1
|
Shen D, Zhao Q, Zhang H, Wu C, Jin H, Guo K, Sun R, Guo H, Zhao Q, Feng H, Dong X, Gao Z, Zhang L, Liu Y. A hydrophobic photouncaging reaction to profile the lipid droplet interactome in tissues. Proc Natl Acad Sci U S A 2025; 122:e2420861122. [PMID: 40238459 PMCID: PMC12037041 DOI: 10.1073/pnas.2420861122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 03/17/2025] [Indexed: 04/18/2025] Open
Abstract
Most bioorthogonal photouncaging reactions preferentially occur in polar environments to accommodate biological applications in the aqueous cellular milieu. However, they are not precisely designed to chemically adapt to the diverse microenvironments of the cell. Herein, we report a hydrophobic photouncaging reaction with tailored photolytic kinetics toward solvent polarity. Structural modulations of the aminobenzoquinone-based photocage reveal the impact of cyclic ring size, steric substituent, and electronic substituent on the individual uncaging kinetics (kH2O and kdioxane) and polarity preference (kdioxane/kH2O). Rational incorporation of optimized moieties leads to up to 20.2-fold nonpolar kinetic selectivity (kdioxane/kH2O). Further photochemical spectroscopic characterizations and theoretical calculations together uncover the mechanism underlying the polarity-dependent uncaging kinetics. The uncaged ortho-quinone methide product bears covalent reactivity toward diverse nucleophiles of a protein revealed by tandem mass spectrometry. Finally, we demonstrate the application of such lipophilic photouncaging chemistry toward selective labeling and profiling of proteins in proximity to lipid droplets inside human fatty liver tissues. Together, this work studies the solvent polarity effects of a photouncaging reaction and chemically adapts it toward suborganelle-targeted protein proximity labeling and profiling.
Collapse
Affiliation(s)
- Di Shen
- State Key Laboratory of Medical Proteomics, National Chromatographic Research & Analysis Center, Chinese Academy of Sciences Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China
| | - Qun Zhao
- State Key Laboratory of Medical Proteomics, National Chromatographic Research & Analysis Center, Chinese Academy of Sciences Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China
| | - Huaiyue Zhang
- State Key Laboratory of Medical Proteomics, National Chromatographic Research & Analysis Center, Chinese Academy of Sciences Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Ci Wu
- State Key Laboratory of Medical Proteomics, National Chromatographic Research & Analysis Center, Chinese Academy of Sciences Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China
| | - Hao Jin
- State Key Laboratory of Medical Proteomics, National Chromatographic Research & Analysis Center, Chinese Academy of Sciences Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China
| | - Kun Guo
- The Second Hospital of Dalian Medical University, Dalian116023, China
| | - Rui Sun
- State Key Laboratory of Medical Proteomics, National Chromatographic Research & Analysis Center, Chinese Academy of Sciences Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Hengke Guo
- State Key Laboratory of Medical Proteomics, National Chromatographic Research & Analysis Center, Chinese Academy of Sciences Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China
| | - Qi Zhao
- The Second Hospital of Dalian Medical University, Dalian116023, China
| | - Huan Feng
- State Key Laboratory of Medical Proteomics, National Chromatographic Research & Analysis Center, Chinese Academy of Sciences Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Xuepeng Dong
- The Second Hospital of Dalian Medical University, Dalian116023, China
| | - Zhenming Gao
- The Second Hospital of Dalian Medical University, Dalian116023, China
| | - Lihua Zhang
- State Key Laboratory of Medical Proteomics, National Chromatographic Research & Analysis Center, Chinese Academy of Sciences Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China
| | - Yu Liu
- State Key Laboratory of Medical Proteomics, National Chromatographic Research & Analysis Center, Chinese Academy of Sciences Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China
| |
Collapse
|
2
|
Colleoni A, Galli G, Dallanoce C, De Amici M, Gorostiza P, Matera C. Light-Activated Pharmacological Tools for Exploring the Cholinergic System. Med Res Rev 2025. [PMID: 40123150 DOI: 10.1002/med.22108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/27/2025] [Accepted: 03/06/2025] [Indexed: 03/25/2025]
Abstract
Cholinergic transmission plays a critical role in both the central and peripheral nervous systems, affecting processes such as learning, memory, and inflammation. Conventional cholinergic drugs generally suffer from poor selectivity and temporal precision, leading to undesired effects and limited therapeutic efficacy. Photopharmacology aims to overcome the limitations of traditional drugs using photocleavable or photoswitchable ligands and spatiotemporal patterns of illumination. Spanning from muscarinic and nicotinic modulators to cholinesterase inhibitors, this review explores the development and application of light-activated compounds as tools for unraveling the role of cholinergic signaling in both physiological and pathological contexts, while also paving the way for innovative phototherapeutic approaches.
Collapse
Grants
- This research was supported by the European Union-Next Generation EU, Mission 4, Component 1 (CUP J53C24002040004), EU Horizon 2020 Framework Programme for Research and Innovation, European Innovation Council Pathfinder (PHOTOTHERAPORT, 101130883), Human Brain Project (WaveScalES, SGA3, 945539), Information and Communication Technologies (Deeper, ICT-36-2020-101016787), and Piano di Sostegno alla Ricerca 2023 (Azione A, Linea 2, PSR2023_DIP_021_CMATE). It was also supported by the Government of Catalonia (CERCA Programme; AGAUR 2021-SGR-01410), Spanish Ministry of Science and Innovation (DEEP RED, grant PID2019-111493RB-I00; EPILLUM, grant AEI/10.13039/501100011033; and Research Network in Biomedicine eBrains-Spain, RED2022-134823-E).
Collapse
Affiliation(s)
- Alessio Colleoni
- Section of Medicinal Chemistry "Pietro Pratesi", Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
- Department of Chemistry, Biology, and Biotechnology, University of Perugia, Perugia, Italy
| | - Giulia Galli
- Section of Medicinal Chemistry "Pietro Pratesi", Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Clelia Dallanoce
- Section of Medicinal Chemistry "Pietro Pratesi", Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Marco De Amici
- Section of Medicinal Chemistry "Pietro Pratesi", Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Pau Gorostiza
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology, Barcelona, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Carlo Matera
- Section of Medicinal Chemistry "Pietro Pratesi", Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| |
Collapse
|
3
|
Lee R, Kim G, Black ER, Kim S. Co-activation of selective nicotinic acetylcholine receptor subtypes is required to reverse hippocampal network dysfunction, fear memory loss, and amyloid pathology in Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.07.08.602576. [PMID: 39026693 PMCID: PMC11257460 DOI: 10.1101/2024.07.08.602576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Alzheimer's disease (AD) is the most common form of dementia with no known cause and cure. Research suggests that a reduction of GABAergic inhibitory interneurons' activity in the hippocampus by beta-amyloid peptide (Aβ) is a crucial trigger for amyloid pathology and cognitive impairment in AD via hyperexcitability. Therefore, enhancing hippocampal inhibition is thought to be protective against AD. However, hippocampal inhibitory cells are highly diverse, and these distinct interneuron subtypes differentially regulate hippocampal inhibitory circuits and cognitive processes. Moreover, Aβ unlikely affects all subtypes of inhibitory interneurons in the hippocampus equally. Hence, identifying the affected interneuron subtypes in AD to enhance hippocampal inhibition optimally is conceptually and practically challenging. We have previously found that Aβ selectively binds to two of the three major hippocampal nicotinic acetylcholine receptor (nAChR) subtypes, α7- and α4β2-nAChRs, but not α3β4-nAChRs, and inhibits these two receptors in cultured hippocampal inhibitory interneurons to decrease their activity, leading to hyperexcitation in excitatory neurons. We have also revealed that co-activation of α7- and α4β2-nAChRs is required to reverse the Aβ-induced adverse effects in hippocampal excitatory neurons. Here, we discover that α7- and α4β2-nAChRs predominantly control the nicotinic cholinergic signaling and neuronal activity in hippocampal parvalbumin-positive (PV+) and somatostatin-positive (SST+) inhibitory interneurons, respectively. Furthermore, we reveal that co-activation of these receptors is necessary to reverse hippocampal network dysfunction, amyloid pathology, and fear memory loss in the amyloid pathology model mice. This suggests that co-activation of PV+ and SST+ cells via stimulating α7- and α4β2-nAChRs together is a novel strategy for neuroprotection against AD.
Collapse
|
4
|
Tang M, Shen J, Zhang F, Zhao Y, Gan T, Zeng W, Li R, Wang D, Han B, Liu Z. Upcycling of Polyamide Wastes to Tertiary Amines Using Mo Single Atoms and Rh Nanoparticles. Angew Chem Int Ed Engl 2025; 64:e202416436. [PMID: 39417695 DOI: 10.1002/anie.202416436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 10/19/2024]
Abstract
The pursuit of sustainable practices through the chemical recycling of polyamide wastes holds significant potential, particularly in enabling the recovery of a range of nitrogen-containing compounds. Herein, we report a novel strategy to upcycle polyamide wastes to tertiary amines with the assistance of H2 in acetic acid under mild conditions (e.g., 180 °C), which is achieved over anatase TiO2 supported Mo single atoms and Rh nanoparticles. In this protocol, the polyamide is first converted into diacetamide intermediates via acidolysis, which are subsequently hydrogenated into corresponding carboxylic acid monomers and tertiary amines in 100 % selectivity. It is verified that Mo single atoms and Rh nanoparticles work together to activate both amide bonds of the diacetamide intermediate, and synergistically catalyze its hydrodeoxygenation to form tertiary amine, but this catalyst is ineffective for hydrogenation of carboxylic acid. This work presents an effective way to reconstruct various polyamide wastes into tertiary amines and carboxylic acids, which may have promising application potential.
Collapse
Affiliation(s)
- Minhao Tang
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Ji Shen
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Fengtao Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yanfei Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tao Gan
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Wei Zeng
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Rongxiang Li
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhimin Liu
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
5
|
Su Y, Zheng D, Ge L, Yu L, Lee Phillips D, Ma J, Fang Y. Exploring the molecular design principles for efficient diarylethene photoacid and photohydride generators based on the photochemical reaction mechanism. Chem Sci 2024; 15:20556-20564. [PMID: 39600507 PMCID: PMC11587527 DOI: 10.1039/d4sc06202g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
Photoacid generators (PAGs) and photohydride generators (PHGs) are specific photolabile protecting groups that release acid and hydride, respectively. Over the past decade, great efforts have been devoted to developing novel PAGs and PHGs with advanced efficiency, among which, two of the promising candidates are diarylethene (DAE)-based PAGs and PHGs, which release acids/hydrides during photochromic electrocyclization. The release quantum yield for PAGs is acceptable, while that of PHGs is only 4.2% even after molecular structure modification. In this work, time-resolved transient absorption spectroscopies with femtosecond and nanosecond resolutions along with DFT/TD-DFT calculations were utilized to unravel the detailed photochemical reaction mechanisms of DAE-based PAGs (1o) and PHGs (2o), respectively. The results show that the different photochemical mechanisms are the key that leads to distinctive release quantum yields between 1o and 2o. The factors affecting the release quantum yield are discussed in detail, and several key design principles are proposed to facilitate future rational design of DAE-based PAGs and PHGs.
