1
|
Rabaan AA, Garout M, Aljeldah M, Al Shammari BR, Alawfi A, Alshengeti A, Najim MA, Alrouji M, Almuhanna Y, Alissa M, Mashraqi MM, Alwashmi ASS, Alhajri M, Alateah SM, Farahat RA, Mohapatra RK. Anti-tubercular activity evaluation of natural compounds by targeting Mycobacterium tuberculosis resuscitation promoting factor B inhibition: An in silico study. Mol Divers 2024; 28:1057-1072. [PMID: 36964456 DOI: 10.1007/s11030-023-10632-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 03/14/2023] [Indexed: 03/26/2023]
Abstract
Tuberculosis (TB), an infectious disease caused by the Mycobacterium tuberculosis (Mtb), has been responsible for the deaths of millions of individuals around the globe. A vital protein in viral pathogenesis known as resuscitation promoting factor (RpfB) has been identified as a potential therapeutic target of anti-tuberculosis drugs. This study offered an in silico process to examine possible RpfB inhibitors employing a computational drug design pipeline. In this study, a total of 1228 phytomolecules were virtually tested against the RpfB of Mtb. These phytomolecules were sourced from the NP-lib database of the MTi-OpenScreen server, and five top hits (ZINC000044404209, ZINC000059779788, ZINC000001562130, ZINC000014766825, and ZINC000043552589) were prioritized for compute intensive docking with dock score ≤ - 8.5 kcal/mole. Later, molecular dynamics (MD) simulation and principal component analysis (PCA) were used to validate these top five hits. In the list of these top five hits, the ligands ZINC000044404209, ZINC000059779788, and ZINC000043552589 showed hydrogen bond formation with the functional residue Glu292 of the RpfB protein suggesting biological significance of the binding. The RMSD study showed stable protein-ligand complexes and higher conformational consistency for the ligands ZINC000014766825, and ZINC000043552589 with RMSD 3-4 Å during 100 ns MD simulation. The overall analysis performed in the study suggested promising binding of these compounds with the RpfB protein of the Mtb at its functional site, further experimental investigation is needed to validate the computational finding.
Collapse
Affiliation(s)
- Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran, 31311, Saudi Arabia.
- College of Medicine, Alfaisal University, Riyadh, 11533, Saudi Arabia.
- Department of Public Health and Nutrition, The University of Haripur, Haripur, 22610, Pakistan.
| | - Mohammed Garout
- Department of Community Medicine and Health Care for Pilgrims, Faculty of Medicine, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Mohammed Aljeldah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hafr Al Batin, Hafr Al Batin, 39831, Saudi Arabia
| | - Basim R Al Shammari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hafr Al Batin, Hafr Al Batin, 39831, Saudi Arabia
| | - Abdulsalam Alawfi
- Department of Pediatrics, College of Medicine, Taibah University, Al-Madinah41491, Saudi Arabia
| | - Amer Alshengeti
- Department of Pediatrics, College of Medicine, Taibah University, Al-Madinah41491, Saudi Arabia
- Department of Infection prevention and control, Prince Mohammad Bin Abdulaziz Hospital, National Guard Health Affairs, Al-Madinah, 41491, Saudi Arabia
| | - Mustafa A Najim
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Taibah University, Madinah, 41411, Saudi Arabia
| | - Mohammed Alrouji
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, Shaqra, 11961, Saudi Arabia
| | - Yasir Almuhanna
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, Shaqra, 11961, Saudi Arabia
| | - Mohammed Alissa
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Mutaib M Mashraqi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, 61441, Saudi Arabia
| | - Ameen S S Alwashmi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Mashael Alhajri
- Department of Internal Medicine, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, 34212, Saudi Arabia
| | - Souad Mohammed Alateah
- Microbiology laboratory, Central military Laboratory and Blood Bank, Prince Sultan Military Medical City, Riyadh, 11159, Saudi Arabia
| | | | - Ranjan K Mohapatra
- Department of Chemistry, Government College of Engineering, Keonjhar, 758002, India.
| |
Collapse
|
2
|
Kazemi S, Mirzaei R, Karampoor S, Hosseini-Fard SR, Ahmadyousefi Y, Soltanian AR, Keramat F, Saidijam M, Alikhani MY. Circular RNAs in tuberculosis: From mechanism of action to potential diagnostic biomarker. Microb Pathog 2023; 185:106459. [PMID: 37995882 DOI: 10.1016/j.micpath.2023.106459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/01/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (M. tuberculosis), continues to be a major global health concern. Understanding the molecular intricacies of TB pathogenesis is crucial for developing effective diagnostic and therapeutic approaches. Circular RNAs (circRNAs), a class of single-stranded RNA molecules characterized by covalently closed loops, have recently emerged as potential diagnostic biomarkers in various diseases. CircRNAs have been demonstrated to modulate the host's immunological responses against TB, specifically by reducing monocyte apoptosis, augmenting autophagy, and facilitating macrophage polarization. This review comprehensively explores the roles and mechanisms of circRNAs in TB pathogenesis. We also discuss the growing body of evidence supporting their utility as promising diagnostic biomarkers for TB. By bridging the gap between fundamental circRNA biology and TB diagnostics, this review offers insights into the exciting potential of circRNAs in combatting this infectious disease.
Collapse
Affiliation(s)
- Sima Kazemi
- Infectious Disease Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Reza Hosseini-Fard
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Yaghoub Ahmadyousefi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran; Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ali Reza Soltanian
- Department of Biostatistics and Epidemiology, School of Public Health, Hamadan University of Medical Sciences, Iran
| | - Fariba Keramat
- Infectious Disease Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Massoud Saidijam
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Yousef Alikhani
- Infectious Disease Research Center, Hamadan University of Medical Sciences, Hamadan, Iran; Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
3
|
Banerjee U, Chedere A, Padaki R, Mohan A, Sambaturu N, Singh A, Chandra N. PathTracer Comprehensively Identifies Hypoxia-Induced Dormancy Adaptations in Mycobacterium tuberculosis. J Chem Inf Model 2023; 63:6156-6167. [PMID: 37756209 DOI: 10.1021/acs.jcim.3c00845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Mining large-scale data to discover biologically relevant information remains a challenge despite the rapid development of bioinformatics tools. Here, we have developed a new tool, PathTracer, to identify biologically relevant information flows by mining genome-wide protein-protein interaction networks following integration of gene expression data. PathTracer successfully mines interactions between genes and traces the most perturbed paths of perceived activities under the conditions of the study. We further demonstrated the utility of this tool by identifying adaptation mechanisms of hypoxia-induced dormancy in Mycobacterium tuberculosis (Mtb).
Collapse
Affiliation(s)
- Ushashi Banerjee
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Adithya Chedere
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Raksha Padaki
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Abhilash Mohan
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Narmada Sambaturu
- IISc Mathematics Initiative, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Amit Singh
- Center for Infectious Disease Research, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Nagasuma Chandra
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, Karnataka, India
- IISc Mathematics Initiative, Indian Institute of Science, Bangalore 560012, Karnataka, India
- BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, Karnataka, India
| |
Collapse
|
4
|
Yadav R, Meena D, Singh K, Tyagi R, Yadav Y, Sagar R. Recent advances in the synthesis of new benzothiazole based anti-tubercular compounds. RSC Adv 2023; 13:21890-21925. [PMID: 37483662 PMCID: PMC10359851 DOI: 10.1039/d3ra03862a] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/07/2023] [Indexed: 07/25/2023] Open
Abstract
This review highlights the recent synthetic developments of benzothiazole based anti-tubercular compounds and their in vitro and in vivo activity. The inhibitory concentrations of the newly synthesized molecules were compared with the standard reference drugs. The better inhibition potency was found in new benzothiazole derivatives against M. tuberculosis. Synthesis of benzothiazole derivatives was achieved through various synthetic pathways including diazo-coupling, Knoevenagel condensation, Biginelli reaction, molecular hybridization techniques, microwave irradiation, one-pot multicomponent reactions etc. Other than recent synthetic developments, mechanism of resistance of anti-TB drugs is also incorporated in this review. Structure activity relationships of the new benzothiazole derivatives along with the molecular docking studies of selected compounds have been discussed against the target DprE1 in search of a potent inhibitor with enhanced anti-tubercular activity.
Collapse
Affiliation(s)
- Rakhi Yadav
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University New Delhi-110067 India
| | - Dilkhush Meena
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University New Delhi-110067 India
| | - Kavita Singh
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University New Delhi-110067 India
| | - Rajdeep Tyagi
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University New Delhi-110067 India
| | - Yogesh Yadav
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University New Delhi-110067 India
| | - Ram Sagar
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University New Delhi-110067 India
| |
Collapse
|
5
|
Kowalewicz-Kulbat M, Locht C. Recombinant BCG to Enhance Its Immunomodulatory Activities. Vaccines (Basel) 2022; 10:827. [PMID: 35632582 PMCID: PMC9143156 DOI: 10.3390/vaccines10050827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/10/2022] [Accepted: 05/16/2022] [Indexed: 11/17/2022] Open
Abstract
The bacillus Calmette-Guérin (BCG) is an attenuated Mycobacterium bovis derivative that has been widely used as a live vaccine against tuberculosis for a century. In addition to its use as a tuberculosis vaccine, BCG has also been found to have utility in the prevention or treatment of unrelated diseases, including cancer. However, the protective and therapeutic efficacy of BCG against tuberculosis and other diseases is not perfect. For three decades, it has been possible to genetically modify BCG in an attempt to improve its efficacy. Various immune-modulatory molecules have been produced in recombinant BCG strains and tested for protection against tuberculosis or treatment of several cancers or inflammatory diseases. These molecules include cytokines, bacterial toxins or toxin fragments, as well as other protein and non-protein immune-modulatory molecules. The deletion of genes responsible for the immune-suppressive properties of BCG has also been explored for their effect on BCG-induced innate and adaptive immune responses. Most studies limited their investigations to the description of T cell immune responses that were modified by the genetic modifications of BCG. Some studies also reported improved protection by recombinant BCG against tuberculosis or enhanced therapeutic efficacy against various cancer forms or allergies. However, so far, these investigations have been limited to mouse models, and the prophylactic or therapeutic potential of recombinant BCG strains has not yet been illustrated in other species, including humans, with the exception of a genetically modified BCG strain that is now in late-stage clinical development as a vaccine against tuberculosis. In this review, we provide an overview of the different molecular engineering strategies adopted over the last three decades in order to enhance the immune-modulatory potential of BCG.
Collapse
Affiliation(s)
- Magdalena Kowalewicz-Kulbat
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland;
| | - Camille Locht
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland;
- CHU Lille, Institut Pasteur de Lille, U1019–UMR9017–CIIL–Center for Infection and Immunity of Lille, University Lille, CNRS, Inserm, F-59000 Lille, France
| |
Collapse
|
6
|
Luzuriaga MA, Shahrivarkevishahi A, Herbert FC, Wijesundara YH, Gassensmith JJ. Biomaterials and nanomaterials for sustained release vaccine delivery. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1735. [PMID: 34180608 DOI: 10.1002/wnan.1735] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/03/2021] [Accepted: 06/04/2021] [Indexed: 12/17/2022]
Abstract
Vaccines are considered one of the most significant medical advancements in human history, as they have prevented hundreds of millions of deaths since their discovery; however, modern travel permits disease spread at unprecedented rates, and vaccine shortcomings like thermal sensitivity and required booster shots have been made evident by the COVID-19 pandemic. Approaches to overcoming these issues appear promising via the integration of vaccine technology with biomaterials, which offer sustained-release properties and preserve proteins, prevent conformational changes, and enable storage at room temperature. Sustained release and thermal stabilization of therapeutic biomacromolecules is an emerging area that integrates material science, chemistry, immunology, nanotechnology, and pathology to investigate different biocompatible materials. Biomaterials, including natural sugar polymers, synthetic polyesters produced from biologically derived monomers, hydrogel blends, protein-polymer blends, and metal-organic frameworks, have emerged as early players in the field. This overview will focus on significant advances of sustained release biomaterial in the context of vaccines against infectious disease and the progress made towards thermally stable "single-shot" formulations. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease.
Collapse
Affiliation(s)
- Michael A Luzuriaga
- Division of Infectious Diseases, Boston Children's Hospital, Boston, Massachusetts, USA.,Division of Medical Sciences, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Fabian C Herbert
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardon, Texas, USA
| | - Yalini H Wijesundara
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardon, Texas, USA
| | - Jeremiah J Gassensmith
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardon, Texas, USA.,Department of Bioengineering, The University of Texas at Dallas, Richardon, Texas, USA
| |
Collapse
|
7
|
Individualism or Collectivism: A Reinforcement Learning Mechanism for Vaccination Decisions. INFORMATION 2021. [DOI: 10.3390/info12020066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Previous studies have pointed out that it is hard to achieve the level of herd immunity for the population and then effectively stop disease propagation from the perspective of public health, if individuals just make vaccination decisions based on individualism. Individuals in reality often exist in the form of groups and cooperate in or among communities. Meanwhile, society studies have suggested that we cannot ignore the existence and influence of collectivism for studying individuals’ decision-making. Regarding this, we formulate two vaccination strategies: individualistic strategy and collectivist strategy. The former helps individuals taking vaccination action after evaluating their perceived risk and cost of themselves, while the latter focuses on evaluating their contribution to their communities. More significantly, we propose a reinforcement learning mechanism based on policy gradient. Each individual can adaptively pick one of these two strategies after weighing their probabilities with a two-layer neural network whose parameters are dynamically updated with his/her more and more vaccination experience. Experimental results on scale-free networks verify that the reinforcement learning mechanism can effectively improve the vaccine coverage level of communities. Moreover, communities can always get higher total payoffs with fewer costs paid, comparing that of pure individualistic strategy. Such performance mostly stems from individuals’ adaptively picking collectivist strategy. Our study suggests that public health authorities should encourage individuals to make vaccination decisions from the perspective of their local mixed groups. Especially, it is more worthy of noting that individuals with low degrees are more significant as their vaccination behaviors can more sharply improve vaccination coverage of their groups and greatly reduce epidemic size.
