1
|
Woo TG, Han J, Kim Y, Hwang YJ, Lee M, Kang SM, Park S, Ji Y, Chung YH, Baek S, Shin E, Minju-Kim, Jang H, Shin YJ, Kwon Y, Kim BH, Park BJ. Inhibition of SOD1 trimerization is a novel drug target for ALS disease. Transl Neurodegener 2025; 14:21. [PMID: 40350531 PMCID: PMC12067741 DOI: 10.1186/s40035-025-00483-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 03/28/2025] [Indexed: 05/14/2025] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that begins with motor neuron death in the spinal cord and cerebral cortex, ultimately resulting in death from respiratory distress (breathing failure). About 90% of ALS cases are sporadic, and 10% of ALS cases are of the inherited type with a genetic cause. About 150 different gene mutations have been reported so far. SOD1 is a well-identified gene associated with ALS. Indeed, SOD1 aggregation has been reported in ALS patients, but the mechanism of SOD1 aggregation remains unclear. Our previous work showed that inhibiting SOD1 aggregation with a hit compound (PRG-A-01) could reduce the SOD1-induced cytotoxicity and extend the lifespan of ALS mouse model (SOD1G93A-Tg). However, the low bioavailability and rapid degradation of the compound in vivo necessitates the development of a more effective candidate. We generated different derivatives and finally obtained the most potential drug candidate, PRG-A-04. METHODS Neuronal cell lines were transfected with the mutant SOD1 expression vector and incubated with PRG-A-04. SOD1 aggregation was examined by SOD1 oligomerization assay, immunofluorescence and dot blot assay. The interaction between GST-conjugated SOD1 recombinant proteins and PRG-A-04 was identified using LC-MS/MS and GST pull-down assay. To check the in vivo therapeutic effect of PRG-A-04, SOD1G93A-Tg mice were injected with PRG-A-04; then behavioral test, histological analysis and microarray were performed. RESULTS PRG-A-04 demonstrated favorable pharmacokinetics including high bioavailability and significant blood-brain barrier penetration. Indeed, oral administration of PRG-A-04 in ALS mouse model inhibited the aggregation of SOD1 in the spinal cord, protected against neuronal loss, and extended the lifespan of ALS mice by up to 3 weeks. In vitro, PRG-A-04 selectively bound to the mutant form of SOD1, but not the wild type, and efficiently inhibited the aggregation caused by SOD1-G147P (a SOD1 trimer stabilizer). CONCLUSIONS Our findings underscore the potential of targeting trimeric SOD1 in ALS treatment, positioning PRG-A-04 as a strong drug candidate for both familial and sporadic ALS.
Collapse
Affiliation(s)
- Tae-Gyun Woo
- Institute of Rare Genetic Disease, PRG S&Tech Co., LTD, Busan, 46274, Republic of Korea
| | - Jin Han
- Institute of Rare Genetic Disease, PRG S&Tech Co., LTD, Busan, 46274, Republic of Korea
| | - Yuju Kim
- Institute of Rare Genetic Disease, PRG S&Tech Co., LTD, Busan, 46274, Republic of Korea
| | - Young Jun Hwang
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan, 46241, Republic of Korea
| | - Mua Lee
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan, 46241, Republic of Korea
| | - So-Mi Kang
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan, 46241, Republic of Korea
| | - Soyoung Park
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan, 46241, Republic of Korea
| | - Yeongseon Ji
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan, 46241, Republic of Korea
| | - Yeon-Ho Chung
- Institute of Rare Genetic Disease, PRG S&Tech Co., LTD, Busan, 46274, Republic of Korea
| | - Songyoung Baek
- Institute of Rare Genetic Disease, PRG S&Tech Co., LTD, Busan, 46274, Republic of Korea
| | - Eunbyeol Shin
- Institute of Rare Genetic Disease, PRG S&Tech Co., LTD, Busan, 46274, Republic of Korea
| | - Minju-Kim
- Institute of Rare Genetic Disease, PRG S&Tech Co., LTD, Busan, 46274, Republic of Korea
| | - Hyewon Jang
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yun-Jeong Shin
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yonghoon Kwon
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Bae-Hoon Kim
- Institute of Rare Genetic Disease, PRG S&Tech Co., LTD, Busan, 46274, Republic of Korea
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan, 46241, Republic of Korea
| | - Bum-Joon Park
- Institute of Rare Genetic Disease, PRG S&Tech Co., LTD, Busan, 46274, Republic of Korea.
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
2
|
Martin LJ, Lee JK, Niedzwiecki MV, Amrein Almira A, Javdan C, Chen MW, Olberding V, Brown SM, Park D, Yohannan S, Putcha H, Zheng B, Garrido A, Benderoth J, Kisner C, Ghaemmaghami J, Northington FJ, Kratimenos P. Hypothermia Shifts Neurodegeneration Phenotype in Neonatal Human Hypoxic-Ischemic Encephalopathy but Not in Related Piglet Models: Possible Relationship to Toxic Conformer and Intrinsically Disordered Prion-like Protein Accumulation. Cells 2025; 14:586. [PMID: 40277911 PMCID: PMC12025496 DOI: 10.3390/cells14080586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/03/2025] [Accepted: 04/10/2025] [Indexed: 04/26/2025] Open
Abstract
Hypothermia (HT) is used clinically for neonatal hypoxic-ischemic encephalopathy (HIE); however, the brain protection is incomplete and selective regional vulnerability and lifelong consequences remain. Refractory damage and impairment with HT cooling/rewarming could result from unchecked or altered persisting cell death and proteinopathy. We tested two hypotheses: (1) HT modifies neurodegeneration type, and (2) intrinsically disordered proteins (IDPs) and encephalopathy cause toxic conformer protein (TCP) proteinopathy neonatally. We studied postmortem human neonatal HIE cases with or without therapeutic HT, neonatal piglets subjected to global hypoxia-ischemia (HI) with and without HT or combinations of HI and quinolinic acid (QA) excitotoxicity surviving for 29-96 h to 14 days, and human oligodendrocytes and neurons exposed to QA for cell models. In human and piglet encephalopathies with normothermia, the neuropathology by hematoxylin and eosin staining was similar; necrotic cell degeneration predominated. With HT, neurodegeneration morphology shifted to apoptosis-necrosis hybrid and apoptotic forms in human HIE, while neurons in HI piglets were unshifting and protected robustly. Oligomers and putative TCPs of α-synuclein (αSyn), nitrated-Syn and aggregated αSyn, misfolded/oxidized superoxide dismutase-1 (SOD1), and prion protein (PrP) were detected with highly specific antibodies by immunohistochemistry, immunofluorescence, and immunoblotting. αSyn and SOD1 TCPs were seen in human HIE brains regardless of HT treatment. αSyn and SOD1 TCPs were detected as early as 29 h after injury in piglets and QA-injured human oligodendrocytes and neurons in culture. Cell immunophenotyping by immunofluorescence showed αSyn detected with antibodies to aggregated/oligomerized protein; nitrated-Syn accumulated in neurons, sometimes appearing as focal dendritic aggregations. Co-localization also showed aberrant αSyn accumulating in presynaptic terminals. Proteinase K-resistant PrP accumulated in ischemic Purkinje cells, and their target regions had PrP-positive neuritic plaque-like pathology. Immunofluorescence revealed misfolded/oxidized SOD1 in neurons, axons, astrocytes, and oligodendrocytes. HT attenuated TCP formation in piglets. We conclude that HT differentially affects brain damage in humans and piglets. HT shifts neuronal cell death to other forms in human while blocking ischemic necrosis in piglet for sustained protection. HI and excitotoxicity also acutely induce formation of TCPs and prion-like proteins from IDPs globally throughout the brain in gray matter and white matter. HT attenuates proteinopathy in piglets but seemingly not in humans. Shifting of cell death type and aberrant toxic protein formation could explain the selective system vulnerability, connectome spreading, and persistent damage seen in neonatal HIE leading to lifelong consequences even after HT treatment.
Collapse
Affiliation(s)
- Lee J. Martin
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 20205-2196, USA; (D.P.); (B.Z.)
- Department of Neuroscience, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 20205-2196, USA
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 20205-2196, USA
- The Pathobiology Graduate Training Program, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 20205-2196, USA
| | - Jennifer K. Lee
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 20205-2196, USA
| | - Mark V. Niedzwiecki
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 20205-2196, USA
| | - Adriana Amrein Almira
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 20205-2196, USA
| | - Cameron Javdan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 20205-2196, USA
| | - May W. Chen
- Department of Pediatrics, Johns Hopkins University School of Medicine, CMSC, 600 North Wolfe Street, Baltimore, MD 21287-0001, USA
| | - Valerie Olberding
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 20205-2196, USA
| | - Stephen M. Brown
- The Pathobiology Graduate Training Program, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 20205-2196, USA
| | - Dongseok Park
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 20205-2196, USA; (D.P.); (B.Z.)
| | - Sophie Yohannan
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 20205-2196, USA; (D.P.); (B.Z.)
| | - Hasitha Putcha
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 20205-2196, USA; (D.P.); (B.Z.)
| | - Becky Zheng
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 20205-2196, USA; (D.P.); (B.Z.)
| | - Annalise Garrido
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 20205-2196, USA; (D.P.); (B.Z.)
| | - Jordan Benderoth
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 20205-2196, USA; (D.P.); (B.Z.)
| | - Chloe Kisner
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 20205-2196, USA; (D.P.); (B.Z.)
| | - Javid Ghaemmaghami
- Department of Pediatrics, Children’s National Hospital, George Washington University School of Medicine and Health Sciences, Washington, DC 20010-2916, USA
| | - Frances J. Northington
- Department of Pediatrics, Johns Hopkins University School of Medicine, CMSC, 600 North Wolfe Street, Baltimore, MD 21287-0001, USA
| | - Panagiotis Kratimenos
- Department of Pediatrics, Children’s National Hospital, George Washington University School of Medicine and Health Sciences, Washington, DC 20010-2916, USA
| |
Collapse
|
3
|
Ms S, Banerjee S, D'Mello SR, Dastidar SG. Amyotrophic Lateral Sclerosis: Focus on Cytoplasmic Trafficking and Proteostasis. Mol Neurobiol 2025:10.1007/s12035-025-04831-7. [PMID: 40180687 DOI: 10.1007/s12035-025-04831-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 03/09/2025] [Indexed: 04/05/2025]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive and fatal motor neuron disease characterized by the pathological loss of upper and lower motor neurons. Whereas most ALS cases are caused by a combination of environmental factors and genetic susceptibility, in a relatively small proportion of cases, the disorder results from mutations in genes that are inherited. Defects in several different cellular mechanisms and processes contribute to the selective loss of motor neurons (MNs) in ALS. Prominent among these is the accumulation of aggregates of misfolded proteins or peptides which are toxic to motor neurons. These accumulating aggregates stress the ability of the endoplasmic reticulum (ER) to function normally, cause defects in the transport of proteins between the ER and Golgi, and impair the transport of RNA, proteins, and organelles, such as mitochondria, within axons and dendrites, all of which contribute to the degeneration of MNs. Although dysfunction of a variety of cellular processes combines towards the pathogenesis of ALS, in this review, we focus on recent advances concerning the involvement of defective ER stress, vesicular transport between the ER and Golgi, and axonal transport.
Collapse
Affiliation(s)
- Shrilaxmi Ms
- Center for Molecular Neuroscience, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Saradindu Banerjee
- Center for Molecular Neuroscience, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Santosh R D'Mello
- Center for Molecular Neuroscience, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
- College of Arts and Sciences, Louisiana State University, Shreveport, LA, 71115, USA.
| | - Somasish Ghosh Dastidar
- Center for Molecular Neuroscience, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
4
|
Gómez-Gálvez P, Navarro V, Castro AM, Paradas C, Escudero LM. Computational Analysis of SOD1-G93A Mouse Muscle Biomarkers for Comprehensive Assessment of ALS Progression. Neuropathol Appl Neurobiol 2025; 51:e70014. [PMID: 40164574 DOI: 10.1111/nan.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 03/10/2025] [Accepted: 03/20/2025] [Indexed: 04/02/2025]
Abstract
AIMS To identify potential image biomarkers of neuromuscular disease by analysing morphological and network-derived features in skeletal muscle biopsies from a murine model of amyotrophic lateral sclerosis (ALS), the SOD1G93A mouse and wild-type (WT) controls at distinct stages of disease progression. METHODS Using the NDICIA computational framework, we quantitatively evaluated histological differences between skeletal muscle biopsies from SOD1G93A and WT mice. The process involved the selection of a subset of features revealing these differences. A subset of discriminative features was selected to characterise these differences, and their temporal dynamics were assessed across disease stages. RESULTS Our findings demonstrate that muscle pathology in the mutant model evolves from early alterations in muscle fibre arrangement, detectable at the presymptomatic stage through graph theory features, to the subsequent development of the typical morphological pattern of neurogenic atrophy at more advanced disease stages. CONCLUSIONS Our assay identifies a neurogenic signature in mutant muscle biopsies, even when the disease is phenotypically imperceptible.
Collapse
Affiliation(s)
- Pedro Gómez-Gálvez
- MRC Laboratory of Molecular Biology, Cambridge, UK
- Department of Physiology, Development and Neurobiology, University of Cambridge, Cambridge, UK
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Biología Celular, Facultad de Biología, Universidad de Sevilla, Seville, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Victoria Navarro
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío CSIC/Universidad de Sevilla, Seville, Spain
| | - Ana M Castro
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Biología Celular, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Carmen Paradas
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío CSIC/Universidad de Sevilla, Seville, Spain
- Neuromuscular Disease Unit, Neurology Department, Hospital Universitario Virgen del Rocío, Seville, Spain
| | - Luis M Escudero
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Biología Celular, Facultad de Biología, Universidad de Sevilla, Seville, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| |
Collapse
|
5
|
Asai Y, Yano K, Higashino T, Yoshihara D, Sakiyama H, Eguchi H, Fukushima K, Suzuki K, Fujiwara N. The Ile35 Residue of the ALS-Associated Mutant SOD1 Plays a Crucial Role in the Intracellular Aggregation of the Molecule. Mol Neurobiol 2025; 62:2023-2038. [PMID: 39060907 DOI: 10.1007/s12035-024-04369-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 07/12/2024] [Indexed: 07/28/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with an unknown pathogenesis. It has been reported that mutations in the gene for Cu/Zn superoxide dismutase (SOD1) cause familial ALS. Mutant SOD1 undergoes aggregation and forms amyloid more easily, and SOD1-immunopositive inclusions have been observed in the spinal cords of ALS patients. Because of this, SOD1 aggregation is thought to be related to the pathogenesis of ALS. Some core regions of amyloid have been identified, but the issue of whether these regions form aggregates in living cells remains unclear, and the mechanism responsible for intracellular SOD1 aggregation also remains unclear. The findings reported in this study indicate that the aggregation of the ALS-linked mutant SOD1-EGFP was significantly enhanced when the BioID2 gene was fused to the N-terminus of the mutant SOD1-EGFP plasmid for cellular expression. Expression of a series of BioID2-(C-terminal deletion peptides of SOD1)-EGFP permitted us to identify 1-35 as a minimal N-terminal sequence and Ile35 as an essential amino acid residue that contributes to the intracellular aggregation of SOD1. The findings also showed that an additional substitution of Ile35 with Ser into the ALS mutant SOD1 resulted in the significant suppression of aggregate formation. The fact that no Ile35 mutations have been reported to date in ALS patients indicates that all ALS mutant SOD1s contain Ile35. Taken together, we propose that Ile35 plays a pivotal role in the aggregation of the ALS-linked SOD1 and that this study will contribute to our understanding of the mechanism responsible for SOD1 aggregation.
