1
|
Zacharjasz J, Sztachera M, Smuszkiewicz M, Piwecka M. Micromanaging the neuroendocrine system - A review on miR-7 and the other physiologically relevant miRNAs in the hypothalamic-pituitary axis. FEBS Lett 2024; 598:1557-1575. [PMID: 38858179 DOI: 10.1002/1873-3468.14948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/12/2024]
Abstract
The hypothalamic-pituitary axis is central to the functioning of the neuroendocrine system and essential for regulating physiological and behavioral homeostasis and coordinating fundamental body functions. The expanding line of evidence shows the indispensable role of the microRNA pathway in regulating the gene expression profile in the developing and adult hypothalamus and pituitary gland. Experiments provoking a depletion of miRNA maturation in the context of the hypothalamic-pituitary axis brought into focus a prominent involvement of miRNAs in neuroendocrine functions. There are also a few individual miRNAs and miRNA families that have been studied in depth revealing their crucial role in mediating the regulation of fundamental processes such as temporal precision of puberty timing, hormone production, fertility and reproduction capacity, and energy balance. Among these miRNAs, miR-7 was shown to be hypothalamus-enriched and the top one highly expressed in the pituitary gland, where it has a profound impact on gene expression regulation. Here, we review miRNA profiles, knockout phenotypes, and miRNA interaction (targets) in the hypothalamic-pituitary axis that advance our understanding of the roles of miRNAs in mammalian neurosecretion and related physiology.
Collapse
Affiliation(s)
- Julian Zacharjasz
- Department of Non-coding RNAs, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Marta Sztachera
- Department of Non-coding RNAs, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Michał Smuszkiewicz
- Department of Non-coding RNAs, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Monika Piwecka
- Department of Non-coding RNAs, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| |
Collapse
|
2
|
Qiao M, Yang H, Liu L, Yu T, Wang H, Chen X, Zhang Y, Duan A, Lyu S, Wu S, Xiao J, Li B. Chronic Lead Exposure in Adult Mice: Associations with miR-671/CDR1as Regulation, NF-κB Signaling, and Alzheimer's Disease-like Pathology. TOXICS 2024; 12:410. [PMID: 38922090 PMCID: PMC11209093 DOI: 10.3390/toxics12060410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/17/2024] [Accepted: 05/30/2024] [Indexed: 06/27/2024]
Abstract
Long-term exposure to lead (Pb) can result in chronic damage to the body through accumulation in the central nervous system (CNS) leading to neurodegenerative diseases, such as Alzheimer's disease (AD). This study delves into the intricate role of miR-671/CDR1as regulation in the etiology of AD-like lesions triggered by chronic Pb exposure in adult mice. To emulate the chronic effects of Pb, we established a rodent model spanning 10 months of controlled Pb administration, dividing 52 C57BL/6J mice into groups receiving varying concentrations of Pb (1, 2, or 4 g/L) alongside an unexposed control. Blood Pb levels were monitored using serum samples to ensure accurate dosing and to correlate with observed toxicological outcomes. Utilizing the Morris water maze, a robust behavioral assay for assessing cognitive functions, we documented a dose-dependent decline in learning and memory capabilities among the Pb-exposed mice. Histopathological examination of the hippocampal tissue revealed tell-tale signs of AD-like neurodegeneration, characterized by the accumulation of amyloid plaques and neurofibrillary tangles. At the molecular level, a significant upregulation of AD-associated genes, namely amyloid precursor protein (APP), β-secretase 1 (BACE1), and tau, was observed in the hippocampal tissue of Pb-exposed mice. This was accompanied by a corresponding surge in the protein levels of APP, BACE1, amyloid-β (Aβ), and phosphorylated tau (p-tau), further implicating Pb in the dysregulation of these key AD markers. The expression of CDR1as, a long non-coding RNA implicated in AD pathogenesis, was found to be suppressed in Pb-exposed mice. This observation suggests a potential mechanistic link between Pb-induced neurotoxicity and the dysregulation of the CDR1as/miR-671 axis, which warrants further investigation. Moreover, our study identified a dose-dependent alteration in the intracellular and extracellular levels of the transcription factor nuclear factor-kappa B (NF-κB). This finding implicates Pb in the modulation of NF-κB signaling, a pathway that plays a pivotal role in neuroinflammation and neurodegeneration. In conclusion, our findings underscored the deleterious effects of Pb exposure on the CNS, leading to the development of AD-like pathology. The observed modulation of NF-κB signaling and miR-671/CDR1as regulation provides a plausible mechanistic framework for understanding the neurotoxic effects of Pb and its potential contribution to AD pathogenesis.
Collapse
Affiliation(s)
- Mengyun Qiao
- State Key Laboratory of Trauma and Chemical Poisoning, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- Department of Toxicology, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- Key Laboratory of Chemical Safety and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Haitao Yang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Li Liu
- State Key Laboratory of Trauma and Chemical Poisoning, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- Department of Toxicology, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- Key Laboratory of Chemical Safety and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Tao Yu
- State Key Laboratory of Trauma and Chemical Poisoning, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- Department of Toxicology, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- Key Laboratory of Chemical Safety and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Haihua Wang
- State Key Laboratory of Trauma and Chemical Poisoning, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- Department of Toxicology, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- Key Laboratory of Chemical Safety and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Xiao Chen
- State Key Laboratory of Trauma and Chemical Poisoning, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- Department of Toxicology, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- Key Laboratory of Chemical Safety and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Yi Zhang
- State Key Laboratory of Trauma and Chemical Poisoning, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- Department of Toxicology, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- Key Laboratory of Chemical Safety and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Airu Duan
- State Key Laboratory of Trauma and Chemical Poisoning, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- Department of Toxicology, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- Key Laboratory of Chemical Safety and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Shujun Lyu
- State Key Laboratory of Trauma and Chemical Poisoning, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- Department of Toxicology, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- Key Laboratory of Chemical Safety and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Siyu Wu
- State Key Laboratory of Trauma and Chemical Poisoning, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- Department of Toxicology, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- Key Laboratory of Chemical Safety and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Jingwei Xiao
- State Key Laboratory of Trauma and Chemical Poisoning, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- Department of Toxicology, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- Key Laboratory of Chemical Safety and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Bin Li
- State Key Laboratory of Trauma and Chemical Poisoning, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- Department of Toxicology, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- Key Laboratory of Chemical Safety and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| |
Collapse
|
3
|
Valle-Garcia D, Pérez de la Cruz V, Flores I, Salazar A, Pineda B, Meza-Sosa KF. Use of microRNAs as Diagnostic, Prognostic, and Therapeutic Tools for Glioblastoma. Int J Mol Sci 2024; 25:2464. [PMID: 38473710 DOI: 10.3390/ijms25052464] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 03/14/2024] Open
Abstract
Glioblastoma (GB) is the most aggressive and common type of cancer within the central nervous system (CNS). Despite the vast knowledge of its physiopathology and histology, its etiology at the molecular level has not been completely understood. Thus, attaining a cure has not been possible yet and it remains one of the deadliest types of cancer. Usually, GB is diagnosed when some symptoms have already been presented by the patient. This diagnosis is commonly based on a physical exam and imaging studies, such as computed tomography (CT) and magnetic resonance imaging (MRI), together with or followed by a surgical biopsy. As these diagnostic procedures are very invasive and often result only in the confirmation of GB presence, it is necessary to develop less invasive diagnostic and prognostic tools that lead to earlier treatment to increase GB patients' quality of life. Therefore, blood-based biomarkers (BBBs) represent excellent candidates in this context. microRNAs (miRNAs) are small, non-coding RNAs that have been demonstrated to be very stable in almost all body fluids, including saliva, serum, plasma, urine, cerebrospinal fluid (CFS), semen, and breast milk. In addition, serum-circulating and exosome-contained miRNAs have been successfully used to better classify subtypes of cancer at the molecular level and make better choices regarding the best treatment for specific cases. Moreover, as miRNAs regulate multiple target genes and can also act as tumor suppressors and oncogenes, they are involved in the appearance, progression, and even chemoresistance of most tumors. Thus, in this review, we discuss how dysregulated miRNAs in GB can be used as early diagnosis and prognosis biomarkers as well as molecular markers to subclassify GB cases and provide more personalized treatments, which may have a better response against GB. In addition, we discuss the therapeutic potential of miRNAs, the current challenges to their clinical application, and future directions in the field.
Collapse
Affiliation(s)
- David Valle-Garcia
- Laboratorio de Neuroinmunología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez (INNNMVS), Mexico City 14269, Mexico
| | - Verónica Pérez de la Cruz
- Laboratorio de Neurobioquímica y Conducta, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez (INNNMVS), Mexico City 14269, Mexico
| | - Itamar Flores
- Laboratorio de Neuroinmunología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez (INNNMVS), Mexico City 14269, Mexico
| | - Aleli Salazar
- Laboratorio de Neuroinmunología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez (INNNMVS), Mexico City 14269, Mexico
| | - Benjamín Pineda
- Laboratorio de Neuroinmunología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez (INNNMVS), Mexico City 14269, Mexico
| | - Karla F Meza-Sosa
- Laboratorio de Neurobioquímica y Conducta, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez (INNNMVS), Mexico City 14269, Mexico
| |
Collapse
|
4
|
Chung HK, Xiao L, Han N, Chen J, Yao V, Cairns CM, Raufman B, Rao JN, Turner DJ, Kozar R, Gorospe M, Wang JY. Circular RNA Cdr1as inhibits proliferation and delays injury-induced regeneration of the intestinal epithelium. JCI Insight 2024; 9:e169716. [PMID: 38227372 PMCID: PMC11143936 DOI: 10.1172/jci.insight.169716] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 01/11/2024] [Indexed: 01/17/2024] Open
Abstract
Circular RNAs (circRNAs) are highly expressed in the mammalian intestinal epithelium, but their functions remain largely unknown. Here, we identified the circRNA Cdr1as as a repressor of intestinal epithelial regeneration and defense. Cdr1as levels increased in mouse intestinal mucosa after colitis and septic stress, as well as in human intestinal mucosa from patients with inflammatory bowel disease and sepsis. Ablation of the Cdr1as locus from the mouse genome enhanced renewal of the intestinal mucosa, promoted injury-induced epithelial regeneration, and protected the mucosa against colitis. We found approximately 40 microRNAs, including miR-195, differentially expressed between intestinal mucosa of Cdr1as-knockout (Cdr1as-/-) versus littermate mice. Increasing the levels of Cdr1as inhibited intestinal epithelial repair after wounding in cultured cells and repressed growth of intestinal organoids cultured ex vivo, but this inhibition was abolished by miR-195 silencing. The reduction in miR-195 levels in the Cdr1as-/- intestinal epithelium was the result of reduced stability and processing of the precursor miR-195. These findings indicate that Cdr1as reduces proliferation and repair of the intestinal epithelium at least in part via interaction with miR-195 and highlight a role for induced Cdr1as in the pathogenesis of unhealed wounds and disrupted renewal of the intestinal mucosa.
Collapse
Affiliation(s)
- Hee Kyoung Chung
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Lan Xiao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Baltimore Veterans Affairs Medical Center, Baltimore, Maryland, USA
| | - Naomi Han
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jason Chen
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Vivian Yao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Cassandra M. Cairns
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Benjamin Raufman
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jaladanki N. Rao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Baltimore Veterans Affairs Medical Center, Baltimore, Maryland, USA
| | - Douglas J. Turner
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Baltimore Veterans Affairs Medical Center, Baltimore, Maryland, USA
| | - Rosemary Kozar
- Shock Trauma Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging-IRP, NIH, Baltimore, Maryland, USA
| | - Jian-Ying Wang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Baltimore Veterans Affairs Medical Center, Baltimore, Maryland, USA
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
5
|
Daruich A, Duncan M, Robert MP, Lagali N, Semina EV, Aberdam D, Ferrari S, Romano V, des Roziers CB, Benkortebi R, De Vergnes N, Polak M, Chiambaretta F, Nischal KK, Behar-Cohen F, Valleix S, Bremond-Gignac D. Congenital aniridia beyond black eyes: From phenotype and novel genetic mechanisms to innovative therapeutic approaches. Prog Retin Eye Res 2023; 95:101133. [PMID: 36280537 PMCID: PMC11062406 DOI: 10.1016/j.preteyeres.2022.101133] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/27/2022] [Accepted: 10/03/2022] [Indexed: 11/05/2022]
Abstract
Congenital PAX6-aniridia, initially characterized by the absence of the iris, has progressively been shown to be associated with other developmental ocular abnormalities and systemic features making congenital aniridia a complex syndromic disorder rather than a simple isolated disease of the iris. Moreover, foveal hypoplasia is now recognized as a more frequent feature than complete iris hypoplasia and a major visual prognosis determinant, reversing the classical clinical picture of this disease. Conversely, iris malformation is also a feature of various anterior segment dysgenesis disorders caused by PAX6-related developmental genes, adding a level of genetic complexity for accurate molecular diagnosis of aniridia. Therefore, the clinical recognition and differential genetic diagnosis of PAX6-related aniridia has been revealed to be much more challenging than initially thought, and still remains under-investigated. Here, we update specific clinical features of aniridia, with emphasis on their genotype correlations, as well as provide new knowledge regarding the PAX6 gene and its mutational spectrum, and highlight the beneficial utility of clinically implementing targeted Next-Generation Sequencing combined with Whole-Genome Sequencing to increase the genetic diagnostic yield of aniridia. We also present new molecular mechanisms underlying aniridia and aniridia-like phenotypes. Finally, we discuss the appropriate medical and surgical management of aniridic eyes, as well as innovative therapeutic options. Altogether, these combined clinical-genetic approaches will help to accelerate time to diagnosis, provide better determination of the disease prognosis and management, and confirm eligibility for future clinical trials or genetic-specific therapies.