Collapse
|
8
|
Aiewsakun P, Prombutara P, Siregar TAP, Laopanupong T, Kanjanasirirat P, Khumpanied T, Borwornpinyo S, Tong-Ngam P, Tubsuwan A, Srilohasin P, Chaiprasert A, Ruangchai W, Palittapongarnpim P, Prammananan T, VanderVen BC, Ponpuak M. Transcriptional response to the host cell environment of a multidrug-resistant Mycobacterium tuberculosis clonal outbreak Beijing strain reveals its pathogenic features. Sci Rep 2021; 11:3199. [PMID: 33542438 PMCID: PMC7862621 DOI: 10.1038/s41598-021-82905-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 01/27/2021] [Indexed: 11/13/2022] Open
Abstract
Tuberculosis is a global public health problem with emergence of multidrug-resistant infections. Previous epidemiological studies of tuberculosis in Thailand have identified a clonal outbreak multidrug-resistant strain of Mycobacterium tuberculosis in the Kanchanaburi province, designated “MKR superspreader”, and this particular strain later was found to also spread to other regions. In this study, we elucidated its biology through RNA-Seq analyses and identified a set of genes involved in cholesterol degradation to be up-regulated in the MKR during the macrophage cell infection, but not in the H37Rv reference strain. We also found that the bacterium up-regulated genes associated with the ESX-1 secretion system during its intracellular growth phase, while the H37Rv did not. All results were confirmed by qRT-PCR. Moreover, we showed that compounds previously shown to inhibit the mycobacterial ESX-1 secretion system and cholesterol utilisation, and FDA-approved drugs known to interfere with the host cholesterol transportation were able to decrease the intracellular survival of the MKR when compared to the untreated control, while not that of the H37Rv. Altogether, our findings suggested that such pathways are important for the MKR’s intracellular growth, and potentially could be targets for the discovery of new drugs against this emerging multidrug-resistant strain of M. tuberculosis.
Collapse
Affiliation(s)
- Pakorn Aiewsakun
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand.,Pornchai Matangkasombut Center for Microbial Genomics, Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Pinidphon Prombutara
- Omics Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.,Microbiome Research Unit for Probiotics in Food and Cosmetics, Faculty of Sciences, Chulalongkorn University, Bangkok, Thailand
| | | | - Thanida Laopanupong
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | | - Tanawadee Khumpanied
- Excellent Center for Drug Discovery, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Suparerk Borwornpinyo
- Excellent Center for Drug Discovery, Faculty of Science, Mahidol University, Bangkok, Thailand.,Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Pirut Tong-Ngam
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Alisa Tubsuwan
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Prapaporn Srilohasin
- Drug-Resistance Tuberculosis Research Fund, Siriraj Foundation, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Office of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Angkana Chaiprasert
- Drug-Resistance Tuberculosis Research Fund, Siriraj Foundation, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Office of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Wuthiwat Ruangchai
- Pornchai Matangkasombut Center for Microbial Genomics, Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Prasit Palittapongarnpim
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand.,Pornchai Matangkasombut Center for Microbial Genomics, Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand.,National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pratumthani, Thailand
| | - Therdsak Prammananan
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pratumthani, Thailand
| | - Brian C VanderVen
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| | - Marisa Ponpuak
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand. .,Pornchai Matangkasombut Center for Microbial Genomics, Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
9
|
Guieu B, Jourdan JP, Dreneau A, Willand N, Rochais C, Dallemagne P. Desirable drug-drug interactions or when a matter of concern becomes a renewed therapeutic strategy. Drug Discov Today 2020; 26:315-328. [PMID: 33253919 DOI: 10.1016/j.drudis.2020.11.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/14/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022]
Abstract
Drug-drug interactions are sometimes considered to be detrimental and responsible for adverse effects. In some cases, however, some are stakeholders of the efficiency of the treatment and this combinatorial strategy is exploited by some drug associations, including levodopa (L-Dopa) and dopadecarboxylase inhibitors, β-lactam antibiotics and clavulanic acid, 5-fluorouracil (5-FU) and folinic acid, and penicillin and probenecid. More recently, some drug-drug combinations have been integrated in modern drug design strategies, aiming to enhance the efficiency of already marketed drugs with new compounds acting not only as synergistic associations, but also as real boosters of activity. In this review, we provide an update of examples of such strategies, with a special focus on microbiology and oncology.
Collapse
Affiliation(s)
- Benjamin Guieu
- Normandie University, UNICAEN, CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie), F-14032 Caen, France
| | - Jean-Pierre Jourdan
- Normandie University, UNICAEN, CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie), F-14032 Caen, France; Department of Pharmacy, Caen University Hospital, Caen, F-14000, France
| | - Aurore Dreneau
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000 Lille, France
| | - Nicolas Willand
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000 Lille, France
| | - Christophe Rochais
- Normandie University, UNICAEN, CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie), F-14032 Caen, France
| | - Patrick Dallemagne
- Normandie University, UNICAEN, CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie), F-14032 Caen, France.
| |
Collapse
|
10
|
Alsayed SSR, Lun S, Payne A, Bishai WR, Gunosewoyo H. Design, synthesis and antimycobacterial evaluation of novel adamantane and adamantanol analogues effective against drug-resistant tuberculosis. Bioorg Chem 2020; 106:104486. [PMID: 33276981 DOI: 10.1016/j.bioorg.2020.104486] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/11/2020] [Accepted: 11/16/2020] [Indexed: 12/14/2022]
Abstract
The treacherous nature of tuberculosis (TB) combined with the ubiquitous presence of the drug-resistant (DR) forms pose this disease as a growing public health menace. Therefore, it is imperative to develop new chemotherapeutic agents with a novel mechanism of action to circumvent the cross-resistance problems. The unique architecture of the Mycobacterium tuberculosis (M. tb) outer envelope plays a predominant role in its pathogenesis, contributing to its intrinsic resistance against available therapeutic agents. The mycobacterial membrane protein large 3 (MmpL3), which is a key player in forging the M. tb rigid cell wall, represents an emerging target for TB drug development. Several indole-2-carboxamides were previously identified in our group as potent anti-TB agents that act as inhibitor of MmpL3 transporter protein. Despite their highly potent in vitro activities, the lingering Achilles heel of these indoleamides can be ascribed to their high lipophilicity as well as low water solubility. In this study, we report our attempt to improve the aqueous solubility of these indole-2-carboxamides while maintaining an adequate lipophilicity to allow effective M. tb cell wall penetration. A more polar adamantanol moiety was incorporated into the framework of several indole-2-carboxamides, whereupon the corresponding analogues were tested for their anti-TB activity against drug-sensitive (DS) M. tb H37Rv strain. Three adamantanol derivatives 8i, 8j and 8l showed nearly 2- and 4-fold higher activity (MIC = 1.32 - 2.89 µM) than ethambutol (MIC = 4.89 µM). Remarkably, the most potent adamantanol analogue 8j demonstrated high selectivity towards DS and DR M. tb strains over mammalian cells [IC50 (Vero cells) ≥ 169 µM], evincing its lack of cytotoxicity. The top eight active compounds 8b, 8d, 8f, 8i, 8j, 8k, 8l and 10a retained their in vitro potency against DR M. tb strains and were docked into the MmpL3 active site. The most potent adamantanol/adamantane-based indoleamides 8j/8k displayed a two-fold surge in potency against extensively DR (XDR) M. tb strains with MIC values of 0.66 and 0.012 µM, respectively. The adamantanol-containing indole-2-carboxamides exhibited improved water solubility both in silico and experimentally, relative to the adamantane counterparts. Overall, the observed antimycobacterial and physicochemical profiles support the notion that adamantanol moiety is a suitable replacement to the adamantane scaffold within the series of indole-2-carboxamide-based MmpL3 inhibitors.
Collapse
Affiliation(s)
- Shahinda S R Alsayed
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University, Bentley, Perth, WA 6102, Australia
| | - Shichun Lun
- Center for Tuberculosis Research, Department of Medicine, Division of Infectious Disease, Johns Hopkins School of Medicine, 1550, Orleans Street, Baltimore, MD 21231-1044, United States
| | - Alan Payne
- School of Molecular and Life Sciences, Curtin University, Perth, WA 6102, Australia
| | - William R Bishai
- Center for Tuberculosis Research, Department of Medicine, Division of Infectious Disease, Johns Hopkins School of Medicine, 1550, Orleans Street, Baltimore, MD 21231-1044, United States; Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, Maryland 20815-6789, United States.
| | - Hendra Gunosewoyo
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University, Bentley, Perth, WA 6102, Australia.
| |
Collapse
|
11
|
Fernández-Quintela A, Milton-Laskibar I, Trepiana J, Gómez-Zorita S, Kajarabille N, Léniz A, González M, Portillo MP. Key Aspects in Nutritional Management of COVID-19 Patients. J Clin Med 2020; 9:E2589. [PMID: 32785121 PMCID: PMC7463687 DOI: 10.3390/jcm9082589] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/13/2022] Open
Abstract
This review deals with the relationship among nutrition, the immune system, and coronavirus disease 2019 (COVID-19). The influence of nutrients and bioactive molecules present in foodstuffs on immune system activity, the influence of COVID-19 on the nutritional status of the patients, and the dietary recommendations for hospitalized patients are addressed. Deficient nutritional status is probably due to anorexia, nausea, vomiting, diarrhea, hypoalbuminemia, hypermetabolism, and excessive nitrogen loss. There is limited knowledge regarding the nutritional support during hospital stay of COVID-19 patients. However, nutritional therapy appears as first-line treatment and should be implemented into standard practice. Optimal intake of all nutrients, mainly those playing crucial roles in immune system, should be assured through a diverse and well-balanced diet. Nevertheless, in order to reduce the risk and consequences of infections, the intakes for some micronutrients may exceed the recommended dietary allowances since infections and other stressors can reduce micronutrient status. In the case of critically ill patients, recently published guidelines are available for their nutritional management. Further, several natural bioactive compounds interact with the angiotensin-converting enzyme 2 (ACE2) receptor, the gateway for severe acute respiratory syndrome (SARS) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Natural bioactive compounds can also reduce the inflammatory response induced by SARS-CoV-2. These compounds are potential beneficial tools in the nutritional management of COVID-19 patients.
Collapse
Affiliation(s)
- Alfredo Fernández-Quintela
- Nutrition and Obesity Group, Department of Pharmacy and Food Science, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Institute, 01006 Vitoria, Spain; (A.F.-Q.); (I.M.-L.); (N.K.); (A.L.); (M.P.P.)
- CIBEROBN Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, 01006 Vitoria, Spain
- Bioaraba Health Research Institute, 01009 Vitoria, Spain
| | - Iñaki Milton-Laskibar
- Nutrition and Obesity Group, Department of Pharmacy and Food Science, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Institute, 01006 Vitoria, Spain; (A.F.-Q.); (I.M.-L.); (N.K.); (A.L.); (M.P.P.)
- CIBEROBN Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, 01006 Vitoria, Spain
- Bioaraba Health Research Institute, 01009 Vitoria, Spain
| | - Jenifer Trepiana
- Nutrition and Obesity Group, Department of Pharmacy and Food Science, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Institute, 01006 Vitoria, Spain; (A.F.-Q.); (I.M.-L.); (N.K.); (A.L.); (M.P.P.)
- CIBEROBN Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, 01006 Vitoria, Spain
- Bioaraba Health Research Institute, 01009 Vitoria, Spain
| | - Saioa Gómez-Zorita
- Nutrition and Obesity Group, Department of Pharmacy and Food Science, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Institute, 01006 Vitoria, Spain; (A.F.-Q.); (I.M.-L.); (N.K.); (A.L.); (M.P.P.)
- CIBEROBN Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, 01006 Vitoria, Spain
- Bioaraba Health Research Institute, 01009 Vitoria, Spain
| | - Naroa Kajarabille
- Nutrition and Obesity Group, Department of Pharmacy and Food Science, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Institute, 01006 Vitoria, Spain; (A.F.-Q.); (I.M.-L.); (N.K.); (A.L.); (M.P.P.)
- CIBEROBN Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, 01006 Vitoria, Spain
- Bioaraba Health Research Institute, 01009 Vitoria, Spain
| | - Asier Léniz
- Nutrition and Obesity Group, Department of Pharmacy and Food Science, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Institute, 01006 Vitoria, Spain; (A.F.-Q.); (I.M.-L.); (N.K.); (A.L.); (M.P.P.)
