Peng
- Department of Gastrointestinal Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, People's Republic of China
| | - Yongqiang Gong
- Department of Gastrointestinal Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, People's Republic of China
| | - Chaowu Chen
- Department of Gastrointestinal Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, People's Republic of China.
| |
Collapse
|
7
|
Hamano S, Noguchi T, Asai Y, Ito R, Komatsu R, Sato T, Inoue A, Maruyama T, Kudo TA, Hirata Y, Shindo S, Uchida Y, Hwang GW, Matsuzawa A. Aggregability of the SQSTM1/p62-based aggresome-like induced structures determines the sensitivity to parthanatos. Cell Death Discov 2024; 10:74. [PMID: 38346947 PMCID: PMC10861449 DOI: 10.1038/s41420-024-01838-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/15/2024] Open
Abstract
Overactivation of poly (ADP-ribose) polymerase-1 (PARP-1) triggers a noncanonical form of programmed cell death (PCD) called parthanatos, yet the mechanisms of its induction are not fully understood. We have recently demonstrated that the aggresome-like induced structures (ALIS) composed of the autophagy receptor SQSTM1/p62 and K48-linked polyubiquitinated proteins (p62-based ALIS) mediate parthanatos. In this study, we identified the D1 dopamine receptor agonist YM435 as a unique parthanatos inhibitor that acts as the disaggregating agent for the p62-based ALIS. We found that YM435 structurally reduces aggregability of the ALIS, and then increases its hydrophilicity and liquidity, which prevents parthanatos. Moreover, dopamine and L-DOPA, a dopamine precursor, also prevented parthanatos by reducing the aggregability of the ALIS. Together, these observations suggest that aggregability of the p62-based ALIS determines the sensitivity to parthanatos, and the pharmacological properties of YM435 that reduces the aggregability may be suitable for therapeutic drugs for parthanatos-related diseases such as neurodegenerative diseases.
Collapse
Affiliation(s)
- Shuhei Hamano
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Takuya Noguchi
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan.
| | - Yukino Asai
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Ryo Ito
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Ryuto Komatsu
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Tetsu Sato
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Aya Inoue
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Tomoe Maruyama
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Tada-Aki Kudo
- Division of Oral Physiology, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| | - Yusuke Hirata
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Sawako Shindo
- Laboratory of Environmental and Health Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan
- Department of Environmental Toxicology, Meiji Pharmaceutical University, Tokyo, Japan
| | - Yasuo Uchida
- Department of Molecular Systems Pharmaceutics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Gi-Wook Hwang
- Laboratory of Environmental and Health Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Atsushi Matsuzawa
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan.
| |
Collapse
|
8
|
Jackson CW, Xu J, Escobar I, Saul I, Fagerli E, Dave KR, Perez-Pinzon MA. Resveratrol Preconditioning Downregulates PARP1 Protein to Alleviate PARP1-Mediated Cell Death Following Cerebral Ischemia. Transl Stroke Res 2024; 15:165-178. [PMID: 36633794 PMCID: PMC10336177 DOI: 10.1007/s12975-022-01119-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 01/13/2023]
Abstract
Stroke remains a leading cause of mortality; however, available therapeutics are limited. The study of ischemic tolerance, in paradigms such as resveratrol preconditioning (RPC), provides promise for the development of novel prophylactic therapies. The heavily oxidative environment following stroke promotes poly-ADP-ribose polymerase 1 (PARP1)-overactivation and parthanatos, both of which are major contributors to neuronal injury. In this study, we tested the hypothesis that RPC instills ischemic tolerance through decreasing PARP1 overexpression and parthanatos following in vitro and in vivo cerebral ischemia. To test this hypothesis, we utilized rat primary neuronal cultures (PNCs) and middle cerebral artery occlusion (MCAO) in the rat as in vitro and in vivo models, respectively. RPC was administered 2 days preceding ischemic insults. RPC protected PNCs against oxygen and glucose deprivation (OGD)-induced neuronal loss, as well as increases in total PARP1 protein, implying protection against PARP1-overactivation. Twelve hours following OGD, we observed reductions in NAD+/NADH as well as an increase in AIF nuclear translocation, but RPC ameliorated NAD+/NADH loss and blocked AIF nuclear translocation. MCAO in the rat induced AIF nuclear translocation in the ischemic penumbra after 24 h, which was ameliorated with RPC. We tested the hypothesis that RPC's neuroprotection was instilled through long-term downregulation of nuclear PARP1 protein. RPC downregulated nuclear PARP1 protein for at least 6 days in PNCs, likely contributing to RPC's ischemic tolerance. This study describes a novel mechanism by which RPC instills prophylaxis against ischemia-induced PARP1 overexpression and parthanatos, through a long-term reduction of nuclear PARP1 protein.
Collapse
Grants
- R01 NS045676 NINDS NIH HHS
- 3R01NS034773, R01NS45676, R01NS054147 NIH HHS
- R01 NS054147 NINDS NIH HHS
- RF1 NS034773 NINDS NIH HHS
- R01 NS097658 NINDS NIH HHS
- R01 NS034773 NINDS NIH HHS
- 3R01NS034773, R01NS45676, R01NS054147 NIH HHS
- 3R01NS034773, R01NS45676, R01NS054147 NIH HHS
- 3R01NS034773, R01NS45676, R01NS054147 NIH HHS
- 3R01NS034773, R01NS45676, R01NS054147 NIH HHS
- 3R01NS034773, R01NS45676, R01NS054147 NIH HHS
Collapse
Affiliation(s)
- Charles W Jackson
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA
- Department of Neurology, University of Miami Leonard M. Miller School of Medicine, PO Box 016960, Miami, FL, 33136, USA
- Neuroscience Program, University of Miami Leonard M. Miller School of Medicine, Miami, FL, USA
| | - Jing Xu
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA
- Department of Neurology, University of Miami Leonard M. Miller School of Medicine, PO Box 016960, Miami, FL, 33136, USA
- Neuroscience Program, University of Miami Leonard M. Miller School of Medicine, Miami, FL, USA
| | - Iris Escobar
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA
- Department of Neurology, University of Miami Leonard M. Miller School of Medicine, PO Box 016960, Miami, FL, 33136, USA
- Neuroscience Program, University of Miami Leonard M. Miller School of Medicine, Miami, FL, USA
| | - Isabel Saul
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA
- Department of Neurology, University of Miami Leonard M. Miller School of Medicine, PO Box 016960, Miami, FL, 33136, USA
| | - Eric Fagerli
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA
- Department of Neurology, University of Miami Leonard M. Miller School of Medicine, PO Box 016960, Miami, FL, 33136, USA
- Neuroscience Program, University of Miami Leonard M. Miller School of Medicine, Miami, FL, USA
| | - Kunjan R Dave
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA
- Department of Neurology, University of Miami Leonard M. Miller School of Medicine, PO Box 016960, Miami, FL, 33136, USA
- Neuroscience Program, University of Miami Leonard M. Miller School of Medicine, Miami, FL, USA
| | - Miguel A Perez-Pinzon
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA.
- Department of Neurology, University of Miami Leonard M. Miller School of Medicine, PO Box 016960, Miami, FL, 33136, USA.
- Neuroscience Program, University of Miami Leonard M. Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
9
|
Caldecott KW. Causes and consequences of DNA single-strand breaks. Trends Biochem Sci 2024; 49:68-78. [PMID: 38040599 DOI: 10.1016/j.tibs.2023.11.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/20/2023] [Accepted: 11/03/2023] [Indexed: 12/03/2023]
Abstract
DNA single-strand breaks (SSBs) are among the most common lesions arising in human cells, with tens to hundreds of thousands arising in each cell, each day. Cells have efficient mechanisms for the sensing and repair of these ubiquitous DNA lesions, but the failure of these processes to rapidly remove SSBs can lead to a variety of pathogenic outcomes. The threat posed by unrepaired SSBs is illustrated by the existence of at least six genetic diseases in which SSB repair (SSBR) is defective, all of which are characterised by neurodevelopmental and/or neurodegenerative pathology. Here, I review current understanding of how SSBs arise and impact on critical molecular processes, such as DNA replication and gene transcription, and their links to human disease.
Collapse
Affiliation(s)
- Keith W Caldecott
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, UK.
| |
Collapse
|
10
|
Ren K, Pei J, Guo Y, Jiao Y, Xing H, Xie Y, Yang Y, Feng Q, Yang J. Regulated necrosis pathways: a potential target for ischemic stroke. BURNS & TRAUMA 2023; 11:tkad016. [PMID: 38026442 PMCID: PMC10656754 DOI: 10.1093/burnst/tkad016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/24/2022] [Indexed: 12/01/2023]
Abstract
Globally, ischemic stroke causes millions of deaths per year. The outcomes of ischemic stroke are largely determined by the amount of ischemia-related and reperfusion-related neuronal death in the infarct region. In the infarct region, cell injuries follow either the regulated pathway involving precise signaling cascades, such as apoptosis and autophagy, or the nonregulated pathway, which is uncontrolled by any molecularly defined effector mechanisms such as necrosis. However, numerous studies have recently found that a certain type of necrosis can be regulated and potentially modified by drugs and is nonapoptotic; this type of necrosis is referred to as regulated necrosis. Depending on the signaling pathway, various elements of regulated necrosis contribute to the development of ischemic stroke, such as necroptosis, pyroptosis, ferroptosis, pathanatos, mitochondrial permeability transition pore-mediated necrosis and oncosis. In this review, we aim to summarize the underlying molecular mechanisms of regulated necrosis in ischemic stroke and explore the crosstalk and interplay among the diverse types of regulated necrosis. We believe that targeting these regulated necrosis pathways both pharmacologically and genetically in ischemia-induced neuronal death and protection could be an efficient strategy to increase neuronal survival and regeneration in ischemic stroke.
Collapse
Affiliation(s)
- Kaidi Ren
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou 450052, China
- Henan Engineering Research Center for Application & Translation of Precision Clinical Pharmacy, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou University, Zhengzhou 450052, China
| | - Jinyan Pei
- Quality Management Department, Henan No. 3 Provincial People’s Hospital, Henan No. 3 Provincial People’s Hospital, Zhengzhou 450052, China
| | - Yuanyuan Guo
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou 450052, China
- Henan Engineering Research Center for Application & Translation of Precision Clinical Pharmacy, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou University, Zhengzhou 450052, China
| | - Yuxue Jiao
- Quality Management Department, Henan No. 3 Provincial People’s Hospital, Henan No. 3 Provincial People’s Hospital, Zhengzhou 450052, China
| | - Han Xing
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou 450052, China
- Henan Engineering Research Center for Application & Translation of Precision Clinical Pharmacy, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou University, Zhengzhou 450052, China
| | - Yi Xie
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou University, Zhengzhou 450052, China
| | - Yang Yang
- Research Center for Clinical System Biology, Translational Medicine Center, No. 1 Jianshe Dong Road, ErQi District, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Qi Feng
- Research Institute of Nephrology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou 450052, China
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou 450052, China
- Henan Province Research Center for Kidney Disease, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou 450052, China
| | - Jing Yang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou 450052, China
- Henan Engineering Research Center for Application & Translation of Precision Clinical Pharmacy, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
11
|
Xu X, Sun B, Zhao C. Poly (ADP-Ribose) polymerase 1 and parthanatos in neurological diseases: From pathogenesis to therapeutic opportunities. Neurobiol Dis 2023; 187:106314. [PMID: 37783233 DOI: 10.1016/j.nbd.2023.106314] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023] Open
Abstract
Poly (ADP-ribose) polymerase-1 (PARP-1) is the most extensively studied member of the PARP superfamily, with its primary function being the facilitation of DNA damage repair processes. Parthanatos is a type of regulated cell death cascade initiated by PARP-1 hyperactivation, which involves multiple subroutines, including the accumulation of ADP-ribose polymers (PAR), binding of PAR and apoptosis-inducing factor (AIF), release of AIF from the mitochondria, the translocation of the AIF/macrophage migration inhibitory factor (MIF) complex, and massive MIF-mediated DNA fragmentation. Over the past few decades, the role of PARP-1 in central nervous system health and disease has received increasing attention. In this review, we discuss the biological functions of PARP-1 in neural cell proliferation and differentiation, memory formation, brain ageing, and epigenetic regulation. We then elaborate on the involvement of PARP-1 and PARP-1-dependant parthanatos in various neuropathological processes, such as oxidative stress, neuroinflammation, mitochondrial dysfunction, excitotoxicity, autophagy damage, and endoplasmic reticulum (ER) stress. Additional highlight contains PARP-1's implications in the initiation, progression, and therapeutic opportunities for different neurological illnesses, including neurodegenerative diseases, stroke, autism spectrum disorder (ASD), multiple sclerosis (MS), epilepsy, and neuropathic pain (NP). Finally, emerging insights into the repurposing of PARP inhibitors for the management of neurological diseases are provided. This review aims to summarize the exciting advancements in the critical role of PARP-1 in neurological disorders, which may open new avenues for therapeutic options targeting PARP-1 or parthanatos.