Collapse
Affiliation(s)
- Alejandra Daruich
- Ophthalmology Department, Necker-Enfants Malades University Hospital, AP-HP, Paris Cité University, Paris, France; INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Sorbonne Paris Cité University, Centre de Recherche des Cordeliers, Paris, France
| | - Melinda Duncan
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Matthieu P Robert
- Ophthalmology Department, Necker-Enfants Malades University Hospital, AP-HP, Paris Cité University, Paris, France; Borelli Centre, UMR 9010, CNRS-SSA-ENS Paris Saclay-Paris Cité University, Paris, France
| | - Neil Lagali
- Division of Ophthalmology, Department of Biomedical and Clinical Sciences, Faculty of Medicine, Linköping University, 581 83, Linköping, Sweden; Department of Ophthalmology, Sørlandet Hospital Arendal, Arendal, Norway
| | - Elena V Semina
- Department of Pediatrics, Children's Research Institute at the Medical College of Wisconsin and Children's Hospital of Wisconsin, Milwaukee, WI, 53226, USA
| | - Daniel Aberdam
- INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Sorbonne Paris Cité University, Centre de Recherche des Cordeliers, Paris, France
| | - Stefano Ferrari
- Fondazione Banca degli Occhi del Veneto, Via Paccagnella 11, Venice, Italy
| | - Vito Romano
- Department of Medical and Surgical Specialties, Radiolological Sciences, and Public Health, Ophthalmology Clinic, University of Brescia, Italy
| | - Cyril Burin des Roziers
- INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Sorbonne Paris Cité University, Centre de Recherche des Cordeliers, Paris, France; Service de Médecine Génomique des Maladies de Système et d'Organe, APHP. Centre Université de Paris, Fédération de Génétique et de Médecine Génomique Hôpital Cochin, 27 rue du Fbg St-Jacques, 75679, Paris Cedex 14, France
| | - Rabia Benkortebi
- Ophthalmology Department, Necker-Enfants Malades University Hospital, AP-HP, Paris Cité University, Paris, France
| | - Nathalie De Vergnes
- Ophthalmology Department, Necker-Enfants Malades University Hospital, AP-HP, Paris Cité University, Paris, France
| | - Michel Polak
- Pediatric Endocrinology, Gynecology and Diabetology, Hôpital Universitaire Necker Enfants Malades, AP-HP, Paris Cité University, INSERM U1016, Institut IMAGINE, France
| | | | - Ken K Nischal
- Division of Pediatric Ophthalmology, Strabismus, and Adult Motility, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA; UPMC Eye Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Francine Behar-Cohen
- INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Sorbonne Paris Cité University, Centre de Recherche des Cordeliers, Paris, France
| | - Sophie Valleix
- INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Sorbonne Paris Cité University, Centre de Recherche des Cordeliers, Paris, France; Service de Médecine Génomique des Maladies de Système et d'Organe, APHP. Centre Université de Paris, Fédération de Génétique et de Médecine Génomique Hôpital Cochin, 27 rue du Fbg St-Jacques, 75679, Paris Cedex 14, France
| | - Dominique Bremond-Gignac
- Ophthalmology Department, Necker-Enfants Malades University Hospital, AP-HP, Paris Cité University, Paris, France; INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Sorbonne Paris Cité University, Centre de Recherche des Cordeliers, Paris, France.
| |
Collapse
|
6
|
Kołosowska KA, Schratt G, Winterer J. microRNA-dependent regulation of gene expression in GABAergic interneurons. Front Cell Neurosci 2023; 17:1188574. [PMID: 37213213 PMCID: PMC10196030 DOI: 10.3389/fncel.2023.1188574] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 04/20/2023] [Indexed: 05/23/2023] Open
Abstract
Information processing within neuronal circuits relies on their proper development and a balanced interplay between principal and local inhibitory interneurons within those circuits. Gamma-aminobutyric acid (GABA)ergic inhibitory interneurons are a remarkably heterogeneous population, comprising subclasses based on their morphological, electrophysiological, and molecular features, with differential connectivity and activity patterns. microRNA (miRNA)-dependent post-transcriptional control of gene expression represents an important regulatory mechanism for neuronal development and plasticity. miRNAs are a large group of small non-coding RNAs (21-24 nucleotides) acting as negative regulators of mRNA translation and stability. However, while miRNA-dependent gene regulation in principal neurons has been described heretofore in several studies, an understanding of the role of miRNAs in inhibitory interneurons is only beginning to emerge. Recent research demonstrated that miRNAs are differentially expressed in interneuron subclasses, are vitally important for migration, maturation, and survival of interneurons during embryonic development and are crucial for cognitive function and memory formation. In this review, we discuss recent progress in understanding miRNA-dependent regulation of gene expression in interneuron development and function. We aim to shed light onto mechanisms by which miRNAs in GABAergic interneurons contribute to sculpting neuronal circuits, and how their dysregulation may underlie the emergence of numerous neurodevelopmental and neuropsychiatric disorders.
Collapse
Affiliation(s)
| | - Gerhard Schratt
- Lab of Systems Neuroscience, Department of Health Science and Technology, Institute for Neuroscience, Swiss Federal Institute of Technology ETH, Zurich, Switzerland
| | - Jochen Winterer
- Lab of Systems Neuroscience, Department of Health Science and Technology, Institute for Neuroscience, Swiss Federal Institute of Technology ETH, Zurich, Switzerland
| |
Collapse
|
7
|
Vinogradova A, Sysova M, Smirnova P, Sidorova M, Turkin A, Kurilova E, Tuchina O. Enriched Environment Induces Sex-Specific Changes in the Adult Neurogenesis, Cytokine and miRNA Expression in Rat Hippocampus. Biomedicines 2023; 11:1341. [PMID: 37239012 PMCID: PMC10215805 DOI: 10.3390/biomedicines11051341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/28/2023] [Accepted: 04/30/2023] [Indexed: 05/28/2023] Open
Abstract
An enriched environment stimulates adult hippocampal plasticity, but the exact cellular and molecular mechanisms are complex, and thus a matter of debate. We studied the behavior and hippocampal neurogenesis in adult male and female Wistar rats that were housed in an enriched environment (EE) for two months. Both EE males and females performed better than control animals in a Barnes maze, meaning that EE enhances spatial memory. However, the expression levels of neurogenesis markers KI67, DCX, Nestin, and Syn1 increased only in EE females, while in EE males only KI67 and BDNF were higher than in the corresponding control. The number of DCX+ neurons on brain slices increased in the dentate gyrus of EE females only, i.e., the level of adult hippocampal neurogenesis was increased in female but not in male rats. The level of anti-inflammatory IL-10 and signaling pathway components was upregulated in EE females. Of 84 miRNAs tested, in the hippocampi of EE female rats we detected upregulation in the expression levels of 12 miRNAs related to neuronal differentiation and morphogenesis, while in EE males four miRNAs were upregulated and involved in the regulation of cell proliferation/differentiation, and one was downregulated and associated with the stimulation of proliferation. Taken altogether, our results point to sex-specific differences in adult hippocampal plasticity, IL-10 expression, and miRNA profiles induced by an enriched environment.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Oksana Tuchina
- Educational and Scientific Cluster “Institute of Medicine and Life Sciences (MEDBIO)”, Immanuel Kant Baltic Federal University, 14 A. Nevskogo str., 236016 Kaliningrad, Russia
| |
Collapse
|
8
|
Kim JY, Kim W, Lee KH. The role of microRNAs in the molecular link between circadian rhythm and autism spectrum disorder. Anim Cells Syst (Seoul) 2023; 27:38-52. [PMID: 36860270 PMCID: PMC9970207 DOI: 10.1080/19768354.2023.2180535] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Circadian rhythm regulates physiological cycles of awareness and sleepiness. Melatonin production is primarily regulated by circadian regulation of gene expression and is involved in sleep homeostasis. If the circadian rhythm is abnormal, sleep disorders, such as insomnia and several other diseases, can occur. The term 'autism spectrum disorder (ASD)' is used to characterize people who exhibit a certain set of repetitive behaviors, severely constrained interests, social deficits, and/or sensory behaviors that start very early in life. Because many patients with ASD suffer from sleep disorders, sleep disorders and melatonin dysregulation are attracting attention for their potential roles in ASD. ASD is caused by abnormalities during the neurodevelopmental processes owing to various genetic or environmental factors. Recently, the role of microRNAs (miRNAs) in circadian rhythm and ASD have gained attraction. We hypothesized that the relationship between circadian rhythm and ASD could be explained by miRNAs that can regulate or be regulated by either or both. In this study, we introduced a possible molecular link between circadian rhythm and ASD. We performed a thorough literature review to understand their complexity.
Collapse
Affiliation(s)
- Ji Young Kim
- Department of Molecular Biology, Pusan National University, Busan, Republic of Korea
| | - Wanil Kim
- Department of Biochemistry, College of Medicine, Gyeongsang National University, Jinju-si, Republic of Korea, Wanil Kim Department of Biochemistry, College of Medicine, Gyeongsang National University, Jinju-si, Gyeongsangnam-do52727, Republic of Korea; Kyung-Ha Lee Department of Molecular Biology, Pusan National University, 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan46241, Republic of Korea
| | - Kyung-Ha Lee
- Department of Molecular Biology, Pusan National University, Busan, Republic of Korea, Wanil Kim Department of Biochemistry, College of Medicine, Gyeongsang National University, Jinju-si, Gyeongsangnam-do52727, Republic of Korea; Kyung-Ha Lee Department of Molecular Biology, Pusan National University, 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan46241, Republic of Korea
| |
Collapse
|
9
|
Favaloro F, DeLeo AM, Delgado AC, Doetsch F. miR-17∼92 exerts stage-specific effects in adult V-SVZ neural stem cell lineages. Cell Rep 2022; 41:111773. [PMID: 36476846 DOI: 10.1016/j.celrep.2022.111773] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 06/11/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022] Open
Abstract
Neural stem cells (NSCs) in the adult ventricular-subventricular zone (V-SVZ) generate neurons and glia throughout life. MicroRNAs are important post-transcriptional regulators frequently acting in a context-dependent manner. Here, microRNA profiling defines cohorts of miRNAs in quiescent and activated NSCs, with miR-17∼92 highly upregulated in activated NSCs and transit amplifying cells (TACs) versus quiescent NSCs. Conditional miR-17∼92 deletion in the adult V-SVZ results in stage-specific effects. In NSCs, it reduces proliferation in vitro and in vivo, whereas in TACs, it selectively shifts neurogenic OLIG2- DLX2+ toward oligodendrogenic OLIG2+ DLX2- TACs, due to de-repression of an oligodendrogenic program, leading to increased oligodendrogenesis in vivo. This differential regulation of TAC subpopulations highlights the importance of TAC heterogeneity. Finally, in the NSC lineage for intraventricular oligodendrocyte progenitors, miR-17∼92 deletion decreases proliferation and maturation. Together, these findings reveal multiple stage-specific functions of the miR-17∼92 cluster within different adult V-SVZ lineages.
Collapse
Affiliation(s)
| | - Annina M DeLeo
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Ana C Delgado
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Fiona Doetsch
- Biozentrum, University of Basel, 4056 Basel, Switzerland.
| |
Collapse
|
10
|
Derkus B, Isik M, Eylem CC, Ergin I, Camci CB, Bilgin S, Elbuken C, Arslan YE, Akkulak M, Adali O, Kiran F, Okesola BO, Nemutlu E, Emregul E. Xenogenic Neural Stem Cell-Derived Extracellular Nanovesicles Modulate Human Mesenchymal Stem Cell Fate and Reconstruct Metabolomic Structure. Adv Biol (Weinh) 2022; 6:e2101317. [PMID: 35347890 DOI: 10.1002/adbi.202101317] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/02/2022] [Indexed: 01/27/2023]
Abstract
Extracellular nanovesicles, particularly exosomes, can deliver their diverse bioactive biomolecular content, including miRNAs, proteins, and lipids, thus providing a context for investigating the capability of exosomes to induce stem cells toward lineage-specific cells and tissue regeneration. In this study, it is demonstrated that rat subventricular zone neural stem cell-derived exosomes (rSVZ-NSCExo) can control neural-lineage specification of human mesenchymal stem cells (hMSCs). Microarray analysis shows that the miRNA content of rSVZ-NSCExo is a faithful representation of rSVZ tissue. Through immunocytochemistry, gene expression, and multi-omics analyses, the capability to use rSVZ-NSCExo to induce hMSCs into a neuroglial or neural stem cell phenotype and genotype in a temporal and dose-dependent manner via multiple signaling pathways is demonstrated. The current study presents a new and innovative strategy to modulate hMSCs fate by harnessing the molecular content of exosomes, thus suggesting future opportunities for rSVZ-NSCExo in nerve tissue regeneration.