Collapse
Affiliation(s)
- Yoshiyuki Asai
- Department of Biochemistry, School of Medicine, Hyogo Medical University, 1-1 Mukogawa-Cho, Nishinomiya, Hyogo, 663-8501, Japan
| | - Kyoka Yano
- Department of Biochemistry, School of Medicine, Hyogo Medical University, 1-1 Mukogawa-Cho, Nishinomiya, Hyogo, 663-8501, Japan
| | - Tomoyuki Higashino
- Department of Biochemistry, School of Medicine, Hyogo Medical University, 1-1 Mukogawa-Cho, Nishinomiya, Hyogo, 663-8501, Japan
| | - Daisaku Yoshihara
- Department of Biochemistry, School of Medicine, Hyogo Medical University, 1-1 Mukogawa-Cho, Nishinomiya, Hyogo, 663-8501, Japan
- Labolatory of Biochemistry, School of Pharmacy, Hyogo Medical University, Kobe, Hyogo, 650-8530, Japan
| | - Haruhiko Sakiyama
- Department of Biochemistry, School of Medicine, Hyogo Medical University, 1-1 Mukogawa-Cho, Nishinomiya, Hyogo, 663-8501, Japan
- Faculty of Nutrition, Department of Food and Nutrition, Senri Kinran University, Suita, Osaka, 565-0873, Japan
| | - Hironobu Eguchi
- Department of Biochemistry, School of Medicine, Hyogo Medical University, 1-1 Mukogawa-Cho, Nishinomiya, Hyogo, 663-8501, Japan
| | - Kazuaki Fukushima
- Department of Chemistry, School of Medicine, Hyogo Medical University, Nishinomiya, Hyogo, 663-8501, Japan
| | - Keiichiro Suzuki
- Department of Biochemistry, School of Medicine, Hyogo Medical University, 1-1 Mukogawa-Cho, Nishinomiya, Hyogo, 663-8501, Japan
| | - Noriko Fujiwara
- Department of Biochemistry, School of Medicine, Hyogo Medical University, 1-1 Mukogawa-Cho, Nishinomiya, Hyogo, 663-8501, Japan.
| |
Collapse
|
6
|
Tomar VR, Sharma S, Siddhanta S, Deep S. Biophysical and spectroscopical insights into structural modulation of species in the aggregation pathway of superoxide dismutase 1. Commun Chem 2025; 8:22. [PMID: 39875596 PMCID: PMC11775178 DOI: 10.1038/s42004-025-01421-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 01/21/2025] [Indexed: 01/30/2025] Open
Abstract
Superoxide dismutase 1 (SOD1) aggregation is implicated in the development of Amyotrophic Lateral Sclerosis (ALS). Despite knowledge of the role of SOD1 aggregation, the mechanistic understanding remains elusive. Our investigation aimed to unravel the complex steps involved in SOD1 aggregation associated with ALS. Therefore, we probed the aggregation using ThT fluorescence, size-exclusion chromatography, and surface-enhanced Raman spectroscopy (SERS). The removal of metal ions and disulfide bonds resulted in the dimers rapidly first converting to an extended monomers then coming together slowly to form non-native dimers. The rapid onset of oligomerization happens above critical non-native dimer concentration. Structural features of oligomer was obtained through SERS. The kinetic data supported a fragmentation-dominant mechanism for the fibril formation. Quercetin acts as inhibitor by delaying the formation of non-native dimer and soluble oligomers by decreasing the elongation rate. Thus, results provide significant insights into the critical steps in oligomer formation and their structure.
Collapse
Affiliation(s)
- Vijay Raj Tomar
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, India
| | - Shilpa Sharma
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, India
| | - Soumik Siddhanta
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, India.
| | - Shashank Deep
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, India.
| |
Collapse
|
7
|
Tedeschi V, Nele V, Valsecchi V, Anzilotti S, Vinciguerra A, Zucaro L, Sisalli MJ, Cassiano C, De Iesu N, Pignataro G, Canzoniero LMT, Pannaccione A, De Rosa G, Secondo A. Nanoparticles encapsulating phosphatidylinositol derivatives promote neuroprotection and functional improvement in preclinical models of ALS via a long-lasting activation of TRPML1 lysosomal channel. Pharmacol Res 2024; 210:107491. [PMID: 39491634 DOI: 10.1016/j.phrs.2024.107491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/28/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease currently incurable, in which motor neuron degeneration leads to voluntary skeletal muscle atrophy. Molecularly, ALS is characterized by protein aggregation, synaptic and organellar dysfunction, and Ca2+ dyshomeostasis. Of interest, autophagy dysfunction is emerging as one of the main putative targets of ALS therapy. A tune regulation of this cleansing process is affordable by a proper stimulation of TRPML1, one of the main lysosomal channels. However, TRPML1 activation by PI(3,5)P2 has low open probability to remain in an active conformation. To overcome this drawback we developed a lipid-based formulation of PI(3,5)P2 whose putative therapeutic potential has been tested in in vitro and in vivo ALS models. Pharmacodynamic properties of PI(3,5)P2 lipid-based formulations (F1 and F2) on TRPML1 activity have been characterized by means of patch-clamp electrophysiology and Fura-2AM video-imaging in motor neuronal cells. Once selected for the ability to stabilize TRPML1 activity, the most effective preparation F1 was studied in vivo to measure neuromuscular function and survival of SOD1G93A ALS mice, thereby establishing its therapeutic profile. F1, but not PI(3,5)P2 alone, stabilized the open state of the lysosomal channel TRPML1 and increased the persistence of intracellular calcium concentration ([Ca2+]i). Then, F1 was effective in delaying motor neuron loss, improving innervated endplants and muscle performance in SOD1G93A mice, extending overall lifespan by an average of 10 days. Of note F1 prevented gliosis and autophagy dysfunction in ALS mice by restoring PI(3,5)P2 level. Our novel self-assembling lipidic formulation for PI(3,5)P2 delivery exerts a neuroprotective effect in preclinical models of ALS mainly regulating dysfunctional autophagy through TRPML1 activity stabilization.
Collapse
Affiliation(s)
- Valentina Tedeschi
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, University of Naples "Federico II", Via S. Pansini 5, Naples 80131, Italy
| | - Valeria Nele
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, Naples 80131, Italy
| | - Valeria Valsecchi
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, University of Naples "Federico II", Via S. Pansini 5, Naples 80131, Italy
| | - Serenella Anzilotti
- Department of Science and Technology-DST, University of Sannio, Via Port'Arsa 11, Benevento 82100, Italy
| | - Antonio Vinciguerra
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica Delle Marche", Via Tronto 10/A, Ancona 60126, Italy
| | - Laura Zucaro
- Biogem Scarl, Istituto di Ricerche Genetiche, Ariano Irpino, AV, Italy; Department of Translational Medical Sciences, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Maria Josè Sisalli
- Department of Translational Medical Sciences, University of Naples "Federico II", Via S. Pansini 5, Naples 80131, Italy
| | - Chiara Cassiano
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, Naples 80131, Italy
| | | | - Giuseppe Pignataro
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, University of Naples "Federico II", Via S. Pansini 5, Naples 80131, Italy
| | | | - Anna Pannaccione
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, University of Naples "Federico II", Via S. Pansini 5, Naples 80131, Italy
| | - Giuseppe De Rosa
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, Naples 80131, Italy.
| | - Agnese Secondo
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica Delle Marche", Via Tronto 10/A, Ancona 60126, Italy.
| |
Collapse
|
8
|
Moharram FA, Hamed FM, El-Sayed EK, Mohamed SK, Ahmed AA, Elgayed SH, Abdelrazek M, Lai KH, Mansour YE, Mady MS, Elsayed HE. Chemical characterization, neuroprotective effect, and in-silico evaluation of the petroleum ether extract of three palm tree species against glutamate-induced excitotoxicity in rats. Heliyon 2024; 10:e39207. [PMID: 39640788 PMCID: PMC11620252 DOI: 10.1016/j.heliyon.2024.e39207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 12/07/2024] Open
Abstract
The burden of neurological disorders is growing substantially with limited therapeutic options, urging the consideration and assessment of alternative strategies. In this regard, we aimed to elucidate the phytochemical profile of the petroleum ether extract (PEE) of three palm tree species: Aiphanes eggersii Burret, Carpoxylon macrospermum H. Wendl. & Drude, and Jubaeopsis caffra Becc. (Family Arecaceae), and to evaluate their neuroprotective effect in monosodium glutamate (MSG)-induced excitotoxicity model for the first time. We identified a total of 48, 18, and 45 compounds in A. eggersii, C. macrospermum, and J. caffra, constituting 79.41 %, 60.45 %, and 76.35 % of the total detected compounds, respectively. A. eggersii extract was rich in the methyl esters of fatty acids (65.08 %) especially methyl dodecanoate (17.72 %). C. macrospermum was exclusively prolific by the triterpene 3β-methoxy-d:c-friedo-b':a'-neogammacer-9(11)-ene (40.36 %), while J. caffra was noticeable by hydrocarbons (30.14 %) and lupeol derivatives (19.79 %). The biochemical and histopathological analysis showed that the tested extracts significantly reduced the oxidative stress, especially at the highest tested dose (1000 mg/kg). The extracts also reduced the activity of induced nitric oxide synthetase, Ca+2 level, and NR2B subunit expression and attenuated apoptosis and DNA damage. The docking results show that most active natural compounds bind to SOD-1 and NR2B-NMDARs, verifying the credibility of the biological findings. To sum up, the PEE of the three investigated palm tree species possessed a unique blend of lipophilic bioactive constituents that exert promising neuroprotective potential against MSG-induced excitoneurotoxicity. However, further preclinical investigation and pharmaceutical formulation are needed.
Collapse
Affiliation(s)
- Fatma A. Moharram
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Ein Helwan, Cairo, 11795, Egypt
| | - Fadila M. Hamed
- Department of Pharmacognosy, Faculty of Pharmacy, October 6 University, 6th of October City, Giza, 12585, Egypt
| | - Elsayed K. El-Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Helwan University, Ein Helwan, Cairo, 11795, Egypt
| | - Shimaa K. Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Helwan University, Ein Helwan, Cairo, 11795, Egypt
| | - Asmaa A. Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Helwan University, Ein Helwan, Cairo, 11795, Egypt
| | - Sabah H. Elgayed
- Department of Pharmacognosy, Faculty of Pharmacy, October 6 University, 6th of October City, Giza, 12585, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Mohammed Abdelrazek
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University, Egypt
| | - Kuei-Hung Lai
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei, 11031, Taiwan
- PhD Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei, 11031, Taiwan
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei, 11031, Taiwan
| | - Yara E. Mansour
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Helwan University, Ein Helwan, Cairo, 11795, Egypt
| | - Mohamed S. Mady
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Ein Helwan, Cairo, 11795, Egypt
| | - Heba E. Elsayed
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Ein Helwan, Cairo, 11795, Egypt
| |
Collapse
|
9
|
Thapak P, Gomez-Pinilla F. The bioenergetics of traumatic brain injury and its long-term impact for brain plasticity and function. Pharmacol Res 2024; 208:107389. [PMID: 39243913 DOI: 10.1016/j.phrs.2024.107389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/19/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024]
Abstract
Mitochondria provide the energy to keep cells alive and functioning and they have the capacity to influence highly complex molecular events. Mitochondria are essential to maintain cellular energy homeostasis that determines the course of neurological disorders, including traumatic brain injury (TBI). Various aspects of mitochondria metabolism such as autophagy can have long-term consequences for brain function and plasticity. In turn, mitochondria bioenergetics can impinge on molecular events associated with epigenetic modifications of DNA, which can extend cellular memory for a long time. Mitochondrial dysfunction leads to pathological manifestations such as oxidative stress, inflammation, and calcium imbalance that threaten brain plasticity and function. Hence, targeting mitochondrial function may have great potential to lessen the outcomes of TBI.
Collapse
Affiliation(s)
- Pavan Thapak
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095, USA
| | - Fernando Gomez-Pinilla
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095, USA; Department of Neurosurgery, UCLA Brain Injury Research Center, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
10
|
Wenzhi Y, Xiangyi L, Dongsheng F. The prion-like effect and prion-like protein targeting strategy in amyotrophic lateral sclerosis. Heliyon 2024; 10:e34963. [PMID: 39170125 PMCID: PMC11336370 DOI: 10.1016/j.heliyon.2024.e34963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/09/2024] [Accepted: 07/19/2024] [Indexed: 08/23/2024] Open
Abstract
Pathological proteins in amyotrophic lateral sclerosis (ALS), such as superoxide dismutase 1, TAR DNA-binding protein 43, and fused in sarcoma, exhibit a prion-like pattern. All these proteins have a low-complexity domain and seeding activity in cells. In this review, we summarize the studies on the prion-like effect of these proteins and list six prion-like protein targeting strategies that we believe have potential for ALS therapy, including antisense oligonucleotides, antibody-based technology, peptide, protein chaperone, autophagy enhancement, and heteromultivalent compounds. Considering the pathological complexity and heterogeneity of ALS, we believe that the final solution to ALS therapy is most likely to be an individualized cocktail therapy, including clearance of toxicity, blockage of pathological progress, and protection of neurons.
Collapse
Affiliation(s)
- Yang Wenzhi
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
| | - Liu Xiangyi
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
| | - Fan Dongsheng
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
| |
Collapse
|
11
|
Tabuchi R, Momozawa Y, Hayashi Y, Noma H, Ichijo H, Fujisawa T. SoDCoD: a comprehensive database of Cu/Zn superoxide dismutase conformational diversity caused by ALS-linked gene mutations and other perturbations. Database (Oxford) 2024; 2024:0. [PMID: 39126203 PMCID: PMC11315765 DOI: 10.1093/database/baae064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 05/05/2024] [Accepted: 07/09/2024] [Indexed: 08/12/2024]
Abstract
A structural alteration in copper/zinc superoxide dismutase (SOD1) is one of the common features caused by amyotrophic lateral sclerosis (ALS)-linked mutations. Although a large number of SOD1 variants have been reported in ALS patients, the detailed structural properties of each variant are not well summarized. We present SoDCoD, a database of superoxide dismutase conformational diversity, collecting our comprehensive biochemical analyses of the structural changes in SOD1 caused by ALS-linked gene mutations and other perturbations. SoDCoD version 1.0 contains information about the properties of 188 types of SOD1 mutants, including structural changes and their binding to Derlin-1, as well as a set of genes contributing to the proteostasis of mutant-like wild-type SOD1. This database provides valuable insights into the diagnosis and treatment of ALS, particularly by targeting conformational alterations in SOD1. Database URL: https://fujisawagroup.github.io/SoDCoDweb/.
Collapse
Affiliation(s)
- Riko Tabuchi
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yurika Momozawa
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yuki Hayashi
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hisashi Noma
- Department of Data Science, The Institute of Statistical Mathematics, 10-3 Midori-cho, Tachikawa, Tokyo 190-8562, Japan
| | - Hidenori Ichijo
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takao Fujisawa
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
12
|
Hale OJ, Wells TR, Mead RJ, Cooper HJ. Mass spectrometry imaging of SOD1 protein-metal complexes in SOD1G93A transgenic mice implicates demetalation with pathology. Nat Commun 2024; 15:6518. [PMID: 39117623 PMCID: PMC11310518 DOI: 10.1038/s41467-024-50514-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 07/12/2024] [Indexed: 08/10/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is characterized by degeneration of motor neurons in the central nervous system (CNS). Mutations in the metalloenzyme SOD1 are associated with inherited forms of ALS and cause a toxic gain of function thought to be mediated by dimer destabilization and misfolding. SOD1 binds two Cu and two Zn ions in its homodimeric form. We have applied native ambient mass spectrometry imaging to visualize the spatial distributions of intact metal-bound SOD1G93A complexes in SOD1G93A transgenic mouse spinal cord and brain sections and evaluated them against disease pathology. The molecular specificity of our approach reveals that metal-deficient SOD1G93A species are abundant in CNS structures correlating with ALS pathology whereas fully metalated SOD1G93A species are homogenously distributed. Monomer abundance did not correlate with pathology. We also show that the dimer-destabilizing post-translational modification, glutathionylation, has limited influence on the spatial distribution of SOD1 dimers.