Collapse
Affiliation(s)
- Yifan Su
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University Xi'an 710119 China
- Institute of New Concept Sensors and Molecular Materials, Shaanxi Normal University Xi'an 710119 China
| | - Dexin Zheng
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University Xi'an 710119 China
- Institute of New Concept Sensors and Molecular Materials, Shaanxi Normal University Xi'an 710119 China
| | - Lingfeng Ge
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University Xi'an 710119 China
- Institute of New Concept Sensors and Molecular Materials, Shaanxi Normal University Xi'an 710119 China
| | - Le Yu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University Xi'an 710127 China
| | - David Lee Phillips
- Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| | - Jiani Ma
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University Xi'an 710119 China
- Institute of New Concept Sensors and Molecular Materials, Shaanxi Normal University Xi'an 710119 China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University Xi'an 710119 China
- Institute of New Concept Sensors and Molecular Materials, Shaanxi Normal University Xi'an 710119 China
| |
Collapse
|
6
|
Porro A, Armano E, Brandalise F, Appiani R, Beltrame M, Saponaro A, Dallanoce C, Nakajo K, Ryu K, Leone R, Thiel G, Pallavicini M, Moroni A, Bolchi C. A Photoactivatable Version of Ivabradine Enables Light-Induced Block of HCN Current In Vivo. J Med Chem 2024; 67:16209-16221. [PMID: 39238314 DOI: 10.1021/acs.jmedchem.4c01047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Therapeutic drugs, whose bioactivity is hindered by a photoremovable cage, offer the advantage of spatiotemporal confinement of their action to the target diseased tissue with improved bioavailability and efficacy. Here, we have applied such an approach to ivabradine (IVA), a bradycardic agent indicated for angina pectoris and heart failure, acting as a specific HCN channel blocker. To overcome the side effects due to its poor discrimination among HCN channel subtypes (HCN1-4), we prepared a caged version of IVA linked to a photocleavable bromoquinolinylmethyl group (BHQ-IVA). We show that upon illumination with blue light (440 nm), BHQ-IVA releases active IVA that blocks HCN channel currents in vitro and exerts a bradycardic effect in vivo. Both BHQ-IVA and the cage are inactive. Caging is stable in aqueous medium and in the dark, and it does not impair aqueous solubility and cell permeation, indispensable for IVA activity. This approach allows for bypassing the poor subtype-specificity of IVA, expanding its prescription to HCN-related diseases besides cardiac.
Collapse
Affiliation(s)
- Alessandro Porro
- Department of Biosciences, University of Milan, Milano 20133, Italy
| | - Edoardo Armano
- Department of Pharmaceutical Sciences, University of Milan, Milano 20133, Italy
| | | | - Rebecca Appiani
- Department of Pharmaceutical Sciences, University of Milan, Milano 20133, Italy
| | - Monica Beltrame
- Department of Biosciences, University of Milan, Milano 20133, Italy
| | - Andrea Saponaro
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milano 20133, Italy
| | - Clelia Dallanoce
- Department of Pharmaceutical Sciences, University of Milan, Milano 20133, Italy
| | - Koichi Nakajo
- Division of Integrative Physiology, Department of Physiology, Jichi Medical University, Kawachi District, Shimotsuke 329-0498, Japan
| | - Kaei Ryu
- Division of Integrative Physiology, Department of Physiology, Jichi Medical University, Kawachi District, Shimotsuke 329-0498, Japan
| | - Roberta Leone
- Department of Biosciences, University of Milan, Milano 20133, Italy
| | - Gerhard Thiel
- Department of Biology, TU-Darmstadt, Darmstadt 64287, Germany
| | - Marco Pallavicini
- Department of Pharmaceutical Sciences, University of Milan, Milano 20133, Italy
| | - Anna Moroni
- Department of Biosciences, University of Milan, Milano 20133, Italy
| | - Cristiano Bolchi
- Department of Pharmaceutical Sciences, University of Milan, Milano 20133, Italy
| |
Collapse
|
7
|
Banala S, Jin XT, Dilan TL, Sheu SH, Clapham DE, Drenan RM, Lavis LD. Elucidating and Optimizing the Photochemical Mechanism of Coumarin-Caged Tertiary Amines. J Am Chem Soc 2024; 146:20627-20635. [PMID: 39023430 PMCID: PMC11295134 DOI: 10.1021/jacs.4c03092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 07/20/2024]
Abstract
Photoactivatable or "caged" pharmacological agents combine the high spatiotemporal specificity of light application with the molecular specificity of drugs. A key factor in all optopharmacology experiments is the mechanism of uncaging, which dictates the photochemical quantum yield and determines the byproducts produced by the light-driven chemical reaction. In previous work, we demonstrated that coumarin-based photolabile groups could be used to cage tertiary amine drugs as quaternary ammonium salts. Although stable, water-soluble, and useful for experiments in brain tissue, these first-generation compounds exhibit relatively low uncaging quantum yield (Φu < 1%) and release the toxic byproduct formaldehyde upon photolysis. Here, we elucidate the photochemical mechanisms of coumarin-caged tertiary amines and then optimize the major pathway using chemical modification. We discovered that the combination of 3,3-dicarboxyazetidine and bromine substituents shift the mechanism of release to heterolysis, eliminating the formaldehyde byproduct and giving photolabile tertiary amine drugs with Φu > 20%─a 35-fold increase in uncaging efficiency. This new "ABC" cage allows synthesis of improved photoactivatable derivatives of escitalopram and nicotine along with a novel caged agonist of the oxytocin receptor.
Collapse
Affiliation(s)
- Sambashiva Banala
- Janelia
Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, United States
| | - Xiao-Tao Jin
- Department
of Translational Neuroscience, Wake Forest
University School of Medicine, Winston-Salem, North Carolina 27101, United States
| | - Tanya L. Dilan
- Janelia
Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, United States
| | - Shu-Hsien Sheu
- Janelia
Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, United States
| | - David E. Clapham
- Janelia
Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, United States
| | - Ryan M. Drenan
- Department
of Translational Neuroscience, Wake Forest
University School of Medicine, Winston-Salem, North Carolina 27101, United States
| | - Luke D. Lavis
- Janelia
Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, United States
| |
Collapse
|
8
|
Tsuzuki A, Yamasaki M, Konno K, Miyazaki T, Takei N, Tomita S, Yuzaki M, Watanabe M. Abundant extrasynaptic expression of α3β4-containing nicotinic acetylcholine receptors in the medial habenula-interpeduncular nucleus pathway in mice. Sci Rep 2024; 14:14193. [PMID: 38902419 PMCID: PMC11189931 DOI: 10.1038/s41598-024-65076-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) in the medial habenula (MHb)-interpeduncular nucleus (IPN) pathway play critical roles in nicotine-related behaviors. This pathway is particularly enriched in nAChR α3 and β4 subunits, both of which are genetically linked to nicotine dependence. However, the cellular and subcellular expression of endogenous α3β4-containing nAChRs remains largely unknown because specific antibodies and appropriate detection methods were unavailable. Here, we successfully uncovered the expression of endogenous nAChRs containing α3 and β4 subunits in the MHb-IPN pathway using novel specific antibodies and a fixative glyoxal that enables simultaneous detection of synaptic and extrasynaptic molecules. Immunofluorescence and immunoelectron microscopy revealed that both subunits were predominantly localized to the extrasynaptic cell surface of somatodendritic and axonal compartments of MHb neurons but not at their synaptic junctions. Immunolabeling for α3 and β4 subunits disappeared in α5β4-knockout brains, which we used as negative controls. The enriched and diffuse extrasynaptic expression along the MHb-IPN pathway suggests that α3β4-containing nAChRs may enhance the excitability of MHb neurons and neurotransmitter release from their presynaptic terminals in the IPN. The revealed distribution pattern provides a molecular and anatomical basis for understanding the functional role of α3β4-containing nAChRs in the crucial pathway of nicotine dependence.
Collapse
Grants
- 17KK0160 Ministry of Education, Culture, Sports, Science and Technology
- 21K06746 Ministry of Education, Culture, Sports, Science and Technology
- 22K06784 Ministry of Education, Culture, Sports, Science and Technology
- 20H05628 Ministry of Education, Culture, Sports, Science and Technology
- 20H05628 Ministry of Education, Culture, Sports, Science and Technology
Collapse
Affiliation(s)
- Asuka Tsuzuki
- Department of Anatomy, Graduate School of Medicine, Hokkaido University, Sapporo, 060-8638, Japan
| | - Miwako Yamasaki
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo, 060-8638, Japan.
| | - Kohtarou Konno
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo, 060-8638, Japan
| | - Taisuke Miyazaki
- Department of Functioning and Disability, Faculty of Health Sciences, Hokkaido University, Sapporo, 060-8638, Japan
| | - Norio Takei
- Institute for Animal Experimentation, Faculty of Medicine, Hokkaido University, Sapporo, 060-8638, Japan
| | - Susumu Tomita
- Department of Cellular and Molecular Physiology, Department of Neuroscience, and Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Michisuke Yuzaki
- Department of Physiology, School of Medicine, Keio University, Tokyo, 160-8582, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo, 060-8638, Japan
| |
Collapse
|
9
|
Jradi FM, English BP, Brown TA, Aaron J, Khuon S, Galbraith JA, Galbraith CG, Lavis LD. Coumarin as a general switching auxiliary to prepare photochromic and spontaneously blinking fluorophores. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.12.593749. [PMID: 38766036 PMCID: PMC11100827 DOI: 10.1101/2024.05.12.593749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Single-molecule localization microscopy (SMLM) uses activatable or switchable fluorophores to create non-diffraction limited maps of molecular location in biological samples. Despite the utility of this imaging technique, the portfolio of appropriate labels for SMLM remains limited. Here, we describe a general strategy for the construction of "glitter bomb" labels by simply combining rhodamine and coumarin dyes though an amide bond. Condensation of the ortho-carboxyl group on the pendant phenyl ring of rhodamine dyes with a 7-aminocoumarin yields photochromic or spontaneously blinking fluorophores depending on the parent rhodamine structure. We apply this strategy to prepare labels useful super-resolution experiments in fixed cells using different attachment techniques. This general glitter bomb strategy should lead to improved labels for SMLM, ultimately enabling the creation of detailed molecular maps in biological samples.
Collapse
Affiliation(s)
- Fadi M. Jradi
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, 20147, USA
| | - Brian P. English
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, 20147, USA
| | - Timothy A. Brown
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, 20147, USA
| | - Jesse Aaron
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, 20147, USA
| | - Satya Khuon
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, 20147, USA
| | - James A. Galbraith
- Department of Biomedical Engineering and Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Catherine G. Galbraith
- Department of Biomedical Engineering and Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Luke D. Lavis
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, 20147, USA
| |
Collapse
|
10
|
Chen D, Shen L, Zhang YZ, Kan BF, Lou QQ, Long DD, Huang JY, Zhang Z, Hu SS, Wang D. Chronic nicotine exposure elicits pain hypersensitivity through activation of dopaminergic projections to anterior cingulate cortex. Br J Anaesth 2024; 132:735-745. [PMID: 38336518 DOI: 10.1016/j.bja.2023.12.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 11/24/2023] [Accepted: 12/04/2023] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Cigarette smoking is commonly reported among chronic pain patients in the clinic. Although chronic nicotine exposure is directly linked to nociceptive hypersensitivity in rodents, underlying neurobiological mechanisms remain unknown. METHODS Multi-tetrode recordings in freely moving mice were used to test the activity of dopaminergic projections from the ventral tegmental area (VTA) to pyramidal neurones in the anterior cingulate cortex (ACC) in chronic nicotine-treated mice. The VTA→ACC dopaminergic pathway was inhibited by optogenetic manipulation to detect chronic nicotine-induced allodynia (pain attributable to a stimulus that does not normally provoke pain) assessed by von Frey monofilaments (force units in g). RESULTS Allodynia developed concurrently with chronic (28-day) nicotine exposure in mice (0.36 g [0.0141] vs 0.05 g [0.0018], P<0.0001). Chronic nicotine activated dopaminergic projections from the VTA to pyramidal neurones in the ACC, and optogenetic inhibition of VTA dopaminergic terminals in the ACC alleviated chronic nicotine-induced allodynia in mice (0.06 g [0.0064] vs 0.28 g [0.0428], P<0.0001). Moreover, optogenetic inhibition of Drd2 dopamine receptor signalling in the ACC attenuated nicotine-induced allodynia (0.07 g [0.0082] vs 0.27 g [0.0211], P<0.0001). CONCLUSIONS These findings implicate a role of Drd2-mediated dopaminergic VTA→ACC pathway signalling in chronic nicotine-elicited allodynia.
