1
|
Zhang S, Chen C, Cao Y, Meng X, Hu R, Liu Z, Gao H, Jiang X, Wang J, Yu L. Management of Light Absorption Based on Sidewall Reflection for Fabricating High-Performance Flexible Nano-Coned Sb 2Se 3 Thin Film Photovoltaics. J Phys Chem Lett 2024; 15:9548-9556. [PMID: 39265142 DOI: 10.1021/acs.jpclett.4c02414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
High performance and robustness are the key factors to boosting wearable and portable applications. Although the 1D crystal structure makes the Sb2Se3 thin film more tolerant to physical deformation upon bending, the conventional planar structures still cannot undergo repeated mechanical bending due to the induced stress/strain inside devices, which can be well addressed by constructing three-dimensional nanostructures. Besides, the electron diffusion length has two values, 0.3 μm in the [221] direction and 1.7 μm in the [001] direction, in the Sb2Se3 thin film, which limits the absorber thickness, for getting an effective carrier collection; thus, a strong light trapping effect enabling sufficient light harvesting is needed to allow the use of a very thin light absorption layer. Herein, the nanoconed Sb2Se3 solar cells have been designed, and their light absorption behaviors were investigated within a finite-element simulation under the substrate back-reflection, indicating that the reflection of the bottom part always works positively, while the effect of the nanocone sidewall on absorption enhancement largely depends on its geometry, arising from resonant or scattering modes. These results provide a practical guide in designing/establishing an easier/simpler way to fabricate high-performance and mechanically stable flexible nanostructured Sb2Se3 thin film solar cells.
Collapse
Affiliation(s)
- Shaobo Zhang
- College of Physical Science and Technology/Microelectronics Industry Research Institute, Yangzhou University, 225002 Yangzhou, P. R. China
- School of Electronics Science and Engineering/National Laboratory of Solid State Microstructures, Nanjing University, 210023 Nanjing, P. R. China
| | - Cheng Chen
- College of Physical Science and Technology/Microelectronics Industry Research Institute, Yangzhou University, 225002 Yangzhou, P. R. China
| | - Yunqing Cao
- College of Physical Science and Technology/Microelectronics Industry Research Institute, Yangzhou University, 225002 Yangzhou, P. R. China
| | - Xiangdong Meng
- College of Physical Science and Technology/Microelectronics Industry Research Institute, Yangzhou University, 225002 Yangzhou, P. R. China
| | - Ruijin Hu
- College of Physical Science and Technology/Microelectronics Industry Research Institute, Yangzhou University, 225002 Yangzhou, P. R. China
- School of Electronics Science and Engineering/National Laboratory of Solid State Microstructures, Nanjing University, 210023 Nanjing, P. R. China
| | - Zongguang Liu
- College of Physical Science and Technology/Microelectronics Industry Research Institute, Yangzhou University, 225002 Yangzhou, P. R. China
| | - Haifeng Gao
- Cell R&D Center, JA Solar Holdings Co. Ltd, Yangzhou, 225000, P. R. China
| | - Xiulin Jiang
- Cell R&D Center, JA Solar Holdings Co. Ltd, Yangzhou, 225000, P. R. China
| | - Junzhuan Wang
- School of Electronics Science and Engineering/National Laboratory of Solid State Microstructures, Nanjing University, 210023 Nanjing, P. R. China
| | - Linwei Yu
- School of Electronics Science and Engineering/National Laboratory of Solid State Microstructures, Nanjing University, 210023 Nanjing, P. R. China
| |
Collapse
|
2
|
Surdo S, Barillaro G. Voltage- and Metal-assisted Chemical Etching of Micro and Nano Structures in Silicon: A Comprehensive Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400499. [PMID: 38644330 DOI: 10.1002/smll.202400499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/12/2024] [Indexed: 04/23/2024]
Abstract
Sculpting silicon at the micro and nano scales has been game-changing to mold bulk silicon properties and expand, in turn, applications of silicon beyond electronics, namely, in photonics, sensing, medicine, and mechanics, to cite a few. Voltage- and metal-assisted chemical etching (ECE and MaCE, respectively) of silicon in acidic electrolytes have emerged over other micro and nanostructuring technologies thanks to their unique etching features. ECE and MaCE have enabled the fabrication of novel structures and devices not achievable otherwise, complementing those feasible with the deep reactive ion etching (DRIE) technology, the gold standard in silicon machining. Here, a comprehensive review of ECE and MaCE for silicon micro and nano machining is provided. The chemistry and physics ruling the dissolution of silicon are dissected and similarities and differences between ECE and MaCE are discussed showing that they are the two sides of the same coin. The processes governing the anisotropic etching of designed silicon micro and nanostructures are analyzed, and the modulation of etching profile over depth is discussed. The preparation of micro- and nanostructures with tailored optical, mechanical, and thermo(electrical) properties is then addressed, and their applications in photonics, (bio)sensing, (nano)medicine, and micromechanical systems are surveyed. Eventually, ECE and MaCE are benchmarked against DRIE, and future perspectives are highlighted.
Collapse
Affiliation(s)
- Salvatore Surdo
- Dipartimento di Ingegneria dell'Informazione, Università di Pisa, via G. Caruso 16, Pisa, 56122, Italy
| | - Giuseppe Barillaro
- Dipartimento di Ingegneria dell'Informazione, Università di Pisa, via G. Caruso 16, Pisa, 56122, Italy
| |
Collapse
|
3
|
Wei S, Xia X, Bi S, Hu S, Wu X, Hsu HY, Zou X, Huang K, Zhang DW, Sun Q, Bard AJ, Yu ET, Ji L. Metal-insulator-semiconductor photoelectrodes for enhanced photoelectrochemical water splitting. Chem Soc Rev 2024; 53:6860-6916. [PMID: 38833171 DOI: 10.1039/d3cs00820g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Photoelectrochemical (PEC) water splitting provides a scalable and integrated platform to harness renewable solar energy for green hydrogen production. The practical implementation of PEC systems hinges on addressing three critical challenges: enhancing energy conversion efficiency, ensuring long-term stability, and achieving economic viability. Metal-insulator-semiconductor (MIS) heterojunction photoelectrodes have gained significant attention over the last decade for their ability to efficiently segregate photogenerated carriers and mitigate corrosion-induced semiconductor degradation. This review discusses the structural composition and interfacial intricacies of MIS photoelectrodes tailored for PEC water splitting. The application of MIS heterostructures across various semiconductor light-absorbing layers, including traditional photovoltaic-grade semiconductors, metal oxides, and emerging materials, is presented first. Subsequently, this review elucidates the reaction mechanisms and respective merits of vacuum and non-vacuum deposition techniques in the fabrication of the insulator layers. In the context of the metal layers, this review extends beyond the conventional scope, not only by introducing metal-based cocatalysts, but also by exploring the latest advancements in molecular and single-atom catalysts integrated within MIS photoelectrodes. Furthermore, a systematic summary of carrier transfer mechanisms and interface design principles of MIS photoelectrodes is presented, which are pivotal for optimizing energy band alignment and enhancing solar-to-chemical conversion efficiency within the PEC system. Finally, this review explores innovative derivative configurations of MIS photoelectrodes, including back-illuminated MIS photoelectrodes, inverted MIS photoelectrodes, tandem MIS photoelectrodes, and monolithically integrated wireless MIS photoelectrodes. These novel architectures address the limitations of traditional MIS structures by effectively coupling different functional modules, minimizing optical and ohmic losses, and mitigating recombination losses.
Collapse
Affiliation(s)
- Shice Wei
- School of Microelectronics & Jiashan Fudan Institute, Fudan University, Shanghai 200433, China.
| | - Xuewen Xia
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China.
| | - Shuai Bi
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Shen Hu
- School of Microelectronics & Jiashan Fudan Institute, Fudan University, Shanghai 200433, China.
| | - Xuefeng Wu
- School of Microelectronics & Jiashan Fudan Institute, Fudan University, Shanghai 200433, China.
| | - Hsien-Yi Hsu
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Xingli Zou
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China.
| | - Kai Huang
- Department of Physics, Xiamen University, Xiamen 361005, China.
| | - David W Zhang
- School of Microelectronics & Jiashan Fudan Institute, Fudan University, Shanghai 200433, China.
| | - Qinqqing Sun
- School of Microelectronics & Jiashan Fudan Institute, Fudan University, Shanghai 200433, China.
| | - Allen J Bard
- Department of Chemistry, The University of Texas at Austin, Texas 78713, USA
| | - Edward T Yu
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Texas 78758, USA.
| | - Li Ji
- School of Microelectronics & Jiashan Fudan Institute, Fudan University, Shanghai 200433, China.
| |
Collapse
|
4
|
Ma A, Lee Y, Seo D, Kim J, Park S, Son J, Kwon W, Nam D, Lee H, Kim Y, Um H, Shin H, Nam KM. Unlocking the Potential of Bi 2S 3-Derived Bi Nanoplates: Enhanced Catalytic Activity and Selectivity in Electrochemical and Photoelectrochemical CO 2 Reduction to Formate. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400874. [PMID: 38760899 PMCID: PMC11267354 DOI: 10.1002/advs.202400874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/24/2024] [Indexed: 05/20/2024]
Abstract
Various electrocatalysts are extensively examined for their ability to selectively produce desired products by electrochemical CO2 reduction reaction (CO2RR). However, an efficient CO2RR electrocatalyst doesn't ensure an effective co-catalyst on the semiconductor surface for photoelectrochemical CO2RR. Herein, Bi2S3 nanorods are synthesized and electrochemically reduced to Bi nanoplates that adhere to the substrates for application in the electrochemical and photoelectrochemical CO2RR. Compared with commercial-Bi, the Bi2S3-derived Bi (S-Bi) nanoplates on carbon paper exhibit superior electrocatalytic activity and selectivity for formate (HCOO-) in the electrochemical CO2RR, achieving a Faradaic efficiency exceeding 93%, with minimal H2 production over a wide potential range. This highly selective S-Bi catalyst is being employed on the Si photocathode to investigate the behavior of electrocatalysts during photoelectrochemical CO2RR. The strong adhesion of the S-Bi nanoplates to the Si nanowire substrate and their unique catalytic properties afford exceptional activity and selectivity for HCOO- under simulated solar irradiation. The selectivity observed in electrochemical CO2RR using the S-Bi catalyst correlates with that seen in the photoelectrochemical CO2RR system. Combined pulsed potential methods and theoretical analyses reveal stabilization of the OCHO* intermediate on the S-Bi catalyst under specific conditions, which is critical for developing efficient catalysts for CO2-to-HCOO- conversion.
Collapse
Affiliation(s)
- Ahyeon Ma
- Department of Chemistry and Institute for Future EarthPusan National UniversityGeumjeong‐guBusan46241Republic of Korea
| | - Yongsoon Lee
- Graduate School of Energy Science and Technology (GEST)Chungnam National UniversityDaejeon34134Republic of Korea
| | - Dongho Seo
- Department of Chemistry and Institute for Future EarthPusan National UniversityGeumjeong‐guBusan46241Republic of Korea
| | - Jiyoon Kim
- Department of Chemistry and Institute for Future EarthPusan National UniversityGeumjeong‐guBusan46241Republic of Korea
| | - Soohyeok Park
- Department of Chemical EngineeringKangwon National UniversityChuncheonGangwon‐do24341Republic of Korea
| | - Jihoon Son
- Graduate School of Energy Science and Technology (GEST)Chungnam National UniversityDaejeon34134Republic of Korea
| | - Woosuck Kwon
- Department of Energy Science and EngineeringDaegu Gyeongbuk Institute of Science and Technology (DGIST)Daegu42988Republic of Korea
| | - Dae‐Hyun Nam
- Department of Energy Science and EngineeringDaegu Gyeongbuk Institute of Science and Technology (DGIST)Daegu42988Republic of Korea
| | - Hyosung Lee
- Korea Research Institute of Standards and Science (KRISS)267 GajeongYuseongDaejeon34113Republic of Korea
- Department of Measurement EngineeringUniversity of Science and Technology217, Gajeong, YuseongDaejeon34113Republic of Korea
| | - Yong‐Il Kim
- Korea Research Institute of Standards and Science (KRISS)267 GajeongYuseongDaejeon34113Republic of Korea
- Department of Measurement EngineeringUniversity of Science and Technology217, Gajeong, YuseongDaejeon34113Republic of Korea
| | - Han‐Don Um
- Department of Chemical EngineeringKangwon National UniversityChuncheonGangwon‐do24341Republic of Korea
| | - Hyeyoung Shin
- Graduate School of Energy Science and Technology (GEST)Chungnam National UniversityDaejeon34134Republic of Korea
| | - Ki Min Nam
- Department of Chemistry and Institute for Future EarthPusan National UniversityGeumjeong‐guBusan46241Republic of Korea
| |
Collapse
|
5
|
Badawy G, Bakkers EPAM. Electronic Transport and Quantum Phenomena in Nanowires. Chem Rev 2024; 124:2419-2440. [PMID: 38394689 PMCID: PMC10941195 DOI: 10.1021/acs.chemrev.3c00656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 01/26/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024]
Abstract
Nanowires are natural one-dimensional channels and offer new opportunities for advanced electronic quantum transport experiments. We review recent progress on the synthesis of nanowires and methods for the fabrication of hybrid semiconductor/superconductor systems. We discuss methods to characterize their electronic properties in the context of possible future applications such as topological and spin qubits. We focus on group III-V (InAs and InSb) and group IV (Ge/Si) semiconductors, since these are the most developed, and give an outlook on other potential materials.