Collapse
Affiliation(s)
- Oliver J Hale
- School of Biosciences, University of Birmingham, Birmingham, UK
| | - Tyler R Wells
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Richard J Mead
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK.
- Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, UK.
| | - Helen J Cooper
- School of Biosciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
13
|
Okekenwa S, Tsai M, Dooley P, Wang B, Comassio P, Moreira J, Kriefall N, Martin S, Morfini G, Brady S, Song Y. Divergent Molecular Pathways for Toxicity of Selected Mutant C9ORF72-derived Dipeptide Repeats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.28.558663. [PMID: 37808871 PMCID: PMC10557653 DOI: 10.1101/2023.09.28.558663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Expansion of a hexanucleotide repeat in a noncoding region of the C9ORF72 gene is responsible for a significant fraction of Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Dementia (FTD) cases, but mechanisms linking mutant gene products to neuronal toxicity remain debatable. Pathogenesis was proposed to involve the production of toxic RNA species and/or accumulation of toxic dipeptide repeats (DPRs) but distinguishing between these mechanisms has been challenging. In this study, we first use complementary model systems for analyzing pathogenesis in adult-onset neurodegenerative diseases to characterize the pathogenicity of DPRs produced by Repeat Associated Non-ATG translation of C9ORF72 in specific cellular compartments: isolated axoplasm and giant synapse from the squid. Results showed selective axonal and presynaptic toxicity of GP-DPRs, independent of associated RNA. These effects involved a MAPK signaling pathway that affects fast axonal transport and synaptic function, a pathogenic mechanism shared with other mutant proteins associated with familial ALS, like SOD1 and FUS. In primary cultured neurons, GP but not other DPRs promote the "dying-back" axonopathy seen in ALS. Interestingly, GR- and PR-DPRs, which had no effect on axonal transport or synaptic transmission, were found to disrupt the nuclear membrane, promoting "dying-forward" neuropathy. All C9-DPR-mediated toxic effects observed in these studies are independent of whether the corresponding mRNAs contained hexanucleotide repeats or alternative codons. Finally, C9ORF72 human tissues confirmed a close association between GP and active P38 in degenerating motor neurons as well as GR-associated nuclear damage in the cortex. Collectively, our studies establish compartment-specific toxic effects of C9-DPRs associated with degeneration, suggesting that two independent pathogenic mechanisms may contribute to disease heterogeneity and/or synergize on disease progression in C9ORF72 patients with ALS and/or FTD symptoms.
Collapse
|
14
|
Brady ST, Mesnard-Hoaglin NA, Mays S, Priego M, Dziechciowska J, Morris S, Kang M, Tsai MY, Purks JL, Klein A, Gaona A, Melloni A, Connors T, Hyman B, Song Y, Morfini GA. Toxic effects of mutant huntingtin in axons are mediated by its proline-rich domain. Brain 2024; 147:2098-2113. [PMID: 37633260 PMCID: PMC11146425 DOI: 10.1093/brain/awad280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/13/2023] [Accepted: 07/17/2023] [Indexed: 08/28/2023] Open
Abstract
Huntington's disease results from expansion of a polyglutamine tract (polyQ) in mutant huntingtin (mHTT) protein, but mechanisms underlying polyQ expansion-mediated toxic gain-of-mHTT function remain elusive. Here, deletion and antibody-based experiments revealed that a proline-rich domain (PRD) adjacent to the polyQ tract is necessary for mHTT to inhibit fast axonal transport and promote axonal pathology in cultured mammalian neurons. Further, polypeptides corresponding to subregions of the PRD sufficed to elicit the toxic effect on fast axonal transport, which was mediated by c-Jun N-terminal kinases (JNKs) and involved PRD binding to one or more SH3-domain containing proteins. Collectively, these data suggested a mechanism whereby polyQ tract expansion in mHTT promotes aberrant PRD exposure and interactions of this domain with SH3 domain-containing proteins including some involved in activation of JNKs. In support, biochemical and immunohistochemical experiments linked aberrant PRD exposure to increased JNK activation in striatal tissues of the zQ175 mouse model and from post-mortem Huntington's disease patients. Together, these findings support a critical role of PRD on mHTT toxicity, suggesting a novel framework for the potential development of therapies aimed to halt or reduce axonal pathology in Huntington's disease.
Collapse
Affiliation(s)
- Scott T Brady
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA
- Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | | | - Sarah Mays
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA
- Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Mercedes Priego
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Joanna Dziechciowska
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Sarah Morris
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA
- Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Minsu Kang
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA
- Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Ming Ying Tsai
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | - Alison Klein
- Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Angelica Gaona
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Alexandra Melloni
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Theresa Connors
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Bradley Hyman
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02129, USA
| | - Yuyu Song
- Marine Biological Laboratory, Woods Hole, MA 02543, USA
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02129, USA
| | - Gerardo A Morfini
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA
- Marine Biological Laboratory, Woods Hole, MA 02543, USA
| |
Collapse
|
15
|
Watanabe S, Amporndanai K, Awais R, Latham C, Awais M, O'Neill PM, Yamanaka K, Hasnain SS. Ebselen analogues delay disease onset and its course in fALS by on-target SOD-1 engagement. Sci Rep 2024; 14:12118. [PMID: 38802492 PMCID: PMC11130262 DOI: 10.1038/s41598-024-62903-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) selectively affects motor neurons. SOD1 is the first causative gene to be identified for ALS and accounts for at least 20% of the familial (fALS) and up to 4% of sporadic (sALS) cases globally with some geographical variability. The destabilisation of the SOD1 dimer is a key driving force in fALS and sALS. Protein aggregation resulting from the destabilised SOD1 is arrested by the clinical drug ebselen and its analogues (MR6-8-2 and MR6-26-2) by redeeming the stability of the SOD1 dimer. The in vitro target engagement of these compounds is demonstrated using the bimolecular fluorescence complementation assay with protein-ligand binding directly visualised by co-crystallography in G93A SOD1. MR6-26-2 offers neuroprotection slowing disease onset of SOD1G93A mice by approximately 15 days. It also protected neuromuscular junction from muscle denervation in SOD1G93A mice clearly indicating functional improvement.
Collapse
Affiliation(s)
- Seiji Watanabe
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Furo-Cho, Chikusa-Ku, Nagoya, 464-8601, Japan
| | - Kangsa Amporndanai
- Molecular Biophysics Group, Department of Biochemistry and System Biology, Institute of System, M0polecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, L69 7ZB, UK
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, TN, 37232, USA
| | - Raheela Awais
- School of Life Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Caroline Latham
- School of Life Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Muhammad Awais
- Department of Molecular and Clinical Cancer Medicine, Institute of System, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 3GE, UK
| | - Paul M O'Neill
- Department of Chemistry, Faculty of Science and Engineering, University of Liverpool, Liverpool, L69 7ZD, UK.
| | - Koji Yamanaka
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Furo-Cho, Chikusa-Ku, Nagoya, 464-8601, Japan.
- Institute for Glyco-Core Research (iGCORE), Nagoya University, Nagoya, Japan.
- Center for One Medicine Innovative Translational Research (COMIT), Nagoya University, Nagoya, Japan.
| | - S Samar Hasnain
- Molecular Biophysics Group, Department of Biochemistry and System Biology, Institute of System, M0polecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, L69 7ZB, UK.
| |
Collapse
|
16
|
Tsekrekou M, Giannakou M, Papanikolopoulou K, Skretas G. Protein aggregation and therapeutic strategies in SOD1- and TDP-43- linked ALS. Front Mol Biosci 2024; 11:1383453. [PMID: 38855322 PMCID: PMC11157337 DOI: 10.3389/fmolb.2024.1383453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/02/2024] [Indexed: 06/11/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with severe socio-economic impact. A hallmark of ALS pathology is the presence of aberrant cytoplasmic inclusions composed of misfolded and aggregated proteins, including both wild-type and mutant forms. This review highlights the critical role of misfolded protein species in ALS pathogenesis, particularly focusing on Cu/Zn superoxide dismutase (SOD1) and TAR DNA-binding protein 43 (TDP-43), and emphasizes the urgent need for innovative therapeutic strategies targeting these misfolded proteins directly. Despite significant advancements in understanding ALS mechanisms, the disease remains incurable, with current treatments offering limited clinical benefits. Through a comprehensive analysis, the review focuses on the direct modulation of the misfolded proteins and presents recent discoveries in small molecules and peptides that inhibit SOD1 and TDP-43 aggregation, underscoring their potential as effective treatments to modify disease progression and improve clinical outcomes.
Collapse
Affiliation(s)
- Maria Tsekrekou
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Maria Giannakou
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
- Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Katerina Papanikolopoulou
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Centre “Alexander Fleming”, Vari, Greece
- ResQ Biotech, Patras Science Park, Rio, Greece
| | - Georgios Skretas
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
- ResQ Biotech, Patras Science Park, Rio, Greece
- Institute for Bio-innovation, Biomedical Sciences Research Centre “Alexander Fleming”, Vari, Greece
| |
Collapse
|
17
|
Castelli L, Vasta R, Allen SP, Waller R, Chiò A, Traynor BJ, Kirby J. From use of omics to systems biology: Identifying therapeutic targets for amyotrophic lateral sclerosis. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 176:209-268. [PMID: 38802176 DOI: 10.1016/bs.irn.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a heterogeneous progressive neurodegenerative disorder with available treatments such as riluzole and edaravone extending survival by an average of 3-6 months. The lack of highly effective, widely available therapies reflects the complexity of ALS. Omics technologies, including genomics, transcriptomic and proteomics have contributed to the identification of biological pathways dysregulated and targeted by therapeutic strategies in preclinical and clinical trials. Integrating clinical, environmental and neuroimaging information with omics data and applying a systems biology approach can further improve our understanding of the disease with the potential to stratify patients and provide more personalised medicine. This chapter will review the omics technologies that contribute to a systems biology approach and how these components have assisted in identifying therapeutic targets. Current strategies, including the use of genetic screening and biosampling in clinical trials, as well as the future application of additional technological advances, will also be discussed.
Collapse
Affiliation(s)
- Lydia Castelli
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom; Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
| | - Rosario Vasta
- ALS Expert Center,'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Turin, Italy; Neuromuscular Diseases Research Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, United States
| | - Scott P Allen
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom; Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
| | - Rachel Waller
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom; Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
| | - Adriano Chiò
- ALS Expert Center,'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Turin, Italy; Neurology 1, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza of Turin, Turin, Italy
| | - Bryan J Traynor
- Neuromuscular Diseases Research Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, United States; RNA Therapeutics Laboratory, National Center for Advancing Translational Sciences, NIH, Rockville, MD, United States; National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States; Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, United States; Reta Lila Weston Institute, UCL Queen Square Institute of Neurology,University College London, London, United Kingdom
| | - Janine Kirby
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom; Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
18
|
Alfahel L, Gschwendtberger T, Kozareva V, Dumas L, Gibbs R, Kertser A, Baruch K, Zaccai S, Kahn J, Thau-Habermann N, Eggenschwiler R, Sterneckert J, Hermann A, Sundararaman N, Vaibhav V, Van Eyk JE, Rafuse VF, Fraenkel E, Cantz T, Petri S, Israelson A. Targeting low levels of MIF expression as a potential therapeutic strategy for ALS. Cell Rep Med 2024; 5:101546. [PMID: 38703766 PMCID: PMC11148722 DOI: 10.1016/j.xcrm.2024.101546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 11/03/2023] [Accepted: 04/10/2024] [Indexed: 05/06/2024]
Abstract
Mutations in SOD1 cause amyotrophic lateral sclerosis (ALS), a neurodegenerative disease characterized by motor neuron (MN) loss. We previously discovered that macrophage migration inhibitory factor (MIF), whose levels are extremely low in spinal MNs, inhibits mutant SOD1 misfolding and toxicity. In this study, we show that a single peripheral injection of adeno-associated virus (AAV) delivering MIF into adult SOD1G37R mice significantly improves their motor function, delays disease progression, and extends survival. Moreover, MIF treatment reduces neuroinflammation and misfolded SOD1 accumulation, rescues MNs, and corrects dysregulated pathways as observed by proteomics and transcriptomics. Furthermore, we reveal low MIF levels in human induced pluripotent stem cell-derived MNs from familial ALS patients with different genetic mutations, as well as in post mortem tissues of sporadic ALS patients. Our findings indicate that peripheral MIF administration may provide a potential therapeutic mechanism for modulating misfolded SOD1 in vivo and disease outcome in ALS patients.
Collapse
Affiliation(s)
- Leenor Alfahel
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O.B. 653, Beer Sheva 84105, Israel; The School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, P.O.B. 653, Beer Sheva 84105, Israel
| | - Thomas Gschwendtberger
- Department of Neurology, Hannover Medical School, 30625 Hannover, Germany; Center for Systems Neuroscience, Hannover Medical School, 30625 Hannover, Germany
| | - Velina Kozareva
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Laura Dumas
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia B3H 1X5, Canada; Brain Repair Centre, Life Sciences Research Institute, Halifax, Nova Scotia B3H 4R2, Canada
| | - Rachel Gibbs
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia B3H 1X5, Canada; Brain Repair Centre, Life Sciences Research Institute, Halifax, Nova Scotia B3H 4R2, Canada
| | | | - Kuti Baruch
- ImmunoBrain Checkpoint Ltd., Ness Ziona 7404905, Israel
| | - Shir Zaccai
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O.B. 653, Beer Sheva 84105, Israel; The School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, P.O.B. 653, Beer Sheva 84105, Israel
| | - Joy Kahn
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O.B. 653, Beer Sheva 84105, Israel; The School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, P.O.B. 653, Beer Sheva 84105, Israel
| | | | - Reto Eggenschwiler
- Gastroenterology, Hepatology and Endocrinology Department, Hannover Medical School, 30625 Hannover, Germany; Translational Hepatology and Stem Cell Biology, REBIRTH - Research Center for Translational Regenerative Medicine and Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625 Hannover, Germany
| | - Jared Sterneckert
- Center for Regenerative Therapies Dresden, Technical University Dresden, 01307 Dresden, Germany
| | - Andreas Hermann
- Translational Neurodegeneration Section, "Albrecht Kossel", Department of Neurology, University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany; Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Rostock/Greifswald, 18147 Rostock, Germany; Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany
| | - Niveda Sundararaman
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Vineet Vaibhav
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jennifer E Van Eyk
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Victor F Rafuse
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia B3H 1X5, Canada; Brain Repair Centre, Life Sciences Research Institute, Halifax, Nova Scotia B3H 4R2, Canada
| | - Ernest Fraenkel
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tobias Cantz
- Gastroenterology, Hepatology and Endocrinology Department, Hannover Medical School, 30625 Hannover, Germany; Translational Hepatology and Stem Cell Biology, REBIRTH - Research Center for Translational Regenerative Medicine and Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625 Hannover, Germany; Max Planck Institute for Molecular Biomedicine, Cell and Developmental Biology, 48149 Münster, Germany
| | - Susanne Petri
- Department of Neurology, Hannover Medical School, 30625 Hannover, Germany; Center for Systems Neuroscience, Hannover Medical School, 30625 Hannover, Germany
| | - Adrian Israelson
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O.B. 653, Beer Sheva 84105, Israel; The School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, P.O.B. 653, Beer Sheva 84105, Israel.
| |
Collapse
|
19
|
Hu Y, Chen W, Wei C, Jiang S, Li S, Wang X, Xu R. Pathological mechanisms of amyotrophic lateral Sclerosis. Neural Regen Res 2024; 19:1036-1044. [PMID: 37862206 PMCID: PMC10749610 DOI: 10.4103/1673-5374.382985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 05/12/2023] [Accepted: 07/06/2023] [Indexed: 10/22/2023] Open
Abstract
Amyotrophic lateral sclerosis refers to a neurodegenerative disease involving the motor system, the cause of which remains unexplained despite several years of research. Thus, the journey to understanding or treating amyotrophic lateral sclerosis is still a long one. According to current research, amyotrophic lateral sclerosis is likely not due to a single factor but rather to a combination of mechanisms mediated by complex interactions between molecular and genetic pathways. The progression of the disease involves multiple cellular processes and the interaction between different complex mechanisms makes it difficult to identify the causative factors of amyotrophic lateral sclerosis. Here, we review the most common amyotrophic lateral sclerosis-associated pathogenic genes and the pathways involved in amyotrophic lateral sclerosis, as well as summarize currently proposed potential mechanisms responsible for amyotrophic lateral sclerosis disease and their evidence for involvement in amyotrophic lateral sclerosis. In addition, we discuss current emerging strategies for the treatment of amyotrophic lateral sclerosis. Studying the emergence of these new therapies may help to further our understanding of the pathogenic mechanisms of the disease.