- Bioaraba Health Research Institute, 01009 Vitoria, Spain
- Basque Health Service (Osakidetza), Integrated Health Care Organization Araba, 01009 Álava, Spain
| | - Marcela González
- Nutrition and Food Science Department, Faculty of Biochemistry and Biological Sciences, National University of Litoral and National Scientific and Technical Research Council (CONICET), Santa Fe 3000, Argentina;
| | - María P. Portillo
- Nutrition and Obesity Group, Department of Pharmacy and Food Science, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Institute, 01006 Vitoria, Spain; (A.F.-Q.); (I.M.-L.); (N.K.); (A.L.); (M.P.P.)
- CIBEROBN Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, 01006 Vitoria, Spain
- Bioaraba Health Research Institute, 01009 Vitoria, Spain
| |
Collapse
|
12
|
Perricone C, Bartoloni E, Bursi R, Cafaro G, Guidelli GM, Shoenfeld Y, Gerli R. COVID-19 as part of the hyperferritinemic syndromes: the role of iron depletion therapy. Immunol Res 2020. [PMID: 32681497 DOI: 10.22541/au.158880283.34604328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
SARS-CoV-2 infection is characterized by a protean clinical picture that can range from asymptomatic patients to life-threatening conditions. Severe COVID-19 patients often display a severe pulmonary involvement and develop neutrophilia, lymphopenia, and strikingly elevated levels of IL-6. There is an over-exuberant cytokine release with hyperferritinemia leading to the idea that COVID-19 is part of the hyperferritinemic syndrome spectrum. Indeed, very high levels of ferritin can occur in other diseases including hemophagocytic lymphohistiocytosis, macrophage activation syndrome, adult-onset Still's disease, catastrophic antiphospholipid syndrome and septic shock. Numerous studies have demonstrated the immunomodulatory effects of ferritin and its association with mortality and sustained inflammatory process. High levels of free iron are harmful in tissues, especially through the redox damage that can lead to fibrosis. Iron chelation represents a pillar in the treatment of iron overload. In addition, it was proven to have an anti-viral and anti-fibrotic activity. Herein, we analyse the pathogenic role of ferritin and iron during SARS-CoV-2 infection and propose iron depletion therapy as a novel therapeutic approach in the COVID-19 pandemic.
Collapse
Affiliation(s)
- Carlo Perricone
- Rheumatology, Department of Medicine, University of Perugia, Piazzale Giorgio Menghini, 1, 06129, Perugia, Italy
| | - Elena Bartoloni
- Rheumatology, Department of Medicine, University of Perugia, Piazzale Giorgio Menghini, 1, 06129, Perugia, Italy
| | - Roberto Bursi
- Rheumatology, Department of Medicine, University of Perugia, Piazzale Giorgio Menghini, 1, 06129, Perugia, Italy
| | - Giacomo Cafaro
- Rheumatology, Department of Medicine, University of Perugia, Piazzale Giorgio Menghini, 1, 06129, Perugia, Italy
| | | | - Yehuda Shoenfeld
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Aviv University, 5265601, Tel-Hashomer, Israel
- The Mosaic of Autoimmunity Project, Saint Petersburg University, Saint Petersburg, Russia
- Ministry of Health of the Russian Federation, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Roberto Gerli
- Rheumatology, Department of Medicine, University of Perugia, Piazzale Giorgio Menghini, 1, 06129, Perugia, Italy.
| |
Collapse
|
13
|
Perricone C, Bartoloni E, Bursi R, Cafaro G, Guidelli GM, Shoenfeld Y, Gerli R. COVID-19 as part of the hyperferritinemic syndromes: the role of iron depletion therapy. Immunol Res 2020; 68:213-224. [PMID: 32681497 PMCID: PMC7366458 DOI: 10.1007/s12026-020-09145-5] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
SARS-CoV-2 infection is characterized by a protean clinical picture that can range from asymptomatic patients to life-threatening conditions. Severe COVID-19 patients often display a severe pulmonary involvement and develop neutrophilia, lymphopenia, and strikingly elevated levels of IL-6. There is an over-exuberant cytokine release with hyperferritinemia leading to the idea that COVID-19 is part of the hyperferritinemic syndrome spectrum. Indeed, very high levels of ferritin can occur in other diseases including hemophagocytic lymphohistiocytosis, macrophage activation syndrome, adult-onset Still's disease, catastrophic antiphospholipid syndrome and septic shock. Numerous studies have demonstrated the immunomodulatory effects of ferritin and its association with mortality and sustained inflammatory process. High levels of free iron are harmful in tissues, especially through the redox damage that can lead to fibrosis. Iron chelation represents a pillar in the treatment of iron overload. In addition, it was proven to have an anti-viral and anti-fibrotic activity. Herein, we analyse the pathogenic role of ferritin and iron during SARS-CoV-2 infection and propose iron depletion therapy as a novel therapeutic approach in the COVID-19 pandemic.
Collapse
Affiliation(s)
- Carlo Perricone
- Rheumatology, Department of Medicine, University of Perugia, Piazzale Giorgio Menghini, 1, 06129, Perugia, Italy
| | - Elena Bartoloni
- Rheumatology, Department of Medicine, University of Perugia, Piazzale Giorgio Menghini, 1, 06129, Perugia, Italy
| | - Roberto Bursi
- Rheumatology, Department of Medicine, University of Perugia, Piazzale Giorgio Menghini, 1, 06129, Perugia, Italy
| | - Giacomo Cafaro
- Rheumatology, Department of Medicine, University of Perugia, Piazzale Giorgio Menghini, 1, 06129, Perugia, Italy
| | | | - Yehuda Shoenfeld
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Aviv University, 5265601, Tel-Hashomer, Israel
- The Mosaic of Autoimmunity Project, Saint Petersburg University, Saint Petersburg, Russia
- Ministry of Health of the Russian Federation, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Roberto Gerli
- Rheumatology, Department of Medicine, University of Perugia, Piazzale Giorgio Menghini, 1, 06129, Perugia, Italy.
| |
Collapse
|
14
|
Abstract
TB is the leading cause of death from a single infectious agent globally, followed by HIV. Furthermore, TB represents the leading cause of death among people with HIV. HIV is known to cause severe defects in T cell immunity, rendering HIV/TB-coinfected individuals more susceptible to TB disease progression and complicating accurate TB disease diagnosis. Here, we demonstrate that HIV infection is additionally associated with severely compromised antibody responses, particularly in individuals with active TB. Moreover, despite the influence of HIV infection, antibody profiles still allow accurate classification of individuals with active versus latent TB. These findings reveal novel immunologic challenges associated with HIV/TB coinfection and additionally provide a basis with which to leverage the key antibody features identified to potentially combat TB globally via next-generation therapeutic or diagnostic design. Tuberculosis (TB) represents the largest cause of death in human immunodeficiency virus (HIV)-infected individuals in part due to HIV-related CD4+ T cell loss, rendering patients immunocompromised and susceptible to a loss of Mycobacterium tuberculosis control. However, in light of increasing data pointing to a role for humoral immunity in controlling M. tuberculosis infection, here, we aimed to define whether HIV infection also alters the humoral immune response in subjects with active and latent TB. We show that in the setting of active TB, HIV-positive individuals have significantly lower IgG responses to LAM and Ag85 than HIV-negative individuals. Furthermore, significant isotype/subclass-specific differences were frequently observed, with active TB, HIV-positive individuals demonstrating compromised antigen-specific IgM titers. HIV-infected individuals with active TB also exhibited a significant loss of influenza hemagglutinin- and tetanus toxoid-specific antibody titers at the isotype/subclass level, a symptom of broad humoral immune dysfunction likely precipitated by HIV infection. Finally, we illustrated that despite the influence of HIV infection, differences in M. tuberculosis-specific antibody profiles persist between latent and active TB disease. Taken together, these findings reveal significant HIV-associated disruptions of the humoral immune response in HIV/TB-coinfected individuals. IMPORTANCE TB is the leading cause of death from a single infectious agent globally, followed by HIV. Furthermore, TB represents the leading cause of death among people with HIV. HIV is known to cause severe defects in T cell immunity, rendering HIV/TB-coinfected individuals more susceptible to TB disease progression and complicating accurate TB disease diagnosis. Here, we demonstrate that HIV infection is additionally associated with severely compromised antibody responses, particularly in individuals with active TB. Moreover, despite the influence of HIV infection, antibody profiles still allow accurate classification of individuals with active versus latent TB. These findings reveal novel immunologic challenges associated with HIV/TB coinfection and additionally provide a basis with which to leverage the key antibody features identified to potentially combat TB globally via next-generation therapeutic or diagnostic design.
Collapse
|
15
|
Guo Q, Zhang J, Li G, Liu S, Xiao G, Bi J, Li F, Zhang S, Ou M, He X, Zeng C, Liu L, Zhang G. Elevated antigen-specific IFN-γ responses in bronchoalveolar lavage fluid impervious to clinical comorbidities improve the pulmonary tuberculosis diagnosis. Tuberculosis (Edinb) 2020; 122:101942. [PMID: 32501262 DOI: 10.1016/j.tube.2020.101942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 04/23/2020] [Accepted: 04/23/2020] [Indexed: 12/28/2022]
Abstract
The extremely slow growth rate of Mycobacterium tuberculosis (Mtb) challenges traditional methods for tuberculosis (TB) diagnosis. Here, we assessed the efficacy of a previously developed Mtb antigen-specific gamma interferon (IFN-γ) enzyme-linked immunospot (ELISPOT) performed on bronchoalveolar lavage fluid (BALF) from a cohort of 414 patients including 333 PTB patients (202/333 were sputum culture positive) for the diagnosis of PTB. We could confirm that antigen-specific IFN-γ-producing CD4+ T cells were concentrated significantly in BALF mononuclear cells (BALMC) compared with that in peripheral blood mononuclear cells (PBMC) assayed in parallel, but not those of CD8+ T cells both in sputum culture-negative and positive PTB. The magnitude of IFN-γ responses in the BALF was associated with bacterial load, and 9/202 of PTB with endobronchial TB (EBTB) were slightly reduced by the anti-TB treatment. Moreover, antigen-specific IFN-γ ELISPOT performed on BALMC showed higher sensitivity than PBMC ELISPOT. In addition, the differences of the BALMC ELISPOT between PTB and PTB with diabetes were not found, whereas PBMC IFN-γ responses were decreased in PTB with diabetes. Combined with the microbiological detection in BALF, such as microscopy and culture, the BALMC ELISPOT offers the opportunity for the more accurate diagnosis of PTB, especially those with clinical comorbidities.
Collapse
Affiliation(s)
- Qinglong Guo
- National Clinical Research Center for Infectious Diseases, Guangdong Key Laboratory for Emerging Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, 518112, China
| | - Juanjuan Zhang
- National Clinical Research Center for Infectious Diseases, Guangdong Key Laboratory for Emerging Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, 518112, China
| | - Guanqiang Li
- Department of Laboratory Medicine, Shenzhen Longgang People's Hospital, The Chinese University of Hong Kong, Shenzhen, 518172, China
| | - Shuyan Liu
- National Clinical Research Center for Infectious Diseases, Guangdong Key Laboratory for Emerging Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, 518112, China
| | - Guohui Xiao
- National Clinical Research Center for Infectious Diseases, Guangdong Key Laboratory for Emerging Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, 518112, China
| | - Jing Bi
- National Clinical Research Center for Infectious Diseases, Guangdong Key Laboratory for Emerging Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, 518112, China
| | - Fang Li
- National Clinical Research Center for Infectious Diseases, Guangdong Key Laboratory for Emerging Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, 518112, China
| | - Su Zhang
- National Clinical Research Center for Infectious Diseases, Guangdong Key Laboratory for Emerging Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, 518112, China
| | - Min Ou
- National Clinical Research Center for Infectious Diseases, Guangdong Key Laboratory for Emerging Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, 518112, China
| | - Xing He
- National Clinical Research Center for Infectious Diseases, Guangdong Key Laboratory for Emerging Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, 518112, China
| | - Changchun Zeng
- Department of Laboratory Medicine, Shenzhen Longhua District Central Hospital, Guangdong Medical University, Shenzhen, 518110, China
| | - Lei Liu
- National Clinical Research Center for Infectious Diseases, Guangdong Key Laboratory for Emerging Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, 518112, China
| | - Guoliang Zhang
- National Clinical Research Center for Infectious Diseases, Guangdong Key Laboratory for Emerging Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, 518112, China; Department of Laboratory Medicine, Shenzhen Longhua District Central Hospital, Guangdong Medical University, Shenzhen, 518110, China.
| |
Collapse
|
16
|
Liu W, Zhang S, Nekhai S, Liu S. Depriving Iron Supply to the Virus Represents a Promising Adjuvant Therapeutic Against Viral Survival. CURRENT CLINICAL MICROBIOLOGY REPORTS 2020; 7:13-19. [PMID: 32318324 PMCID: PMC7169647 DOI: 10.1007/s40588-020-00140-w] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF THE REVIEW The ongoing outbreak of novel coronavirus pneumonia (COVID-19) caused by the 2019 novel coronavirus (SARS-CoV-2) in China is lifting widespread concerns. Thus, therapeutic options are urgently needed, and will be discussed in this review. RECENT FINDINGS Iron-containing enzymes are required for viruses most likely including coronaviruses (CoVs) to complete their replication process. Moreover, poor prognosis occurred in the conditions of iron overload for patients upon infections of viruses. Thus, limiting iron represents a promising adjuvant strategy in treating viral infection through oral uptake or venous injection of iron chelators, or through the manipulation of the key iron regulators. For example, treatment with iron chelator deferiprone has been shown to prolong the survival of acquired immunodeficiency syndrome (AIDS) patients. Increasing intracellular iron efflux via increasing iron exporter ferroportin expression also exhibits antiviral effect on human immunodeficiency virus (HIV). The implications of other metals besides iron are also briefly discussed. SUMMARY For even though we know little about iron regulation in COVID-19 patients thus far, it could be deduced from other viral infections that iron chelation might be an alternative beneficial adjuvant in treating COVID-19.