Collapse
Affiliation(s)
- Danyang Chen
- Pain Clinic, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, China
| | - Liang Shen
- Institute of Neuroscience and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, China
| | - Yu-Zhuo Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Bu-Fan Kan
- Pain Clinic, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, China
| | - Qian-Qian Lou
- Pain Clinic, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, China
| | - Dan-Dan Long
- Pain Clinic, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, China
| | - Ji-Ye Huang
- Pain Clinic, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, China
| | - Zhi Zhang
- Pain Clinic, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, China; The Centre for Advanced Interdisciplinary Science and Biomedicine, Institute of Health and Medicine, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Shan-Shan Hu
- Department of Clinical Laboratory, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, China.
| | - Di Wang
- Pain Clinic, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, China.
| |
Collapse
|
11
|
Wu M, Zhang X, Feng S, Freda SN, Kumari P, Dumrongprechachan V, Kozorovitskiy Y. Dopamine pathways mediating affective state transitions after sleep loss. Neuron 2024; 112:141-154.e8. [PMID: 37922904 PMCID: PMC10841919 DOI: 10.1016/j.neuron.2023.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 07/25/2023] [Accepted: 10/02/2023] [Indexed: 11/07/2023]
Abstract
The pathophysiology of affective disorders-particularly circuit-level mechanisms underlying bidirectional, periodic affective state transitions-remains poorly understood. In patients, disruptions of sleep and circadian rhythm can trigger transitions to manic episodes, whereas depressive states are reversed. Here, we introduce a hybrid automated sleep deprivation platform to induce transitions of affective states in mice. Acute sleep loss causes mixed behavioral states, featuring hyperactivity, elevated social and sexual behaviors, and diminished depressive-like behaviors, where transitions depend on dopamine (DA). Using DA sensor photometry and projection-targeted chemogenetics, we reveal that elevated DA release in specific brain regions mediates distinct behavioral changes in affective state transitions. Acute sleep loss induces DA-dependent enhancement in dendritic spine density and uncaging-evoked dendritic spinogenesis in the medial prefrontal cortex, whereas optically mediated disassembly of enhanced plasticity reverses the antidepressant effects of sleep deprivation on learned helplessness. These findings demonstrate that brain-wide dopaminergic pathways control sleep-loss-induced polymodal affective state transitions.
Collapse
Affiliation(s)
- Mingzheng Wu
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA; Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
| | - Xin Zhang
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - Sihan Feng
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - Sara N Freda
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - Pushpa Kumari
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - Vasin Dumrongprechachan
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA; Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
| | - Yevgenia Kozorovitskiy
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA; Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
12
|
Chung L, Jing M, Li Y, Tapper AR. Feed-forward Activation of Habenula Cholinergic Neurons by Local Acetylcholine. Neuroscience 2023; 529:172-182. [PMID: 37572877 PMCID: PMC10840387 DOI: 10.1016/j.neuroscience.2023.07.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/10/2023] [Accepted: 07/27/2023] [Indexed: 08/14/2023]
Abstract
While the functional and behavioral role of the medial habenula (MHb) is still emerging, recent data indicate an involvement of this nuclei in regulating mood, aversion, and addiction. Unique to the MHb is a large cluster of cholinergic neurons that project to the interpeduncular nucleus and densely express acetylcholine receptors (AChRs) suggesting that the activity of these cholinergic neurons may be regulated by ACh itself. Whether endogenous ACh from within the habenula regulates cholinergic neuron activity has not been demonstrated. Supporting a role for ACh in modulating MHb activity, acetylcholinesterase inhibitors increased the firing rate of MHb cholinergic neurons in mouse habenula slices, an effect blocked by AChR antagonists and mediated by ACh which was detected via expressing fluorescent ACh sensors in MHb in vivo. To test if cholinergic afferents innervate MHb cholinergic neurons, we used anterograde and retrograde viral tracing to identify cholinergic inputs. Surprisingly, tracing experiments failed to detect cholinergic inputs into the MHb, including from the septum, suggesting that MHb cholinergic neurons may release ACh within the MHb to drive cholinergic activity. To test this hypothesis, we expressed channelrhodopsin in a portion of MHb cholinergic neurons while recording from non-opsin-expressing neurons. Light pulses progressively increased activity of MHb cholinergic neurons indicating feed-forward activation driven by MHb ACh release. These data indicate MHb cholinergic neurons may utilize a unique feed-forward mechanism to synchronize and increase activity by releasing local ACh.
Collapse
Affiliation(s)
- Leeyup Chung
- Brudnick Neuropsychiatric Research Institute, Dept. of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Miao Jing
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, PKU-IDG/McGovern Institute for Brain Research, 100871 Beijing, China; Chinese Institute for Brain Research, 102206 Beijing, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, PKU-IDG/McGovern Institute for Brain Research, 100871 Beijing, China; Chinese Institute for Brain Research, 102206 Beijing, China
| | - Andrew R Tapper
- Brudnick Neuropsychiatric Research Institute, Dept. of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
13
|
Dai X, Li Z, Shao X. Photocontrolled Release of Carbendazim from Photocaged Molecule. Photochem Photobiol 2023; 99:1310-1317. [PMID: 36627227 DOI: 10.1111/php.13779] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 01/09/2023] [Indexed: 01/12/2023]
Abstract
Carbendazim (MBC) is a high-efficient and broad-spectrum fungicide, but excessive residues caused by its improper use have caused health toxicity and environmental pollution. It is an irresistible trend to find green, safe, accurate and controllable release technology of MBC. To achieve the purpose of safe and efficient use of MBC, photolabile protecting group was used to realize the controllable release. This study aimed to covalently link MBC and 6-nitropiperonyl alcohol (NP) to synthesize photocaged molecule NP-MBC. The photodegradation test showed that NP-MBC could effectively release MBC under ultraviolet light. The antifungal activity of NP-MBC showed significant difference against Rhizoctonia solani, Sclerotinia sclerotiorum and Fusarium graminearum before and after irradiation, and the effects on mycelial morphology are different. The hyphae morphology of R. solani and F. graminearum changed significantly, and mycelia were severely damaged. The hyphae surface of former was swollen and broken, and the latter was collapsed and shriveled after NP-MBC light treatment. NP-MBC could realize the light-controlled release of MBC, and the antifungal activity before and after irradiation was significantly different, which provides an effective way to release MBC.
Collapse
Affiliation(s)
- Xiaoyi Dai
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Xusheng Shao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
14
|
Nakamura R, Yamazaki T, Kondo Y, Tsukada M, Miyamoto Y, Arakawa N, Sumida Y, Kiya T, Arai S, Ohmiya H. Radical Caging Strategy for Cholinergic Optopharmacology. J Am Chem Soc 2023; 145:10651-10658. [PMID: 37141169 DOI: 10.1021/jacs.3c00801] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Photo-caged methodologies have been indispensable for elucidating the functional mechanisms of pharmacologically active molecules at the cellular level. A photo-triggered removable unit enables control of the photo-induced expression of pharmacologically active molecular function, resulting in a rapid increase in the concentration of the bioactive compound near the target cell. However, caging the target bioactive compound generally requires specific heteroatom-based functional groups, limiting the types of molecular structures that can be caged. We have developed an unprecedented methodology for caging/uncaging on carbon atoms using a unit with a photo-cleavable carbon-boron bond. The caging/uncaging process requires installation of the CH2-B group on the nitrogen atom that formally assembles an N-methyl group protected with a photoremovable unit. N-Methylation proceeds by photoirradiation via carbon-centered radical generation. Using this radical caging strategy to cage previously uncageable bioactive molecules, we have photocaged molecules with no general labeling sites, including acetylcholine, an endogenous neurotransmitter. Caged acetylcholine provides an unconventional tool for optopharmacology to clarify neuronal mechanisms on the basis of photo-regulating acetylcholine localization. We demonstrated the utility of this probe by monitoring uncaging in HEK cells expressing a biosensor to detect ACh on the cell surface, as well as Ca2+ imaging in Drosophila brain cells (ex vivo).
Collapse
Affiliation(s)
- Rikako Nakamura
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Takeru Yamazaki
- WPI Nano Life Science Institute (NanoLSI), Kanazawa University, Kanazawa 920-1164, Japan
| | - Yui Kondo
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Miho Tsukada
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Yusuke Miyamoto
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Nozomi Arakawa
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Yuto Sumida
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Taketoshi Kiya
- Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Satoshi Arai
- WPI Nano Life Science Institute (NanoLSI), Kanazawa University, Kanazawa 920-1164, Japan
| | - Hirohisa Ohmiya
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
- JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
15
|
Long DD, Zhang YZ, Liu A, Shen L, Wei HR, Lou QQ, Hu SS, Chen DY, Chai XQ, Wang D. Microglia sustain anterior cingulate cortex neuronal hyperactivity in nicotine-induced pain. J Neuroinflammation 2023; 20:81. [PMID: 36944965 PMCID: PMC10031886 DOI: 10.1186/s12974-023-02767-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/17/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Long-term smoking is a risk factor for chronic pain, and chronic nicotine exposure induces pain-like effects in rodents. The anterior cingulate cortex (ACC) has been demonstrated to be associated with pain and substance abuse. This study aims to investigate whether ACC microglia are altered in response to chronic nicotine exposure and their interaction with ACC neurons and subsequent nicotine-induced allodynia in mice. METHODS We utilized a mouse model that was fed nicotine water for 28 days. Brain slices of the ACC were collected for morphological analysis to evaluate the impacts of chronic nicotine on microglia. In vivo calcium imaging and whole-cell patch clamp were used to record the excitability of ACC glutamatergic neurons. RESULTS Compared to the vehicle control, the branch endpoints and the length of ACC microglial processes decreased in nicotine-treated mice, coinciding with the hyperactivity of glutamatergic neurons in the ACC. Inhibition of ACC glutamatergic neurons alleviated nicotine-induced allodynia and reduced microglial activation. On the other hand, reactive microglia sustain ACC neuronal excitability in response to chronic nicotine, and pharmacological inhibition of microglia by minocycline or liposome-clodronate reduces nicotine-induced allodynia. The neuron-microglia interaction in chronic nicotine-induced allodynia is mediated by increased expression of neuronal CX3CL1, which activates microglia by acting on CX3CR1 receptors on microglial cells. CONCLUSION Together, these findings underlie a critical role of ACC microglia in the maintenance of ACC neuronal hyperactivity and resulting nociceptive hypersensitivity in chronic nicotine-treated mice.