Collapse
Affiliation(s)
- Yushu Hu
- Department of Clinical Medicine, Nanchang University, Nanchang, Jiangxi Province, China
- Department of Neurology, Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi Province, China
| | - Wenzhi Chen
- Department of Clinical Medicine, Nanchang University, Nanchang, Jiangxi Province, China
- Department of Neurology, Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi Province, China
| | - Caihui Wei
- Department of Clinical Medicine, Nanchang University, Nanchang, Jiangxi Province, China
- Department of Neurology, Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi Province, China
| | - Shishi Jiang
- Department of Clinical Medicine, Nanchang University, Nanchang, Jiangxi Province, China
- Department of Neurology, Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi Province, China
| | - Shu Li
- Department of Clinical Medicine, Nanchang University, Nanchang, Jiangxi Province, China
- Department of Neurology, Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi Province, China
| | - Xinxin Wang
- Department of Clinical Medicine, Nanchang University, Nanchang, Jiangxi Province, China
- Department of Neurology, Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi Province, China
| | - Renshi Xu
- Department of Clinical Medicine, Nanchang University, Nanchang, Jiangxi Province, China
- Department of Neurology, Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi Province, China
- Department of Neurology, The First Affiliated Hospital of Nanchang Medical College; The Clinical College of Nanchang Medical College, Nanchang, Jiangxi Province, China
| |
Collapse
|
20
|
Liu Y, Zhang B, Duan R, Liu Y. Mitochondrial DNA Leakage and cGas/STING Pathway in Microglia: Crosstalk Between Neuroinflammation and Neurodegeneration. Neuroscience 2024; 548:1-8. [PMID: 38685462 DOI: 10.1016/j.neuroscience.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/04/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
Neurodegenerative diseases, characterized by abnormal deposition of misfolded proteins, often present with progressive loss of neurons. Chronic neuroinflammation is a striking hallmark of neurodegeneration. Microglia, as the primary immune cells in the brain, is the main type of cells that participate in the formation of inflammatory microenvironment. Cytoplasmic free mitochondrial DNA (mtDNA), a common component of damage-associated molecular patterns (DAMPs), can activate the cGas/stimulator of interferon genes (STING) signalling, which subsequently produces type I interferon and proinflammatory cytokines. There are various sources of free mtDNA in microglial cytoplasm, but mitochondrial oxidative stress accumulation plays the vital role. The upregulation of cGas/STING pathway in microglia contributes to the abnormal and persistent microglial activation, accompanied by excessive secretion of neurotoxic inflammatory mediators such as interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α), which exacerbates the damage of neurons and promotes the development of neurodegeneration. Currently, novel therapeutic approaches need to be found to delay the progression of neurodegenerative disorders, and regulation of the cGas/STING signaling in microglia may be a potential target.
Collapse
Affiliation(s)
- Yuqian Liu
- Qilu Hospital of Shandong University, Jinan, China
| | - Bohan Zhang
- Qilu Hospital of Shandong University, Jinan, China
| | - Ruonan Duan
- Qilu Hospital of Shandong University, Jinan, China.
| | - Yiming Liu
- Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
21
|
Shirai R, Yamauchi J. Emerging Evidence of Golgi Stress Signaling for Neuropathies. Neurol Int 2024; 16:334-348. [PMID: 38525704 PMCID: PMC10961782 DOI: 10.3390/neurolint16020024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 03/26/2024] Open
Abstract
The Golgi apparatus is an intracellular organelle that modifies cargo, which is transported extracellularly through the nucleus, endoplasmic reticulum, and plasma membrane in order. First, the general function of the Golgi is reviewed and, then, Golgi stress signaling is discussed. In addition to the six main Golgi signaling pathways, two pathways that have been increasingly reported in recent years are described in this review. The focus then shifts to neurological disorders, examining Golgi stress reported in major neurological disorders, such as Alzheimer's disease, Parkinson's disease, and Huntington's disease. The review also encompasses findings related to other diseases, including hypomyelinating leukodystrophy, frontotemporal spectrum disorder/amyotrophic lateral sclerosis, microcephaly, Wilson's disease, and prion disease. Most of these neurological disorders cause Golgi fragmentation and Golgi stress. As a result, strong signals may act to induce apoptosis.
Collapse
Affiliation(s)
| | - Junji Yamauchi
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan;
| |
Collapse
|
22
|
Verma S, Vats A, Ahuja V, Vats K, Khurana S, Vats Y, Gourie-Devi M, Wajid S, Ganguly NK, Chakraborti P, Taneja V. Functional consequences of familial ALS-associated SOD1 L84F in neuronal and muscle cells. FASEB J 2024; 38:e23461. [PMID: 38317639 DOI: 10.1096/fj.202301979r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/10/2024] [Accepted: 01/18/2024] [Indexed: 02/07/2024]
Abstract
Amyotrophic lateral sclerosis is a fatal neurodegenerative disorder characterized by progressive skeletal muscle denervation and loss of motor neurons that results in muscle atrophy and eventual death due to respiratory failure. Previously, we identified a novel SOD1L84F variation in a familial ALS case. In this study, we examined the functional consequences of SOD1L84F overexpression in the mouse motor neuron cell line (NSC-34). The cells expressing SOD1L84F showed increased oxidative stress and increased cell death. Interestingly, SOD1L84F destabilized the native dimer and formed high molecular weight SDS-resistant protein aggregates. Furthermore, SOD1L84F also decreased the percentage of differentiated cells and significantly reduced neurite length. A plethora of evidence suggested active involvement of skeletal muscle in disease initiation and progression. We observed differential processing of the mutant SOD1 and perturbations of cellular machinery in NSC-34 and muscle cell line C2C12. Unlike neuronal cells, mutant protein failed to accumulate in muscle cells probably due to the activated autophagy, as evidenced by increased LC3-II and reduced p62. Further, SOD1L84F altered mitochondrial dynamics only in NSC-34. In addition, microarray analysis also revealed huge variations in differentially expressed genes between NSC-34 and C2C12. Interestingly, SOD1L84F hampered the endogenous FUS autoregulatory mechanism in NSC-34 by downregulating retention of introns 6 and 7 resulting in a two-fold upregulation of FUS. No such changes were observed in C2C12. Our findings strongly suggest the differential processing and response towards the mutant SOD1 in neuronal and muscle cell lines.
Collapse
Affiliation(s)
- Sagar Verma
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, Delhi, India
- Department of Biotechnology, Jamia Hamdard, Delhi, India
| | - Abhishek Vats
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, Delhi, India
- Department of Biotechnology, Jamia Hamdard, Delhi, India
- Department of Ophthalmology, Wilmer Eye Institute, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Vanshika Ahuja
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, Delhi, India
| | - Kavita Vats
- Department of Dermatology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Shiffali Khurana
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, Delhi, India
| | - Yuvraj Vats
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, Delhi, India
| | | | - Saima Wajid
- Department of Biotechnology, Jamia Hamdard, Delhi, India
| | | | - Pradip Chakraborti
- Department of Biotechnology, Jamia Hamdard, Delhi, India
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Vibha Taneja
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, Delhi, India
| |
Collapse
|
23
|
Hossain MA, Sarin R, Donnelly DP, Miller BC, Weiss A, McAlary L, Antonyuk SV, Salisbury JP, Amin J, Conway JB, Watson SS, Winters JN, Xu Y, Alam N, Brahme RR, Shahbazian H, Sivasankar D, Padmakumar S, Sattarova A, Ponmudiyan AC, Gawde T, Verrill DE, Yang W, Kannapadi S, Plant LD, Auclair JR, Makowski L, Petsko GA, Ringe D, Agar NYR, Greenblatt DJ, Ondrechen MJ, Chen Y, Yerbury JJ, Manetsch R, Hasnain SS, Brown RH, Agar JN. Evaluating protein cross-linking as a therapeutic strategy to stabilize SOD1 variants in a mouse model of familial ALS. PLoS Biol 2024; 22:e3002462. [PMID: 38289969 PMCID: PMC10826971 DOI: 10.1371/journal.pbio.3002462] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 12/05/2023] [Indexed: 02/01/2024] Open
Abstract
Mutations in the gene encoding Cu-Zn superoxide dismutase 1 (SOD1) cause a subset of familial amyotrophic lateral sclerosis (fALS) cases. A shared effect of these mutations is that SOD1, which is normally a stable dimer, dissociates into toxic monomers that seed toxic aggregates. Considerable research effort has been devoted to developing compounds that stabilize the dimer of fALS SOD1 variants, but unfortunately, this has not yet resulted in a treatment. We hypothesized that cyclic thiosulfinate cross-linkers, which selectively target a rare, 2 cysteine-containing motif, can stabilize fALS-causing SOD1 variants in vivo. We created a library of chemically diverse cyclic thiosulfinates and determined structure-cross-linking-activity relationships. A pre-lead compound, "S-XL6," was selected based upon its cross-linking rate and drug-like properties. Co-crystallographic structure clearly establishes the binding of S-XL6 at Cys 111 bridging the monomers and stabilizing the SOD1 dimer. Biophysical studies reveal that the degree of stabilization afforded by S-XL6 (up to 24°C) is unprecedented for fALS, and to our knowledge, for any protein target of any kinetic stabilizer. Gene silencing and protein degrading therapeutic approaches require careful dose titration to balance the benefit of diminished fALS SOD1 expression with the toxic loss-of-enzymatic function. We show that S-XL6 does not share this liability because it rescues the activity of fALS SOD1 variants. No pharmacological agent has been proven to bind to SOD1 in vivo. Here, using a fALS mouse model, we demonstrate oral bioavailability; rapid engagement of SOD1G93A by S-XL6 that increases SOD1G93A's in vivo half-life; and that S-XL6 crosses the blood-brain barrier. S-XL6 demonstrated a degree of selectivity by avoiding off-target binding to plasma proteins. Taken together, our results indicate that cyclic thiosulfinate-mediated SOD1 stabilization should receive further attention as a potential therapeutic approach for fALS.
Collapse
Affiliation(s)
- Md Amin Hossain
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, United States of America
- Barnett Institute of Chemical and Biological Analysis, Boston, Massachusetts, United States of America
- Department of Neurosurgery and Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Richa Sarin
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, United States of America
- Biogen Inc, Cambridge, Massachusetts, United States of America
| | - Daniel P. Donnelly
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, United States of America
- Barnett Institute of Chemical and Biological Analysis, Boston, Massachusetts, United States of America
| | - Brandon C. Miller
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, United States of America
| | - Alexandra Weiss
- Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Luke McAlary
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia
| | - Svetlana V. Antonyuk
- Molecular Biophysics Group, Department of Biochemistry & Systems Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Joseph P. Salisbury
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, United States of America
| | - Jakal Amin
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, United States of America
- Barnett Institute of Chemical and Biological Analysis, Boston, Massachusetts, United States of America
| | - Jeremy B. Conway
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, United States of America
| | - Samantha S. Watson
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, United States of America
| | - Jenifer N. Winters
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, United States of America
| | - Yu Xu
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, United States of America
| | - Novera Alam
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, United States of America
- Barnett Institute of Chemical and Biological Analysis, Boston, Massachusetts, United States of America
| | - Rutali R. Brahme
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, United States of America
- Barnett Institute of Chemical and Biological Analysis, Boston, Massachusetts, United States of America
| | - Haneyeh Shahbazian
- School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Durgalakshmi Sivasankar
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, United States of America
- Barnett Institute of Chemical and Biological Analysis, Boston, Massachusetts, United States of America
| | - Swathi Padmakumar
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, United States of America
| | - Aziza Sattarova
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, United States of America
| | - Aparna C. Ponmudiyan
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, United States of America
| | - Tanvi Gawde
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, United States of America
| | - David E. Verrill
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, United States of America
- Barnett Institute of Chemical and Biological Analysis, Boston, Massachusetts, United States of America
| | - Wensheng Yang
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, United States of America
- Barnett Institute of Chemical and Biological Analysis, Boston, Massachusetts, United States of America
| | - Sunanda Kannapadi
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, United States of America
| | - Leigh D. Plant
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, United States of America
| | - Jared R. Auclair
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, United States of America
- Barnett Institute of Chemical and Biological Analysis, Boston, Massachusetts, United States of America
| | - Lee Makowski
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, United States of America
- Department of Bioengineering, Northeastern University, Boston, Massachusetts, United States of America
| | - Gregory A. Petsko
- Ann Romney Center for Neurologic Diseases at Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Departments of Chemistry and Biochemistry, and Rosenstiel Center for Basic Medical Research, Brandeis University, Waltham, Massachusetts, United States of America
| | - Dagmar Ringe
- Departments of Chemistry and Biochemistry, and Rosenstiel Center for Basic Medical Research, Brandeis University, Waltham, Massachusetts, United States of America
| | - Nathalie Y. R. Agar
- Department of Neurosurgery and Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - David J. Greenblatt
- School of Medicine, Tufts University, Boston, Massachusetts, United States of America
| | - Mary Jo Ondrechen
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, United States of America
| | - Yunqiu Chen
- Biogen Inc, Cambridge, Massachusetts, United States of America
| | - Justin J. Yerbury
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia
| | - Roman Manetsch
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, United States of America
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, United States of America
| | - S. Samar Hasnain
- Molecular Biophysics Group, Department of Biochemistry & Systems Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Robert H. Brown
- Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Jeffrey N. Agar
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, United States of America
- Barnett Institute of Chemical and Biological Analysis, Boston, Massachusetts, United States of America
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, United States of America
| |
Collapse
|
24
|
Tian Z, Jiang S, Zhou J, Zhang W. Copper homeostasis and cuproptosis in mitochondria. Life Sci 2023; 334:122223. [PMID: 38084674 DOI: 10.1016/j.lfs.2023.122223] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/30/2023] [Accepted: 10/26/2023] [Indexed: 12/18/2023]
Abstract
Mitochondria serve as sites for energy production and are essential for regulating various forms of cell death induced by metal metabolism, targeted anticancer drugs, radiotherapy and immunotherapy. Cuproptosis is an autonomous form of cell death that depends on copper (Cu) and mitochondrial metabolism. Although the recent discovery of cuproptosis highlights the significance of Cu and mitochondria, there is still a lack of biological evidence and experimental verification for the underlying mechanism. We provide an overview of how Cu and cuproptosis affect mitochondrial morphology and function. Through comparison with ferroptosis, similarities and differences in mitochondrial metabolism between cuproptosis and ferroptosis have been identified. These findings provide implications for further exploration of cuproptotic mechanisms. Furthermore, we explore the correlation between cuproptosis and immunotherapy or radiosensitivity. Ultimately, we emphasize the therapeutic potential of targeting cuproptosis as a novel approach for disease treatment.