Collapse
Affiliation(s)
- Wei Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Shuping Zhang
- Department of Hematology, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250062 China
- Shandong Medicinal Biotechnology Center, Jinan, 250062 China
- University Creative Research Initiatives Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250062 China
| | - Sergei Nekhai
- Center for Sickle Cell Disease and Department of Medicine, College of Medicine, Howard University, Washington, DC 20059 USA
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
17
|
Singh SK, Larsson M, Schön T, Stendahl O, Blomgran R. HIV Interferes with the Dendritic Cell-T Cell Axis of Macrophage Activation by Shifting Mycobacterium tuberculosis-Specific CD4 T Cells into a Dysfunctional Phenotype. THE JOURNAL OF IMMUNOLOGY 2018; 202:816-826. [PMID: 30593540 DOI: 10.4049/jimmunol.1800523] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 11/26/2018] [Indexed: 02/07/2023]
Abstract
HIV coinfection is the greatest risk factor for transition of latent Mycobacterium tuberculosis infection into active tuberculosis (TB). Epidemiological data reveal both the reduction and the impairment of M. tuberculosis-specific CD4 T cells, although the cellular link and actual mechanisms resulting in immune impairment/suppression need further characterization. M. tuberculosis-specific CD4 T cells play a central role in development of protective immunity against TB, in which they participate in the activation of macrophages through the dendritic cell (DC)-T cell axis. Using an in vitro priming system for generating Ag-specific T cells, we explored if HIV-M. tuberculosis-infected (coinfected) human DCs can dysregulate the M. tuberculosis-specific CD4 T cell phenotype and functionality and subsequently mediate the failure to control M. tuberculosis infection in macrophages. After coculture with coinfected DCs, M. tuberculosis Ag-specific CD4 T cells lost their ability to enhance control of M. tuberculosis infection in infected macrophages. Coinfection of DCs reduced proliferation of M. tuberculosis Ag-specific CD4 T cells without affecting their viability, led to increased expression of coinhibitory factors CTLA-4, PD-1, and Blimp-1, and decreased expression of costimulatory molecules CD40L, CD28, and ICOS on the T cells. Expression of the regulatory T cell markers FOXP3 and CD25, together with the immunosuppressive cytokines TGF-β and IL-10, was also significantly increased by coinfection compared with M. tuberculosis single infection. Our data suggest a pattern in which HIV, through its effect on DCs, impairs the ability of M. tuberculosis-specific CD4 T cells to maintain a latent TB within human macrophages, which could play an early role in the subsequent development of TB.
Collapse
Affiliation(s)
- Susmita K Singh
- Division of Medical Microbiology, Department of Clinical and Experimental Medicine, Medical Faculty, Linköping University, 581 85 Linköping, Sweden
| | - Marie Larsson
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Medical Faculty, Linköping University, 581 85 Linköping, Sweden; and
| | - Thomas Schön
- Division of Medical Microbiology, Department of Clinical and Experimental Medicine, Medical Faculty, Linköping University, 581 85 Linköping, Sweden.,Department of Infectious Diseases and Clinical Microbiology, Kalmar County Hospital, 391 85 Kalmar, Sweden
| | - Olle Stendahl
- Division of Medical Microbiology, Department of Clinical and Experimental Medicine, Medical Faculty, Linköping University, 581 85 Linköping, Sweden
| | - Robert Blomgran
- Division of Medical Microbiology, Department of Clinical and Experimental Medicine, Medical Faculty, Linköping University, 581 85 Linköping, Sweden;
| |
Collapse
|
18
|
Zhao HM, Du R, Li CL, Ji P, Li HC, Wu K, Hu Z, Lu SH, Lowrie DB, Fan XY. Differential T cell responses against DosR-associated antigen Rv2028c in BCG-vaccinated populations with tuberculosis infection. J Infect 2018; 78:275-280. [PMID: 30528871 DOI: 10.1016/j.jinf.2018.10.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 02/07/2023]
Abstract
The IFN-γ release assays (IGRAs) based on region of difference 1 (RD1) antigens have improved diagnosis of Mycobacterium tuberculosis (Mtb) infection. However, IGRAs with these antigens could not distinguish latent tuberculosis infection (LTBI) from active tuberculosis (ATB). DosR regulon genes are thought to be important for Mtb dormancy, and their products have higher immunogenicity in LTBI than ATB individuals, suggesting protective immunity mediated by DosR regulon-encoded antigens and potential utility of them for differential diagnostics of Mtb-infected populations or development of therapeutic vaccines against tuberculosis (TB). Among them, Rv2028c is a dormancy-related antigen that has demonstrated potential use in TB control, but its immunological characteristics in the BCG-vaccinated Chinese population are unknown. In this study, a total of 148 individuals, including 98 patients with ATB, 20 cases with LTBI and 30 healthy controls, were tested for Rv2028c-specific T cell responses by using an IFN-γ ELISA assay. The results showed that the T-cell responses in LTBI individuals were almost always higher than those in ATB patients, regardless of the site of infection or the results of bacteriological examination in the patients. This allowed for good differentiation between these two groups of Mtb-infected individuals even in the BCG-vaccinated high TB-incidence setting that pertains in China. In addition, the diagnostic efficacy for ATB was enhanced by combining the results from Rv2028c and RD1 antigen-based IFN-γ ELISA assays. In conclusion, Rv2028c-specific T-cell responses might contribute to natural protection against dormant Mtb infection, and the determination of these responses can aid discrimination between healthy LTBI individuals and ATB patients in the Mtb-infected populations.
Collapse
Affiliation(s)
- Hui-Min Zhao
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, 2901 Caolang Rd., Shanghai 201508, China; School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou 325035, China
| | - Rui Du
- School of Laboratory Medicine and Life Science, Jinlin Agriculture University, Changchun 130033, China
| | - Chun-Ling Li
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, 2901 Caolang Rd., Shanghai 201508, China; School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou 325035, China
| | - Ping Ji
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, 2901 Caolang Rd., Shanghai 201508, China
| | - Hai-Cong Li
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, 2901 Caolang Rd., Shanghai 201508, China
| | - Kang Wu
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, 2901 Caolang Rd., Shanghai 201508, China
| | - Zhidong Hu
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, 2901 Caolang Rd., Shanghai 201508, China
| | - Shui-Hua Lu
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, 2901 Caolang Rd., Shanghai 201508, China
| | - Douglas B Lowrie
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, 2901 Caolang Rd., Shanghai 201508, China
| | - Xiao-Yong Fan
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou 325035, China; Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, 2901 Caolang Rd., Shanghai 201508, China; School of Laboratory Medicine and Life Science, Jinlin Agriculture University, Changchun 130033, China.
| |
Collapse
|
19
|
Squeglia F, Ruggiero A, Berisio R. Chemistry of Peptidoglycan in Mycobacterium tuberculosis
Life Cycle: An off-the-wall Balance of Synthesis and Degradation. Chemistry 2017; 24:2533-2546. [DOI: 10.1002/chem.201702973] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Flavia Squeglia
- Institute of Biostructures and Bioimaging; CNR; Via Mezzocannone 16. 80134 Napoli Italy
| | - Alessia Ruggiero
- Institute of Biostructures and Bioimaging; CNR; Via Mezzocannone 16. 80134 Napoli Italy
| | - Rita Berisio
- Institute of Biostructures and Bioimaging; CNR; Via Mezzocannone 16. 80134 Napoli Italy
| |
Collapse
|
20
|
Stein CM, Sausville L, Wejse C, Sobota RS, Zetola NM, Hill PC, Boom WH, Scott WK, Sirugo G, Williams SM. Genomics of human pulmonary tuberculosis: from genes to pathways. CURRENT GENETIC MEDICINE REPORTS 2017; 5:149-166. [PMID: 29805915 DOI: 10.1007/s40142-017-0130-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Purpose of review Tuberculosis (TB), caused by Mycobacterium tuberculosis (MTB), remains a major public health threat globally. Several lines of evidence support a role for host genetic factors in resistance/susceptibility to TB disease and MTB infection. However, results across candidate gene and genome-wide association studies (GWAS) are largely inconsistent, so a cohesive genetic model underlying TB risk has not emerged. Recent Findings Despite the difficulties in identifying consistent genetic associations, genetic studies of TB and MTB infection have revealed a few well-documented loci. These well validated genes are presented in this review, but there remains a large gap in how these genes translate into better understanding of TB. To address this, we present a pathway based extension of standard association analyses, seeding the results with the best validated genes from candidate gene and GWAS studies. Summary Several pathways were significantly enriched using pathway analyses that may help to explain population patterns of TB risk. In conclusion, we advocate for novel approaches to the study of host genetic analysis of TB that extend traditional association approaches.
Collapse
Affiliation(s)
- Catherine M Stein
- Department of Population and Quantitative Health Sciences, Cleveland, OH.,Tuberculosis Research Unit, Case Western Reserve University, Cleveland, OH
| | - Lindsay Sausville
- Department of Population and Quantitative Health Sciences, Cleveland, OH
| | - Christian Wejse
- Dept of Infectious Diseases/Center for Global Health, Aarhus University, Aarhus, Denmark
| | - Rafal S Sobota
- The Ken and Ruth Davee Department of Neurology, Northwestern University, Chicago, IL
| | - Nicola M Zetola
- Division of Infectious Diseases, University of Pennsylvania, Philadelphia, PA 19104, USA.,Botswana-UPenn Partnership, Gaborone, Botswana.,Department of Medicine, University of Botswana, Gaborone, Botswana
| | - Philip C Hill
- Centre for International Health, University of Otago, Dunedin, New Zealand
| | - W Henry Boom
- Tuberculosis Research Unit, Case Western Reserve University, Cleveland, OH
| | - William K Scott
- Department of Human Genetics and Genomics, University of Miami School of Medicine, Miami, FL
| | - Giorgio Sirugo
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Scott M Williams
- Department of Population and Quantitative Health Sciences, Cleveland, OH
| |
Collapse
|
21
|
G allele at -924 A > G position of FoxP3 gene promoter as a risk factor for tuberculosis. BMC Infect Dis 2017; 17:673. [PMID: 29020928 PMCID: PMC5637085 DOI: 10.1186/s12879-017-2762-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 09/22/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Forkhead box protein 3 (FoxP3) is an important factor for development and function of Regulatory T cells (Treg). Studies have found an association between common gene polymorphisms in FoxP3 and some infectious diseases. The aim of this study was to evaluate possible associations between two Single nucleotide polymorphisms (SNPs) in the promoter of the FoxP3 gene to susceptibility to tuberculosis (TB) and the alteration of Foxp3 gene expression. METHODS The pattern distribution of genotype at two position, -3279 A > C (rs3761548) and -924 A > G (rs2232365) on the promoter of FoxP3 gene was evaluated using polymerase chain reaction-single specific primer (PCR-SSP) method in 183 tuberculosis patients and 183 healthy control. In addition the quantity of FoxP3 gene expression at mRNA level was identified by the real-time PCR. RESULTS The frequency of G allele at -924 A > G was significantly higher was higher in TB patients (59.5%) than control group (39.5%) (P ≤ 0.05). In addition, our data viewed approximately 5- folds more FoxP3 gene expression in female patients with GG genotype in comparison to female healthy cases with the same genotype (P ≤ 0.001). There was no statistically significant differences between the distribution pattern of -3279 A > C polymorphism in patients and healthy individuals along with it effect on the FoxP3 gene expression among both groups (P > 0.05). CONCLUSIONS Our outcome suggests that the -924 A > G polymorphism leads to enhance FoxP3 gene expression and susceptibility to tuberculosis in the sex dependent manner. This event may rise the count of Treg cells and modulate the immune response against tuberculosis.
