1
|
Carro‐Domínguez M, Huwiler S, Stich FM, Sala R, Aziri F, Trippel A, Heimhofer C, Huber R, Meissner SN, Wenderoth N, Lustenberger C. Overnight changes in performance fatigability and their relationship to modulated deep sleep oscillations via auditory stimulation. J Sleep Res 2025; 34:e14371. [PMID: 39420437 PMCID: PMC12069738 DOI: 10.1111/jsr.14371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/11/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024]
Abstract
Deep sleep oscillations are proposed to be central in restoring brain function and to affect different aspects of motor performance such as facilitating the consolidation of motor sequences resulting in faster and more accurate sequence tapping. Yet, whether deep sleep modulates performance fatigability during fatiguing tasks remains unexplored. We investigated overnight changes in tapping speed and resistance against performance fatigability via a finger tapping task. During fast tapping, fatigability manifests as a reduction in speed (or "motor slowing") which affects all tapping tasks, including motor sequences used to study motor memory formation. We further tested whether overnight changes in performance fatigability are influenced by enhancing deep sleep oscillations using auditory stimulation. We found an overnight increase in tapping speed alongside a reduction in performance fatigability and perceived workload. Auditory stimulation led to a global enhancement of slow waves and both slow and fast spindles during the stimulation window and a local increase in slow spindles in motor areas across the night. However, overnight performance improvements were not significantly modulated by auditory stimulation and changes in tapping speed or performance fatigability were not predicted by individual changes in deep sleep oscillations. Our findings demonstrate overnight changes in fatigability but revealed no evidence suggesting that this effect is causally linked to temporary augmentation of slow waves or sleep spindles. Our results are important for future studies using tapping tasks to test the relationship between sleep and motor memory consolidation, as overnight changes in objectively measured and subjectively perceived fatigue likely impact behavioural outcomes.
Collapse
Affiliation(s)
- Manuel Carro‐Domínguez
- Neural Control of Movement Laboratory, Institute of Human Movement Sciences and Sport, Department of Health Sciences and TechnologyETH ZurichZurichSwitzerland
| | - Stephanie Huwiler
- Neural Control of Movement Laboratory, Institute of Human Movement Sciences and Sport, Department of Health Sciences and TechnologyETH ZurichZurichSwitzerland
| | - Fabia M. Stich
- Neural Control of Movement Laboratory, Institute of Human Movement Sciences and Sport, Department of Health Sciences and TechnologyETH ZurichZurichSwitzerland
| | - Rossella Sala
- Neural Control of Movement Laboratory, Institute of Human Movement Sciences and Sport, Department of Health Sciences and TechnologyETH ZurichZurichSwitzerland
| | - Florent Aziri
- Neural Control of Movement Laboratory, Institute of Human Movement Sciences and Sport, Department of Health Sciences and TechnologyETH ZurichZurichSwitzerland
| | - Anna Trippel
- Neural Control of Movement Laboratory, Institute of Human Movement Sciences and Sport, Department of Health Sciences and TechnologyETH ZurichZurichSwitzerland
| | - Caroline Heimhofer
- Neural Control of Movement Laboratory, Institute of Human Movement Sciences and Sport, Department of Health Sciences and TechnologyETH ZurichZurichSwitzerland
| | - Reto Huber
- Centre of Competence Sleep & Health ZurichUniversity of ZurichZurichSwitzerland
- Neuroscience Centre Zurich (ZNZ)University of Zurich, ETH ZurichZurichSwitzerland
- Child Development CentreUniversity Children's Hospital, University of ZurichZurichSwitzerland
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital ZurichUniversity of ZurichZurichSwitzerland
| | - Sarah Nadine Meissner
- Neural Control of Movement Laboratory, Institute of Human Movement Sciences and Sport, Department of Health Sciences and TechnologyETH ZurichZurichSwitzerland
| | - Nicole Wenderoth
- Neural Control of Movement Laboratory, Institute of Human Movement Sciences and Sport, Department of Health Sciences and TechnologyETH ZurichZurichSwitzerland
- Neuroscience Centre Zurich (ZNZ)University of Zurich, ETH ZurichZurichSwitzerland
- Future Health Technologies, Singapore‐ETH CenterCampus for Research Excellence and Technological Enterprise (CREATE)Singapore
| | - Caroline Lustenberger
- Neural Control of Movement Laboratory, Institute of Human Movement Sciences and Sport, Department of Health Sciences and TechnologyETH ZurichZurichSwitzerland
- Centre of Competence Sleep & Health ZurichUniversity of ZurichZurichSwitzerland
- Neuroscience Centre Zurich (ZNZ)University of Zurich, ETH ZurichZurichSwitzerland
| |
Collapse
|
2
|
Kumar G, Naaz S, Jabin N, Sasidharan A, Nagendra RP, Yadav R, Kutty BM. Neurophysiological features of dream recall and the phenomenology of dreams: Auditory stimulation impacts dream experiences. Conscious Cogn 2025; 132:103869. [PMID: 40344868 DOI: 10.1016/j.concog.2025.103869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 04/17/2025] [Accepted: 04/18/2025] [Indexed: 05/11/2025]
Abstract
Studies on the electrophysiological and phenomenological aspects of dream experiences provide insight on consciousness during sleep. Whole night polysomnography (PSG) studies were conducted among 29 healthy young participants with high dream recall abilities. Dreams reports were collected during the second night by multiple awakening protocol. On the third night, participants were presented with an audiovisual task and during subsequent sleep, dream reports were collected following an auditory stimuli presentation. REM sleep dreams favor high dream recall rates when compared to N2 dreams. Enhanced EEG beta activity, functional connectivity across the brain structures of the default mode network (DMN) and activation of medial frontal cortex were observed during dream recall irrespective of the sleep states. Auditory stimulations influenced emotional dream experiences highlighting the possibility of target memory reactivation. The study highlights the potential role of dream states and dream experiences in understanding consciousness during sleep.
Collapse
Affiliation(s)
- Gulshan Kumar
- Centre for Consciousness Studies (CCS), Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, Karnataka, India
| | - Safoora Naaz
- Centre for Consciousness Studies (CCS), Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, Karnataka, India
| | - Nahida Jabin
- Centre for Consciousness Studies (CCS), Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, Karnataka, India
| | - Arun Sasidharan
- Centre for Consciousness Studies (CCS), Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, Karnataka, India
| | - Ravindra P Nagendra
- Centre for Consciousness Studies (CCS), Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, Karnataka, India
| | - Ravi Yadav
- Department of Neurology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, Karnataka, India
| | - Bindu M Kutty
- Centre for Consciousness Studies (CCS), Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, Karnataka, India.
| |
Collapse
|
3
|
Stee W, Legouhy A, Guerreri M, Foti MC, Lina JM, Zhang H, Peigneux P. Shaping the structural dynamics of motor learning through cueing during sleep. Sleep 2025; 48:zsaf006. [PMID: 39798081 DOI: 10.1093/sleep/zsaf006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/20/2024] [Indexed: 01/13/2025] Open
Abstract
Enhancing the retention of recent memory traces through sleep reactivation is possible via Targeted memory reactivation (TMR), involving cueing learned material during posttraining sleep. Evidence indicates detectable short-term microstructural changes in the brain within an hour after motor sequence learning, and posttraining sleep is believed to contribute to the consolidation of these motor memories, potentially leading to enduring microstructural changes. In this study, we explored how TMR during posttraining sleep affects performance gains and delayed microstructural remodeling, using both standard diffusion tensor imaging and advanced neurite orientation dispersion and density imaging. Sixty healthy young adults participated in a 5 days protocol, undergoing five diffusion-weighted imaging sessions, pre- and post-two motor sequence training sessions, and after a posttraining night of either regular sleep (RS) or TMR. Results demonstrated rapid skill acquisition on day 1, followed by performance stabilization on day 2, and improvement on day 5, in both RS and TMR groups. (Re)training induced widespread microstructural changes in motor-related areas, initially involving the hippocampus, followed by a delayed engagement of the caudate nucleus. Mean Diffusivity changes were accompanied by increased neurite density index in the putamen, suggesting increased neurite density, while free water fraction reduction indicated glial reorganization. TMR-related structural differences emerged in the dorsolateral prefrontal cortex on day 2 and the right cuneus on day 5, suggesting unique sleep TMR-related neural reorganization patterns. Persistence of practice-related structural changes, although moderated over time, suggests a lasting neural network reorganization, partially mediated by sleep TMR.
Collapse
Affiliation(s)
- Whitney Stee
- UR2NF-Neuropsychology and Functional Neuroimaging Research Unit affiliated at CRCN - Centre for Research in Cognition and Neurosciences and UNI - ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
- GIGA - Cyclotron Research Centre - In Vivo Imaging, University of Liège (ULiège), Liège, Belgium
| | - Antoine Legouhy
- Department of Computer Science and Centre for Medical Image Computing, University College London (UCL), London, UK
| | - Michele Guerreri
- Department of Computer Science and Centre for Medical Image Computing, University College London (UCL), London, UK
| | | | - Jean-Marc Lina
- Electrical Engineering Department, École De Technologie Supérieure, Montréal, Québec, Canada
- Centre De Recherches Mathématiques, Université de Montréal, Montréal, Québec, Canada
- Center for Advanced Research in Sleep Medicine, Sacré-Coeur Hospital, Montréal, Québec, Canada
| | - Hui Zhang
- Department of Computer Science and Centre for Medical Image Computing, University College London (UCL), London, UK
| | - Philippe Peigneux
- UR2NF-Neuropsychology and Functional Neuroimaging Research Unit affiliated at CRCN - Centre for Research in Cognition and Neurosciences and UNI - ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
- GIGA - Cyclotron Research Centre - In Vivo Imaging, University of Liège (ULiège), Liège, Belgium
| |
Collapse
|
4
|
Mar'i J, Zhang R, Mircic S, Serbe-Kamp É, Meier M, Leonhardt A, Drews M, Del Grosso NA, Antony JW, Norman KA, Marzullo TC, Gage GJ. Study while you sleep: using targeted memory reactivation as an independent research project for undergraduates. ADVANCES IN PHYSIOLOGY EDUCATION 2025; 49:1-10. [PMID: 39446136 DOI: 10.1152/advan.00056.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024]
Abstract
Newly acquired information is stabilized into long-term memory through the process of consolidation. Memories are not static; rather, they are constantly updated via reactivation, and this reactivation occurs preferentially during slow-wave sleep (SWS; also referred to as N3 in humans). Here we present a scalable neuroscience research investigation of memory reactivation using low-cost electroencephalogram (EEG) recording hardware and open-source software for students and educators across the K-12 and higher education spectrum. The investigation uses a method called targeted memory reactivation (TMR), whereby auditory cues that were previously associated with learning are represented during sleep, triggering the recall of stored memories and (through this) strengthening these memories. We demonstrated the efficacy of this technique on seven healthy human subjects (19-35 years old, 3 females, four males). The subjects learned to play a spatial memory game on an app where they associated pictures (e.g., a clock) with locations on a grid while they listened to picture-appropriate sounds (e.g., "tic-toc"); next, they took a nap while undergoing EEG recordings. During SWS, half of the sounds from the game were replayed by the app, while half were substituted with nonlearned sounds. Subjects then played the memory game again after waking. Results showed that spatial recall was improved more for cued than uncued memories, demonstrating the benefits of memory replay during sleep and suggesting that one may intervene in this process to boost recall of specific memories. This research investigation takes advantage of the importance of sleep for memory consolidation and demonstrates improved memory performance by cueing sounds during SWS.NEW & NOTEWORTHY Why study when you could just sleep? We demonstrate how students can perform scalable research investigations to manipulate memory processing during sleep. It is a hands-on way to advance students' understanding of sleep-based memory consolidation and the corresponding neural mechanisms using open-source software and do-it-yourself EEG tools.
Collapse
Affiliation(s)
- Joud Mar'i
- Backyard Brains, Ann Arbor, Michigan, United States
- Mount Holyoke College, South Hadley, Massachusetts, United States
| | - Robert Zhang
- Princeton Neuroscience Institute, Princeton, New Jersey, United States
| | | | - Étienne Serbe-Kamp
- Backyard Brains, Ann Arbor, Michigan, United States
- Max Planck Institute of Neurobiology, Martinsried, Germany
- Ludwig Maximilian University (LMU), München, Germany
- Hirnkastl, München, Germany
| | - Matthias Meier
- Max Planck Institute of Neurobiology, Martinsried, Germany
- Hirnkastl, München, Germany
| | - Aljoscha Leonhardt
- Max Planck Institute of Neurobiology, Martinsried, Germany
- Hirnkastl, München, Germany
| | - Michael Drews
- Max Planck Institute of Neurobiology, Martinsried, Germany
- Hirnkastl, München, Germany
| | - Nicholas A Del Grosso
- Institute for Experimental Epileptology and Cognition Research, Uniklinikum Bonn, Bonn, Germany
| | - James W Antony
- Princeton Neuroscience Institute, Princeton, New Jersey, United States
| | - Kenneth A Norman
- Princeton Neuroscience Institute, Princeton, New Jersey, United States
| | | | | |
Collapse
|
5
|
Hoffman LJ, Foley JM, Tanrıverdi B, Chein J, Olson IR. Awake targeted memory reactivation doesn't work. Mem Cognit 2025; 53:453-466. [PMID: 38744776 PMCID: PMC11868201 DOI: 10.3758/s13421-024-01576-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2024] [Indexed: 05/16/2024]
Abstract
Memories are pliable and can be biased by post-encoding information. In targeted memory reactivation (TMR) studies, participants encode information then sleep, during which time sounds or scents that were previously associated with the encoded images are re-presented in an effort to trigger reactivation of the associated memory traces. Upon subsequent testing, memory for reactivated items is often enhanced. Is sleep essential for this process? The literature on awake TMR is small and findings are mixed. Here, we asked English-speaking adults to learn Japanese vocabulary words. During a subsequent active rest phase, participants played Tetris while sound cues associated with the vocabulary words were presented. Results showed that when memories were reactivated, they were either disrupted (Experiment 1) or unaffected (Experiments 2, 3). These findings indicate that awake TMR is not beneficial, and may actually impair subsequent memory. These findings have important implications for research on memory consolidation and reactivation.