Collapse
Affiliation(s)
- Burak Derkus
- Stem Cell Research Lab, Department of ChemistryFaculty of Science, Ankara University, Ankara, 06560, Turkey.,Interdisciplinary Research Unit for Advanced Materials (INTRAM) Department of Chemistry, Faculty of Science, Ankara University, Ankara, 06560, Turkey
| | - Melis Isik
- Interdisciplinary Research Unit for Advanced Materials (INTRAM) Department of Chemistry, Faculty of Science, Ankara University, Ankara, 06560, Turkey
| | - Cemil Can Eylem
- Analytical Chemistry Division, Faculty of Pharmacy, Hacettepe University, Ankara, 06530, Turkey
| | - Irem Ergin
- Department of Surgery, Faculty of Veterinary Medicine, Ankara University, Turkey
| | - Can Berk Camci
- Interdisciplinary Research Unit for Advanced Materials (INTRAM) Department of Chemistry, Faculty of Science, Ankara University, Ankara, 06560, Turkey
| | - Sila Bilgin
- Interdisciplinary Research Unit for Advanced Materials (INTRAM) Department of Chemistry, Faculty of Science, Ankara University, Ankara, 06560, Turkey
| | - Caglar Elbuken
- UNAM-National Nanotechnology Research Center, Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey.,Faculty of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Oulu, Oulu, 90014, Finland
| | - Yavuz Emre Arslan
- Regenerative Biomaterials Laboratory, Department of Bioengineering, Engineering Faculty, Canakkale Onsekiz Mart University, Canakkale, 17100, Turkey
| | - Merve Akkulak
- Department of Biological Sciences, Faculty of Science, Middle East Technical University, Ankara, 06800, Turkey
| | - Orhan Adali
- Department of Biological Sciences, Faculty of Science, Middle East Technical University, Ankara, 06800, Turkey
| | - Fadime Kiran
- Department of Biology, Faculty of Science, Ankara University, Ankara, 06560, Turkey
| | - Babatunde O Okesola
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, Faculty of Medicine, University of Liverpool, Liverpool, L7 8TX, UK
| | - Emirhan Nemutlu
- Analytical Chemistry Division, Faculty of Pharmacy, Hacettepe University, Ankara, 06530, Turkey.,Bioanalytic and Omics Laboratory, Faculty of Pharmacy, Hacettepe University, Ankara, 06530, Turkey
| | - Emel Emregul
- Interdisciplinary Research Unit for Advanced Materials (INTRAM) Department of Chemistry, Faculty of Science, Ankara University, Ankara, 06560, Turkey
| |
Collapse
|
11
|
del Águila Á, Adam M, Ullom K, Shaw N, Qin S, Ehrman J, Nardini D, Salomone J, Gebelein B, Lu QR, Potter SS, Waclaw R, Campbell K, Nakafuku M. Olig2 defines a subset of neural stem cells that produce specific olfactory bulb interneuron subtypes in the subventricular zone of adult mice. Development 2022; 149:274286. [PMID: 35132995 PMCID: PMC8959153 DOI: 10.1242/dev.200028] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 01/24/2022] [Indexed: 12/12/2022]
Abstract
Distinct neural stem cells (NSCs) reside in different regions of the subventricular zone (SVZ) and generate multiple olfactory bulb (OB) interneuron subtypes in the adult brain. However, the molecular mechanisms underlying such NSC heterogeneity remain largely unknown. Here, we show that the basic helix-loop-helix transcription factor Olig2 defines a subset of NSCs in the early postnatal and adult SVZ. Olig2-expressing NSCs exist broadly but are most enriched in the ventral SVZ along the dorsoventral axis complementary to dorsally enriched Gsx2-expressing NSCs. Comparisons of Olig2-expressing NSCs from early embryonic to adult stages using single cell transcriptomics reveal stepwise developmental changes in their cell cycle and metabolic properties. Genetic studies further show that cross-repression contributes to the mutually exclusive expression of Olig2 and Gsx2 in NSCs/progenitors during embryogenesis, but that their expression is regulated independently from each other in adult NSCs. Finally, lineage-tracing and conditional inactivation studies demonstrate that Olig2 plays an important role in the specification of OB interneuron subtypes. Altogether, our study demonstrates that Olig2 defines a unique subset of adult NSCs enriched in the ventral aspect of the adult SVZ.
Collapse
Affiliation(s)
- Ángela del Águila
- Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA
| | - Mike Adam
- Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA
| | - Kristy Ullom
- Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA
| | - Nicholas Shaw
- Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA,Department of Medical Science, University of Cincinnati College of Medicine, 3125 Eden Avenue, Cincinnati, OH 45267-0521, USA
| | - Shenyue Qin
- Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA
| | - Jacqueline Ehrman
- Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA
| | - Diana Nardini
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA
| | - Joseph Salomone
- Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA
| | - Brian Gebelein
- Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA
| | - Q. Richard Lu
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA,Department of Pediatrics, University of Cincinnati College of Medicine, 3125 Eden Avenue, Cincinnati, OH 45267-0521, USA
| | - Steven S. Potter
- Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA,Department of Pediatrics, University of Cincinnati College of Medicine, 3125 Eden Avenue, Cincinnati, OH 45267-0521, USA
| | - Ronald Waclaw
- Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA,Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA,Department of Pediatrics, University of Cincinnati College of Medicine, 3125 Eden Avenue, Cincinnati, OH 45267-0521, USA
| | - Kenneth Campbell
- Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA,Department of Pediatrics, University of Cincinnati College of Medicine, 3125 Eden Avenue, Cincinnati, OH 45267-0521, USA,Division of Neurosurgery, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA
| | - Masato Nakafuku
- Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA,Department of Pediatrics, University of Cincinnati College of Medicine, 3125 Eden Avenue, Cincinnati, OH 45267-0521, USA,Department of Neurosurgery, University of Cincinnati College of Medicine, 3125 Eden Avenue, Cincinnati, OH 45267-0521, USA,Author for correspondence ()
| |
Collapse
|
12
|
Ribeiro AO, de Oliveira AC, Costa JM, Nachtigall PG, Herkenhoff ME, Campos VF, Delella FK, Pinhal D. MicroRNA roles in regeneration: Multiple lessons from zebrafish. Dev Dyn 2021; 251:556-576. [PMID: 34547148 DOI: 10.1002/dvdy.421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/23/2021] [Accepted: 09/07/2021] [Indexed: 12/23/2022] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs with pivotal roles in the control of gene expression. By comparing the miRNA profiles of uninjured vs. regenerating tissues and structures, several studies have found that miRNAs are potentially involved in the regenerative process. By inducing miRNA overexpression or inhibition, elegant experiments have directed regenerative responses validating relevant miRNA-to-target interactions. The zebrafish (Danio rerio) has been the epicenter of regenerative research because of its exceptional capability to self-repair damaged tissues and body structures. In this review, we discuss recent discoveries that have improved our understanding of the impact of gene regulation mediated by miRNAs in the context of the regeneration of fins, heart, retina, and nervous tissue in zebrafish. We compiled what is known about the miRNA control of regeneration in these tissues and investigated the links among up-regulated and down-regulated miRNAs, their putative or validated targets, and the regenerative process. Finally, we briefly discuss the forthcoming prospects, highlighting directions and the potential for further development of this field.
Collapse
Affiliation(s)
- Amanda Oliveira Ribeiro
- Laboratório Genômica e Evolução Molecular (LGEM), Departamento de Ciências Químicas e Biológicas, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Botucatu, SP, Brazil
| | - Arthur Casulli de Oliveira
- Laboratório Genômica e Evolução Molecular (LGEM), Departamento de Ciências Químicas e Biológicas, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Botucatu, SP, Brazil
| | - Juliana Mara Costa
- Laboratório Genômica e Evolução Molecular (LGEM), Departamento de Ciências Químicas e Biológicas, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Botucatu, SP, Brazil
| | - Pedro Gabriel Nachtigall
- Laboratório Genômica e Evolução Molecular (LGEM), Departamento de Ciências Químicas e Biológicas, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Botucatu, SP, Brazil.,Laboratório Especial de Toxicologia Aplicada (LETA), CeTICS, Instituto Butantan, São Paulo, SP, Brazil
| | - Marcos Edgar Herkenhoff
- Laboratório Genômica e Evolução Molecular (LGEM), Departamento de Ciências Químicas e Biológicas, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Botucatu, SP, Brazil.,Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Vinicius Farias Campos
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Flávia Karina Delella
- Departamento de Biologia Estrutural e Funcional, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Botucatu, SP, Brazil
| | - Danillo Pinhal
- Laboratório Genômica e Evolução Molecular (LGEM), Departamento de Ciências Químicas e Biológicas, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Botucatu, SP, Brazil
| |
Collapse
|
13
|
Samoilova EM, Belopasov VV, Baklaushev VP. Transcription Factors of Direct Neuronal Reprogramming in Ontogenesis and Ex Vivo. Mol Biol 2021; 55:645-669. [DOI: 10.1134/s0026893321040087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 03/07/2025]
|
14
|
Sachana M, Willett C, Pistollato F, Bal-Price A. The potential of mechanistic information organised within the AOP framework to increase regulatory uptake of the developmental neurotoxicity (DNT) in vitro battery of assays. Reprod Toxicol 2021; 103:159-170. [PMID: 34147625 PMCID: PMC8279093 DOI: 10.1016/j.reprotox.2021.06.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/19/2021] [Accepted: 06/04/2021] [Indexed: 12/24/2022]
Abstract
Current in vivo DNT testing for regulatory purposes is not effective. In vitro assays anchored to key neurodevelopmental processes are available. Development of Adverse Outcome Pathways is required to increase mechanistic understanding of DNT effects. DNT Integrated Approaches to Testing and Assessment for various regulatory purposes should be developed. The OECD Guidance Document on use of in vitro DNT battery of assays is currently under development.
A major challenge in regulatory developmental neurotoxicity (DNT) assessment is lack of toxicological information for many compounds. Therefore, the Test Guidelines programme of the Organisation for Economic Cooperation and Development (OECD) took the initiative to coordinate an international collaboration between diverse stakeholders to consider integration of alternative approaches towards improving the current chemical DNT testing. During the past few years, a series of workshops was organized during which a consensus was reached that incorporation of a DNT testing battery that relies on in vitro assays anchored to key neurodevelopmental processes should be developed. These key developmental processes include neural progenitor cell proliferation, neuronal and oligodendrocyte differentiation, neural cell migration, neurite outgrowth, synaptogenesis and neuronal network formation, as well key events identified in the existing Adverse Outcome Pathways (AOPs). AOPs deliver mechanistic information on the causal links between molecular initiating event, intermediate key events and an adverse outcome of regulatory concern, providing the biological context to facilitate development of Integrated Approaches to Testing and Assessment (IATA) for various regulatory purposes. Developing IATA case studies, using mechanistic information derived from AOPs, is expected to increase scientific confidence for the use of in vitro methods within an IATA, thereby facilitating regulatory uptake. This manuscript summarizes the current state of international efforts to enhance DNT testing by using an in vitro battery of assays focusing on the role of AOPs in informing the development of IATA for different regulatory purposes, aiming to deliver an OECD guidance document on use of in vitro DNT battery of assays that include in vitro data interpretation.
Collapse
Affiliation(s)
- Magdalini Sachana
- Environment Health and Safety Division, Environment Directorate, Organisation for Economic Co-Operation and Development (OECD), 75775, Paris Cedex 16, France
| | - Catherine Willett
- Humane Society International, 1255 23rd Street NW, Washington, DC, 20037, USA
| | | | - Anna Bal-Price
- European Commission Joint Research Centre (JRC), Ispra, Italy.
| |
Collapse
|
15
|
Zolboot N, Du JX, Zampa F, Lippi G. MicroRNAs Instruct and Maintain Cell Type Diversity in the Nervous System. Front Mol Neurosci 2021; 14:646072. [PMID: 33994943 PMCID: PMC8116551 DOI: 10.3389/fnmol.2021.646072] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/30/2021] [Indexed: 12/12/2022] Open
Abstract
Characterizing the diverse cell types that make up the nervous system is essential for understanding how the nervous system is structured and ultimately how it functions. The astonishing range of cellular diversity found in the nervous system emerges from a small pool of neural progenitor cells. These progenitors and their neuronal progeny proceed through sequential gene expression programs to produce different cell lineages and acquire distinct cell fates. These gene expression programs must be tightly regulated in order for the cells to achieve and maintain the proper differentiated state, remain functional throughout life, and avoid cell death. Disruption of developmental programs is associated with a wide range of abnormalities in brain structure and function, further indicating that elucidating their contribution to cellular diversity will be key to understanding brain health. A growing body of evidence suggests that tight regulation of developmental genes requires post-transcriptional regulation of the transcriptome by microRNAs (miRNAs). miRNAs are small non-coding RNAs that function by binding to mRNA targets containing complementary sequences and repressing their translation into protein, thereby providing a layer of precise spatial and temporal control over gene expression. Moreover, the expression profiles and targets of miRNAs show great specificity for distinct cell types, brain regions and developmental stages, suggesting that they are an important parameter of cell type identity. Here, we provide an overview of miRNAs that are critically involved in establishing neural cell identities, focusing on how miRNA-mediated regulation of gene expression modulates neural progenitor expansion, cell fate determination, cell migration, neuronal and glial subtype specification, and finally cell maintenance and survival.
Collapse
Affiliation(s)
- Norjin Zolboot
- The Scripps Research Institute, La Jolla, CA, United States
| | - Jessica X. Du
- The Scripps Research Institute, La Jolla, CA, United States
- Department of Neurosciences, University of California, San Diego, San Diego, CA, United States
| | - Federico Zampa
- The Scripps Research Institute, La Jolla, CA, United States
| | - Giordano Lippi
- The Scripps Research Institute, La Jolla, CA, United States
| |
Collapse
|
16
|
Korać P, Antica M, Matulić M. MiR-7 in Cancer Development. Biomedicines 2021; 9:325. [PMID: 33806891 PMCID: PMC8004586 DOI: 10.3390/biomedicines9030325] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs (miRNAs) are short non-coding RNA involved in the regulation of specific mRNA translation. They participate in cellular signaling circuits and can act as oncogenes in tumor development, so-called oncomirs, as well as tumor suppressors. miR-7 is an ancient miRNA involved in the fine-tuning of several signaling pathways, acting mainly as tumor suppressor. Through downregulation of PI3K and MAPK pathways, its dominant role is the suppression of proliferation and survival, stimulation of apoptosis and inhibition of migration. Besides these functions, it has numerous additional roles in the differentiation process of different cell types, protection from stress and chromatin remodulation. One of the most investigated tissues is the brain, where its downregulation is linked with glioblastoma cell proliferation. Its deregulation is found also in other tumor types, such as in liver, lung and pancreas. In some types of lung and oral carcinoma, it can act as oncomir. miR-7 roles in cell fate determination and maintenance of cell homeostasis are still to be discovered, as well as the possibilities of its use as a specific biotherapeutic.