Collapse
Affiliation(s)
- Ghada Badawy
- Department of Applied Physics, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Erik P. A. M. Bakkers
- Department of Applied Physics, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
6
|
Choi M, Munley C, Fröch JE, Chen R, Majumdar A. Nonlocal, Flat-Band Meta-Optics for Monolithic, High-Efficiency, Compact Photodetectors. NANO LETTERS 2024; 24:3150-3156. [PMID: 38477059 DOI: 10.1021/acs.nanolett.3c05139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Miniaturized photodetectors are becoming increasingly sought-after components for next-generation technologies, such as autonomous vehicles, integrated wearable devices, or gadgets embedded on the Internet of Things. A major challenge, however, lies in shrinking the device footprint while maintaining high efficiency. This conundrum can be solved by realizing a nontrivial relation between the energy and momentum of photons, such as dispersion-free devices, known as flat bands. Here, we leverage flat-band meta-optics to simultaneously achieve critical absorption over a wide range of incidence angles. For a monolithic silicon meta-optical photodiode, we achieved an ∼10-fold enhancement in the photon-to-electron conversion efficiency. Such enhancement over a large angular range of ∼36° allows incoming light to be collected via a large-aperture lens and focused on a compact photodiode, potentially enabling high-speed and low-light operation. Our research unveils new possibilities for creating compact and efficient optoelectronic devices with far-reaching impact on various applications, including augmented reality and light detection and ranging.
Collapse
Affiliation(s)
- Minho Choi
- Department of Electrical and Computer Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Christopher Munley
- Department of Physics, University of Washington, Seattle, Washington 98195, United States
| | - Johannes E Fröch
- Department of Electrical and Computer Engineering, University of Washington, Seattle, Washington 98195, United States
- Department of Physics, University of Washington, Seattle, Washington 98195, United States
| | - Rui Chen
- Department of Electrical and Computer Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Arka Majumdar
- Department of Electrical and Computer Engineering, University of Washington, Seattle, Washington 98195, United States
- Department of Physics, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
7
|
Khitous A, Noel L, Molinaro C, Vidal L, Grée S, Soppera O. Sol-Gel TiO 2 Thin Film on Au Nanoparticles for Heterogeneous Plasmonic Photocatalysis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:10856-10866. [PMID: 38364302 DOI: 10.1021/acsami.3c15866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
A new, simple method for preparing substrates for photocatalytic applications under visible light is presented. It is based on the preparation of a dense array of gold nanoparticles (AuNPs) by thermal dewetting of a thin gold film followed by spin-coating of a thin TiO2 film prepared by sol-gel chemistry. The photocatalytic properties of these nanocomposite films are studied by surface-enhanced Raman spectroscopy (SERS) following the N-demethylation reaction of methylene blue as a model reaction. This approach shows that the semiconducting layer on the AuNPs can significantly increase the efficiency of the photoinduced reaction. The SERS study also illustrates the influence of parameters such as TiO2 thickness and position (on or under the AuNPs). Ultimately, this study emphasizes that the primary mechanism behind the N-demethylation reaction is both the increase in extinction and the improved electron transfer facilitated by the semiconducting layer. On the other hand, exclusive reliance on photothermal effects is ruled out.
Collapse
Affiliation(s)
- Amine Khitous
- Université de Haute-Alsace, CNRS, IS2M UMR 7361, Mulhouse F-68100, France
- Université de Strasbourg, Strasbourg F-67000, France
| | - Laurent Noel
- Université de Haute-Alsace, CNRS, IS2M UMR 7361, Mulhouse F-68100, France
- Université de Strasbourg, Strasbourg F-67000, France
| | - Céline Molinaro
- Université de Haute-Alsace, CNRS, IS2M UMR 7361, Mulhouse F-68100, France
- Université de Strasbourg, Strasbourg F-67000, France
| | - Loïc Vidal
- Université de Haute-Alsace, CNRS, IS2M UMR 7361, Mulhouse F-68100, France
- Université de Strasbourg, Strasbourg F-67000, France
| | - Simon Grée
- Université de Haute-Alsace, CNRS, IS2M UMR 7361, Mulhouse F-68100, France
- Université de Strasbourg, Strasbourg F-67000, France
| | - Olivier Soppera
- Université de Haute-Alsace, CNRS, IS2M UMR 7361, Mulhouse F-68100, France
- Université de Strasbourg, Strasbourg F-67000, France
| |
Collapse
|
8
|
Taseen TI, Julkarnain M, Islam AZMT. Design and simulation of nitrogenated holey graphene (C 2N) based heterostructure solar cell by SCAPS-1D. Heliyon 2024; 10:e23197. [PMID: 38148799 PMCID: PMC10750152 DOI: 10.1016/j.heliyon.2023.e23197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/24/2023] [Accepted: 11/29/2023] [Indexed: 12/28/2023] Open
Abstract
The nitrogenated holey Graphene (C2N) based solar cell has been modeled and analyzed by using SCAPS-1D. Initially, a reported structure (TCO/IGZO/C2N) has been considered and improved by incorporating Al and Pt as front and back contact, respectively. Then, a novel device structure (Al/TCO/IGZO/C2N/CZT/Pt) has been proposed by inserting a BSF layer with heavily doped p-CZT material. The outcomes of the suggested cell structure have been analyzed numerically by changing different physical parameters. The absorber and BSF layer's thickness has been optimized as 0.6 μm and 0.4 μm, respectively. The cell performance is significantly declined when the bulk defect density in C2N exceeds the value of 1015 cm-3. The rising of device operating temperature shows a negative effect on performance. From this analysis, the structure has been optimized according to device performance. The optimized results have been achieved with the VOC, JSC, FF and efficiency (eta) of 1.40 V, 22.59 mA/cm2, 89.02%, and 28.16%, respectively. This research contributes to enriching the knowledge on the field of C2N materials and its use in optoelectronic applications.
Collapse
Affiliation(s)
- Tasnimul Islam Taseen
- Department of Electrical and Electronic Engineering, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - M. Julkarnain
- Department of Electrical and Electronic Engineering, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | | |
Collapse
|
9
|
Fukata N, Jevasuwan W. Formation and characterization of Group IV semiconductor nanowires. NANOTECHNOLOGY 2024; 35:122001. [PMID: 38096568 DOI: 10.1088/1361-6528/ad15b8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024]
Abstract
To enable the application to next-generation devices of semiconductor nanowires (NWs), it is important to control their formation and tune their functionality by doping and the use of heterojunctions. In this paper, we introduce formation and the characterization methods of nanowires, focusing on our research results. We describe a top-down method of controlling the size and alignment of nanowires that shows advantages over bottom-up growth methods. The latter technique causes damage to the nanowire surfaces, requiring defect removal after the NW formation process. We show various methods of evaluating the bonding state and electrical activity of impurities in NWs. If an impurity is doped in a NW, mobility decreases due to the scattering that it causes. As a strategy for solving this problem, we describe research into core-shell nanowires, in which Si and Ge heterojunctions are formed in the diameter direction inside the NW. This structure can separate the impurity-doped region from the carrier transport region, promising as a channel for the new ultimate high-mobility transistor.
Collapse
Affiliation(s)
- Naoki Fukata
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba 305-0044, Japan
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
| | - Wipakorn Jevasuwan
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba 305-0044, Japan
| |
Collapse
|
10
|
Jun H, Choi J, Hwang J. Silicon Nanowire Phototransistor Arrays for CMOS Image Sensor Applications. SENSORS (BASEL, SWITZERLAND) 2023; 23:9824. [PMID: 38139671 PMCID: PMC10748017 DOI: 10.3390/s23249824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023]
Abstract
This paper introduces a new design of silicon nanowire (Si NW) phototransistor (PT) arrays conceived explicitly for improved CMOS image sensor performance, and comprehensive numerical investigations clarify the characteristics of the proposed devices. Each unit within this array architecture features a top-layer vertical Si NW optimized for the maximal absorption of incoming light across the visible spectrum. This absorbed light generates carriers, efficiently injected into the emitter-base junction of an underlying npn bipolar junction transistor (BJT). This process induces proficient amplification of the output collector current. By meticulously adjusting the diameters of the NWs, the PTs are tailored to exhibit distinct absorption characteristics, thus delineating the visible spectrum's blue, green, and red regions. This specialization ensures enriched color fidelity, a sought-after trait in imaging devices. Notably, the synergetic combination of the Si NW and the BJT augments the electrical response under illumination, boasting a quantum efficiency exceeding 10. In addition, by refining parameters like the height of the NW and gradient doping depth, the proposed PTs deliver enhanced color purity and amplified output currents.
Collapse
Affiliation(s)
| | | | - Jinyoung Hwang
- The School of Electronics and Information Engineering, Korea Aerospace University, Goyang-si 10540, Republic of Korea; (H.J.); (J.C.)
| |
Collapse
|
11
|
Almawgani AHM, Alzahrani A, Hajjiah A, Mehaney A, Elsayed HA, Sayed H. Optical absorption performance of CZTS/ZnO thin film solar cells comprising anti-reflecting coating of texturing configuration. RSC Adv 2023; 13:31554-31568. [PMID: 37901259 PMCID: PMC10606980 DOI: 10.1039/d3ra05056d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/21/2023] [Indexed: 10/31/2023] Open
Abstract
This paper introduces a novel design of a thin-film solar cell based on CZTS and ZnO composite materials with the help of ITO as the front contact layer. This study primarily focuses on how the cells' optical absorbance at visible wavelengths can be improved. COMSOL Multiphysics is employed as a powerful tool for the investigation of the numerical simulation. The numerical findings showed that the optimum thicknesses of the ITO and ZnO are 80 and 350 nm, respectively. In this regard, with a normal incidence, a wide range of incoming light wavelengths from 450 nm to 800 nm might result in optical absorption of the examined cell of above 0.9. However, this value decreased significantly to reach less than 0.75 when the angle of incidence increased to 50°. To minimize this reduction, on the top surface of the cell, a texture-designed anti-reflective coating designed from a single period of well-known one-dimensional photonic crystals is deposited. The findings demonstrated that the cell's absorption at normal incidence could reach over 0.96 through the overall incident wavelengths. Therefore, CZTS/ZnO thin-film solar cells with an anti-reflecting coating of texturing configuration showed enormous potential for manufacturing effective solar cells.
Collapse
Affiliation(s)
- Abdulkarem H M Almawgani
- Electrical Engineering Department, College of Engineering, Najran University Najran Saudi Arabia
| | - Ahmad Alzahrani
- Electrical Engineering Department, College of Engineering, Najran University Najran Saudi Arabia
| | - Ali Hajjiah
- Electrical Engineering Department, College of Engineering and Petroleum, Kuwait University Kuwait
| | - Ahmed Mehaney
- Physics Department, Faculty of Science, Beni-Suef University Beni-Suef 62512 Egypt
| | - Hussein A Elsayed
- Physics Department, Faculty of Science, Beni-Suef University Beni-Suef 62512 Egypt
| | - Hassan Sayed
- Physics Department, Faculty of Science, Beni-Suef University Beni-Suef 62512 Egypt
| |
Collapse
|
12
|
Zeng Y, Han S, Zheng G, Li Z, Zeng Y. In-plane emission manipulation of random optical modes by using a zero-index material. OPTICS EXPRESS 2023; 31:26565-26576. [PMID: 37710514 DOI: 10.1364/oe.498316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 07/18/2023] [Indexed: 09/16/2023]
Abstract
In this work, we have proposed to implement a zero-index material (ZIM) to control the in-plane emission of planar random optical modes while maintaining the intrinsic disordered features. Light propagating through a medium with near-zero effective refractive index accumulates little phase change and is guided to the direction determined by the conservation law of momentum. By enclosing a disordered structure with a ZIM based on all-dielectric photonic crystal (PhC), broadband emission directionality improvement can be obtained. We find the maximum output directionality enhancement factor reaches 30, around 6-fold increase compared to that of the random mode without ZIM. The minimum divergence angle is ∼6° for single random optical mode and can be further reduced to ∼3.5° for incoherent multimode superposition in the far field. Despite the significant directionality enhancement, the random properties are well preserved, and the Q factors are even slightly improved. The method is robust and can be effectively applied to the disordered medium with different structural parameters, e.g., the filling fraction of scatterers, and different disordered structure designs with extended or strongly localized modes. The output direction of random optical modes can also be altered by further tailoring the boundary of ZIM. This work provides a novel and universal method to manipulate the in-plane emission direction as well as the directionality of disordered medium like random lasers, which might enable its on-chip integration with other functional devices.