Collapse
Affiliation(s)
- Xiaoxue Xu
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China; Key Laboratory of Neurological Disease Big Data of Liaoning Province, Shenyang, China.
| | - Bowen Sun
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China; Key Laboratory of Neurological Disease Big Data of Liaoning Province, Shenyang, China
| | - Chuansheng Zhao
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China; Key Laboratory of Neurological Disease Big Data of Liaoning Province, Shenyang, China.
| |
Collapse
|
12
|
Zhou M, Boulos JC, Omer EA, Rudbari HA, Schirmeister T, Micale N, Efferth T. Two palladium (II) complexes derived from halogen-substituted Schiff bases and 2-picolylamine induce parthanatos-type cell death in sensitive and multi-drug resistant CCRF-CEM leukemia cells. Eur J Pharmacol 2023; 956:175980. [PMID: 37567459 DOI: 10.1016/j.ejphar.2023.175980] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/29/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
The use of cisplatin and its derivatives in cancer treatment triggered the interest in metal-containing complexes as potential novel anticancer agents. Palladium (II)-based complexes have been synthesized in recent years with promising antitumor activity. Previously, we described the synthesis and cytotoxicity of palladium (II) complexes containing halogen-substituted Schiff bases and 2-picolylamine. Here, we selected two palladium (II) complexes with double chlorine-substitution or double iodine-substitution that displayed the best cytotoxicity in drug-sensitive CCRF-CEM and multidrug-resistant CEM/ADR5000 leukemia cells for further biological investigation. Surprisingly, these compounds did not significantly induce apoptotic cell death. This study aims to reveal the major mode of cell death of these two palladium (II) complexes. We performed annexin V-FITC/PI staining and flow cytometric mitochondrial membrane potential measurement followed by western blotting, immunofluorescence microscopy, and alkaline single cell electrophoresis (comet assay). J4 and J6 still induced neither apoptosis nor necrosis in both leukemia cell lines. They also insufficiently induced autophagy as evidenced by Beclin and p62 detection in western blotting. Interestingly, J4 and J6 induced a novel mode of cell death (parthanatos) as mainly demonstrated in CCRF-CEM cells by hyper-activation of poly(ADP-ribose) polymerase 1 (PARP) and poly(ADP-ribose) (PAR) using western blotting, flow cytometric measurement of mitochondrial membrane potential collapse, nuclear translocation of apoptosis-inducing factor (AIF) by immunofluorescence microscopy, and DNA damage by alkaline single cell electrophoresis (comet assay). AIF translocation was also observed in CEM/ADR5000 cells. Thus, parthanatos was the predominant mode of cell death induced by J4 and J6, which explains the high cytotoxicity in CCRF-CEM and CEM/ADR5000 cells. J4 and J6 may be interesting drug candidates and deserve further investigations to overcome resistance of tumors against apoptosis. This study will promote the design of further novel palladium (II)-based complexes as chemotherapeutic agents.
Collapse
Affiliation(s)
- Min Zhou
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University-Mainz, Staudinger Weg 5, 55128, Mainz, Germany
| | - Joelle C Boulos
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University-Mainz, Staudinger Weg 5, 55128, Mainz, Germany
| | - Ejlal A Omer
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University-Mainz, Staudinger Weg 5, 55128, Mainz, Germany
| | - Hadi Amiri Rudbari
- Department of Chemistry, University of Isfahan, Isfahan, 81746-73441, Iran
| | - Tanja Schirmeister
- Department of Medicinal Chemistry, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University-Mainz, Staudinger Weg 5, 55128, Mainz, Germany
| | - Nicola Micale
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 1-98166, Messina, Italy
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University-Mainz, Staudinger Weg 5, 55128, Mainz, Germany.
| |
Collapse
|
13
|
Weiß J, Heib M, Korn T, Hoyer J, Fuchslocher Chico J, Voigt S, Koudelka T, Tholey A, Adam D. Protease-independent control of parthanatos by HtrA2/Omi. Cell Mol Life Sci 2023; 80:258. [PMID: 37594630 PMCID: PMC10439076 DOI: 10.1007/s00018-023-04904-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/15/2023] [Accepted: 07/31/2023] [Indexed: 08/19/2023]
Abstract
HtrA2/Omi is a mitochondrial serine protease with ascribed pro-apoptotic as well as pro-necroptotic functions. Here, we establish that HtrA2/Omi also controls parthanatos, a third modality of regulated cell death. Deletion of HtrA2/Omi protects cells from parthanatos while reconstitution with the protease restores the parthanatic death response. The effects of HtrA2/Omi on parthanatos are specific and cannot be recapitulated by manipulating other mitochondrial proteases such as PARL, LONP1 or PMPCA. HtrA2/Omi controls parthanatos in a manner mechanistically distinct from its action in apoptosis or necroptosis, i.e., not by cleaving cytosolic IAP proteins but rather exerting its effects without exiting mitochondria, and downstream of PARP-1, the first component of the parthanatic signaling cascade. Also, previously identified or candidate substrates of HtrA2/Omi such as PDXDC1, VPS4B or moesin are not cleaved and dispensable for parthanatos, whereas DBC-1 and stathmin are cleaved, and thus represent potential parthanatic downstream mediators of HtrA2/Omi. Moreover, mass-spectrometric screening for novel parthanatic substrates of HtrA2/Omi revealed that the induction of parthanatos does not cause a substantial proteolytic cleavage or major alterations in the abundance of mitochondrial proteins. Resolving these findings, reconstitution of HtrA2/Omi-deficient cells with a catalytically inactive HtrA2/Omi mutant restored their sensitivity against parthanatos to the same level as the protease-active HtrA2/Omi protein. Additionally, an inhibitor of HtrA2/Omi's protease activity did not confer protection against parthanatic cell death. Our results demonstrate that HtrA2/Omi controls parthanatos in a protease-independent manner, likely via novel, unanticipated functions as a scaffolding protein and an interaction with so far unknown mitochondrial proteins.
Collapse
Affiliation(s)
- Jonas Weiß
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Michaelisstr. 5, 24105, Kiel, Germany
| | - Michelle Heib
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Michaelisstr. 5, 24105, Kiel, Germany
| | - Thiemo Korn
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Michaelisstr. 5, 24105, Kiel, Germany
| | - Justus Hoyer
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Michaelisstr. 5, 24105, Kiel, Germany
| | - Johaiber Fuchslocher Chico
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Michaelisstr. 5, 24105, Kiel, Germany
| | - Susann Voigt
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Michaelisstr. 5, 24105, Kiel, Germany
| | - Tomas Koudelka
- Institut für Experimentelle Medizin, Christian-Albrechts-Universität zu Kiel, Niemannsweg 11, 24105, Kiel, Germany
| | - Andreas Tholey
- Institut für Experimentelle Medizin, Christian-Albrechts-Universität zu Kiel, Niemannsweg 11, 24105, Kiel, Germany
| | - Dieter Adam
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Michaelisstr. 5, 24105, Kiel, Germany.
| |
Collapse
|
14
|
Kamaletdinova T, Zong W, Urbánek P, Wang S, Sannai M, Grigaravičius P, Sun W, Fanaei-Kahrani Z, Mangerich A, Hottiger MO, Li T, Wang ZQ. Poly(ADP-Ribose) Polymerase-1 Lacking Enzymatic Activity Is Not Compatible with Mouse Development. Cells 2023; 12:2078. [PMID: 37626888 PMCID: PMC10453916 DOI: 10.3390/cells12162078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/11/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Poly(ADP-ribose) polymerase-1 (PARP1) binds DNA lesions to catalyse poly(ADP-ribosyl)ation (PARylation) using NAD+ as a substrate. PARP1 plays multiple roles in cellular activities, including DNA repair, transcription, cell death, and chromatin remodelling. However, whether these functions are governed by the enzymatic activity or scaffolding function of PARP1 remains elusive. In this study, we inactivated in mice the enzymatic activity of PARP1 by truncating its C-terminus that is essential for ART catalysis (PARP1ΔC/ΔC, designated as PARP1-ΔC). The mutation caused embryonic lethality between embryonic day E8.5 and E13.5, in stark contrast to PARP1 complete knockout (PARP1-/-) mice, which are viable. Embryonic stem (ES) cell lines can be derived from PARP1ΔC/ΔC blastocysts, and these mutant ES cells can differentiate into all three germ layers, yet, with a high degree of cystic structures, indicating defects in epithelial cells. Intriguingly, PARP1-ΔC protein is expressed at very low levels compared to its full-length counterpart, suggesting a selective advantage for cell survival. Noticeably, PARP2 is particularly elevated and permanently present at the chromatin in PARP1-ΔC cells, indicating an engagement of PARP2 by non-enzymatic PARP1 protein at the chromatin. Surprisingly, the introduction of PARP1-ΔC mutation in adult mice did not impair their viability; yet, these mutant mice are hypersensitive to alkylating agents, similar to PARP1-/- mutant mice. Our study demonstrates that the catalytically inactive mutant of PARP1 causes the developmental block, plausibly involving PARP2 trapping.
Collapse
Affiliation(s)
- Tatiana Kamaletdinova
- Leibniz Institute on Aging—Fritz Lipmann Institute (FLI), 07745 Jena, Germany; (T.K.); (P.U.); (M.S.); (P.G.); (Z.F.-K.)
| | - Wen Zong
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China; (W.Z.); (S.W.); (W.S.); (T.L.)
| | - Pavel Urbánek
- Leibniz Institute on Aging—Fritz Lipmann Institute (FLI), 07745 Jena, Germany; (T.K.); (P.U.); (M.S.); (P.G.); (Z.F.-K.)
| | - Sijia Wang
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China; (W.Z.); (S.W.); (W.S.); (T.L.)
| | - Mara Sannai
- Leibniz Institute on Aging—Fritz Lipmann Institute (FLI), 07745 Jena, Germany; (T.K.); (P.U.); (M.S.); (P.G.); (Z.F.-K.)
| | - Paulius Grigaravičius
- Leibniz Institute on Aging—Fritz Lipmann Institute (FLI), 07745 Jena, Germany; (T.K.); (P.U.); (M.S.); (P.G.); (Z.F.-K.)
| | - Wenli Sun
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China; (W.Z.); (S.W.); (W.S.); (T.L.)
| | - Zahra Fanaei-Kahrani
- Leibniz Institute on Aging—Fritz Lipmann Institute (FLI), 07745 Jena, Germany; (T.K.); (P.U.); (M.S.); (P.G.); (Z.F.-K.)
| | - Aswin Mangerich
- Molecular Toxicology, Department of Biology, University of Konstanz, 78464 Konstanz, Germany;
- Nutritional Toxicology, Institute of Nutritional Science, University of Potsdam, 14469 Potsdam, Germany
| | - Michael O. Hottiger
- Department of Molecular Mechanisms of Disease, University of Zürich, 8057 Zürich, Switzerland;
| | - Tangliang Li
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China; (W.Z.); (S.W.); (W.S.); (T.L.)
| | - Zhao-Qi Wang
- Leibniz Institute on Aging—Fritz Lipmann Institute (FLI), 07745 Jena, Germany; (T.K.); (P.U.); (M.S.); (P.G.); (Z.F.-K.)
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China; (W.Z.); (S.W.); (W.S.); (T.L.)
- Faculty of Biological Sciences, Friedrich Schiller University of Jena, 07743 Jena, Germany
| |
Collapse
|
15
|
Yarreiphang H, Vidyadhara DJ, Nambisan AK, Raju TR, Sagar BKC, Alladi PA. Apoptotic Factors and Mitochondrial Complexes Assist Determination of Strain-Specific Susceptibility of Mice to Parkinsonian Neurotoxin MPTP. Mol Neurobiol 2023:10.1007/s12035-023-03372-1. [PMID: 37162724 DOI: 10.1007/s12035-023-03372-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/28/2023] [Indexed: 05/11/2023]
Abstract
Identification of genetic mutations in Parkinson's disease (PD) promulgates the genetic nature of disease susceptibility. Resilience-associated genes being unknown till date, the normal genetic makeup of an individual may be determinative too. Our earlier studies comparing the substantia nigra (SN) and striatum of C57BL/6J, CD-1 mice, and their F1-crossbreds demonstrated the neuroprotective role of admixing against the neurotoxin MPTP. Furthermore, the differences in levels of mitochondrial fission/fusion proteins in the SN of parent strains imply effects on mitochondrial biogenesis. Our present investigations suggest that the baseline levels of apoptotic factors Bcl-2, Bax, and AIF differ across the three strains and are differentially altered in SN following MPTP administration. The reduction in complex-I levels exclusively in MPTP-injected C57BL/6J reiterates mitochondrial involvement in PD pathogenesis. The MPTP-induced increase in complex-IV, in the nigra of both parent strains, may be compensatory in nature. The ultrastructural evaluation showed fairly preserved mitochondria in the dopaminergic neurons of CD-1 and F1-crossbreds. However, in CD-1, the endoplasmic reticulum demonstrated distinct luminal enlargement, bordering onto ballooning, suggesting proteinopathy as a possible initial trigger.The increase in α-synuclein in the pars reticulata of crossbreds suggests a supportive role for this output nucleus in compensating for the lost function of pars compacta. Alternatively, since α-synuclein over-expression occurs in different brain regions in PD, the α-synuclein increase here may suggest a similar pathogenic outcome. Further understanding is required to resolve this biological contraption. Nevertheless, admixing reduces the risk to MPTP by favoring anti-apoptotic consequences. Similar neuroprotection may be envisaged in the admixed populace of Anglo-Indians.