Collapse
Affiliation(s)
- Petra Korać
- Department of Biology, Division of Molecular Biology, Faculty of Science, University of Zagreb, Horvatovac 102, 10000 Zagreb, Croatia;
| | - Mariastefania Antica
- Division of Molecular Biology, Rudjer Bosković Institute, Bijenička 54, 10000 Zagreb, Croatia;
| | - Maja Matulić
- Department of Biology, Division of Molecular Biology, Faculty of Science, University of Zagreb, Horvatovac 102, 10000 Zagreb, Croatia;
| |
Collapse
|
17
|
Grant MK, Bobilev AM, Branch A, Lauderdale JD. Structural and functional consequences of PAX6 mutations in the brain: Implications for aniridia. Brain Res 2021; 1756:147283. [PMID: 33515537 DOI: 10.1016/j.brainres.2021.147283] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 12/15/2020] [Accepted: 01/05/2021] [Indexed: 12/27/2022]
Abstract
The paired-box 6 (PAX6) gene encodes a highly conserved transcription factor essential for the proper development of the eye and brain. Heterozygous loss-of-function mutations in PAX6 are causal for a condition known as aniridia in humans and the Small eye phenotype in mice. Aniridia is characterized by iris hypoplasia and other ocular abnormalities, but recent evidence of neuroanatomical, sensory, and cognitive impairments in this population has emerged, indicating brain-related phenotypes as a prevalent feature of the disorder. Determining the neurophysiological origins of brain-related phenotypes in this disorder presents a substantial challenge, as the majority of extra-ocular traits in aniridia demonstrate a high degree of heterogeneity. Here, we summarize and integrate findings from human and rodent model studies, which have focused on neuroanatomical and functional consequences of PAX6 mutations. We highlight novel findings from PAX6 central nervous system studies in adult mammals, and integrate these findings into what we know about PAX6's role in development of the central nervous system. This review presents the current literature in the field in order to inform clinical application, discusses what is needed in future studies, and highlights PAX6 as a lens through which to understand genetic disorders affecting the human nervous system.
Collapse
Affiliation(s)
- Madison K Grant
- Department of Cellular Biology, The University of Georgia, Athens, GA 30602, USA.
| | - Anastasia M Bobilev
- Neuroscience Division of the Biomedical and Health Sciences Institute, The University of Georgia, Athens, GA 30602, USA; Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Audrey Branch
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - James D Lauderdale
- Department of Cellular Biology, The University of Georgia, Athens, GA 30602, USA; Neuroscience Division of the Biomedical and Health Sciences Institute, The University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
18
|
Konar GJ, Ferguson C, Flickinger Z, Kent MR, Patton JG. miRNAs and Müller Glia Reprogramming During Retina Regeneration. Front Cell Dev Biol 2021; 8:632632. [PMID: 33537319 PMCID: PMC7848101 DOI: 10.3389/fcell.2020.632632] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 12/21/2020] [Indexed: 12/15/2022] Open
Abstract
The use of model systems that are capable of robust, spontaneous retina regeneration has allowed for the identification of genetic pathways and components that are required for retina regeneration. Complemented by mouse models in which retina regeneration can be induced after forced expression of key factors, altered chromatin accessibility, or inhibition of kinase/signaling cascades, a clearer picture of the key regulatory events that control retina regeneration is emerging. In all cases, Müller glia (MG) serve as an adult retinal stem cell that must be reprogrammed to allow for regeneration, with the end goal being to understand why regenerative pathways are blocked in mammals, but spontaneous in other vertebrates such as zebrafish. miRNAs have emerged as key gene regulatory molecules that control both development and regeneration in vertebrates. Here, we focus on a small subset of miRNAs that control MG reprogramming during retina regeneration and have the potential to serve as therapeutic targets for treatment of visual disorders and damage.
Collapse
Affiliation(s)
- Gregory J Konar
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| | - Claire Ferguson
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| | - Zachary Flickinger
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| | - Matthew R Kent
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| | - James G Patton
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
19
|
Xu C, Fan W, Zhang Y, Loh HH, Law PY. Kappa opioid receptor controls neural stem cell differentiation via a miR-7a/Pax6 dependent pathway. Stem Cells 2021; 39:600-616. [PMID: 33452745 DOI: 10.1002/stem.3334] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/28/2020] [Indexed: 01/04/2023]
Abstract
Although the roles of opioid receptors in neurogenesis have been implicated in previous studies, the mechanism by which κ-opioid receptor (OPRK1) regulates adult neurogenesis remains elusive. We now demonstrate that two agonists of OPRK1, U50,488H and dynorphin A, inhibit adult neurogenesis by hindering neuronal differentiation of mouse hippocampal neural stem cells (NSCs), both in vitro and in vivo. This effect was blocked by nor-binaltorphimine (nor-BNI), a specific antagonist of OPRK1. By examining neurogenesis-related genes, we found that OPRK1 agonists were able to downregulate the expression of Pax6, Neurog2, and NeuroD1 in mouse hippocampal NSCs, in a way that Pax6 regulates the transcription of Neurog2 and Neurod1 by directly interacting with their promoters. Moreover, this effect of OPRK1 was accomplished by inducing expression of miR-7a, a miRNA that specifically targeted Pax6 by direct interaction with its 3'-UTR sequence, and thereby decreased the levels of Pax6, Neurog2, and NeuroD1, thus resulted in hindrance of neuronal differentiation of NSCs. Thus, by modulating Pax6/Neurog2/NeuroD1 activities via upregulation of miR-7a expression, OPRK1 agonists hinder the neuronal differentiation of NSCs and hence inhibit adult neurogenesis in mouse hippocampus.
Collapse
Affiliation(s)
- Chi Xu
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, People's Republic of China
| | - Wenxiang Fan
- Department of Pharmacy, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People's Republic of China
| | - Ying Zhang
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, People's Republic of China
| | - Horace H Loh
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Ping-Yee Law
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| |
Collapse
|
20
|
Disruption of NEUROD2 causes a neurodevelopmental syndrome with autistic features via cell-autonomous defects in forebrain glutamatergic neurons. Mol Psychiatry 2021; 26:6125-6148. [PMID: 34188164 PMCID: PMC8760061 DOI: 10.1038/s41380-021-01179-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 05/17/2021] [Accepted: 05/26/2021] [Indexed: 02/06/2023]
Abstract
While the transcription factor NEUROD2 has recently been associated with epilepsy, its precise role during nervous system development remains unclear. Using a multi-scale approach, we set out to understand how Neurod2 deletion affects the development of the cerebral cortex in mice. In Neurod2 KO embryos, cortical projection neurons over-migrated, thereby altering the final size and position of layers. In juvenile and adults, spine density and turnover were dysregulated in apical but not basal compartments in layer 5 neurons. Patch-clamp recordings in layer 5 neurons of juvenile mice revealed increased intrinsic excitability. Bulk RNA sequencing showed dysregulated expression of many genes associated with neuronal excitability and synaptic function, whose human orthologs were strongly associated with autism spectrum disorders (ASD). At the behavior level, Neurod2 KO mice displayed social interaction deficits, stereotypies, hyperactivity, and occasionally spontaneous seizures. Mice heterozygous for Neurod2 had similar defects, indicating that Neurod2 is haploinsufficient. Finally, specific deletion of Neurod2 in forebrain excitatory neurons recapitulated cellular and behavioral phenotypes found in constitutive KO mice, revealing the region-specific contribution of dysfunctional Neurod2 in symptoms. Informed by these neurobehavioral features in mouse mutants, we identified eleven patients from eight families with a neurodevelopmental disorder including intellectual disability and ASD associated with NEUROD2 pathogenic mutations. Our findings demonstrate crucial roles for Neurod2 in neocortical development, whose alterations can cause neurodevelopmental disorders including intellectual disability and ASD.
Collapse
|
21
|
Huang ZX, Chen Y, Guo HR, Chen GF. Systematic Review and Bioinformatic Analysis of microRNA Expression in Autism Spectrum Disorder Identifies Pathways Associated With Cancer, Metabolism, Cell Signaling, and Cell Adhesion. Front Psychiatry 2021; 12:630876. [PMID: 34744804 PMCID: PMC8566729 DOI: 10.3389/fpsyt.2021.630876] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 08/31/2021] [Indexed: 12/13/2022] Open
Abstract
Background: Previous studies have identified differentially expressed microRNAs in autism spectrum disorder (ASD), however, results are discrepant. We aimed to systematically review this topic and perform bioinformatic analysis to identify genes and pathways associated with ASD miRNAs. Methods: Following the Preferred Reporting Items for Systematic reviews and Meta-Analyses, we searched the Web of Science, PubMed, Embase, Scopus, and OVID databases to identify all studies comparing microRNA expressions between ASD persons and non-ASD controls on May 11, 2020. We obtained ASD miRNA targets validated by experimental assays from miRTarBase and performed pathway enrichment analysis using Metascape and DIANA-miRPath v3. 0. Results: Thirty-four studies were included in the systematic review. Among 285 altered miRNAs reported in these studies, 15 were consistently upregulated, 14 were consistently downregulated, and 39 were inconsistently dysregulated. The most frequently altered miRNAs including miR-23a-3p, miR-106b-5p, miR-146a-5p, miR-7-5p, miR-27a-3p, miR-181b-5p, miR-486-3p, and miR-451a. Subgroup analysis of tissues showed that miR-146a-5p, miR-155-5p, miR-1277-3p, miR-21-3p, miR-106b-5p, and miR-451a were consistently upregulated in brain tissues, while miR-4742-3p was consistently downregulated; miR-23b-3p, miR-483-5p, and miR-23a-3p were consistently upregulated in blood samples, while miR-15a-5p, miR-193a-5p, miR-20a-5p, miR-574-3p, miR-92a-3p, miR-3135a, and miR-103a-3p were consistently downregulated; miR-7-5p was consistently upregulated in saliva, miR-23a-3p and miR-32-5p were consistently downregulated. The altered ASD miRNAs identified in at least two independent studies were validated to target many autism risk genes. TNRC6B, PTEN, AGO1, SKI, and SMAD4 were the most frequent targets, and miR-92a-3p had the most target autism risk genes. Pathway enrichment analysis showed that ASD miRNAs are significantly involved in pathways associated with cancer, metabolism (notably Steroid biosynthesis, Fatty acid metabolism, Fatty acid biosynthesis, Lysine degradation, Biotin metabolism), cell cycle, cell signaling (especially Hippo, FoxO, TGF-beta, p53, Thyroid hormone, and Estrogen signaling pathway), adherens junction, extracellular matrix-receptor interaction, and Prion diseases. Conclusions: Altered miRNAs in ASD target autism risk genes and are involved in various ASD-related pathways, some of which are understudied and require further investigation.
Collapse
Affiliation(s)
- Zhi-Xiong Huang
- Department of Pediatrics, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yanhui Chen
- Department of Pediatrics, Fujian Medical University Union Hospital, Fuzhou, China
| | - Hong-Ru Guo
- Department of Pediatrics, Fujian Medical University Union Hospital, Fuzhou, China
| | - Guo-Feng Chen
- Department of Pediatrics, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
22
|
Diana A, Gaido G, Maxia C, Murtas D. MicroRNAs at the Crossroad of the Dichotomic Pathway Cell Death vs. Stemness in Neural Somatic and Cancer Stem Cells: Implications and Therapeutic Strategies. Int J Mol Sci 2020; 21:E9630. [PMID: 33348804 PMCID: PMC7766058 DOI: 10.3390/ijms21249630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/05/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022] Open
Abstract
Stemness and apoptosis may highlight the dichotomy between regeneration and demise in the complex pathway proceeding from ontogenesis to the end of life. In the last few years, the concept has emerged that the same microRNAs (miRNAs) can be concurrently implicated in both apoptosis-related mechanisms and cell differentiation. Whether the differentiation process gives rise to the architecture of brain areas, any long-lasting perturbation of miRNA expression can be related to the occurrence of neurodevelopmental/neuropathological conditions. Moreover, as a consequence of neural stem cell (NSC) transformation to cancer stem cells (CSCs), the fine modulation of distinct miRNAs becomes necessary. This event implies controlling the expression of pro/anti-apoptotic target genes, which is crucial for the management of neural/neural crest-derived CSCs in brain tumors, neuroblastoma, and melanoma. From a translational point of view, the current progress on the emerging miRNA-based neuropathology therapeutic applications and antitumor strategies will be disclosed and their advantages and shortcomings discussed.
Collapse
Affiliation(s)
- Andrea Diana
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| | | | - Cristina Maxia
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - Daniela Murtas
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| |
Collapse
|
23
|
Losurdo M, Grilli M. Extracellular Vesicles, Influential Players of Intercellular Communication within Adult Neurogenic Niches. Int J Mol Sci 2020; 21:E8819. [PMID: 33233420 PMCID: PMC7700666 DOI: 10.3390/ijms21228819] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/14/2022] Open
Abstract
Adult neurogenesis, involving the generation of functional neurons from adult neural stem cells (NSCs), occurs constitutively in discrete brain regions such as hippocampus, sub-ventricular zone (SVZ) and hypothalamus. The intrinsic structural plasticity of the neurogenic process allows the adult brain to face the continuously changing external and internal environment and requires coordinated interplay between all cell types within the specialized microenvironment of the neurogenic niche. NSC-, neuronal- and glia-derived factors, originating locally, regulate the balance between quiescence and self-renewal of NSC, their differentiation programs and the survival and integration of newborn cells. Extracellular Vesicles (EVs) are emerging as important mediators of cell-to-cell communication, representing an efficient way to transfer the biologically active cargos (nucleic acids, proteins, lipids) by which they modulate the function of the recipient cells. Current knowledge of the physiological role of EVs within adult neurogenic niches is rather limited. In this review, we will summarize and discuss EV-based cross-talk within adult neurogenic niches and postulate how EVs might play a critical role in the regulation of the neurogenic process.