Collapse
|
13
|
Jiang N, Ghosh S, Frentrup M, Fairclough SM, Loeto K, Kusch G, Oliver RA, Joyce HJ. Complications in silane-assisted GaN nanowire growth. NANOSCALE ADVANCES 2023; 5:2610-2620. [PMID: 37143793 PMCID: PMC10153487 DOI: 10.1039/d2na00939k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/08/2023] [Indexed: 05/06/2023]
Abstract
Understanding the growth mechanisms of III-nitride nanowires is of great importance to realise their full potential. We present a systematic study of silane-assisted GaN nanowire growth on c-sapphire substrates by investigating the surface evolution of the sapphire substrates during the high temperature annealing, nitridation and nucleation steps, and the growth of GaN nanowires. The nucleation step - which transforms the AlN layer formed during the nitridation step to AlGaN - is critical for subsequent silane-assisted GaN nanowire growth. Both Ga-polar and N-polar GaN nanowires were grown with N-polar nanowires growing much faster than the Ga-polar nanowires. On the top surface of the N-polar GaN nanowires protuberance structures were found, which relates to the presence of Ga-polar domains within the nanowires. Detailed morphology studies revealed ring-like features concentric with the protuberance structures, indicating energetically favourable nucleation sites at inversion domain boundaries. Cathodoluminescence studies showed quenching of emission intensity at the protuberance structures, but the impact is limited to the protuberance structure area only and does not extend to the surrounding areas. Hence it should minimally affect the performance of devices whose functions are based on radial heterostructures, suggesting that radial heterostructures remain a promising device structure.
Collapse
Affiliation(s)
- Nian Jiang
- Department of Engineering, University of Cambridge 9 JJ Thomson Ave Cambridge CB3 0FA UK
- Department of Materials Science and Metallurgy, University of Cambridge 27 Charles Babbage Rd Cambridge CB3 0FS UK
| | - Saptarsi Ghosh
- Department of Materials Science and Metallurgy, University of Cambridge 27 Charles Babbage Rd Cambridge CB3 0FS UK
| | - Martin Frentrup
- Department of Materials Science and Metallurgy, University of Cambridge 27 Charles Babbage Rd Cambridge CB3 0FS UK
| | - Simon M Fairclough
- Department of Materials Science and Metallurgy, University of Cambridge 27 Charles Babbage Rd Cambridge CB3 0FS UK
| | - Kagiso Loeto
- Department of Materials Science and Metallurgy, University of Cambridge 27 Charles Babbage Rd Cambridge CB3 0FS UK
| | - Gunnar Kusch
- Department of Materials Science and Metallurgy, University of Cambridge 27 Charles Babbage Rd Cambridge CB3 0FS UK
| | - Rachel A Oliver
- Department of Materials Science and Metallurgy, University of Cambridge 27 Charles Babbage Rd Cambridge CB3 0FS UK
| | - Hannah J Joyce
- Department of Engineering, University of Cambridge 9 JJ Thomson Ave Cambridge CB3 0FA UK
| |
Collapse
|
14
|
Yang Y, Zhang Y, Zhang J, Zheng X, Gan Z, Lin H, Hong M, Jia B. Graphene Metamaterial 3D Conformal Coating for Enhanced Light Harvesting. ACS NANO 2023; 17:2611-2619. [PMID: 36533993 DOI: 10.1021/acsnano.2c10529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Silicon (Si) photovoltaic devices present possible avenues for overcoming global energy and environmental challenges. The high reflection and surface recombination losses caused by the Si interface and its nanofabrication process are the main hurdles for pursuing a high energy conversion efficiency. However, recent advances have demonstrated great success in improving device performance via proper Si interface modification with the optical and electrical features of two-dimensional (2D) materials. Firmly integrating large-area 2D materials with 3D Si nanostructures with no gap in between, which is essential for optimizing device performance, has rarely been achieved by any technique due to the complex 3D morphology of the nanostructures. Here we propose the concept of a 3D conformal coating of graphene metamaterials, in which the 2D graphene layers perfectly adapt to the 3D Si curvatures, leading to a universal 20% optical reflection decrease and a 60% surface passivation improvement. In a further application of this metamaterial 3D conformal coating methodology to standard Si solar cells, an overall 23% enhancement of the solar energy conversion efficiency is achieved. The 3D conformal coating strategy could be readily extended to various optoelectronic and semiconductor device systems with peculiar performance, offering a pathway for highly efficient energy-harvesting and storage solutions.
Collapse
Affiliation(s)
- Yunyi Yang
- School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Yinan Zhang
- Institute of Photonic Chips, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
- Centre for Artificial-Intelligence Nanophotonics, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Jie Zhang
- Centre for Translational Atomaterials (CTAM), School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Xiaorui Zheng
- Centre for Translational Atomaterials (CTAM), School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- School of Engineering, Westlake University, Hangzhou 310024, People's Republic of China
| | - Zhixing Gan
- Centre for Translational Atomaterials (CTAM), School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Han Lin
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Minghui Hong
- School of Aerospace Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Baohua Jia
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
- The Australian Research Council (ARC) Industrial Transformation Training Centre in Surface Engineering for Advanced Materials (SEAM), RMIT University, La Trobe Street, Melbourne, Victoria 3000, Australia
| |
Collapse
|
15
|
Zhu Y, Shu L, Poddar S, Zhang Q, Chen Z, Ding Y, Long Z, Ma S, Ren B, Qiu X, Fan Z. Three-Dimensional Nanopillar Arrays-Based Efficient and Flexible Perovskite Solar Cells with Enhanced Stability. NANO LETTERS 2022; 22:9586-9595. [PMID: 36394382 DOI: 10.1021/acs.nanolett.2c03694] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Perovskite nanopillars (PNPs) are propitious candidates for solar irradiation harvesting and are potential alternatives to thin films in flexible photovoltaics. To realize efficient daily energy output, photovoltaics must absorb sunlight over a broad range of incident angles and wavelengths congruent with the solar spectrum. Herein, we report highly periodic three-dimensional (3D) PNP-based flexible photovoltaics possessing a core-shell structure. The vertically aligned PNP arrays demonstrate up to 95.70% and 75.10% absorption at peak and under an incident angle of 60°. The efficient absorption and the orthogonal carrier collection facilitate an external quantum efficiency of 84.0%-89.18% for broadband wavelength. PNPs have been successfully implemented in flexible solar cells. The porous alumina membrane protects PNPs against water and oxygen intrusion and thereby imparts robustness to photovoltaic devices. Meanwhile, the excellent tolerance to mechanical stress/strain enables our unique PNP-based device to provide efficient solar-to-electricity conversion while undergoing mechanical bending.
Collapse
Affiliation(s)
- Yiyi Zhu
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Kowloon 999077, Hong Kong, China
- Shenzhen Research Institute, The Hong Kong University of Science and Technology, No. 9 Yuexing first RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
| | - Lei Shu
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Kowloon 999077, Hong Kong, China
- Shenzhen Research Institute, The Hong Kong University of Science and Technology, No. 9 Yuexing first RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
| | - Swapnadeep Poddar
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Kowloon 999077, Hong Kong, China
- Shenzhen Research Institute, The Hong Kong University of Science and Technology, No. 9 Yuexing first RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
| | - Qianpeng Zhang
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Kowloon 999077, Hong Kong, China
- Shenzhen Research Institute, The Hong Kong University of Science and Technology, No. 9 Yuexing first RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
| | - Zhesi Chen
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Kowloon 999077, Hong Kong, China
- Shenzhen Research Institute, The Hong Kong University of Science and Technology, No. 9 Yuexing first RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
| | - Yucheng Ding
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Kowloon 999077, Hong Kong, China
- Shenzhen Research Institute, The Hong Kong University of Science and Technology, No. 9 Yuexing first RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
| | - Zhenghao Long
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Kowloon 999077, Hong Kong, China
- Shenzhen Research Institute, The Hong Kong University of Science and Technology, No. 9 Yuexing first RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
| | - Suman Ma
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Kowloon 999077, Hong Kong, China
- Department of Materials Science and Engineering, Shenzhen, Southern University of Science and Technology, Shenzhen 518055, China
| | - Beitao Ren
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Kowloon 999077, Hong Kong, China
- Shenzhen Research Institute, The Hong Kong University of Science and Technology, No. 9 Yuexing first RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
| | - Xiao Qiu
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Kowloon 999077, Hong Kong, China
- Shenzhen Research Institute, The Hong Kong University of Science and Technology, No. 9 Yuexing first RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
| | - Zhiyong Fan
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Kowloon 999077, Hong Kong, China
- Shenzhen Research Institute, The Hong Kong University of Science and Technology, No. 9 Yuexing first RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, The Hong Kong University of Science and Technology, Kowloon 999077, Hong Kong, China
| |
Collapse
|
16
|
Ko JH, Kim SH, Kim MS, Heo SY, Yoo YJ, Kim YJ, Lee H, Song YM. Lithography-Free, Large-Area Spatially Segmented Disordered Structure for Light Harvesting in Photovoltaic Modules. ACS APPLIED MATERIALS & INTERFACES 2022; 14:44419-44428. [PMID: 36136998 DOI: 10.1021/acsami.2c12131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Optical losses in photovoltaic (PV) systems cause nonradiative recombination or incomplete absorption of incident light, hindering the attainment of high energy conversion efficiency. The surface of the PV cells is encapsulated to not only protect the cell but also control the transmission properties of the incident light to promote maximum conversion. Despite many advances in elaborately designed photonic structures for light harvesting, the complicated process and sophisticated patterning highly diminish the cost-effectiveness and further limit the mass production on a large scale. Here, we propose a robust/comprehensive strategy based on the hybrid disordered photonic structure, implementing multifaceted light harvesting with an affordable/scalable fabrication method. The spatially segmented structures include (i) nanostructures in the active area for antireflection and (ii) microstructures in the inactive edge area for redirecting the incident light into the active area. A lithography-free hybrid disordered structure fabricated by the thermal dewetting method is a facile approach to create a large-area photonic structure with hyperuniformity over the entire area. Based on the experimentally realized nano-/microstructures, we designed a computational model and performed an analytical calculation to confirm the light behavior and performance enhancement. Particularly, the suggested structure is manufactured by the elastomeric stamps method, which is affordable and profitable for mass production. The produced hybrid structure integrated with the multijunction solar cell presented an improved efficiency from 28.0 to 29.6% by 1.06 times.
Collapse
Affiliation(s)
- Joo Hwan Ko
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - So Hee Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Min Seok Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Se-Yeon Heo
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Young Jin Yoo
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Yeong Jae Kim
- Korea Institute of Ceramic Engineering and Technology, Ceramics Test-Bed Center, 3321 Gyeongchung-daero, Sindun-myeon, Icheon-si, Gyeonggi-do 17303, Republic of Korea
| | - Heon Lee
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Sungbuk-gu, Seoul 02841, Republic of Korea
| | - Young Min Song
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
- Artificial Intelligence (AI) Graduate School, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Korea
| |
Collapse
|
17
|
Aktary M, Kamruzzaman M, Afrose R. A comparative study of the mechanical stability, electronic, optical and photocatalytic properties of CsPbX 3 (X = Cl, Br, I) by DFT calculations for optoelectronic applications. RSC Adv 2022; 12:23704-23717. [PMID: 36090433 PMCID: PMC9390720 DOI: 10.1039/d2ra04591e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 08/05/2022] [Indexed: 11/21/2022] Open
Abstract
Organic free Cs-based perovskite materials are potential candidates for electronic and optoelectronic applications. A systematic comparative study of the mechanical, electronic, optical, and photocatalytic properties of CsPbX3 (X = Cl, Br, I) was conducted using density functional theory to compare the applicability of these materials in optoelectronic, photocatalytic, and photovoltaic (PV) devices. We calculated structural and elastic properties to determine the better agreement of damage-tolerance and electronic and optical responses for suitable device applications. Optimized lattice parameters and elastic constants showed excellent agreement with the experimental data whereas some properties were found to be much better than other theoretical reports. CsPbBr3 is thermodynamically more stable and more ductile compared to the other two perovskites. The hydrostatic pressure dependent mechanical stability showed that CsPbCl3 and CsPbBr3 sustained stability under low applied pressure, whereas the stability of CsPbI3 was very high. The electronic band gap calculations showed that CsPbCl3, CsPbBr3, and CsPbI3 are suitable for green, orange, and red emissions of optical spectra owing to the proper electronic band gaps. CsPbI3 can be shown as the best photocatalyst for the hydrogen evolution reaction and CsPbBr3 is the most stable photocatalyst due to its nearly balanced oxidation and reduction potentials, but CaPbCl3 is better for O2 production. The density of states and other optical properties have been reported in this study. Thus, our findings would be beneficial for experimental studies and can open a new window for efficient electronic, optoelectronic, and hydrogen production along with the biodegradation of polluted and waste materials.