Collapse
Affiliation(s)
- Linda J Hoffman
- Department of Psychology, Temple University, 1701 N. 13th Street, Philadelphia, PA, 19122, USA
| | - Julia M Foley
- Department of Psychology, Temple University, 1701 N. 13th Street, Philadelphia, PA, 19122, USA
| | - Büşra Tanrıverdi
- Department of Psychology, Temple University, 1701 N. 13th Street, Philadelphia, PA, 19122, USA
| | - Jason Chein
- Department of Psychology, Temple University, 1701 N. 13th Street, Philadelphia, PA, 19122, USA
| | - Ingrid R Olson
- Department of Psychology, Temple University, 1701 N. 13th Street, Philadelphia, PA, 19122, USA.
| |
Collapse
|
6
|
Rawson AB, Nalluru S, O'Reilly JX, Barron HC. Memory reactivation generates new, adaptive behaviours that reach beyond direct experience. Sci Rep 2024; 14:30097. [PMID: 39627275 PMCID: PMC11615380 DOI: 10.1038/s41598-024-78906-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 11/05/2024] [Indexed: 12/06/2024] Open
Abstract
Periods of rest and sleep help us find hidden solutions to new problems and infer unobserved relationships between discrete events. However, the mechanisms that formulate these new, adaptive behavioural strategies remain unclear. One possibility is that memory reactivation during periods of rest and sleep has the capacity to generate new knowledge that extends beyond direct experience. Here, we test this hypothesis using a pre-registered study design that includes a rich behavioural paradigm in humans. We use contextual Targeted Memory Reactivation (TMR) to causally manipulate memory reactivation during awake rest. We demonstrate that TMR during rest enhances performance on associative memory tests, with improved discovery of new, non-directly trained associations, and no change observed for directly trained associations. Our findings suggest that memory reactivation during awake rest plays a critical role in extracting new, unobserved associations to support adaptive behavioural strategies such as inference.
Collapse
Affiliation(s)
- Annalise B Rawson
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, FMRIB, John Radcliffe Hospital, Oxford, UK
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department for Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Sumedha Nalluru
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, FMRIB, John Radcliffe Hospital, Oxford, UK
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department for Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Jill X O'Reilly
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Helen C Barron
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, FMRIB, John Radcliffe Hospital, Oxford, UK.
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department for Clinical Neurosciences, University of Oxford, Oxford, UK.
| |
Collapse
|
7
|
Sifuentes Ortega R, Peigneux P. Does targeted memory reactivation during slow-wave sleep and rapid eye movement sleep have differential effects on mnemonic discrimination and generalization? Sleep 2024; 47:zsae114. [PMID: 38766994 DOI: 10.1093/sleep/zsae114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 05/06/2024] [Indexed: 05/22/2024] Open
Abstract
Targeted memory reactivation (TMR), or the presentation of learning-related cues during sleep, has been shown to benefit memory consolidation for specific memory traces when applied during non-rapid eye movement (NREM) sleep. Prior studies suggest that TMR during rapid eye movement (REM) sleep may play a role in memory generalization processes, but evidence remains scarce. We tested the hypothesis that TMR exerts a differential effect on distinct mnemonic processes as a function of the sleep state (REM vs. NREM) in which TMR is delivered. Mnemonic discrimination and generalization of semantic categories were investigated using an adapted version of the Mnemonic Similarity Task, before and after sleep. Forty-eight participants encoded pictures from eight semantic categories, each associated with a sound. In the pre-sleep immediate test, they had to discriminate "old" (targets) from "similar" (lures) or "new" (foils) pictures. During sleep, half of the sounds were replayed in slow wave sleep (SWS) or REM sleep. Recognition, discrimination, and generalization memory indices were tested in the morning. These indices did not differ between SWS and REM TMR groups or reactivated and non-reactivated item categories. Additional results suggest a positive effect of TMR on performance for highly similar items mostly relying on mnemonic discrimination processes. During sleep, EEG activity after cue presentation increased in the delta-theta and sigma band in the SWS group, and in the beta band in the REM TMR group. These results do not support the hypothesis of differential processing of novel memory traces when TMR is administered in distinctive physiological sleep states.
Collapse
Affiliation(s)
- Rebeca Sifuentes Ortega
- UR2NF, Neuropsychology and Functional Neuroimaging Research Unit at CRCN affiliated at Center for Research in Cognition and Neurosciences and UNI - ULB Neurosciences Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Philippe Peigneux
- UR2NF, Neuropsychology and Functional Neuroimaging Research Unit at CRCN affiliated at Center for Research in Cognition and Neurosciences and UNI - ULB Neurosciences Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
8
|
Zhao X, Chen PH, Chen J, Sun H. Manipulated overlapping reactivation of multiple memories promotes explicit gist abstraction. Neurobiol Learn Mem 2024; 213:107953. [PMID: 38950676 DOI: 10.1016/j.nlm.2024.107953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 05/19/2024] [Accepted: 06/14/2024] [Indexed: 07/03/2024]
Abstract
Sleep is considered to promote gist abstraction on the basis of spontaneous memory reactivation. As speculated in the theory of 'information overlap to abstract (iOtA)', 'overlap' between reactivated memories, beyond reactivation, is crucial to gist abstraction. Yet so far, empirical research has not tested this theory by manipulating the factor of 'overlap'. In the current study, 'overlap' itself was manipulated by targeted memory reactivation (TMR), through simultaneously reactivating multiple memories that either contain or do not contain spatially overlapped gist information, to investigate the effect of overlapping reactivation on gist abstraction. This study had a factorial design of 2 factors with 2 levels respectively (spatial overlap/no spatial overlap, TMR/no-TMR). Accordingly, 82 healthy college students (aged 19 ∼ 25, 57 females) were randomized into four groups. After learning 16 pictures, paired with 4 auditory cues (4 pictures - 1 cue) according to the grouping, participants were given a 90-minute nap opportunity. Then TMR cueing was conducted during N2 and slow wave sleep of the nap. Performance in memory task was used to measure gist abstraction. The results showed a significant main effect of TMR on both implicit and explicit gist abstraction, and a marginally significant interaction effect on explicit gist abstraction. Further analyses showed that explicit gist abstraction in the spatial overlap & TMR group was significantly better than in the control group. Moreover, explicit gist abstraction was positively correlated with spindle density. The current study thus indicates that TMR facilitates gist abstraction, and explicit gist abstraction may benefit more from overlapping reactivation.
Collapse
Affiliation(s)
- Xiaoxia Zhao
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, 51 HuayuanBei Road, Beijing 100191, China
| | - Po-Han Chen
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, 51 HuayuanBei Road, Beijing 100191, China
| | - Jie Chen
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, 51 HuayuanBei Road, Beijing 100191, China
| | - Hongqiang Sun
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, 51 HuayuanBei Road, Beijing 100191, China.
| |
Collapse
|
9
|
van der Heijden AC, van der Werf YD, van den Heuvel OA, Talamini LM, van Marle HJF. Targeted memory reactivation to augment treatment in post-traumatic stress disorder. Curr Biol 2024; 34:3735-3746.e5. [PMID: 39116885 DOI: 10.1016/j.cub.2024.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 01/30/2024] [Accepted: 07/02/2024] [Indexed: 08/10/2024]
Abstract
Post-traumatic stress disorder (PTSD) is a psychiatric disorder with traumatic memories at its core. Post-treatment sleep may offer a unique time window to increase therapeutic efficacy through consolidation of therapeutically modified traumatic memories. Targeted memory reactivation (TMR) enhances memory consolidation by presenting reminder cues (e.g., sounds associated with a memory) during sleep. Here, we applied TMR in PTSD patients to strengthen therapeutic memories during sleep after one treatment session with eye movement desensitization and reprocessing (EMDR). PTSD patients received either slow oscillation (SO) phase-targeted TMR, using modeling-based closed-loop neurostimulation (M-CLNS) with EMDR clicks as a reactivation cue (n = 17), or sham stimulation (n = 16). Effects of TMR on sleep were assessed through high-density polysomnography. Effects on treatment outcome were assessed through subjective, autonomic, and fMRI responses to script-driven imagery (SDI) of the targeted traumatic memory and overall PTSD symptom level. Compared to sham stimulation, TMR led to stimulus-locked increases in SO and spindle dynamics, which correlated positively with PTSD symptom reduction in the TMR group. Given the role of SOs and spindles in memory consolidation, these findings suggest that TMR may have strengthened the consolidation of the EMDR-treatment memory. Clinically, TMR vs. sham stimulation resulted in a larger reduction of avoidance level during SDI. TMR did not disturb sleep or trigger nightmares. Together, these data provide first proof of principle that TMR may be a safe and viable future treatment augmentation strategy for PTSD. The required follow-up studies may implement multi-night TMR or TMR during REM sleep to further establish the clinical effect of TMR for traumatic memories.
Collapse
Affiliation(s)
- Anna C van der Heijden
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department Anatomy & Neuroscience, Boelelaan 1081 HV Amsterdam, the Netherlands; Amsterdam UMC, Vrije Universiteit Amsterdam, Psychiatry, Oldenaller 1081 HJ Amsterdam, the Netherlands; Amsterdam Neuroscience, Mood Anxiety Psychosis Stress Sleep, Boelelaan 1081 HV Amsterdam, the Netherlands; University of Amsterdam, Department of Psychology, Brain & Cognition, Nieuwe Achtergracht 1018 WS Amsterdam, the Netherlands
| | - Ysbrand D van der Werf
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department Anatomy & Neuroscience, Boelelaan 1081 HV Amsterdam, the Netherlands; Amsterdam Neuroscience, Compulsivity Impulsivity and Attention, Boelelaan 1081 HV Amsterdam, the Netherlands
| | - Odile A van den Heuvel
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department Anatomy & Neuroscience, Boelelaan 1081 HV Amsterdam, the Netherlands; Amsterdam UMC, Vrije Universiteit Amsterdam, Psychiatry, Oldenaller 1081 HJ Amsterdam, the Netherlands; Amsterdam Neuroscience, Compulsivity Impulsivity and Attention, Boelelaan 1081 HV Amsterdam, the Netherlands
| | - Lucia M Talamini
- University of Amsterdam, Department of Psychology, Brain & Cognition, Nieuwe Achtergracht 1018 WS Amsterdam, the Netherlands; University of Amsterdam, Amsterdam Brain and Cognition, Nieuwe Achtergracht 1001 NK Amsterdam, the Netherlands
| | - Hein J F van Marle
- Amsterdam UMC, Vrije Universiteit Amsterdam, Psychiatry, Oldenaller 1081 HJ Amsterdam, the Netherlands; Amsterdam Neuroscience, Mood Anxiety Psychosis Stress Sleep, Boelelaan 1081 HV Amsterdam, the Netherlands; GGZ inGeest Mental Health Care, Oldenaller 1081 HJ Amsterdam, the Netherlands; ARQ National Psychotrauma Center, Nienoord 1112 XE Diemen, the Netherlands.
| |
Collapse
|
10
|
Wang T, Li W, Deng J, Zhang Q, Liu Y, Zheng H. The impact of the physical activity intervention on sleep in children and adolescents with neurodevelopmental disorders: a systematic review and meta-analysis. Front Neurol 2024; 15:1438786. [PMID: 39193141 PMCID: PMC11347421 DOI: 10.3389/fneur.2024.1438786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 08/01/2024] [Indexed: 08/29/2024] Open
Abstract
Objective The purpose of this review was to synthesize the current literature on the relationship between sleep and physical activity in children and adolescents with neurodevelopmental disorders. Methods Articles were searched in PubMed, Web of Science, EBSCO, Cochrane, and Embase until April 2024. The meta-analysis was performed using Review Manager 5.3. Results Our results show that measuring sleep parameters by means of different measuring tools yields different results. Most studies have found no association between sleep and physical activity in children with neurodevelopmental disorders, especially when measured subjectively, such as parent reports and sleep logs. Physical activity interventions had a significant effect on sleep efficiency, wake after sleep onset, and sleep duration when measured objectively using instruments such as wrist actigraphy. Meta-analysis showed that children and adolescents with neurodevelopmental disorders who participated in mind-body activities (SMD = -3.01, 95%CI = -4.15~-1.87, p < 0.001, I2 = 99%) showed significant improvements in sleep, which were sessions lasting more than 12 weeks (SMD = -1.01, p < 0.01, I2 = 97%), performed at least 3 times per week (SMD = -0.81, 95%CI = -1.53~-0.10, p = 0.03, I2 = 95%), and lasted for more than 60 min per session (SMD = -1.55, 95%CI = -2.67~-0.43, p = 0.007, I2 = 97%). However, the results of these subgroup analyses must be interpreted with caution because of the small number of studies included. Conclusion Our results show that measuring sleep parameters by means of different measuring tools yields different results. There was difficulty in interpreting many of the studies included in this meta-analysis, in view of the non-standardization of protocol, especially the ability range of the cohort, duration of the study, recommended exercises, whether the caregivers or researchers supervised the exercise regime/activity, and the practicality of continuing the exercise long-term by caregivers. Systematic review registration Identifier, CRD42024541300.