Collapse
|
22
|
Gupta N, Vyas VK, Patel BD, Ghate M. Design of 2-Nitroimidazooxazine Derivatives as Deazaflavin-Dependent Nitroreductase (Ddn) Activators as Anti-Mycobacterial Agents Based on 3D QSAR, HQSAR, and Docking Study with In Silico Prediction of Activity and Toxicity. Interdiscip Sci 2017; 11:191-205. [PMID: 28895050 DOI: 10.1007/s12539-017-0256-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 07/29/2017] [Accepted: 08/01/2017] [Indexed: 10/18/2022]
Abstract
Deazaflavin-dependent nitroreductase (Ddn) is an emerging target in the field of anti-tuberculosis agents. In the present study, 2-nitroimidazooxazine derivatives as Ddn activators were aligned for CoMFA, CoMSIA and HQSAR analysis. The best CoMFA and CoMSIA model were generated with leave-one-out correlation coefficients (q2) of 0.585 and 0.571, respectively. Both the CoMFA and CoMSIA models were also validated by a test set of 11 compounds with satisfactory [Formula: see text] value of 0.701 and 0.667, respectively. Results of 3D QSAR and HQSAR study were used for the designing of novel and potent nitroimidazooxazine derivatives as Ddn activators. 21 novel compounds were designed, and docked into the Ddn enzyme. In docking study compound ng11 showed interaction with key amino acid residues such as Tyr65 and Tyr133, and also showed better ADMET compatibility. The ADMET prediction, docking study and the predicted activity of novel designed compounds revealed that compound ng11 showed good potential as Ddn activators for the treatment of tuberculosis.
Collapse
Affiliation(s)
- Nirzari Gupta
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, 382 481, Gujarat, India
| | - Vivek K Vyas
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, 382 481, Gujarat, India
| | - Bhumika D Patel
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, 382 481, Gujarat, India
| | - Manjunath Ghate
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, 382 481, Gujarat, India.
| |
Collapse
|
23
|
Mishra SK, Tripathi G, Kishore N, Singh RK, Singh A, Tiwari VK. Drug development against tuberculosis: Impact of alkaloids. Eur J Med Chem 2017. [DOI: 10.1016/j.ejmech.2017.06.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
24
|
Michelsen SW, Soborg B, Diaz LJ, Hoff ST, Agger EM, Koch A, Rosenkrands I, Wohlfahrt J, Melbye M. The dynamics of immune responses to Mycobacterium tuberculosis during different stages of natural infection: A longitudinal study among Greenlanders. PLoS One 2017; 12:e0177906. [PMID: 28570574 PMCID: PMC5453477 DOI: 10.1371/journal.pone.0177906] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 05/04/2017] [Indexed: 12/13/2022] Open
Abstract
Objective Understanding human immunity to Mycobacterium tuberculosis (Mtb) during different stages of infection is important for development of an effective tuberculosis (TB) vaccine. We aimed to evaluate immunity to Mtb infection by measuring immune responses to selected Mtb antigens expressed during different stages of infection over time and to observe sustainability of immunity. Methods In a cohort study comprising East Greenlanders aged 17–22 years (2012 to 2014) who had either; undetectable Mtb infection, ongoing or prior Mtb infection at enrolment, we measured immunity to 15 antigens over a one-year period. Quantiferon-TB Gold testing (QFT) defined Mtb infection status (undetected/detected). The eligible study population of East Greenlanders aged 17–22 years was identified from the entire population using the Civil Registration System. From the source population 65 participants were selected by stratified random sampling according to information on Mtb infection stage. Retrospective and prospective information on notified TB (including treatment) was obtained through the mandatory TB notification system and was used to characterise Mtb infection stage (ongoing/prior). Immunity to 15 antigens including two QFT antigens, PPD and 12 non-QFT antigens (representing early, constitutive and latent Mtb infection) was assessed by measuring immune responses using whole-blood antigen stimulation and interferon gamma measurement. Results Of 65 participants, 54 were considered Mtb-infected. Immunity to Mtb infection fluctuated with high annual risk of conversion (range: 6–69%) and reversion (range: 5–95%). During follow-up, five (8%) participants were notified with TB; neither conversion nor reversion was associated with an increased risk of progressing to TB. Conclusions Our findings suggest that human immunity to natural Mtb infection over time is versatile with fluctuations, resulting in high levels of conversion and reversion of immunity, thus human immunity to Mtb is much more dynamic than anticipated. The study findings suggest future use of longitudinal assessment of immune responses when searching for TB vaccine candidate antigens.
Collapse
Affiliation(s)
- Sascha Wilk Michelsen
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
- * E-mail:
| | - Bolette Soborg
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Lars Jorge Diaz
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Soren Tetens Hoff
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Else Marie Agger
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Anders Koch
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Ida Rosenkrands
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Jan Wohlfahrt
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Mads Melbye
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Medicine, Stanford School of Medicine, Stanford, California, United States of America
| |
Collapse
|
25
|
Bian ZR, Yin J, Sun W, Lin DJ. Microarray and network-based identification of functional modules and pathways of active tuberculosis. Microb Pathog 2017; 105:68-73. [PMID: 28189733 DOI: 10.1016/j.micpath.2017.02.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 02/07/2017] [Accepted: 02/07/2017] [Indexed: 02/02/2023]
Abstract
Diagnose of active tuberculosis (TB) is challenging and treatment response is also difficult to efficiently monitor. The aim of this study was to use an integrated analysis of microarray and network-based method to the samples from publically available datasets to obtain a diagnostic module set and pathways in active TB. Towards this goal, background protein-protein interactions (PPI) network was generated based on global PPI information and gene expression data, following by identification of differential expression network (DEN) from the background PPI network. Then, ego genes were extracted according to the degree features in DEN. Next, module collection was conducted by ego gene expansion based on EgoNet algorithm. After that, differential expression of modules between active TB and controls was evaluated using random permutation test. Finally, biological significance of differential modules was detected by pathways enrichment analysis based on Reactome database, and Fisher's exact test was implemented to extract differential pathways for active TB. Totally, 47 ego genes and 47 candidate modules were identified from the DEN. By setting the cutoff-criteria of gene size >5 and classification accuracy ≥0.9, 7 ego modules (Module 4, Module 7, Module 9, Module 19, Module 25, Module 38 and Module 43) were extracted, and all of them had the statistical significance between active TB and controls. Then, Fisher's exact test was conducted to capture differential pathways for active TB. Interestingly, genes in Module 4, Module 25, Module 38, and Module 43 were enriched in the same pathway, formation of a pool of free 40S subunits. Significant pathway for Module 7 and Module 9 was eukaryotic translation termination, and for Module 19 was nonsense mediated decay enhanced by the exon junction complex (EJC). Accordingly, differential modules and pathways might be potential biomarkers for treating active TB, and provide valuable clues for better understanding of molecular mechanism of active TB.
Collapse
Affiliation(s)
- Zhong-Rui Bian
- Department of Cardiology, The Second Hospital of Shandong University, Jinan 250033, Shandong Province, China
| | - Juan Yin
- Beijing Spirallink Medical Research Institute, Beijing 100054, China
| | - Wen Sun
- Beijing Spirallink Medical Research Institute, Beijing 100054, China
| | - Dian-Jie Lin
- Department of Respiratory Medicine, Shandong Provincial Hospital, Jinan 250021, Shandong Province, China.
| |
Collapse
|
26
|
Javan MR, Jalali nezhad AA, Shahraki S, Safa A, Aali H, Kiani Z. Cross-talk between the Immune System and Tuberculosis Pathogenesis; a Review with Emphasis on the Immune Based Treatment. INTERNATIONAL JOURNAL OF BASIC SCIENCE IN MEDICINE 2016. [DOI: 10.15171/ijbsm.2016.10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
27
|
Zumla A, Rao M, Wallis RS, Kaufmann SHE, Rustomjee R, Mwaba P, Vilaplana C, Yeboah-Manu D, Chakaya J, Ippolito G, Azhar E, Hoelscher M, Maeurer M. Host-directed therapies for infectious diseases: current status, recent progress, and future prospects. THE LANCET. INFECTIOUS DISEASES 2016; 16:e47-63. [PMID: 27036359 PMCID: PMC7164794 DOI: 10.1016/s1473-3099(16)00078-5] [Citation(s) in RCA: 250] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 01/16/2016] [Accepted: 02/02/2016] [Indexed: 12/13/2022]
Abstract
Despite extensive global efforts in the fight against killer infectious diseases, they still cause one in four deaths worldwide and are important causes of long-term functional disability arising from tissue damage. The continuing epidemics of tuberculosis, HIV, malaria, and influenza, and the emergence of novel zoonotic pathogens represent major clinical management challenges worldwide. Newer approaches to improving treatment outcomes are needed to reduce the high morbidity and mortality caused by infectious diseases. Recent insights into pathogen–host interactions, pathogenesis, inflammatory pathways, and the host's innate and acquired immune responses are leading to identification and development of a wide range of host-directed therapies with different mechanisms of action. Host-directed therapeutic strategies are now becoming viable adjuncts to standard antimicrobial treatment. Host-directed therapies include commonly used drugs for non-communicable diseases with good safety profiles, immunomodulatory agents, biologics (eg monoclonal antibodies), nutritional products, and cellular therapy using the patient's own immune or bone marrow mesenchymal stromal cells. We discuss clinically relevant examples of progress in identifying host-directed therapies as adjunct treatment options for bacterial, viral, and parasitic infectious diseases.
Collapse
Affiliation(s)
- Alimuddin Zumla
- Centre for Clinical Microbiology, Division of Infection and Immunity, University College London (UCL), London, UK; National Institute for Health Research Biomedical Research Centre, UCL Hospitals NHS Foundation Trust, London, UK
| | - Martin Rao
- Division of Therapeutic Immunology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Centre for Allogeneic Stem Cell Transplantation, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | | | | | | | - Peter Mwaba
- University of Zambia-UCL Medical School (UNZA-UCLMS) Research and Training Project, University Teaching Hospital, Lusaka, Zambia; Ministry of Health, Lusaka, Zambia
| | - Cris Vilaplana
- Unitat de Tuberculosi Experimental Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol CIBER Enfermedades Respiratorias, Can Ruti Campus, Edifici Laboratoris de Recerca, Barcelona, Spain
| | - Dorothy Yeboah-Manu
- Bacteriology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | | | - Giuseppe Ippolito
- National Institute for Infectious Diseases, Lazzaro Spallanzani, Rome, Italy
| | - Esam Azhar
- Special Infectious Agents Unit, King Fahd Medical Research Centre, and Medical Laboratory Technology Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Michael Hoelscher
- Division of Infectious Diseases and Tropical Medicine, Medical Centre of the University of Munich, Munich, Germany; DZIF German Centre for Infection Research, Munich, Germany
| | - Markus Maeurer
- Division of Therapeutic Immunology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Centre for Allogeneic Stem Cell Transplantation, Karolinska University Hospital Huddinge, Stockholm, Sweden.
| | | |
Collapse
|
28
|
Lavarti R, Ganugapati J, Ratcha S, Rao LSS, SivaSai KSR. Insights from the analysis of predicted Rv0679c protein peptide from Mycobacterium tuberculosis with Toll like Receptors in host. Bioinformation 2016; 12:293-299. [PMID: 28246463 PMCID: PMC5295044 DOI: 10.6026/97320630012293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/14/2016] [Accepted: 07/20/2016] [Indexed: 11/23/2022] Open
Abstract
Peptides of Rv0679c a membrane protein of the cell envelope (16.6 KDa) of Mycobacterium tuberculosis (M. tb), inhibited entry of live bacilli into epithelial (A549) and macrophage (U937) cell lines in vitro, suggesting a possible role in invasion. Receptors associated with Rv0679c antigen entry into cell lines were not characterized. We are reporting that Rv0679c peptides could bind to Toll like receptors (TLRs), the principal class of pathogen recognition receptors on host cells (PRR) by docking studies. Peptide structures were predicted using PEP FOLD and docking of truncated peptides with TLR's was performed using Cluspro 2.0. Docked complexes were analyzed using Swiss-PDB Viewer. Nine peptides of Rv0679c protein assessed were able to bind to TLR2-1 and TLR 4-MD2; however the binding energy was better with TLR 4-MD2. Peptide 30985 (-866.4 kcal/mol) has better binding energy with TLR2-1, in contrast peptide 30982 showed a better binding energy to TLR 4-MD2 dimer with a score of -1291.7 kcal/mol. Interactive residue analysis revealed that GLU 173 and SER 454 of TLR 1; ARG 447 and ARG 486 of TLR2; ARG 264 of TLR 4 and SER 120, LYS 122 and GLU 92 of MD2 region are predominant residues interacting with peptides of Rv0679c protein. Our study suggests that predominant residues and receptors of TLR2 and TLR4 are important for Rv0679c protein binding, which could further lead to invasion of M. tb into the host cell.