Collapse
Affiliation(s)
- Haorei Yarreiphang
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences, Hosur Road, Bangalore, India
- Present address: Zoology Department, Hansraj College, University of Delhi, Delhi, 110007, India
| | - D J Vidyadhara
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences, Hosur Road, Bangalore, India
- Present address: Departments of Neurology and Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Anand Krishnan Nambisan
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences, Hosur Road, Bangalore, India
| | - Trichur R Raju
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences, Hosur Road, Bangalore, India
| | - B K Chandrashekar Sagar
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, 560029, India
| | - Phalguni Anand Alladi
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences, Hosur Road, Bangalore, India.
- Department of Clinical Psychopharmacology and Neurotoxicology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, 560029, India.
| |
Collapse
|
16
|
Yang K, Bao T, Zeng J, Wang S, Yuan X, Xiang W, Xu H, Zeng L, Ge J. Research progress on pyroptosis-mediated immune-inflammatory response in ischemic stroke and the role of natural plant components as regulator of pyroptosis: A review. Biomed Pharmacother 2023; 157:113999. [PMID: 36455455 DOI: 10.1016/j.biopha.2022.113999] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/06/2022] [Accepted: 11/09/2022] [Indexed: 11/29/2022] Open
Abstract
Ischemic stroke (IS) is one of the leading causes of death and disability. Its pathogenesis is not completely clear, and inflammatory cascade is one of its main pathological processes. The current clinical practice of IS is to restore the blood supply to the ischemic area after IS as soon as possible through thrombolytic therapy to protect the vitality and function of neurons. However, blood reperfusion further accelerates ischemic damage and cause ischemia-reperfusion injury. The pathological process of cerebral ischemia-reperfusion injury involves multiple mechanisms, and the exact mechanism has not been fully elucidated. Pyroptosis, a newly discovered form of inflammatory programmed cell death, plays an important role in the initiation and progression of inflammation. It is a pro-inflammatory programmed death mediated by caspase Caspase-1/4/5/11, which can lead to cell swelling and rupture, release inflammatory factors IL-1β and IL-18, and induce an inflammatory cascade. Recent studies have shown that pyroptosis and its mediated inflammatory response are important factors in aggravating ischemic brain injury, and inhibition of pyroptosis may alleviate the ischemic brain injury. Furthermore, studies have found that natural plant components may have a regulatory effect on pyroptosis. Therefore, this review not only summarizes the molecular mechanism of pyroptosis and its role in ischemic stroke, but also the role of natural plant components as regulator of pyroptosis, in order to provide reference information on pyroptosis for the treatment of IS in the future.
Collapse
Affiliation(s)
- Kailin Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, Hunan Province, China.
| | - Tingting Bao
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jinsong Zeng
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Shanshan Wang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Xiao Yuan
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Wang Xiang
- Department of Rheumatology, The First People's Hospital Changde City, Changde City, Hunan Province, China
| | - Hao Xu
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Liuting Zeng
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, Hunan Province, China.
| | - Jinwen Ge
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, Hunan Province, China; Hunan Academy of Chinese Medicine, Changsha, Hunan Province, China.
| |
Collapse
|
17
|
Riche K, Lenard NR. Quercetin's Effects on Glutamate Cytotoxicity. Molecules 2022; 27:7620. [PMID: 36364448 PMCID: PMC9657878 DOI: 10.3390/molecules27217620] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 08/13/2023] Open
Abstract
The potentially therapeutic effects of the naturally abundant plant flavonoid quercetin have been extensively studied. An extensive body of literature suggests that quercetin's powerful antioxidant effects may relate to its ability to treat disease. Glutamate excitotoxicity occurs when a neuron is overstimulated by the neurotransmitter glutamate and causes dysregulation of intracellular calcium concentrations. Quercetin has been shown to be preventative against many forms of neuronal cell death resulting from glutamate excitotoxicity, such as oncosis, intrinsic apoptosis, mitochondrial permeability transition, ferroptosis, phagoptosis, lysosomal cell death, parthanatos, and death by reactive oxygen species (ROS)/reactive nitrogen species (RNS) generation. The clinical importance for the attenuation of glutamate excitotoxicity arises from the need to deter the continuous formation of tissue infarction caused by various neurological diseases, such as ischemic stroke, seizures, neurodegenerative diseases, and trauma. This review aims to summarize what is known concerning glutamate physiology and glutamate excitotoxic pathophysiology and provide further insight into quercetin's potential to hinder neuronal death caused by cell death pathways activated by glutamate excitotoxicity. Quercetin's bioavailability may limit its use clinically, however. Thus, future research into ways to increase its bioavailability are warranted.
Collapse
Affiliation(s)
| | - Natalie R. Lenard
- Department of Biology, School of Arts and Sciences, Franciscan Missionaries of Our Lady University, 5414 Brittany Drive, Baton Rouge, LA 70808, USA
| |
Collapse
|
18
|
Ai D, Wu J, Cai H, Zhao D, Chen Y, Wei J, Xu J, Zhang J, Wang L. A multi-task FP-GNN framework enables accurate prediction of selective PARP inhibitors. Front Pharmacol 2022; 13:971369. [PMID: 36304149 PMCID: PMC9592829 DOI: 10.3389/fphar.2022.971369] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/14/2022] [Indexed: 08/16/2024] Open
Abstract
PARP (poly ADP-ribose polymerase) family is a crucial DNA repair enzyme that responds to DNA damage, regulates apoptosis, and maintains genome stability; therefore, PARP inhibitors represent a promising therapeutic strategy for the treatment of various human diseases including COVID-19. In this study, a multi-task FP-GNN (Fingerprint and Graph Neural Networks) deep learning framework was proposed to predict the inhibitory activity of molecules against four PARP isoforms (PARP-1, PARP-2, PARP-5A, and PARP-5B). Compared with baseline predictive models based on four conventional machine learning methods such as RF, SVM, XGBoost, and LR as well as six deep learning algorithms such as DNN, Attentive FP, MPNN, GAT, GCN, and D-MPNN, the evaluation results indicate that the multi-task FP-GNN method achieves the best performance with the highest average BA, F1, and AUC values of 0.753 ± 0.033, 0.910 ± 0.045, and 0.888 ± 0.016 for the test set. In addition, Y-scrambling testing successfully verified that the model was not results of chance correlation. More importantly, the interpretability of the multi-task FP-GNN model enabled the identification of key structural fragments associated with the inhibition of each PARP isoform. To facilitate the use of the multi-task FP-GNN model in the field, an online webserver called PARPi-Predict and its local version software were created to predict whether compounds bear potential inhibitory activity against PARPs, thereby contributing to design and discover better selective PARP inhibitors.
Collapse
Affiliation(s)
- Daiqiao Ai
- School of Biology and Biological Engineering, Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, Joint International Research Laboratory of Synthetic Biology and Medicine, Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, South China University of Technology, Guangzhou, China
| | - Jingxing Wu
- School of Biology and Biological Engineering, Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, Joint International Research Laboratory of Synthetic Biology and Medicine, Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, South China University of Technology, Guangzhou, China
| | - Hanxuan Cai
- School of Biology and Biological Engineering, Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, Joint International Research Laboratory of Synthetic Biology and Medicine, Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, South China University of Technology, Guangzhou, China
| | - Duancheng Zhao
- School of Biology and Biological Engineering, Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, Joint International Research Laboratory of Synthetic Biology and Medicine, Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, South China University of Technology, Guangzhou, China
| | - Yihao Chen
- School of Biology and Biological Engineering, Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, Joint International Research Laboratory of Synthetic Biology and Medicine, Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, South China University of Technology, Guangzhou, China
| | - Jiajia Wei
- School of Biology and Biological Engineering, Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, Joint International Research Laboratory of Synthetic Biology and Medicine, Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, South China University of Technology, Guangzhou, China
| | - Jianrong Xu
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiquan Zhang
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, College of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Ling Wang
- School of Biology and Biological Engineering, Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, Joint International Research Laboratory of Synthetic Biology and Medicine, Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, South China University of Technology, Guangzhou, China
| |
Collapse
|
19
|
Poly(ADP-ribose) Polymerase 1 Mediates Rab5 Inactivation after DNA Damage. Int J Mol Sci 2022; 23:ijms23147827. [PMID: 35887176 PMCID: PMC9319841 DOI: 10.3390/ijms23147827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/09/2022] [Accepted: 07/14/2022] [Indexed: 11/16/2022] Open
Abstract
Parthanatos is programmed cell death mediated by poly(ADP-ribose) polymerase 1 (PARP1) after DNA damage. PARP1 acts by catalyzing the transfer of poly(ADP-ribose) (PAR) polymers to various nuclear proteins. PAR is subsequently cleaved, generating protein-free PAR polymers, which are translocated to the cytoplasm where they associate with cytoplasmic and mitochondrial proteins, altering their functions and leading to cell death. Proteomic studies revealed that several proteins involved in endocytosis bind PAR after PARP1 activation, suggesting endocytosis may be affected by the parthanatos process. Endocytosis is a mechanism for cellular uptake of membrane-impermeant nutrients. Rab5, a small G-protein, is associated with the plasma membrane and early endosomes. Once activated by binding GTP, Rab5 recruits its effectors to early endosomes and regulates their fusion. Here, we report that after DNA damage, PARP1-generated PAR binds to Rab5, suppressing its activity. As a result, Rab5 is dissociated from endosomal vesicles, inhibiting the uptake of membrane-impermeant nutrients. This PARP1-dependent inhibition of nutrient uptake leads to cell starvation and death. It thus appears that this mechanism may represent a novel parthanatos pathway.
Collapse
|
20
|
Park H, Kam TI, Peng H, Chou SC, Mehrabani-Tabari AA, Song JJ, Yin X, Karuppagounder SS, Umanah GK, Rao AVS, Choi Y, Aggarwal A, Chang S, Kim H, Byun J, Liu JO, Dawson TM, Dawson VL. PAAN/MIF nuclease inhibition prevents neurodegeneration in Parkinson's disease. Cell 2022; 185:1943-1959.e21. [PMID: 35545089 DOI: 10.1016/j.cell.2022.04.020] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 02/14/2022] [Accepted: 04/12/2022] [Indexed: 10/18/2022]
Abstract
Parthanatos-associated apoptosis-inducing factor (AIF) nuclease (PAAN), also known as macrophage migration inhibitor factor (MIF), is a member of the PD-D/E(X)K nucleases that acts as a final executioner in parthanatos. PAAN's role in Parkinson's disease (PD) and whether it is amenable to chemical inhibition is not known. Here, we show that neurodegeneration induced by pathologic α-synuclein (α-syn) occurs via PAAN/MIF nuclease activity. Genetic depletion of PAAN/MIF and a mutant lacking nuclease activity prevent the loss of dopaminergic neurons and behavioral deficits in the α-syn preformed fibril (PFF) mouse model of sporadic PD. Compound screening led to the identification of PAANIB-1, a brain-penetrant PAAN/MIF nuclease inhibitor that prevents neurodegeneration induced by α-syn PFF, AAV-α-syn overexpression, or MPTP intoxication in vivo. Our findings could have broad relevance in human pathologies where parthanatos plays a role in the development of cell death inhibitors targeting the druggable PAAN/MIF nuclease.