Collapse
Affiliation(s)
| | | | | | | | - Yongfeng Liu
- School of Sports Training, Chengdu Sport University, Chengdu, Sichuan, China
| | | |
Collapse
|
11
|
Bloxham A, Horton CL. Enhancing and advancing the understanding and study of dreaming and memory consolidation: Reflections, challenges, theoretical clarity, and methodological considerations. Conscious Cogn 2024; 123:103719. [PMID: 38941924 DOI: 10.1016/j.concog.2024.103719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 04/24/2024] [Accepted: 06/12/2024] [Indexed: 06/30/2024]
Abstract
Empirical investigations that search for a link between dreaming and sleep-dependent memory consolidation have focused on testing for an association between dreaming of what was learned, and improved memory performance for learned material. Empirical support for this is mixed, perhaps owing to the inherent challenges presented by the nature of dreams, and methodological inconsistencies. The purpose of this paper is to address critically prevalent assumptions and practices, with the aim of clarifying and enhancing research on this topic, chiefly by providing a theoretical synthesis of existing models and evidence. Also, it recommends the method of Targeted Memory Reactivation (TMR) as a means for investigating if dream content can be linked to specific cued activations. Other recommendations to enhance research practice and enquiry on this subject are also provided, focusing on the HOW and WHY we search for memory sources in dreams, and what purpose (if any) they might serve.
Collapse
Affiliation(s)
- Anthony Bloxham
- Nottingham Trent University, Nottingham, NG1 4FQ, United Kingdom.
| | | |
Collapse
|
12
|
Chen D, Xia T, Yao Z, Zhang L, Hu X. Modulating social learning-induced evaluation updating during human sleep. NPJ SCIENCE OF LEARNING 2024; 9:43. [PMID: 38971834 PMCID: PMC11227583 DOI: 10.1038/s41539-024-00255-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 06/13/2024] [Indexed: 07/08/2024]
Abstract
People often change their evaluations upon learning about their peers' evaluations, i.e., social learning. Given sleep's vital role in consolidating daytime experiences, sleep may facilitate social learning, thereby further changing people's evaluations. Combining a social learning task and the sleep-based targeted memory reactivation technique, we asked whether social learning-induced evaluation updating can be modulated during sleep. After participants had indicated their initial evaluation of snacks, they learned about their peers' evaluations while hearing the snacks' spoken names. During the post-learning non-rapid-eye-movement sleep, we re-played half of the snack names (i.e., cued snack) to reactivate the associated peers' evaluations. Upon waking up, we found that the social learning-induced evaluation updating further enlarged for both cued and uncued snacks. Examining sleep electroencephalogram (EEG) activity revealed that cue-elicited delta-theta EEG power and the overnight N2 sleep spindle density predicted post-sleep evaluation updating for cued but not for uncued snacks. These findings underscore the role of sleep-mediated memory reactivation and the associated neural activity in supporting social learning-induced evaluation updating.
Collapse
Affiliation(s)
- Danni Chen
- Department of Psychology, The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Tao Xia
- Department of Psychology, The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Ziqing Yao
- Department of Psychology, The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Lingqi Zhang
- Department of Psychology, The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Xiaoqing Hu
- Department of Psychology, The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China.
- HKU-Shenzhen Institute of Research and Innovation, Shenzhen, China.
| |
Collapse
|
13
|
Mushtaq M, Marshall L, ul Haq R, Martinetz T. Possible mechanisms to improve sleep spindles via closed loop stimulation during slow wave sleep: A computational study. PLoS One 2024; 19:e0306218. [PMID: 38924001 PMCID: PMC11207127 DOI: 10.1371/journal.pone.0306218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Sleep spindles are one of the prominent EEG oscillatory rhythms of non-rapid eye movement sleep. In the memory consolidation, these oscillations have an important role in the processes of long-term potentiation and synaptic plasticity. Moreover, the activity (spindle density and/or sigma power) of spindles has a linear association with learning performance in different paradigms. According to the experimental observations, the sleep spindle activity can be improved by closed loop acoustic stimulations (CLAS) which eventually improve memory performance. To examine the effects of CLAS on spindles, we propose a biophysical thalamocortical model for slow oscillations (SOs) and sleep spindles. In addition, closed loop stimulation protocols are applied on a thalamic network. Our model results show that the power of spindles is increased when stimulation cues are applied at the commencing of an SO Down-to-Up-state transition, but that activity gradually decreases when cues are applied with an increased time delay from this SO phase. Conversely, stimulation is not effective when cues are applied during the transition of an Up-to-Down-state. Furthermore, our model suggests that a strong inhibitory input from the reticular (RE) layer to the thalamocortical (TC) layer in the thalamic network shifts leads to an emergence of spindle activity at the Up-to-Down-state transition (rather than at Down-to-Up-state transition), and the spindle frequency is also reduced (8-11 Hz) by thalamic inhibition.
Collapse
Affiliation(s)
| | - Lisa Marshall
- Institute of Experimental and Clinical Pharmacology, University of Lübeck, Lübeck, Germany
- Center of Brain, Behavior and Metabolism, Lübeck, Germany
- University Clinic Hospital Schleswig Holstein, Lübeck, Germany
| | - Rizwan ul Haq
- Department of Pharmacy, Abbottabad University of Science and Technology, Abbottabad, Pakistan
| | - Thomas Martinetz
- Institute for Neuro- and Bioinformatics, Lübeck, Germany
- Center of Brain, Behavior and Metabolism, Lübeck, Germany
| |
Collapse
|
14
|
Schreiner T, Griffiths BJ, Kutlu M, Vollmar C, Kaufmann E, Quach S, Remi J, Noachtar S, Staudigl T. Spindle-locked ripples mediate memory reactivation during human NREM sleep. Nat Commun 2024; 15:5249. [PMID: 38898100 PMCID: PMC11187142 DOI: 10.1038/s41467-024-49572-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 06/11/2024] [Indexed: 06/21/2024] Open
Abstract
Memory consolidation relies in part on the reactivation of previous experiences during sleep. The precise interplay of sleep-related oscillations (slow oscillations, spindles and ripples) is thought to coordinate the information flow between relevant brain areas, with ripples mediating memory reactivation. However, in humans empirical evidence for a role of ripples in memory reactivation is lacking. Here, we investigated the relevance of sleep oscillations and specifically ripples for memory reactivation during human sleep using targeted memory reactivation. Intracranial electrophysiology in epilepsy patients and scalp EEG in healthy participants revealed that elevated levels of slow oscillation - spindle activity coincided with the read-out of experimentally induced memory reactivation. Importantly, spindle-locked ripples recorded intracranially from the medial temporal lobe were found to be correlated with the identification of memory reactivation during non-rapid eye movement sleep. Our findings establish ripples as key-oscillation for sleep-related memory reactivation in humans and emphasize the importance of the coordinated interplay of the cardinal sleep oscillations.
Collapse
Affiliation(s)
- Thomas Schreiner
- Department of Psychology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Benjamin J Griffiths
- Department of Psychology, Ludwig-Maximilians-Universität München, Munich, Germany
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| | - Merve Kutlu
- Department of Psychology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Christian Vollmar
- Epilepsy Center, Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Elisabeth Kaufmann
- Epilepsy Center, Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Stefanie Quach
- Department of Neurosurgery, University Hospital Munich, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Jan Remi
- Epilepsy Center, Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Soheyl Noachtar
- Epilepsy Center, Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Tobias Staudigl
- Department of Psychology, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
15
|
Sánchez-Corzo A, Baum DM, Irani M, Hinrichs S, Reisenegger R, Whitaker GA, Born J, Sitaram R, Klinzing JG. Odor cueing of declarative memories during sleep enhances coordinated spindles and slow oscillations. Neuroimage 2024; 287:120521. [PMID: 38244877 DOI: 10.1016/j.neuroimage.2024.120521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/22/2024] Open
Abstract
Long-term memories are formed by repeated reactivation of newly encoded information during sleep. This process can be enhanced by using memory-associated reminder cues like sounds and odors. While auditory cueing has been researched extensively, few electrophysiological studies have exploited the various benefits of olfactory cueing. We used high-density electroencephalography in an odor-cueing paradigm that was designed to isolate the neural responses specific to the cueing of declarative memories. We show widespread cueing-induced increases in the duration and rate of sleep spindles. Higher spindle rates were most prominent over centro-parietal areas and largely overlapping with a concurrent increase in the amplitude of slow oscillations (SOs). Interestingly, greater SO amplitudes were linked to a higher likelihood of coupling a spindle and coupled spindles expressed during cueing were more numerous in particular around SO up states. We thus identify temporally and spatially coordinated enhancements of sleep spindles and slow oscillations as a candidate mechanism behind cueing-induced memory processing. Our results further demonstrate the feasibility of studying neural activity patterns linked to such processing using olfactory cueing during sleep.
Collapse
Affiliation(s)
- Andrea Sánchez-Corzo
- Centro Interdisciplinario de Neurociencias, Pontificia Universidad Católica de Chile, Santiago de Chile, Chile; Multimodal Functional Brain Imaging and Neurorehabilitation Hub, Diagnostic Imaging Department, St. Jude Children's Research Hospital, Memphis, TN, United States; Laboratory for Brain-Machine Interfaces and Neuromodulation, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile; Institute of Biological and Medical Engineering, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul 7820436, Santiago, Chile.
| | - David M Baum
- Laboratory for Brain-Machine Interfaces and Neuromodulation, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile; Institute of Biological and Medical Engineering, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul 7820436, Santiago, Chile.
| | - Martín Irani
- Laboratory for Brain-Machine Interfaces and Neuromodulation, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile; Department of Psychology, University of Illinois Urbana-Champaign, IL, United States
| | - Svenja Hinrichs
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen 72076, Germany
| | - Renate Reisenegger
- Laboratory for Brain-Machine Interfaces and Neuromodulation, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile; Department of Neurophysics, Philipps-Universität Marburg, Marburg, Germany; Centre for Mind, Brain and Behavior, Philipps-Universität Marburg and Justus-Liebig-Universität Giessen, Giessen, Germany
| | - Grace A Whitaker
- Laboratory for Brain-Machine Interfaces and Neuromodulation, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile; Advanced Center for Electrical and Electronics Engineering, Federico Santa María Technical University, Valparaíso 1680, Chile
| | - Jan Born
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen 72076, Germany; Centre for Integrative Neuroscience, University of Tübingen, Tübingen 72076, Germany
| | - Ranganatha Sitaram
- Multimodal Functional Brain Imaging and Neurorehabilitation Hub, Diagnostic Imaging Department, St. Jude Children's Research Hospital, Memphis, TN, United States; Laboratory for Brain-Machine Interfaces and Neuromodulation, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile; Institute of Biological and Medical Engineering, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul 7820436, Santiago, Chile.
| | - Jens G Klinzing
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen 72076, Germany; Centre for Integrative Neuroscience, University of Tübingen, Tübingen 72076, Germany
| |
Collapse
|
16
|
Temporiti F, Galbiati E, Bianchi F, Bianchi AM, Galli M, Gatti R. Early sleep after action observation plus motor imagery improves gait and balance abilities in older adults. Sci Rep 2024; 14:3179. [PMID: 38326504 PMCID: PMC10850554 DOI: 10.1038/s41598-024-53664-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 02/03/2024] [Indexed: 02/09/2024] Open
Abstract
Action observation plus motor imagery (AOMI) is a rehabilitative approach to improve gait and balance performance. However, limited benefits have been reported in older adults. Early sleep after motor practice represents a strategy to enhance the consolidation of trained skills. Here, we investigated the effects of AOMI followed by early sleep on gait and balance performance in older adults. Forty-five older adults (mean age: 70.4 ± 5.2 years) were randomized into three groups performing a 3-week training. Specifically, AOMI-sleep and AOMI-control groups underwent observation and motor imagery of gait and balance tasks between 8:00 and 10:00 p.m. or between 8:00 and 10:00 a.m. respectively, whereas Control group observed landscape video-clips. Participants were assessed for gait performance, static and dynamic balance and fear of falling before and after training and at 1-month follow-up. The results revealed that early sleep after AOMI training sessions improved gait and balance abilities in older adults compared to AOMI-control and Control groups. Furthermore, these benefits were retained at 1-month after the training end. These findings suggested that early sleep after AOMI may represent a safe and easy-applicable intervention to minimize the functional decay in older adults.
Collapse
Affiliation(s)
- Federico Temporiti
- Physiotherapy Unit, Humanitas Clinical and Research Center - IRCCS, via Manzoni 56, Rozzano, Milan, Italy.