Collapse
Affiliation(s)
- Ziying Tian
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China; Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, People's Republic of China
| | - Su Jiang
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China; Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, People's Republic of China
| | - Jieyu Zhou
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China; Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, People's Republic of China
| | - Wenling Zhang
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China; Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, People's Republic of China.
| |
Collapse
|
25
|
Pfeiffer P, Coates JR, Esqueda YM, Kennedy A, Getchell K, McLenon M, Kosa E, Agbas A. Exosomal TAR DNA binding protein 43 profile in canine model of amyotrophic lateral sclerosis: a preliminary study in developing blood-based biomarker for neurodegenerative diseases. Ann Med 2023; 55:34-41. [PMID: 36495266 PMCID: PMC9746620 DOI: 10.1080/07853890.2022.2153162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE Blood-based biomarkers provide a crucial information in the progress of neurodegenerative diseases with a minimally invasive sampling method. Validated blood-based biomarker application in people with amyotrophic lateral sclerosis would derive numerous benefits. Canine degenerative myelopathy is a naturally occurring animal disease model to study the biology of human amyotrophic lateral sclerosis. Serum derived exosomes are potential carriers for cell-specific cargoes making them ideal venue to study biomarkers for a variety of diseases and biological processes. This study assessed the exosomal proteins that may be assigned as surrogate biomarker that may reflect biochemical changes in the central nervous system. METHODS Exosomes were isolated from canine serum using commercial exosome isolation reagents. Exosomes target proteins contents were analyzed by the Western blotting method. RESULTS The profiles of potential biomarker candidates in spinal cord homogenate and that of serum-derived exosomes were found elevated in dogs with degenerative myelopathy as compared to control subjects. CONCLUSIONS Serum-derived exosomal biomolecules can serve as surrogate biomarkers in neurodegenerative diseases.KEY MESSAGESA canine with degenerative myelopathy can serve as a model animal to study human amyotrophic lateral sclerosis.Serum-derived exosomes contain Transactive Response DNA Binding Protein 43 (TDP-43), a potential biomarker candidate.The levels of spinal cord TDP-43 proteins and that of serum-derived exosomes exhibited similar profiling. Therefore, serum derived exosomes may be used as a venue for establishing blood-based biomarkers for neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Edina Kosa
- Kansas City University, Kansas City, MO, USA
| | - Abdulbaki Agbas
- Kansas City University, Kansas City, MO, USA.,Heartland Center for Mitochondrial Medicine, Kansas City, KS, USA
| |
Collapse
|
26
|
Bakavayev S, Stavsky A, Argueti-Ostrovsky S, Yehezkel G, Fridmann-Sirkis Y, Barak Z, Gitler D, Israelson A, Engel S. Blocking an epitope of misfolded SOD1 ameliorates disease phenotype in a model of amyotrophic lateral sclerosis. Brain 2023; 146:4594-4607. [PMID: 37394908 DOI: 10.1093/brain/awad222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 05/01/2023] [Accepted: 06/11/2023] [Indexed: 07/04/2023] Open
Abstract
The current strategies to mitigate the toxicity of misfolded superoxide dismutase 1 (SOD1) in familial amyotrophic lateral sclerosis via blocking SOD1 expression in the CNS are indiscriminative for misfolded and intact proteins, and as such, entail a risk of depriving CNS cells of their essential antioxidant potential. As an alternative approach to neutralize misfolded and spare unaffected SOD1 species, we developed scFv-SE21 antibody that blocks the β6/β7 loop epitope exposed exclusively in misfolded SOD1. The β6/β7 loop epitope has previously been proposed to initiate amyloid-like aggregation of misfolded SOD1 and mediate its prion-like activity. The adeno-associated virus-mediated expression of scFv-SE21 in the CNS of hSOD1G37R mice rescued spinal motor neurons, reduced the accumulation of misfolded SOD1, decreased gliosis and thus delayed disease onset and extended survival by 90 days. The results provide evidence for the role of the exposed β6/β7 loop epitope in the mechanism of neurotoxic gain-of-function of misfolded SOD1 and open avenues for the development of mechanism-based anti-SOD1 therapeutics, whose selective targeting of misfolded SOD1 species may entail a reduced risk of collateral oxidative damage to the CNS.
Collapse
Affiliation(s)
- Shamchal Bakavayev
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Alexandra Stavsky
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Shirel Argueti-Ostrovsky
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Galit Yehezkel
- Department of Life Sciences, Faculty of Natural Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Yael Fridmann-Sirkis
- Department of Life Sciences Core Facilities, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Zeev Barak
- Department of Life Sciences, Faculty of Natural Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Daniel Gitler
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
- The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Adrian Israelson
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
- The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Stanislav Engel
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
- The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
27
|
Shim D, Han J. Coordination chemistry of mitochondrial copper metalloenzymes: exploring implications for copper dyshomeostasis in cell death. BMB Rep 2023; 56:575-583. [PMID: 37915136 PMCID: PMC10689082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/01/2023] [Accepted: 10/16/2023] [Indexed: 11/03/2023] Open
Abstract
Mitochondria, fundamental cellular organelles that govern energy metabolism, hold a pivotal role in cellular vitality. While consuming dioxygen to produce adenosine triphosphate (ATP), the electron transfer process within mitochondria can engender the formation of reactive oxygen species that exert dual roles in endothelial homeostatic signaling and oxidative stress. In the context of the intricate electron transfer process, several metal ions that include copper, iron, zinc, and manganese serve as crucial cofactors in mitochondrial metalloenzymes to mediate the synthesis of ATP and antioxidant defense. In this mini review, we provide a comprehensive understanding of the coordination chemistry of mitochondrial cuproenzymes. In detail, cytochrome c oxidase (CcO) reduces dioxygen to water coupled with proton pumping to generate an electrochemical gradient, while superoxide dismutase 1 (SOD1) functions in detoxifying superoxide into hydrogen peroxide. With an emphasis on the catalytic reactions of the copper metalloenzymes and insights into their ligand environment, we also outline the metalation process of these enzymes throughout the copper trafficking system. The impairment of copper homeostasis can trigger mitochondrial dysfunction, and potentially lead to the development of copper-related disorders. We describe the current knowledge regarding copper-mediated toxicity mechanisms, thereby shedding light on prospective therapeutic strategies for pathologies intertwined with copper dyshomeostasis. [BMB Reports 2023; 56(11): 575-583].
Collapse
Affiliation(s)
- Daeun Shim
- Department of Applied Chemistry, University of Seoul, Seoul 02504, Korea
| | - Jiyeon Han
- Department of Applied Chemistry, University of Seoul, Seoul 02504, Korea
| |
Collapse
|
28
|
Shim D, Han J. Coordination chemistry of mitochondrial copper metalloenzymes: exploring implications for copper dyshomeostasis in cell death. BMB Rep 2023; 56:575-583. [PMID: 37915136 PMCID: PMC10689082 DOI: 10.5483/bmbrep.2023-0172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/01/2023] [Accepted: 10/16/2023] [Indexed: 02/11/2025] Open
Abstract
Mitochondria, fundamental cellular organelles that govern energy metabolism, hold a pivotal role in cellular vitality. While consuming dioxygen to produce adenosine triphosphate (ATP), the electron transfer process within mitochondria can engender the formation of reactive oxygen species that exert dual roles in endothelial homeostatic signaling and oxidative stress. In the context of the intricate electron transfer process, several metal ions that include copper, iron, zinc, and manganese serve as crucial cofactors in mitochondrial metalloenzymes to mediate the synthesis of ATP and antioxidant defense. In this mini review, we provide a comprehensive understanding of the coordination chemistry of mitochondrial cuproenzymes. In detail, cytochrome c oxidase (CcO) reduces dioxygen to water coupled with proton pumping to generate an electrochemical gradient, while superoxide dismutase 1 (SOD1) functions in detoxifying superoxide into hydrogen peroxide. With an emphasis on the catalytic reactions of the copper metalloenzymes and insights into their ligand environment, we also outline the metalation process of these enzymes throughout the copper trafficking system. The impairment of copper homeostasis can trigger mitochondrial dysfunction, and potentially lead to the development of copper-related disorders. We describe the current knowledge regarding copper-mediated toxicity mechanisms, thereby shedding light on prospective therapeutic strategies for pathologies intertwined with copper dyshomeostasis. [BMB Reports 2023; 56(11): 575-583].
Collapse
Affiliation(s)
- Daeun Shim
- Department of Applied Chemistry, University of Seoul, Seoul 02504, Korea
| | - Jiyeon Han
- Department of Applied Chemistry, University of Seoul, Seoul 02504, Korea
| |
Collapse
|
29
|
König S, Schmidt N, Bechberger K, Morris S, Priego M, Zaky H, Song Y, Pielage J, Brunholz S, Brady ST, Kins S, Morfini G. Axon-Autonomous Effects of the Amyloid Precursor Protein Intracellular Domain (AICD) on Kinase Signaling and Fast Axonal Transport. Cells 2023; 12:2403. [PMID: 37830617 PMCID: PMC10572015 DOI: 10.3390/cells12192403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/14/2023] Open
Abstract
The amyloid precursor protein (APP) is a key molecular component of Alzheimer's disease (AD) pathogenesis. Proteolytic APP processing generates various cleavage products, including extracellular amyloid beta (Aβ) and the cytoplasmic APP intracellular domain (AICD). Although the role of AICD in the activation of kinase signaling pathways is well established in the context of full-length APP, little is known about intracellular effects of the AICD fragment, particularly within discrete neuronal compartments. Deficits in fast axonal transport (FAT) and axonopathy documented in AD-affected neurons prompted us to evaluate potential axon-autonomous effects of the AICD fragment for the first time. Vesicle motility assays using the isolated squid axoplasm preparation revealed inhibition of FAT by AICD. Biochemical experiments linked this effect to aberrant activation of selected axonal kinases and heightened phosphorylation of the anterograde motor protein conventional kinesin, consistent with precedents showing phosphorylation-dependent regulation of motors proteins powering FAT. Pharmacological inhibitors of these kinases alleviated the AICD inhibitory effect on FAT. Deletion experiments indicated this effect requires a sequence encompassing the NPTY motif in AICD and interacting axonal proteins containing a phosphotyrosine-binding domain. Collectively, these results provide a proof of principle for axon-specific effects of AICD, further suggesting a potential mechanistic framework linking alterations in APP processing, FAT deficits, and axonal pathology in AD.
Collapse
Affiliation(s)
- Svenja König
- Department for Human Biology and Human Genetics, University of Kaiserslautern-Landau, 67663 Kaiserslautern, Germany (K.B.); (S.K.)
| | - Nadine Schmidt
- Department for Human Biology and Human Genetics, University of Kaiserslautern-Landau, 67663 Kaiserslautern, Germany (K.B.); (S.K.)
| | - Karin Bechberger
- Department for Human Biology and Human Genetics, University of Kaiserslautern-Landau, 67663 Kaiserslautern, Germany (K.B.); (S.K.)
| | - Sarah Morris
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA (S.T.B.)
- Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Mercedes Priego
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA (S.T.B.)
| | - Hannah Zaky
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA (S.T.B.)
| | - Yuyu Song
- Marine Biological Laboratory, Woods Hole, MA 02543, USA
- Department of Neurology, Harvard Medical School and Massachusetts General Hospital, Boston, MA 02129, USA
| | - Jan Pielage
- Department of Zoology, University of Kaiserslautern-Landau, 67663 Kaiserslautern, Germany;
| | - Silke Brunholz
- Department for Human Biology and Human Genetics, University of Kaiserslautern-Landau, 67663 Kaiserslautern, Germany (K.B.); (S.K.)
| | - Scott T. Brady
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA (S.T.B.)
- Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Stefan Kins
- Department for Human Biology and Human Genetics, University of Kaiserslautern-Landau, 67663 Kaiserslautern, Germany (K.B.); (S.K.)
| | - Gerardo Morfini
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA (S.T.B.)
- Marine Biological Laboratory, Woods Hole, MA 02543, USA
| |
Collapse
|
30
|
Xiao H, Xie Y, Xi K, Xie J, Liu M, Zhang Y, Cheng Z, Wang W, Guo B, Wu S. Targeting Mitochondrial Sirtuins in Age-Related Neurodegenerative Diseases and Fibrosis. Aging Dis 2023; 14:1583-1605. [PMID: 37196115 PMCID: PMC10529758 DOI: 10.14336/ad.2023.0203] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/03/2023] [Indexed: 05/19/2023] Open
Abstract
Aging is a natural and complex biological process that is associated with widespread functional declines in numerous physiological processes, terminally affecting multiple organs and tissues. Fibrosis and neurodegenerative diseases (NDs) often occur with aging, imposing large burdens on public health worldwide, and there are currently no effective treatment strategies for these diseases. Mitochondrial sirtuins (SIRT3-5), which are members of the sirtuin family of NAD+-dependent deacylases and ADP-ribosyltransferases, are capable of regulating mitochondrial function by modifying mitochondrial proteins that participate in the regulation of cell survival under various physiological and pathological conditions. A growing body of evidence has revealed that SIRT3-5 exert protective effects against fibrosis in multiple organs and tissues, including the heart, liver, and kidney. SIRT3-5 are also involved in multiple age-related NDs, including Alzheimer's disease, Parkinson's disease, and Huntington's disease. Furthermore, SIRT3-5 have been noted as promising targets for antifibrotic therapies and the treatment of NDs. This review systematically highlights recent advances in knowledge regarding the role of SIRT3-5 in fibrosis and NDs and discusses SIRT3-5 as therapeutic targets for NDs and fibrosis.
Collapse
Affiliation(s)
- Haoxiang Xiao
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China.
| | - Yuqiao Xie
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China.
| | - Kaiwen Xi
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China.
| | - Jinyi Xie
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China.
| | - Mingyue Liu
- Medical School, Yan’an University, Yan’an, China
| | - Yangming Zhang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China.
| | - Zishuo Cheng
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China.
| | - Wenting Wang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China.
| | - Baolin Guo
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China.
| | - Shengxi Wu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China.
| |
Collapse
|
31
|
Guan T, Zhou T, Zhang X, Guo Y, Yang C, Lin J, Zhang JV, Cheng Y, Marzban H, Wang YT, Kong J. Selective removal of misfolded SOD1 delays disease onset in a mouse model of amyotrophic lateral sclerosis. Cell Mol Life Sci 2023; 80:304. [PMID: 37752364 PMCID: PMC11072549 DOI: 10.1007/s00018-023-04956-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/26/2023] [Accepted: 09/07/2023] [Indexed: 09/28/2023]
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease. There is no cure currently. The discovery that mutations in the gene SOD1 are a cause of ALS marks a breakthrough in the search for effective treatments for ALS. SOD1 is an antioxidant that is highly expressed in motor neurons. Human SOD1 is prone to aberrant modifications. Familial ALS-linked SOD1 variants are particularly susceptible to aberrant modifications. Once modified, SOD1 undergoes conformational changes and becomes misfolded. This study aims to determine the effect of selective removal of misfolded SOD1 on the pathogenesis of ALS. METHODS Based on the chaperone-mediated protein degradation pathway, we designed a fusion peptide named CT4 and tested its efficiency in knocking down intracellularly misfolded SOD1 and its efficacy in modifying the pathogenesis of ALS. RESULTS Expression of the plasmid carrying the CT4 sequence in human HEK cells resulted in robust removal of misfolded SOD1 induced by serum deprivation. Co-transfection of the CT4 and the G93A-hSOD1 plasmids at various ratios demonstrated a dose-dependent knockdown efficiency on G93A-hSOD1, which could be further increased when misfolding of SOD1 was enhanced by serum deprivation. Application of the full-length CT4 peptide to primary cultures of neurons expressing the G93A variant of human SOD1 revealed a time course of the degradation of misfolded SOD1; misfolded SOD1 started to decrease by 2 h after the application of CT4 and disappeared by 7 h. Intravenous administration of the CT4 peptide at 10 mg/kg to the G93A-hSOD1 reduced human SOD1 in spinal cord tissue by 68% in 24 h and 54% in 48 h in presymptomatic ALS mice. Intraperitoneal administration of the CT4 peptide starting from 60 days of age significantly delayed the onset of ALS and prolonged the lifespan of the G93A-hSOD1 mice. CONCLUSIONS The CT4 peptide directs the degradation of misfolded SOD1 in high efficiency and specificity. Selective removal of misfolded SOD1 significantly delays the onset of ALS, demonstrating that misfolded SOD1 is the toxic form of SOD1 that causes motor neuron death. The study proves that selective removal of misfolded SOD1 is a promising treatment for ALS.