Collapse
Affiliation(s)
- Rupa Lavarti
- Department of Biotechnology, Sreenidhi Institute of Science & Technology, Ghatkesar, Hyderabad – 501301
| | - Jayasree Ganugapati
- Department of Biotechnology, Sreenidhi Institute of Science & Technology, Ghatkesar, Hyderabad – 501301
| | - Shirisa Ratcha
- Department of Biotechnology, Sreenidhi Institute of Science & Technology, Ghatkesar, Hyderabad – 501301
| | - Lakshmana SS Rao
- Department of Biotechnology, Sreenidhi Institute of Science & Technology, Ghatkesar, Hyderabad – 501301
| | - Krovvidi SR SivaSai
- Department of Biotechnology, Sreenidhi Institute of Science & Technology, Ghatkesar, Hyderabad – 501301
| |
Collapse
|
29
|
Alam MA, Arora K, Gurrapu S, Jonnalagadda SK, Nelson GL, Kiprof P, Jonnalagadda SC, Mereddy VR. Synthesis and evaluation of functionalized benzoboroxoles as potential anti-tuberculosis agents. Tetrahedron 2016; 72:3795-3801. [PMID: 27642196 PMCID: PMC5021310 DOI: 10.1016/j.tet.2016.03.038] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Several derivatives of aminobenzoboroxole have been prepared starting from 2-boronobenzaldehyde. All of these derivatives have been evaluated for their anti-mycobacterial activity on Mycobacterium smegmatis and cytotoxicity on breast cancer cell line MCF7. Based on these studies, all the tested molecules have been found to be generally non-toxic and benzoboroxoles with unsubstituted (primary) amines have been found to exhibit good anti-mycobacterial activity. Some of the key compounds have been evaluated for their anti-tubercular activity on Mycobacterium tuberculosis H37Rv using 7H9 and GAST media. 7-Bromo-6-aminobenzoboroxole 4 has been identified as the lead candidate compound for further development.
Collapse
Affiliation(s)
- Mohammad A. Alam
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, USA
| | - Kriti Arora
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Shirisha Gurrapu
- Integrated Biosciences Graduate Program, University of Minnesota, MN 55812, USA
| | | | - Grady L. Nelson
- Integrated Biosciences Graduate Program, University of Minnesota, MN 55812, USA
| | - Paul Kiprof
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, MN 55812, USA
| | - Subash C. Jonnalagadda
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, USA
- Department of Biomedical and Translational Sciences, Rowan University, Glassboro, NJ 08028, USA
| | - Venkatram R. Mereddy
- Integrated Biosciences Graduate Program, University of Minnesota, MN 55812, USA
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, MN 55812, USA
- Department of Pharmacy Practice and Pharmaceutical Sciences, University of Minnesota, Duluth, MN 55812, USA
| |
Collapse
|
30
|
Gene co-expression network analysis reveals common system-level properties of genes involved in tuberculosis across independent gene expression studies. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/s13721-016-0131-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
31
|
Mbugi EV, Katale BZ, Streicher EM, Keyyu JD, Kendall SL, Dockrell HM, Michel AL, Rweyemamu MM, Warren RM, Matee MI, van Helden PD, Couvin D, Rastogi N. Mapping of Mycobacterium tuberculosis Complex Genetic Diversity Profiles in Tanzania and Other African Countries. PLoS One 2016; 11:e0154571. [PMID: 27149626 PMCID: PMC4858144 DOI: 10.1371/journal.pone.0154571] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/15/2016] [Indexed: 11/23/2022] Open
Abstract
The aim of this study was to assess and characterize Mycobacterium tuberculosis complex (MTBC) genotypic diversity in Tanzania, as well as in neighbouring East and other several African countries. We used spoligotyping to identify a total of 293 M. tuberculosis clinical isolates (one isolate per patient) collected in the Bunda, Dar es Salaam, Ngorongoro and Serengeti areas in Tanzania. The results were compared with results in the SITVIT2 international database of the Pasteur Institute of Guadeloupe. Genotyping and phylogeographical analyses highlighted the predominance of the CAS, T, EAI, and LAM MTBC lineages in Tanzania. The three most frequent Spoligotype International Types (SITs) were: SIT21/CAS1-Kili (n = 76; 25.94%), SIT59/LAM11-ZWE (n = 22; 7.51%), and SIT126/EAI5 tentatively reclassified as EAI3-TZA (n = 18; 6.14%). Furthermore, three SITs were newly created in this study (SIT4056/EAI5 n = 2, SIT4057/T1 n = 1, and SIT4058/EAI5 n = 1). We noted that the East-African-Indian (EAI) lineage was more predominant in Bunda, the Manu lineage was more common among strains isolated in Ngorongoro, and the Central-Asian (CAS) lineage was more predominant in Dar es Salaam (p-value<0.0001). No statistically significant differences were noted when comparing HIV status of patients vs. major lineages (p-value = 0.103). However, when grouping lineages as Principal Genetic Groups (PGG), we noticed that PGG2/3 group (Haarlem, LAM, S, T, and X) was more associated with HIV-positive patients as compared to PGG1 group (Beijing, CAS, EAI, and Manu) (p-value = 0.03). This study provided mapping of MTBC genetic diversity in Tanzania (containing information on isolates from different cities) and neighbouring East African and other several African countries highlighting differences as regards to MTBC genotypic distribution between Tanzania and other African countries. This work also allowed underlining of spoligotyping patterns tentatively grouped within the newly designated EAI3-TZA lineage (remarkable by absence of spacers 2 and 3, and represented by SIT126) which seems to be specific to Tanzania. However, further genotyping information would be needed to confirm this specificity.
Collapse
Affiliation(s)
- Erasto V. Mbugi
- Department of Biochemistry, Muhimbili University of Health and Allied Sciences, P. O. Box 65001, Dar es Salaam, Tanzania
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, P.O. Box 65001, Dar es Salaam, Tanzania
| | - Bugwesa Z. Katale
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, P.O. Box 65001, Dar es Salaam, Tanzania
- Tanzania Wildlife Research Institute (TAWIRI), P.O. Box 661, Arusha, Tanzania
| | - Elizabeth M. Streicher
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research/ South African Medical Research Council (MRC) Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Health Sciences, Stellenbosch University, P.O. Box 241, Cape Town, 8000, South Africa
| | - Julius D. Keyyu
- Tanzania Wildlife Research Institute (TAWIRI), P.O. Box 661, Arusha, Tanzania
| | - Sharon L. Kendall
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, United Kingdom
| | - Hazel M. Dockrell
- The Royal Veterinary College, Royal College Street, London, NW1 0TU, United Kingdom
| | - Anita L. Michel
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Mark M. Rweyemamu
- Southern African Centre for Infectious Disease Surveillance, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Robin M. Warren
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research/ South African Medical Research Council (MRC) Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Health Sciences, Stellenbosch University, P.O. Box 241, Cape Town, 8000, South Africa
| | - Mecky I. Matee
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, P.O. Box 65001, Dar es Salaam, Tanzania
| | - Paul D. van Helden
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research/ South African Medical Research Council (MRC) Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Health Sciences, Stellenbosch University, P.O. Box 241, Cape Town, 8000, South Africa
| | - David Couvin
- WHO Supranational TB Reference Laboratory, Tuberculosis & Mycobacteria Unit, Institut Pasteur de la Guadeloupe, Morne Joliviere, BP 484, 97183, Abymes, Guadeloupe
| | - Nalin Rastogi
- WHO Supranational TB Reference Laboratory, Tuberculosis & Mycobacteria Unit, Institut Pasteur de la Guadeloupe, Morne Joliviere, BP 484, 97183, Abymes, Guadeloupe
| |
Collapse
|
32
|
Ahmad S, Dhar M, Mittal G, Bhat NK, Shirazi N, Kalra V, Sati HC, Gupta V. A comparative hospital-based observational study of mono- and co-infections of malaria, dengue virus and scrub typhus causing acute undifferentiated fever. Eur J Clin Microbiol Infect Dis 2016; 35:705-11. [PMID: 26851948 DOI: 10.1007/s10096-016-2590-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 01/18/2016] [Indexed: 10/22/2022]
Abstract
Positive serology for dengue and/or scrub typhus infection with/without positive malarial smear (designated as mixed or co-infection) is being increasingly observed during epidemics of acute undifferentiated febrile illnesses (AUFIs). We planned to study the clinical and biochemical spectrum of co-infections with Plasmodium sp., dengue virus and scrub typhus and compare these with mono-infection by the same organisms. During the period from December 2012 to December 2013, all cases presenting with AUFIs to a single medical unit of a referral centre in Garhwal region of the north Indian state of Uttarakhand were retrospectively selected and categorised aetiologically as co-infections, malaria, dengue or scrub typhus. The groups thus created were compared in terms of demographic, clinical, biochemical and outcome parameters. The co-infection group (n = 49) was associated with milder clinical manifestations, fewer, milder and non-progressive organ dysfunction, and lesser need for intensive care, mechanical ventilation and dialysis as compared to mono-infections. When co-infections were sub-grouped and compared with the relevant mono-infections, there were differences in certain haematological and biochemical parameters; however, this difference did not translate into differential outcomes. Scrub typhus mono-infection was associated with severe disease in terms of both morbidity and mortality. Malaria, dengue and scrub typhus should be routinely tested in all patients with AUFIs. Co-infections, whether true or due to serological cross-reactivity, appear to be a separate entity so far as presentation and morbidity is concerned. Further insight is needed into the mechanism and identification of the protective infection.
Collapse
Affiliation(s)
- S Ahmad
- Department of Medicine, Himalayan Institute of Medical Sciences, SRH University, Swami Ram Nagar, Jolly Grant, Dehradun, Uttarakhand, 248106, India.
| | - M Dhar
- Department of Medicine, Himalayan Institute of Medical Sciences, SRH University, Swami Ram Nagar, Jolly Grant, Dehradun, Uttarakhand, 248106, India
| | - G Mittal
- Department of Microbiology, Himalayan Institute of Medical Sciences, Dehradun, India
| | - N K Bhat
- Department of Pediatrics, Himalayan Institute of Medical Sciences, Dehradun, India
| | - N Shirazi
- Department of Pathology, Himalayan Institute of Medical Sciences, Dehradun, India
| | - V Kalra
- Department of Medicine, Himalayan Institute of Medical Sciences, SRH University, Swami Ram Nagar, Jolly Grant, Dehradun, Uttarakhand, 248106, India
| | - H C Sati
- Department of Community Medicine, Himalayan Institute of Medical Sciences, Dehradun, India
| | - V Gupta
- Department of Pathology, Himalayan Institute of Medical Sciences, Dehradun, India
| |
Collapse
|
33
|
Ganji R, Dhali S, Rizvi A, Rapole S, Banerjee S. Understanding HIV-Mycobacteria synergism through comparative proteomics of intra-phagosomal mycobacteria during mono- and HIV co-infection. Sci Rep 2016; 6:22060. [PMID: 26916387 PMCID: PMC4768096 DOI: 10.1038/srep22060] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 02/04/2016] [Indexed: 01/01/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) is the most common co-infection in HIV patients and a serious co-epidemic. Apart from increasing the risk of reactivation of latent tuberculosis (TB), HIV infection also permits opportunistic infection of environmental non-pathogenic mycobacteria. To gain insights into mycobacterial survival inside host macrophages and identify mycobacterial proteins or processes that influence HIV propagation during co-infection, we employed proteomics approach to identify differentially expressed intracellular mycobacterial proteins during mono- and HIV co-infection of human THP-1 derived macrophage cell lines. Of the 92 proteins identified, 30 proteins were upregulated during mycobacterial mono-infection and 40 proteins during HIV-mycobacteria co-infection. We observed down-regulation of toxin-antitoxin (TA) modules, up-regulation of cation transporters, Type VII (Esx) secretion systems, proteins involved in cell wall lipid or protein metabolism, glyoxalate pathway and branched chain amino-acid synthesis during co-infection. The bearings of these mycobacterial factors or processes on HIV propagation during co-infection, as inferred from the proteomics data, were validated using deletion mutants of mycobacteria. The analyses revealed mycobacterial factors that possibly via modulating the host environment, increased viral titers during co-infection. The study provides new leads for investigations towards hitherto unknown molecular mechanisms explaining HIV-mycobacteria synergism, helping address diagnostics and treatment challenges for effective co-epidemic management.
Collapse
Affiliation(s)
- Rakesh Ganji
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana State, India
| | - Snigdha Dhali
- National Centre for Cell Science, Pune, Maharashtra, India
| | - Arshad Rizvi
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana State, India
| | | | - Sharmistha Banerjee
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana State, India
| |
Collapse
|
34
|
Jasenosky LD, Scriba TJ, Hanekom WA, Goldfeld AE. T cells and adaptive immunity to Mycobacterium tuberculosis in humans. Immunol Rev 2015; 264:74-87. [PMID: 25703553 DOI: 10.1111/imr.12274] [Citation(s) in RCA: 243] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The adaptive immune response mediated by T cells is critical for control of Mycobacterium tuberculosis (M. tuberculosis) infection in humans. However, the M. tuberculosis antigens and host T-cell responses that are required for an effective adaptive immune response to M. tuberculosis infection are yet to be defined. Here, we review recent findings on CD4(+) and CD8(+) T-cell responses to M. tuberculosis infection and examine the roles of distinct M. tuberculosis-specific T-cell subsets in control of de novo and latent M. tuberculosis infection, and in the evolution of T-cell immunity to M. tuberculosis in response to tuberculosis treatment. In addition, we discuss recent studies that elucidate aspects of M. tuberculosis-specific adaptive immunity during human immunodeficiency virus co-infection and summarize recent findings from vaccine trials that provide insight into effective adaptive immune responses to M. tuberculosis infection.