- Department of Electronic, Information and Bioengineering, Politecnico Di Milano, via Ponzio 34, Milano, Milan, Italy.
| | - Elena Galbiati
- Physiotherapy Unit, Humanitas Clinical and Research Center - IRCCS, via Manzoni 56, Rozzano, Milan, Italy
| | - Francesco Bianchi
- Physiotherapy Unit, Humanitas Clinical and Research Center - IRCCS, via Manzoni 56, Rozzano, Milan, Italy
| | - Anna Maria Bianchi
- Department of Electronic, Information and Bioengineering, Politecnico Di Milano, via Ponzio 34, Milano, Milan, Italy
| | - Manuela Galli
- Department of Electronic, Information and Bioengineering, Politecnico Di Milano, via Ponzio 34, Milano, Milan, Italy
| | - Roberto Gatti
- Physiotherapy Unit, Humanitas Clinical and Research Center - IRCCS, via Manzoni 56, Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini 4, Pieve Emanuele, Milan, Italy
| |
Collapse
|
17
|
Nicolas J, Carrier J, Swinnen SP, Doyon J, Albouy G, King BR. Targeted memory reactivation during post-learning sleep does not enhance motor memory consolidation in older adults. J Sleep Res 2024; 33:e14027. [PMID: 37794602 DOI: 10.1111/jsr.14027] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/24/2023] [Accepted: 08/08/2023] [Indexed: 10/06/2023]
Abstract
Targeted memory reactivation (TMR) during sleep enhances memory consolidation in young adults by modulating electrophysiological markers of neuroplasticity. Interestingly, older adults exhibit deficits in motor memory consolidation, an impairment that has been linked to age-related degradations in the same sleep features sensitive to TMR. We hypothesised that TMR would enhance consolidation in older adults via the modulation of these markers. A total of 17 older participants were trained on a motor task involving two auditory-cued sequences. During a post-learning nap, two auditory cues were played: one associated to a learned (i.e., reactivated) sequence and one control. Performance during two delayed re-tests did not differ between reactivated and non-reactivated sequences. Moreover, both associated and control sounds modulated brain responses, yet there were no consistent differences between the auditory cue types. Our results collectively demonstrate that older adults do not benefit from specific reactivation of a motor memory trace by an associated auditory cue during post-learning sleep. Based on previous research, it is possible that auditory stimulation during post-learning sleep could have boosted motor memory consolidation in a non-specific manner.
Collapse
Affiliation(s)
- Judith Nicolas
- Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, Leuven, Belgium
- LBI - KU Leuven Brain Institute, Leuven, Belgium
| | - Julie Carrier
- Center for Advanced Research in Sleep Medicine, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord-de-l'Ile de Montréal, Montreal, Canada
- Department of Psychology, Université de Montréal, Montreal, Canada
| | - Stephan P Swinnen
- Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, Leuven, Belgium
- LBI - KU Leuven Brain Institute, Leuven, Belgium
| | - Julien Doyon
- McConnell Brain Imaging Centre, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Geneviève Albouy
- Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, Leuven, Belgium
- LBI - KU Leuven Brain Institute, Leuven, Belgium
- Department of Health and Kinesiology, College of Health, University of Utah, Salt Lake, Utah, USA
| | - Bradley R King
- Department of Health and Kinesiology, College of Health, University of Utah, Salt Lake, Utah, USA
| |
Collapse
|
18
|
Salgado-Puga K, Rothschild G. Exposure to sounds during sleep impairs hippocampal sharp wave ripples and memory consolidation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.22.568283. [PMID: 38045371 PMCID: PMC10690295 DOI: 10.1101/2023.11.22.568283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Sleep is critical for the consolidation of recent experiences into long-term memories. As a key underlying neuronal mechanism, hippocampal sharp-wave ripples (SWRs) occurring during sleep define periods of hippocampal reactivation of recent experiences and have been causally linked with memory consolidation. Hippocampal SWR-dependent memory consolidation during sleep is often referred to as occurring during an "offline" state, dedicated to processing internally generated neural activity patterns rather than external stimuli. However, the brain is not fully disconnected from the environment during sleep. In particular, sounds heard during sleep are processed by a highly active auditory system which projects to brain regions in the medial temporal lobe, reflecting an anatomical pathway for sound modulation of hippocampal activity. While neural processing of salient sounds during sleep, such as those of a predator or an offspring, is evolutionarily adaptive, whether ongoing processing of environmental sounds during sleep interferes with SWR-dependent memory consolidation remains unknown. To address this question, we used a closed-loop system to deliver non-waking sound stimuli during or following SWRs in sleeping rats. We found that exposure to sounds during sleep suppressed the ripple power and reduced the rate of SWRs. Furthermore, sounds delivered during SWRs (On-SWR) suppressed ripple power significantly more than sounds delivered 2 seconds after SWRs (Off-SWR). Next, we tested the influence of sound presentation during sleep on memory consolidation. To this end, SWR-triggered sounds were applied during sleep sessions following learning of a conditioned place preference paradigm, in which rats learned a place-reward association. We found that On-SWR sound pairing during post-learning sleep induced a complete abolishment of memory retention 24 h following learning, while leaving memory retention immediately following sleep intact. In contrast, Off-SWR pairing weakened memory 24 h following learning as well as immediately following learning. Notably, On-SWR pairing induced a significantly larger impairment in memory 24 h after learning as compared to Off-SWR pairing. Together, these findings suggest that sounds heard during sleep suppress SWRs and memory consolidation, and that the magnitude of these effects are dependent on sound-SWR timing. These results suggest that exposure to environmental sounds during sleep may pose a risk for memory consolidation processes.
Collapse
|
19
|
Kumral D, Matzerath A, Leonhart R, Schönauer M. Spindle-dependent memory consolidation in healthy adults: A meta-analysis. Neuropsychologia 2023; 189:108661. [PMID: 37597610 DOI: 10.1016/j.neuropsychologia.2023.108661] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/23/2023] [Accepted: 08/12/2023] [Indexed: 08/21/2023]
Abstract
Accumulating evidence suggests a central role for sleep spindles in the consolidation of new memories. However, no meta-analysis of the association between sleep spindles and memory performance has been conducted so far. Here, we report meta-analytical evidence for spindle-memory associations and investigate how multiple factors, including memory type, spindle type, spindle characteristics, and EEG topography affect this relationship. The literature search yielded 53 studies reporting 1427 effect sizes, resulting in a small to moderate effect for the average association. We further found that spindle-memory associations were significantly stronger for procedural memory than for declarative memory. Neither spindle types nor EEG scalp topography had an impact on the strength of the spindle-memory relation, but we observed a distinct functional role of global and fast sleep spindles, especially for procedural memory. We also found a moderation effect of spindle characteristics, with power showing the largest effect sizes. Collectively, our findings suggest that sleep spindles are involved in learning, thereby representing a general physiological mechanism for memory consolidation.
Collapse
Affiliation(s)
- Deniz Kumral
- Institute of Psychology, Neuropsychology, University of Freiburg, Freiburg Im Breisgau, Germany; Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Alina Matzerath
- Institute of Psychology, Neuropsychology, University of Freiburg, Freiburg Im Breisgau, Germany
| | - Rainer Leonhart
- Institute of Psychology, Social Psychology and Methodology, University of Freiburg, Freiburg Im Breisgau, Germany
| | - Monika Schönauer
- Institute of Psychology, Neuropsychology, University of Freiburg, Freiburg Im Breisgau, Germany; Bernstein Center Freiburg, Freiburg Im Breisgau, Germany
| |
Collapse
|
20
|
Pereira SIR, Santamaria L, Andrews R, Schmidt E, Van Rossum MCW, Lewis P. Rule Abstraction Is Facilitated by Auditory Cuing in REM Sleep. J Neurosci 2023; 43:3838-3848. [PMID: 36977584 PMCID: PMC10218979 DOI: 10.1523/jneurosci.1966-21.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/18/2022] [Accepted: 10/22/2022] [Indexed: 03/30/2023] Open
Abstract
Sleep facilitates abstraction, but the exact mechanisms underpinning this are unknown. Here, we aimed to determine whether triggering reactivation in sleep could facilitate this process. We paired abstraction problems with sounds, then replayed these during either slow-wave sleep (SWS) or rapid eye movement (REM) sleep to trigger memory reactivation in 27 human participants (19 female). This revealed performance improvements on abstraction problems that were cued in REM, but not problems cued in SWS. Interestingly, the cue-related improvement was not significant until a follow-up retest 1 week after the manipulation, suggesting that REM may initiate a sequence of plasticity events that requires more time to be implemented. Furthermore, memory-linked trigger sounds evoked distinct neural responses in REM, but not SWS. Overall, our findings suggest that targeted memory reactivation in REM can facilitate visual rule abstraction, although this effect takes time to unfold.SIGNIFICANCE STATEMENT The ability to abstract rules from a corpus of experiences is a building block of human reasoning. Sleep is known to facilitate rule abstraction, but it remains unclear whether we can manipulate this process actively and which stage of sleep is most important. Targeted memory reactivation (TMR) is a technique that uses re-exposure to learning-related sensory cues during sleep to enhance memory consolidation. Here, we show that TMR, when applied during REM sleep, can facilitate the complex recombining of information needed for rule abstraction. Furthermore, we show that this qualitative REM-related benefit emerges over the course of a week after learning, suggesting that memory integration may require a slower form of plasticity.
Collapse
Affiliation(s)
| | - Lorena Santamaria
- School of Psychology, Cardiff University Brain Research Imaging Centre, Cardiff, Wales CF24 4HQ, United Kingdom
| | - Ralph Andrews
- School of Psychology, Cardiff University Brain Research Imaging Centre, Cardiff, Wales CF24 4HQ, United Kingdom
| | - Elena Schmidt
- School of Psychology, Cardiff University Brain Research Imaging Centre, Cardiff, Wales CF24 4HQ, United Kingdom
| | - Mark C W Van Rossum
- School of Psychology and School of Mathematical Sciences, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Penelope Lewis
- School of Psychology, Cardiff University Brain Research Imaging Centre, Cardiff, Wales CF24 4HQ, United Kingdom
| |
Collapse
|
21
|
Xia T, Antony JW, Paller KA, Hu X. Targeted memory reactivation during sleep influences social bias as a function of slow-oscillation phase and delta power. Psychophysiology 2023; 60:e14224. [PMID: 36458473 PMCID: PMC10085833 DOI: 10.1111/psyp.14224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 08/27/2022] [Accepted: 10/26/2022] [Indexed: 12/04/2022]
Abstract
To understand how memories are reactivated and consolidated during sleep, experimenters have employed the unobtrusive re-presentation of memory cues from a variety of pre-sleep learning tasks. Using this procedure, known as targeted memory reactivation (TMR), we previously found that reactivation of counter-social-bias training during post-training sleep could selectively enhance training effects in reducing unintentional social biases. Here, we describe re-analyses of electroencephalographic (EEG) data from this previous study to characterize neurophysiological correlates of TMR-induced bias reduction. We found that TMR benefits in bias reduction were associated with (a) the timing of memory-related cue presentation relative to the 0.1-1.5 Hz slow-oscillation phase and (b) cue-elicited EEG power within the 1-4 Hz delta range. Although cue delivery was at a fixed rate in this study and not contingent on the slow-oscillation phase, cues were found to be clustered in slow-oscillation upstates for those participants with stronger TMR benefits. Similarly, higher cue-elicited delta power 250-1000 ms after cue onset was also linked with larger TMR benefits. These electrophysiological results substantiate the claim that memory reactivation altered social bias in the original study, while also informing neural explanations of these benefits. Future research should consider these sleep physiology parameters in relation to TMR applications and to memory reactivation in general.
Collapse
Affiliation(s)
- Tao Xia
- Department of Psychology, The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, China
| | - James W. Antony
- Department of Psychology, Center for Mind and Brain, University of California, Davis, USA
- Department of Psychology and Child Development, California Polytechnic State University, San Luis Obispo, USA
| | - Ken A. Paller
- Department of Psychology and Cognitive Neuroscience Program, Northwestern University, USA
| | - Xiaoqing Hu
- Department of Psychology, The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, China
- HKU, Shenzhen Institute of Research and Innovation, Shenzhen, China
| |
Collapse
|
22
|
Brodt S, Inostroza M, Niethard N, Born J. Sleep-A brain-state serving systems memory consolidation. Neuron 2023; 111:1050-1075. [PMID: 37023710 DOI: 10.1016/j.neuron.2023.03.005] [Citation(s) in RCA: 96] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/23/2023] [Accepted: 03/06/2023] [Indexed: 04/08/2023]
Abstract
Although long-term memory consolidation is supported by sleep, it is unclear how it differs from that during wakefulness. Our review, focusing on recent advances in the field, identifies the repeated replay of neuronal firing patterns as a basic mechanism triggering consolidation during sleep and wakefulness. During sleep, memory replay occurs during slow-wave sleep (SWS) in hippocampal assemblies together with ripples, thalamic spindles, neocortical slow oscillations, and noradrenergic activity. Here, hippocampal replay likely favors the transformation of hippocampus-dependent episodic memory into schema-like neocortical memory. REM sleep following SWS might balance local synaptic rescaling accompanying memory transformation with a sleep-dependent homeostatic process of global synaptic renormalization. Sleep-dependent memory transformation is intensified during early development despite the immaturity of the hippocampus. Overall, beyond its greater efficacy, sleep consolidation differs from wake consolidation mainly in that it is supported, rather than impaired, by spontaneous hippocampal replay activity possibly gating memory formation in neocortex.