Collapse
Affiliation(s)
- M Aktary
- Department of Physics, Begum Rokeya University, Rangpur Rangpur-5400 Bangladesh (+88) 01516795931
| | - M Kamruzzaman
- Department of Physics, Begum Rokeya University, Rangpur Rangpur-5400 Bangladesh (+88) 01516795931
| | - R Afrose
- Department of Physics, Begum Rokeya University, Rangpur Rangpur-5400 Bangladesh (+88) 01516795931
| |
Collapse
|
18
|
Singh R, Chack D, Priye V. SNROW-based highly sensitive label-free surface biosensor for hepatitis B detection. APPLIED OPTICS 2022; 61:6510-6517. [PMID: 36255875 DOI: 10.1364/ao.463800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/08/2022] [Indexed: 06/16/2023]
Abstract
Despite the availability of effective hepatitis B vaccinations, the hepatitis B virus remains a serious global health concern. It is expected that early detection could aid in initiating therapy before the infection progresses to liver damage. A silicon nanowire rectangular optical waveguide has been demonstrated theoretically to detect the surface antigen of hepatitis B "HBsAg" based on label-free surface sensing using finite-element method-based COMSOL Multiphysics. Different procedural segments of the biomarker detection have been mimicked on the surface of a waveguide as adlayers to investigate the device theoretically. Initially, the parameters of the waveguide have been optimized to provide a large interaction of light and bio-analyte, i.e., to provide high sensitivity. The analyses are first performed at the waveguide level based on the light-analyte interaction. Furthermore, performances of the sensor have been obtained by incorporating this waveguide structure in the sensing arm of the Mach-Zehnder interferometer. The device structure shows ultra-high surface sensitivities such as phase surface sensitivity of 7.03×2πrad/nm and MZI surface sensitivity of 3421.89 µW/nm with an excellent detection limit of 2.92×10-3pg/mm2 for HBsAg detection. The proposed device can measure the HBsAg concentration as low as 0.00973 ng/mL, which is significantly low to detect the infection in an early stage.
Collapse
|
19
|
Atomic Layer Assembly Based on Sacrificial Templates for 3D Nanofabrication. MICROMACHINES 2022; 13:mi13060856. [PMID: 35744470 PMCID: PMC9229614 DOI: 10.3390/mi13060856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 02/04/2023]
Abstract
Three-dimensional (3D) nanostructures have attracted widespread attention in physics, chemistry, engineering sciences, and biology devices due to excellent functionalities which planar nanostructures cannot achieve. However, the fabrication of 3D nanostructures is still challenging at present. Reliable fabrication, improved controllability, and multifunction integration are desired for further applications in commercial devices. In this review, a powerful fabrication method to realize 3D nanostructures is introduced and reviewed thoroughly, which is based on atomic layer deposition assisted 3D assembly through various sacrificial templates. The aim of this review is to provide a comprehensive overview of 3D nanofabrication based on atomic layer assembly (ALA) in multifarious sacrificial templates for 3D nanostructures and to present recent advancements, with the ultimate aim to further unlock more potential of this method for nanodevice applications.
Collapse
|
20
|
Wei L, Li F, Pang S, Wang Y, Guo J, Chen J. First-principles study of polymer-passivated silicon nanowire outer-shell defects. Phys Chem Chem Phys 2022; 24:11169-11174. [PMID: 35476044 DOI: 10.1039/d2cp00572g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Highly effective defect passivation schemes are very important for the improvement of Si nanowire (SiNW) performances, because large numbers of outer-shell-defect states are caused by the high surface-to-volume ratios of nanowires. In this work, a polymer that can be fabricated by a simple, vacuum-free method at low temperatures, Nafion, was studied for the SiNW outer-shell defect passivation using first-principles calculations. Based on adsorption energy calculations, it was found that the Nafion molecule could firmly adsorb on the surfaces of SiNWs along the 〈112〉 direction. The Nafion-passivated SiNW outer-shell exhibited high stability to a chemical environment. Herein, the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) were confined to the center of the SiNW due to being wrapped by the Nafion. The Nafion-passivated SiNWs exhibited an equivalent quantum confinement effect and a larger absorption coefficient compared with the H-passivated SiNWs. This work demonstrated a passivation strategy of SiNW shell defects using functional groups.
Collapse
Affiliation(s)
- Lijing Wei
- School of Computer and Information Engineering, Hebei Finance University, Baoding, Hebei 071051, P. R. China
| | - Feng Li
- School of Computer and Information Engineering, Hebei Finance University, Baoding, Hebei 071051, P. R. China
| | - Shaoyuan Pang
- School of Computer and Information Engineering, Hebei Finance University, Baoding, Hebei 071051, P. R. China
| | - Yinglong Wang
- Key Laboratory of Optic-Electronic Information Materials of Hebei Province, College of Physics Science and Technology, Hebei University, Baoding, 071002, P. R. China. .,Department of Primary Education, Baoding Preschool Teachers College, Baoding, Hebei 071051, P. R. China
| | - Jianxin Guo
- Key Laboratory of Optic-Electronic Information Materials of Hebei Province, College of Physics Science and Technology, Hebei University, Baoding, 071002, P. R. China.
| | - Jianhui Chen
- Key Laboratory of Optic-Electronic Information Materials of Hebei Province, College of Physics Science and Technology, Hebei University, Baoding, 071002, P. R. China.
| |
Collapse
|
21
|
Xiong Y, Jin Y, Deng T, Mei K, Qiu P, Xi L, Zhou Z, Yang J, Shi X, Chen L. High-Throughput Screening for Thermoelectric Semiconductors with Desired Conduction Types by Energy Positions of Band Edges. J Am Chem Soc 2022; 144:8030-8037. [PMID: 35446042 DOI: 10.1021/jacs.1c13713] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The conduction type of semiconductors is vitally important in many fields (e.g., photovoltaics, transistors, and thermoelectrics), but so far, there is no effective and simple indicator to quickly judge or predict the conduction type of various semiconductors. In this work, based on the relationship between the formation energy of charged defect and the Fermi level, we propose a simple and low-cost strategy for high-throughput screening the potential n-type or p-type semiconductors from the material database by using energy positions of band edges as indicators. As a case study, we validate this strategy in searching potential n-type thermoelectric materials from copper (Cu)-containing metal chalcogenides. A new promising thermoelectric material, CuIn5Se8, with potential intrinsic n-type conduction, is successfully screened from 407 Cu-containing metal chalcogenides and validated in the subsequent experiments. Upon doping iodine in CuIn5Se8, a peak thermoelectric figure of merit zT of 0.84 is obtained at 850 K. Beyond thermoelectrics, the strategy proposed in this study also sheds light on the new material development with desired conduction types in photovoltaics, transistors, and other fields.
Collapse
Affiliation(s)
- Yifei Xiong
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yeqing Jin
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Tingting Deng
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Kaili Mei
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Pengfei Qiu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.,School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Lili Xi
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Zhengyang Zhou
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Jiong Yang
- Materials Genome Institute, Shanghai University, Shanghai 200444, China.,Zhejiang Laboratory, Hangzhou, Zhejiang 311100, China
| | - Xun Shi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lidong Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
22
|
Design of an ultra-wideband omnidirectional and polarization insensitive flower petal antenna for potential ambient electromagnetic energy harvesting applications. Sci Rep 2022; 12:6096. [PMID: 35414703 PMCID: PMC9005714 DOI: 10.1038/s41598-022-09991-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 03/31/2022] [Indexed: 11/16/2022] Open
Abstract
Developing a polarization insensitive, omnidirectional, and ultra-wideband (UWB) antenna is highly desired for improving the utilization of freely available electromagnetic (EM) radiation energy. In this study, we have designed an UWB antenna based on tapered flower petals and numerically analyzed to show that it is a promising candidate for energy harvesting applications in the infrared (IR) to UV–visible regime. The impacts of design strategy and parameters on the absorption performance are studied numerically. The antenna shows a high performance in both bandwidth and absorptivity (average absorption of 84.5% spanning a broad range from 25 to 800 THz) under normal incidence of plane waves. To get a better understanding behind such high and UWB absorption mechanism, we investigated the electric field (E-field) distribution over the structure. The antenna also generates less than 5% absorption deviation between normal to 45° incident angle and 0.05% absorption deviation between 0° and 90° polarizations for both transverse electric (TE) and transverse magnetic (TM) modes. This new design aspect and the numerical findings unfolds the new direction for numerous EM wideband applications such as THz technology, photo detection, bolometric sensing, camouflaging, spectral imaging, and ambient EM energy harvesting applications.
Collapse
|
23
|
Mortazavifar SL, Salehi MR, Shahraki M, Abiri E. Ultra-thin broadband solar absorber based on stadium-shaped silicon nanowire arrays. FRONTIERS OF OPTOELECTRONICS 2022; 15:6. [PMID: 36637569 PMCID: PMC9756262 DOI: 10.1007/s12200-022-00010-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/24/2021] [Indexed: 06/17/2023]
Abstract
This paper investigates how the dimensions and arrangements of stadium silicon nanowires (NWs) affect their absorption properties. Compared to other NWs, the structure proposed here has a simple geometry, while its absorption rate is comparable to that of very complex structures. It is shown that changing the cross-section of NW from circular (or rectangular) to a stadium shape leads to change in the position and the number of absorption modes of the NW. In a special case, these modes result in the maximum absorption inside NWs. Another method used in this paper to attain broadband absorption is utilization of multiple NWs which have different geometries. However, the maximum enhancement is achieved using non-close packed NW. These structures can support more cavity modes, while NW scattering leads to broadening of the absorption spectra. All the structures are optimized using particle swarm optimizations. Using these optimized structures, it is viable to enhance the absorption by solar cells without introducing more absorbent materials.
Collapse
Affiliation(s)
- Seyedeh Leila Mortazavifar
- Department of Electrical and Electronics Engineering, Shiraz University of Technology, Modarres Blvd, 71557-13876, Shiraz, Iran.
| | - Mohammad Reza Salehi
- Department of Electrical and Electronics Engineering, Shiraz University of Technology, Modarres Blvd, 71557-13876, Shiraz, Iran
| | - Mojtaba Shahraki
- Faculty of Electrical and Electronics Engineering, University of Sistan and Baluchestan, Daneshgah Blvd, 98613-35856, Zahedan, Iran
| | - Ebrahim Abiri
- Department of Electrical and Electronics Engineering, Shiraz University of Technology, Modarres Blvd, 71557-13876, Shiraz, Iran
| |
Collapse
|
24
|
Jiang X, Zhou L, Hu J, Wang T. Nanostructured multilayer hyperbolic metamaterials for high efficiency and selective solar absorption. OPTICS EXPRESS 2022; 30:11504-11513. [PMID: 35473093 DOI: 10.1364/oe.451849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Highly efficient solar-to-thermal conversion is desired for the renewable energy technologies, such as solar thermo-photovoltaics and solar thermo-electric systems. In order to maximize the energy conversion efficiency, solar-selective absorbers are essential with its absorption characteristics specially tailored for solar applications. Here, we propose a wideband spectral-selective absorber based on three-dimensional (3D) nanostructured hyperbolic metamaterial (HMM), which can realize near-unity absorption across the UV and NIR spectral ranges. Moreover, the optical topological transition (OTT) of iso-frequency surface (IFS) is manipulated to selectively enhance light absorption in the entire solar spectrum, crucial for improved energy utilization. Impressive solar-to-thermal conversion efficiency of 95.5% has been achieved. Particularly, such superior properties can be retained well even over a wide range of incident angles. These findings open new avenues for designing high-performance solar thermal devices, especially in the fields related to solar energy harvesting.