Collapse
Affiliation(s)
- Hyejin Park
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130-2685, USA
| | - Tae-In Kam
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130-2685, USA
| | - Hanjing Peng
- Department of Pharmacology and Molecular Sciences and SJ Yan and HJ Mao Laboratory of Chemical Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shih-Ching Chou
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Amir A Mehrabani-Tabari
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jae-Jin Song
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Xiling Yin
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Senthilkumar S Karuppagounder
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - George K Umanah
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - A V Subba Rao
- Department of Pharmacology and Molecular Sciences and SJ Yan and HJ Mao Laboratory of Chemical Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - YuRee Choi
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Akanksha Aggarwal
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sohyun Chang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hyunhee Kim
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jiyoung Byun
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jun O Liu
- Department of Pharmacology and Molecular Sciences and SJ Yan and HJ Mao Laboratory of Chemical Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130-2685, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130-2685, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
21
|
Macrophage migration inhibitory factor (MIF) acetylation protects neurons from ischemic injury. Cell Death Dis 2022; 13:466. [PMID: 35585040 PMCID: PMC9117661 DOI: 10.1038/s41419-022-04918-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 04/29/2022] [Accepted: 05/05/2022] [Indexed: 12/14/2022]
Abstract
Ischemia-induced neuronal death leads to serious lifelong neurological deficits in ischemic stroke patients. Histone deacetylase 6 (HDAC6) is a promising target for neuroprotection in many neurological disorders, including ischemic stroke. However, the mechanism by which HDAC6 inhibition protects neurons after ischemic stroke remains unclear. Here, we discovered that genetic ablation or pharmacological inhibition of HDAC6 reduced brain injury after ischemic stroke by increasing macrophage migration inhibitory factor (MIF) acetylation. Mass spectrum analysis and biochemical results revealed that HDAC6 inhibitor or aspirin treatment promoted MIF acetylation on the K78 residue. MIF K78 acetylation suppressed the interaction between MIF and AIF, which impaired MIF translocation to the nucleus in ischemic cortical neurons. Moreover, neuronal DNA fragmentation and neuronal death were impaired in the cortex after ischemia in MIF K78Q mutant mice. Our results indicate that the neuroprotective effect of HDAC6 inhibition and aspirin treatment results from MIF K78 acetylation; thus, MIF K78 acetylation may be a therapeutic target for ischemic stroke and other neurological diseases.
Collapse
|
22
|
Heib M, Weiß J, Saggau C, Hoyer J, Fuchslocher Chico J, Voigt S, Adam D. Ars moriendi: Proteases as sculptors of cellular suicide. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119191. [PMID: 34973300 DOI: 10.1016/j.bbamcr.2021.119191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
The Ars moriendi, which translates to "The Art of Dying," encompasses two Latin texts that gave advice on how to die well and without fear according to the Christian precepts of the late Middle Ages. Given that ten to hundred billion cells die in our bodies every day, it is obvious that the concept of a well and orderly ("regulated") death is also paramount at the cellular level. In apoptosis, as the most well-studied form of regulated cell death, proteases of the caspase family are the central mediators. However, caspases are not the only proteases that act as sculptors of cellular suicide, and therefore, we here provide an overview of the impact of proteases in apoptosis and other forms of regulated cell death.
Collapse
Affiliation(s)
- Michelle Heib
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Michaelisstr. 5, 24105 Kiel, Germany
| | - Jonas Weiß
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Michaelisstr. 5, 24105 Kiel, Germany
| | - Carina Saggau
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Michaelisstr. 5, 24105 Kiel, Germany
| | - Justus Hoyer
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Michaelisstr. 5, 24105 Kiel, Germany
| | | | - Susann Voigt
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Michaelisstr. 5, 24105 Kiel, Germany
| | - Dieter Adam
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Michaelisstr. 5, 24105 Kiel, Germany.
| |
Collapse
|
23
|
Fujikawa DG. Programmed Mechanisms of Status Epilepticus-induced Neuronal Necrosis. Epilepsia Open 2022; 8 Suppl 1:S25-S34. [PMID: 35278284 PMCID: PMC10173844 DOI: 10.1002/epi4.12593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/05/2022] [Indexed: 11/11/2022] Open
Abstract
Excitotoxicity is the underlying mechanism for all acute neuronal injury, from cerebral ischemia, status epilepticus, traumatic CNS injury and hypoglycemia. It causes morphological neuronal necrosis, and it triggers a programmed cell death program. Excessive calcium entry through the NMDA-receptor-operated cation channel activates two key enzymes-calpain I and neuronal nitric oxide synthase (nNOS). Calpain I, a cytosolic enzyme, translocates to mitochondrial and lysosomal membranes, causing release of cytochrome c, endonuclease G and apoptosis-inducing factor (AIF) from mitochondria and DNase II and cathepsins B and D from lysosomes. These all translocate to neuronal nuclei, creating DNA damage, which activates poly(ADP) ribose polymerase-1 (PARP-1) to form excessive amounts of poly(ADP) ribose (PAR) polymers, which translocate to mitochondrial membranes, causing release of truncated AIF (tAIF). The free radicals that are released from mitochondria and peroxynitrite, formed from nitric oxide (NO) from nNOS catalysis of L-arginine to L-citrulline, damage mitochondrial and lysosomal membranes and DNA. The end result is the necrotic death of neurons. Another programmed necrotic pathway, necroptosis, occurs through a parallel pathway. As investigators of necroptosis do not recognize the excitotoxic pathway, it is unclear to what extent each contributes to programmed neuronal necrosis. We are studying the extent to which each contributes to acute neuronal necrosis and the extent of cross-talk between these pathways.
Collapse
Affiliation(s)
- Denson G Fujikawa
- VA Greater Los Angeles Healthcare System, CA and Department of Neurology and Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
24
|
Mashimo M, Kita M, Uno A, Nii M, Ishihara M, Honda T, Gotoh-Kinoshita Y, Nomura A, Nakamura H, Murayama T, Kizu R, Fujii T. Tankyrase Regulates Neurite Outgrowth through Poly(ADP-ribosyl)ation-Dependent Activation of β-Catenin Signaling. Int J Mol Sci 2022; 23:ijms23052834. [PMID: 35269974 PMCID: PMC8911479 DOI: 10.3390/ijms23052834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 12/17/2022] Open
Abstract
Poly(ADP-ribosyl)ation is a post-translational modification of proteins by transferring poly(ADP-ribose) (PAR) to acceptor proteins by the action of poly(ADP-ribose) polymerase (PARP). Two tankyrase (TNKS) isoforms, TNK1 and TNK2 (TNKS1/2), are ubiquitously expressed in mammalian cells and participate in diverse cellular functions, including wnt/β-catenin signaling, telomere maintenance, glucose metabolism and mitosis regulation. For wnt/β-catenin signaling, TNKS1/2 catalyze poly(ADP-ribosyl)ation of Axin, a key component of the β-catenin degradation complex, which allows Axin’s ubiquitination and subsequent degradation, thereby activating β-catenin signaling. In the present study, we focused on the functions of TNKS1/2 in neuronal development. In primary hippocampal neurons, TNKS1/2 were detected in the soma and neurites, where they co-localized with PAR signals. Treatment with XAV939, a selective TNKS1/2 inhibitor, suppressed neurite outgrowth and synapse formation. In addition, XAV939 also suppressed norepinephrine uptake in PC12 cells, a rat pheochromocytoma cell line. These effects likely resulted from the inhibition of β-catenin signaling through the stabilization of Axin, which suggests TNKS1/2 enhance Axin degradation by modifying its poly(ADP-ribosyl)ation, thereby stabilizing wnt/β-catenin signaling and, in turn, promoting neurite outgrowth and synapse formation.
Collapse
Affiliation(s)
- Masato Mashimo
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts, Kyotanabe 610-0395, Japan; (M.K.); (A.U.); (M.N.); (M.I.); (A.N.); (T.F.)
- Correspondence:
| | - Momoko Kita
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts, Kyotanabe 610-0395, Japan; (M.K.); (A.U.); (M.N.); (M.I.); (A.N.); (T.F.)
| | - Arina Uno
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts, Kyotanabe 610-0395, Japan; (M.K.); (A.U.); (M.N.); (M.I.); (A.N.); (T.F.)
| | - Moe Nii
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts, Kyotanabe 610-0395, Japan; (M.K.); (A.U.); (M.N.); (M.I.); (A.N.); (T.F.)
| | - Moe Ishihara
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts, Kyotanabe 610-0395, Japan; (M.K.); (A.U.); (M.N.); (M.I.); (A.N.); (T.F.)
| | - Takuya Honda
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan; (T.H.); (H.N.); (T.M.)
| | - Yuka Gotoh-Kinoshita
- Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts, Kyotanabe 610-0395, Japan; (Y.G.-K.); (R.K.)
| | - Atsuo Nomura
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts, Kyotanabe 610-0395, Japan; (M.K.); (A.U.); (M.N.); (M.I.); (A.N.); (T.F.)
| | - Hiroyuki Nakamura
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan; (T.H.); (H.N.); (T.M.)
| | - Toshihiko Murayama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan; (T.H.); (H.N.); (T.M.)
| | - Ryoichi Kizu
- Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts, Kyotanabe 610-0395, Japan; (Y.G.-K.); (R.K.)
| | - Takeshi Fujii
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts, Kyotanabe 610-0395, Japan; (M.K.); (A.U.); (M.N.); (M.I.); (A.N.); (T.F.)
| |
Collapse
|
25
|
Wang Y, Pleasure D, Deng W, Guo F. Therapeutic Potentials of Poly (ADP-Ribose) Polymerase 1 (PARP1) Inhibition in Multiple Sclerosis and Animal Models: Concept Revisiting. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2102853. [PMID: 34935305 PMCID: PMC8844485 DOI: 10.1002/advs.202102853] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 10/12/2021] [Indexed: 05/05/2023]
Abstract
Poly (ADP-ribose) polymerase 1 (PARP1) plays a fundamental role in DNA repair and gene expression. Excessive PARP1 hyperactivation, however, has been associated with cell death. PARP1 and/or its activity are dysregulated in the immune and central nervous system of multiple sclerosis (MS) patients and animal models. Pharmacological PARP1 inhibition is shown to be protective against immune activation and disease severity in MS animal models while genetic PARP1 deficiency studies reported discrepant results. The inconsistency suggests that the function of PARP1 and PARP1-mediated PARylation may be complex and context-dependent. The article reviews PARP1 functions, discusses experimental findings and possible interpretations of PARP1 in inflammation, neuronal/axonal degeneration, and oligodendrogliopathy, three major pathological components cooperatively determining MS disease course and neurological progression, and points out future research directions. Cell type specific PARP1 manipulations are necessary for revisiting the role of PARP1 in the three pathological components prior to moving PARP1 inhibition into clinical trials for MS therapy.
Collapse
Affiliation(s)
- Yan Wang
- Department of NeurologySchool of MedicineUniversity of CaliforniaDavisCA95817USA
- Institute for Pediatric Regenerative MedicineUC Davis School of Medicine/Shriners Hospitals for ChildrenSacramentoCAUSA
| | - David Pleasure
- Department of NeurologySchool of MedicineUniversity of CaliforniaDavisCA95817USA
- Institute for Pediatric Regenerative MedicineUC Davis School of Medicine/Shriners Hospitals for ChildrenSacramentoCAUSA
| | - Wenbin Deng
- School of Pharmaceutical Sciences (Shenzhen)Sun Yat‐sen UniversityGuangzhou510006China
| | - Fuzheng Guo
- Department of NeurologySchool of MedicineUniversity of CaliforniaDavisCA95817USA
- Institute for Pediatric Regenerative MedicineUC Davis School of Medicine/Shriners Hospitals for ChildrenSacramentoCAUSA
| |
Collapse
|
26
|
Ko J, Jang S, Kwon W, Kim SY, Jang S, Kim E, Ji YR, Park S, Kim MO, Choi SK, Cho DH, Lee HS, Lim SG, Ryoo ZY. Protective Effect of GIP against Monosodium Glutamate-Induced Ferroptosis in Mouse Hippocampal HT-22 Cells through the MAPK Signaling Pathway. Antioxidants (Basel) 2022; 11:antiox11020189. [PMID: 35204073 PMCID: PMC8868324 DOI: 10.3390/antiox11020189] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/10/2022] [Accepted: 01/17/2022] [Indexed: 02/08/2023] Open
Abstract
The effect of glucose-dependent insulinotropic polypeptide (GIP) on cells under oxidative stress induced by glutamate, a neurotransmitter, and the underlying molecular mechanisms were assessed in the present study. We found that in the pre-treatment of HT-22 cells with glutamate in a dose-dependent manner, intracellular ROS were excessively generated, and additional cell damage occurred in the form of lipid peroxidation. The neurotoxicity caused by excessive glutamate was found to be ferroptosis and not apoptosis. Other factors (GPx-4, Nrf2, Nox1 and Hspb1) involved in ferroptosis were also identified. In other words, it was confirmed that GIP increased the activity of sub-signalling molecules in the process of suppressing ferroptosis as an antioxidant and maintained a stable cell cycle even under glutamate-induced neurotoxicity. At the same time, in HT-22 cells exposed to ferroptosis as a result of excessive glutamate accumulation, GIP sustained cell viability by activating the mitogen-activated protein kinase (MAPK) signalling pathway. These results suggest that the overexpression of the GIP gene increases cell viability by regulating mechanisms related to cytotoxicity and reactive oxygen species production in hippocampal neuronal cell lines.