Collapse
Affiliation(s)
- Teng Guan
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Ting Zhou
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
- Department of Pharmacy, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaosha Zhang
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Ying Guo
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
- Department of Forensic Medicine, Hebei North University, Zhangjiakou, China
| | - Chaoxian Yang
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
- Department of Neurobiology, Southwest Medical University, Luzhou, China
| | - Justin Lin
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Jiasi Vicky Zhang
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Yongquan Cheng
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Hassan Marzban
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Yu Tian Wang
- Brain Research Centre and Department of Medicine, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Jiming Kong
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada.
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB, R3E 0J9, Canada.
| |
Collapse
|
32
|
Ribeiro SS, Gnutt D, Azoulay-Ginsburg S, Fetahaj Z, Spurlock E, Lindner F, Kuz D, Cohen-Erez Y, Rapaport H, Israelson A, Gruzman AL, Ebbinghaus S. Intracellular spatially-targeted chemical chaperones increase native state stability of mutant SOD1 barrel. Biol Chem 2023; 404:909-930. [PMID: 37555646 DOI: 10.1515/hsz-2023-0198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 07/25/2023] [Indexed: 08/10/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurological disorder with currently no cure. Central to the cellular dysfunction associated with this fatal proteinopathy is the accumulation of unfolded/misfolded superoxide dismutase 1 (SOD1) in various subcellular locations. The molecular mechanism driving the formation of SOD1 aggregates is not fully understood but numerous studies suggest that aberrant aggregation escalates with folding instability of mutant apoSOD1. Recent advances on combining organelle-targeting therapies with the anti-aggregation capacity of chemical chaperones have successfully reduce the subcellular load of misfolded/aggregated SOD1 as well as their downstream anomalous cellular processes at low concentrations (micromolar range). Nevertheless, if such local aggregate reduction directly correlates with increased folding stability remains to be explored. To fill this gap, we synthesized and tested here the effect of 9 ER-, mitochondria- and lysosome-targeted chemical chaperones on the folding stability of truncated monomeric SOD1 (SOD1bar) mutants directed to those organelles. We found that compound ER-15 specifically increased the native state stability of ER-SOD1bar-A4V, while scaffold compound FDA-approved 4-phenylbutyric acid (PBA) decreased it. Furthermore, our results suggested that ER15 mechanism of action is distinct from that of PBA, opening new therapeutic perspectives of this novel chemical chaperone on ALS treatment.
Collapse
Affiliation(s)
- Sara S Ribeiro
- Institute of Physical and Theoretical Chemistry, TU Braunschweig, D-38106 Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), D-38106 Braunschweig, Germany
| | - David Gnutt
- Institute of Physical and Theoretical Chemistry, TU Braunschweig, D-38106 Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), D-38106 Braunschweig, Germany
- Institute of Physical Chemistry II, Ruhr University, D-44780 Bochum, Germany
| | | | - Zamira Fetahaj
- Institute of Physical Chemistry II, Ruhr University, D-44780 Bochum, Germany
| | - Ella Spurlock
- Institute of Physical and Theoretical Chemistry, TU Braunschweig, D-38106 Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), D-38106 Braunschweig, Germany
| | - Felix Lindner
- Institute of Physical and Theoretical Chemistry, TU Braunschweig, D-38106 Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), D-38106 Braunschweig, Germany
| | - Damon Kuz
- Institute of Physical and Theoretical Chemistry, TU Braunschweig, D-38106 Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), D-38106 Braunschweig, Germany
| | - Yfat Cohen-Erez
- Department of Biotechnology Engineering, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105, Israel
| | - Hanna Rapaport
- Department of Biotechnology Engineering, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105, Israel
| | - Adrian Israelson
- Department of Physiology and Cell Biology, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105, Israel
| | - Arie-Lev Gruzman
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Simon Ebbinghaus
- Institute of Physical and Theoretical Chemistry, TU Braunschweig, D-38106 Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), D-38106 Braunschweig, Germany
- Institute of Physical Chemistry II, Ruhr University, D-44780 Bochum, Germany
- Research Center Chemical Sciences and Sustainability, Research Alliance Ruhr, Duisburg, Germany
| |
Collapse
|
33
|
Rubino V, La Rosa G, Pipicelli L, Carriero F, Damiano S, Santillo M, Terrazzano G, Ruggiero G, Mondola P. Insights on the Multifaceted Roles of Wild-Type and Mutated Superoxide Dismutase 1 in Amyotrophic Lateral Sclerosis Pathogenesis. Antioxidants (Basel) 2023; 12:1747. [PMID: 37760050 PMCID: PMC10525763 DOI: 10.3390/antiox12091747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a progressive motor neurodegenerative disease. Cell damage in ALS is the result of many different, largely unknown, pathogenetic mechanisms. Astrocytes and microglial cells play a critical role also for their ability to enhance a deranged inflammatory response. Excitotoxicity, due to excessive glutamate levels and increased intracellular Ca2+ concentration, has also been proposed to play a key role in ALS pathogenesis/progression. Reactive Oxygen Species (ROS) behave as key second messengers for multiple receptor/ligand interactions. ROS-dependent regulatory networks are usually mediated by peroxides. Superoxide Dismutase 1 (SOD1) physiologically mediates intracellular peroxide generation. About 10% of ALS subjects show a familial disease associated with different gain-of-function SOD1 mutations. The occurrence of sporadic ALS, not clearly associated with SOD1 defects, has been also described. SOD1-dependent pathways have been involved in neuron functional network as well as in immune-response regulation. Both, neuron depolarization and antigen-dependent T-cell activation mediate SOD1 exocytosis, inducing increased interaction of the enzyme with a complex molecular network involved in the regulation of neuron functional activity and immune response. Here, alteration of SOD1-dependent pathways mediating increased intracellular Ca2+ levels, altered mitochondria functions and defective inflammatory process regulation have been proposed to be relevant for ALS pathogenesis/progression.
Collapse
Affiliation(s)
- Valentina Rubino
- Dipartimento di Scienze Mediche Traslazionali, Università di Napoli “Federico II”, Via Pansini 5, 80131 Naples, Italy;
| | - Giuliana La Rosa
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli “Federico II”, Via Pansini 5, 80131 Naples, Italy; (G.L.R.); (L.P.); (S.D.); (M.S.)
| | - Luca Pipicelli
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli “Federico II”, Via Pansini 5, 80131 Naples, Italy; (G.L.R.); (L.P.); (S.D.); (M.S.)
| | - Flavia Carriero
- Dipartimento di Scienze, Università della Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (F.C.); (G.T.)
| | - Simona Damiano
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli “Federico II”, Via Pansini 5, 80131 Naples, Italy; (G.L.R.); (L.P.); (S.D.); (M.S.)
| | - Mariarosaria Santillo
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli “Federico II”, Via Pansini 5, 80131 Naples, Italy; (G.L.R.); (L.P.); (S.D.); (M.S.)
| | - Giuseppe Terrazzano
- Dipartimento di Scienze, Università della Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (F.C.); (G.T.)
| | - Giuseppina Ruggiero
- Dipartimento di Scienze Mediche Traslazionali, Università di Napoli “Federico II”, Via Pansini 5, 80131 Naples, Italy;
| | - Paolo Mondola
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli “Federico II”, Via Pansini 5, 80131 Naples, Italy; (G.L.R.); (L.P.); (S.D.); (M.S.)
| |
Collapse
|
34
|
Akçimen F, Lopez ER, Landers JE, Nath A, Chiò A, Chia R, Traynor BJ. Amyotrophic lateral sclerosis: translating genetic discoveries into therapies. Nat Rev Genet 2023; 24:642-658. [PMID: 37024676 PMCID: PMC10611979 DOI: 10.1038/s41576-023-00592-y] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2023] [Indexed: 04/08/2023]
Abstract
Recent advances in sequencing technologies and collaborative efforts have led to substantial progress in identifying the genetic causes of amyotrophic lateral sclerosis (ALS). This momentum has, in turn, fostered the development of putative molecular therapies. In this Review, we outline the current genetic knowledge, emphasizing recent discoveries and emerging concepts such as the implication of distinct types of mutation, variability in mutated genes in diverse genetic ancestries and gene-environment interactions. We also propose a high-level model to synthesize the interdependent effects of genetics, environmental and lifestyle factors, and ageing into a unified theory of ALS. Furthermore, we summarize the current status of therapies developed on the basis of genetic knowledge established for ALS over the past 30 years, and we discuss how developing treatments for ALS will advance our understanding of targeting other neurological diseases.
Collapse
Affiliation(s)
- Fulya Akçimen
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA.
| | - Elia R Lopez
- Therapeutic Development Branch, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - John E Landers
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Avindra Nath
- Section of Infections of the Nervous System, National Institute for Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Adriano Chiò
- Rita Levi Montalcini Department of Neuroscience, University of Turin, Turin, Italy
- Institute of Cognitive Sciences and Technologies, C.N.R, Rome, Italy
- Azienda Ospedaliero Universitaria Citta' della Salute e della Scienza, Turin, Italy
| | - Ruth Chia
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Bryan J Traynor
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA.
- Therapeutic Development Branch, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA.
- Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, USA.
| |
Collapse
|
35
|
Akinyemi AO, Simpson KE, Oyelere SF, Nur M, Ngule CM, Owoyemi BCD, Ayarick VA, Oyelami FF, Obaleye O, Esoe DP, Liu X, Li Z. Unveiling the dark side of glucose-regulated protein 78 (GRP78) in cancers and other human pathology: a systematic review. Mol Med 2023; 29:112. [PMID: 37605113 PMCID: PMC10464436 DOI: 10.1186/s10020-023-00706-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/26/2023] [Indexed: 08/23/2023] Open
Abstract
Glucose-Regulated Protein 78 (GRP78) is a chaperone protein that is predominantly expressed in the lumen of the endoplasmic reticulum. GRP78 plays a crucial role in protein folding by assisting in the assembly of misfolded proteins. Under cellular stress conditions, GRP78 can translocate to the cell surface (csGRP78) were it interacts with different ligands to initiate various intracellular pathways. The expression of csGRP78 has been associated with tumor initiation and progression of multiple cancer types. This review provides a comprehensive analysis of the existing evidence on the roles of GRP78 in various types of cancer and other human pathology. Additionally, the review discusses the current understanding of the mechanisms underlying GRP78's involvement in tumorigenesis and cancer advancement. Furthermore, we highlight recent innovative approaches employed in downregulating GRP78 expression in cancers as a potential therapeutic target.
Collapse
Affiliation(s)
| | | | | | - Maria Nur
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, USA
| | | | | | | | - Felix Femi Oyelami
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, USA
| | | | - Dave-Preston Esoe
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, USA
| | - Xiaoqi Liu
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, USA
- Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, USA
| | - Zhiguo Li
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, USA.
| |
Collapse
|
36
|
Kioutchoukova IP, Foster D, Thakkar RN, Kurz HN, Lucke-Wold B. Amyotrophic Lateral Sclerosis: From Mechanisms to Current, Emerging, and Alternative Therapeutics. MED DISCOVERIES 2023; 2:1059. [PMID: 37799543 PMCID: PMC10552707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a severe neurodegenerative disease affecting the motor neurons. Although the etiology remains unknown, mutations in superoxide dismutase 1 have been observed in patients with familial ALS, resulting in increased calcium in the cells and leading to cell death. Additionally, studies in patients with the C9orf72 repeat expansion have shown lower age of onset, cognitive and behavioral impairments, and reduced survival. Accumulation of TDP-43 in the cytoplasm of neurons and glial cells caused by the loss of UBQLN2 has been shown to lead to mitotoxicity and proteasomal overload. Early diagnosis of ALS is necessary for the optimization of care between a patient's neurologist and interdisciplinary team members to ensure the best outcomes possible. Proper management between physical therapy, occupation therapy, and pharmaceutical medications can improve ALS symptoms, achieving the highest quality of life possible for the patient. The current therapeutic medication recommended for ALS is Riluzole, but new therapies are emerging. This paper analyzes mechanisms of injury and progression of ALS along while analyzing current, emerging, and alternative therapeutics targeting ALS.
Collapse
Affiliation(s)
| | - Devon Foster
- University of Florida, College of Medicine, Gainesville, FL 32611, USA
| | - Rajvi N Thakkar
- University of Florida, College of Medicine, Gainesville, FL 32611, USA
| | - Hayley N Kurz
- University of Florida, College of Medicine, Gainesville, FL 32611, USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
37
|
Calafatti M, Cocozza G, Limatola C, Garofalo S. Microglial crosstalk with astrocytes and immune cells in amyotrophic lateral sclerosis. Front Immunol 2023; 14:1223096. [PMID: 37564648 PMCID: PMC10410456 DOI: 10.3389/fimmu.2023.1223096] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/03/2023] [Indexed: 08/12/2023] Open
Abstract
In recent years, biomedical research efforts aimed to unravel the mechanisms involved in motor neuron death that occurs in amyotrophic lateral sclerosis (ALS). While the main causes of disease progression were first sought in the motor neurons, more recent studies highlight the gliocentric theory demonstrating the pivotal role of microglia and astrocyte, but also of infiltrating immune cells, in the pathological processes that take place in the central nervous system microenvironment. From this point of view, microglia-astrocytes-lymphocytes crosstalk is fundamental to shape the microenvironment toward a pro-inflammatory one, enhancing neuronal damage. In this review, we dissect the current state-of-the-art knowledge of the microglial dialogue with other cell populations as one of the principal hallmarks of ALS progression. Particularly, we deeply investigate the microglia crosstalk with astrocytes and immune cells reporting in vitro and in vivo studies related to ALS mouse models and human patients. At last, we highlight the current experimental therapeutic approaches that aim to modulate microglial phenotype to revert the microenvironment, thus counteracting ALS progression.
Collapse
Affiliation(s)
- Matteo Calafatti
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Germana Cocozza
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Cristina Limatola
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli, Italy
- Department of Physiology and Pharmacology, Sapienza University, Laboratory Affiliated to Istituto Pasteur, Rome, Italy
| | - Stefano Garofalo
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
38
|
Nath B, Phaneuf D, Julien JP. Axonal Transport Defect in Gigaxonin Deficiency Rescued by Tubastatin A. Neurotherapeutics 2023; 20:1215-1228. [PMID: 37268847 PMCID: PMC10457258 DOI: 10.1007/s13311-023-01393-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2023] [Indexed: 06/04/2023] Open
Abstract
Giant axonal neuropathy (GAN) is a disease caused by a deficiency of gigaxonin, a mediator of the degradation of intermediate filament (IF) proteins. A lack of gigaxonin alters the turnover of IF proteins, provoking accumulation and disorganization of neurofilaments (NFs) in neurons, a hallmark of the disease. However, the effects of IF disorganization on neuronal function remain unknown. Here, we report that cultured embryonic dorsal root ganglia (DRG) neurons derived from Gan-/- mice exhibit accumulations of IF proteins and defects in fast axonal transport of organelles. Kymographs generated by time-lapse microscopy revealed substantial reduction of anterograde movements of mitochondria and lysosomes in axons of Gan-/- DRG neurons. Treatment of Gan-/- DRG neurons with Tubastatin A (TubA) increased the levels of acetylated tubulin and it restored the normal axonal transport of these organelles. Furthermore, we tested the effects of TubA in a new mouse model of GAN consisting of Gan-/- mice with overexpression of peripherin (Prph) transgene. Treatment of 12-month-old Gan-/-;TgPer mice with TubA led to a slight amelioration of motor function, especially a significant improvement of gait performance as measured by footprint analyses. Moreover, TubA treatment reduced the abnormal accumulations of Prph and NF proteins in spinal neurons and it boosted the levels of Prph transported into peripheral nerve axons. These results suggest that drug inhibitors of histone deacetylase aiming to enhance axonal transport should be considered as a potential treatment for GAN disease.