Collapse
Affiliation(s)
- Svenja Brodt
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany; Max-Planck-Institute for Biological Cybernetics, Tübingen, Germany
| | - Marion Inostroza
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Niels Niethard
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Jan Born
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany; Werner Reichert Center for Integrative Neuroscience, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
23
|
Glicksohn A, Shams L, Seitz AR. Improving memory for unusual events with wakeful reactivation. Front Psychol 2023; 14:1092408. [PMID: 37057152 PMCID: PMC10086428 DOI: 10.3389/fpsyg.2023.1092408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/06/2023] [Indexed: 03/30/2023] Open
Abstract
Memory consists of multiple processes, from encoding information, consolidating it into short- and long- term memory, and later retrieving relevant information. Targeted memory reactivation is an experimental method during which sensory components of a multisensory representation (such as sounds or odors) are ‘reactivated’, facilitating the later retrieval of unisensory attributes. We examined whether novel and unpredicted events benefit from reactivation to a greater degree than normal stimuli. We presented participants with everyday objects, and ‘tagged’ these objects with sounds (e.g., animals and their matching sounds) at different screen locations. ‘Oddballs’ were created by presenting unusual objects and sounds (e.g., a unicorn with a heartbeat sound). During a short reactivation phase, participants listened to a replay of normal and oddball sounds. Participants were then tested on their memory for visual and spatial information in the absence of sounds. Participants were better at remembering the oddball objects compared to normal ones. Importantly, participants were also better at recalling the locations of oddball objects whose sounds were reactivated, compared to objects whose sounds that were not presented again. These results suggest that episodic memory benefits from associating objects with unusual cues, and that reactivating those cues strengthen the entire multisensory representation, resulting in enhanced memory for unisensory attributes.
Collapse
Affiliation(s)
- Arit Glicksohn
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Ladan Shams
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Aaron R. Seitz
- Department of Psychology, University of California, Riverside, Riverside, CA, United States
- Department of Psychology, Northeastern University, Boston, MA, United States
- *Correspondence: Aaron R. Seitz,
| |
Collapse
|
24
|
Xia T, Yao Z, Guo X, Liu J, Chen D, Liu Q, Paller KA, Hu X. Updating memories of unwanted emotions during human sleep. Curr Biol 2023; 33:309-320.e5. [PMID: 36584677 PMCID: PMC9979073 DOI: 10.1016/j.cub.2022.12.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/21/2022] [Accepted: 12/02/2022] [Indexed: 12/30/2022]
Abstract
Post-learning sleep contributes to memory consolidation. Yet it remains contentious whether sleep affords opportunities to modify or update emotional memories, particularly when people would prefer to forget those memories. Here, we attempted to update memories during sleep, using spoken positive words paired with cues to recent memories of aversive events. Affective updating using positive words during human non-rapid eye movement (NREM) sleep, compared with using neutral words instead, reduced negative affective judgments in post-sleep tests, suggesting that the recalled events were perceived as less aversive. Electroencephalogram (EEG) analyses showed that positive words modulated theta and spindle/sigma activity; specifically, to the extent that theta power was larger for the positive words than for the memory cues that followed, participants judged the memory cues less negatively. Moreover, to the extent that sigma power was larger for the positive words than for the memory cues that followed, participants forgot more episodic details about aversive events. Notably, when the onset of individual positive words coincided with the up-phase of slow oscillations (a state characterized by increased cortical excitability during NREM sleep), affective updating was more successful. In sum, we altered the affective content of memories via the strategic pairing of positive words and memory cues during sleep, linked with EEG theta power increases and the slow oscillation up-phase. These findings suggest novel possibilities for modifying unwanted memories during sleep, which would not require people to consciously confront memories that they prefer to avoid.
Collapse
Affiliation(s)
- Tao Xia
- Department of Psychology, The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Ziqing Yao
- Department of Psychology, The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Xue Guo
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu 610068, China
| | - Jing Liu
- Department of Applied Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Danni Chen
- Department of Psychology, The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Qiang Liu
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu 610068, China; Brain and Cognitive Neuroscience Research Center, Liaoning Normal University, Dalian 116029, China.
| | - Ken A Paller
- Department of Psychology and Cognitive Neuroscience Program, Northwestern University, Evanston, IL 60208, USA
| | - Xiaoqing Hu
- Department of Psychology, The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China; HKU-Shenzhen Institute of Research and Innovation, Shenzhen 518057, China.
| |
Collapse
|
25
|
Implementation of an ISO 50001 energy management system using Lean Six Sigma in an Irish dairy: a case study. TQM JOURNAL 2023. [DOI: 10.1108/tqm-08-2022-0252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
PurposeThis article aims to optimise energy use and consumption by integrating Lean Six Sigma methodology with the ISO 50001 energy management system standard in an Irish dairy plant operation.Design/methodology/approachThis work utilised Lean Six Sigma methodology to identify methods to measure and optimise energy consumption. The authors use a single descriptive case study in an Irish dairy as the methodology to explain how DMAIC was applied to reduce energy consumption.FindingsThe replacement of heavy oil with liquid natural gas in combination with the new design of steam boilers led to a CO2 footprint reduction of almost 50%.Practical implicationsA further longitudinal study would be useful to measure and monitor the energy management system progress and carry out more case studies on LSS integration with energy management systems across the dairy industry.Originality/valueThe novelty of this study is the application of LSS in the dairy sector as an enabler of a greater energy-efficient facility, as well as the testing of the DMAIC approach to meet a key objective for ISO 50001 accreditation.
Collapse
|
26
|
Miyamoto D. Neural circuit plasticity for complex non-declarative sensorimotor memory consolidation during sleep. Neurosci Res 2022; 189:37-43. [PMID: 36584925 DOI: 10.1016/j.neures.2022.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022]
Abstract
Evidence is accumulating that the brain actively consolidates long-term memory during sleep. Motor skill memory is a form of non-declarative procedural memory and can be coordinated with multi-sensory processing such as visual, tactile, and, auditory. Conversely, perception is affected by body movement signal from motor brain regions. Although both cortical and subcortical brain regions are involved in memory consolidation, cerebral cortex activity can be recorded and manipulated noninvasively or minimally invasively in humans and animals. NREM sleep, which is important for non-declarative memory consolidation, is characterized by slow and spindle waves representing thalamo-cortical population activity. In animals, electrophysiological recording, optical imaging, and manipulation approaches have revealed multi-scale cortical dynamics across learning and sleep. In the sleeping cortex, neural activity is affected by prior learning and neural circuits are continually reorganized. Here I outline how sensorimotor coordination is formed through awake learning and subsequent sleep.
Collapse
Affiliation(s)
- Daisuke Miyamoto
- Laboratory for Sleeping-Brain Dynamics, Research Center for Idling Brain Science, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| |
Collapse
|
27
|
Gaeta G, Wilson DA. Reciprocal relationships between sleep and smell. Front Neural Circuits 2022; 16:1076354. [PMID: 36619661 PMCID: PMC9813672 DOI: 10.3389/fncir.2022.1076354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
Despite major anatomical differences with other mammalian sensory systems, olfaction shares with those systems a modulation by sleep/wake states. Sleep modulates odor sensitivity and serves as an important regulator of both perceptual and associative odor memory. In addition, however, olfaction also has an important modulatory impact on sleep. Odors can affect the latency to sleep onset, as well as the quality and duration of sleep. Olfactory modulation of sleep may be mediated by direct synaptic interaction between the olfactory system and sleep control nuclei, and/or indirectly through odor modulation of arousal and respiration. This reciprocal interaction between sleep and olfaction presents novel opportunities for sleep related modulation of memory and perception, as well as development of non-pharmacological olfactory treatments of simple sleep disorders.
Collapse
Affiliation(s)
- Giuliano Gaeta
- Givaudan UK Limited, Health and Well-Being Centre of Excellence, Ashford, United Kingdom,Giuliano Gaeta,
| | - Donald A. Wilson
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States,Child and Adolescent Psychiatry, NYU School of Medicine, New York University, New York, NY, United States,*Correspondence: Donald A. Wilson,
| |
Collapse
|
28
|
Schwartz S, Clerget A, Perogamvros L. Enhancing imagery rehearsal therapy for nightmares with targeted memory reactivation. Curr Biol 2022; 32:4808-4816.e4. [PMID: 36306786 DOI: 10.1016/j.cub.2022.09.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/14/2022] [Accepted: 09/15/2022] [Indexed: 11/21/2022]
Abstract
Nightmare disorder (ND) is characterized by dreams with strong negative emotions occurring during rapid eye movement (REM) sleep. ND is mainly treated by imagery rehearsal therapy (IRT), where the patients are asked to change the negative story line of their nightmare to a more positive one. We here used targeted memory reactivation (TMR) during REM sleep to strengthen IRT-related memories and accelerate remission of ND. Thirty-six patients with ND were asked to perform an initial IRT session and, while they generated a positive outcome of their nightmare, half of the patients were exposed to a sound (TMR group), while no such pairing took place for the other half (control group). During the next 2 weeks, all patients performed IRT every evening at home and were exposed to the sound during REM sleep with a wireless headband, which automatically detected sleep stages. The frequency of nightmares per week at 2 weeks was used as the primary outcome measure. We found that the TMR group had less frequent nightmares and more positive dream emotions than the control group after 2 weeks of IRT and a sustained decrease of nightmares after 3 months. By demonstrating the effectiveness of TMR during sleep to potentiate therapy, these results have clinical implications for the management of ND, with relevance to other psychiatric disorders too. Additionally, these findings show that TMR applied during REM sleep can modulate emotions in dreams.
Collapse
Affiliation(s)
- Sophie Schwartz
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, 1202 Geneva, Switzerland; Swiss Center for Affective Sciences, University of Geneva, 1202 Geneva, Switzerland
| | - Alice Clerget
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, 1202 Geneva, Switzerland
| | - Lampros Perogamvros
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, 1202 Geneva, Switzerland; Swiss Center for Affective Sciences, University of Geneva, 1202 Geneva, Switzerland; Center for Sleep Medicine, Geneva University Hospitals, 1225 Geneva, Switzerland; Department of Psychiatry, Geneva University Hospitals, 1225 Geneva, Switzerland.
| |
Collapse
|
29
|
Electrophysiological markers of memory consolidation in the human brain when memories are reactivated during sleep. Proc Natl Acad Sci U S A 2022; 119:e2123430119. [PMID: 36279460 PMCID: PMC9636913 DOI: 10.1073/pnas.2123430119] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sleep contributes to memory consolidation, we presume, because memories are replayed during sleep. Understanding this aspect of consolidation can help with optimizing normal learning in many contexts and with treating memory disorders and other diseases. Here, we systematically manipulated sleep-based processing using targeted memory reactivation; brief sounds coupled with presleep learning were quietly presented again during sleep, producing 1) recall improvements for specific spatial memories associated with those sounds and 2) physiological responses in the sleep electroencephalogram. Neural activity in the hippocampus and adjacent medial temporal cortex was thus found in association with memory consolidation during sleep. These findings advance understanding of consolidation by linking beneficial memory changes during sleep to both memory reactivation and specific patterns of brain activity. Human accomplishments depend on learning, and effective learning depends on consolidation. Consolidation is the process whereby new memories are gradually stored in an enduring way in the brain so that they can be available when needed. For factual or event knowledge, consolidation is thought to progress during sleep as well as during waking states and to be mediated by interactions between hippocampal and neocortical networks. However, consolidation is difficult to observe directly but rather is inferred through behavioral observations. Here, we investigated overnight memory change by measuring electrical activity in and near the hippocampus. Electroencephalographic (EEG) recordings were made in five patients from electrodes implanted to determine whether a surgical treatment could relieve their seizure disorders. One night, while each patient slept in a hospital monitoring room, we recorded electrophysiological responses to 10 to 20 specific sounds that were presented very quietly, to avoid arousal. Half of the sounds had been associated with objects and their precise spatial locations that patients learned before sleep. After sleep, we found systematic improvements in spatial recall, replicating prior results. We assume that when the sounds were presented during sleep, they reactivated and strengthened corresponding spatial memories. Notably, the sounds also elicited oscillatory intracranial EEG activity, including increases in theta, sigma, and gamma EEG bands. Gamma responses, in particular, were consistently associated with the degree of improvement in spatial memory exhibited after sleep. We thus conclude that this electrophysiological activity in the hippocampus and adjacent medial temporal cortex reflects sleep-based enhancement of memory storage.
Collapse
|
30
|
Howard MD, Skorheim SW, Pilly PK. A model of bi-directional interactions between complementary learning systems for memory consolidation of sequential experiences. Front Syst Neurosci 2022; 16:972235. [PMID: 36313529 PMCID: PMC9606815 DOI: 10.3389/fnsys.2022.972235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
The standard theory of memory consolidation posits a dual-store memory system: a fast-learning fast-decaying hippocampus that transfers memories to slow-learning long-term cortical storage. Hippocampal lesions interrupt this transfer, so recent memories are more likely to be lost than more remote memories. Existing models of memory consolidation that simulate this temporally graded retrograde amnesia operate only on static patterns or unitary variables as memories and study only one-way interaction from the hippocampus to the cortex. However, the mechanisms underlying the consolidation of episodes, which are sequential in nature and comprise multiple events, are not well-understood. The representation of learning for sequential experiences in the cortical-hippocampal network as a self-consistent dynamical system is not sufficiently addressed in prior models. Further, there is evidence for a bi-directional interaction between the two memory systems during offline periods, whereby the reactivation of waking neural patterns originating in the cortex triggers time-compressed sequential replays in the hippocampus, which in turn drive the consolidation of the pertinent sequence in the cortex. We have developed a computational model of memory encoding, consolidation, and recall for storing temporal sequences that explores the dynamics of this bi-directional interaction and time-compressed replays in four simulation experiments, providing novel insights into whether hippocampal learning needs to be suppressed for stable memory consolidation and into how new and old memories compete for limited replay opportunities during offline periods. The salience of experienced events, based on factors such as recency and frequency of use, is shown to have considerable impact on memory consolidation because it biases the relative probability that a particular event will be cued in the cortex during offline periods. In the presence of hippocampal learning during sleep, our model predicts that the fast-forgetting hippocampus can continually refresh the memory traces of a given episodic sequence if there are no competing experiences to be replayed.