Collapse
Affiliation(s)
- Jiwon Ko
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Korea; (J.K.); (S.J.); (S.-Y.K.); (S.J.); (Y.-R.J.); (D.-H.C.); (H.-S.L.)
| | - Soyoung Jang
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Korea; (J.K.); (S.J.); (S.-Y.K.); (S.J.); (Y.-R.J.); (D.-H.C.); (H.-S.L.)
| | - Wookbong Kwon
- Core Protein Resources Center, DGIST, Daegu 42988, Korea; (W.K.); (S.-K.C.)
- Division of Biotechnology, DGIST, Daegu 42988, Korea
| | - Si-Yong Kim
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Korea; (J.K.); (S.J.); (S.-Y.K.); (S.J.); (Y.-R.J.); (D.-H.C.); (H.-S.L.)
| | - Soyeon Jang
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Korea; (J.K.); (S.J.); (S.-Y.K.); (S.J.); (Y.-R.J.); (D.-H.C.); (H.-S.L.)
| | - Eungyung Kim
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju-si 37224, Korea; (E.K.); (M.-O.K.)
| | - Young-Rae Ji
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Korea; (J.K.); (S.J.); (S.-Y.K.); (S.J.); (Y.-R.J.); (D.-H.C.); (H.-S.L.)
- Section on Sensory Cell Regeneration and Development, Laboratory of Molecular Biology, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sijun Park
- School of Life Science, Kyungpook National University, Daegu 42988, Korea;
| | - Myoung-Ok Kim
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju-si 37224, Korea; (E.K.); (M.-O.K.)
| | - Seong-Kyoon Choi
- Core Protein Resources Center, DGIST, Daegu 42988, Korea; (W.K.); (S.-K.C.)
- Division of Biotechnology, DGIST, Daegu 42988, Korea
| | - Dong-Hyung Cho
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Korea; (J.K.); (S.J.); (S.-Y.K.); (S.J.); (Y.-R.J.); (D.-H.C.); (H.-S.L.)
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 42988, Korea
| | - Hyun-Shik Lee
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Korea; (J.K.); (S.J.); (S.-Y.K.); (S.J.); (Y.-R.J.); (D.-H.C.); (H.-S.L.)
| | - Su-Geun Lim
- School of Life Science, Kyungpook National University, Daegu 42988, Korea;
- Correspondence: (S.-G.L.); (Z.-Y.R.)
| | - Zae-Young Ryoo
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Korea; (J.K.); (S.J.); (S.-Y.K.); (S.J.); (Y.-R.J.); (D.-H.C.); (H.-S.L.)
- Correspondence: (S.-G.L.); (Z.-Y.R.)
| |
Collapse
|
27
|
Lespay-Rebolledo C, Tapia-Bustos A, Perez-Lobos R, Vio V, Casanova-Ortiz E, Farfan-Troncoso N, Zamorano-Cataldo M, Redel-Villarroel M, Ezquer F, Quintanilla ME, Israel Y, Morales P, Herrera-Marschitz M. Sustained Energy Deficit Following Perinatal Asphyxia: A Shift towards the Fructose-2,6-bisphosphatase (TIGAR)-Dependent Pentose Phosphate Pathway and Postnatal Development. Antioxidants (Basel) 2021; 11:74. [PMID: 35052577 PMCID: PMC8773255 DOI: 10.3390/antiox11010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 11/16/2022] Open
Abstract
Labor and delivery entail a complex and sequential metabolic and physiologic cascade, culminating in most circumstances in successful childbirth, although delivery can be a risky episode if oxygen supply is interrupted, resulting in perinatal asphyxia (PA). PA causes an energy failure, leading to cell dysfunction and death if re-oxygenation is not promptly restored. PA is associated with long-term effects, challenging the ability of the brain to cope with stressors occurring along with life. We review here relevant targets responsible for metabolic cascades linked to neurodevelopmental impairments, that we have identified with a model of global PA in rats. Severe PA induces a sustained effect on redox homeostasis, increasing oxidative stress, decreasing metabolic and tissue antioxidant capacity in vulnerable brain regions, which remains weeks after the insult. Catalase activity is decreased in mesencephalon and hippocampus from PA-exposed (AS), compared to control neonates (CS), in parallel with increased cleaved caspase-3 levels, associated with decreased glutathione reductase and glutathione peroxidase activity, a shift towards the TIGAR-dependent pentose phosphate pathway, and delayed calpain-dependent cell death. The brain damage continues long after the re-oxygenation period, extending for weeks after PA, affecting neurons and glial cells, including myelination in grey and white matter. The resulting vulnerability was investigated with organotypic cultures built from AS and CS rat newborns, showing that substantia nigra TH-dopamine-positive cells from AS were more vulnerable to 1 mM of H2O2 than those from CS animals. Several therapeutic strategies are discussed, including hypothermia; N-acetylcysteine; memantine; nicotinamide, and intranasally administered mesenchymal stem cell secretomes, promising clinical translation.
Collapse
Affiliation(s)
- Carolyne Lespay-Rebolledo
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (C.L.-R.); (R.P.-L.); (V.V.); (E.C.-O.); (N.F.-T.); (M.Z.-C.); (M.R.-V.); (M.E.Q.); (Y.I.)
| | - Andrea Tapia-Bustos
- School of Pharmacy, Faculty of Medicine, Universidad Andres Bello, Santiago 8370149, Chile;
| | - Ronald Perez-Lobos
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (C.L.-R.); (R.P.-L.); (V.V.); (E.C.-O.); (N.F.-T.); (M.Z.-C.); (M.R.-V.); (M.E.Q.); (Y.I.)
| | - Valentina Vio
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (C.L.-R.); (R.P.-L.); (V.V.); (E.C.-O.); (N.F.-T.); (M.Z.-C.); (M.R.-V.); (M.E.Q.); (Y.I.)
| | - Emmanuel Casanova-Ortiz
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (C.L.-R.); (R.P.-L.); (V.V.); (E.C.-O.); (N.F.-T.); (M.Z.-C.); (M.R.-V.); (M.E.Q.); (Y.I.)
| | - Nancy Farfan-Troncoso
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (C.L.-R.); (R.P.-L.); (V.V.); (E.C.-O.); (N.F.-T.); (M.Z.-C.); (M.R.-V.); (M.E.Q.); (Y.I.)
| | - Marta Zamorano-Cataldo
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (C.L.-R.); (R.P.-L.); (V.V.); (E.C.-O.); (N.F.-T.); (M.Z.-C.); (M.R.-V.); (M.E.Q.); (Y.I.)
| | - Martina Redel-Villarroel
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (C.L.-R.); (R.P.-L.); (V.V.); (E.C.-O.); (N.F.-T.); (M.Z.-C.); (M.R.-V.); (M.E.Q.); (Y.I.)
| | - Fernando Ezquer
- Center for Regenerative Medicine, Faculty of Medicine-Clínica Alemana, Universidad del Desarrollo, Santiago 7710162, Chile;
| | - Maria Elena Quintanilla
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (C.L.-R.); (R.P.-L.); (V.V.); (E.C.-O.); (N.F.-T.); (M.Z.-C.); (M.R.-V.); (M.E.Q.); (Y.I.)
| | - Yedy Israel
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (C.L.-R.); (R.P.-L.); (V.V.); (E.C.-O.); (N.F.-T.); (M.Z.-C.); (M.R.-V.); (M.E.Q.); (Y.I.)
- Center for Regenerative Medicine, Faculty of Medicine-Clínica Alemana, Universidad del Desarrollo, Santiago 7710162, Chile;
| | - Paola Morales
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (C.L.-R.); (R.P.-L.); (V.V.); (E.C.-O.); (N.F.-T.); (M.Z.-C.); (M.R.-V.); (M.E.Q.); (Y.I.)
- Department of Neuroscience, Faculty of Medicine, University of Chile, Santiago 8380453, Chile
| | - Mario Herrera-Marschitz
- Molecular & Clinical Pharmacology Program, ICBM, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (C.L.-R.); (R.P.-L.); (V.V.); (E.C.-O.); (N.F.-T.); (M.Z.-C.); (M.R.-V.); (M.E.Q.); (Y.I.)
| |
Collapse
|
28
|
Ruan Z, Lu Q, Wang JE, Zhou M, Liu S, Zhang H, Durvasula A, Wang Y, Wang Y, Luo W, Wang Y. MIF promotes neurodegeneration and cell death via its nuclease activity following traumatic brain injury. Cell Mol Life Sci 2021; 79:39. [DOI: 10.1007/s00018-021-04037-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 10/19/2022]
|
29
|
Singer T, Ding S, Ding S. Astroglia Abnormalities in Post-stroke Mood Disorders. ADVANCES IN NEUROBIOLOGY 2021; 26:115-138. [PMID: 34888833 DOI: 10.1007/978-3-030-77375-5_6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Stroke is the leading cause of human death and disability. After a stroke, many patients may have some physical disability, including difficulties in moving, speaking, and seeing, but patients may also exhibit changes in mood manifested by depression, anxiety, and cognitive changes which we call post-stroke mood disorders (PSMDs). Astrocytes are the most diverse and numerous glial cell type in the central nervous system (CNS). They provide structural, nutritional, and metabolic support to neurons and regulate synaptic activity under normal conditions. Astrocytes are also critically involved in focal ischemic stroke (FIS). They undergo many changes after FIS. These changes may affect acute neuronal death and brain damage as well as brain recovery and PSMD in the chronic phase after FIS. Studies using postmortem brain specimens and animal models of FIS suggest that astrocytes/reactive astrocytes are involved in PSMD. This chapter provides an overview of recent advances in the molecular base of astrocyte in PSMD. As astrocytes exhibit high plasticity after FIS, we suggest that targeting local astrocytes may be a promising strategy for PSMD therapy.
Collapse
Affiliation(s)
- Tracey Singer
- Dalton Cardiovascular Research Center, Columbia, MO, USA
| | - Sarah Ding
- Dalton Cardiovascular Research Center, Columbia, MO, USA
| | - Shinghua Ding
- Dalton Cardiovascular Research Center, Columbia, MO, USA.
- Department of Biomedical, Biological and Chemical Engineering, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
30
|
Understanding and overcoming resistance to PARP inhibitors in cancer therapy. Nat Rev Clin Oncol 2021; 18:773-791. [PMID: 34285417 DOI: 10.1038/s41571-021-00532-x] [Citation(s) in RCA: 282] [Impact Index Per Article: 70.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2021] [Indexed: 02/07/2023]
Abstract
Developing novel targeted anticancer therapies is a major goal of current research. The use of poly(ADP-ribose) polymerase (PARP) inhibitors in patients with homologous recombination-deficient tumours provides one of the best examples of a targeted therapy that has been successfully translated into the clinic. The success of this approach has so far led to the approval of four different PARP inhibitors for the treatment of several types of cancers and a total of seven different compounds are currently under clinical investigation for various indications. Clinical trials have demonstrated promising response rates among patients receiving PARP inhibitors, although the majority will inevitably develop resistance. Preclinical and clinical data have revealed multiple mechanisms of resistance and current efforts are focused on developing strategies to address this challenge. In this Review, we summarize the diverse processes underlying resistance to PARP inhibitors and discuss the potential strategies that might overcome these mechanisms such as combinations with chemotherapies, targeting the acquired vulnerabilities associated with resistance to PARP inhibitors or suppressing genomic instability.
Collapse
|
31
|
Bajrami I, Walker C, Krastev DB, Weekes D, Song F, Wicks AJ, Alexander J, Haider S, Brough R, Pettitt SJ, Tutt ANJ, Lord CJ. Sirtuin inhibition is synthetic lethal with BRCA1 or BRCA2 deficiency. Commun Biol 2021; 4:1270. [PMID: 34750509 PMCID: PMC8575930 DOI: 10.1038/s42003-021-02770-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/06/2021] [Indexed: 02/06/2023] Open
Abstract
PARP enzymes utilise NAD+ as a co-substrate for their enzymatic activity. Inhibition of PARP1 is synthetic lethal with defects in either BRCA1 or BRCA2. In order to assess whether other genes implicated in NAD+ metabolism were synthetic lethal with BRCA1 or BRCA2 gene defects, we carried out a genetic screen, which identified a synthetic lethality between BRCA1 and genetic inhibition of either of two sirtuin (SIRT) enzymes, SIRT1 or SIRT6. This synthetic lethal interaction was replicated using small-molecule SIRT inhibitors and was associated with replication stress and increased cellular PARylation, in contrast to the decreased PARylation associated with BRCA-gene/PARP inhibitor synthetic lethality. SIRT/BRCA1 synthetic lethality was reversed by genetic ablation of either PARP1 or the histone PARylation factor-coding gene HPF1, implicating PARP1/HPF1-mediated serine ADP-ribosylation as part of the mechanistic basis of this synthetic lethal effect. These observations suggest that PARP1/HPF1-mediated serine ADP-ribosylation, when driven by SIRT inhibition, can inadvertently inhibit the growth of BRCA-gene mutant cells.