Collapse
Affiliation(s)
- Luke D Jasenosky
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | | |
Collapse
|
35
|
Ganji R, Dhali S, Rizvi A, Sankati S, Vemula MH, Mahajan G, Rapole S, Banerjee S. Proteomics approach to understand reduced clearance of mycobacteria and high viral titers during HIV-mycobacteria co-infection. Cell Microbiol 2015; 18:355-68. [PMID: 26332641 DOI: 10.1111/cmi.12516] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Revised: 07/27/2015] [Accepted: 08/20/2015] [Indexed: 12/14/2022]
Abstract
Environmental mycobacteria, highly prevalent in natural and artificial (including chlorinated municipal water) niches, are emerging as new threat to human health, especially to HIV-infected population. These seemingly harmless non-pathogenic mycobacteria, which are otherwise cleared, establish as opportunistic infections adding to HIV-associated complications. Although immune-evading strategies of pathogenic mycobacteria are known, the mechanisms underlying the early events by which opportunistic mycobacteria establish infection in macrophages and influencing HIV infection are unclear. Proteomics of phagosome-enriched fractions from Mycobacterium bovis Bacillus Calmette-Guérin (BCG) mono-infected and HIV-M. bovis BCG co-infected THP-1 cells by LC-MALDI-MS/MS revealed differential distribution of 260 proteins. Validation of the proteomics data showed that HIV co-infection helped the survival of non-pathogenic mycobacteria by obstructing phagosome maturation, promoting lipid biogenesis and increasing intracellular ATP equivalents. In turn, mycobacterial co-infection up-regulated purinergic receptors in macrophages that are known to support HIV entry, explaining increased viral titers during co-infection. The mutualism was reconfirmed using clinically relevant opportunistic mycobacteria, Mycobacterium avium, Mycobacterium kansasii and Mycobacterium phlei that exhibited increased survival during co-infection, together with increase in HIV titers. Additionally, the catalogued proteins in the study provide new leads that will significantly add to the understanding of the biology of opportunistic mycobacteria and HIV coalition.
Collapse
Affiliation(s)
- Rakesh Ganji
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana State, India
| | - Snigdha Dhali
- National Centre for Cell Science, Pune, Maharashtra, India
| | - Arshad Rizvi
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana State, India
| | - Swetha Sankati
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana State, India
| | - Mani Harika Vemula
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana State, India
| | | | | | - Sharmistha Banerjee
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana State, India
| |
Collapse
|
36
|
Pooja D, Tunki L, Kulhari H, Reddy BB, Sistla R. Characterization, biorecognitive activity and stability of WGA grafted lipid nanostructures for the controlled delivery of Rifampicin. Chem Phys Lipids 2015; 193:11-7. [PMID: 26409629 DOI: 10.1016/j.chemphyslip.2015.09.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 09/20/2015] [Accepted: 09/22/2015] [Indexed: 11/29/2022]
Abstract
Targeted nanomedicines improve the delivery of drugs by increasing the drug concentration at target site, protecting the premature degradation and releasing the encapsulated drug in controlled manner. To make rifampicin (RFN) delivery more effective, we designed and characterized wheat germ agglutinin (WGA) conjugated, RFN loaded solid-lipid nanoparticles (WRSN). Nanoparticles were prepared by solvent emulsification/evaporation and conjugated with fluorescein isothiocyanate-labeled WGA. Important characteristics, such as particle size, zeta potential, encapsulation efficiency, conjugation efficiency and in vitro drug release behavior, were investigated. WGA conjugation to the nanoparticles was confirmed by Fourier Transform Infrared (FTIR) analysis. Conjugation efficiency was determined by fluorescent spectroscopy and Bradford assay. RFN was released from nanoparticles via the diffusion-controlled, non-fickian and supercase II mechanism. A haemaglutination test confirmed that WGA retained its bio-recognition activity and sugar-binding specificity after it was coupled with the nanoparticles. In vitro experiments demonstrated that WRSN interacted more than non-conjugated nanoparticles with porcine mucin. WRSN were stable in the presence of electrolytes up to 1M concentration. Therefore, WGA-conjugated solid lipid nanoparticles could be a promising tool for the controlled delivery of RFN or other anti-tubercular drugs.
Collapse
Affiliation(s)
- Deep Pooja
- Medicinal Chemistry & Pharmacology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Lakshmi Tunki
- Medicinal Chemistry & Pharmacology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Hitesh Kulhari
- Medicinal Chemistry & Pharmacology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India; IICT-RMIT Research Centre, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India; Health Innovations Research Institute, RMIT University, Melbourne, Australia
| | - Bharathi B Reddy
- Medicinal Chemistry & Pharmacology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Ramakrishna Sistla
- Medicinal Chemistry & Pharmacology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.
| |
Collapse
|
37
|
Bruchfeld J, Correia-Neves M, Källenius G. Tuberculosis and HIV Coinfection. Cold Spring Harb Perspect Med 2015; 5:a017871. [PMID: 25722472 DOI: 10.1101/cshperspect.a017871] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Tuberculosis (TB) and human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS) constitute the main burden of infectious disease in resource-limited countries. In the individual host, the two pathogens, Mycobacterium tuberculosis and HIV, potentiate one another, accelerating the deterioration of immunological functions. In high-burden settings, HIV coinfection is the most important risk factor for developing active TB, which increases the susceptibility to primary infection or reinfection and also the risk of TB reactivation for patients with latent TB. M. tuberculosis infection also has a negative impact on the immune response to HIV, accelerating the progression from HIV infection to AIDS. The clinical management of HIV-associated TB includes the integration of effective anti-TB treatment, use of concurrent antiretroviral therapy (ART), prevention of HIV-related comorbidities, management of drug cytotoxicity, and prevention/treatment of immune reconstitution inflammatory syndrome (IRIS).
Collapse
Affiliation(s)
- Judith Bruchfeld
- Unit of Infectious Diseases, Institution of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm SE-171 77, Sweden
| | - Margarida Correia-Neves
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga 4710-057, Portugal ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães 4710-057, Portugal
| | - Gunilla Källenius
- Karolinska Institutet, Department of Clinical Science and Education, Stockholm SE-118 83, Sweden
| |
Collapse
|
38
|
Cruz A, Torrado E, Carmona J, Fraga AG, Costa P, Rodrigues F, Appelberg R, Correia-Neves M, Cooper AM, Saraiva M, Pedrosa J, Castro AG. BCG vaccination-induced long-lasting control of Mycobacterium tuberculosis correlates with the accumulation of a novel population of CD4⁺IL-17⁺TNF⁺IL-2⁺ T cells. Vaccine 2014; 33:85-91. [PMID: 25448107 DOI: 10.1016/j.vaccine.2014.11.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 11/07/2014] [Accepted: 11/10/2014] [Indexed: 11/30/2022]
Abstract
Mycobacterium bovis Bacille Calmette-Guerin (BCG) is the only vaccine in use to prevent Mycobacterium tuberculosis (Mtb) infection. Here we analyzed the protective efficacy of BCG against Mtb challenges 21 or 120 days after vaccination. Only after 120 days post-vaccination were mice able to efficiently induce early Mtb growth arrest and maintain long-lasting control of Mtb. This protection correlated with the accumulation of CD4(+) T cells expressing IL-17(+)TNF(+)IL-2(+). In contrast, mice challenged with Mtb 21 days after BCG vaccination exhibited only a mild and transient protection, associated with the accumulation of CD4(+) T cells that were mostly IFN-γ(+)TNF(+) and to a lesser extent IFN-γ(+)TNF(+)IL-2(+). These data suggest that the memory response generated by BCG vaccination is functionally distinct depending upon the temporal proximity to BCG vaccination. Understanding how these responses are generated and maintained is critical for the development of novel vaccination strategies against tuberculosis.
Collapse
Affiliation(s)
- Andrea Cruz
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Egídio Torrado
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Jenny Carmona
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Alexandra G Fraga
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Patrício Costa
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Fernando Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui Appelberg
- Institute for Molecular and Cell Biology (IBMC), University of Porto, Porto, Portugal
| | - Margarida Correia-Neves
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | | | - Margarida Saraiva
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Jorge Pedrosa
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - António G Castro
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
39
|
Moretton MA, Hocht C, Taira C, Sosnik A. Rifampicin-loaded ‘flower-like’ polymeric micelles for enhanced oral bioavailability in an extemporaneous liquid fixed-dose combination with isoniazid. Nanomedicine (Lond) 2014; 9:1635-50. [DOI: 10.2217/nnm.13.154] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background: Coadministration of rifampicin (RIF)/isoniazid (INH) is clinically recommended to improve the treatment of tuberculosis. Under gastric conditions, RIF undergoes fast hydrolysis (a pathway hastened by INH) and oral bioavailability loss. Aim: We aimed to assess the chemical stabilization and the oral pharmacokinetics of RIF nanoencapsulated within poly(ε-caprolactone)-b-PEG-b-poly(ε-caprolactone) ‘flower-like’ polymeric micelles. Materials & methods: The chemical stability of RIF was evaluated in vitro under acid conditions with and without INH, and the oral pharmacokinetics of RIF-loaded micelles in rats was compared with those of a suspension coded by the US Pharmacopeia. Results: Nanoencapsulation decreased the degradation rate of RIF with respect to the free drug. Moreover, in vivo data showed a statistically significant increase of RIF oral bioavailability (up to 3.3-times) with respect to the free drug in the presence of INH. Conclusion: Overall results highlight the potential of this nanotechnology platform to develop an extemporaneous liquid RIF/INH fixed-dose combination suitable for pediatric administration. Original submitted 6 April 2013; Revised submitted 7 August 2013
Collapse
Affiliation(s)
- Marcela A Moretton
- The Group of Biomaterials & Nanotechnology for Improved Medicines, Department of Pharmaceutical Technology, Faculty of Pharmacy & Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
- National Science Research Council, Buenos Aires, Argentina
| | - Christian Hocht
- Department of Pharmacology, Faculty of Pharmacy & Biochemistry, University of Buenos Aires, Argentina
| | - Carlos Taira
- National Science Research Council, Buenos Aires, Argentina
- Department of Pharmacology, Faculty of Pharmacy & Biochemistry, University of Buenos Aires, Argentina
| | - Alejandro Sosnik
- The Group of Biomaterials & Nanotechnology for Improved Medicines, Department of Pharmaceutical Technology, Faculty of Pharmacy & Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
- National Science Research Council, Buenos Aires, Argentina
- Department of Materials Science & Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
40
|
Thorborn G, Ploquin MJ, Eksmond U, Pike R, Bayer W, Dittmer U, Hasenkrug KJ, Pepper M, Kassiotis G. Clonotypic composition of the CD4+ T cell response to a vectored retroviral antigen is determined by its speed. THE JOURNAL OF IMMUNOLOGY 2014; 193:1567-77. [PMID: 25000983 DOI: 10.4049/jimmunol.1400667] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The mechanisms whereby different vaccines may expand distinct Ag-specific T cell clonotypes or induce disparate degrees of protection are incompletely understood. We found that several delivery modes of a model retroviral Ag, including natural infection, preferentially expanded initially rare high-avidity CD4(+) T cell clonotypes, known to mediate protection. In contrast, the same Ag vectored by human adenovirus serotype 5 induced clonotypic expansion irrespective of avidity, eliciting a predominantly low-avidity response. Nonselective clonotypic expansion was caused by relatively weak adenovirus serotype 5-vectored Ag presentation and was reproduced by replication-attenuated retroviral vaccines. Mechanistically, the potency of Ag presentation determined the speed and, consequently, completion of the CD4(+) T cell response. Whereas faster completion retained the initial advantage of high-avidity clonotypes, slower completion permitted uninhibited accumulation of low-avidity clonotypes. These results highlighted the importance of Ag presentation patterns in determining the clonotypic composition of vaccine-induced T cell responses and ultimately the efficacy of vaccination.
Collapse
Affiliation(s)
- Georgina Thorborn
- Division of Immunoregulation, Medical Research Council National Institute for Medical Research, London NW7 1AA, United Kingdom
| | - Mickaël J Ploquin
- Division of Immunoregulation, Medical Research Council National Institute for Medical Research, London NW7 1AA, United Kingdom
| | - Urszula Eksmond
- Division of Immunoregulation, Medical Research Council National Institute for Medical Research, London NW7 1AA, United Kingdom
| | - Rebecca Pike
- Division of Immunoregulation, Medical Research Council National Institute for Medical Research, London NW7 1AA, United Kingdom
| | - Wibke Bayer
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, Essen 45147, Germany
| | - Ulf Dittmer
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, Essen 45147, Germany
| | - Kim J Hasenkrug
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840
| | - Marion Pepper
- Department of Immunology, University of Washington, Seattle, WA 98195; and
| | - George Kassiotis
- Division of Immunoregulation, Medical Research Council National Institute for Medical Research, London NW7 1AA, United Kingdom; Department of Medicine, Faculty of Medicine, Imperial College London, London W2 1PG, United Kingdom
| |
Collapse
|
41
|
Kaur IP, Singh H. Nanostructured drug delivery for better management of tuberculosis. J Control Release 2014; 184:36-50. [DOI: 10.1016/j.jconrel.2014.04.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 04/03/2014] [Accepted: 04/03/2014] [Indexed: 01/27/2023]
|
42
|
Sosnik A, Carcaboso AM. Nanomedicines in the future of pediatric therapy. Adv Drug Deliv Rev 2014; 73:140-61. [PMID: 24819219 DOI: 10.1016/j.addr.2014.05.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 04/16/2014] [Accepted: 05/01/2014] [Indexed: 01/02/2023]
Abstract
Nanotechnology has become a key tool to overcome the main (bio)pharmaceutical drawbacks of drugs and to enable their passive or active targeting to specific cells and tissues. Pediatric therapies usually rely on the previous clinical experience in adults. However, there exists scientific evidence that drug pharmacokinetics and pharmacodynamics in children differ from those in adults. For example, the interaction of specific drugs with their target receptors undergoes changes over the maturation of the different organs and systems. A similar phenomenon is observed for toxicity and adverse effects. Thus, it is clear that the treatment of disease in children cannot be simplified to the direct adjustment of the dose to the body weight/surface. In this context, the implementation of innovative technologies (e.g., nanotechnology) in the pediatric population becomes extremely challenging. The present article overviews the different attempts to use nanotechnology to treat diseases in the pediatric population. Due to the relevance, though limited available literature on the matter, we initially describe from preliminary in vitro studies to preclinical and clinical trials aiming to treat pediatric infectious diseases and pediatric solid tumors by means of nanotechnology. Then, the perspectives of pediatric nanomedicine are discussed.