Collapse
Affiliation(s)
- Dan-Dan Long
- Pain Clinic, Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, 230001, China
| | - Yu-Zhuo Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, China
| | - An Liu
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Liang Shen
- Pain Clinic, Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, 230001, China
| | - Hong-Rui Wei
- Department of Neurobiology, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Qian-Qian Lou
- Department of Neurobiology, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Shan-Shan Hu
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, 230001, China
| | - Dan-Yang Chen
- Department of Neurobiology, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Xiao-Qing Chai
- Pain Clinic, Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, 230001, China
| | - Di Wang
- Pain Clinic, Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, 230001, China.
| |
Collapse
|
16
|
Kravchuk DI, Sotkis GV, Shcherbatiuk MM, Kravchuk RM, Nazarenko VG, Gorbyk PP, Shuba YM. Induction of A549 Nonsmall-Cell Lung Cancer Cells Proliferation by Photoreleased Nicotine. Photochem Photobiol 2023; 99:78-82. [PMID: 35569087 DOI: 10.1111/php.13652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/11/2022] [Indexed: 01/25/2023]
Abstract
Caged compounds comprise the group of artificially synthesized, light-sensitive molecules that enable in situ derivation of biologically active constituents capable of affecting cells, tissues and/or biological processes upon exposure to light. Ruthenium-bispyridine (RuBi) complexes are photolyzed by biologically harmless visible light. In the present study, we show that RuBi-caged nicotine can be used as a source of free nicotine to induce proliferation of A549 nonsmall-cell lung cancer (NSCLC) cells by acting on nicotinic acetylcholine receptors expressed in these cells. RuBi-nicotine was photolyzed using LED light source with the spectrum matching RuBi-absorption. Photorelease of free nicotine ([Nic]p/r ) was quantified by high-performance liquid chromatography (HPLC). 5-s-long light exposure of 10 μm of RuBi-nicotine generated 2 μm [Nic]p/r which enhanced A549 cell proliferation similarly to the 2 μm of plain nicotine during 72 h of cell culturing. Both RuBi-nicotine per se and its photolysis byproduct exerted no effect on A549 cells. We conclude that RuBi-nicotine can be a good source of free nicotine for inducing short- and long-term biological effects. Photolysis of RuBi-nicotine is quite effective, and can produce biologically relevant concentrations of nicotine at acceptable concentrations of the source material with the use of simple, inexpensive, and easily accessible light sources.
Collapse
Affiliation(s)
- Danylo I Kravchuk
- Bogomoletz Institute of Physiology of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Ganna V Sotkis
- Bogomoletz Institute of Physiology of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Mykola M Shcherbatiuk
- Kholodny Institute of Botany of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Ruslan M Kravchuk
- Institute of Physics of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Vassili G Nazarenko
- Institute of Physics of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Petro P Gorbyk
- Chuiko Institute of Surface Chemistry of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Yaroslav M Shuba
- Bogomoletz Institute of Physiology of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
17
|
Wu Y, Wu M, Vázquez-Guardado A, Kim J, Zhang X, Avila R, Kim JT, Deng Y, Yu Y, Melzer S, Bai Y, Yoon H, Meng L, Zhang Y, Guo H, Hong L, Kanatzidis EE, Haney CR, Waters EA, Banks AR, Hu Z, Lie F, Chamorro LP, Sabatini BL, Huang Y, Kozorovitskiy Y, Rogers JA. Wireless multi-lateral optofluidic microsystems for real-time programmable optogenetics and photopharmacology. Nat Commun 2022; 13:5571. [PMID: 36137999 PMCID: PMC9500026 DOI: 10.1038/s41467-022-32947-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 08/24/2022] [Indexed: 11/27/2022] Open
Abstract
In vivo optogenetics and photopharmacology are two techniques for controlling neuronal activity that have immense potential in neuroscience research. Their applications in tether-free groups of animals have been limited in part due to tools availability. Here, we present a wireless, battery-free, programable multilateral optofluidic platform with user-selected modalities for optogenetics, pharmacology and photopharmacology. This system features mechanically compliant microfluidic and electronic interconnects, capabilities for dynamic control over the rates of drug delivery and real-time programmability, simultaneously for up to 256 separate devices in a single cage environment. Our behavioral experiments demonstrate control of motor behaviors in grouped mice through in vivo optogenetics with co-located gene delivery and controlled photolysis of caged glutamate. These optofluidic systems may expand the scope of wireless techniques to study neural processing in animal models.
Collapse
Affiliation(s)
- Yixin Wu
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, USA
| | - Mingzheng Wu
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | - Abraham Vázquez-Guardado
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, USA
| | - Joohee Kim
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, USA
- Center for Bionics of Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Xin Zhang
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | - Raudel Avila
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA
| | - Jin-Tae Kim
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, USA
| | - Yujun Deng
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, China
| | | | - Sarah Melzer
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Ave, Boston, MA, 02115, USA
| | - Yun Bai
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, USA
| | - Hyoseo Yoon
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | - Lingzi Meng
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, USA
| | - Yi Zhang
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, CT, 06269, US
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, US
| | - Hexia Guo
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, USA
| | - Liu Hong
- Mechanical Science and Engineering Department, University of Illinois, Urbana, IL, USA
| | - Evangelos E Kanatzidis
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, USA
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Chad R Haney
- Center for Advanced Molecular Imaging, Radiology, and Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Emily A Waters
- Center for Advanced Molecular Imaging, Radiology, and Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Anthony R Banks
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
- Neurolux Inc, Northfield, IL, USA
| | - Ziying Hu
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, USA
| | | | - Leonardo P Chamorro
- Mechanical Science and Engineering Department, University of Illinois, Urbana, IL, USA
| | - Bernardo L Sabatini
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Ave, Boston, MA, 02115, USA
| | - Yonggang Huang
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA.
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA.
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, USA.
| | - Yevgenia Kozorovitskiy
- Department of Neurobiology, Northwestern University, Evanston, IL, USA.
- Chemistry of Life Processes Institutes, Northwestern University, Evanston, IL, USA.
| | - John A Rogers
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA.
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA.
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, USA.
- Neurolux Inc, Northfield, IL, USA.
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.
- Simpson Querrey Institute & Feinberg Medical School, Northwestern University, Evanston, IL, USA.
- Department of Chemistry, Northwestern University, Evanston, IL, USA.
- Department of Neurological Surgery, Northwestern University, Evanston, IL, USA.
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, USA.
- Department of Computer Science, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
18
|
Tapia MA, Jin XT, Tucker BR, Thomas LN, Walker NB, Kim VJ, Albertson SE, Damuka N, Krizan I, Edassery S, Savas JN, Sai KKS, Jones SR, Drenan RM. Relapse-like behavior and nAChR sensitization following intermittent access nicotine self-administration. Neuropharmacology 2022; 212:109066. [PMID: 35461879 PMCID: PMC9527938 DOI: 10.1016/j.neuropharm.2022.109066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/04/2022] [Accepted: 04/17/2022] [Indexed: 11/28/2022]
Abstract
Many tobacco smokers consume nicotine intermittently, but the underlying mechanisms and neurobiological changes associated with intermittent nicotine intake are unclear. Understanding intermittent nicotine intake is a high priority, as it could promote therapeutic strategies to attenuate tobacco consumption. We examined nicotine intake behavior and neurobiological changes in male rats that were trained to self-administer nicotine during brief (5 min) trials interspersed with longer (15 min) drug-free periods. Rats readily adapted to intermittent access (IntA) SA following acquisition on a continuous access (ContA) schedule. Probabilistic analysis of IntA nicotine SA suggested reduced nicotine loading behavior compared to ContA, and nicotine pharmacokinetic modeling revealed that rats taking nicotine intermittently may have increased intake to maintain blood levels of nicotine that are comparable to ContA SA. After IntA nicotine SA, rats exhibited an increase in unreinforced responses for nicotine-associated cues (incubation of craving) and specific alterations in the striatal proteome after 7 days without nicotine. IntA nicotine SA also induced nAChR functional upregulation in the interpeduncular nucleus (IPN), and it enhanced nicotine binding in the brain as determined via [11C]nicotine positron emission tomography. Reducing the saliency of the cue conditions during the 5 min access periods attenuated nicotine intake, but incubation of craving was preserved. Together, these results indicate that IntA conditions promote nicotine SA and nicotine seeking after a nicotine-free period.
Collapse
Affiliation(s)
- Melissa A. Tapia
- Department of Physiology & Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Xiao-Tao Jin
- Department of Physiology & Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Brenton R. Tucker
- Department of Physiology & Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Leanne N. Thomas
- Department of Physiology & Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Noah B. Walker
- Department of Physiology & Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Veronica J. Kim
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Steven E. Albertson
- Department of Physiology & Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Naresh Damuka
- Department of Radiological Sciences, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Ivan Krizan
- Department of Radiological Sciences, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Seby Edassery
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jeffrey N. Savas
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Sara R. Jones
- Department of Physiology & Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Ryan M. Drenan
- Department of Physiology & Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, USA,Corresponding author. (R.M. Drenan)
| |
Collapse
|
19
|
Canton-Josh JE, Qin J, Salvo J, Kozorovitskiy Y. Dopaminergic regulation of vestibulo-cerebellar circuits through unipolar brush cells. eLife 2022; 11:e76912. [PMID: 35476632 PMCID: PMC9106328 DOI: 10.7554/elife.76912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
While multiple monoamines modulate cerebellar output, the mechanistic details of dopaminergic signaling in the cerebellum remain poorly understood. We show that dopamine type 1 receptors (Drd1) are expressed in unipolar brush cells (UBCs) of the mouse cerebellar vermis. Drd1 activation increases UBC firing rate and post-synaptic NMDAR -mediated currents. Using anatomical tracing and in situ hybridization, we test three hypotheses about the source of cerebellar dopamine. We exclude midbrain dopaminergic nuclei and tyrosine hydroxylase-positive Purkinje (Pkj) cells as potential sources, supporting the possibility of dopaminergic co-release from locus coeruleus (LC) axons. Using an optical dopamine sensor GRABDA2h, electrical stimulation, and optogenetic activation of LC fibers in the acute slice, we find evidence for monoamine release onto Drd1-expressing UBCs. Altogether, we propose that the LC regulates cerebellar cortex activity by co-releasing dopamine onto UBCs to modulate their response to cerebellar inputs. Pkj cells directly inhibit these Drd1-positive UBCs, forming a dopamine-sensitive recurrent vestibulo-cerebellar circuit.
Collapse
Affiliation(s)
| | - Joanna Qin
- Department of Neurobiology, Northwestern UniversityEvanstonUnited States
| | - Joseph Salvo
- Department of Neurobiology, Northwestern UniversityEvanstonUnited States
| | | |
Collapse
|
20
|
Advances in tethered photopharmacology for precise optical control of signaling proteins. Curr Opin Pharmacol 2022; 63:102196. [PMID: 35245800 DOI: 10.1016/j.coph.2022.102196] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 12/25/2022]
Abstract
To overcome the limitations of traditional pharmacology, the field of photopharmacology has developed around the central concept of using light to endow drug action with spatiotemporal precision. Tethered photopharmacology, where a photoswitchable ligand is covalently attached to a target protein, offers a particularly high degree of spatiotemporal control, as well as the ability to genetically target drug action and limit effects to specific protein subtypes. In this review, we describe the core engineering concepts of tethered pharmacology and highlight recent advances in harnessing the power of tethered photopharmacology for an expanded palette of targets and conjugation modes using new, complementary strategies. We also discuss the various applications, including mechanistic studies from the molecular biophysical realm to in vivo studies in behaving animals, that demonstrate the power of tethered pharmacology.
Collapse
|
21
|
Jin XT, Drenan RM. Functional α7 nicotinic acetylcholine receptors in GABAergic neurons of the interpeduncular nucleus. Neuropharmacology 2022; 208:108987. [PMID: 35167902 PMCID: PMC8885883 DOI: 10.1016/j.neuropharm.2022.108987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/02/2022] [Accepted: 02/05/2022] [Indexed: 11/17/2022]
Abstract
The interpeduncular nucleus (IPN) plays a key role in nicotine dependence and is involved in regulation of fear responses, affective states, and novelty processing. IPN neurons express nicotinic acetylcholine receptors (nAChR) and receive strong cholinergic innervation from the ventral medial habenula. Dorsal medial habenula neurons are primarily peptidergic, releasing substance P (SP) mainly onto IPN neurons in the lateral subnucleus (IPL). IPL neurons are sensitive to SP, but it is not known if they are involved in cholinergic transmission like other IPN neurons. We examined nAChR subunit gene expression in IPL neurons, revealing that Chrna7 (α7 nAChR subunit) is expressed in a subset of GABAergic IPL neurons. In patch-clamp recordings from IPL neurons, ACh-evoked inward currents were attenuated by methyllycaconitine (α7 nAChR antagonist) and potentiated by NS1738 (α7 Type I positive allosteric modulator). We confirmed α7 functional expression in IPL neurons by also showing that ACh-evoked currents were potentiated by PNU-120596 (Type II positive allosteric modulator). Additional pharmacological experiments show that IPN neurons expressing α7 nAChRs also express α3β4 nAChRs. Finally, we used 2-photon laser scanning microscopy and nicotine uncaging to directly examine the morphology of IPL neurons that express α7 nAChRs. These results highlight a novel aspect of α7 nAChR neurobiology, adding to the complexity of cholinergic modulation by nAChRs in the IPN.