Collapse
Affiliation(s)
- Ilirjana Bajrami
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London, SW3 6JB, UK
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
- The Francis Crick Institute, London, NW1 1AT, UK
| | - Callum Walker
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Dragomir B Krastev
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London, SW3 6JB, UK
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Daniel Weekes
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Feifei Song
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London, SW3 6JB, UK
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Andrew J Wicks
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London, SW3 6JB, UK
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| | - John Alexander
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Syed Haider
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Rachel Brough
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London, SW3 6JB, UK
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Stephen J Pettitt
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London, SW3 6JB, UK.
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK.
| | - Andrew N J Tutt
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK.
| | - Christopher J Lord
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London, SW3 6JB, UK.
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK.
| |
Collapse
|
32
|
Haga S, Kanno A, Morita N, Jin S, Matoba K, Ozawa T, Ozaki M. Poly(ADP-ribose) Polymerase (PARP) is Critically Involved in Liver Ischemia/reperfusion-injury. J Surg Res 2021; 270:124-138. [PMID: 34656890 DOI: 10.1016/j.jss.2021.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 08/27/2021] [Accepted: 09/14/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Poly(ADP-ribose) polymerase (PARP) is a DNA-repairing enzyme activated by extreme genomic stress, and therefore is potently activated in the remnant liver suffering from ischemia after surgical resection. However, the impact of PARP on post-ischemic liver injury has not been elucidated yet. MATERIALS AND METHODS We investigated the impact of PARP on murine hepatocyte/liver injury induced by hypoxia/ischemia, respectively. RESULTS PJ34, a specific inhibitor of PARP, markedly protected against hypoxia/reoxygenation (H/R)-induced cell death, though z-VAD-fmk, a pan-caspase inhibitor similarly showed the protective effect. PJ34 did not affect H/R-induced caspase activity or caspase-mediated cell death. z-VAD-fmk also did not affect the production of PAR (i.e., PARP activity). Therefore, PARP- and caspase-mediated cell death occurred in a mechanism independent of each other in H/R. H/R immediately induced activation of PARP and cell death afterwards, both of which were suppressed by PJ34 or Trolox, an antioxidant. This suggests that H/R-induced cell death occurred redox-dependently through PARP activation. H/R and OS induced nuclear translocation of apoptosis inducing factor (AIF, a marker of parthanatos) and RIP1-RIP3 interaction (a marker of necroptosis), both of which were suppressed by PJ34. H/R induced PARP-mediated parthanatos and necroptosis redox-dependently. In mouse experiments, PJ34 significantly reduced serum levels of AST, ALT & LDH and areas of hepatic necrosis after liver ischemia/reperfusion, similar to z-VAD-fmk or Trolox. CONCLUSION PARP, activated by ischemic damage and/or oxidative stress, may play a critical role in post-ischemic liver injury by inducing programmed necrosis (parthanatos and necroptosis). PARP inhibition may be one of the promising strategies against post-ischemic liver injury.
Collapse
Affiliation(s)
- Sanae Haga
- Department of Biological Response and Regulation, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Akira Kanno
- Department of Environmental Applied Chemistry, University of Toyama, Toyama, Toyama, Japan
| | - Naoki Morita
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Hokkaido, Japan
| | - Shigeki Jin
- Department of Forensic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Kotaro Matoba
- Department of Forensic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Takeaki Ozawa
- Department of Chemistry, School of Science, The University of Tokyo, Tokyo, Japan
| | - Michitaka Ozaki
- Department of Biological Response and Regulation, Hokkaido University, Sapporo, Hokkaido, Japan; Laboratory of Molecular and Functional Bio-Imaging, Hokkaido University, Sapporo, Hokkaido, Japan.
| |
Collapse
|
33
|
Neuropeptide α-Melanocyte-Stimulating Hormone Promotes Neurological Recovery and Repairs Cerebral Ischemia/Reperfusion Injury in Type 1 Diabetes. Neurochem Res 2021; 47:394-408. [PMID: 34586586 DOI: 10.1007/s11064-021-03453-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 12/13/2022]
Abstract
Persons with type 1 diabetes have an increased risk of stroke compared with the general population. α-Melanocyte-stimulating hormone (α-MSH) is a neuropeptide that has protective effects against ischemia/reperfusion (I/R) induced organ damages. In this study, we aimed to investigate the neuroprotective role of this peptide on I/R induced brain damage after experimental stroke associated with hyperglycemia using C57BL/6J Ins2Akita/+ mice. Experimental stroke was induced by blocking the right middle cerebral artery for 2 h with reperfusion for 2 and 22 h, respectively using the intraluminal method. Animals were treated intraperitoneally with or without α-MSH at 1 h after ischemia and 1 h after reperfusion. Significantly higher survival rate and lower neurological scores were recorded in animals injected with α-MSH. Similarly, neuron death, glial cells activation as well as oxidative and nitrosative stress were significantly decreased in α-MSH treated group. Relative intensities of matrix metallopeptidases 9, cyclooxygenase 2 and nuclear factor-κB were significantly decreased while intensities of Akt, heme oxygenase (HO) 1, HO-2 and B-cell lymphoma 2 were significantly increased after α-MSH treatment. In addition, gene expressions of monocarboxylate transporter (MCT) 1, MCT-2 and activity-regulated cytoskeleton-associated protein were significantly higher in brain samples treated with α-MSH, suggesting this peptide may have role in neuron survival by an involvement of lactate metabolism. In conclusion, α-MSH is neuroprotective under hyperglycemic condition against I/R induced brain damage by its anti-inflammatory, anti-oxidative and anti-apoptotic properties. The use of α-MSH analogues may be potential therapeutic agents for diabetic stroke.
Collapse
|
34
|
Inampudi C, Ciccotosto GD, Cappai R, Crack PJ. Genetic Modulators of Traumatic Brain Injury in Animal Models and the Impact of Sex-Dependent Effects. J Neurotrauma 2021; 37:706-723. [PMID: 32027210 DOI: 10.1089/neu.2019.6955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Traumatic brain injury (TBI) is a major health problem causing disability and death worldwide. There is no effective treatment, due in part to the complexity of the injury pathology and factors affecting its outcome. The extent of brain injury depends on the type of insult, age, sex, lifestyle, genetic risk factors, socioeconomic status, other co-injuries, and underlying health problems. This review discusses the genes that have been directly tested in TBI models, and whether their effects are known to be sex-dependent. Sex differences can affect the incidence, symptom onset, pathology, and clinical outcomes following injury. Adult males are more susceptible at the acute phase and females show greater injury in the chronic phase. TBI is not restricted to a single sex; despite variations in the degree of symptom onset and severity, it is important to consider both female and male animals in TBI pre-clinical research studies.
Collapse
Affiliation(s)
- Chaitanya Inampudi
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia
| | - Giuseppe D Ciccotosto
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia
| | - Roberto Cappai
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia
| | - Peter J Crack
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
35
|
|
36
|
Li C, Wu LE. Risks and rewards of targeting NAD + homeostasis in the brain. Mech Ageing Dev 2021; 198:111545. [PMID: 34302821 DOI: 10.1016/j.mad.2021.111545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/18/2021] [Accepted: 07/19/2021] [Indexed: 01/29/2023]
Abstract
Strategies to correct declining nicotinamide adenine dinucleotide (NAD+) levels in neurological disease and biological ageing are promising therapeutic candidates. These strategies include supplementing with NAD+ precursors, small molecule activation of NAD+ biosynthetic enzymes, and treatment with small molecule inhibitors of NAD+ consuming enzymes such as CD38, SARM1 or members of the PARP family. While these strategies have shown efficacy in animal models of neurological disease, each of these has the mechanistic potential for adverse events that could preclude their preclinical use. Here, we discuss the implications of these strategies for treating neurological diseases, including potential off-target effects that may be unique to the brain.
Collapse
Affiliation(s)
- Catherine Li
- School of Medical Sciences, UNSW Sydney, NSW, 2052, Australia
| | - Lindsay E Wu
- School of Medical Sciences, UNSW Sydney, NSW, 2052, Australia.
| |
Collapse
|
37
|
Liu S, Luo W, Wang Y. Emerging role of PARP-1 and PARthanatos in ischemic stroke. J Neurochem 2021; 160:74-87. [PMID: 34241907 DOI: 10.1111/jnc.15464] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/10/2021] [Accepted: 07/06/2021] [Indexed: 01/01/2023]
Abstract
Cell death is a key feature of neurological diseases, including stroke and neurodegenerative disorders. Studies in a variety of ischemic/hypoxic mouse models demonstrate that poly(ADP-ribose) polymerase 1 (PARP-1)-dependent cell death, also named PARthanatos, plays a pivotal role in ischemic neuronal cell death and disease progress. PARthanatos has its unique triggers, processors, and executors that convey a highly orchestrated and programmed signaling cascade. In addition to its role in gene transcription, DNA damage repair, and energy homeostasis through PARylation of its various targets, PARP-1 activation in neuron and glia attributes to brain damage following ischemia/reperfusion. Pharmacological inhibition or genetic deletion of PARP-1 reduces infarct volume, eliminates inflammation, and improves recovery of neurological functions in stroke. Here, we reviewed the role of PARP-1 and PARthanatos in stroke and their therapeutic potential.
Collapse
Affiliation(s)
- Shuiqiao Liu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Weibo Luo
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Yingfei Wang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Neurology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
38
|
Jhanji M, Rao CN, Sajish M. Towards resolving the enigma of the dichotomy of resveratrol: cis- and trans-resveratrol have opposite effects on TyrRS-regulated PARP1 activation. GeroScience 2021; 43:1171-1200. [PMID: 33244652 PMCID: PMC7690980 DOI: 10.1007/s11357-020-00295-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/28/2020] [Indexed: 02/07/2023] Open
Abstract
Unlike widely perceived, resveratrol (RSV) decreased the average lifespan and extended only the replicative lifespan in yeast. Similarly, although not widely discussed, RSV is also known to evoke neurite degeneration, kidney toxicity, atherosclerosis, premature senescence, and genotoxicity through yet unknown mechanisms. Nevertheless, in vivo animal models of diseases and human clinical trials demonstrate inconsistent protective and beneficial effects. Therefore, the mechanism of action of RSV that elicits beneficial effects remains an enigma. In a previously published work, we demonstrated structural similarities between RSV and tyrosine amino acid. RSV acts as a tyrosine antagonist and competes with it to bind to human tyrosyl-tRNA synthetase (TyrRS). Interestingly, although both isomers of RSV bind to TyrRS, only the cis-isomer evokes a unique structural change at the active site to promote its interaction with poly-ADP-ribose polymerase 1 (PARP1), a major determinant of cellular NAD+-dependent stress response. However, retention of trans-RSV in the active site of TyrRS mimics its tyrosine-bound conformation that inhibits the auto-poly-ADP-ribos(PAR)ylation of PARP1. Therefore, we proposed that cis-RSV-induced TyrRS-regulated auto-PARylation of PARP1 would contribute, at least in part, to the reported health benefits of RSV through the induction of protective stress response. This observation suggested that trans-RSV would inhibit TyrRS/PARP1-mediated protective stress response and would instead elicit an opposite effect compared to cis-RSV. Interestingly, most recent studies also confirmed the conversion of trans-RSV and its metabolites to cis-RSV in the physiological context. Therefore, the finding that cis-RSV and trans-RSV induce two distinct conformations of TyrRS with opposite effects on the auto-PARylation of PARP1 provides a potential molecular basis for the observed dichotomic effects of RSV under different experimental paradigms. However, the fact that natural RSV exists as a diastereomeric mixture of its cis and trans isomers and cis-RSV is also a physiologically relevant isoform has not yet gained much scientific attention.
Collapse
Affiliation(s)
- Megha Jhanji
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA
| | - Chintada Nageswara Rao
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA
| | - Mathew Sajish
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA.
| |
Collapse
|
39
|
Santagostino SF, Assenmacher CA, Tarrant JC, Adedeji AO, Radaelli E. Mechanisms of Regulated Cell Death: Current Perspectives. Vet Pathol 2021; 58:596-623. [PMID: 34039100 DOI: 10.1177/03009858211005537] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Balancing cell survival and cell death is fundamental to development and homeostasis. Cell death is regulated by multiple interconnected signaling pathways and molecular mechanisms. Regulated cell death (RCD) is implicated in fundamental processes such as organogenesis and tissue remodeling, removal of unnecessary structures or cells, and regulation of cell numbers. RCD can also be triggered by exogenous perturbations of the intracellular or extracellular microenvironment when the adaptive processes that respond to stress fail. During the past few years, many novel forms of non-apoptotic RCD have been identified, and the characterization of RCD mechanisms at a molecular level has deepened our understanding of diseases encountered in human and veterinary medicine. Given the complexity of these processes, it has become clear that the identification of RCD cannot be based simply on morphologic characteristics and that descriptive and diagnostic terms presently used by pathologists-such as individual cell apoptosis or necrosis-appear inadequate and possibly misleading. In this review, the current understanding of the molecular machinery of each type of non-apoptotic RCD mechanisms is outlined. Due to the continuous discovery of new mechanisms or nuances of previously described processes, the limitations of the terms apoptosis and necrosis to indicate microscopic findings are also reported. In addition, the need for a standard panel of biomarkers and functional tests to adequately characterize the underlying RCD and its role as a mechanism of disease is considered.