Collapse
Affiliation(s)
- Alejandro Sosnik
- Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel.
| | - Angel M Carcaboso
- Preclinical Therapeutics and Drug Delivery Research Program, Department of Oncology, Hospital Sant Joan de Déu Barcelona, Esplugues de Llobregat, Barcelona 08950, Spain
| |
Collapse
|
43
|
A Mycobacterium bovis BCG-naked DNA prime-boost vaccination strategy induced CD4⁺ and CD8⁺ T-cell response against Mycobacterium tuberculosis immunogens. J Immunol Res 2014; 2014:395626. [PMID: 24741595 PMCID: PMC3987877 DOI: 10.1155/2014/395626] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 01/02/2014] [Accepted: 02/06/2014] [Indexed: 01/29/2023] Open
Abstract
Mycobacterium tuberculosis infection is still a major global public health problem. Presently the only tuberculosis (TB) vaccine available is Bacille Calmette-Guérin (BCG), although it fails to adequately protect against pulmonary TB in adults. To solve this problem, the development of a new effective vaccine is urgently desired. BCG-prime DNA-booster vaccinations strategy has been shown to induce greater protection against tuberculosis (TB) than BCG alone. Some studies have demonstrated that the two genes (Rv1769 and Rv1772) are excellent T-cell antigens and could induce T-cell immune responses. In this research, we built BCG-C or BCG-P prime-recombination plasmid PcDNA3.1-Rv1769 or PcDNA3.1-Rv1772 boost vaccinations strategy to immunize BALB/c mice and evaluated its immunogenicity. The data suggests that the BCG-C+3.1-72 strategy could elicit the most long-lasting and strongest Th1-type cellular immune responses and the BCG-C+3.1-69 strategy could induce the high level CD8+ T-cell response at certain time points. These findings support the ideas that the prime-boost strategy as a combination of vaccines may be better than a single vaccine for protection against tuberculosis.
Collapse
|
44
|
Mishra G, Kumar N, Kaur G, Jain S, Tiwari PK, Mehra NK. Distribution of HLA-A, B and DRB1 alleles in Sahariya tribe of North Central India: An association with pulmonary tuberculosis. INFECTION GENETICS AND EVOLUTION 2014; 22:175-82. [DOI: 10.1016/j.meegid.2013.08.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 08/01/2013] [Accepted: 08/22/2013] [Indexed: 11/16/2022]
|
45
|
Zhang H, Sun Z, Wei W, Liu Z, Fleming J, Zhang S, Lin N, Wang M, Chen M, Xu Y, Zhou J, Li C, Bi L, Zhou G. Identification of serum microRNA biomarkers for tuberculosis using RNA-seq. PLoS One 2014; 9:e88909. [PMID: 24586438 PMCID: PMC3930592 DOI: 10.1371/journal.pone.0088909] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Accepted: 01/13/2014] [Indexed: 01/02/2023] Open
Abstract
Tuberculosis (TB) remains a significant human health issue. More effective biomarkers for use in tuberculosis prevention, diagnosis, and treatment, including markers that can discriminate between healthy individuals and those with latent infection, are urgently needed. To identify a set of such markers, we used Solexa sequencing to examine microRNA expression in the serum of patients with active disease, healthy individuals with latent TB, and those with or without prior BCG inoculation. We identified 24 microRNAs that are up-regulated (2.85–1285.93 fold) and 6 microRNAs that are down-regulated (0.003–0.11 fold) (P<0.05) in patients with active TB relative to the three groups of healthy controls. In addition, 75 microRNAs were up-regulated (2.05–2454.58 fold) and 11 were down-regulated (0.001–0.42 fold) (P<0.05) in latent-TB infected individuals relative to BCG- inoculated individuals. Of interest, 134 microRNAs were differentially-expressed in BCG-inoculated relative to un-inoculated individuals (18 up-regulated 2.9–499.29 fold, 116 down-regulated 0.0002–0.5 fold), providing insights into the effects of BCG inoculation at the microRNA level. Target prediction of differentially-expressed microRNAs by microRNA-Gene Network analysis and analysis of pathways affected suggest that regulation of the host immune system by microRNAs is likely to be one of the main factors in the pathogenesis of tuberculosis. qRT-PCR validation indicated that hsa-miR-196b and hsa-miR-376c have potential as markers for active TB disease. The microRNA differential-expression profiles generated in this study provide a good foundation for the development of markers for TB diagnosis, and for investigations on the role of microRNAs in BCG-inoculated and latent-infected individuals.
Collapse
Affiliation(s)
- Hongtai Zhang
- Department of Space Radiobiology, Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Non-coding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhaogang Sun
- Beijing Key Laboratory of Drug Resistance in Tuberculosis, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Wenjing Wei
- Key Laboratory of Non-coding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | | | - Joy Fleming
- Key Laboratory of Non-coding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Shuai Zhang
- Key Laboratory of Non-coding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Nan Lin
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ming Wang
- Key Laboratory of Non-coding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Maoshan Chen
- Beijing Genomics Institute, Shenzhen 518083, China
| | - Yuhui Xu
- Beijing Key Laboratory of Drug Resistance in Tuberculosis, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Jie Zhou
- The 4th Peoples’ Hospital, Foshan City, Guangdong Province, China
| | - Chuanyou Li
- Beijing Chest Hospital, Capital Medical University, Beijing, China
- * E-mail: (GZ); (LB); (CL)
| | - Lijun Bi
- Key Laboratory of Non-coding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- * E-mail: (GZ); (LB); (CL)
| | - Guangming Zhou
- Department of Space Radiobiology, Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- * E-mail: (GZ); (LB); (CL)
| |
Collapse
|
46
|
Metz B, van den Dobbelsteen G, van Els C, van der Gun J, Levels L, van der Pol L, Rots N, Kersten G. Quality-control issues and approaches in vaccine development. Expert Rev Vaccines 2014; 8:227-38. [DOI: 10.1586/14760584.8.2.227] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
47
|
|
48
|
Rao M, Vogelzang A, Kaiser P, Schuerer S, Kaufmann SHE, Gengenbacher M. The tuberculosis vaccine candidate Bacillus Calmette-Guérin ΔureC::hly coexpressing human interleukin-7 or -18 enhances antigen-specific T cell responses in mice. PLoS One 2013; 8:e78966. [PMID: 24236077 PMCID: PMC3827306 DOI: 10.1371/journal.pone.0078966] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 09/17/2013] [Indexed: 12/12/2022] Open
Abstract
Bacillus Calmette–Guérin (BCG), the only approved tuberculosis vaccine, provides only limited protection. Previously, we generated a recombinant derivative (BCG ΔureC::hly), which secretes the pore-forming toxin listeriolysin O (LLO) of Listeria monocytogenes. This vaccine shows superior protection against tuberculosis in preclinical models and is safe in humans. Here we describe two new vaccine strains which express human interleukin-7 (hIL)-7 or hIL-18 in the genetic background of BCG ΔureC::hly to modulate specific T cell immunity. Both strains exhibited an uncompromised in vitro growth pattern, while inducing a proinflammatory cytokine profile in human dendritic cells (DCs). Human DCs harbouring either strain efficiently promoted secretion of IL-2 by autologous T cells in a coculture system, suggesting superior immunogenicity. BALB/c mice vaccinated with BCG ΔureC::hly, BCG ΔureC::hly_hIL7 or BCG ΔureC::hly_hIL18 developed a more robust Th1 response than after vaccination with parental BCG. Both strains provided significantly better protection than BCG in a murine Mycobacterium tuberculosis challenge model but efficacy remained comparable to that afforded by BCG ΔureC::hly. We conclude that expression of hIL-7 or hIL-18 enhanced specific T cell responses but failed to improve protection over BCG ΔureC::hly in mice.
Collapse
Affiliation(s)
- Martin Rao
- Max Planck Institute for Infection Biology, Department of Immunology, Berlin, Germany
| | - Alexis Vogelzang
- Max Planck Institute for Infection Biology, Department of Immunology, Berlin, Germany
| | - Peggy Kaiser
- Max Planck Institute for Infection Biology, Department of Immunology, Berlin, Germany
| | - Stefanie Schuerer
- Max Planck Institute for Infection Biology, Department of Immunology, Berlin, Germany
| | - Stefan H. E. Kaufmann
- Max Planck Institute for Infection Biology, Department of Immunology, Berlin, Germany
- * E-mail: (SHEK); (MG)
| | - Martin Gengenbacher
- Max Planck Institute for Infection Biology, Department of Immunology, Berlin, Germany
- * E-mail: (SHEK); (MG)
| |
Collapse
|
49
|
Efficient activation of human T cells of both CD4 and CD8 subsets by urease-deficient recombinant Mycobacterium bovis BCG that produced a heat shock protein 70-M. tuberculosis-derived major membrane protein II fusion protein. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 21:1-11. [PMID: 24152387 DOI: 10.1128/cvi.00564-13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
For the purpose of obtaining Mycobacterium bovis bacillus Calmette-Guérin (BCG) capable of activating human naive T cells, urease-deficient BCG expressing a fusion protein composed of Mycobacterium tuberculosis-derived major membrane protein II (MMP-II) and heat shock protein 70 (HSP70) of BCG (BCG-DHTM) was produced. BCG-DHTM secreted the HSP70-MMP-II fusion protein and effectively activated human monocyte-derived dendritic cells (DCs) by inducing phenotypic changes and enhanced cytokine production. BCG-DHTM-infected DCs activated naive T cells of both CD4 and naive CD8 subsets, in an antigen (Ag)-dependent manner. The T cell activation induced by BCG-DHTM was inhibited by the pretreatment of DCs with chloroquine. The naive CD8(+) T cell activation was mediated by the transporter associated with antigen presentation (TAP) and the proteosome-dependent cytosolic cross-priming pathway. Memory CD8(+) T cells and perforin-producing effector CD8(+) T cells were efficiently produced from the naive T cell population by BCG-DHTM stimulation. Single primary infection with BCG-DHTM in C57BL/6 mice efficiently produced T cells responsive to in vitro secondary stimulation with HSP70, MMP-II, and M. tuberculosis-derived cytosolic protein and inhibited the multiplication of subsequently aerosol-challenged M. tuberculosis more efficiently than did vector control BCG. These results indicate that the introduction of MMP-II and HSP70 into urease-deficient BCG may be useful for improving BCG for control of tuberculosis.
Collapse
|
50
|
Chimusa ER, Zaitlen N, Daya M, Möller M, van Helden PD, Mulder NJ, Price AL, Hoal EG. Genome-wide association study of ancestry-specific TB risk in the South African Coloured population. Hum Mol Genet 2013; 23:796-809. [PMID: 24057671 DOI: 10.1093/hmg/ddt462] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The worldwide burden of tuberculosis (TB) remains an enormous problem, and is particularly severe in the admixed South African Coloured (SAC) population residing in the Western Cape. Despite evidence from twin studies suggesting a strong genetic component to TB resistance, only a few loci have been identified to date. In this work, we conduct a genome-wide association study (GWAS), meta-analysis and trans-ethnic fine mapping to attempt the replication of previously identified TB susceptibility loci. Our GWAS results confirm the WT1 chr11 susceptibility locus (rs2057178: odds ratio = 0.62, P = 2.71e(-06)) previously identified by Thye et al., but fail to replicate previously identified polymorphisms in the TLR8 gene and locus 18q11.2. Our study demonstrates that the genetic contribution to TB risk varies between continental populations, and illustrates the value of including admixed populations in studies of TB risk and other complex phenotypes. Our evaluation of local ancestry based on the real and simulated data demonstrates that case-only admixture mapping is currently impractical in multi-way admixed populations, such as the SAC, due to spurious deviations in average local ancestry generated by current local ancestry inference methods. This study provides insights into identifying disease genes and ancestry-specific disease risk in multi-way admixed populations.
Collapse
Affiliation(s)
- Emile R Chimusa
- Department of Clinical Laboratory Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | | | | | | | | | | | | | | |
Collapse
|