Collapse
Affiliation(s)
- Xiao-Tao Jin
- Department of Physiology & Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Ryan M Drenan
- Department of Physiology & Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
22
|
Maltan L, Najjar H, Tiffner A, Derler I. Deciphering Molecular Mechanisms and Intervening in Physiological and Pathophysiological Processes of Ca 2+ Signaling Mechanisms Using Optogenetic Tools. Cells 2021; 10:3340. [PMID: 34943850 PMCID: PMC8699489 DOI: 10.3390/cells10123340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 11/16/2022] Open
Abstract
Calcium ion channels are involved in numerous biological functions such as lymphocyte activation, muscle contraction, neurotransmission, excitation, hormone secretion, gene expression, cell migration, memory, and aging. Therefore, their dysfunction can lead to a wide range of cellular abnormalities and, subsequently, to diseases. To date various conventional techniques have provided valuable insights into the roles of Ca2+ signaling. However, their limited spatiotemporal resolution and lack of reversibility pose significant obstacles in the detailed understanding of the structure-function relationship of ion channels. These drawbacks could be partially overcome by the use of optogenetics, which allows for the remote and well-defined manipulation of Ca2+-signaling. Here, we review the various optogenetic tools that have been used to achieve precise control over different Ca2+-permeable ion channels and receptors and associated downstream signaling cascades. We highlight the achievements of optogenetics as well as the still-open questions regarding the resolution of ion channel working mechanisms. In addition, we summarize the successes of optogenetics in manipulating many Ca2+-dependent biological processes both in vitro and in vivo. In summary, optogenetics has significantly advanced our understanding of Ca2+ signaling proteins and the used tools provide an essential basis for potential future therapeutic application.
Collapse
Affiliation(s)
| | | | | | - Isabella Derler
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria; (L.M.); (H.N.); (A.T.)
| |
Collapse
|
23
|
Castro DC, Oswell CS, Zhang ET, Pedersen CE, Piantadosi SC, Rossi MA, Hunker AC, Guglin A, Morón JA, Zweifel LS, Stuber GD, Bruchas MR. An endogenous opioid circuit determines state-dependent reward consumption. Nature 2021; 598:646-651. [PMID: 34646022 PMCID: PMC8858443 DOI: 10.1038/s41586-021-04013-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 09/09/2021] [Indexed: 12/11/2022]
Abstract
µ-Opioid peptide receptor (MOPR) stimulation alters respiration, analgesia and reward behaviour, and can induce substance abuse and overdose1-3. Despite its evident importance, the endogenous mechanisms for MOPR regulation of consummatory behaviour have remained unknown4. Here we report that endogenous MOPR regulation of reward consumption in mice acts through a specific dorsal raphe to nucleus accumbens projection. MOPR-mediated inhibition of raphe terminals is necessary and sufficient to determine consummatory response, while select enkephalin-containing nucleus accumbens ensembles are engaged prior to reward consumption, suggesting that local enkephalin release is the source of the endogenous MOPR ligand. Selective modulation of nucleus accumbens enkephalin neurons and CRISPR-Cas9-mediated disruption of enkephalin substantiate this finding. These results isolate a fundamental endogenous opioid circuit for state-dependent consumptive behaviour and suggest alternative mechanisms for opiate modulation of reward.
Collapse
Affiliation(s)
- Daniel C Castro
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA.
- Departments of Anesthesiology, Neuroscience and Psychiatry, Washington University School of Medicine, St Louis, MO, USA.
- Washington University Pain Center, Washington University School of Medicine, St Louis, MO, USA.
- Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA, USA.
| | - Corinna S Oswell
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA
- Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA, USA
| | - Eric T Zhang
- Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Christian E Pedersen
- Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Sean C Piantadosi
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA
- Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA, USA
| | - Mark A Rossi
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA
- Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA, USA
| | - Avery C Hunker
- Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA, USA
| | - Anthony Guglin
- Departments of Anesthesiology, Neuroscience and Psychiatry, Washington University School of Medicine, St Louis, MO, USA
- Washington University Pain Center, Washington University School of Medicine, St Louis, MO, USA
| | - Jose A Morón
- Departments of Anesthesiology, Neuroscience and Psychiatry, Washington University School of Medicine, St Louis, MO, USA
- Washington University Pain Center, Washington University School of Medicine, St Louis, MO, USA
| | - Larry S Zweifel
- Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA, USA
| | - Garret D Stuber
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA
- Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA, USA
- Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - Michael R Bruchas
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA.
- Departments of Anesthesiology, Neuroscience and Psychiatry, Washington University School of Medicine, St Louis, MO, USA.
- Washington University Pain Center, Washington University School of Medicine, St Louis, MO, USA.
- Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA, USA.
- Department of Bioengineering, University of Washington, Seattle, WA, USA.
- Department of Pharmacology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
24
|
Wu M, Minkowicz S, Dumrongprechachan V, Hamilton P, Xiao L, Kozorovitskiy Y. Attenuated dopamine signaling after aversive learning is restored by ketamine to rescue escape actions. eLife 2021; 10:64041. [PMID: 33904412 PMCID: PMC8211450 DOI: 10.7554/elife.64041] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 04/26/2021] [Indexed: 12/13/2022] Open
Abstract
Escaping aversive stimuli is essential for complex organisms, but prolonged exposure to stress leads to maladaptive learning. Stress alters neuronal activity and neuromodulatory signaling in distributed networks, modifying behavior. Here, we describe changes in dopaminergic neuron activity and signaling following aversive learning in a learned helplessness paradigm in mice. A single dose of ketamine suffices to restore escape behavior after aversive learning. Dopaminergic neuron activity in the ventral tegmental area (VTA) systematically varies across learning, correlating with future sensitivity to ketamine treatment. Ketamine’s effects are blocked by chemogenetic inhibition of dopamine signaling. Rather than directly altering the activity of dopaminergic neurons, ketamine appears to rescue dopamine dynamics through actions in the medial prefrontal cortex (mPFC). Chemogenetic activation of Drd1 receptor positive mPFC neurons mimics ketamine’s effects on behavior. Together, our data link neuromodulatory dynamics in mPFC-VTA circuits, aversive learning, and the effects of ketamine. Over 264 million people around the world suffer from depression, according to the World Health Organization (WHO). Depression can be debilitating, and while anti-depressant drugs are available, they do not always work. A small molecule drug mainly used for anesthesia called ketamine has recently been shown to ameliorate depressive symptoms within hours, much faster than most anti-depressants. However, the molecular mechanisms behind this effect are still largely unknown. Most anti-depressant drugs work by restoring the normal balance of dopamine and other chemical messengers in the brain. Dopamine is released by a specialized group of cells called dopaminergic neurons, and helps us make decisions by influencing a wide range of other cells in the brain. In a healthy brain, dopamine directs us to rewarding choices, while avoiding actions with negative outcomes. During depression, these dopamine signals are perturbed, resulting in reduced motivation and pleasure. But it remained unclear whether ketamine’s anti-depressant activity also relied on dopamine. To investigate this, Wu et al. used a behavioral study called “learned helplessness” which simulates depression by putting mice in unavoidable stressful situations. Over time the mice learn that their actions do not change the outcome and eventually stop trying to escape from unpleasant situations, even if they are avoidable. The experiment showed that dopaminergic neurons in an area of the brain that is an important part of the “reward and aversion” system became less sensitive to unpleasant stimuli following learned helplessness. When the mice received ketamine, these neurons recovered after a few hours. Individual mice also responded differently to ketamine. The most ‘resilient’, stress-resistant mice, which had distinct patterns of dopamine signaling, also responded most strongly to the drug. Genetic and chemical manipulation of dopaminergic neurons confirmed that ketamine needed intact dopamine signals to work, and revealed that it acted indirectly on dopamine dynamics via another brain region called the medial prefrontal cortex. These results shed new light on how a promising new anti-depressant works. In the future, they may also explain why drugs like ketamine work better for some people than others, ultimately helping clinicians select the most effective treatment for individual patients.
Collapse
Affiliation(s)
- Mingzheng Wu
- Department of Neurobiology, Northwestern University, Evanston, United States
| | - Samuel Minkowicz
- Department of Neurobiology, Northwestern University, Evanston, United States
| | | | - Pauline Hamilton
- Department of Neurobiology, Northwestern University, Evanston, United States
| | - Lei Xiao
- Department of Neurobiology, Northwestern University, Evanston, United States
| | | |
Collapse
|
25
|
Cai L, Gutruf P. Soft, Wireless and subdermally implantable recording and neuromodulation tools. J Neural Eng 2021; 18. [PMID: 33607646 DOI: 10.1088/1741-2552/abe805] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 02/19/2021] [Indexed: 12/14/2022]
Abstract
Progress in understanding neuronal interaction and circuit behavior of the central and peripheral nervous system strongly relies on the advancement of tools that record and stimulate with high fidelity and specificity. Currently, devices used in exploratory research predominantly utilize cables or tethers to provide pathways for power supply, data communication, stimulus delivery and recording, which constrains the scope and use of such devices. In particular, the tethered connection, mechanical mismatch to surrounding soft tissues and bones frustrate the interface leading to irritation and limitation of motion of the subject, which in the case of fundamental and preclinical studies, impacts naturalistic behaviors of animals and precludes the use in experiments involving social interaction and ethologically relevant three-dimensional environments, limiting the use of current tools to mostly rodents and exclude species such as birds and fish. This review explores the current state-of-the-art in wireless, subdermally implantable tools that quantitively expand capabilities in analysis and perturbation of the central and peripheral nervous system by removing tethers and externalized features of implantable neuromodulation and recording tools. Specifically, the review explores power harvesting strategies, wireless communication schemes, and soft materials and mechanics that enable the creation of such devices and discuss their capabilities in the context of freely-behaving subjects. Highlights of this class of devices includes wireless battery-free and fully implantable operation with capabilities in cell specific recording, multimodal neural stimulation and electrical, optogenetic and pharmacological neuromodulation capabilities. We conclude with discussion on translation of such technologies which promises routes towards broad dissemination.
Collapse
Affiliation(s)
- Le Cai
- Biomedical Engineering, University of Arizona, 1230 N Cherry Ave., Tucson, Arizona, 85719, UNITED STATES
| | - Philipp Gutruf
- Biomedical Engineering, University of Arizona, 1230 N Cherry Ave., Tucson, Arizona, 85719, UNITED STATES
| |
Collapse
|
26
|
Paez Segala MG, Looger LL. Optogenetics. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00092-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
27
|
Weinstain R, Slanina T, Kand D, Klán P. Visible-to-NIR-Light Activated Release: From Small Molecules to Nanomaterials. Chem Rev 2020; 120:13135-13272. [PMID: 33125209 PMCID: PMC7833475 DOI: 10.1021/acs.chemrev.0c00663] [Citation(s) in RCA: 334] [Impact Index Per Article: 66.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Indexed: 02/08/2023]
Abstract
Photoactivatable (alternatively, photoremovable, photoreleasable, or photocleavable) protecting groups (PPGs), also known as caged or photocaged compounds, are used to enable non-invasive spatiotemporal photochemical control over the release of species of interest. Recent years have seen the development of PPGs activatable by biologically and chemically benign visible and near-infrared (NIR) light. These long-wavelength-absorbing moieties expand the applicability of this powerful method and its accessibility to non-specialist users. This review comprehensively covers organic and transition metal-containing photoactivatable compounds (complexes) that absorb in the visible- and NIR-range to release various leaving groups and gasotransmitters (carbon monoxide, nitric oxide, and hydrogen sulfide). The text also covers visible- and NIR-light-induced photosensitized release using molecular sensitizers, quantum dots, and upconversion and second-harmonic nanoparticles, as well as release via photodynamic (photooxygenation by singlet oxygen) and photothermal effects. Release from photoactivatable polymers, micelles, vesicles, and photoswitches, along with the related emerging field of photopharmacology, is discussed at the end of the review.