Collapse
Affiliation(s)
| | - Mariagrazia Grilli
- Laboratory of Neuroplasticity, Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100 Novara, Italy;
| |
Collapse
|
24
|
Spinal Inhibitory Ptf1a-Derived Neurons Prevent Self-Generated Itch. Cell Rep 2020; 33:108422. [PMID: 33238109 DOI: 10.1016/j.celrep.2020.108422] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/27/2020] [Accepted: 11/02/2020] [Indexed: 01/13/2023] Open
Abstract
Chronic itch represents an incapacitating burden on patients suffering from a spectrum of diseases. Despite recent advances in our understanding of the cells and circuits implicated in the processing of itch information, chronic itch often presents itself without an apparent cause. Here, we identify a spinal subpopulation of inhibitory neurons defined by the expression of Ptf1a, involved in gating mechanosensory information self-generated during movement. These neurons receive tactile and motor input and establish presynaptic inhibitory contacts on mechanosensory afferents. Loss of Ptf1a neurons leads to increased hairy skin sensitivity and chronic itch, partially mediated by the classic itch pathway involving gastrin-releasing peptide receptor (GRPR) spinal neurons. Conversely, chemogenetic activation of GRPR neurons elicits itch, which is suppressed by concomitant activation of Ptf1a neurons. These findings shed light on the circuit mechanisms implicated in chronic itch and open novel targets for therapy developments.
Collapse
|
25
|
Coré N, Erni A, Hoffmann HM, Mellon PL, Saurin AJ, Beclin C, Cremer H. Stem cell regionalization during olfactory bulb neurogenesis depends on regulatory interactions between Vax1 and Pax6. eLife 2020; 9:58215. [PMID: 32762844 PMCID: PMC7440913 DOI: 10.7554/elife.58215] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/06/2020] [Indexed: 02/05/2023] Open
Abstract
Different subtypes of interneurons, destined for the olfactory bulb, are continuously generated by neural stem cells located in the ventricular and subventricular zones along the lateral forebrain ventricles of mice. Neuronal identity in the olfactory bulb depends on the existence of defined microdomains of pre-determined neural stem cells along the ventricle walls. The molecular mechanisms underlying positional identity of these neural stem cells are poorly understood. Here, we show that the transcription factor Vax1 controls the production of two specific neuronal subtypes. First, it is directly necessary to generate Calbindin expressing interneurons from ventro-lateral progenitors. Second, it represses the generation of dopaminergic neurons by dorsolateral progenitors through inhibition of Pax6 expression. We present data indicating that this repression occurs, at least in part, via activation of microRNA miR-7.
Collapse
Affiliation(s)
- Nathalie Coré
- Aix Marseille Univ, CNRS, IBDM, Campus de Luminy, Marseille, France
| | - Andrea Erni
- Aix Marseille Univ, CNRS, IBDM, Campus de Luminy, Marseille, France
| | - Hanne M Hoffmann
- Department of Obstetrics, Gynecology, and Reproductive Sciences and the Center for Reproductive Science and Medicine, University of California, San Diego, San Diego, United States
| | - Pamela L Mellon
- Department of Obstetrics, Gynecology, and Reproductive Sciences and the Center for Reproductive Science and Medicine, University of California, San Diego, San Diego, United States
| | - Andrew J Saurin
- Aix Marseille Univ, CNRS, IBDM, Campus de Luminy, Marseille, France
| | | | - Harold Cremer
- Aix Marseille Univ, CNRS, IBDM, Campus de Luminy, Marseille, France
| |
Collapse
|
26
|
Molecular Regulation in Dopaminergic Neuron Development. Cues to Unveil Molecular Pathogenesis and Pharmacological Targets of Neurodegeneration. Int J Mol Sci 2020; 21:ijms21113995. [PMID: 32503161 PMCID: PMC7312927 DOI: 10.3390/ijms21113995] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/30/2020] [Accepted: 06/01/2020] [Indexed: 12/13/2022] Open
Abstract
The relatively few dopaminergic neurons in the mammalian brain are mostly located in the midbrain and regulate many important neural functions, including motor integration, cognition, emotive behaviors and reward. Therefore, alteration of their function or degeneration leads to severe neurological and neuropsychiatric diseases. Unraveling the mechanisms of midbrain dopaminergic (mDA) phenotype induction and maturation and elucidating the role of the gene network involved in the development and maintenance of these neurons is of pivotal importance to rescue or substitute these cells in order to restore dopaminergic functions. Recently, in addition to morphogens and transcription factors, microRNAs have been identified as critical players to confer mDA identity. The elucidation of the gene network involved in mDA neuron development and function will be crucial to identify early changes of mDA neurons that occur in pre-symptomatic pathological conditions, such as Parkinson’s disease. In addition, it can help to identify targets for new therapies and for cell reprogramming into mDA neurons. In this essay, we review the cascade of transcriptional and posttranscriptional regulation that confers mDA identity and regulates their functions. Additionally, we highlight certain mechanisms that offer important clues to unveil molecular pathogenesis of mDA neuron dysfunction and potential pharmacological targets for the treatment of mDA neuron dysfunction.
Collapse
|
27
|
Wang Y, Wang X, Jiang Y, Liu R, Cao D, Pan J, Luo Y. Identification of key miRNAs and genes for mouse retinal development using a linear model. Mol Med Rep 2020; 22:494-506. [PMID: 32319662 PMCID: PMC7248464 DOI: 10.3892/mmr.2020.11082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 04/01/2020] [Indexed: 11/05/2022] Open
Abstract
MicroRNAs (miRNAs) are upstream regulators of gene expression and are involved in several biological processes. The purpose of the present study was to obtain a detailed spatiotemporal miRNA expression profile in mouse retina, to identify one or more miRNAs that are key to mouse retinal development and to investigate the roles and mechanisms of these miRNAs. The miRNA expression pattern of the developing mouse retina was acquired from Locked Nucleic Acid microarrays. Data were processed to identify differentially expressed miRNAs (DE‑miRNAs) using the linear model in Python 3.6. Following bioinformatics analysis and reverse transcription‑quantitative polymerase chain reaction validation, 8 miRNAs (miR‑9‑5p, miR‑130a‑3p, miR‑92a‑3p, miR‑20a‑5p, miR‑93‑5p, miR‑9‑3p, miR‑709 and miR‑124) were identified as key DE‑miRNAs with low variability during mouse retinal development. Gene Ontology analysis revealed that the target genes of the DE‑miRNAs were enriched in cellular metabolic processes. Kyoto Encyclopedia of Genes and Genomes analysis demonstrated that the target genes of the DE‑miRNAs were significantly enriched in PI3K/AKT/mTOR, class O of forkhead box transcription factors, mitogen‑activated protein kinase (MAPK), neurotrophin and transforming growth factor (TGF)‑β signaling, as well as focal adhesion and the axon guidance pathway. PI3K, AKT, PTEN, MAPK1, Son of Sevenless, sphingosine‑1‑phosphate receptor 1, BCL‑2L11, TGF‑β receptor type 1/2 and integrin α (ITGA)/ITGAB, which are key components of the aforementioned pathways and were revealed to be target genes of several of the DE‑miRNAs. The present study used a linear model to identify several DE‑miRNAs, as well as their target genes and associated pathways, which may serve crucial roles in mouse retinal development. Therefore, the results obtained in the present study may provide the groundwork for further experiments.
Collapse
Affiliation(s)
- Yishen Wang
- State Key Laboratory of Ophthalmology, Image Reading Center, Zhongshan Ophthalmic Center, Sun Yat‑Sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Xiao Wang
- State Key Laboratory of Ophthalmology, Image Reading Center, Zhongshan Ophthalmic Center, Sun Yat‑Sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Yukang Jiang
- Department of Statistical Science, School of Mathematics, Southern China Research Center of Statistical Science, Sun Yat‑Sen University, Guangzhou, Guangdong 51027, P.R. China
| | - Ruyuan Liu
- State Key Laboratory of Ophthalmology, Image Reading Center, Zhongshan Ophthalmic Center, Sun Yat‑Sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Di Cao
- State Key Laboratory of Ophthalmology, Image Reading Center, Zhongshan Ophthalmic Center, Sun Yat‑Sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Jianying Pan
- State Key Laboratory of Ophthalmology, Image Reading Center, Zhongshan Ophthalmic Center, Sun Yat‑Sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Yan Luo
- State Key Laboratory of Ophthalmology, Image Reading Center, Zhongshan Ophthalmic Center, Sun Yat‑Sen University, Guangzhou, Guangdong 510060, P.R. China
| |
Collapse
|
28
|
Adusumilli L, Facchinello N, Teh C, Busolin G, Le MTN, Yang H, Beffagna G, Campanaro S, Tam WL, Argenton F, Lim B, Korzh V, Tiso N. miR-7 Controls the Dopaminergic/Oligodendroglial Fate through Wnt/β-catenin Signaling Regulation. Cells 2020; 9:cells9030711. [PMID: 32183236 PMCID: PMC7140713 DOI: 10.3390/cells9030711] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 03/07/2020] [Accepted: 03/11/2020] [Indexed: 12/23/2022] Open
Abstract
During the development of the central nervous system, the proliferation of neural progenitors and differentiation of neurons and glia are tightly regulated by different transcription factors and signaling cascades, such as the Wnt and Shh pathways. This process takes place in cooperation with several microRNAs, some of which evolutionarily conserved in vertebrates, from teleosts to mammals. We focused our attention on miR-7, as its role in the regulation of cell signaling during neural development is still unclear. Specifically, we used human stem cell cultures and whole zebrafish embryos to study, in vitro and in vivo, the role of miR-7 in the development of dopaminergic (DA) neurons, a cell type primarily affected in Parkinson’s disease. We demonstrated that the zebrafish homologue of miR-7 (miR-7a) is expressed in the forebrain during the development of DA neurons. Moreover, we identified 143 target genes downregulated by miR-7, including the neural fate markers TCF4 and TCF12, as well as the Wnt pathway effector TCF7L2. We then demonstrated that miR-7 negatively regulates the proliferation of DA-progenitors by inhibiting Wnt/β-catenin signaling in zebrafish embryos. In parallel, miR-7 positively regulates Shh signaling, thus controlling the balance between oligodendroglial and DA neuronal cell fates. In summary, this study identifies a new molecular cross-talk between Wnt and Shh signaling pathways during the development of DA-neurons. Being mediated by a microRNA, this mechanism represents a promising target in cell differentiation therapies for Parkinson’s disease.
Collapse
Affiliation(s)
- Lavanya Adusumilli
- Genome Institute of Singapore, A-STAR, Singapore 138672, Singapore; (L.A.); (H.Y.); (W.L.T.)
| | - Nicola Facchinello
- Department of Biology, University of Padova, 35131 Padova, Italy; (N.F.); (G.B.); (G.B.); (S.C.); (F.A.)
| | - Cathleen Teh
- Institute of Molecular and Cell Biology, A-STAR, Singapore 138632, Singapore;
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Giorgia Busolin
- Department of Biology, University of Padova, 35131 Padova, Italy; (N.F.); (G.B.); (G.B.); (S.C.); (F.A.)
| | - Minh TN Le
- Department of Pharmacology, National University of Singapore, Singapore 117559, Singapore;
| | - Henry Yang
- Genome Institute of Singapore, A-STAR, Singapore 138672, Singapore; (L.A.); (H.Y.); (W.L.T.)
| | - Giorgia Beffagna
- Department of Biology, University of Padova, 35131 Padova, Italy; (N.F.); (G.B.); (G.B.); (S.C.); (F.A.)
| | - Stefano Campanaro
- Department of Biology, University of Padova, 35131 Padova, Italy; (N.F.); (G.B.); (G.B.); (S.C.); (F.A.)
| | - Wai Leong Tam
- Genome Institute of Singapore, A-STAR, Singapore 138672, Singapore; (L.A.); (H.Y.); (W.L.T.)
| | - Francesco Argenton
- Department of Biology, University of Padova, 35131 Padova, Italy; (N.F.); (G.B.); (G.B.); (S.C.); (F.A.)
| | - Bing Lim
- Genome Institute of Singapore, A-STAR, Singapore 138672, Singapore; (L.A.); (H.Y.); (W.L.T.)
- Correspondence: (B.L.); (V.K.); (N.T.); Tel.: +1-781-484-7643 (B.L.); +48-22-597-07-65 (V.K.); +39-049-827-6302 (N.T.)
| | - Vladimir Korzh
- Institute of Molecular and Cell Biology, A-STAR, Singapore 138632, Singapore;
- International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
- Correspondence: (B.L.); (V.K.); (N.T.); Tel.: +1-781-484-7643 (B.L.); +48-22-597-07-65 (V.K.); +39-049-827-6302 (N.T.)
| | - Natascia Tiso
- Department of Biology, University of Padova, 35131 Padova, Italy; (N.F.); (G.B.); (G.B.); (S.C.); (F.A.)
- Correspondence: (B.L.); (V.K.); (N.T.); Tel.: +1-781-484-7643 (B.L.); +48-22-597-07-65 (V.K.); +39-049-827-6302 (N.T.)
| |
Collapse
|
29
|
Moon HY, Yoon KJ, Lee WS, Cho HS, Kim DY, Kim JS. Neural maturation enhanced by exercise-induced extracellular derivatives. Sci Rep 2020; 10:3893. [PMID: 32127592 PMCID: PMC7054262 DOI: 10.1038/s41598-020-60930-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 02/19/2020] [Indexed: 12/31/2022] Open
Abstract
Physical activity has profound effects on neuronal progenitor cell growth, differentiation, and integration, but the mechanism for these effects is still ambiguous. Using a mouse model, we investigated the effects of two weeks of treadmill running on the dynamics of the size distribution and miRNA profiles of serum extracellular derivatives (EDs) using particle-sizing analysis and small RNA sequencing. We found that an increased average diameter of EDs in the running group compared with the sedentary group (p < 0.05), and 16 miRNAs were significantly altered (p < 0.05) in the running group. Furthermore, functional annotation analysis of differentially expressed miRNA-predicted target genes showed that many of these target genes are involved in the PI3K-Akt pathway. Exercise-induced serum EDs increased Neuro2A cell viability and Akt phosphorylation. We also found that expression levels of neuronal maturation markers such as Microtubule-Associated Protein 2 (MAP2ab) and Neuronal nuclei (NeuN) were increased (p < 0.05, respectively), and that inhibition of the PI3K-Akt pathway by LY294002 pre-treatment ameliorated their expression in Neuro2A cells. Finally, the administration of exercise-induced EDs for 3 days increased the Histone 3 phosphorylation and β-III tubulin expression in Ink/Arf null neural stem cells and progenitors (NSPCs) under each proliferation and differentiation condition. These results suggest that exercise-induced circulating EDs may mediate neuronal maturation during exercise.