Collapse
Affiliation(s)
| | - Charles-Antoine Assenmacher
- Department of Pathobiology, School of Veterinary Medicine, 6572University of Pennsylvania, Philadelphia, PA, USA
| | - James C Tarrant
- Department of Pathobiology, School of Veterinary Medicine, 6572University of Pennsylvania, Philadelphia, PA, USA
| | | | - Enrico Radaelli
- Department of Pathobiology, School of Veterinary Medicine, 6572University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
40
|
Tuo QZ, Zhang ST, Lei P. Mechanisms of neuronal cell death in ischemic stroke and their therapeutic implications. Med Res Rev 2021; 42:259-305. [PMID: 33957000 DOI: 10.1002/med.21817] [Citation(s) in RCA: 355] [Impact Index Per Article: 88.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 03/31/2021] [Accepted: 04/23/2021] [Indexed: 02/05/2023]
Abstract
Ischemic stroke caused by arterial occlusion is the most common type of stroke, which is among the most frequent causes of disability and death worldwide. Current treatment approaches involve achieving rapid reperfusion either pharmacologically or surgically, both of which are time-sensitive; moreover, blood flow recanalization often causes ischemia/reperfusion injury. However, even though neuroprotective intervention is urgently needed in the event of stroke, the exact mechanisms of neuronal death during ischemic stroke are still unclear, and consequently, the capacity for drug development has remained limited. Multiple cell death pathways are implicated in the pathogenesis of ischemic stroke. Here, we have reviewed these potential neuronal death pathways, including intrinsic and extrinsic apoptosis, necroptosis, autophagy, ferroptosis, parthanatos, phagoptosis, and pyroptosis. We have also reviewed the latest results of pharmacological studies on ischemic stroke and summarized emerging drug targets with a focus on clinical trials. These observations may help to further understand the pathological events in ischemic stroke and bridge the gap between basic and translational research to reveal novel neuroprotective interventions.
Collapse
Affiliation(s)
- Qing-Zhang Tuo
- Department of Geriatrics and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Shu-Ting Zhang
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Peng Lei
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
41
|
Koehler RC, Dawson VL, Dawson TM. Targeting Parthanatos in Ischemic Stroke. Front Neurol 2021; 12:662034. [PMID: 34025565 PMCID: PMC8131834 DOI: 10.3389/fneur.2021.662034] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/01/2021] [Indexed: 12/14/2022] Open
Abstract
Parthanatos is a cell death signaling pathway in which excessive oxidative damage to DNA leads to over-activation of poly(ADP-ribose) polymerase (PARP). PARP then generates the formation of large poly(ADP-ribose) polymers that induce the release of apoptosis-inducing factor from the outer mitochondrial membrane. In the cytosol, apoptosis-inducing factor forms a complex with macrophage migration inhibitory factor that translocates into the nucleus where it degrades DNA and produces cell death. In a review of the literature, we identified 24 publications from 13 laboratories that support a role for parthanatos in young male mice and rats subjected to transient and permanent middle cerebral artery occlusion (MCAO). Investigators base their conclusions on the use of nine different PARP inhibitors (19 studies) or PARP1-null mice (7 studies). Several studies indicate a therapeutic window of 4-6 h after MCAO. In young female rats, two studies using two different PARP inhibitors from two labs support a role for parthanatos, whereas two studies from one lab do not support a role in young female PARP1-null mice. In addition to parthanatos, a body of literature indicates that PARP inhibitors can reduce neuroinflammation by interfering with NF-κB transcription, suppressing matrix metaloproteinase-9 release, and limiting blood-brain barrier damage and hemorrhagic transformation. Overall, most of the literature strongly supports the scientific premise that a PARP inhibitor is neuroprotective, even when most did not report behavior outcomes or address the issue of randomization and treatment concealment. Several third-generation PARP inhibitors entered clinical oncology trials without major adverse effects and could be repurposed for stroke. Evaluation in aged animals or animals with comorbidities will be important before moving into clinical stroke trials.
Collapse
Affiliation(s)
- Raymond C Koehler
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University, Baltimore, MD, United States
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, The Institute of Cell Engineering, The Johns Hopkins University, Baltimore, MD, United States.,Department of Neurology, The Johns Hopkins University, Baltimore, MD, United States.,Department of Neuroscience, The Johns Hopkins University, Baltimore, MD, United States.,Department of Physiology, The Johns Hopkins University, Baltimore, MD, United States
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, The Institute of Cell Engineering, The Johns Hopkins University, Baltimore, MD, United States.,Department of Neurology, The Johns Hopkins University, Baltimore, MD, United States.,Department of Neuroscience, The Johns Hopkins University, Baltimore, MD, United States.,Department of Pharmacology and Molecular Sciences, The Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
42
|
Komulainen E, Badman J, Rey S, Rulten S, Ju L, Fennell K, Kalasova I, Ilievova K, McKinnon PJ, Hanzlikova H, Staras K, Caldecott KW. Parp1 hyperactivity couples DNA breaks to aberrant neuronal calcium signalling and lethal seizures. EMBO Rep 2021; 22:e51851. [PMID: 33932076 PMCID: PMC8097344 DOI: 10.15252/embr.202051851] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 12/21/2022] Open
Abstract
Defects in DNA single-strand break repair (SSBR) are linked with neurological dysfunction but the underlying mechanisms remain poorly understood. Here, we show that hyperactivity of the DNA strand break sensor protein Parp1 in mice in which the central SSBR protein Xrcc1 is conditionally deleted (Xrcc1Nes-Cre ) results in lethal seizures and shortened lifespan. Using electrophysiological recording and synaptic imaging approaches, we demonstrate that aberrant Parp1 activation triggers seizure-like activity in Xrcc1-defective hippocampus ex vivo and deregulated presynaptic calcium signalling in isolated hippocampal neurons in vitro. Moreover, we show that these defects are prevented by Parp1 inhibition or deletion and, in the case of Parp1 deletion, that the lifespan of Xrcc1Nes-Cre mice is greatly extended. This is the first demonstration that lethal seizures can be triggered by aberrant Parp1 activity at unrepaired SSBs, highlighting PARP inhibition as a possible therapeutic approach in hereditary neurological disease.
Collapse
Affiliation(s)
- Emilia Komulainen
- Genome Damage and Stability CentreSchool of Life SciencesUniversity of SussexBrightonUK
| | - Jack Badman
- Genome Damage and Stability CentreSchool of Life SciencesUniversity of SussexBrightonUK
- Sussex NeuroscienceSchool of Life SciencesUniversity of SussexBrightonUK
| | - Stephanie Rey
- Sussex NeuroscienceSchool of Life SciencesUniversity of SussexBrightonUK
| | - Stuart Rulten
- Genome Damage and Stability CentreSchool of Life SciencesUniversity of SussexBrightonUK
| | - Limei Ju
- Genome Damage and Stability CentreSchool of Life SciencesUniversity of SussexBrightonUK
| | - Kate Fennell
- Sussex NeuroscienceSchool of Life SciencesUniversity of SussexBrightonUK
| | - Ilona Kalasova
- Department of Genome DynamicsInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Kristyna Ilievova
- Department of Genome DynamicsInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Peter J McKinnon
- Department of GeneticsSt Jude Children’s Research HospitalMemphisTNUSA
| | - Hana Hanzlikova
- Genome Damage and Stability CentreSchool of Life SciencesUniversity of SussexBrightonUK
- Department of Genome DynamicsInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Kevin Staras
- Sussex NeuroscienceSchool of Life SciencesUniversity of SussexBrightonUK
| | - Keith W Caldecott
- Genome Damage and Stability CentreSchool of Life SciencesUniversity of SussexBrightonUK
- Department of Genome DynamicsInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| |
Collapse
|
43
|
Avoid the trap: Targeting PARP1 beyond human malignancy. Cell Chem Biol 2021; 28:456-462. [PMID: 33657415 DOI: 10.1016/j.chembiol.2021.02.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/22/2020] [Accepted: 02/03/2021] [Indexed: 01/24/2023]
Abstract
PARP1 is a poly(ADP-ribose) polymerase (PARP) enzyme that plays a critical role in regulating DNA damage response. The main enzymatic function of PARP1 is to catalyze a protein post-translational modification known as poly(ADP-ribosyl)ation (PARylation). Human cancers with homologous recombination deficiency are highly sensitive to PARP1 inhibitors. PARP1 is aberrantly activated in many non-oncological diseases, leading to the excessive NAD+ depletion and PAR formation, thus causing cell death and tissue damage. PARP1 deletion offers a profound protective effect in the relevant animal models. However, many of the current PARP1 inhibitors also induce PARP1 trapping, which drives subsequent DNA damage, innate immune response and cytotoxicity. This minireview provides an overview of the basic biology of PARP1 trapping, and its implications in disease. Furthermore, we also discuss the recent development of PARP1 PROTAC compounds, and their utility as "non-trapping" PARP1 degraders for the potential amelioration of non-oncological diseases driven by aberrant PARP1 activation.
Collapse
|
44
|
Nitric oxide and the brain. Part 2: Effects following neonatal brain injury-friend or foe? Pediatr Res 2021; 89:746-752. [PMID: 32563184 DOI: 10.1038/s41390-020-1021-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/30/2020] [Accepted: 06/02/2020] [Indexed: 12/30/2022]
Abstract
Nitric oxide (NO) has critical roles in a wide variety of key biologic functions and has intricate transport mechanisms for delivery to key distal tissues under normal conditions. However, NO also plays important roles during disease processes, such as hypoxia-ischemia, asphyxia, neuro-inflammation, and retinopathy of prematurity. The effects of exogenous NO on the developing neonatal brain remain controversial. Inhaled NO (iNO) can be neuroprotective or toxic depending on a variety of factors, including cellular redox state, underlying disease processes, duration of treatment, and dose. This review identifies key gaps in knowledge that should prompt further investigation into the possible role of iNO as a therapeutic agent after injury to the brain. IMPACT: NO is a key signal mediator in the neonatal brain with neuroprotective and neurotoxic properties. iNO, a commonly used medication, has significant effects on the neonatal brain. Dosing, duration, and timing of administration of iNO can affect the developing brain. This review article summarizes the roles of NO in association with various disease processes that impact neonates, such as brain hypoxia-ischemia, asphyxia, retinopathy of prematurity, and neuroinflammation. The impact of this review is that it clearly describes gaps in knowledge, and makes the case for further, targeted studies in each of the identified areas.
Collapse
|
45
|
Gao F, Li Z, Kang Z, Liu D, Li P, Ou Q, Xu JY, Li W, Tian H, Jin C, Wang J, Zhang J, Zhang J, Lu L, Xu GT. Inhibition of PARP activity improves therapeutic effect of ARPE-19 transplantation in RCS rats through decreasing photoreceptor death. Exp Eye Res 2021; 204:108448. [PMID: 33484702 DOI: 10.1016/j.exer.2021.108448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 01/06/2021] [Accepted: 01/11/2021] [Indexed: 01/19/2023]
Abstract
Photoreceptor (PR) dysfunction or death is the key pathological change in retinal degeneration (RD). The death of PRs might be due to a primary change in PRs themselves or secondary to the dysfunction of the retinal pigment epithelium (RPE). Poly(ADP-ribose) polymerase (PARP) was reported to be involved in primary PR death, but whether it plays a role in PR death secondary to RPE dysfunction has not been determined. To clarify this question and develop a new therapeutic approach, we studied the changes in PAR/PARP in the RCS rat, a RD model, and tested the effect of PARP intervention when given alone or in combination with RPE cell transplantation. The results showed that poly(ADP-ribosyl)ation of proteins was increased in PRs undergoing secondary death in RCS rats, and this result was confirmed by the observation of similar changes in sodium iodate (SI)-induced secondary RD in SD rats. The increase in PAR/PARP was highly associated with increased apoptotic PRs and decreased visual function, as represented by lowered b-wave amplitudes on electroretinogram (ERG). Then, as we expected, when the RCS rats were treated with subretinal injection of the PARP inhibitor PJ34, the RD process was delayed. Furthermore, when PJ34 was given simultaneously with subretinal ARPE-19 cell transplantation, the therapeutic effects were significantly improved and lasted longer than those of ARPE-19 or PJ34 treatment alone. These results provide a potential new approach for treating RD.