Collapse
|
25
|
Wang S, Huang S, Zhao J. Effect of Surface Morphology Changes on Optical Properties of Silicon Nanowire Arrays. SENSORS (BASEL, SWITZERLAND) 2022; 22:2454. [PMID: 35408069 PMCID: PMC9002728 DOI: 10.3390/s22072454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/15/2022] [Accepted: 03/19/2022] [Indexed: 02/05/2023]
Abstract
The optical properties of silicon nanowire arrays (SiNWs) are closely related to surface morphology due to quantum effects and quantum confinement effects of the existing semiconductor nanocrystal. In order to explore the influence of the diameters and distribution density of nanowires on the light absorption in the visible to near infrared band, we report the highly efficient method of multiple replication of versatile homogeneous Au films from porous anodic aluminum oxide (AAO) membranes by ion sputtering as etching catalysts; the monocrystalline silicon is etched along the growth templates in a fixed proportion chemical solution to form homogeneous ordered arrays of different morphology and distributions on the surface. In this system, we demonstrate that the synthesized nanostructure arrays can be tuned to exhibit different optical characteristics in the test wavelength range by adjusting the structural parameters of AAO membranes.
Collapse
Affiliation(s)
- Shanshan Wang
- Electronic Information Engineering, Xi’an Technological University, Xi’an 710021, China
| | - Shujia Huang
- School of Optoelectronic Engineering, Xi’an Technological University, Xi’an 710021, China; (S.H.); (J.Z.)
| | - Jijie Zhao
- School of Optoelectronic Engineering, Xi’an Technological University, Xi’an 710021, China; (S.H.); (J.Z.)
| |
Collapse
|
26
|
Catalysis-Free Growth of III-V Core-Shell Nanowires on p-Si for Efficient Heterojunction Solar Cells with Optimized Window Layer. ENERGIES 2022. [DOI: 10.3390/en15051772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The growth of high-quality compound semiconductor materials on silicon substrates has long been studied to overcome the high price of compound semiconductor substrates. In this study, we successfully fabricated nanowire solar cells by utilizing high-quality hetero p-n junctions formed by growing n-type III-V nanowires on p-silicon substrates. The n-InAs0.75P0.25 nanowire array was grown by the Volmer–Weber mechanism, a three-dimensional island growth mode arising from a lattice mismatch between III-V and silicon. For the surface passivation of n-InAs0.75P0.25 core nanowires, a wide bandgap InP shell was formed. The nanowire solar cell was fabricated by benzocyclobutene (BCB) filling, exposure of nanowire tips by reactive-ion etching, electron-beam deposition of ITO window layer, and finally metal grid electrode process. In particular, the ITO window layer plays a key role in reducing light reflection as well as electrically connecting nanowires that are electrically separated from each other. The deposition angle was adjusted for conformal coating of ITO on the nanowire surface, and as a result, the lowest light reflectance and excellent electrical connectivity between the nanowires were confirmed at an oblique deposition angle of 40°. The solar cell based on the heterojunction between the n-InAs0.75P0.25/InP core-shell nanowire and p-Si exhibited a very high photoelectric conversion efficiency of 9.19% with a current density of 27.10 mA/cm2, an open-circuit voltage of 484 mV, and a fill factor of 70.1%.
Collapse
|
27
|
Fukata N, Jevasuwan W, Sun YL, Sugimoto Y. Defect control and Si/Ge core-shell heterojunction formation on silicon nanowire surfaces formed using the top-down method. NANOTECHNOLOGY 2022; 33:135602. [PMID: 34985416 DOI: 10.1088/1361-6528/ac3fe4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
Control of surface defects and impurity doping are important keys to realizing devices that use semiconductor nanowires (NWs). As a structure capable of suppressing impurity scattering, p-Si/i (intrinsic)-Ge core-shell NWs with radial heterojunctions inside the NWs were formed. When forming NWs using a top-down method, the positions of the NWs can be controlled, but their surface is damaged. When heat treatment for repairing surface damage is performed, the surface roughness of the NWs closely depends on the kind of atmospheric gas. Oxidation and chemical etching prior to shell formation removes the surface damaged layer on p-SiNWs and simultaneously achieves a reduction in the diameter of the NWs. Finally, hole gas accumulation, which is important for suppressing impurity scattering, can be observed in the i-Ge layers of p-Si/i-Ge core-shell NWs.
Collapse
Affiliation(s)
- Naoki Fukata
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba 305-0044, Japan
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
| | - Wipakorn Jevasuwan
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba 305-0044, Japan
| | - Yong-Lie Sun
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba 305-0044, Japan
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
| | - Yoshimasa Sugimoto
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba 305-0044, Japan
| |
Collapse
|
28
|
Concept for Efficient Light Harvesting in Perovskite Materials via Solar Harvester with Multi-Functional Folded Electrode. NANOMATERIALS 2021; 11:nano11123362. [PMID: 34947711 PMCID: PMC8708830 DOI: 10.3390/nano11123362] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/28/2021] [Accepted: 12/08/2021] [Indexed: 11/17/2022]
Abstract
Conventional electrodes in typical photodetectors only conduct electrical signals and introduce high optical reflection, impacting the optical-to-electrical conversion efficiency. The created surface solar harvester with a multi-functional folded electrode (MFFE) realizes both a three-dimensional Schottky junction with a larger light detecting area as well as low optical reflection from 300 nm (ultra-violet light) to 1100 nm (near-infrared light) broadly without an additional anti-reflection layer. The MFFE needs silicon etching following the lithography process. The metal silver was deposited over structured silicon, completing the whole device simply. According to the experimental results, the width ratio of the bottom side to the top side in MFFE was 15.75, and it showed an optical reflection of 5–7% within the major solar spectrum of AM1.5G by the gradient refractive index effect and the multi-scattering phenomenon simultaneously. While the perovskite materials were deposited over the MFFE structure of the solar harvester, the three-dimensional electrode with lower optical reflection benefitted the perovskite solar cell with a larger detecting area and an additional anti-reflection function to absorb solar energy more efficiently. In this concept, because of the thin stacked film in the perovskite solar cell, the solar energy could be harvested by the prepared Schottky junction of the solar harvester again, except for the optical absorption of the perovskite materials. Moreover, the perovskite materials deposited over the MFFE structure could not absorb near-infrared (NIR) energies to become transparent. The NIR light could be harvested by the light detecting junction of the solar harvester to generate effective photocurrent output additionally for extending the detection capability of perovskite solar cell further. In this work, the concept of integration of a conventional perovskite solar cell with a silicon-based solar harvester having an MFFE structure was proposed and is expected to harvest broadband light energies under low optical reflection and enhance the solar energy conversion efficiency.
Collapse
|
29
|
Spadaro MC, Escobar Steinvall S, Dzade NY, Martí-Sánchez S, Torres-Vila P, Stutz EZ, Zamani M, Paul R, Leran JB, Fontcuberta I Morral A, Arbiol J. Rotated domains in selective area epitaxy grown Zn 3P 2: formation mechanism and functionality. NANOSCALE 2021; 13:18441-18450. [PMID: 34751695 PMCID: PMC8900489 DOI: 10.1039/d1nr06190a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 10/21/2021] [Indexed: 05/28/2023]
Abstract
Zinc phosphide (Zn3P2) is an ideal absorber candidate for solar cells thanks to its direct bandgap, earth-abundance, and optoelectronic characteristics, albeit it has been insufficiently investigated due to limitations in the fabrication of high-quality material. It is possible to overcome these factors by obtaining the material as nanostructures, e.g. via the selective area epitaxy approach, enabling additional strain relaxation mechanisms and minimizing the interface area. We demonstrate that Zn3P2 nanowires grow mostly defect-free when growth is oriented along the [100] and [110] of the crystal, which is obtained in nanoscale openings along the [110] and [010] on InP(100). We detect the presence of two stable rotated crystal domains that coexist in the structure. They are due to a change in the growth facet, which originates either from the island formation and merging in the initial stages of growth or lateral overgrowth. These domains have been visualized through 3D atomic models and confirmed with image simulations of the atomic scale electron micrographs. Density functional theory simulations describe the rotated domains' formation mechanism and demonstrate their lattice-matched epitaxial relation. In addition, the energies of the shallow states predicted closely agree with transition energies observed by experimental studies and offer a potential origin for these defect transitions. Our study represents an important step forward in the understanding of Zn3P2 and thus for the realisation of solar cells to respond to the present call for sustainable photovoltaic technology.
Collapse
Affiliation(s)
- Maria Chiara Spadaro
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, Barcelona, Catalonia, 08193, Spain.
| | - Simon Escobar Steinvall
- Laboratory of Semiconductor Materials, Institute of Materials, Faculty of Engineering, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
| | - Nelson Y Dzade
- School of Chemistry, Cardiff University, Main Building, Park Place, CF10 3AT Cardiff, UK
- Department of Energy and Mineral Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Sara Martí-Sánchez
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, Barcelona, Catalonia, 08193, Spain.
| | - Pol Torres-Vila
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, Barcelona, Catalonia, 08193, Spain.
| | - Elias Z Stutz
- Laboratory of Semiconductor Materials, Institute of Materials, Faculty of Engineering, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
| | - Mahdi Zamani
- Laboratory of Semiconductor Materials, Institute of Materials, Faculty of Engineering, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
| | - Rajrupa Paul
- Laboratory of Semiconductor Materials, Institute of Materials, Faculty of Engineering, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
| | - Jean-Baptiste Leran
- Laboratory of Semiconductor Materials, Institute of Materials, Faculty of Engineering, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
| | - Anna Fontcuberta I Morral
- Laboratory of Semiconductor Materials, Institute of Materials, Faculty of Engineering, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
- Institute of Physics, Faculty of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Jordi Arbiol
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, Barcelona, Catalonia, 08193, Spain.
- ICREA, Pg. Lluís Companys 23, 08010, Barcelona, Catalonia, Spain
| |
Collapse
|
30
|
Bielinski AR, Gayle AJ, Lee S, Dasgupta NP. Geometric Optimization of Bismuth Vanadate Core-Shell Nanowire Photoanodes using Atomic Layer Deposition. ACS APPLIED MATERIALS & INTERFACES 2021; 13:52063-52072. [PMID: 34283562 DOI: 10.1021/acsami.1c09236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this study, systematic geometric tuning of core-shell nanowire (NW) architectures is used to decouple the contributions from light absorption, charge separation, and charge transfer kinetics in photoelectrochemical water oxidation. Core-shell-shell NW arrays were fabricated using a combination of hydrothermal synthesis of ZnO and atomic layer deposition (ALD) of SnO2 and BiVO4. The length and spacing of the NW scaffold, as well as the BiVO4 film thickness, were systematically tuned to optimize the photoelectrochemical performance. A photocurrent of 4.4 mA/cm2 was measured at 1.23 V vs RHE for sulfite oxidation and 4.0 mA/cm2 at 1.80 V vs RHE for water oxidation without a cocatalyst, which are the highest values reported to date for an ALD-deposited photoanode. Electromagnetic simulations demonstrate that spatial heterogeneity in light absorption along the core-shell NW length has a critical role in determining internal quantum efficiency. The mechanistic understandings in this study highlight the benefits of systematically optimizing electrode geometry at the nanoscale when designing photoelectrodes.
Collapse
Affiliation(s)
- Ashley R Bielinski
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Andrew J Gayle
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Sudarat Lee
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Neil P Dasgupta
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
31
|
Hrachowina L, Anttu N, Borgström MT. Wafer-Scale Synthesis and Optical Characterization of InP Nanowire Arrays for Solar Cells. NANO LETTERS 2021; 21:7347-7353. [PMID: 34449221 PMCID: PMC8431724 DOI: 10.1021/acs.nanolett.1c02542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Nanowire solar cells have the potential to reach the same efficiencies as the world-record III-V solar cells while using a fraction of the material. For solar energy harvesting, large-area nanowire solar cells have to be processed. In this work, we demonstrate the synthesis of epitaxial InP nanowire arrays on a 2 inch wafer. We define five array areas with different nanowire diameters on the same wafer. We use a photoluminescence mapper to characterize the sample optically and compare it to a homogeneously exposed reference wafer. Both steady-state and time-resolved photoluminescence maps are used to study the material's quality. From a mapping of reflectance spectra, we simultaneously extract the diameter and length of the nanowires over the full wafer. The extracted knowledge of large-scale nanowire synthesis will be crucial for the upscaling of nanowire-based solar cells, and the demonstrated wafer-scale characterization methods will be central for quality control during manufacturing.