Collapse
Affiliation(s)
- Hyo Youl Moon
- Department of Physical Education, Seoul National University, Seoul, Korea.,Institute of Sport Science, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.,School of Biological Sciences, Seoul National University, Seoul, 08826, Korea
| | - Kyeong Jin Yoon
- Department of Physical Education, Seoul National University, Seoul, Korea
| | - Won Sang Lee
- Department of Physical Education, Seoul National University, Seoul, Korea
| | - Hae-Sung Cho
- Department of Physical Education, Seoul National University, Seoul, Korea
| | - Do-Yeon Kim
- Department of Pharmacology, School of Dentistry, Brain Science and Engineering Institute, Kyungpook National University, Daegu, 41940, Republic of Korea
| | - Ji-Seok Kim
- Department of Physical Education, Gyeongsang National University, Jinju-daero, Jinju, 52828, Republic of Korea.
| |
Collapse
|
30
|
Mahmoudi E, Kiltschewskij D, Fitzsimmons C, Cairns MJ. Depolarization-Associated CircRNA Regulate Neural Gene Expression and in Some Cases May Function as Templates for Translation. Cells 2019; 9:cells9010025. [PMID: 31861825 PMCID: PMC7017197 DOI: 10.3390/cells9010025] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/18/2019] [Accepted: 12/18/2019] [Indexed: 12/16/2022] Open
Abstract
Circular RNAs (circRNAs) are a relatively new class of RNA transcript with high abundance in the mammalian brain. Here, we show that circRNAs expression in differentiated neuroblastoma cells were significantly altered after depolarization with 107 upregulated and 47 downregulated circRNAs. This coincided with a global alteration in the expression of microRNA (miRNA) (n = 269) and mRNA (n = 1511) in depolarized cells, suggesting a regulatory axis of circRNA–miRNA–mRNA is involved in the cellular response to neural activity. In support of this, our in silico analysis revealed that the circular transcripts had the capacity to influence mRNA expression through interaction with common miRNAs. Loss-of-function of a highly expressed circRNA, circ-EXOC6B, resulted in altered expression of numerous mRNAs enriched in processes related to the EXOC6B function, suggesting that circRNAs may specifically regulate the genes acting in relation to their host genes. We also found that a subset of circRNAs, particularly in depolarized cells, were associated with ribosomes, suggesting they may be translated into protein. Overall, these data support a role for circRNAs in the modification of gene regulation associated with neuronal activity.
Collapse
Affiliation(s)
- Ebrahim Mahmoudi
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia; (E.M.); (D.K.); (C.F.)
- Centre for Brain and Mental Health Research, University of Newcastle, Callaghan, NSW 2308, Australia
- Hunter Medical Research Institute (HMRI), New Lambton, NSW 2305, Australia
| | - Dylan Kiltschewskij
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia; (E.M.); (D.K.); (C.F.)
- Centre for Brain and Mental Health Research, University of Newcastle, Callaghan, NSW 2308, Australia
- Hunter Medical Research Institute (HMRI), New Lambton, NSW 2305, Australia
| | - Chantel Fitzsimmons
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia; (E.M.); (D.K.); (C.F.)
- Centre for Brain and Mental Health Research, University of Newcastle, Callaghan, NSW 2308, Australia
- Hunter Medical Research Institute (HMRI), New Lambton, NSW 2305, Australia
| | - Murray J. Cairns
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia; (E.M.); (D.K.); (C.F.)
- Centre for Brain and Mental Health Research, University of Newcastle, Callaghan, NSW 2308, Australia
- Hunter Medical Research Institute (HMRI), New Lambton, NSW 2305, Australia
- Correspondence: ; Tel.: +61-02-4921-8670; Fax: +61-02-4921-7903
| |
Collapse
|
31
|
Rojo Arias JE, Busskamp V. Challenges in microRNAs' targetome prediction and validation. Neural Regen Res 2019; 14:1672-1677. [PMID: 31169173 PMCID: PMC6585557 DOI: 10.4103/1673-5374.257514] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 01/14/2019] [Indexed: 11/11/2022] Open
Abstract
MicroRNAs (miRNAs) are small RNA molecules with important roles in post-transcriptional regulation of gene expression. In recent years, the predicted number of miRNAs has skyrocketed, largely as a consequence of high-throughput sequencing technologies becoming ubiquitous. This dramatic increase in miRNA candidates poses multiple challenges in terms of data deposition, curation, and validation. Although multiple databases containing miRNA annotations and targets have been developed, ensuring data quality by validating miRNA-target interactions requires the efforts of the research community. In order to generate databases containing biologically active miRNAs, it is imperative to overcome a multitude of hurdles, including restricted miRNA expression patterns, distinct miRNA biogenesis machineries, and divergent miRNA-mRNA interaction dynamics. In the present review, we discuss recent advances and limitations in miRNA prediction, identification, and validation. Lastly, we focus on the most enriched neuronal miRNA, miR-124, and its gene regulatory network in human neurons, which has been revealed using a combined computational and experimental approach.
Collapse
Affiliation(s)
| | - Volker Busskamp
- Center for Regenerative Therapies (CRTD), Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
32
|
Translating neural stem cells to neurons in the mammalian brain. Cell Death Differ 2019; 26:2495-2512. [PMID: 31551564 DOI: 10.1038/s41418-019-0411-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 07/05/2019] [Accepted: 08/08/2019] [Indexed: 02/07/2023] Open
Abstract
The mammalian neocortex underlies our perception of sensory information, performance of motor activities, and higher-order cognition. During mammalian embryogenesis, radial glial precursor cells sequentially give rise to diverse populations of excitatory cortical neurons, followed by astrocytes and oligodendrocytes. A subpopulation of these embryonic neural precursors persists into adulthood as neural stem cells, which give rise to inhibitory interneurons and glia. Although the intrinsic mechanisms instructing the genesis of these distinct progeny have been well-studied, most work to date has focused on transcriptional, epigenetic, and cell-cycle control. Recent studies, however, have shown that posttranscriptional mechanisms also regulate the cell fate choices of transcriptionally primed neural precursors during cortical development. These mechanisms are mediated primarily by RNA-binding proteins and microRNAs that coordinately regulate mRNA translation, stability, splicing, and localization. Together, these findings point to an extensive network of posttranscriptional control and provide insight into both normal cortical development and disease. They also add another layer of complexity to brain development and raise important biological questions for future investigation.
Collapse
|
33
|
Platel JC, Angelova A, Bugeon S, Wallace J, Ganay T, Chudotvorova I, Deloulme JC, Béclin C, Tiveron MC, Coré N, Murthy VN, Cremer H. Neuronal integration in the adult mouse olfactory bulb is a non-selective addition process. eLife 2019; 8:44830. [PMID: 31294694 PMCID: PMC6634973 DOI: 10.7554/elife.44830] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 07/07/2019] [Indexed: 12/25/2022] Open
Abstract
Adult neurogenesis in the olfactory bulb (OB) is considered as a competition in which neurons scramble during a critical selection period for integration and survival. Moreover, newborn neurons are thought to replace pre-existing ones that die. Despite indirect evidence supporting this model, systematic in vivo observations are still scarce. We used two-photon in vivo imaging to study neuronal integration and survival. We show that loss of new neurons in the OB after arrival at terminal positions occurs only at low levels. Moreover, long-term observations showed that no substantial cell death occurred at later stages. Neuronal death was induced by standard doses of thymidine analogs, but disappeared when low doses were used. Finally, we demonstrate that the OB grows throughout life. This shows that neuronal selection during OB-neurogenesis does not occur after neurons reached stable positions. Moreover, this suggests that OB neurogenesis does not represent neuronal turnover but lifelong neuronal addition.
Collapse
Affiliation(s)
| | | | - Stephane Bugeon
- Aix-Marseille University, CNRS, IBDM, UMR 7288, Marseille, France
| | - Jenelle Wallace
- Department of Molecular & Cellular Biology, Harvard University, Cambridge, United States
| | - Thibault Ganay
- Aix-Marseille University, CNRS, IBDM, UMR 7288, Marseille, France
| | | | | | | | | | - Nathalie Coré
- Aix-Marseille University, CNRS, IBDM, UMR 7288, Marseille, France
| | - Venkatesh N Murthy
- Department of Molecular & Cellular Biology, Harvard University, Cambridge, United States
| | - Harold Cremer
- Aix-Marseille University, CNRS, IBDM, UMR 7288, Marseille, France
| |
Collapse
|
34
|
Reddy AP, Ravichandran J, Carkaci-Salli N. Neural regeneration therapies for Alzheimer's and Parkinson's disease-related disorders. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165506. [PMID: 31276770 DOI: 10.1016/j.bbadis.2019.06.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 12/20/2022]
Abstract
Neurodegenerative diseases are devastating mental illnesses without a cure. Alzheimer's disease (AD) characterized by memory loss, multiple cognitive impairments, and changes in personality and behavior. Although tremendous progress has made in understanding the basic biology in disease processes in AD and PD, we still do not have early detectable biomarkers for these diseases. Just in the United States alone, federal and nonfederal funding agencies have spent billions of dollars on clinical trials aimed at finding drugs, but we still do not have a drug or an agent that can slow the AD or PD disease process. One primary reason for this disappointing result may be that the clinical trials enroll patients with AD or PD at advances stages. Although many drugs and agents are tested preclinical and are promising, in human clinical trials, they are mostly ineffective in slowing disease progression. One therapy that has been promising is 'stem cell therapy' based on cell culture and pre-clinical studies. In the few clinical studies that have investigated therapies in clinical trials with AD and PD patients at stage I. The therapies, such as stem cell transplantation - appear to delay the symptoms in AD and PD. The purpose of this article is to describe clinical trials using 1) stem cell transplantation methods in AD and PD mouse models and 2) regenerative medicine in AD and PD mouse models, and 3) the current status of investigating preclinical stem cell transplantation in patients with AD and PD.
Collapse
Affiliation(s)
- Arubala P Reddy
- Pharmacology & Neuroscience Department, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States.
| | - Janani Ravichandran
- Texas Tech University Health Sciences Center El Paso, 5001 El Paso Drive, El Paso, TX 79905, United States.
| | - Nurgul Carkaci-Salli
- Department of Pharmacology, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033.
| |
Collapse
|
35
|
Deep Sequencing Identification of Differentially Expressed miRNAs in the Spinal Cord of Resiniferatoxin-Treated Rats in Response to Electroacupuncture. Neurotox Res 2019; 36:387-395. [PMID: 31124075 DOI: 10.1007/s12640-019-00052-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 03/29/2019] [Accepted: 04/23/2019] [Indexed: 01/26/2023]
Abstract
Electroacupuncture (EA) is an effective treatment to relieve pain in patients with postherpetic neuralgia. However, the mechanisms of EA involved therein are still unknown. We first injected resiniferatoxin (RTX) into Sprague Dawley rats to construct the neuralgia model. One week after injection, the rats were treated with EA at the "Huantiao" (GB30) and "Yanglingquan" (GB34) acupoints for 5 weeks. Nociceptive behavioral tests were performed to analyze the changes in thermal sensitivity and mechanical allodynia after RTX induction and EA treatment. Deep sequencing was performed to identify differentially expressed miRNAs in the spinal cord of RTX-induced rats in response to EA treatment. The nociceptive behavioral tests showed that EA at the left GB30 and GB34 acupoints significantly reduced RTX-induced tactile sensitivity and increased RTX-inhibited thermal sensitivity. The sequencing data indicated that RTX resulted in one upregulated and five downregulated miRNAs, and EA treatment resulted in two upregulated miRNAs. Furthermore, seven upregulated and two downregulated miRNAs were found between rats subjected to EA and sham operation. Functional analysis suggested that the targets of differentially expressed miRNAs were enriched in many nervous system-related pathways. The pathway-gene-miRNA net analysis showed that miR-7a-5p had the most target genes. Moreover, miR-233-3p was downregulated after RTX injection and upregulated by EA treatment. We speculated that the upregulation of miR-7a-5p and miR-233-3p is involved in the analgesic effects of EA. Our analysis on the EA-induced differential expression of miRNAs provides novel insights into the mechanisms of EA analgesia in postherpetic neuralgia.
Collapse
|
36
|
Angelova A, Platel JC, Béclin C, Cremer H, Coré N. Characterization of perinatally born glutamatergic neurons of the mouse olfactory bulb based on NeuroD6 expression reveals their resistance to sensory deprivation. J Comp Neurol 2019; 527:1245-1260. [PMID: 30592042 DOI: 10.1002/cne.24621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/21/2018] [Accepted: 12/21/2018] [Indexed: 11/10/2022]
Abstract
During postnatal olfactory bulb (OB) neurogenesis, predetermined stem cells residing in the ventricular-subventricular zone continuously generate progenitors that migrate in the rostral migratory stream and integrate into the OB. Although the vast majority of these postnatally generated interneurons are inhibitory, a sub-fraction represents glutamatergic neurons that integrate into the superficial glomerular layer. In the present work, we demonstrate that the bHLH transcription factor NeuroD6 is specifically and transitorily expressed in the dorsal neurogenic lineage that generates glutamatergic juxtaglomerular cells (JGCs) for the OB. Using lineage tracing combined with whole brain clearing, we provide new insight into timing of generation, morphology, and connectivity of glutamatergic JGCs. Specifically, we show that all glutamatergic JGCs send complex axons with varying projection patterns into different layers of the OB. Moreover, we find that, contrary to GABAergic OB interneurons, glutamatergic JGCs survive under sensory deprivation, indicating that inhibitory and excitatory populations are differentially susceptible to environmental stimulation.