Collapse
Affiliation(s)
- Roy Weinstain
- School
of Plant Sciences and Food Security, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Tomáš Slanina
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Dnyaneshwar Kand
- School
of Plant Sciences and Food Security, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Petr Klán
- Department
of Chemistry and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
28
|
Lämmle CA, Varady A, Müller TG, Sturtzel C, Riepl M, Mathes B, Eichhorst J, Sporbert A, Lehmann M, Kräusslich HG, Distel M, Broichhagen J. Photocaged Hoechst Enables Subnuclear Visualization and Cell Selective Staining of DNA in vivo. Chembiochem 2020; 22:548-556. [PMID: 32974998 PMCID: PMC7894298 DOI: 10.1002/cbic.202000465] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/17/2020] [Indexed: 12/19/2022]
Abstract
Selective targeting of DNA by means of fluorescent labeling has become a mainstay in the life sciences. While genetic engineering serves as a powerful technique and allows the visualization of nucleic acid by using DNA‐targeting fluorescent fusion proteins in a cell‐type‐ and subcellular‐specific manner, it relies on the introduction of foreign genes. On the other hand, DNA‐binding small fluorescent molecules can be used without genetic engineering, but they are not spatially restricted. Herein, we report a photocaged version of the DNA dye Hoechst33342 (pcHoechst), which can be uncaged by using UV to blue light for the selective staining of chromosomal DNA in subnuclear regions of live cells. Expanding its application to a vertebrate model organism, we demonstrate uncaging in epithelial cells and short‐term cell tracking in vivo in zebrafish. We envision pcHoechst as a valuable tool for targeting and interrogating DNA with precise spatiotemporal resolution in living cells and wild‐type organisms.
Collapse
Affiliation(s)
- Carina A Lämmle
- Department of Chemical Biology, Max Planck Institute for Medical Research, Jahnstr. 29, 69120, Heidelberg, Germany
| | - Adam Varady
- St. Anna Children's Cancer Research Institute, Innovative Cancer Models, Zimmermannplatz 10, 1090, Vienna, Austria
| | - Thorsten G Müller
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Im Neuenheimer Feld 344, 69120, Heidelberg, Germany
| | - Caterina Sturtzel
- St. Anna Children's Cancer Research Institute, Innovative Cancer Models, Zimmermannplatz 10, 1090, Vienna, Austria.,Zebrafish Platform Austria for preclinical drug screening (ZANDR), Zimmermannplatz 10, 1090, Vienna, Austria
| | - Michael Riepl
- St. Anna Children's Cancer Research Institute, Innovative Cancer Models, Zimmermannplatz 10, 1090, Vienna, Austria
| | - Bettina Mathes
- Department of Chemical Biology, Max Planck Institute for Medical Research, Jahnstr. 29, 69120, Heidelberg, Germany
| | - Jenny Eichhorst
- Department of Molecular Pharmacology and Cell Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Straße 10, 13125, Berlin, Germany
| | - Anje Sporbert
- Advanced Light Microscopy, Max Delbrück Centrum for Molecular Medicine Berlin in the Helmholtz Association, Robert-Rössle-Straße 10, 13125, Berlin, Germany
| | - Martin Lehmann
- Department of Molecular Pharmacology and Cell Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Straße 10, 13125, Berlin, Germany
| | - Hans-Georg Kräusslich
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Im Neuenheimer Feld 344, 69120, Heidelberg, Germany
| | - Martin Distel
- St. Anna Children's Cancer Research Institute, Innovative Cancer Models, Zimmermannplatz 10, 1090, Vienna, Austria.,Zebrafish Platform Austria for preclinical drug screening (ZANDR), Zimmermannplatz 10, 1090, Vienna, Austria
| | - Johannes Broichhagen
- Department of Chemical Biology, Max Planck Institute for Medical Research, Jahnstr. 29, 69120, Heidelberg, Germany.,Department of Chemical Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Straße 10, 13125, Berlin, Germany
| |
Collapse
|
29
|
Chen C, Soto G, Dumrongprechachan V, Bannon N, Kang S, Kozorovitskiy Y, Parisiadou L. Pathway-specific dysregulation of striatal excitatory synapses by LRRK2 mutations. eLife 2020; 9:58997. [PMID: 33006315 PMCID: PMC7609054 DOI: 10.7554/elife.58997] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 10/01/2020] [Indexed: 12/22/2022] Open
Abstract
LRRK2 is a kinase expressed in striatal spiny projection neurons (SPNs), cells which lose dopaminergic input in Parkinson’s disease (PD). R1441C and G2019S are the most common pathogenic mutations of LRRK2. How these mutations alter the structure and function of individual synapses on direct and indirect pathway SPNs is unknown and may reveal pre-clinical changes in dopamine-recipient neurons that predispose toward disease. Here, R1441C and G2019S knock-in mice enabled thorough evaluation of dendritic spines and synapses on pathway-identified SPNs. Biochemical synaptic preparations and super-resolution imaging revealed increased levels and altered organization of glutamatergic AMPA receptors in LRRK2 mutants. Relatedly, decreased frequency of miniature excitatory post-synaptic currents accompanied changes in dendritic spine nano-architecture, and single-synapse currents, evaluated using two-photon glutamate uncaging. Overall, LRRK2 mutations reshaped synaptic structure and function, an effect exaggerated in R1441C dSPNs. These data open the possibility of new neuroprotective therapies aimed at SPN synapse function, prior to disease onset. Parkinson’s disease is caused by progressive damage to regions of the brain that regulate movement. This leads to a loss in nerve cells that produce a signaling molecule called dopamine, and causes patients to experience shakiness, slow movement and stiffness. When dopamine is released, it travels to a part of the brain known as the striatum, where it is received by cells called spiny projection neurons (SPNs), which are rich in a protein called LRRK2. Mutations in this protein have been shown to cause the motor impairments associated with Parkinson’s disease. SPNs send signals to other regions of the brain either via a ‘direct’ route, which promotes movement, or an ‘indirect’ route, which suppresses movement. Previous studies suggest that mutations in the gene for LRRK2 influence the activity of these pathways even before dopamine signaling has been lost. Yet, it remained unclear how different mutations independently affected each pathway. To investigate this further, Chen et al. studied two of the mutations most commonly found in the human gene for LRRK2, known as G2019S and R1441C. This involved introducing one of these mutations in to the genetic code of mice, and using fluorescent proteins to mark single SPNs in either the direct or indirect pathway. The experiments showed that both mutations disrupted the connections between SPNs in the direct and indirect pathway, which altered the activity of nerve cells in the striatum. Chen et al. found that individual connections were more strongly affected by the R1441C mutation. Further experiments showed that this was caused by the re-organization of a receptor protein in the nerve cells of the direct pathway, which increased how SPNs responded to inputs from other nerve cells. These findings suggest that LRRK2 mutations disrupt neural activity in the striatum before dopamine levels become depleted. This discovery could help researchers identify new therapies for treating the early stages of Parkinson’s disease before the symptoms of dopamine loss arise.
Collapse
Affiliation(s)
- Chuyu Chen
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, United States
| | - Giulia Soto
- Department of Neurobiology, Northwestern University, Chicago, United States
| | | | - Nicholas Bannon
- Department of Neurobiology, Northwestern University, Chicago, United States
| | - Shuo Kang
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, United States
| | | | - Loukia Parisiadou
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, United States
| |
Collapse
|
30
|
Tang X, Wu Y, Zhao R, Kou X, Dong Z, Zhou W, Zhang Z, Tan W, Fang X. Photorelease of Pyridines Using a Metal‐Free Photoremovable Protecting Group. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Xiao‐Jun Tang
- Key Laboratory of Molecular Nanostructure and Nanotechnology Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Yayun Wu
- Key Laboratory of Molecular Nanostructure and Nanotechnology Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Rong Zhao
- Key Laboratory of Molecular Nanostructure and Nanotechnology Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Xiaolong Kou
- Key Laboratory of Molecular Nanostructure and Nanotechnology Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Zaizai Dong
- Key Laboratory of Molecular Nanostructure and Nanotechnology Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Wei Zhou
- Key Laboratory of Molecular Nanostructure and Nanotechnology Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Zhen Zhang
- Key Laboratory of Molecular Nanostructure and Nanotechnology Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Weihong Tan
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences Institute of Cancer and Basic Medicine Chinese Academy of Sciences Hangzhou 310022 China
| | - Xiaohong Fang
- Key Laboratory of Molecular Nanostructure and Nanotechnology Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences Institute of Cancer and Basic Medicine Chinese Academy of Sciences Hangzhou 310022 China
| |
Collapse
|
31
|
Tang XJ, Wu Y, Zhao R, Kou X, Dong Z, Zhou W, Zhang Z, Tan W, Fang X. Photorelease of Pyridines Using a Metal-Free Photoremovable Protecting Group. Angew Chem Int Ed Engl 2020; 59:18386-18389. [PMID: 32671906 DOI: 10.1002/anie.202005310] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Indexed: 12/18/2022]
Abstract
The photorelease of bioactive molecules has emerged as a valuable tool in biochemistry. Nevertheless, many important bioactive molecules, such as pyridine derivatives, cannot benefit from currently available organic photoremovable protecting groups (PPGs). We found that the inefficient photorelease of pyridines is attributed to intramolecular photoinduced electron transfer (PET) from PPGs to pyridinium ions. To alleviate PET, we rationally designed a strategy to drive the excited state of PPG from S1 to T1 with a heavy atom, and synthesized a new PPG by substitution of the H atom at the 3-position of 7-dietheylamino-coumarin-4-methyl (DEACM) with Br or I. This resulted in an improved photolytic efficiency of the pyridinium ion by hundreds-fold in aqueous solution. The PPG can be applied to various pyridine derivatives. The successful photorelease of a microtubule inhibitor, indibulin, in living cells was demonstrated for the potential application of this strategy in biochemical research.
Collapse
Affiliation(s)
- Xiao-Jun Tang
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yayun Wu
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Rong Zhao
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiaolong Kou
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zaizai Dong
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Wei Zhou
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhen Zhang
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Weihong Tan
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Xiaohong Fang
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Hangzhou, 310022, China
| |
Collapse
|
32
|
Jin XT, Tucker BR, Drenan RM. Nicotine Self-Administration Induces Plastic Changes to Nicotinic Receptors in Medial Habenula. eNeuro 2020; 7:ENEURO.0197-20.2020. [PMID: 32675176 PMCID: PMC7405075 DOI: 10.1523/eneuro.0197-20.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/03/2020] [Accepted: 06/09/2020] [Indexed: 11/21/2022] Open
Abstract
Chronic nicotine upregulates nicotinic acetylcholine receptors (nAChRs) throughout the brain, and reducing their activity may promote somatic and affective states that lead to nicotine seeking. nAChRs are functionally upregulated in animal models using passive nicotine administration, but whether/how it occurs in response to volitional nicotine intake is unknown. The distinction is critical, as drug self-administration (SA) can induce neurotransmission and cellular excitability changes that passive drug administration does not. In this study, we probed the question of whether medial habenula (MHb) nAChRs are functionally augmented by nicotine SA. Male rats were implanted with an indwelling jugular catheter and trained to nose poke for nicotine infusions. A saline SA group controlled for non-specific responding and nicotine-associated visual cues. Using patch-clamp whole-cell recordings and local application of acetylcholine, we observed robust functional enhancement of nAChRs in MHb neurons from rats with a history of nicotine SA. To determine whether upregulated receptors are generally enhanced or directed to specific cellular compartments, we imaged neurons during recordings using two-photon laser scanning microscopy (2PLSM). nAChR activity at the cell soma and on proximal and distal dendrites was examined by local nicotine uncaging using a photoactivatable nicotine (PA-Nic) probe and focal laser flash photolysis. Results from this experiment revealed strong nAChR enhancement at all examined cellular locations. Our study demonstrates nAChR functional enhancement by nicotine SA, confirming that volitional nicotine intake sensitizes cholinergic systems in the brain. This may be a critical plasticity change supporting nicotine addiction.