Collapse
Affiliation(s)
- Lukas Hrachowina
- NanoLund
and Division of Solid State Physics, Lund
University, Box 118, 221 00 Lund, Sweden
| | - Nicklas Anttu
- Physics,
Faculty of Science and Engineering, Åbo
Akademi University, FI-20500 Turku, Finland
- Department
of Electronics and Nanoengineering, Aalto
University, P.O. Box 13500, FI-00076 Aalto, Finland
| | - Magnus T. Borgström
- NanoLund
and Division of Solid State Physics, Lund
University, Box 118, 221 00 Lund, Sweden
| |
Collapse
|
32
|
Li S, Xu L, Kong X, Kusunose T, Tsurumach N, Feng Q. Enhanced Photovoltaic Performance of BiSCl Solar Cells Through Nanorod Array. CHEMSUSCHEM 2021; 14:3351-3358. [PMID: 34213085 DOI: 10.1002/cssc.202101161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/29/2021] [Indexed: 06/13/2023]
Abstract
BiSCl single-crystalline nanofibers were synthesized by a facile one-pot solvothermal approach for the first time. BiSCl possesses a double chain type structure and grows readily along the c-axis, resulting the fibrous morphology. UV/Vis absorption spectroscopy revealed that BiSCl nanofibers exhibit a strong light absorption in a wavelength range from UV to visible light, corresponding to a bandgap of 1.96 eV. Ultraviolet photoelectron spectroscopy and density functional theory calculations revealed that BiSCl is a direct n-type semiconductor with valence band maximum and conduction band minimum located at 6.04 and 4.08 eV below the vacuum level, respectively. To investigate the photovoltaic performance, the homogeneous thin film of BiSCl-nanorod array was fabricated on a TiO2 porous film by a modified solvothermal process, where the nanorod array is oriented vertically to the surface of the TiO2 porous film. A proper band alignment of BiSCl-based solar cells with an architecture of fluorine-doped tin oxide (FTO)/TiO2 /BiSCl/(I3 - /I- )/Pt gave a PCE of 1.36 % and a relatively large short-circuit photocurrent density of 9.87 mA cm-2 for the first time. The preliminary photovoltaic study result revealed a potential possibility of BiSCl-nanorod array as a light absorber for solar cells that can be fabricated by the low-cost solution process.
Collapse
Affiliation(s)
- Sen Li
- Department of Advanced Materials Science, Faculty of Engineering and Design, Kagawa University, 2217-20 Hayashi-cho, Takamatsu, 761-0396, Japan
| | - Linfeng Xu
- Institute of Environment-friendly Materials and Occupational Health (Wuhu) and School of Earth and Environment, Anhui University of Science and Technology, Huainan, Anhui, 241000, P. R. China
| | - Xingang Kong
- School of Materials Science and Engineering, Shaanxi University of Science and Technology Weiyang, Xi'an, Shaanxi, 710021, P. R. China
| | - Takafumi Kusunose
- Department of Advanced Materials Science, Faculty of Engineering and Design, Kagawa University, 2217-20 Hayashi-cho, Takamatsu, 761-0396, Japan
| | - Noriaki Tsurumach
- Department of Advanced Materials Science, Faculty of Engineering and Design, Kagawa University, 2217-20 Hayashi-cho, Takamatsu, 761-0396, Japan
| | - Qi Feng
- Department of Advanced Materials Science, Faculty of Engineering and Design, Kagawa University, 2217-20 Hayashi-cho, Takamatsu, 761-0396, Japan
| |
Collapse
|
33
|
Demontis V, Zannier V, Sorba L, Rossella F. Surface Nano-Patterning for the Bottom-Up Growth of III-V Semiconductor Nanowire Ordered Arrays. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2079. [PMID: 34443910 PMCID: PMC8398085 DOI: 10.3390/nano11082079] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/07/2021] [Accepted: 08/10/2021] [Indexed: 12/18/2022]
Abstract
Ordered arrays of vertically aligned semiconductor nanowires are regarded as promising candidates for the realization of all-dielectric metamaterials, artificial electromagnetic materials, whose properties can be engineered to enable new functions and enhanced device performances with respect to naturally existing materials. In this review we account for the recent progresses in substrate nanopatterning methods, strategies and approaches that overall constitute the preliminary step towards the bottom-up growth of arrays of vertically aligned semiconductor nanowires with a controlled location, size and morphology of each nanowire. While we focus specifically on III-V semiconductor nanowires, several concepts, mechanisms and conclusions reported in the manuscript can be invoked and are valid also for different nanowire materials.
Collapse
Affiliation(s)
- Valeria Demontis
- NEST, Scuola Normale Superiore and Istituto Nanoscienze CNR, Piazza S. Silvestro 12, 56127 Pisa, Italy; (V.Z.); (L.S.)
| | - Valentina Zannier
- NEST, Scuola Normale Superiore and Istituto Nanoscienze CNR, Piazza S. Silvestro 12, 56127 Pisa, Italy; (V.Z.); (L.S.)
| | - Lucia Sorba
- NEST, Scuola Normale Superiore and Istituto Nanoscienze CNR, Piazza S. Silvestro 12, 56127 Pisa, Italy; (V.Z.); (L.S.)
| | - Francesco Rossella
- NEST, Scuola Normale Superiore and Istituto Nanoscienze CNR, Piazza S. Silvestro 12, 56127 Pisa, Italy; (V.Z.); (L.S.)
- Dipartimento di Scienze Fisiche, Informatiche e Matematiche, Università di Modena e Reggio Emilia, Via Campi 213/A, 41125 Modena, Italy
| |
Collapse
|
34
|
Abstract
We studied the effects of image formation in a device known as Ferrocell, which consists of a thin film of a ferrofluid solution between two glass plates subjected to an external magnetic field in the presence of a light source. Following suggestions found in the literature, we compared the Ferrocell light scattering for some magnetic field configurations with the conical scattering of light by thin structures found in foams known as Plateau borders, and we discuss this type of scattering with the concept of diffracted rays from the Geometrical Theory of Diffraction. For certain magnetic field configurations, a Ferrocell with a point light source creates images of circles, parabolas, and hyperboles. We interpret the Ferrocell images as analogous to a Möbius transformation by inversion of the magnetic field. The formation of circles through this transformation is known as horocycles, which can be observed directly in the Ferrocell plane.
Collapse
|
35
|
|
36
|
Leonardi AA, Lo Faro MJ, Miritello M, Musumeci P, Priolo F, Fazio B, Irrera A. Cost-Effective Fabrication of Fractal Silicon Nanowire Arrays. NANOMATERIALS 2021; 11:nano11081972. [PMID: 34443803 PMCID: PMC8401735 DOI: 10.3390/nano11081972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/22/2021] [Accepted: 07/29/2021] [Indexed: 12/21/2022]
Abstract
Silicon nanowires (Si NWs) emerged in several application fields as a strategic element to surpass the bulk limits with a flat compatible architecture. The approaches used for the Si NW realization have a crucial impact on their final performances and their final cost. This makes the research on a novel and flexible approach for Si NW fabrication a crucial point for Si NW-based devices. In this work, the novelty is the study of the flexibility of thin film metal-assisted chemical etching (MACE) for the fabrication of Si NWs with the possibility of realizing different doped Si NWs, and even a longitudinal heterojunction p-n inside the same single wire. This point has never been reported by using thin metal film MACE. In particular, we will show how this approach permits one to obtain a high density of vertically aligned Si NWs with the same doping of the substrate and without any particular constraint on doping type and level. Fractal arrays of Si NWs can be fabricated without any type of mask thanks to the self-assembly of gold at percolative conditions. This Si NW fractal array can be used as a substrate to realize controllable artificial fractals, integrating other interesting elements with a cost-effective microelectronics compatible approach.
Collapse
Affiliation(s)
- Antonio Alessio Leonardi
- Dipartimento di Fisica e Astronomia “Ettore Majorana”, Università di Catania, Via Santa Sofia 64, 95123 Catania, Italy; (A.A.L.); (M.J.L.F.); (P.M.); (F.P.)
- CNR-IPCF, Istituto per i Processi Chimico-Fisici, Viale F. Stagno D’Alcontres 37, 98158 Messina, Italy
- CNR-IMM UoS Catania, Istituto per la Microelettronica e Microsistemi, Via Santa Sofia 64, 95025 Catania, Italy;
| | - Maria José Lo Faro
- Dipartimento di Fisica e Astronomia “Ettore Majorana”, Università di Catania, Via Santa Sofia 64, 95123 Catania, Italy; (A.A.L.); (M.J.L.F.); (P.M.); (F.P.)
- CNR-IMM UoS Catania, Istituto per la Microelettronica e Microsistemi, Via Santa Sofia 64, 95025 Catania, Italy;
| | - Maria Miritello
- CNR-IMM UoS Catania, Istituto per la Microelettronica e Microsistemi, Via Santa Sofia 64, 95025 Catania, Italy;
| | - Paolo Musumeci
- Dipartimento di Fisica e Astronomia “Ettore Majorana”, Università di Catania, Via Santa Sofia 64, 95123 Catania, Italy; (A.A.L.); (M.J.L.F.); (P.M.); (F.P.)
| | - Francesco Priolo
- Dipartimento di Fisica e Astronomia “Ettore Majorana”, Università di Catania, Via Santa Sofia 64, 95123 Catania, Italy; (A.A.L.); (M.J.L.F.); (P.M.); (F.P.)
| | - Barbara Fazio
- CNR-IPCF, Istituto per i Processi Chimico-Fisici, Viale F. Stagno D’Alcontres 37, 98158 Messina, Italy
- Correspondence: (B.F.); (A.I.); Tel.: +39-0903-9762-266 (A.I.)
| | - Alessia Irrera
- CNR-IPCF, Istituto per i Processi Chimico-Fisici, Viale F. Stagno D’Alcontres 37, 98158 Messina, Italy
- Correspondence: (B.F.); (A.I.); Tel.: +39-0903-9762-266 (A.I.)
| |
Collapse
|
37
|
Yan J, Ge K, Li H, Yang X, Chen J, Wan L, Guo J, Li F, Xu Y, Song D, Flavel BS, Chen J. Solution processable in situ passivated silicon nanowires. NANOSCALE 2021; 13:11439-11445. [PMID: 34160536 DOI: 10.1039/d1nr02131a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The 1D confinement of silicon in the form of a nanowire revives its newness with the emergence of new optical and electronic properties. However, the development of a production process for silicon nanowires (SiNWs) having a high quality crystalline core and exhibiting good stability in solution with effective outer-shell defect passivation is still a challenge. In this work, SiNWs are prepared from a silicon wafer using solution processing steps, and importantly outer-shell-defect passivation is achieved by in situ grafting of organic molecules based on thin films. Defect passivation and the high quality of the SiNWs are confirmed with thin films on glass and flexible plastic substrates. A dramatic enhancement in both the fluorescence lifetime and infrared photoluminescence is observed. The in situ organic passivation of SiNWs has potential application in all low-dimensional silicon devices including infrared detectors, solar cells and lithium-ion battery anodes.