Collapse
Affiliation(s)
- Furong Gao
- Department of Ophthalmology of Shanghai Tenth's People Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China; Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Zongyi Li
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | - Ziwei Kang
- Department of Ophthalmology of Shanghai Tenth's People Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China
| | - Dandan Liu
- Department of Ophthalmology of Shanghai Tenth's People Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China
| | - Peng Li
- Department of Ophthalmology of Shanghai Tenth's People Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China; Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Qingjian Ou
- Department of Ophthalmology of Shanghai Tenth's People Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China; Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Jing-Ying Xu
- Department of Ophthalmology of Shanghai Tenth's People Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China; Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Weiye Li
- Department of Ophthalmology of Shanghai Tenth's People Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China; Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China; Department of Ophthalmology, Drexel University College of Medicine, Philadelphia, USA
| | - Haibin Tian
- Department of Ophthalmology of Shanghai Tenth's People Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China; Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Caixia Jin
- Department of Ophthalmology of Shanghai Tenth's People Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China; Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Juan Wang
- Department of Ophthalmology of Shanghai Tenth's People Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China; Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Jieping Zhang
- Department of Ophthalmology of Shanghai Tenth's People Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China; Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Jingfa Zhang
- Department of Ophthalmology of Shanghai Tenth's People Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China; Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, Shanghai, China.
| | - Lixia Lu
- Department of Ophthalmology of Shanghai Tenth's People Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China; Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China; Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China; The Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, China.
| | - Guo-Tong Xu
- Department of Ophthalmology of Shanghai Tenth's People Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China; Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China; Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China; The Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, China.
| |
Collapse
|
46
|
Carinci M, Vezzani B, Patergnani S, Ludewig P, Lessmann K, Magnus T, Casetta I, Pugliatti M, Pinton P, Giorgi C. Different Roles of Mitochondria in Cell Death and Inflammation: Focusing on Mitochondrial Quality Control in Ischemic Stroke and Reperfusion. Biomedicines 2021; 9:biomedicines9020169. [PMID: 33572080 PMCID: PMC7914955 DOI: 10.3390/biomedicines9020169] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial dysfunctions are among the main hallmarks of several brain diseases, including ischemic stroke. An insufficient supply of oxygen and glucose in brain cells, primarily neurons, triggers a cascade of events in which mitochondria are the leading characters. Mitochondrial calcium overload, reactive oxygen species (ROS) overproduction, mitochondrial permeability transition pore (mPTP) opening, and damage-associated molecular pattern (DAMP) release place mitochondria in the center of an intricate series of chance interactions. Depending on the degree to which mitochondria are affected, they promote different pathways, ranging from inflammatory response pathways to cell death pathways. In this review, we will explore the principal mitochondrial molecular mechanisms compromised during ischemic and reperfusion injury, and we will delineate potential neuroprotective strategies targeting mitochondrial dysfunction and mitochondrial homeostasis.
Collapse
Affiliation(s)
- Marianna Carinci
- Laboratory for Technologies of Advanced Therapies, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (M.C.); (B.V.); (S.P.); (P.P.)
| | - Bianca Vezzani
- Laboratory for Technologies of Advanced Therapies, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (M.C.); (B.V.); (S.P.); (P.P.)
| | - Simone Patergnani
- Laboratory for Technologies of Advanced Therapies, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (M.C.); (B.V.); (S.P.); (P.P.)
| | - Peter Ludewig
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany; (P.L.); (K.L.); (T.M.)
| | - Katrin Lessmann
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany; (P.L.); (K.L.); (T.M.)
| | - Tim Magnus
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany; (P.L.); (K.L.); (T.M.)
| | - Ilaria Casetta
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy; (I.C.); (M.P.)
| | - Maura Pugliatti
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy; (I.C.); (M.P.)
| | - Paolo Pinton
- Laboratory for Technologies of Advanced Therapies, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (M.C.); (B.V.); (S.P.); (P.P.)
| | - Carlotta Giorgi
- Laboratory for Technologies of Advanced Therapies, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (M.C.); (B.V.); (S.P.); (P.P.)
- Correspondence:
| |
Collapse
|
47
|
Li D, Kou Y, Gao Y, Liu S, Yang P, Hasegawa T, Su R, Guo J, Li M. Oxaliplatin induces the PARP1-mediated parthanatos in oral squamous cell carcinoma by increasing production of ROS. Aging (Albany NY) 2021; 13:4242-4257. [PMID: 33495407 PMCID: PMC7906208 DOI: 10.18632/aging.202386] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/22/2020] [Indexed: 11/25/2022]
Abstract
Oral squamous cell carcinoma (OSCC) is one of the most common malignant tumors worldwide, and its prognosis is still not optimistic. Oxaliplatin is a type of platinum chemotherapeutic agent, but its treatment effects on OSCC and molecular mechanisms have not been fully elucidated. Parthanatos, a unique form of cell death, plays an important role in a variety of physiological and pathological processes. This study aims to investigate whether oxaliplatin inhibits OSCC by inducing parthanatos. Our results showed that oxaliplatin inhibited the proliferation and migration of OSCC cells in vitro, and also inhibited the tumorigenesis in vivo. Further experiments proved that oxaliplatin induced parthanatos in OSCC cells, characterized by depolarization of the mitochondrial membrane potential, up-regulation of PARP1, AIF and MIF in the nucleus, as well as the nuclear translocation of AIF. Meanwhile, PARP1 inhibitor rucaparib and siRNA against PARP1 attenuated oxaliplatin-induced parthanatos in OSCC cells. In addition, we found that oxaliplatin caused oxidative stress in OSCC cells, and antioxidant NAC not only relieved oxaliplatin-induced overproduction of reactive oxygen species (ROS) but also reversed parthanatos caused by oxaliplatin. In conclusion, our results indicate that oxaliplatin inhibits OSCC by activating PARP1-mediated parthanatos through increasing the production of ROS.
Collapse
Affiliation(s)
- Dongfang Li
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, China
| | - Yuying Kou
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, China
| | - Yuan Gao
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, China
| | - Shanshan Liu
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, China
| | - Panpan Yang
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, China
| | - Tomoka Hasegawa
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Hokkaido University, Sapporo 060-8586, Japan
| | - Rongjian Su
- Life Science Institute of Jinzhou Medical University, College of Basic Medicine of Jinzhou Medical University, Cell Biology and Genetic Department of Jinzhou Medical University, Key Lab of Molecular and Cellular Biology of the Education Department of Liaoning Province, Jinzhou 121001, China
| | - Jie Guo
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, China
| | - Minqi Li
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, China
| |
Collapse
|
48
|
Ma S, Zhao X, Zhang C, Sun P, Li Y, Lin X, Sun T, Fu Z. Ozone Exposure Induces Metabolic Disorders and NAD+ Depletion Through PARP1 Activation in Spinal Cord Neurons. Front Med (Lausanne) 2021; 7:617321. [PMID: 33425964 PMCID: PMC7789457 DOI: 10.3389/fmed.2020.617321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 11/23/2020] [Indexed: 12/03/2022] Open
Abstract
Background and Objective: Ozone therapy has shown therapeutic efficacy in different disorders particularly low back pain (LBP). However, ozone therapy has been associated with toxic effects on the respiratory, endocrine, cardiovascular systems as well as nervous system because of its strong oxidizing capacity. Recent studies have reported possible associations between ozone exposure and metabolic disorders, but the findings are controversial and little is known on the mechanisms of action. This study aims to investigate the cytotoxic effects of ozone exposure and possible mechanism of action in the animal model. Methods: Wistar neonate rats with the age of 24 h after birth were sacrificed by cervical dislocation under general anesthesia, then immersed in 75% alcohol and iodophor for 5 min, respectively. The spinal cord was isolated and cut to samples of ~1 mm3 and prepared for further experiments. The spinal cord neurons (SCNs) were exposed to ozone at different concentrations and then cultured in 96-well plates with glass bottom for 7 days. The cell viability, ATP levels and the NAD+ concentration were determined and compared between the different experimental groups and the control group. Results: Analyses of the data by non-targeted liquid chromatography-mass spectrometry (LC-MS) analysis determined the metabolic disorder in SCNs following the ozone exposure. Moreover, our assessments showed that ozone exposure resulted in DNA damage, poly (ADP)-ribose polymerase-1 (PARP1) excessive activation, nicotinamide adenine dinucleotide (NAD+) depletion and decrease of ATP level in SCNs. The PARP1 inhibitor can inhibit the cytotoxic effect of ozone to SCNs without inhibiting the activation of AMP-activated protein kinase (AMPK). Our findings revealed that the cytotoxic effects of ozone to SCNs might be mediated by excessive PARP1 activation and subsequent NAD+ depletion. Moreover, using PARP1 inhibitor can protect SCNs from cytotoxic effects of ozone by preventing NAD+ depletion during ozone exposure. Conclusion: Ozone exposure seems to induce metabolic disorders and NAD+ depletion through excessive PARP1 activation in SCNs.
Collapse
Affiliation(s)
- Shulin Ma
- Department of Pain Management, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xu Zhao
- Department of Pain Management, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Cong Zhang
- Department of Pain Management, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Panpan Sun
- Department of Pain Management, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yun Li
- Department of Pain Management, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaowen Lin
- Department of Pain Management, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tao Sun
- Department of Pain Management, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhijian Fu
- Department of Pain Management, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Pain Management, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
49
|
OKAMOTO H, TAKASAWA S. Okamoto model for necrosis and its expansions, CD38-cyclic ADP-ribose signal system for intracellular Ca 2+ mobilization and Reg (Regenerating gene protein)-Reg receptor system for cell regeneration. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2021; 97:423-461. [PMID: 34629354 PMCID: PMC8553518 DOI: 10.2183/pjab.97.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/22/2021] [Indexed: 05/03/2023]
Abstract
In pancreatic islet cell culture models and animal models, we studied the molecular mechanisms involved in the development of insulin-dependent diabetes. The diabetogenic agents, alloxan and streptozotocin, caused DNA strand breaks, which in turn activated poly(ADP-ribose) polymerase/synthetase (PARP) to deplete NAD+, thereby inhibiting islet β-cell functions such as proinsulin synthesis and ultimately leading to β-cell necrosis. Radical scavengers protected against the formation of DNA strand breaks and inhibition of proinsulin synthesis. Inhibitors of PARP prevented the NAD+ depletion, inhibition of proinsulin synthesis and β-cell death. These findings led to the proposed unifying concept for β-cell damage and its prevention (the Okamoto model). The model met one proof with PARP knockout animals and was further extended by the discovery of cyclic ADP-ribose as the second messenger for Ca2+ mobilization in glucose-induced insulin secretion and by the identification of Reg (Regenerating gene) for β-cell regeneration. Physiological and pathological events found in pancreatic β-cells have been observed in other cells and tissues.
Collapse
Affiliation(s)
- Hiroshi OKAMOTO
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, Japan
| | - Shin TAKASAWA
- Department of Biochemistry, Nara Medical University, Kashihara, Nara, Japan
| |
Collapse
|
50
|
Thapa K, Khan H, Sharma U, Grewal AK, Singh TG. Poly (ADP-ribose) polymerase-1 as a promising drug target for neurodegenerative diseases. Life Sci 2020; 267:118975. [PMID: 33387580 DOI: 10.1016/j.lfs.2020.118975] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/07/2020] [Accepted: 12/19/2020] [Indexed: 02/07/2023]
Abstract
AIMS Poly (ADP-ribose) polymerase- (PARP)-1 is predominantly triggered by DNA damage. Overexpression of PARP-1 is known for its association with the pathogenesis of several CNS disorders, such as Stroke, Parkinson's disease (PD), Alzheimer's disease (AD), Huntington (HD) and Amyotrophic lateral sclerosis (ALS). NAD+ depletion resulted PARP related cell death only happened when the trial used extreme high oxidization treatment. Inhibition of PARP1/2 may induce replication related cell death due to un-repaired DNA damage. This review has discussed PARP-1 modulated downstream pathways in neurodegeneration and various FDA approved PARP-1 inhibitors. MATERIALS AND METHODS A systematic literature review of PubMed, Medline, Bentham, Scopus and EMBASE (Elsevier) databases was carried out to understand the nature of the extensive work done on mechanistic role of Poly (ADP-ribose) polymerase and its inhibition in Neurodegenerative diseases. KEY FINDINGS Several researchers have put forward number of potential treatments, of which PARP-1 enzyme has been regarded as a potent target intended for the handling of neurodegenerative ailments. Targeting PARP using its chemical inhibitors in various neurodegenerative may have therapeutic outcomes by reducing neuronal death mediated by PARPi. Numerous PARP-1 inhibitors have been studied in neurodegenerative diseases but they haven't been clinically evaluated. SIGNIFICANCE In this review, the pathological role of PARP-1 in various neurodegenerative diseases has been discussed along with the therapeutic role of PARP-1 inhibitors in various neurodegenerative diseases.
Collapse
Affiliation(s)
- Komal Thapa
- Chitkara College of Pharmacy, Chitkara University, Punjab, India; Chitkara School of Pharmacy, Chitkara University, Himachal Pradesh, India
| | - Heena Khan
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Uma Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | | | |
Collapse
|