Collapse
Affiliation(s)
- Xiao-Tao Jin
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Brenton R Tucker
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Ryan M Drenan
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| |
Collapse
|
33
|
Paoletti P, Ellis-Davies GCR, Mourot A. Optical control of neuronal ion channels and receptors. Nat Rev Neurosci 2020; 20:514-532. [PMID: 31289380 DOI: 10.1038/s41583-019-0197-2] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Light-controllable tools provide powerful means to manipulate and interrogate brain function with relatively low invasiveness and high spatiotemporal precision. Although optogenetic approaches permit neuronal excitation or inhibition at the network level, other technologies, such as optopharmacology (also known as photopharmacology) have emerged that provide molecular-level control by endowing light sensitivity to endogenous biomolecules. In this Review, we discuss the challenges and opportunities of photocontrolling native neuronal signalling pathways, focusing on ion channels and neurotransmitter receptors. We describe existing strategies for rendering receptors and channels light sensitive and provide an overview of the neuroscientific insights gained from such approaches. At the crossroads of chemistry, protein engineering and neuroscience, optopharmacology offers great potential for understanding the molecular basis of brain function and behaviour, with promises for future therapeutics.
Collapse
Affiliation(s)
- Pierre Paoletti
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France.
| | | | - Alexandre Mourot
- Neuroscience Paris Seine-Institut de Biologie Paris Seine (NPS-IBPS), CNRS, INSERM, Sorbonne Université, Paris, France.
| |
Collapse
|
34
|
Yan Y, Peng C, Arvin MC, Jin XT, Kim VJ, Ramsey MD, Wang Y, Banala S, Wokosin DL, McIntosh JM, Lavis LD, Drenan RM. Nicotinic Cholinergic Receptors in VTA Glutamate Neurons Modulate Excitatory Transmission. Cell Rep 2019; 23:2236-2244. [PMID: 29791835 PMCID: PMC5999341 DOI: 10.1016/j.celrep.2018.04.062] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 03/12/2018] [Accepted: 04/15/2018] [Indexed: 01/12/2023] Open
Abstract
Ventral tegmental area (VTA) glutamate neurons are important components of reward circuitry, but whether they are subject to cholinergic modulation is unknown. To study this, we used molecular, physiological, and photostimulation techniques to examine nicotinic acetylcholine receptors (nAChRs) in VTA glutamate neurons. Cells in the medial VTA, where glutamate neurons are enriched, are responsive to acetylcholine (ACh) released from cholinergic axons. VTA VGLUT2+ neurons express mRNA and protein subunits known to comprise heteromeric nAChRs. Electrophysiology, coupled with two-photon microscopy and laser flash photolysis of photoactivatable nicotine, was used to demonstrate nAChR functional activity in the somatodendritic subcellular compartment of VTA VGLUT2+ neurons. Finally, optogenetic isolation of intrinsic VTA glutamatergic microcircuits along with gene-editing techniques demonstrated that nicotine potently modulates excitatory transmission within the VTA via heteromeric nAChRs. These results indicate that VTA glutamate neurons are modulated by cholinergic mechanisms and participate in the cascade of physiological responses to nicotine exposure.
Collapse
Affiliation(s)
- Yijin Yan
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Can Peng
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Matthew C Arvin
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Xiao-Tao Jin
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Veronica J Kim
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Matthew D Ramsey
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Yong Wang
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Sambashiva Banala
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - David L Wokosin
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - J Michael McIntosh
- George E. Wahlen Veterans Affairs Medical Center and Departments of Psychiatry and Biology, University of Utah, Salt Lake City, UT 84108, USA
| | - Luke D Lavis
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Ryan M Drenan
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
35
|
Zhang Y, Castro DC, Han Y, Wu Y, Guo H, Weng Z, Xue Y, Ausra J, Wang X, Li R, Wu G, Vázquez-Guardado A, Xie Y, Xie Z, Ostojich D, Peng D, Sun R, Wang B, Yu Y, Leshock JP, Qu S, Su CJ, Shen W, Hang T, Banks A, Huang Y, Radulovic J, Gutruf P, Bruchas MR, Rogers JA. Battery-free, lightweight, injectable microsystem for in vivo wireless pharmacology and optogenetics. Proc Natl Acad Sci U S A 2019; 116:21427-21437. [PMID: 31601737 PMCID: PMC6815115 DOI: 10.1073/pnas.1909850116] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Pharmacology and optogenetics are widely used in neuroscience research to study the central and peripheral nervous systems. While both approaches allow for sophisticated studies of neural circuitry, continued advances are, in part, hampered by technology limitations associated with requirements for physical tethers that connect external equipment to rigid probes inserted into delicate regions of the brain. The results can lead to tissue damage and alterations in behavioral tasks and natural movements, with additional difficulties in use for studies that involve social interactions and/or motions in complex 3-dimensional environments. These disadvantages are particularly pronounced in research that demands combined optogenetic and pharmacological functions in a single experiment. Here, we present a lightweight, wireless, battery-free injectable microsystem that combines soft microfluidic and microscale inorganic light-emitting diode probes for programmable pharmacology and optogenetics, designed to offer the features of drug refillability and adjustable flow rates, together with programmable control over the temporal profiles. The technology has potential for large-scale manufacturing and broad distribution to the neuroscience community, with capabilities in targeting specific neuronal populations in freely moving animals. In addition, the same platform can easily be adapted for a wide range of other types of passive or active electronic functions, including electrical stimulation.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Biomedical, Biological, and Chemical Engineering, University of Missouri, Columbia, MO 65211
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208
| | - Daniel C Castro
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195
| | - Yuan Han
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Chicago, IL 60611
- Department of Anesthesiology, Eye & ENT Hospital, Fudan University, 200031 Shanghai, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, 221004 Xuzhou, China
| | - Yixin Wu
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208
| | - Hexia Guo
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208
| | - Zhengyan Weng
- Department of Biomedical, Biological, and Chemical Engineering, University of Missouri, Columbia, MO 65211
| | - Yeguang Xue
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208
| | - Jokubas Ausra
- Biomedical Engineering, College of Engineering, The University of Arizona, Tucson, AZ 85721
| | - Xueju Wang
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO 65211
| | - Rui Li
- State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, 116024 Dalian, China
- International Research Center for Computational Mechanics, Dalian University of Technology, 116024 Dalian, China
| | - Guangfu Wu
- Department of Biomedical, Biological, and Chemical Engineering, University of Missouri, Columbia, MO 65211
| | | | - Yiwen Xie
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208
| | - Zhaoqian Xie
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208
- State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, 116024 Dalian, China
| | - Diana Ostojich
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208
| | - Dongsheng Peng
- College of Optoelectronic Engineering, Shenzhen University, 518060 Shenzhen, China
| | - Rujie Sun
- Bristol Composites Institute, University of Bristol, BS8 1TR Bristol, United Kingdom
| | - Binbin Wang
- Department of Civil and Environmental Engineering, University of Missouri, Columbia, MO 65211
| | | | - John P Leshock
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208
| | - Subing Qu
- Department of Materials Science and Engineering, Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Chun-Ju Su
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208
| | - Wen Shen
- Department of Mechanical and Aerospace Engineering, University of Texas at Arlington, Arlington, TX 76019
| | - Tao Hang
- School of Materials Science and Engineering, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Anthony Banks
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208
| | - Yonggang Huang
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208
| | - Jelena Radulovic
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Chicago, IL 60611
| | - Philipp Gutruf
- Biomedical Engineering, College of Engineering, The University of Arizona, Tucson, AZ 85721;
| | - Michael R Bruchas
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195;
- Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195
- Department of Pharmacology, University of Washington, Seattle, WA 98195
| | - John A Rogers
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208;
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208
- Simpson Querrey Institute, Northwestern University, Chicago, IL 60611
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208
- Department of Chemistry, Northwestern University, Evanston, IL 60208
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| |
Collapse
|
36
|
Frank JA, Antonini MJ, Anikeeva P. Next-generation interfaces for studying neural function. Nat Biotechnol 2019; 37:1013-1023. [PMID: 31406326 PMCID: PMC7243676 DOI: 10.1038/s41587-019-0198-8] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 06/26/2019] [Indexed: 01/06/2023]
Abstract
Monitoring and modulating the diversity of signals used by neurons and glia in a closed-loop fashion is necessary to establish causative links between biochemical processes within the nervous system and observed behaviors. As developments in neural-interface hardware strive to keep pace with rapid progress in genetically encoded and synthetic reporters and modulators of neural activity, the integration of multiple functional features becomes a key requirement and a pressing challenge in the field of neural engineering. Electrical, optical and chemical approaches have been used to manipulate and record neuronal activity in vivo, with a recent focus on technologies that both integrate multiple modes of interaction with neurons into a single device and enable bidirectional communication with neural circuits with enhanced spatiotemporal precision. These technologies not only are facilitating a greater understanding of the brain, spinal cord and peripheral circuits in the context of health and disease, but also are informing the development of future closed-loop therapies for neurological, neuro-immune and neuroendocrine conditions.
Collapse
Affiliation(s)
- James A Frank
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Marc-Joseph Antonini
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard/MIT Health Science & Technology Graduate Program, Cambridge, MA, USA
| | - Polina Anikeeva
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA.