Collapse
Affiliation(s)
- Jun Yan
- Hebei Key Lab of Optic-Electronic Information and Materials, College of Physics Science and Technology, Hebei University, Baoding 071002, China.
| | - Kunpeng Ge
- Hebei Key Lab of Optic-Electronic Information and Materials, College of Physics Science and Technology, Hebei University, Baoding 071002, China.
| | - Han Li
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Karlsruhe 76021, Germany
| | - Xueliang Yang
- State Key Laboratory of Photovoltaic Materials & Technology, Yingli Green Energy Holding Co., Ltd., Baoding 071051, China
| | - Jingwei Chen
- Hebei Key Lab of Optic-Electronic Information and Materials, College of Physics Science and Technology, Hebei University, Baoding 071002, China.
| | - Lu Wan
- Hebei Key Lab of Optic-Electronic Information and Materials, College of Physics Science and Technology, Hebei University, Baoding 071002, China.
| | - Jianxin Guo
- Hebei Key Lab of Optic-Electronic Information and Materials, College of Physics Science and Technology, Hebei University, Baoding 071002, China.
| | - Feng Li
- State Key Laboratory of Photovoltaic Materials & Technology, Yingli Green Energy Holding Co., Ltd., Baoding 071051, China
| | - Ying Xu
- Hebei Key Lab of Optic-Electronic Information and Materials, College of Physics Science and Technology, Hebei University, Baoding 071002, China.
| | - Dengyuan Song
- State Key Laboratory of Photovoltaic Materials & Technology, Yingli Green Energy Holding Co., Ltd., Baoding 071051, China
| | - Benjamin S Flavel
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Karlsruhe 76021, Germany
| | - Jianhui Chen
- Hebei Key Lab of Optic-Electronic Information and Materials, College of Physics Science and Technology, Hebei University, Baoding 071002, China. and Institute of Nanotechnology, Karlsruhe Institute of Technology, Karlsruhe 76021, Germany
| |
Collapse
|
38
|
Zhang X, John S. Photonic crystal light trapping for photocatalysis. OPTICS EXPRESS 2021; 29:22376-22402. [PMID: 34266003 DOI: 10.1364/oe.427218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/07/2021] [Indexed: 06/13/2023]
Abstract
The Achilles heel of wide-band photocatalysts such as TiO2 is the insufficient photogeneration in the visible range under sunlight. This has been a longstanding impediment to large-scale, real-world deployment of titania-based photocatalysis applications. Instead of traditional band engineering through heavy-doping, we suggest enhancing photocatalytic efficiency of lightly-doped TiO2 using photonic crystal (PC) structures. This strongly increases solar photogeneration through novel wave-interference-based light trapping. Four photocatalyst structures - simple cubic woodpile (wdp), square lattice nanorod (nrPC), slanted conical-pore (scPore), and face-centered cubic inverse opal (invop) - are optimized and compared for light harvesting in the sub- and above-gap (282 to 550 nm) regions of weakly absorbing TiO2, with the imaginary part of the dielectric constant 0.01 in the visible range. The optimized lattice constants for the first three, and opal center-to-center distance for invop, are ∼300 - 350 nm. For fixed PC thickness, the ranking of visible light harvesting capability is: scPore > wdp ∼ nrPC > invop. The scPore PC deposited on highly reflective substrate is ideal for photocatalysis given its combination of enhanced light trapping and superior charge transport.
Collapse
|
39
|
Saini S, Reshmi S, Gouda GM, Kumar S A, K V S, Bhattacharjee K. Low reflectance of carbon nanotube and nanoscroll-based thin film coatings: a case study. NANOSCALE ADVANCES 2021; 3:3184-3198. [PMID: 36133669 PMCID: PMC9417157 DOI: 10.1039/d0na01058h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/13/2021] [Indexed: 05/04/2023]
Abstract
Research on carbon material-based thin films with low light reflectance has received significant attention for the development of high absorber coatings for stray light control applications. Herein, we report a method for the successful fabrication of stable thin films comprised of carbon nanotubes (CNTs) and nanoscrolls (CNS) on an aluminium (Al) substrate, which exhibited low reflectance of the order of 2-3% in the visible and near-infrared (NIR) spectral bands. Changes in the structural and chemical composition of pristine single-walled carbon nanotube (SWCNT) samples were analyzed after each processing step. Spectroscopy, microscopy and microstructural studies demonstrated emergence of CNS and multi-walled carbon nanotubes (MWCNTs) due to the sequential chemical processing of the sample. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) studies revealed the formation of CNS via curling and folding of graphene sheets. Microstructural investigations including SEM and atomic force microscopy (AFM) confirmed the presence of microcavities and pores on the surface of the film. These cavities and pores significantly contribute to the observed low reflectance value of CNTs, CNS compound films by trapping the incident light. Fundamental space environmental simulation tests (SEST) were performed on the coated films, that showed promising results with reflectance values almost unaltered in the visible and NIR spectral bands, demonstrating the durability of these films as potential candidates to be used in extreme space environmental conditions. This study describes the preparation, characterization, and testing of blended CNT and CNS coatings for low-light scattering applications.
Collapse
Affiliation(s)
- Sonia Saini
- Indian Institute of Space Science and Technology (IIST) Thiruvanthapuram 695 547 India
- Laboratory for Electro-Optics Systems (LEOS), Indian Space Research Organization (ISRO) Bengaluru 560 058 India
| | - S Reshmi
- Institute of Physics Sachivalaya Marg Bhubaneswar 751 005 Odisha India
| | - Girish M Gouda
- Laboratory for Electro-Optics Systems (LEOS), Indian Space Research Organization (ISRO) Bengaluru 560 058 India
| | - Ajith Kumar S
- Laboratory for Electro-Optics Systems (LEOS), Indian Space Research Organization (ISRO) Bengaluru 560 058 India
| | - Sriram K V
- Laboratory for Electro-Optics Systems (LEOS), Indian Space Research Organization (ISRO) Bengaluru 560 058 India
| | - K Bhattacharjee
- Indian Institute of Space Science and Technology (IIST) Thiruvanthapuram 695 547 India
- Institute of Physics Sachivalaya Marg Bhubaneswar 751 005 Odisha India
| |
Collapse
|
40
|
Influence of Geometrical Shape on the Characteristics of the Multiple InN/In xGa 1-xN Quantum Dot Solar Cells. NANOMATERIALS 2021; 11:nano11051317. [PMID: 34067706 PMCID: PMC8156562 DOI: 10.3390/nano11051317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/08/2021] [Accepted: 05/09/2021] [Indexed: 11/16/2022]
Abstract
Solar cells that are based on the implementation of quantum dots in the intrinsic region, so-called intermediate band solar cells (IBSCs), are among the most widely used concepts nowadays for achieving high solar conversion efficiency. The principal characteristics of such solar cells relate to their ability to absorb low energy photons to excite electrons through the intermediate band, allowing for conversion efficiency exceeding the limit of Shockley–Queisser. IBSCs are generating considerable interest in terms of performance and environmental friendliness. However, there is still a need for optimizing many parameters that are related to the solar cells, such as the size of quantum dots, their shape, the inter-dot distance, and choosing the right material. To date, most studies have only focused on studying IBSC composed of cubic shape of quantum dots. The main objective of this study is to extend the current knowledge of IBSC. Thus, we analyze the effect of the shape of the quantum dot on the electronic and photonic characteristics of indium nitride and indium gallium nitride multiple quantum dot solar cells structure considering cubic, spherical, and cylindrical quantum dot shapes. The ground state of electrons and holes energy levels in quantum dot are theoretically determined by considering the Schrödinger equation within the effective mass approximation. Thus, the inter and intra band transitions are determined for different dot sizes and different inter dot spacing. Consequently, current–voltage (J-V) characteristic and efficiencies of these devices are evaluated and compared for different shapes. Our calculations show that, under fully concentrated light, for the same volume of different quantum dots (QD) shapes and a well determined In-concentration, the maximum of the photovoltaic conversion efficiencies reaches 63.04%, 62.88%, and 62.43% for cubic, cylindrical, and spherical quantum dot shapes, respectively.
Collapse
|
41
|
Rashidi M, Haggren T, Su Z, Jagadish C, Mokkapati S, Tan HH. Managing Resonant and Nonresonant Lasing Modes in GaAs Nanowire Random Lasers. NANO LETTERS 2021; 21:3901-3907. [PMID: 33900783 DOI: 10.1021/acs.nanolett.1c00455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Random lasers are promising, easy-to-fabricate light sources that rely on scattering instead of well-defined optical cavities. We demonstrate random lasing in GaAs nanowires using both randomly oriented and vertically aligned arrays. These configurations are shown to lase in both resonant and nonresonant modes, where aligned nanowires support predominantly resonant lasing and randomly oriented favors nonresonant lasing. On the basis of numerical simulations, aligning the nanowires increases the system's scattering efficiency leading to higher quality factor modes and thus favoring the resonant modes. We further demonstrate two methods to optically suppress resonant mode lasing by increasing the number of excited modes. The light output-light input curves show a pronounced kink for the resonant lasing mode while the nonresonant mode is kink-free. The resonant lasing modes may be used as tunable lasers, and the nonresonant modes exhibit near-thresholdless amplification. Switching between lasing modes opens up new opportunities to use lasers in broader applications.
Collapse
Affiliation(s)
- Mohammad Rashidi
- Department of Electronic Materials Engineering, Research School of Physics, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Tuomas Haggren
- Department of Electronic Materials Engineering, Research School of Physics, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Zhicheng Su
- Department of Electronic Materials Engineering, Research School of Physics, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Chennupati Jagadish
- Department of Electronic Materials Engineering, Research School of Physics, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
- Australian Research Council Centre of Excellence for Transformative Meta-Optical Systems, Research School of Physics, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Sudha Mokkapati
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Hark H Tan
- Department of Electronic Materials Engineering, Research School of Physics, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
- Australian Research Council Centre of Excellence for Transformative Meta-Optical Systems, Research School of Physics, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
42
|
Rey M, Wendisch FJ, Aaron Goerlitzer ES, Julia Tang JS, Bader RS, Bourret GR, Vogel N. Anisotropic silicon nanowire arrays fabricated by colloidal lithography. NANOSCALE ADVANCES 2021; 3:3634-3642. [PMID: 34212129 PMCID: PMC8204746 DOI: 10.1039/d1na00259g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/09/2021] [Indexed: 05/21/2023]
Abstract
The combination of metal-assisted chemical etching (MACE) and colloidal lithography allows for the affordable, large-scale and high-throughput synthesis of silicon nanowire (SiNW) arrays. However, many geometric parameters of these arrays are coupled and cannot be addressed individually using colloidal lithography. Despite recent advancements towards higher flexibility, SiNWs fabricated via colloidal lithography and MACE usually have circular, isotropic cross-sections inherited from the spherical templates. Here we report a facile technique to synthesize anisotropic SiNWs with tunable cross-sections via colloidal lithography and MACE. Metal films with an elliptical nanohole array can form from shadows of colloidal particles during thermal evaporation of the metal at tilted angles. The aspect ratio of these anisotropic holes can be conveniently controlled via the deposition angle. Consecutive MACE using these patterned substrates with or without prior removal of the templating spheres results in arrays of anisotropic SiNWs with either elliptical or crescent-shaped cross-sections, respectively. As a consequence of the anisotropy, long SiNWs with elliptical cross-sections preferentially collapse along their short axis, leading to a controlled bundling process and the creation of anisotropic surface topographies. These results demonstrate that a rich library of SiNW shapes and mesostructures can be prepared using simple spherical colloidal particles as masks.
Collapse
Affiliation(s)
- Marcel Rey
- Institute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg Cauerstrasse 4 91058 Erlangen Germany
- Department of Physics and Astronomy, The University of Edinburgh Mayfield Road Edinburgh EH9 3JZ UK
| | - Fedja Jan Wendisch
- Department of Chemistry and Physics of Materials, University of Salzburg Jakob Haringer Strasse 2A A-5020 Salzburg Austria
| | - Eric Sidney Aaron Goerlitzer
- Institute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg Cauerstrasse 4 91058 Erlangen Germany
| | - Jo Sing Julia Tang
- Institute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg Cauerstrasse 4 91058 Erlangen Germany
- Department of Biofunctionalized Materials and (Glyco)Biotechnology, Fraunhofer Institute for Applied Polymer Research IAP Geiselbergstr. 69 14476 Potsdam Germany
- Chair of Polymer Materials and Polymer Technologies, Institute of Chemistry, University of Potsdam 14476 Potsdam-Golm Germany
| | - Romina Sigrid Bader
- Institute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg Cauerstrasse 4 91058 Erlangen Germany
| | - Gilles Remi Bourret
- Department of Chemistry and Physics of Materials, University of Salzburg Jakob Haringer Strasse 2A A-5020 Salzburg Austria
| | - Nicolas Vogel
- Institute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg Cauerstrasse 4 91058 Erlangen Germany
| |
Collapse
|
43
|
Gao LK, Tang YL. Theoretical Study on the Carrier Mobility and Optical Properties of CsPbI 3 by DFT. ACS OMEGA 2021; 6:11545-11555. [PMID: 34056310 PMCID: PMC8153995 DOI: 10.1021/acsomega.1c00734] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
The advantages of organic-inorganic hybrid halide perovskites and related materials, such as high absorption coefficient, appropriate band gap, excellent carrier mobility, and long carrier life, provide the possibility for the preparation of low-cost and high-efficiency solar cell materials. Among the inorganic materials, CsPbI3 is paid more attention to by researchers as CsPbI3 has incomparable advantages. In this paper, based on density functional theory (DFT), we first analyze the crystal structure, electronic properties, and work function of two common bulk structures of CsPbI3 and their slices, and then, we study the carrier mobility, exciton binding energy, and light absorption coefficient. Considering that CsPbI3 contains heavy elements, the spin-orbit coupling (SOC) effect was also considered in the calculation. The highest mobility is that electrons of the cubic structure reach 1399 cm2 V-1 S-1 after considering the SOC effect, which is equal to that of traditional solar cells (such as Si-based, PbSe, and PbTe). The lowest exciton binding energy is 101 meV in the cubic bulk structure, which is beneficial to the separation of photogenerated carriers. In the visible region, the absorption coefficient of the cubic structure is the best among all structures, reaching 105 cm-1. Through the study of mobility, exciton binding energy, and light absorption coefficient, it is found that the cubic bulk structure in all structures of CsPbI3 has the best photoelectric performance. This paper can provide some guidance for the experimental preparation of CsPbI3 as a potential high-efficiency solar cell material.