Collapse
|
31
|
Onuki Y, Lakbila-Kamal O, Scheffer B, Van Someren EJW, Van der Werf YD. Selective Enhancement of Post-Sleep Visual Motion Perception by Repetitive Tactile Stimulation during Sleep. J Neurosci 2022; 42:7400-7411. [PMID: 35995563 PMCID: PMC9525164 DOI: 10.1523/jneurosci.1512-21.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 05/07/2022] [Accepted: 06/12/2022] [Indexed: 11/21/2022] Open
Abstract
Tactile sensations can bias visual perception in the awake state while visual sensitivity is known to be facilitated by sleep. It remains unknown, however, whether the tactile sensation during sleep can bias the visual improvement after sleep. Here, we performed nap experiments in human participants (n = 56, 18 males, 38 females) to demonstrate that repetitive tactile motion stimulation on the fingertip during slow wave sleep selectively enhanced subsequent visual motion detection. The visual improvement was associated with slow wave activity. The high activation at the high beta frequency was found in the occipital electrodes after the tactile motion stimulation during sleep, indicating a visual-tactile cross-modal interaction during sleep. Furthermore, a second experiment (n = 14, 14 females) to examine whether a hand- or head-centered coordination is dominant for the interpretation of tactile motion direction showed that the biasing effect on visual improvement occurs according to the hand-centered coordination. These results suggest that tactile information can be interpreted during sleep, and can induce the selective improvement of post-sleep visual motion detection.SIGNIFICANCE STATEMENT Tactile sensations can bias our visual perception as a form of cross-modal interaction. However, it was reported only in the awake state. Here we show that repetitive directional tactile motion stimulation on the fingertip during slow wave sleep selectively enhanced subsequent visual motion perception. Moreover, the visual improvement was positively associated with sleep slow wave activity. The tactile motion stimulation during slow wave activity increased the activation at the high beta frequency over the occipital electrodes. The visual improvement occurred in agreement with a hand-centered reference frame. These results suggest that our sleeping brain can interpret tactile information based on a hand-centered reference frame, which can cause the sleep-dependent improvement of visual motion detection.
Collapse
Affiliation(s)
- Yoshiyuki Onuki
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, an institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, 1105BA, The Netherlands
| | - Oti Lakbila-Kamal
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, an institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, 1105BA, The Netherlands
| | - Bo Scheffer
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, an institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, 1105BA, The Netherlands
| | - Eus J W Van Someren
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, an institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, 1105BA, The Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, Amsterdam, 1081HV, The Netherlands
- Amsterdam UMC, Vrije Universiteit, Psychiatry, Amsterdam Neuroscience, Amsterdam, 1081HV, The Netherlands
| | - Ysbrand D Van der Werf
- Department of Anatomy and Neurosciences, Amsterdam UMC, location VU, University Medical Center, Amsterdam, 1081HZ, The Netherlands
| |
Collapse
|
32
|
Abstract
Over the past few decades, the importance of sleep has become increasingly recognized for many physiologic functions, including cognition. Many studies have reported the deleterious effect of sleep loss or sleep disruption on cognitive performance. Beyond ensuring adequate sleep quality and duration, discovering methods to enhance sleep to augment its restorative effects is important to improve learning in many populations, such as the military, students, age-related cognitive decline, and cognitive disorders.
Collapse
Affiliation(s)
- Roneil G Malkani
- Division of Sleep Medicine, Department of Neurology, Center for Circadian and Sleep Medicine, Northwestern University Feinberg School of Medicine, 710 North Lake Shore Drive, Suite 525, Chicago, IL 60611, USA; Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60612, USA.
| | - Phyllis C Zee
- Division of Sleep Medicine, Department of Neurology, Center for Circadian and Sleep Medicine, Northwestern University Feinberg School of Medicine, 710 North Lake Shore Drive, Suite 520, Chicago, IL 60611, USA
| |
Collapse
|
33
|
Cunningham TJ, Stickgold R, Kensinger EA. Investigating the effects of sleep and sleep loss on the different stages of episodic emotional memory: A narrative review and guide to the future. Front Behav Neurosci 2022; 16:910317. [PMID: 36105652 PMCID: PMC9466000 DOI: 10.3389/fnbeh.2022.910317] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 08/03/2022] [Indexed: 11/29/2022] Open
Abstract
For two decades, sleep has been touted as one of the primary drivers for the encoding, consolidation, retention, and retrieval of episodic emotional memory. Recently, however, sleep's role in emotional memory processing has received renewed scrutiny as meta-analyses and reviews have indicated that sleep may only contribute a small effect that hinges on the content or context of the learning and retrieval episodes. On the one hand, the strong perception of sleep's importance in maintaining memory for emotional events may have been exacerbated by publication bias phenomena, such as the "winner's curse" and "file drawer problem." On the other hand, it is plausible that there are sets of circumstances that lead to consistent and reliable effects of sleep on emotional memory; these circumstances may depend on factors such as the placement and quality of sleep relative to the emotional experience, the content and context of the emotional experience, and the probes and strategies used to assess memory at retrieval. Here, we review the literature on how sleep (and sleep loss) influences each stage of emotional episodic memory. Specifically, we have separated previous work based on the placement of sleep and sleep loss in relation to the different stages of emotional memory processing: (1) prior to encoding, (2) immediately following encoding during early consolidation, (3) during extended consolidation, separated from initial learning, (4) just prior to retrieval, and (5) post-retrieval as memories may be restructured and reconsolidated. The goals of this review are three-fold: (1) examine phases of emotional memory that sleep may influence to a greater or lesser degree, (2) explicitly identify problematic overlaps in traditional sleep-wake study designs that are preventing the ability to better disentangle the potential role of sleep in the different stages of emotional memory processing, and (3) highlight areas for future research by identifying the stages of emotional memory processing in which the effect of sleep and sleep loss remains under-investigated. Here, we begin the task of better understanding the contexts and factors that influence the relationship between sleep and emotional memory processing and aim to be a valuable resource to facilitate hypothesis generation and promote important future research.
Collapse
Affiliation(s)
- Tony J. Cunningham
- Center for Sleep and Cognition, Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, United States
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, United States
- Department of Psychology and Neuroscience, Boston College, Chestnut Hill, MA, United States
| | - Robert Stickgold
- Center for Sleep and Cognition, Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, United States
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, United States
| | - Elizabeth A. Kensinger
- Department of Psychology and Neuroscience, Boston College, Chestnut Hill, MA, United States
| |
Collapse
|
34
|
Veldman MP, Dolfen N, Gann MA, Van Roy A, Peeters R, King BR, Albouy G. Somatosensory targeted memory reactivation enhances motor performance via hippocampal-mediated plasticity. Cereb Cortex 2022; 33:3734-3749. [PMID: 35972408 DOI: 10.1093/cercor/bhac304] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/14/2022] Open
Abstract
Increasing evidence suggests that reactivation of newly acquired memory traces during postlearning wakefulness plays an important role in memory consolidation. Here, we sought to boost the reactivation of a motor memory trace during postlearning wakefulness (quiet rest) immediately following learning using somatosensory targeted memory reactivation (TMR). Using functional magnetic resonance imaging, we examined the neural correlates of the reactivation process as well as the effect of the TMR intervention on brain responses elicited by task practice on 24 healthy young adults. Behavioral data of the post-TMR retest session showed a faster learning rate for the motor sequence that was reactivated as compared to the not-reactivated sequence. Brain imaging data revealed that motor, parietal, frontal, and cerebellar brain regions, which were recruited during initial motor learning, were specifically reactivated during the TMR episode and that hippocampo-frontal connectivity was modulated by the reactivation process. Importantly, the TMR-induced behavioral advantage was paralleled by dynamical changes in hippocampal activity and hippocampo-motor connectivity during task practice. Altogether, the present results suggest that somatosensory TMR during postlearning quiet rest can enhance motor performance via the modulation of hippocampo-cortical responses.
Collapse
Affiliation(s)
- Menno P Veldman
- KU Leuven, Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, Leuven 3001, Belgium.,Leuven Brain Institute (LBI), KU Leuven, Leuven 3001, Belgium
| | - Nina Dolfen
- KU Leuven, Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, Leuven 3001, Belgium.,Leuven Brain Institute (LBI), KU Leuven, Leuven 3001, Belgium
| | - Mareike A Gann
- KU Leuven, Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, Leuven 3001, Belgium.,Leuven Brain Institute (LBI), KU Leuven, Leuven 3001, Belgium
| | - Anke Van Roy
- Department of Health and Kinesiology, College of Health, University of Utah, Salt Lake City, UT 84112, United States
| | - Ronald Peeters
- Department of Radiology, University Hospitals Leuven, Leuven 3000, Belgium.,Department of Imaging and Pathology, Biomedical Sciences Group, Leuven 3000, Belgium
| | - Bradley R King
- Department of Health and Kinesiology, College of Health, University of Utah, Salt Lake City, UT 84112, United States
| | - Geneviève Albouy
- KU Leuven, Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, Leuven 3001, Belgium.,Leuven Brain Institute (LBI), KU Leuven, Leuven 3001, Belgium.,Department of Health and Kinesiology, College of Health, University of Utah, Salt Lake City, UT 84112, United States
| |
Collapse
|
35
|
Malerba P, Whitehurst L, Mednick SC. The space-time profiles of sleep spindles and their coordination with slow oscillations on the electrode manifold. Sleep 2022; 45:6603295. [PMID: 35666552 PMCID: PMC9366646 DOI: 10.1093/sleep/zsac132] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/19/2022] [Indexed: 11/17/2022] Open
Abstract
Sleep spindles are important for sleep quality and cognitive functions, with their coordination with slow oscillations (SOs) potentially organizing cross-region reactivation of memory traces. Here, we describe the organization of spindles on the electrode manifold and their relation to SOs. We analyzed the sleep night EEG of 34 subjects and detected spindles and SOs separately at each electrode. We compared spindle properties (frequency, duration, and amplitude) in slow wave sleep (SWS) and Stage 2 sleep (S2); and in spindles that coordinate with SOs or are uncoupled. We identified different topographical spindle types using clustering analysis that grouped together spindles co-detected across electrodes within a short delay (±300 ms). We then analyzed the properties of spindles of each type, and coordination to SOs. We found that SWS spindles are shorter than S2 spindles, and spindles at frontal electrodes have higher frequencies in S2 compared to SWS. Furthermore, S2 spindles closely following an SO (about 10% of all spindles) show faster frequency, shorter duration, and larger amplitude than uncoupled ones. Clustering identified Global, Local, Posterior, Frontal-Right and Left spindle types. At centro-parietal locations, Posterior spindles show faster frequencies compared to other types. Furthermore, the infrequent SO-spindle complexes are preferentially recruiting Global SO waves coupled with fast Posterior spindles. Our results suggest a non-uniform participation of spindles to complexes, especially evident in S2. This suggests the possibility that different mechanisms could initiate an SO-spindle complex compared to SOs and spindles separately. This has implications for understanding the role of SOs-spindle complexes in memory reactivation.
Collapse
Affiliation(s)
- Paola Malerba
- Battelle Center for Mathematical Medicine, The Research Institute at Nationwide Children’s Hospital , Columbus, OH , USA
- School of Medicine, The Ohio State University , Columbus, OH , USA
| | - Lauren Whitehurst
- Department of Psychology, University of Kentucky , Lexington, KY , USA
| | - Sara C Mednick
- Department of Cognitive Science, University of California Irvine , Irvine, CA , USA
| |
Collapse
|
36
|
van der Heijden AC, van den Heuvel OA, van der Werf YD, Talamini LM, van Marle HJF. Sleep as a window to target traumatic memories. Neurosci Biobehav Rev 2022; 140:104765. [PMID: 35803396 DOI: 10.1016/j.neubiorev.2022.104765] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/20/2022] [Accepted: 07/01/2022] [Indexed: 10/17/2022]
Abstract
Post-traumatic stress disorder (PTSD) is a severe psychiatric disorder in which traumatic memories result in flashbacks and nightmares. With one-third of patients not responding to standard exposure-based psychotherapy, new treatment strategies are needed. Sleep offers a unique time window to enhance therapeutic efficacy. Traumatic memories that are neutralized in therapy need to be stored back into memory (consolidated) during sleep to solidify the treatment effect. New basic research shows that memory consolidation can be enhanced by presenting sounds or scents that were linked to the memory at encoding, again during sleep. This procedure, termed targeted memory reactivation (TMR), has, despite its clinical potential, not been tested in (PTSD) patients. In this narrative review, we explore the potential of TMR as a new sleep-based treatment for PTSD. First we provide the necessary background on the memory and sleep principles underlying PTSD as well as the present applications and conditional factors of TMR. Then, we will discuss the outstanding questions and most promising experimental avenues when testing TMR to treat traumatic memories.