Collapse
Affiliation(s)
- Banshi Nath
- CERVO Brain Research Centre, 2601, de La Canardière, Québec City, Québec, G1J2G3, Canada
| | - Daniel Phaneuf
- CERVO Brain Research Centre, 2601, de La Canardière, Québec City, Québec, G1J2G3, Canada
| | - Jean-Pierre Julien
- CERVO Brain Research Centre, 2601, de La Canardière, Québec City, Québec, G1J2G3, Canada.
- Department of Psychiatry and Neuroscience, Université Laval, Québec City, Québec, Canada.
| |
Collapse
|
39
|
Arnold FJ, Nguyen AD, Bedlack RS, Bennett CL, La Spada AR. Intercellular transmission of pathogenic proteins in ALS: Exploring the pathogenic wave. Neurobiol Dis 2023:106218. [PMID: 37394036 DOI: 10.1016/j.nbd.2023.106218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/16/2023] [Accepted: 06/28/2023] [Indexed: 07/04/2023] Open
Abstract
In patients with amyotrophic lateral sclerosis (ALS), disease symptoms and pathology typically spread in a predictable spatiotemporal pattern beginning at a focal site of onset and progressing along defined neuroanatomical tracts. Like other neurodegenerative diseases, ALS is characterized by the presence of protein aggregates in postmortem patient tissue. Cytoplasmic, ubiquitin-positive aggregates of TDP-43 are observed in approximately 97% of sporadic and familial ALS patients, while SOD1 inclusions are likely specific to cases of SOD1-ALS. Additionally, the most common subtype of familial ALS, caused by a hexanucleotide repeat expansion in the first intron of the C9orf72 gene (C9-ALS), is further characterized by the presence of aggregated dipeptide repeat proteins (DPRs). As we will describe, cell-to-cell propagation of these pathological proteins tightly correlates with the contiguous spread of disease. While TDP-43 and SOD1 are capable of seeding protein misfolding and aggregation in a prion-like manner, C9orf72 DPRs appear to induce (and transmit) a 'disease state' more generally. Multiple mechanisms of intercellular transport have been described for all of these proteins, including anterograde and retrograde axonal transport, extracellular vesicle secretion, and macropinocytosis. In addition to neuron-to-neuron transmission, transmission of pathological proteins occurs between neurons and glia. Given that the spread of ALS disease pathology corresponds with the spread of symptoms in patients, the various mechanisms by which ALS-associated protein aggregates propagate through the central nervous system should be closely examined.
Collapse
Affiliation(s)
- F J Arnold
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, USA; Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA
| | - A D Nguyen
- Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA
| | - R S Bedlack
- Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA
| | - C L Bennett
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, USA; Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA.
| | - A R La Spada
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, USA; Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA; Departments of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697, USA; Department of Neurology, University of California, Irvine, Irvine, CA, USA; Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA; UCI Center for Neurotherapeutics, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
40
|
Ciurea AV, Mohan AG, Covache-Busuioc RA, Costin HP, Glavan LA, Corlatescu AD, Saceleanu VM. Unraveling Molecular and Genetic Insights into Neurodegenerative Diseases: Advances in Understanding Alzheimer's, Parkinson's, and Huntington's Diseases and Amyotrophic Lateral Sclerosis. Int J Mol Sci 2023; 24:10809. [PMID: 37445986 DOI: 10.3390/ijms241310809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/26/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Neurodegenerative diseases are, according to recent studies, one of the main causes of disability and death worldwide. Interest in molecular genetics has started to experience exponential growth thanks to numerous advancements in technology, shifts in the understanding of the disease as a phenomenon, and the change in the perspective regarding gene editing and the advantages of this action. The aim of this paper is to analyze the newest approaches in genetics and molecular sciences regarding four of the most important neurodegenerative disorders: Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. We intend through this review to focus on the newest treatment, diagnosis, and predictions regarding this large group of diseases, in order to obtain a more accurate analysis and to identify the emerging signs that could lead to a better outcome in order to increase both the quality and the life span of the patient. Moreover, this review could provide evidence of future possible novel therapies that target the specific genes and that could be useful to be taken into consideration when the classical approaches fail to shed light.
Collapse
Affiliation(s)
- Alexandru Vlad Ciurea
- Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Neurosurgery Department, Sanador Clinical Hospital, 010991 Bucharest, Romania
| | - Aurel George Mohan
- Department of Neurosurgery, Bihor County Emergency Clinical Hospital, 410167 Oradea, Romania
- Department of Neurosurgery, Faculty of Medicine, Oradea University, 410610 Oradea, Romania
| | | | - Horia-Petre Costin
- Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Luca-Andrei Glavan
- Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Antonio-Daniel Corlatescu
- Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Vicentiu Mircea Saceleanu
- Neurosurgery Department, Sibiu County Emergency Hospital, 550245 Sibiu, Romania
- Neurosurgery Department, "Lucian Blaga" University of Medicine, 550024 Sibiu, Romania
| |
Collapse
|
41
|
Sharma S, Tomar VR, Deep S. Myricetin: A Potent Anti-Amyloidogenic Polyphenol against Superoxide Dismutase 1 Aggregation. ACS Chem Neurosci 2023. [PMID: 37314311 DOI: 10.1021/acschemneuro.3c00276] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is believed to be caused by the aggregation of misfolded or mutated superoxide dismutase 1 (SOD1). As there is currently no treatment, research into aggregation inhibitors continues. Based on docking, molecular dynamics (MD) simulations, and experimental observations, we propose that myricetin, a plant flavonoid, can act as a potent anti-amyloidogenic polyphenol against SOD1 aggregation. Our MD simulation results showed that myricetin stabilizes the protein interface, destabilizes the preformed fibril, and decreases the rate of fibril elongation. Myricetin inhibits the aggregation of SOD1 in a dose-dependent manner as shown by the ThT aggregation kinetics curves. Our transmission electron microscopy, dynamic light scattering, and circular dichroism experiments indicate that fewer shorter fibrils have formed. Fluorescence spectroscopy results predict the involvement of a static quenching mechanism characterized by a strong binding between protein and myricetin. Importantly, size exclusion chromatography revealed the potential of myricetin for fibril destabilization and depolymerization. These experimental observations complement the MD results. Thus, myricetin is a potent SOD1 aggregation inhibitor that can reduce the fibril load. Using the structure of myricetin as a reference, it is possible to design more effective therapeutic inhibitors against ALS that prevent the disease and reverse its effects.
Collapse
Affiliation(s)
- Shilpa Sharma
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, Delhi 10016, India
| | - Vijay Raj Tomar
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, Delhi 10016, India
| | - Shashank Deep
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, Delhi 10016, India
| |
Collapse
|
42
|
Abstract
Neurons are markedly compartmentalized, which makes them reliant on axonal transport to maintain their health. Axonal transport is important for anterograde delivery of newly synthesized macromolecules and organelles from the cell body to the synapse and for the retrograde delivery of signaling endosomes and autophagosomes for degradation. Dysregulation of axonal transport occurs early in neurodegenerative diseases and plays a key role in axonal degeneration. Here, we provide an overview of mechanisms for regulation of axonal transport; discuss how these mechanisms are disrupted in neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, Huntington's disease, hereditary spastic paraplegia, amyotrophic lateral sclerosis, and Charcot-Marie-Tooth disease; and discuss therapeutic approaches targeting axonal transport.
Collapse
|
43
|
Ly CV, Ireland MD, Self WK, Bollinger J, Jockel‐Balsarotti J, Herzog H, Allred P, Miller L, Doyle M, Anez‐Bruzual I, Trikamji B, Hyman T, Kung T, Nicholson K, Bucelli RC, Patterson BW, Bateman RJ, Miller TM. Protein kinetics of superoxide dismutase-1 in familial and sporadic amyotrophic lateral sclerosis. Ann Clin Transl Neurol 2023; 10:1012-1024. [PMID: 37119480 PMCID: PMC10270254 DOI: 10.1002/acn3.51784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/30/2023] [Accepted: 04/18/2023] [Indexed: 05/01/2023] Open
Abstract
OBJECTIVE Accumulation of misfolded superoxide dismutase-1 (SOD1) is a pathological hallmark of SOD1-related amyotrophic lateral sclerosis (ALS) and is observed in sporadic ALS where its role in pathogenesis is controversial. Understanding in vivo protein kinetics may clarify how SOD1 influences neurodegeneration and inform optimal dosing for therapies that lower SOD1 transcripts. METHODS We employed stable isotope labeling paired with mass spectrometry to evaluate in vivo protein kinetics and concentration of soluble SOD1 in cerebrospinal fluid (CSF) of SOD1 mutation carriers, sporadic ALS participants and controls. A deaminated SOD1 peptide, SDGPVKV, that correlates with protein stability was also measured. RESULTS In participants with heterozygous SOD1A5V mutations, known to cause rapidly progressive ALS, mutant SOD1 protein exhibited ~twofold faster turnover and ~ 16-fold lower concentration compared to wild-type SOD1 protein. SDGPVKV levels were increased in SOD1A5V carriers relative to controls. Thus, SOD1 mutations impact protein kinetics and stability. We applied this approach to sporadic ALS participants and found that SOD1 turnover, concentration, and SDGPVKV levels are not significantly different compared to controls. INTERPRETATION These results highlight the ability of stable isotope labeling approaches and peptide deamidation to discern the influence of disease mutations on protein kinetics and stability and support implementation of this method to optimize clinical trial design of gene and molecular therapies for neurological disorders. TRIAL REGISTRATION Clinicaltrials.gov: NCT03449212.
Collapse
Affiliation(s)
- Cindy V. Ly
- Department of NeurologyWashington UniversitySaint LouisMissouriUSA
| | | | - Wade K. Self
- Department of NeurologyWashington UniversitySaint LouisMissouriUSA
| | - James Bollinger
- Department of NeurologyWashington UniversitySaint LouisMissouriUSA
| | | | - Hillary Herzog
- Department of NeurologyWashington UniversitySaint LouisMissouriUSA
| | - Peggy Allred
- Department of NeurologyWashington UniversitySaint LouisMissouriUSA
| | - Leah Miller
- Sean M. Healey & AMG Center for ALS, Department of NeurologyMassachusetts General HospitalBostonMassachusettsUSA
| | - Michael Doyle
- Sean M. Healey & AMG Center for ALS, Department of NeurologyMassachusetts General HospitalBostonMassachusettsUSA
| | - Isabel Anez‐Bruzual
- Sean M. Healey & AMG Center for ALS, Department of NeurologyMassachusetts General HospitalBostonMassachusettsUSA
| | - Bhavesh Trikamji
- Department of NeurologyWashington UniversitySaint LouisMissouriUSA
| | - Ted Hyman
- Department of NeurologyWashington UniversitySaint LouisMissouriUSA
| | - Tyler Kung
- Department of NeurologyWashington UniversitySaint LouisMissouriUSA
| | - Katherine Nicholson
- Sean M. Healey & AMG Center for ALS, Department of NeurologyMassachusetts General HospitalBostonMassachusettsUSA
| | | | | | - Randall J. Bateman
- Department of NeurologyWashington UniversitySaint LouisMissouriUSA
- Hope Center for Neurological DisordersWashington UniversitySaint LouisMissouriUSA
- Knight Alzheimer's Disease Research CenterWashington UniversitySaint LouisMissouriUSA
| | - Timothy M. Miller
- Department of NeurologyWashington UniversitySaint LouisMissouriUSA
- Hope Center for Neurological DisordersWashington UniversitySaint LouisMissouriUSA
| |
Collapse
|
44
|
Mazzaro A, Vita V, Ronfini M, Casola I, Klein A, Dobrowolny G, Sorarù G, Musarò A, Mongillo M, Zaglia T. Sympathetic neuropathology is revealed in muscles affected by amyotrophic lateral sclerosis. Front Physiol 2023; 14:1165811. [PMID: 37250128 PMCID: PMC10213213 DOI: 10.3389/fphys.2023.1165811] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/14/2023] [Indexed: 05/31/2023] Open
Abstract
Rationale: The anatomical substrate of skeletal muscle autonomic innervation has remained underappreciated since it was described many decades ago. As such, the structural and functional features of muscle sympathetic innervation are largely undetermined in both physiology and pathology, mainly due to methodological limitations in the histopathological analysis of small neuronal fibers in tissue samples. Amyotrophic lateral sclerosis (ALS) is a fatal neuromuscular disease which mainly targets motor neurons, and despite autonomic symptoms occurring in a significant fraction of patients, peripheral sympathetic neurons (SNs) are generally considered unaffected and, as such, poorly studied. Purpose: In this research, we compared sympathetic innervation of normal and ALS muscles, through structural analysis of the sympathetic network in human and murine tissue samples. Methods and Results: We first refined tissue processing to circumvent methodological limitations interfering with the detection of muscle sympathetic innervation. The optimized "Neuro Detection Protocol" (NDP) was validated in human muscle biopsies, demonstrating that SNs innervate, at high density, both blood vessels and skeletal myofibers, independent of the fiber metabolic type. Subsequently, NDP was exploited to analyze sympathetic innervation in muscles of SOD1G93A mice, a preclinical ALS model. Our data show that ALS murine muscles display SN denervation, which has already initiated at the early disease stage and worsened during aging. SN degeneration was also observed in muscles of MLC/SOD1G93A mice, with muscle specific expression of the SOD1G93A mutant gene. Notably, similar alterations in SNs were observed in muscle biopsies from an ALS patient, carrying the SOD1G93A mutation. Conclusion: We set up a protocol for the analysis of murine and, more importantly, human muscle sympathetic innervation. Our results indicate that SNs are additional cell types compromised in ALS and suggest that dysfunctional SOD1G93A muscles affect their sympathetic innervation.
Collapse
Affiliation(s)
- Antonio Mazzaro
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Padua, Italy
- Veneto Institute of Molecular Medicine, Padua, Italy
| | - Veronica Vita
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Padua, Italy
- Veneto Institute of Molecular Medicine, Padua, Italy
| | - Marco Ronfini
- Veneto Institute of Molecular Medicine, Padua, Italy
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Irene Casola
- Laboratory Affiliated to Institute Pasteur Italia-Fondazione Cenci Bolognetti, DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Arianna Klein
- Veneto Institute of Molecular Medicine, Padua, Italy
| | - Gabriella Dobrowolny
- Laboratory Affiliated to Institute Pasteur Italia-Fondazione Cenci Bolognetti, DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Gianni Sorarù
- Department of Neuroscience, Azienda Ospedaliera di Padova, Padua, Italy
| | - Antonio Musarò
- Laboratory Affiliated to Institute Pasteur Italia-Fondazione Cenci Bolognetti, DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy
- Scuola Superiore di Studi Avanzati Sapienza (SSAS), Sapienza University of Rome, Rome, Italy
| | - Marco Mongillo
- Veneto Institute of Molecular Medicine, Padua, Italy
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- CNR Institute of Neuroscience, Padua, Italy
- CIR-MYO Myology Center, University of Padua, Padua, Italy
| | - Tania Zaglia
- Veneto Institute of Molecular Medicine, Padua, Italy
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- CIR-MYO Myology Center, University of Padua, Padua, Italy
| |
Collapse
|
45
|
Kreple CJ, Searles Nielsen S, Schoch KM, Shen T, Shabsovich M, Song Y, Racette BA, Miller TM. Protective Effects of Lovastatin in a Population-Based ALS Study and Mouse Model. Ann Neurol 2023; 93:881-892. [PMID: 36627836 PMCID: PMC11971731 DOI: 10.1002/ana.26600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 12/12/2022] [Accepted: 01/08/2023] [Indexed: 01/12/2023]
Abstract
OBJECTIVE The objective of this study was to use a novel combined pharmacoepidemiologic and amyotrophic lateral sclerosis (ALS) mouse model approach to identify potential motor neuron protective medications. METHODS We constructed a large, population-based case-control study to investigate motor neuron disease (MND) among US Medicare beneficiaries aged 66 to 90 in 2009. We included 1,128 incident MND cases and 56,400 age, sex, race, and ethnicity matched controls. We calculated MND relative risk for >1,000 active ingredients represented in Part D (pharmacy) claims in 2006 to 2007 (>1 year before diagnosis/reference). We then applied a comprehensive screening approach to select medications for testing in SOD1G93A mice: sulfasalazine, telmisartan, and lovastatin. We treated mice with the human dose equivalent of the medication or vehicle via subcutaneous osmotic pump before onset of weakness. We then assessed weight, gait, and survival. In additional mice, we conducted histological studies. RESULTS We observed previously established medical associations for MND and an inverse dose-response association between lovastatin and MND, with 28% reduced risk at 40 mg/day. In SOD1G93A mouse studies, sulfasalazine and telmisartan conferred no benefit, whereas lovastatin treatment delayed onset and prolonged survival. Lovastatin treated mice also had less microgliosis, misfolded SOD1, and spinal motor neuron loss in the ventral horn. INTERPRETATION Lovastatin reduced the risk of ALS in humans, which was confirmed in an ALS mouse model by delayed symptom onset, prolonged survival, and preservation of motor neurons. Although further studies to understand the mechanism are required, lovastatin may represent a potential neuroprotective therapy for patients with ALS. These data demonstrate the utility of a combined pharmacoepidemiologic and mouse model approach. ANN NEUROL 2023;93:881-892.