Collapse
Affiliation(s)
- Li-Ke Gao
- College
of Big Data and Information Engineering, Guizhou University, Guiyang 550025, China
| | - Yan-Lin Tang
- College
of Physics, Guizhou University, Guiyang 550025, China
| |
Collapse
|
44
|
Muthuvel R, Arunachalam M, Karanthamalai V, Venkatesan R, Venkatachalapathy V, Mayandi J. Mechanical, Structural and Optical Properties of the Silicon Nanowire Arrays. Z PHYS CHEM 2021. [DOI: 10.1515/zpch-2019-1588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The present work discusses the systematic study of mechanical properties of the silicon nanostructures formed by metal assisted chemical etching (MACE). Silver electrolyte solution, along with hydrogen fluoride, was utilized in formation of silicon nanostructures. An optimized condition of etching time and silver electrolyte concentration were utilized to obtain high aspect ratio, defect-free and high density nanowire arrays on Si wafers. The as-prepared silicon nanostructures (SiNS) were investigated by Scanning electron microscopy (SEM) and nano indentation technique to bring out the morphological and mechanical properties. Further, the variation in optical properties of the bulk silicon and Si nanowire arrays were also investigated to determine the formation of nanostructures.
Collapse
Affiliation(s)
- Ramuvel Muthuvel
- Department of Electrical and Electronics Engineering , Sethu Institute of Technology , Kariapatti, Virudhunagar, Tamil Nadu 626115 , India
| | - Manimaran Arunachalam
- Department of Mechanical Engineering , Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology , Avadi, Chennai, Tamil Nadu , India
| | - Vinayagar Karanthamalai
- Department of Mechanical Engineering , Sethu Institute of Technology , Kariapatti, Virudhunagar, Tamil Nadu 626115 , India
| | - Ragavendran Venkatesan
- Department of Materials Science , School of Chemistry, Madurai Kamaraj University , Madurai-625 021 , India
| | - Vishnukanthan Venkatachalapathy
- Department of Physics , Centre for Materials Science and Nanotechnology, University of Oslo , PO Box 1048 , Blindern, N-0316 Oslo , Norway
- Department of Materials Science , National Research Nuclear University “MEPhI” , 31 Kashirskoe sh , Moscow , Russian Federation
| | - Jeyanthinath Mayandi
- Department of Materials Science , School of Chemistry, Madurai Kamaraj University , Madurai-625 021 , India
- Department of Physics , Centre for Materials Science and Nanotechnology, University of Oslo , PO Box 1048 , Blindern, N-0316 Oslo , Norway
| |
Collapse
|
45
|
Jevasuwan W, Fukata N. Functionalized aluminum-catalyzed silicon nanowire formation and radial junction photovoltaic devices. NANOSCALE 2021; 13:6798-6808. [PMID: 33885481 DOI: 10.1039/d1nr00312g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Vertical-oriented silicon nanowire (SiNW) arrays with shaped smooth, nanodot-, or NW-structured surfaces offer many desirable advantages for advanced device applications. In this study, these functionalized SiNW formations were simplified by ex situ preparation of an aluminum (Al) catalyst along with optimization of the substrate temperature and time during vapor-liquid-solid chemical vapor deposition as a one-step process. SiNW-based photovoltaic cells were demonstrated with minimized NW surface defects through NW surface modification, opening a new path for the development of versatile Al-catalyzed SiNWs as a material of choice for on-chip integration in future nanotechnologies.
Collapse
Affiliation(s)
- Wipakorn Jevasuwan
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
| | | |
Collapse
|
46
|
Behera JK, Liu K, Lian M, Cao T. A reconfigurable hyperbolic metamaterial perfect absorber. NANOSCALE ADVANCES 2021; 3:1758-1766. [PMID: 36132556 PMCID: PMC9417818 DOI: 10.1039/d0na00787k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/29/2021] [Indexed: 06/01/2023]
Abstract
Metamaterial (MM) perfect absorbers are realised over various spectra from visible to microwave. Recently, different approaches have been explored to integrate tunability into MM absorbers. Particularly, tuning has been illustrated through electrical-, thermal-, and photo-induced changes to the permittivity of the active medium within MM absorbers. However, the intricate design, expensive nanofabrication process, and the volatile nature of the active medium limit the widespread applications of MM absorbers. Metal-dielectric stack layered hyperbolic metamaterials (HMMs) have recently attracted much attention due to their extraordinary optical properties and rather simple design. Herein, we experimentally realised a reconfigurable HMM perfect absorber based on alternating gold (Au) and Ge2Sb2Te5 (GST225) layers for the near-infrared (N-IR) region. It shows that a red-shift of 500 nm of the absorptance peak can be obtained by changing the GST225 state from amorphous to crystalline. The nearly perfect absorptance is omnidirectional and polarisation-independent. Additionally, the absorptance peak can be reversibly switched in just five nanoseconds by re-amorphising the GST225, enabling a dynamically reconfigurable HMM absorber. Experimental data are validated numerically using the finite-difference time-domain method. The absorber fabricated using our strategy has advantages of being reconfigurable, uncomplicated, and lithography-free over conventional MM absorbers, which may open up a new path for applications in energy harvesting, photodetectors, biochemical sensing, and thermal camouflage techniques.
Collapse
Affiliation(s)
- Jitendra K Behera
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology Dalian 116024 China
| | - Kuan Liu
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology Dalian 116024 China
| | - Meng Lian
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology Dalian 116024 China
| | - Tun Cao
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology Dalian 116024 China
| |
Collapse
|
47
|
Leonardi AA, Lo Faro MJ, Irrera A. Biosensing platforms based on silicon nanostructures: A critical review. Anal Chim Acta 2021; 1160:338393. [PMID: 33894957 DOI: 10.1016/j.aca.2021.338393] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 12/21/2022]
Abstract
Biosensors are revolutionizing the health-care systems worldwide, permitting to survey several diseases, even at their early stage, by using different biomolecules such as proteins, DNA, and other biomarkers. However, these sensing approaches are still scarcely diffused outside the specialized medical and research facilities. Silicon is the undiscussed leader of the whole microelectronics industry, and novel sensors based on this material may completely change the health-care scenario. In this review, we will show how novel sensing platforms based on Si nanostructures may have a disruptive impact on applications with a real commercial transfer. A critical study for the main Si-based biosensors is herein presented with a comparison of their advantages and drawbacks. The most appealing sensing devices are discussed, starting from electronic transducers, with Si nanowires field-effect transistor (FET) and porous Si, to their optical alternatives, such as effective optical thickness porous silicon, photonic crystals, luminescent Si quantum dots, and finally luminescent Si NWs. All these sensors are investigated in terms of working principle, sensitivity, and selectivity with a specific focus on the possibility of their industrial transfer, and which ones may be preferred for a medical device.
Collapse
Affiliation(s)
- Antonio Alessio Leonardi
- Dipartimento di Fisica e Astronomia "Ettore Majorana", Università di Catania, Via Santa Sofia 64, 95123, Catania, Italy; CNR-IMM UoS Catania, Istituto per La Microelettronica e Microsistemi, Via Santa Sofia 64, Italy; CNR-IPCF, Istituto per I Processi Chimico-Fisici, Viale F. Stagno D'Alcontres 37, 98158, Messina, Italy
| | - Maria José Lo Faro
- Dipartimento di Fisica e Astronomia "Ettore Majorana", Università di Catania, Via Santa Sofia 64, 95123, Catania, Italy; CNR-IMM UoS Catania, Istituto per La Microelettronica e Microsistemi, Via Santa Sofia 64, Italy
| | - Alessia Irrera
- CNR-IPCF, Istituto per I Processi Chimico-Fisici, Viale F. Stagno D'Alcontres 37, 98158, Messina, Italy.
| |
Collapse
|
48
|
Hu R, Liao G, Huang Z, Qiao H, Liu H, Shu Y, Wang B, Qi X. Recent advances of monoelemental 2D materials for photocatalytic applications. JOURNAL OF HAZARDOUS MATERIALS 2021; 405:124179. [PMID: 33261976 DOI: 10.1016/j.jhazmat.2020.124179] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/28/2020] [Accepted: 10/01/2020] [Indexed: 06/12/2023]
Abstract
As a sustainable environmental governance strategy and energy conversion method, photocatalysis has considered to have great potential in this field due to its excellent optical properties and has become one of the most attractive technologies today. Among 2D materials, the emerging two-dimensional (2D) monoelemental materials mainly distributed in the -IIIA, -IVA, -VA and -VIA groups and show excellent performance in solar energy conversion due to their graphene-like 2D atomic structure and unique properties, thereby drawing increasing attention. This review briefly summarizes the preparation processes and fundamental properties of 2D single-element nanomaterials, as well as various modification strategies and adjustment mechanisms to enhance their photocatalytic properties. In particular, this article comprehensively discusses the related practical applications of 2D single-element materials in the field of photocatalysis, including photocatalytic degradation for contaminants removal, photocatalytic pathogen inactivation, photocatalytic fouling control and photocatalytic energy conversion. This review will provide some new opportunities for the rational design of other excellent photocatalysts based on 2D monoelemental materials, as well as present tremendous novel ideas for 2D monoelemental materials in other environmental conservation and energy-related applications, such as supercapacitors, electrocatalysis, solar cells, and so on.
Collapse
Affiliation(s)
- Rong Hu
- Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, and School of Physics and Optoelectronic, Xiangtan University, Hunan 411105, PR China
| | - GengCheng Liao
- Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, and School of Physics and Optoelectronic, Xiangtan University, Hunan 411105, PR China
| | - Zongyu Huang
- Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, and School of Physics and Optoelectronic, Xiangtan University, Hunan 411105, PR China.
| | - Hui Qiao
- Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, and School of Physics and Optoelectronic, Xiangtan University, Hunan 411105, PR China
| | - Huating Liu
- Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, and School of Physics and Optoelectronic, Xiangtan University, Hunan 411105, PR China
| | - Yiqing Shu
- College of Physics and Optoelectronic Engineerin, Shenzhen University, Shenzhen 518060, PR China; Faculty of Information Technology Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 999078, PR China
| | - Bing Wang
- College of Physics and Optoelectronic Engineerin, Shenzhen University, Shenzhen 518060, PR China.
| | - Xiang Qi
- Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, and School of Physics and Optoelectronic, Xiangtan University, Hunan 411105, PR China.
| |
Collapse
|
49
|
Nadi SA, Bittkau K, Lentz F, Ding K, Rau U. Design of deterministic light-trapping structures for thin silicon heterojunction solar cells. OPTICS EXPRESS 2021; 29:7410-7417. [PMID: 33726242 DOI: 10.1364/oe.417848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 01/26/2021] [Indexed: 06/12/2023]
Abstract
We optically designed and investigated two deterministic light-trapping concepts named "Hutong" (wafer thickness dependent, patch-like arrangement of "V" grooves with alternating orientations) and "VOSTBAT" (one directional "V" grooves at the front and saw-tooth like structures at the back) for the application in emerging thin silicon heterojunction (SHJ) solar cells. Calculated photocurrent density (Jph) (by weighting the spectrally resolved absorptance with AM1.5g spectrum and integrating over the wavelength) showed that both the Hutong and VOSTBAT structures exceed the Lambertian reference and achieved Jph of 41.72 mA/cm2 and 41.86 mA/cm2, respectively, on 60 µm thin wafers in the case of directional, normal incidence.
Collapse
|
50
|
Abou-Hamdan L, Li C, Haidar R, Krachmalnicoff V, Bouchon P, De Wilde Y. Hybrid modes in a single thermally excited asymmetric dimer antenna. OPTICS LETTERS 2021; 46:981-984. [PMID: 33649637 DOI: 10.1364/ol.413382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
The study of hybrid modes in a single dimer of neighboring antennas is an essential step to optimize the far-field electromagnetic (EM) response of large-scale metasurfaces or any complex antenna structure made up of subwavelength building blocks. Here we present far-field infrared spatial modulation spectroscopy (IR-SMS) measurements of a single thermally excited asymmetric dimer of square metal-insulator-metal (MIM) antennas separated by a nanometric gap. Through thermal fluctuations, all the EM modes of the antennas are excited, and hybrid bonding and anti-bonding modes can be observed simultaneously. We study the latter within a plasmon hybridization model, and analyze their effect on the far-field response.
Collapse
|