Collapse
Affiliation(s)
- A C van der Heijden
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Psychiatry, Department Anatomy & Neuroscience, Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam Neuroscience, Mood Anxiety Psychosis Stress Sleep, Amsterdam, the Netherlands.
| | - O A van den Heuvel
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Psychiatry, Department Anatomy & Neuroscience, Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam Neuroscience, Compulsivity Impulsivity and Attention, Amsterdam, the Netherlands
| | - Y D van der Werf
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Psychiatry, Department Anatomy & Neuroscience, Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam Neuroscience, Compulsivity Impulsivity and Attention, Amsterdam, the Netherlands
| | - L M Talamini
- University of Amsterdam, Dept. of Psychology, Brain & Cognition, Nieuwe Achtergracht 129B, 1018 WS Amsterdam, the Netherlands
| | - H J F van Marle
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Psychiatry, Department Anatomy & Neuroscience, Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam Neuroscience, Mood Anxiety Psychosis Stress Sleep, Amsterdam, the Netherlands; GGZ inGeest Mental Health Care, Amstelveenseweg 589, 1081 JC Amsterdam, the Netherlands
| |
Collapse
|
37
|
Nicolas J, King BR, Levesque D, Lazzouni L, Coffey EBJ, Swinnen S, Doyon J, Carrier J, Albouy G. Sigma oscillations protect or reinstate motor memory depending on their temporal coordination with slow waves. eLife 2022; 11:73930. [PMID: 35726850 PMCID: PMC9259015 DOI: 10.7554/elife.73930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 06/07/2022] [Indexed: 11/18/2022] Open
Abstract
Targeted memory reactivation (TMR) during post-learning sleep is known to enhance motor memory consolidation but the underlying neurophysiological processes remain unclear. Here, we confirm the beneficial effect of auditory TMR on motor performance. At the neural level, TMR enhanced slow wave (SW) characteristics. Additionally, greater TMR-related phase-amplitude coupling between slow (0.5–2 Hz) and sigma (12–16 Hz) oscillations after the SW peak was related to higher TMR effect on performance. Importantly, sounds that were not associated to learning strengthened SW-sigma coupling at the SW trough. Moreover, the increase in sigma power nested in the trough of the potential evoked by the unassociated sounds was related to the TMR benefit. Altogether, our data suggest that, depending on their precise temporal coordination during post learning sleep, slow and sigma oscillations play a crucial role in either memory reinstatement or protection against irrelevant information; two processes that critically contribute to motor memory consolidation.
Collapse
Affiliation(s)
- Judith Nicolas
- Department of Movement Sciences, KU Leuven, Leuven, Belgium
| | - Bradley R King
- Department of Health and Kinesiology, Unversity of Utah, Salt Lake City, United States
| | - David Levesque
- Center for Advanced Research in Sleep Medicine, Universite de Montreal, Montreal, Canada
| | - Latifa Lazzouni
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| | | | | | - Julien Doyon
- Department of Neurology and Neurosurgery, McGill University, Montréal, Canada
| | - Julie Carrier
- Centre for Advanced Research in Sleep Medicine, Université de Montréal, Montreal, Canada
| | | |
Collapse
|
38
|
Kim T, Kim S, Kang J, Kwon M, Lee SH. The Common Effects of Sleep Deprivation on Human Long-Term Memory and Cognitive Control Processes. Front Neurosci 2022; 16:883848. [PMID: 35720688 PMCID: PMC9201256 DOI: 10.3389/fnins.2022.883848] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/11/2022] [Indexed: 11/17/2022] Open
Abstract
Sleep deprivation is known to have adverse effects on various cognitive abilities. In particular, a lack of sleep has been reported to disrupt memory consolidation and cognitive control functions. Here, focusing on long-term memory and cognitive control processes, we review the consistency and reliability of the results of previous studies of sleep deprivation effects on behavioral performance with variations in the types of stimuli and tasks. Moreover, we examine neural response changes related to these behavioral changes induced by sleep deprivation based on human fMRI studies to determine the brain regions in which neural responses increase or decrease as a consequence of sleep deprivation. Additionally, we discuss about the possibility that light as an environmentally influential factor affects our sleep cycles and related cognitive processes.
Collapse
Affiliation(s)
- Taehyun Kim
- Department of Bio and Brain Engineering, College of Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Sejin Kim
- Department of Bio and Brain Engineering, College of Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Joonyoung Kang
- Department of Bio and Brain Engineering, College of Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- Program of Brain and Cognitive Engineering, College of Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Minjae Kwon
- Department of Bio and Brain Engineering, College of Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Sue-Hyun Lee
- Department of Bio and Brain Engineering, College of Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- Program of Brain and Cognitive Engineering, College of Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- *Correspondence: Sue-Hyun Lee,
| |
Collapse
|
39
|
Hoedlmoser K, Peigneux P, Rauchs G. Recent advances in memory consolidation and information processing during sleep. J Sleep Res 2022; 31:e13607. [DOI: 10.1111/jsr.13607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 12/20/2022]
Affiliation(s)
- Kerstin Hoedlmoser
- Department of Psychology, Centre for Cognitive Neuroscience (CCNS), Laboratory for “Sleep, Cognition and Consciousness Research” University of Salzburg Salzburg Austria
| | - Philippe Peigneux
- UR2NF – Neuropsychology and Functional Neuroimaging Research Unit affiliated at CRCN – Centre for Research in Cognition and Neurosciences and UNI – ULB Neuroscience Institute Bruxelles Belgium
| | - Géraldine Rauchs
- UNICAEN, INSERM, U1237, PhIND “Physiopathology and Imaging of Neurological Disorders”, Institut Blood and Brain @ Caen‐Normandie Normandie Univ Caen France
| |
Collapse
|
40
|
Whitmore NW, Bassard AM, Paller KA. Targeted memory reactivation of face-name learning depends on ample and undisturbed slow-wave sleep. NPJ SCIENCE OF LEARNING 2022; 7:1. [PMID: 35022449 PMCID: PMC8755782 DOI: 10.1038/s41539-021-00119-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Face memory, including the ability to recall a person's name, is of major importance in social contexts. Like many other memory functions, it may rely on sleep. We investigated whether targeted memory reactivation during sleep could improve associative and perceptual aspects of face memory. Participants studied 80 face-name pairs, and then a subset of spoken names with associated background music was presented unobtrusively during a daytime nap. This manipulation preferentially improved name recall and face recognition for those reactivated face-name pairs, as modulated by two factors related to sleep quality; memory benefits were positively correlated with the duration of stage N3 sleep (slow-wave sleep) and negatively correlated with measures of sleep disruption. We conclude that (a) reactivation of specific face-name memories during sleep can strengthen these associations and the constituent memories, and that (b) the effectiveness of this reactivation depends on uninterrupted N3 sleep.
Collapse
Affiliation(s)
- Nathan W Whitmore
- Department of Psychology, Cognitive Neuroscience Program, and Interdepartmental Neuroscience Program, Northwestern University, Evanston, IL, 60208-2710, USA
| | - Adrianna M Bassard
- Department of Psychology, Cognitive Neuroscience Program, and Interdepartmental Neuroscience Program, Northwestern University, Evanston, IL, 60208-2710, USA
| | - Ken A Paller
- Department of Psychology, Cognitive Neuroscience Program, and Interdepartmental Neuroscience Program, Northwestern University, Evanston, IL, 60208-2710, USA.
| |
Collapse
|
41
|
Batterink LJ, Zhang S. Simple statistical regularities presented during sleep are detected but not retained. Neuropsychologia 2022; 164:108106. [PMID: 34864052 DOI: 10.1016/j.neuropsychologia.2021.108106] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/06/2021] [Accepted: 11/28/2021] [Indexed: 12/30/2022]
Abstract
In recent years, there has been growing interest and excitement over the newly discovered cognitive capacities of the sleeping brain, including its ability to form novel associations. These recent discoveries raise the possibility that other more sophisticated forms of learning may also be possible during sleep. In the current study, we tested whether sleeping humans are capable of statistical learning - the process of becoming sensitive to repeating, hidden patterns in environmental input, such as embedded words in a continuous stream of speech. Participants' EEG was recorded while they were presented with one of two artificial languages, composed of either trisyllabic or disyllabic nonsense words, during slow-wave sleep. We used an EEG measure of neural entrainment to assess whether participants became sensitive to the repeating regularities during sleep-exposure to the language. We further probed for long-term memory representations by assessing participants' performance on implicit and explicit tests of statistical learning during subsequent wake. In the disyllabic-but not trisyllabic-language condition, participants' neural entrainment to words increased over time, reflecting a gradual gain in sensitivity to the embedded regularities. However, no significant behavioural effects of sleep-exposure were observed after the nap, for either language. Overall, our results indicate that the sleeping brain can detect simple, repeating pairs of syllables, but not more complex triplet regularities. However, the online detection of these regularities does not appear to produce any durable long-term memory traces that persist into wake - at least none that were revealed by our current measures and sample size. Although some perceptual aspects of statistical learning are preserved during sleep, the lack of memory benefits during wake indicates that exposure to a novel language during sleep may have limited practical value.
Collapse
Affiliation(s)
- Laura J Batterink
- Department of Psychology, Brain and Mind Institute, Western University, London, ON, N6A 5B7, Canada.
| | - Steven Zhang
- Department of Psychology, Brain and Mind Institute, Western University, London, ON, N6A 5B7, Canada
| |
Collapse
|
42
|
Rakowska M, Abdellahi MEA, Bagrowska P, Navarrete M, Lewis PA. Long term effects of cueing procedural memory reactivation during NREM sleep. Neuroimage 2021; 244:118573. [PMID: 34537384 PMCID: PMC8591408 DOI: 10.1016/j.neuroimage.2021.118573] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 09/02/2021] [Accepted: 09/07/2021] [Indexed: 11/17/2022] Open
Abstract
A single night of TMR benefits procedural memories up to 10 days later. Spindle density and SO-spindle coupling strength increase immediately upon cue onset. Time spent in N2 but not N3 predicts cueing benefit.
Targeted memory reactivation (TMR) has recently emerged as a promising tool to manipulate and study the sleeping brain. Although the technique is developing rapidly, only a few studies have examined how the effects of TMR develop over time. Here, we use a bimanual serial reaction time task (SRTT) to investigate whether the difference between the cued and un-cued sequence of button presses persists long-term. We further explore the relationship between the TMR benefit and sleep spindles, as well as their coupling with slow oscillations. Our behavioural analysis shows better performance for the dominant hand. Importantly, there was a strong effect of TMR, with improved performance on the cued sequence after sleep. Closer examination revealed a significant benefit of TMR at 10 days post-encoding, but not 24 h or 6 weeks post-encoding. Time spent in stage 2, but not stage 3, of NREM sleep predicted cueing benefit. We also found a significant increase in spindle density and SO-spindle coupling during the cue period, when compared to the no-cue period. Together, our results demonstrate that TMR effects evolve over several weeks post-cueing, as well as emphasising the importance of stage 2, spindles and the SO-spindle coupling in procedural memory consolidation.
Collapse
Affiliation(s)
- Martyna Rakowska
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Rd, Cardiff CF24 4HQ, UK.
| | - Mahmoud E A Abdellahi
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Rd, Cardiff CF24 4HQ, UK
| | - Paulina Bagrowska
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Rd, Cardiff CF24 4HQ, UK
| | - Miguel Navarrete
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Rd, Cardiff CF24 4HQ, UK
| | - Penelope A Lewis
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Rd, Cardiff CF24 4HQ, UK
| |
Collapse
|
43
|
Hubbard RJ, Zadeh I, Jones AP, Robert B, Bryant NB, Clark VP, Pilly PK. Brain connectivity alterations during sleep by closed-loop transcranial neurostimulation predict metamemory sensitivity. Netw Neurosci 2021; 5:734-756. [PMID: 34746625 PMCID: PMC8567828 DOI: 10.1162/netn_a_00201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 05/15/2021] [Indexed: 12/23/2022] Open
Abstract
Metamemory involves the ability to correctly judge the accuracy of our memories. The retrieval of memories can be improved using transcranial electrical stimulation (tES) during sleep, but evidence for improvements to metamemory sensitivity is limited. Applying tES can enhance sleep-dependent memory consolidation, which along with metamemory requires the coordination of activity across distributed neural systems, suggesting that examining functional connectivity is important for understanding these processes. Nevertheless, little research has examined how functional connectivity modulations relate to overnight changes in metamemory sensitivity. Here, we developed a closed-loop short-duration tES method, time-locked to up-states of ongoing slow-wave oscillations, to cue specific memory replays in humans. We measured electroencephalographic (EEG) coherence changes following stimulation pulses, and characterized network alterations with graph theoretic metrics. Using machine learning techniques, we show that pulsed tES elicited network changes in multiple frequency bands, including increased connectivity in the theta band and increased efficiency in the spindle band. Additionally, stimulation-induced changes in beta-band path length were predictive of overnight changes in metamemory sensitivity. These findings add new insights into the growing literature investigating increases in memory performance through brain stimulation during sleep, and highlight the importance of examining functional connectivity to explain its effects. Numerous studies have demonstrated a clear link between sleep and memory—namely, memories are consolidated during sleep, leading to more stable and long-lasting representations. We have previously shown that tagging episodes with specific patterns of brain stimulation during encoding and replaying those patterns during sleep can enhance this consolidation process to improve confidence and decision-making of memories (metamemory). Here, we extend this work to examine network-level brain changes that occur following stimulation during sleep that predict metamemory improvements. Using graph theoretic and machine-learning methods, we found that stimulation-induced changes in beta-band path length predicted overnight improvements in metamemory. This novel finding sheds new light on the neural mechanisms of memory consolidation and suggests potential applications for improving metamemory.