Collapse
Affiliation(s)
- Collin J Kreple
- Department of Neurology, Washington University School of Medicine, St. Louis, MO
| | | | - Kathleen M Schoch
- Department of Neurology, Washington University School of Medicine, St. Louis, MO
| | - Tao Shen
- Department of Neurology, Washington University School of Medicine, St. Louis, MO
| | - Mark Shabsovich
- Department of Neurology, Washington University School of Medicine, St. Louis, MO
| | - Yizhe Song
- Department of Neurology, Washington University School of Medicine, St. Louis, MO
| | - Brad A Racette
- Department of Neurology, Washington University School of Medicine, St. Louis, MO
- Barrow Neurological Institute, Phoenix, AZ
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Parktown, South Africa
| | - Timothy M Miller
- Department of Neurology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
46
|
Pereira GRC, Abrahim-Vieira BDA, de Mesquita JF. In Silico Analyses of a Promising Drug Candidate for the Treatment of Amyotrophic Lateral Sclerosis Targeting Superoxide Dismutase I Protein. Pharmaceutics 2023; 15:pharmaceutics15041095. [PMID: 37111580 PMCID: PMC10143751 DOI: 10.3390/pharmaceutics15041095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 04/03/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the most prevalent motor neuron disorder in adults, which is associated with a highly disabling condition. To date, ALS remains incurable, and the only drugs approved by the FDA for its treatment confer a limited survival benefit. Recently, SOD1 binding ligand 1 (SBL-1) was shown to inhibit in vitro the oxidation of a critical residue for SOD1 aggregation, which is a central event in ALS-related neurodegeneration. In this work, we investigated the interactions between SOD1 wild-type and its most frequent variants, i.e., A4V (NP_000445.1:p.Ala5Val) and D90A (NP_000445.1:p.Asp91Val), with SBL-1 using molecular dynamics (MD) simulations. The pharmacokinetics and toxicological profile of SBL-1 were also characterized in silico. The MD results suggest that the complex SOD1-SBL-1 remains relatively stable and interacts within a close distance during the simulations. This analysis also suggests that the mechanism of action proposed by SBL-1 and its binding affinity to SOD1 may be preserved upon mutations A4V and D90A. The pharmacokinetics and toxicological assessments suggest that SBL-1 has drug-likeness characteristics with low toxicity. Our findings, therefore, suggested that SBL-1 may be a promising strategy to treat ALS based on an unprecedented mechanism, including for patients with these frequent mutations.
Collapse
|
47
|
A liquid-to-solid phase transition of Cu/Zn superoxide dismutase 1 initiated by oxidation and disease mutation. J Biol Chem 2023; 299:102857. [PMID: 36592929 PMCID: PMC9898760 DOI: 10.1016/j.jbc.2022.102857] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 01/01/2023] Open
Abstract
Cu/Zn superoxide dismutase 1 (SOD1) has a high propensity to misfold and form abnormal aggregates when it is subjected to oxidative stress or carries mutations associated with amyotrophic lateral sclerosis. However, the transition from functional soluble SOD1 protein to aggregated SOD1 protein is not completely clear. Here, we propose that liquid-liquid phase separation (LLPS) represents a biophysical process that converts soluble SOD1 into aggregated SOD1. We determined that SOD1 undergoes LLPS in vitro and cells under oxidative stress. Abnormal oxidation of SOD1 induces maturation of droplets formed by LLPS, eventually leading to protein aggregation and fibrosis, and involves residues Cys111 and Trp32. Additionally, we found that pathological mutations in SOD1 associated with ALS alter the morphology and material state of the droplets and promote the transformation of SOD1 to solid-like oligomers which are toxic to nerve cells. Furthermore, the fibrous aggregates formed by both pathways have a concentration-dependent toxicity effect on nerve cells. Thus, these combined results strongly indicate that LLPS may play a major role in pathological SOD1 aggregation, contributing to pathogenesis in ALS.
Collapse
|
48
|
Dennys CN, Roussel F, Rodrigo R, Zhang X, Sierra Delgado A, Hartlaub A, Saelim-Ector A, Ray W, Heintzman S, Fox A, Kolb SJ, Beckman J, Franco MC, Meyer K. CuATSM effectively ameliorates ALS patient astrocyte-mediated motor neuron toxicity in human in vitro models of amyotrophic lateral sclerosis. Glia 2023; 71:350-365. [PMID: 36213964 PMCID: PMC10092379 DOI: 10.1002/glia.24278] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/12/2022]
Abstract
Patient diversity and unknown disease cause are major challenges for drug development and clinical trial design for amyotrophic lateral sclerosis (ALS). Transgenic animal models do not adequately reflect the heterogeneity of ALS. Direct reprogramming of patient fibroblasts to neuronal progenitor cells and subsequent differentiation into patient astrocytes allows rapid generation of disease relevant cell types. Thus, this methodology can facilitate compound testing in a diverse genetic background resulting in a more representative population for therapeutic evaluation. Here, we used established co-culture assays with motor neurons and reprogrammed patient skin-derived astrocytes (iAs) to evaluate the effects of (SP-4-2)-[[2,2'-(1,2-dimethyl-1,2-ethanediylidene)bis[N-methylhydrazinecarbothioamidato-κN2 ,κS]](2-)]-copper (CuATSM), currently in clinical trial for ALS in Australia. Pretreatment of iAs with CuATSM had a differential effect on neuronal survival following co-culture with healthy motor neurons. Using this assay, we identified responding and non-responding cell lines for both sporadic and familial ALS (mutant SOD1 and C9ORF72). Importantly, elevated mitochondrial respiration was the common denominator in all CuATSM-responders, a metabolic phenotype not observed in non-responders. Pre-treatment of iAs with CuATSM restored mitochondrial activity to levels comparable to healthy controls. Hence, this metabolic parameter might allow selection of patient subpopulations best suited for CuATSM treatment. Moreover, CuATSM might have additional therapeutic value for mitochondrial disorders. Enhanced understanding of patient-specific cellular and molecular profiles could help improve clinical trial design in the future.
Collapse
Affiliation(s)
- Cassandra N Dennys
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Florence Roussel
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Rochelle Rodrigo
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Xiaojin Zhang
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Andrea Sierra Delgado
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Annalisa Hartlaub
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Asya Saelim-Ector
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Will Ray
- Mathematics Department, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Sarah Heintzman
- Department of Neurology, The Ohio State University Medical Center, Columbus, Ohio, USA
| | - Ashley Fox
- Department of Neurology, The Ohio State University Medical Center, Columbus, Ohio, USA
| | - Stephen J Kolb
- Department of Neurology, The Ohio State University Medical Center, Columbus, Ohio, USA.,Department of Biological Chemistry & Pharmacology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Molecular, Cellular & Developmental Biology Graduate Program, The Ohio State University, Columbus, Ohio, USA.,Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Joseph Beckman
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon, USA
| | - Maria Clara Franco
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon, USA
| | - Kathrin Meyer
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA.,Molecular, Cellular & Developmental Biology Graduate Program, The Ohio State University, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University Medical Center, Columbus, Ohio, USA
| |
Collapse
|
49
|
Park JH, Nordström U, Tsiakas K, Keskin I, Elpers C, Mannil M, Heller R, Nolan M, Alburaiky S, Zetterström P, Hempel M, Schara-Schmidt U, Biskup S, Steinacker P, Otto M, Weishaupt J, Hahn A, Santer R, Marquardt T, Marklund SL, Andersen PM. The motor system is exceptionally vulnerable to absence of the ubiquitously expressed superoxide dismutase-1. Brain Commun 2023; 5:fcad017. [PMID: 36793789 PMCID: PMC9924500 DOI: 10.1093/braincomms/fcad017] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/21/2022] [Accepted: 01/24/2023] [Indexed: 01/30/2023] Open
Abstract
Superoxide dismutase-1 is a ubiquitously expressed antioxidant enzyme. Mutations in SOD1 can cause amyotrophic lateral sclerosis, probably via a toxic gain-of-function involving protein aggregation and prion-like mechanisms. Recently, homozygosity for loss-of-function mutations in SOD1 has been reported in patients presenting with infantile-onset motor neuron disease. We explored the bodily effects of superoxide dismutase-1 enzymatic deficiency in eight children homozygous for the p.C112Wfs*11 truncating mutation. In addition to physical and imaging examinations, we collected blood, urine and skin fibroblast samples. We used a comprehensive panel of clinically established analyses to assess organ function and analysed oxidative stress markers, antioxidant compounds, and the characteristics of the mutant Superoxide dismutase-1. From around 8 months of age, all patients exhibited progressive signs of both upper and lower motor neuron dysfunction, cerebellar, brain stem, and frontal lobe atrophy and elevated plasma neurofilament concentration indicating ongoing axonal damage. The disease progression seemed to slow down over the following years. The p.C112Wfs*11 gene product is unstable, rapidly degraded and no aggregates were found in fibroblast. Most laboratory tests indicated normal organ integrity and only a few modest deviations were found. The patients displayed anaemia with shortened survival of erythrocytes containing decreased levels of reduced glutathione. A variety of other antioxidants and oxidant damage markers were within normal range. In conclusion, non-neuronal organs in humans show a remarkable tolerance to absence of Superoxide dismutase-1 enzymatic activity. The study highlights the enigmatic specific vulnerability of the motor system to both gain-of-function mutations in SOD1 and loss of the enzyme as in the here depicted infantile superoxide dismutase-1 deficiency syndrome.
Collapse
Affiliation(s)
- Julien H Park
- Department of Clinical Sciences, Neurosciences, Umeå University, 901 87 Umeå, Sweden,Department of General Paediatrics, University of Münster, 48149 Münster, Germany
| | - Ulrika Nordström
- Department of Clinical Sciences, Neurosciences, Umeå University, 901 87 Umeå, Sweden
| | - Konstantinos Tsiakas
- Department of Paediatrics, University Medical Centre Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Isil Keskin
- Department of Medical Biosciences, Pathology, Umeå University, 901 85 Umeå, Sweden
| | - Christiane Elpers
- Department of General Paediatrics, University of Münster, 48149 Münster, Germany
| | - Manoj Mannil
- Clinic for Radiology, University Hospital Münster, WWU University of Münster, 48149 Münster, Germany
| | - Raoul Heller
- Starship Children’s Health, Auckland City Hospital, Auckland 1142, New Zealand
| | - Melinda Nolan
- Starship Children’s Health, Auckland City Hospital, Auckland 1142, New Zealand
| | - Salam Alburaiky
- Starship Children’s Health, Auckland City Hospital, Auckland 1142, New Zealand
| | - Per Zetterström
- Department of Medical Biosciences, Clinical Chemistry, Umeå University, 901 87 Umeå, Sweden
| | - Maja Hempel
- Department of Paediatrics, University Medical Centre Hamburg-Eppendorf, 20251 Hamburg, Germany,Current address: Institute of Human Genetics, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | | | - Saskia Biskup
- CeGAT GmbH and Praxis für Humangenetik Tübingen, 72076 Tübingen, Germany
| | - Petra Steinacker
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Markus Otto
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Jochen Weishaupt
- Division for Neurodegenerative Diseases, Department of Neurology, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Andreas Hahn
- Department of Child Neurology, Justus Liebig University, 35392 Giessen, Germany
| | - René Santer
- Department of Paediatrics, University Medical Centre Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Thorsten Marquardt
- Department of General Paediatrics, University of Münster, 48149 Münster, Germany
| | - Stefan L Marklund
- Department of Medical Biosciences, Clinical Chemistry, Umeå University, 901 87 Umeå, Sweden
| | - Peter M Andersen
- Correspondence to: Peter Munch Andersen Department of Clinical Science, Neurosciences Umeå University, SE-901 85 Umeå, Sweden E-mail:
| |
Collapse
|
50
|
Gao F, Sun J, Yao M, Song Y, Yi H, Yang M, Ni Q, Kong J, Yuan H, Sun B, Wang Y. SERS "hot spot" enhance-array assay for misfolded SOD1 correlated with white matter lesions and aging. Anal Chim Acta 2023; 1238:340163. [PMID: 36464456 DOI: 10.1016/j.aca.2022.340163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/23/2022] [Accepted: 07/08/2022] [Indexed: 12/15/2022]
Abstract
Misfolding of superoxide dismutase-1 (SOD1) has been correlated with many neurodegenerative diseases, such as Amyotrophic lateral sclerosis's and Alzheimer's among others. However, it is unclear whether misfolded SOD1 plays a role in another neurodegenerative disease of white matter lesions (WMLs). In this study, a sensitive and specific method based on SERS technique was proposed for quantitative detection of misfolded SOD1 content in WMLs. To fabricate the double antibodysandwich substrates for SERS detection, gold nanostars modified with capture antibody were immobilized on glass substrates to prepare active SERS substrates, and then SERS probes conjugated with a Raman reporter and a specific target antibody were coupled with active SERS substrates. This SERS substrates had been employed for quantitative detection of misfolded SOD1 levels in WMLs and exhibited excellent stability, reliability, and accuracy. Moreover, experimental results indicated that the level of misfolded SOD1 increased with the increase in age and the degree of WMLs. Hence, misfolded SOD1 may be a potential blood marker for WMLs and aging. Meanwhile, SERS-based gold nanostars have great clinical application potential in the screening, diagnosis and treatment of WMLs.
Collapse
Affiliation(s)
- Feng Gao
- Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, 271000, China
| | - Jingyi Sun
- Shandong Provincial Hospital Affiliated to Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250021, China
| | - Minmin Yao
- Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, 271000, China
| | - Yanan Song
- Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, 271000, China; Medical College of Qingdao University, Qingdao, 266021, China
| | - Hui Yi
- Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, 271000, China
| | - Mingfeng Yang
- Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, 271000, China
| | - Qingbin Ni
- Postdoctoral Workstation, Taian Central Hospital, Taian, 271000, Shandong, China
| | - Jiming Kong
- Department of Human Anatomy and Cell Science, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB, Canada
| | - Hui Yuan
- Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, 271000, China.
| | - Baoliang Sun
- Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, 271000, China.
| | - Ying Wang
- Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, 271000, China.
| |
Collapse
|