Collapse
Affiliation(s)
- Alexandra Angelova
- Aix Marseille Univ, CNRS UMR 7288, Developmental Biology Institute of Marseille (IBDM), Parc scientifique de Luminy, Marseille, France
| | - Jean-Claude Platel
- Aix Marseille Univ, CNRS UMR 7288, Developmental Biology Institute of Marseille (IBDM), Parc scientifique de Luminy, Marseille, France
| | - Christophe Béclin
- Aix Marseille Univ, CNRS UMR 7288, Developmental Biology Institute of Marseille (IBDM), Parc scientifique de Luminy, Marseille, France
| | - Harold Cremer
- Aix Marseille Univ, CNRS UMR 7288, Developmental Biology Institute of Marseille (IBDM), Parc scientifique de Luminy, Marseille, France
| | - Nathalie Coré
- Aix Marseille Univ, CNRS UMR 7288, Developmental Biology Institute of Marseille (IBDM), Parc scientifique de Luminy, Marseille, France
| |
Collapse
|
37
|
Yang FR, Chen J, Yi H, Peng LY, Hu XL, Guo QL. MicroRNA-7a ameliorates neuropathic pain in a rat model of spinal nerve ligation via the neurofilament light polypeptide-dependent signal transducer and activator of transcription signaling pathway. Mol Pain 2019; 15:1744806919842464. [PMID: 30987515 PMCID: PMC6537231 DOI: 10.1177/1744806919842464] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Neuropathic pain is a type of chronic pain induced by either central or
peripheral nerve injury. MicroRNAs have been recently linked to many diseases,
including neuropathic pain. However, the role of miR-7a in neuropathic pain
still remains elusive. Thus, we aim to investigate the effects of miR-7a on
neuropathic pain based on the spinal nerve ligation rat model. After
establishment of spinal nerve ligation rat models, rats were infected with
adeno-associated virus-neurofilament light polypeptide, adeno-associated
virus-miR-7a or treated with metformin. The paw withdrawal threshold and paw
withdrawal latency were assessed afterward, and the expression of miR-7a and
neurofilament light polypeptide as well as their interaction was determined.
Subsequently, miR-7a was overexpressed or silenced in dorsal root ganglion cells
to investigate the role of miR-7a in neuropathic pain. Furthermore, the
regulatory effect of neurofilament light polypeptide on neuropathic pain was
detected using plasmid overexpressing neurofilament light polypeptide. Spinal
nerve ligation rat model exhibited upregulation of neurofilament light
polypeptide but downregulation of miR-7a. In addition, neurofilament light
polypeptide accumulation or miR-7a inhibition decreased paw withdrawal threshold
and paw withdrawal latency. Then, neurofilament light polypeptide accumulation
or miR-7a inhibition was observed to increase the phosphorylation level of
signal transducer and activator of transcription. miR-7a was found to directly
target neurofilament light polypeptide and downregulate neurofilament light
polypeptide. In addition, inhibiting the signal transducer and activator of
transcription signaling pathway was also revealed to increase paw withdrawal
threshold and paw withdrawal latency. Collectively, our study demonstrated that
miR-7a ameliorated neuropathic pain via blocking the signal transducer and
activator of transcription signaling pathway by repressing neurofilament light
polypeptide. These findings, if taken further, can be of important clinical
significance in treating patients with neuropathic pain.
Collapse
Affiliation(s)
- Feng-Rui Yang
- 1 Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, P.R. China.,2 Department of Anesthesiology, the First Affiliated Hospital of University of South China, Hengyang, P.R. China
| | - Ji Chen
- 3 Department of Endocrinology, the First Affiliated Hospital of University of South China, Hengyang, P.R. China
| | - Han Yi
- 2 Department of Anesthesiology, the First Affiliated Hospital of University of South China, Hengyang, P.R. China
| | - Liang-Yu Peng
- 2 Department of Anesthesiology, the First Affiliated Hospital of University of South China, Hengyang, P.R. China
| | - Xiao-Ling Hu
- 2 Department of Anesthesiology, the First Affiliated Hospital of University of South China, Hengyang, P.R. China
| | - Qu-Lian Guo
- 1 Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, P.R. China
| |
Collapse
|
38
|
Obernier K, Alvarez-Buylla A. Neural stem cells: origin, heterogeneity and regulation in the adult mammalian brain. Development 2019; 146:146/4/dev156059. [PMID: 30777863 DOI: 10.1242/dev.156059] [Citation(s) in RCA: 343] [Impact Index Per Article: 57.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the adult rodent brain, neural stem cells (NSCs) persist in the ventricular-subventricular zone (V-SVZ) and the subgranular zone (SGZ), which are specialized niches in which young neurons for the olfactory bulb (OB) and hippocampus, respectively, are generated. Recent studies have significantly modified earlier views on the mechanisms of NSC self-renewal and neurogenesis in the adult brain. Here, we discuss the molecular control, heterogeneity, regional specification and cell division modes of V-SVZ NSCs, and draw comparisons with NSCs in the SGZ. We highlight how V-SVZ NSCs are regulated by local signals from their immediate neighbors, as well as by neurotransmitters and factors that are secreted by distant neurons, the choroid plexus and vasculature. We also review recent advances in single cell RNA analyses that reveal the complexity of adult neurogenesis. These findings set the stage for a better understanding of adult neurogenesis, a process that one day may inspire new approaches to brain repair.
Collapse
Affiliation(s)
- Kirsten Obernier
- Eli and Edythe Broad Institute for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, CA 94143, USA.,Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
| | - Arturo Alvarez-Buylla
- Eli and Edythe Broad Institute for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, CA 94143, USA .,Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
39
|
The role of Pax6 in brain development and its impact on pathogenesis of autism spectrum disorder. Brain Res 2019; 1705:95-103. [DOI: 10.1016/j.brainres.2018.02.041] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 02/23/2018] [Accepted: 02/24/2018] [Indexed: 12/14/2022]
|
40
|
Rushing GV, Bollig MK, Ihrie RA. Heterogeneity of Neural Stem Cells in the Ventricular-Subventricular Zone. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1169:1-30. [PMID: 31487016 DOI: 10.1007/978-3-030-24108-7_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In this chapter, heterogeneity is explored in the context of the ventricular-subventricular zone, the largest stem cell niche in the mammalian brain. This niche generates up to 10,000 new neurons daily in adult mice and extends over a large spatial area with dorso-ventral and medio-lateral subdivisions. The stem cells of the ventricular-subventricular zone can be subdivided by their anatomical position and transcriptional profile, and the stem cell lineage can also be further subdivided into stages of pre- and post-natal quiescence and activation. Beyond the stem cells proper, additional differences exist in their interactions with other cellular constituents of the niche, including neurons, vasculature, and cerebrospinal fluid. These variations in stem cell potential and local interactions are discussed, as well as unanswered questions within this system.
Collapse
Affiliation(s)
- Gabrielle V Rushing
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.,Neuroscience Program, Vanderbilt University, Nashville, TN, USA
| | - Madelyn K Bollig
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.,Neuroscience Program, Vanderbilt University, Nashville, TN, USA
| | - Rebecca A Ihrie
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA. .,Neuroscience Program, Vanderbilt University, Nashville, TN, USA. .,Department of Neurological Surgery, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
41
|
Investigation of Circulating Serum MicroRNA-328-3p and MicroRNA-3135a Expression as Promising Novel Biomarkers for Autism Spectrum Disorder. Balkan J Med Genet 2018; 21:5-12. [PMID: 30984518 PMCID: PMC6454235 DOI: 10.2478/bjmg-2018-0026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Circulating microRNAs (miRNAs) are emerging as promising diagnostic biomarkers for autism spectrum disorder (ASD), but their usefulness for detecting ASD remains unclear. Nowadays, development of promising biomarkers for ASD remains a challenge. Recently, dysregulation of the miRNAs expression in postmortem brain tissue, serum and peripheral blood, have been associated with ASD. Circulating miRNAs are known to be secreted by a number of different cells and can interpose delivery of information into receiver cells, thus affecting their functions. Based on this fact, it is supposed that serum miRNAs could be a novel class of biomarkers for prognosis or diagnosis of pathological disorders including ASD. In the current research, we investigated whether the expression patterns of circulating miRNAs showed dysregulation in subjects diagnosed with ASD. Expression levels of serum miR-328-3p and miR-3135a were analyzed by quantitative reverse transcription polymerase chain reaction (qRT-PCR) method of subjects diagnosed with ASD in comparison with healthy control subjects. Our data showed that miR-328-3p and miR-3135a were substantially down-regulated in ASD patients than in those of healthy control subjects. Moreover, target gene analysis of altered serum miRNAs displayed that these molecules targeted 162 genes denoted as unique validated targets in the miRWalk database, 71 of which appear to participate in biological pathways involved in synaptic pathways and neurodegenerative condition such as Alzheimer, Huntington and Parkinson diseases. Finally, the results strongly suggested that dys-regulated serum miRNAs might be involved in molecular pathways associated with ASD and miR-328-3p and miR-3135a have the potential to be promising novel biomarkers for ASD.
Collapse
|
42
|
Ryan BC, Lowe K, Hanson L, Gil T, Braun L, Howard PL, Chow RL. Mapping the Pax6 3' untranslated region microRNA regulatory landscape. BMC Genomics 2018; 19:820. [PMID: 30442116 PMCID: PMC6238409 DOI: 10.1186/s12864-018-5212-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 10/31/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND PAX6 is a homeodomain transcription factor that acts in a highly dosage-sensitive manner to regulate the development and function of the eyes, nose, central nervous system, gut, and endocrine pancreas. Several individual microRNAs (miRNA) have been implicated in regulating PAX6 in different cellular contexts, but a more general view of how they contribute to the fine-tuning and homeostasis of PAX6 is poorly understood. RESULTS Here, a comprehensive analysis of the Pax6 3' untranslated region was performed to map potential miRNA recognition elements and served as a backdrop for miRNA expression profiling experiments to identify potential cell/tissue-specific miRNA codes. Pax6 3'UTR pull-down studies identified a cohort of miRNA interactors in pancreatic αTC1-6 cells that, based on the spacing of their recognition sites in the Pax6 3'UTR, revealed 3 clusters where cooperative miRNA regulation may occur. Some of these interacting miRNAs have been implicated in α cell function but have not previously been linked to Pax6 function and may therefore represent novel PAX6 regulators. CONCLUSIONS These findings reveal a regulatory landscape upon which miRNAs may participate in the developmental control, fine-tuning and/or homeostasis of PAX6 levels.
Collapse
Affiliation(s)
- Bridget C. Ryan
- Department of Biology, University of Victoria, Victoria, BC V8W 3N5 Canada
| | - Kieran Lowe
- Department of Biology, University of Victoria, Victoria, BC V8W 3N5 Canada
| | - Laura Hanson
- Department of Biology, University of Victoria, Victoria, BC V8W 3N5 Canada
| | - Talveen Gil
- Department of Biology, University of Victoria, Victoria, BC V8W 3N5 Canada
| | - Lauren Braun
- Department of Biology, University of Victoria, Victoria, BC V8W 3N5 Canada
| | - Perry L. Howard
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 2Y2 Canada
| | - Robert L. Chow
- Department of Biology, University of Victoria, Victoria, BC V8W 3N5 Canada
| |
Collapse
|
43
|
Vasilyeva TA, Voskresenskaya AA, Pozdeyeva NA, Marakhonov AV, Zinchenko RA. PAX6 Gene Characteristic and Causative Role of PAX6 Mutations in Inherited Eye Pathologies. RUSS J GENET+ 2018. [DOI: 10.1134/s1022795418090156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
44
|
Yongblah K, Alford SC, Ryan BC, Chow RL, Howard PL. Protecting Pax6 3' UTR from MicroRNA-7 Partially Restores PAX6 in Islets from an Aniridia Mouse Model. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 13:144-153. [PMID: 30290306 PMCID: PMC6171161 DOI: 10.1016/j.omtn.2018.08.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 08/16/2018] [Accepted: 08/27/2018] [Indexed: 02/06/2023]
Abstract
Aniridia is a rare congenital syndrome that is associated with reduced visual acuity and progressive loss of vision. Aniridia patients may also develop systemic health issues associated with defects in the pancreas, digestive, and central nervous systems. The spectrum of symptoms associated with aniridia is due to haploinsufficiency of the paired box 6 gene (PAX6) and its role in the development and maintenance of the affected tissues. Here, we isolated pancreatic islets from mice heterozygous for Pax6 to test whether a Pax6-specific miRNA suppression (target protector) strategy can restore PAX6 protein levels. We show that miR-7 and miR-375 target specific sites within the Pax6 3' UTR in a mouse pancreatic β-insulinoma cell line. Tough decoys (Tuds) against miR-7 and miR-375 increase expression of a mouse Pax6 3' UTR luciferase reporter and increase PAX6 protein levels in these cells. Finally, we demonstrate that the shielding of the miR-7 binding site with a target protector restores PAX6 protein levels in the Pax6 heterozygous islets. The data presented here represent a proof of concept for RNA-based therapy for the progressive defects associated with aniridia and suggest the target protector approach may be a useful therapeutic strategy for other haploinsufficiency diseases.