Collapse
Affiliation(s)
- Ryan J Hubbard
- Center for Human-Machine Collaboration, Information and Systems Sciences Laboratory, HRL Laboratories, LLC, Malibu, CA, USA
| | - Iman Zadeh
- Center for Human-Machine Collaboration, Information and Systems Sciences Laboratory, HRL Laboratories, LLC, Malibu, CA, USA
| | - Aaron P Jones
- Psychology Clinical Neuroscience Center, Department of Psychology, The University of New Mexico, Albuquerque, NM, USA
| | - Bradley Robert
- Psychology Clinical Neuroscience Center, Department of Psychology, The University of New Mexico, Albuquerque, NM, USA
| | - Natalie B Bryant
- Psychology Clinical Neuroscience Center, Department of Psychology, The University of New Mexico, Albuquerque, NM, USA
| | - Vincent P Clark
- Psychology Clinical Neuroscience Center, Department of Psychology, The University of New Mexico, Albuquerque, NM, USA
| | - Praveen K Pilly
- Center for Human-Machine Collaboration, Information and Systems Sciences Laboratory, HRL Laboratories, LLC, Malibu, CA, USA
| |
Collapse
|
44
|
Wang S, Feng SF, Bornstein AM. Mixing memory and desire: How memory reactivation supports deliberative decision-making. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2021; 13:e1581. [PMID: 34665529 DOI: 10.1002/wcs.1581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 08/24/2021] [Accepted: 09/16/2021] [Indexed: 11/09/2022]
Abstract
Memories affect nearly every aspect of our mental life. They allow us to both resolve uncertainty in the present and to construct plans for the future. Recently, renewed interest in the role memory plays in adaptive behavior has led to new theoretical advances and empirical observations. We review key findings, with particular emphasis on how the retrieval of many kinds of memories affects deliberative action selection. These results are interpreted in a sequential inference framework, in which reinstatements from memory serve as "samples" of potential action outcomes. The resulting model suggests a central role for the dynamics of memory reactivation in determining the influence of different kinds of memory in decisions. We propose that representation-specific dynamics can implement a bottom-up "product of experts" rule that integrates multiple sets of action-outcome predictions weighted based on their uncertainty. We close by reviewing related findings and identifying areas for further research. This article is categorized under: Psychology > Reasoning and Decision Making Neuroscience > Cognition Neuroscience > Computation.
Collapse
Affiliation(s)
- Shaoming Wang
- Department of Psychology, New York University, New York, New York, USA
| | - Samuel F Feng
- Department of Mathematics, Khalifa University of Science and Technology, Abu Dhabi, UAE.,Khalifa University Centre for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, UAE
| | - Aaron M Bornstein
- Department of Cognitive Sciences, University of California-Irvine, Irvine, California, USA.,Center for the Neurobiology of Learning & Memory, University of California-Irvine, Irvine, California, USA.,Institute for Mathematical Behavioral Sciences, University of California-Irvine, Irvine, California, USA
| |
Collapse
|
45
|
A new application of TMR: A study on implicit self-esteem. CURRENT PSYCHOLOGY 2021. [DOI: 10.1007/s12144-021-01883-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
46
|
Picard-Deland C, Aumont T, Samson-Richer A, Paquette T, Nielsen T. Whole-body procedural learning benefits from targeted memory reactivation in REM sleep and task-related dreaming. Neurobiol Learn Mem 2021; 183:107460. [PMID: 34015442 DOI: 10.1016/j.nlm.2021.107460] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/20/2021] [Accepted: 05/12/2021] [Indexed: 10/21/2022]
Abstract
Sleep facilitates memory consolidation through offline reactivations of memory traces. Dreaming may play a role in memory improvement and may reflect these memory reactivations. To experimentally address this question, we used targeted memory reactivation (TMR), i.e., application, during sleep, of a stimulus that was previously associated with learning, to assess whether it influences task-related dream imagery (or task-dream reactivations). Specifically, we asked if TMR or task-dream reactivations in either slow-wave (SWS) or rapid eye movement (REM) sleep benefit whole-body procedural learning. Healthy participants completed a virtual reality (VR) flying task prior to and following a morning nap or rest period during which task-associated tones were readministered in either SWS, REM sleep, wake or not at all. Findings indicate that learning benefits most from TMR when applied in REM sleep compared to a Control-sleep group. REM dreams that reactivated kinesthetic elements of the VR task (e.g., flying, accelerating) were also associated with higher improvement on the task than were dreams that reactivated visual elements (e.g., landscapes) or that had no reactivations. TMR did not itself influence dream content but its effects on performance were greater when coexisting with task-dream reactivations in REM sleep. Findings may help explain the mechanistic relationships between dream and memory reactivations and may contribute to the development of sleep-based methods to optimize complex skill learning.
Collapse
Affiliation(s)
- Claudia Picard-Deland
- Dream & Nightmare Laboratory, Center for Advanced Research in Sleep Medicine, CIUSSS-NÎM - Hôpital du Sacré-Coeur de Montréal, Québec, Canada; Department of Neuroscience, Université de Montréal, Montréal, Québec, Canada
| | - Tomy Aumont
- Dream & Nightmare Laboratory, Center for Advanced Research in Sleep Medicine, CIUSSS-NÎM - Hôpital du Sacré-Coeur de Montréal, Québec, Canada; Department of Biomedical Sciences, Université de Montréal, Montréal, Québec, Canada
| | - Arnaud Samson-Richer
- Dream & Nightmare Laboratory, Center for Advanced Research in Sleep Medicine, CIUSSS-NÎM - Hôpital du Sacré-Coeur de Montréal, Québec, Canada
| | - Tyna Paquette
- Dream & Nightmare Laboratory, Center for Advanced Research in Sleep Medicine, CIUSSS-NÎM - Hôpital du Sacré-Coeur de Montréal, Québec, Canada
| | - Tore Nielsen
- Dream & Nightmare Laboratory, Center for Advanced Research in Sleep Medicine, CIUSSS-NÎM - Hôpital du Sacré-Coeur de Montréal, Québec, Canada; Department of Psychiatry and Addictology, Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
47
|
Veldman MP, Dolfen N, Gann MA, Carrier J, King BR, Albouy G. Somatosensory Targeted Memory Reactivation Modulates Oscillatory Brain Activity but not Motor Memory Consolidation. Neuroscience 2021; 465:203-218. [PMID: 33823218 DOI: 10.1016/j.neuroscience.2021.03.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 11/25/2022]
Abstract
Previous research has shown that targeted memory reactivation (TMR) protocols using acoustic or olfactory stimuli can boost motor memory consolidation. While somatosensory information is crucial for motor control and learning, the effects of somatosensory TMR on motor memory consolidation remain elusive. Here, healthy young adults (n = 28) were trained on a sequential serial reaction time task and received, during the offline consolidation period that followed, sequential electrical stimulation of the fingers involved in the task. This somatosensory TMR procedure was applied during either a 90-minute diurnal sleep (NAP) or wake (NONAP) interval that was monitored with electroencephalography. Consolidation was assessed with a retest following the NAP/NONAP episode. Behavioral results revealed no effect of TMR on motor performance in either of the groups. At the brain level, somatosensory stimulation elicited changes in oscillatory activity in both groups. Specifically, TMR induced an increase in power in the mu band in the NONAP group and in the beta band in both the NAP and NONAP groups. Additionally, TMR elicited an increase in sigma power and a decrease in delta oscillations in the NAP group. None of these TMR-induced modulations of oscillatory activity, however, were correlated with measures of motor memory consolidation. The present results collectively suggest that while somatosensory TMR modulates oscillatory brain activity during post-learning sleep and wakefulness, it does not influence motor performance in an immediate retest.
Collapse
Affiliation(s)
- Menno P Veldman
- KU Leuven, Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, Leuven, Belgium; KU Leuven Brain Institute (LBI), Leuven, Belgium.
| | - Nina Dolfen
- KU Leuven, Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, Leuven, Belgium; KU Leuven Brain Institute (LBI), Leuven, Belgium
| | - Mareike A Gann
- KU Leuven, Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, Leuven, Belgium; KU Leuven Brain Institute (LBI), Leuven, Belgium
| | - Julie Carrier
- Center for Advanced Research in Sleep Medicine, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord-de-l'Ile de Montréal, Montreal, QC, Canada; Department of Psychology, Université de Montréal, Montreal, QC, Canada
| | - Bradley R King
- KU Leuven, Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, Leuven, Belgium; KU Leuven Brain Institute (LBI), Leuven, Belgium
| | - Geneviève Albouy
- KU Leuven, Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, Leuven, Belgium; KU Leuven Brain Institute (LBI), Leuven, Belgium
| |
Collapse
|
48
|
MacDonald KJ, Cote KA. Contributions of post-learning REM and NREM sleep to memory retrieval. Sleep Med Rev 2021; 59:101453. [PMID: 33588273 DOI: 10.1016/j.smrv.2021.101453] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/10/2020] [Accepted: 12/23/2020] [Indexed: 02/06/2023]
Abstract
It has become clear that sleep after learning has beneficial effects on the later retrieval of newly acquired memories. The neural mechanisms underlying these effects are becoming increasingly clear as well, particularly those of non-REM sleep. However, much is still unknown about the sleep and memory relationship: the sleep state or features of sleep physiology that associate with memory performance often vary by task or experimental design, and the nature of this variability is not entirely clear. This paper describes pertinent features of sleep physiology and provides a detailed review of the scientific literature indicating beneficial effects of post-learning sleep on memory retrieval. This paper additionally introduces a hypothesis which attributes these beneficial effects of post-learning sleep to separable processes of memory reinforcement and memory refinement whereby reinforcement supports one's ability to retrieve a given memory and refinement supports the precision of that memory retrieval in the context of competitive alternatives. It is observed that features of non-REM sleep are involved in a post-learning substantiation of memory representations that benefit memory performance; thus, memory reinforcement is primarily attributed to non-REM sleep. Memory refinement is primarily attributed to REM sleep given evidence of bidirectional synaptic plasticity in REM sleep and findings from studies of selective REM sleep deprivation.
Collapse
|
49
|
Ko LW, Su CH, Yang MH, Liu SY, Su TP. A pilot study on essential oil aroma stimulation for enhancing slow-wave EEG in sleeping brain. Sci Rep 2021; 11:1078. [PMID: 33441798 PMCID: PMC7806966 DOI: 10.1038/s41598-020-80171-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022] Open
Abstract
Sleep quality is important to health and life quality. Lack of sleep can lead to a variety of health issues and reduce in daytime function. Recent study by Fultz et al. also indicated that sleep is crucial to brain metabolism. Delta power in sleep EEG often indicates good sleep quality while alpha power usually indicates sleep interruptions and poor sleep quality. Essential oil has been speculated to improve sleep quality. Previous studies also suggest essential oil aroma may affect human brain activity when applied awake. However, those studies were often not blinded, which makes the effectiveness and mechanism of aroma a heavily debated topic. In this study, we aim to explore the effect of essential oil aroma on human sleep quality and sleep EEG in a single-blinded setup. The aroma was released when the participants are asleep, which kept the influence of psychological expectation to the minimum. We recruited nine young, healthy participants with regular lifestyle and no sleep problem. All participants reported better sleep quality and more daytime vigorous after exposing to lavender aroma in sleep. We also observed that upon lavender aroma releases, alpha wave in wake stage was reduced while delta wave in slow-wave sleep (SWS) was increased. Lastly, we found that lavender oil promote occurrence of SWS. Overall, our study results show that essential oil aroma can be used to promote both subjective and objective sleep quality in healthy human subjects. This makes aroma intervention a potential solution for poor sleep quality and insomnia.
Collapse
Affiliation(s)
- Li-Wei Ko
- Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Chiao Tung University, Hsinchu City, Taiwan. .,Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu City, Taiwan. .,Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung City, Taiwan.
| | - Cheng-Hua Su
- Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Chiao Tung University, Hsinchu City, Taiwan.,Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu City, Taiwan
| | - Meng-Hsun Yang
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu City, Taiwan
| | - Shen-Yi Liu
- Sleep Center, Taipei Veterans General Hospital, Taipei City, Taiwan
| | - Tung-Ping Su
- Department of Psychiatry, Cheng Hsin General Hospital, Taipei City, Taiwan.,Department of Psychiatry, Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
50
|
Schechtman E, Antony JW, Lampe A, Wilson BJ, Norman KA, Paller KA. Multiple memories can be simultaneously reactivated during sleep as effectively as a single memory. Commun Biol 2021; 4:25. [PMID: 33398075 PMCID: PMC7782847 DOI: 10.1038/s42003-020-01512-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 11/20/2020] [Indexed: 01/27/2023] Open
Abstract
Memory consolidation involves the reactivation of memory traces during sleep. If different memories are reactivated each night, how much do they interfere with one another? We examined whether reactivating multiple memories incurs a cost to sleep-related benefits by contrasting reactivation of multiple memories versus single memories during sleep. First, participants learned the on-screen location of different objects. Each object was part of a semantically coherent group comprised of either one, two, or six items (e.g., six different cats). During sleep, sounds were unobtrusively presented to reactivate memories for half of the groups (e.g., "meow"). Memory benefits for cued versus non-cued items were independent of the number of items in the group, suggesting that reactivation occurs in a simultaneous and promiscuous manner. Intriguingly, sleep spindles and delta-theta power modulations were sensitive to group size, reflecting the extent of previous learning. Our results demonstrate that multiple memories may be consolidated in parallel without compromising each memory's sleep-related benefit. These findings highlight alternative models for parallel consolidation that should be considered in future studies.
Collapse
Affiliation(s)
- Eitan Schechtman
- Department of Psychology, Northwestern University, Evanston, IL, 60208, USA.
| | - James W Antony
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton, NJ, 08544, USA
| | - Anna Lampe
- Department of Psychology, Northwestern University, Evanston, IL, 60208, USA
| | - Brianna J Wilson
- Department of Psychology, Northwestern University, Evanston, IL, 60208, USA
| | - Kenneth A Norman
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton, NJ, 08544, USA
| | - Ken A Paller
- Department of Psychology, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|