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Material Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
37
|
Qazi R, Gomez AM, Castro DC, Zou Z, Sim JY, Xiong Y, Abdo J, Kim CY, Anderson A, Lohner F, Byun SH, Chul Lee B, Jang KI, Xiao J, Bruchas MR, Jeong JW. Wireless optofluidic brain probes for chronic neuropharmacology and photostimulation. Nat Biomed Eng 2019; 3:655-669. [DOI: 10.1038/s41551-019-0432-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 06/21/2019] [Indexed: 12/11/2022]
|
38
|
Arvin MC, Jin XT, Yan Y, Wang Y, Ramsey MD, Kim VJ, Beckley NA, Henry BA, Drenan RM. Chronic Nicotine Exposure Alters the Neurophysiology of Habenulo-Interpeduncular Circuitry. J Neurosci 2019; 39:4268-4281. [PMID: 30867261 PMCID: PMC6538858 DOI: 10.1523/jneurosci.2816-18.2019] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 02/11/2019] [Accepted: 03/06/2019] [Indexed: 11/21/2022] Open
Abstract
Antagonism of nicotinic acetylcholine receptors (nAChRs) in the medial habenula (MHb) or interpeduncular nucleus (IPN) triggers withdrawal-like behaviors in mice chronically exposed to nicotine, implying that nicotine dependence involves the sensitization of nicotinic signaling. Identification of receptor and/or neurophysiological mechanisms underlying this sensitization is important, as it could promote novel therapeutic strategies to reduce tobacco use. Using an approach involving photoactivatable nicotine, we previously demonstrated that chronic nicotine (cNIC) potently enhances nAChR function in dendrites of MHb neurons. However, whether cNIC modulates downstream components of the habenulo-interpeduncular (Hb-IP) circuit is unknown. In this study, cNIC-mediated changes to Hb-IP nAChR function were examined in mouse (male and female) brain slices using molecular, electrophysiological, and optical techniques. cNIC enhanced action potential firing and modified spike waveform characteristics in MHb neurons. Nicotine uncaging revealed nAChR functional enhancement by cNIC on proximal axonal membranes. Similarly, nAChR-driven glutamate release from MHb axons was enhanced by cNIC. In IPN, the target structure of MHb axons, neuronal morphology, and nAChR expression is complex, with stronger nAChR function in the rostral subnucleus [rostral IPN (IPR)]. As in MHb, cNIC induced strong upregulation of nAChR function in IPN neurons. This, coupled with cNIC-enhanced nicotine-stimulated glutamate release, was associated with stronger depolarization responses to brief (1 ms) nicotine uncaging adjacent to IPR neurons. Together, these results indicate that chronic exposure to nicotine dramatically alters nicotinic cholinergic signaling and cell excitability in Hb-IP circuits, a key pathway involved in nicotine dependence.SIGNIFICANCE STATEMENT This study uncovers several neuropharmacological alterations following chronic exposure to nicotine in a key brain circuit involved in nicotine dependence. These results suggest that smokers or regular users of electronic nicotine delivery systems (i.e., "e-cigarettes") likely undergo sensitization of cholinergic circuitry in the Hb-IP system. Reducing the activity of Hb-IP nAChRs, either volitionally during smoking cessation or inadvertently via receptor desensitization during nicotine intake, may be a key trigger of withdrawal in nicotine dependence. Escalation of nicotine intake in smokers, or tolerance, may involve stimulation of these sensitized cholinergic pathways. Smoking cessation therapeutics are only marginally effective, and by identifying cellular/receptor mechanisms of nicotine dependence, our results take a step toward improved therapeutic approaches for this disorder.
Collapse
Affiliation(s)
- Matthew C Arvin
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| | - Xiao-Tao Jin
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| | - Yijin Yan
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| | - Yong Wang
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| | - Matthew D Ramsey
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| | - Veronica J Kim
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| | - Nicole A Beckley
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| | - Brittany A Henry
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| | - Ryan M Drenan
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| |
Collapse
|
39
|
Castro DC, Bruchas MR. A Motivational and Neuropeptidergic Hub: Anatomical and Functional Diversity within the Nucleus Accumbens Shell. Neuron 2019; 102:529-552. [PMID: 31071288 PMCID: PMC6528838 DOI: 10.1016/j.neuron.2019.03.003] [Citation(s) in RCA: 186] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/22/2019] [Accepted: 03/01/2019] [Indexed: 01/14/2023]
Abstract
The mesocorticolimbic pathway is canonically known as the "reward pathway." Embedded within the center of this circuit is the striatum, a massive and complex network hub that synthesizes motivation, affect, learning, cognition, stress, and sensorimotor information. Although striatal subregions collectively share many anatomical and functional similarities, it has become increasingly clear that it is an extraordinarily heterogeneous region. In particular, the nucleus accumbens (NAc) medial shell has repeatedly demonstrated that the rules dictated by more dorsal aspects of the striatum do not apply or are even reversed in functional logic. These discrepancies are perhaps most easily captured when isolating the functions of various neuromodulatory peptide systems within the striatum. Endogenous peptides are thought to play a critical role in modulating striatal signals to either amplify or dampen evoked behaviors. Here we describe the anatomical-functional backdrop upon which several neuropeptides act within the NAc to modulate behavior, with a specific emphasis on nucleus accumbens medial shell and stress responsivity. Additionally, we propose that, as the field continues to dissect fast neurotransmitter systems within the NAc, we must also provide considerable contextual weight to the roles local peptides play in modulating these circuits to more comprehensively understand how this important subregion gates motivated behaviors.
Collapse
Affiliation(s)
- Daniel C Castro
- Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA; Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA; Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Michael R Bruchas
- Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA; Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA; Department of Pharmacology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
40
|
Leippe P, Frank JA. Designing azobenzene-based tools for controlling neurotransmission. Curr Opin Struct Biol 2019; 57:23-30. [PMID: 30825844 DOI: 10.1016/j.sbi.2019.01.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 01/13/2019] [Accepted: 01/28/2019] [Indexed: 12/17/2022]
Abstract
Chemical and electrical signaling at the synapse is a dynamic process that is crucial to neurotransmission and pathology. Traditional pharmacotherapy has found countless applications in both academic labs and the clinic; however, diffusible drugs lack spatial and temporal precision when employed in heterogeneous tissues such as the brain. In the field of photopharmacology, chemical attachment of a synthetic photoswitch to a bioactive ligand allows cellular signaling to be controlled with light. Azobenzenes have remained the go-to photoswitch for biological applications due to their tunable photophysical properties, and can be leveraged to achieve reversible optical control of numerous receptors and ion channels. Here, we discuss the most recent advances in photopharmacology which will improve the use of azobenzene-based probes for neuroscience applications.
Collapse
Affiliation(s)
- Philipp Leippe
- Max Planck Institute for Medical Research, Department of Chemical Biology, Jahnstr. 29, 69120 Heidelberg, Germany
| | - James Allen Frank
- The Vollum Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA.
| |
Collapse
|
41
|
Arvin MC, Wokosin DL, Banala S, Lavis LD, Drenan RM. Probing Nicotinic Acetylcholine Receptor Function in Mouse Brain Slices via Laser Flash Photolysis of Photoactivatable Nicotine. J Vis Exp 2019. [PMID: 30735191 DOI: 10.3791/58873] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Acetylcholine (ACh) acts through receptors to modulate a variety of neuronal processes, but it has been challenging to link ACh receptor function with subcellular location within cells where this function is carried out. To study the subcellular location of nicotinic ACh receptors (nAChRs) in native brain tissue, an optical method was developed for precise release of nicotine at discrete locations near neuronal membranes during electrophysiological recordings. Patch-clamped neurons in brain slices are filled with dye to visualize their morphology during 2-photon laser scanning microscopy, and nicotine uncaging is executed with a light flash by focusing a 405 nm laser beam near one or more cellular membranes. Cellular current deflections are measured, and a high-resolution three-dimensional (3D) image of the recorded neuron is made to allow reconciliation of nAChR responses with cellular morphology. This method allows for detailed analysis of nAChR functional distribution in complex tissue preparations, promising to enhance the understanding of cholinergic neurotransmission.
Collapse
Affiliation(s)
- Matthew C Arvin
- Department of Pharmacology, Northwestern University Feinberg School of Medicine
| | - David L Wokosin
- Department of Physiology, Northwestern University Feinberg School of Medicine
| | | | - Luke D Lavis
- Janelia Research Campus, Howard Hughes Medical Institute
| | - Ryan M Drenan
- Department of Pharmacology, Northwestern University Feinberg School of Medicine;
| |
Collapse
|
42
|
Passlick S, Thapaliya ER, Chen Z, Richers MT, Ellis-Davies GCR. Optical probing of acetylcholine receptors on neurons in the medial habenula with a novel caged nicotine drug analogue. J Physiol 2018; 596:5307-5318. [PMID: 30222192 DOI: 10.1113/jp276615] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 09/13/2018] [Indexed: 12/11/2022] Open
Abstract
KEY POINTS A new caged nicotinic acetylcholine receptor (nAChR) agonist was developed, ABT594, which is photolysed by one- and two-photon excitation. The caged compound is photolysed with a quantum yield of 0.20. One-photon uncaging of ABT594 elicited large currents and Ca2+ transients at the soma and dendrites of medial habenula (MHb) neurons of mouse brain slices. Unexpectedly, uncaging of ABT594 also revealed highly Ca2+ -permeable nAChRs on axons of MHb neurons. ABSTRACT Photochemical release of neurotransmitters has been instrumental in the study of their underlying receptors, with acetylcholine being the exception due to its inaccessibility to photochemical protection. We caged a nicotinic acetylcholine receptor (nAChR) agonist, ABT594, via its secondary amine functionality. Effective photolysis could be carried out using either one- or two-photon excitation. Brief flashes (0.5-3.0 ms) of 410 nm light evoked large currents and Ca2+ transients on cell bodies and dendrites of medial habenula (MHb) neurons. Unexpectedly, photorelease of ABT594 also revealed nAChR-mediated Ca2+ signals along the axons of MHb neurons.
Collapse
Affiliation(s)
- Stefan Passlick
- Department of Neuroscience, Mount Sinai School of Medicine, New York, NY, USA
| | - Ek Raj Thapaliya
- Department of Neuroscience, Mount Sinai School of Medicine, New York, NY, USA
| | - Zuxin Chen
- Department of Neuroscience, Mount Sinai School of Medicine, New York, NY, USA
| | - Matthew T Richers
- Department of Neuroscience, Mount Sinai School of Medicine, New York, NY, USA
| | | |
Collapse
|
43
|
Peng C, Yan Y, Kim VJ, Engle SE, Berry JN, McIntosh JM, Neve RL, Drenan RM. Gene editing vectors for studying nicotinic acetylcholine receptors in cholinergic transmission. Eur J Neurosci 2018; 50:2224-2238. [PMID: 29779223 DOI: 10.1111/ejn.13957] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/19/2018] [Accepted: 04/16/2018] [Indexed: 01/28/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs), prototype members of the cys-loop ligand-gated ion channel family, are key mediators of cholinergic transmission in the central nervous system. Despite their importance, technical gaps exist in our ability to dissect the function of individual subunits in the brain. To overcome these barriers, we designed CRISPR/Cas9 small guide RNA sequences (sgRNAs) for the production of loss-of-function alleles in mouse nAChR genes. These sgRNAs were validated in vitro via deep sequencing. We subsequently targeted candidate nAChR genes in vivo by creating herpes simplex virus (HSV) vectors delivering sgRNAs and Cas9 expression to mouse brain. The production of loss-of-function insertions or deletions (indels) by these 'all-in-one' HSV vectors was confirmed using brain slice patch clamp electrophysiology coupled with pharmacological analysis. Next, we developed a scheme for cell type-specific gene editing in mouse brain. Knockin mice expressing Cas9 in a Cre-dependent manner were validated using viral microinjections and genetic crosses to common Cre-driver mouse lines. We subsequently confirmed functional Cas9 activity by targeting the ubiquitous neuronal protein, NeuN, using adeno-associated virus (AAV) delivery of sgRNAs. Finally, the mouse β2 nAChR gene was successfully targeted in dopamine transporter (DAT)-positive neurons via CRISPR/Cas9. The sgRNA sequences and viral vectors, including our scheme for Cre-dependent gene editing, should be generally useful to the scientific research community. These tools could lead to new discoveries related to the function of nAChRs in neurotransmission and behavioral processes.
Collapse
Affiliation(s)
- Can Peng
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, 320 East Superior Street, Searle 5-450, Chicago, IL, 60611, USA
| | - Yijin Yan
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, 320 East Superior Street, Searle 5-450, Chicago, IL, 60611, USA
| | - Veronica J Kim
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, 320 East Superior Street, Searle 5-450, Chicago, IL, 60611, USA
| | - Staci E Engle
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Jennifer N Berry
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - J Michael McIntosh
- George E. Wahlen Veterans Affairs Medical Center and Departments of Psychiatry and Biology, University of Utah, Salt Lake City, UT, USA
| | - Rachael L Neve
- Gene Delivery Technology Core, Massachusetts General Hospital, Cambridge, MA, USA
| | - Ryan M Drenan
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, 320 East Superior Street, Searle 5-450, Chicago, IL, 60611, USA
| |
Collapse
|