Collapse
Affiliation(s)
- Kevin Yongblah
- Department of Biochemistry and Microbiology, University of Victoria, P.O. Box 1700 STN CSC, Victoria, BC V8W2Y2, Canada
| | - Spencer C Alford
- Department of Biochemistry and Microbiology, University of Victoria, P.O. Box 1700 STN CSC, Victoria, BC V8W2Y2, Canada
| | - Bridget C Ryan
- Department of Biology, University of Victoria, P.O. Box 1700 STN CSC, Victoria, BC V8W 2Y2, Canada
| | - Robert L Chow
- Department of Biology, University of Victoria, P.O. Box 1700 STN CSC, Victoria, BC V8W 2Y2, Canada
| | - Perry L Howard
- Department of Biochemistry and Microbiology, University of Victoria, P.O. Box 1700 STN CSC, Victoria, BC V8W2Y2, Canada.
| |
Collapse
|
45
|
Zhang L, Mubarak T, Chen Y, Lee T, Pollock A, Sun T. Counter-Balance Between Gli3 and miR-7 Is Required for Proper Morphogenesis and Size Control of the Mouse Brain. Front Cell Neurosci 2018; 12:259. [PMID: 30210296 PMCID: PMC6121149 DOI: 10.3389/fncel.2018.00259] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 07/30/2018] [Indexed: 12/25/2022] Open
Abstract
Brain morphogenesis requires precise regulation of multiple genes to control specification of distinct neural progenitors (NPs) and neuronal production. Dysregulation of these genes results in severe brain malformation such as macrocephaly and microcephaly. Despite studies of the effect of individual pathogenic genes, the counter-balance between multiple factors in controlling brain size remains unclear. Here we show that cortical deletion of Gli3 results in enlarged brain and folding structures in the cortical midline at the postnatal stage, which is mainly caused by the increased percentage of intermediate progenitors (IPs) and newborn neurons. In addition, dysregulation of neuronal migration also contributes to the folding defects in the cortical midline region. Knockdown of microRNA (miRNA) miR-7 can rescue abnormal brain morphology in Gli3 knockout mice by recovering progenitor specification, neuronal production and migration through a counter-balance of the Gli3 activity. Moreover, miR-7 likely exerts its function through silencing target gene Pax6. Our results indicate that proper brain morphogenesis is an outcome of interactive regulations of multiple molecules such as Gli3 and miR-7. Because miRNAs are easy to synthesize and deliver, miR-7 could be a potential therapeutic means to macrocephaly caused by Gli3-deficiency.
Collapse
Affiliation(s)
- Longbin Zhang
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, China
| | - Taufif Mubarak
- Department of Cell and Developmental Biology, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Yase Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Trevor Lee
- Department of Cell and Developmental Biology, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Andrew Pollock
- Department of Cell and Developmental Biology, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Tao Sun
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, China
- Department of Cell and Developmental Biology, Weill Cornell Medicine, Cornell University, New York, NY, United States
| |
Collapse
|
46
|
Vieira MS, Santos AK, Vasconcellos R, Goulart VAM, Parreira RC, Kihara AH, Ulrich H, Resende RR. Neural stem cell differentiation into mature neurons: Mechanisms of regulation and biotechnological applications. Biotechnol Adv 2018; 36:1946-1970. [PMID: 30077716 DOI: 10.1016/j.biotechadv.2018.08.002] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 07/31/2018] [Accepted: 08/01/2018] [Indexed: 02/07/2023]
Abstract
The abilities of stem cells to self-renew and form different mature cells expand the possibilities of applications in cell-based therapies such as tissue recomposition in regenerative medicine, drug screening, and treatment of neurodegenerative diseases. In addition to stem cells found in the embryo, various adult organs and tissues have niches of stem cells in an undifferentiated state. In the central nervous system of adult mammals, neurogenesis occurs in two regions: the subventricular zone and the dentate gyrus in the hippocampus. The generation of the different neural lines originates in adult neural stem cells that can self-renew or differentiate into astrocytes, oligodendrocytes, or neurons in response to specific stimuli. The regulation of the fate of neural stem cells is a finely controlled process relying on a complex regulatory network that extends from the epigenetic to the translational level and involves extracellular matrix components. Thus, a better understanding of the mechanisms underlying how the process of neurogenesis is induced, regulated, and maintained will provide elues for development of novel for strategies for neurodegenerative therapies. In this review, we focus on describing the mechanisms underlying the regulation of the neuronal differentiation process by transcription factors, microRNAs, and extracellular matrix components.
Collapse
Affiliation(s)
- Mariana S Vieira
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Instituto Nanocell, Divinopólis, MG, Brazil
| | - Anderson K Santos
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Rebecca Vasconcellos
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Instituto Nanocell, Divinopólis, MG, Brazil
| | - Vânia A M Goulart
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ricardo C Parreira
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Instituto Nanocell, Divinopólis, MG, Brazil
| | - Alexandre H Kihara
- Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| | - Henning Ulrich
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, SP, Brazil.
| | - Rodrigo R Resende
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Instituto Nanocell, Divinopólis, MG, Brazil.
| |
Collapse
|
47
|
He H, Li W, Peng M, Qin J, Shi J, Li H, Tian M, Zhang X, Lv G, Jin G. MicroRNA expression profiles of neural stem cells following valproate inducement. J Cell Biochem 2018; 119:6204-6215. [PMID: 29575035 DOI: 10.1002/jcb.26831] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 02/28/2018] [Indexed: 12/18/2022]
Abstract
Neural stem cells (NSCs) possess self-renewal and multilineage differentiation ability, thus are considered to be a potential source for cell replacement therapy of many nervous system diseases, such as neurodegenerative diseases. Valproate (VPA), a member of histone deacetylase inhibitor family, is an epigenetic regulator and can promote NSCs to differentiate into neurons, nevertheless, the underlying mechanisms of the process remain unclear. MicroRNAs (miRNAs) exert a crucial part in the posttranscriptional regulation of gene expression. Epigenetic mechanisms involve in the regulation of miRNAs expression. Therefore we speculated that miRNAs may be important factors during the promotion of neuronal differentiation by VPA. Here, after selecting appropriate concentration and treatment time of VPA, we conducted microRNA arrays at 24 h on the treatment of 1 mM VPA or vehicle. After validation, we obtained 5 significantly upregulated miRNAs (miR-29a-5p, miR-674-5p, miR-155-5p, miR-652-3p, and miR-210-3p) in VPA group compared with control. We predicted the target genes of these miRNAs on the website. Through gene ontology (GO) and pathway analyses, we obtained preliminary comprehension of the function of these genes. The bioinformatics analyses indicated the involvement of them during neurogenesis. In addition, we observed high expression of miR-210-3p, miR-29a-5p, and miR-674-5p in central nervous system, which suggested that they were likely to play crucial roles in neuronal differentiation. We then defined the upregulation of Map2 by transfecting mimic of miR-674-5p, which indicated the promotion of miR-674-5p on NSCs differentiation. The present study explored the miRNAs potentially mediated the function of VPA on promoting NSCs to differentiate into neurons.
Collapse
Affiliation(s)
- Hui He
- Department of Human Anatomy, Medical School, Nantong University, Nantong, Jiangsu, PR China
| | - Wen Li
- Department of Human Anatomy, Medical School, Nantong University, Nantong, Jiangsu, PR China
| | - Min Peng
- Department of Human Anatomy, Medical School, Nantong University, Nantong, Jiangsu, PR China
| | - Jianbing Qin
- Department of Human Anatomy, Medical School, Nantong University, Nantong, Jiangsu, PR China
| | - Jinhong Shi
- Department of Human Anatomy, Medical School, Nantong University, Nantong, Jiangsu, PR China
| | - Haoming Li
- Department of Human Anatomy, Medical School, Nantong University, Nantong, Jiangsu, PR China
| | - Meiling Tian
- Department of Human Anatomy, Medical School, Nantong University, Nantong, Jiangsu, PR China
| | - Xinhua Zhang
- Department of Human Anatomy, Medical School, Nantong University, Nantong, Jiangsu, PR China
| | - Guangming Lv
- Department of Human Anatomy, Medical School, Nantong University, Nantong, Jiangsu, PR China.,Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu, PR China
| | - Guohua Jin
- Department of Human Anatomy, Medical School, Nantong University, Nantong, Jiangsu, PR China.,Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu, PR China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, PR China
| |
Collapse
|
48
|
Jung Y, Goldman D. Role of RNA modifications in brain and behavior. GENES, BRAIN, AND BEHAVIOR 2018; 17:e12444. [PMID: 29244246 PMCID: PMC6233296 DOI: 10.1111/gbb.12444] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 03/07/2018] [Indexed: 12/23/2022]
Abstract
Much progress in our understanding of RNA metabolism has been made since the first RNA nucleoside modification was identified in 1957. Many of these modifications are found in noncoding RNAs but recent interest has focused on coding RNAs. Here, we summarize current knowledge of cellular consequences of RNA modifications, with a special emphasis on neuropsychiatric disorders. We present evidence for the existence of an "RNA code," similar to the histone code, that fine-tunes gene expression in the nervous system by using combinations of different RNA modifications. Unlike the relatively stable genetic code, this combinatorial RNA epigenetic code, or epitranscriptome, may be dynamically reprogrammed as a cause or consequence of psychiatric disorders. We discuss potential mechanisms linking disregulation of the epitranscriptome with brain disorders and identify potential new avenues of research.
Collapse
Affiliation(s)
- Y. Jung
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
| | - D. Goldman
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
- Office of the Clinical Director, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
| |
Collapse
|
49
|
Mo JL, Liu Q, Kou ZW, Wu KW, Yang P, Chen XH, Sun FY. MicroRNA-365 modulates astrocyte conversion into neuron in adult rat brain after stroke by targeting Pax6. Glia 2018; 66:1346-1362. [PMID: 29451327 PMCID: PMC6001668 DOI: 10.1002/glia.23308] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 01/18/2018] [Accepted: 01/29/2018] [Indexed: 01/01/2023]
Abstract
Reactive astrocytes induced by ischemia can transdifferentiate into mature neurons. This neurogenic potential of astrocytes may have therapeutic value for brain injury. Epigenetic modifications are widely known to involve in developmental and adult neurogenesis. PAX6, a neurogenic fate determinant, contributes to the astrocyte‐to‐neuron conversion. However, it is unclear whether microRNAs (miRs) modulate PAX6‐mediated astrocyte‐to‐neuron conversion. In the present study we used bioinformatic approaches to predict miRs potentially targeting Pax6, and transient middle cerebral artery occlusion (MCAO) to model cerebral ischemic injury in adult rats. These rats were given striatal injection of glial fibrillary acidic protein targeted enhanced green fluorescence protein lentiviral vectors (Lv‐GFAP‐EGFP) to permit cell fate mapping for tracing astrocytes‐derived neurons. We verified that miR‐365 directly targets to the 3′‐UTR of Pax6 by luciferase assay. We found that miR‐365 expression was significantly increased in the ischemic brain. Intraventricular injection of miR‐365 antagomir effectively increased astrocytic PAX6 expression and the number of new mature neurons derived from astrocytes in the ischemic striatum, and reduced neurological deficits as well as cerebral infarct volume. Conversely, miR‐365 agomir reduced PAX6 expression and neurogenesis, and worsened brain injury. Moreover, exogenous overexpression of PAX6 enhanced the astrocyte‐to‐neuron conversion and abolished the effects of miR‐365. Our results demonstrate that increase of miR‐365 in the ischemic brain inhibits astrocyte‐to‐neuron conversion by targeting Pax6, whereas knockdown of miR‐365 enhances PAX6‐mediated neurogenesis from astrocytes and attenuates neuronal injury in the brain after ischemic stroke. Our findings provide a foundation for developing novel therapeutic strategies for brain injury.
Collapse
Affiliation(s)
- Jia-Lin Mo
- Department of Neurobiology and State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Qi Liu
- Department of Neurobiology and State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zeng-Wei Kou
- Department of Neurobiology and State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Kun-Wei Wu
- Department of Neurobiology and State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Institute for Basic Research on Aging and Medicine, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ping Yang
- Department of Neurobiology and State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xian-Hua Chen
- Department of Neurobiology and State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Feng-Yan Sun
- Department of Neurobiology and State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Research Center on Aging and Medicine, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Institute for Basic Research on Aging and Medicine, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| |
Collapse
|
50
|
Delgado RN, Lim DA. Maintenance of Positional Identity of Neural Progenitors in the Embryonic and Postnatal Telencephalon. Front Mol Neurosci 2017; 10:373. [PMID: 29180952 PMCID: PMC5693875 DOI: 10.3389/fnmol.2017.00373] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/26/2017] [Indexed: 12/27/2022] Open
Abstract
Throughout embryonic development and into postnatal life, regionally distinct populations of neural progenitor cells (NPCs) collectively generate the many different types of neurons that underlie the complex structure and function of the adult mammalian brain. At very early stages of telencephalic development, NPCs become organized into regional domains that each produce different subsets of neurons. This positional identity of NPCs relates to the regional expression of specific, fate-determining homeodomain transcription factors. As development progresses, the brain undergoes vast changes in both size and shape, yet important aspects of NPC positional identity persist even into the postnatal brain. How can NPC positional identity, which is established so early in brain development, endure the many dynamic, large-scale and complex changes that occur over a relatively long period of time? In this Perspective article, we review data and concepts derived from studies in Drosophila regarding the function of homeobox (Hox) genes, Polycomb group (PcG) and trithorax group (trxG) chromatin regulators. We then discuss how this knowledge may contribute to our understanding of the maintenance of positional identity of NPCs in the mammalian telencephalon. Similar to the axial body plan of Drosophila larvae, there is a segmental nature to NPC positional identity, with loss of specific homeodomain transcription factors causing homeotic-like shifts in brain development. Finally, we speculate about the role of mammalian PcG and trxG factors in the long-term maintenance of NPC positional identity and certain neurodevelopmental disorders.
Collapse
Affiliation(s)
- Ryan N Delgado
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA,, United States.,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA,, United States.,Biomedical Sciences Program, University of California, San Francisco, San Francisco, CA,, United States.,Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA,, United States
| | - Daniel A Lim
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA,, United States.,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA,, United States.,San Francisco Veterans Affairs Medical Center, San Francisco, CA,, United States
| |
Collapse
|