1
|
Kim H, Jeon Y, Kim S, Guo Y, Kim D, Jang G, Brasch J, Um JW, Ko J. EphB2 receptor tyrosine kinase-mediated excitatory synaptic functions are negatively modulated by MDGA2. Prog Neurobiol 2025; 250:102772. [PMID: 40316130 DOI: 10.1016/j.pneurobio.2025.102772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/24/2025] [Accepted: 04/24/2025] [Indexed: 05/04/2025]
Abstract
MDGA2 is an excitatory synapse-specific suppressor that uses distinct extracellular mechanisms to negatively regulate various postsynaptic properties. Here, we identify EphB2, an excitatory synapse-specific receptor tyrosine kinase, as a new binding partner for MDGA2. The first three immunoglobulin domains of MDGA2 undergo cis-binding to the ligand-binding domain of EphB2, enabling MDGA2 to compete with Ephrin-B1 for binding to EphB2. Moreover, EphB2 forms complexes with MDGA2 and GluN2B-containing NMDA receptors (NMDARs) in mouse brains. MDGA2 deletion promotes formation of the EphB2/Ephrin-B1 complex but does not alter the surface expression levels and Ephrin-stimulated activation of EphB2 receptors and downstream GluN2B-containing NMDARs in cultured neurons. AlphaFold-based molecular replacement experiments reveal that MDGA2 must bind EphB2 to suppress spontaneous synaptic transmission and NMDAR-mediated, but not AMPAR-mediated, postsynaptic responses at excitatory synapses in cultured neurons. These results collectively suggest that MDGA2 is a versatile factor that suppresses distinct excitatory postsynaptic properties via different transsynaptic pathways.
Collapse
Affiliation(s)
- Hyeonho Kim
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungangdae-Ro, Hyeonpoong-Eup, Dalseong-Gun, Daegu 42988, South Korea; Center for Synapse Diversity and Specificity, DGIST, Daegu 42988, South Korea
| | - Younghyeon Jeon
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungangdae-Ro, Hyeonpoong-Eup, Dalseong-Gun, Daegu 42988, South Korea; Center for Synapse Diversity and Specificity, DGIST, Daegu 42988, South Korea
| | - Seunghye Kim
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungangdae-Ro, Hyeonpoong-Eup, Dalseong-Gun, Daegu 42988, South Korea; Center for Synapse Diversity and Specificity, DGIST, Daegu 42988, South Korea
| | - Yuxuan Guo
- Department of Biochemistry, Spencer Fox Eccles School of Medicine, The University of Utah, Salt Lake City, UT 84112, USA
| | - Dongwook Kim
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungangdae-Ro, Hyeonpoong-Eup, Dalseong-Gun, Daegu 42988, South Korea; Center for Synapse Diversity and Specificity, DGIST, Daegu 42988, South Korea
| | - Gyubin Jang
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungangdae-Ro, Hyeonpoong-Eup, Dalseong-Gun, Daegu 42988, South Korea; Center for Synapse Diversity and Specificity, DGIST, Daegu 42988, South Korea
| | - Julia Brasch
- Department of Biochemistry, Spencer Fox Eccles School of Medicine, The University of Utah, Salt Lake City, UT 84112, USA
| | - Ji Won Um
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungangdae-Ro, Hyeonpoong-Eup, Dalseong-Gun, Daegu 42988, South Korea; Center for Synapse Diversity and Specificity, DGIST, Daegu 42988, South Korea.
| | - Jaewon Ko
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungangdae-Ro, Hyeonpoong-Eup, Dalseong-Gun, Daegu 42988, South Korea; Center for Synapse Diversity and Specificity, DGIST, Daegu 42988, South Korea.
| |
Collapse
|
2
|
Zhou W, Munoz JR, Henry Ho HY, Hanamura K, Dalva MB. Specific neuroblast-derived signals control both cell migration and fate in the rostral migratory stream. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.18.638163. [PMID: 40027825 PMCID: PMC11870606 DOI: 10.1101/2025.02.18.638163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Functional neuronal circuits require neuroblasts migrate to appropriate locations and then differentiate into neuronal subtypes. However, it remains unknown how neuroblasts in the subventricular zone (SVZ) are guided through the rostral migratory stream (RMS) to the olfactory bulb (OB). Here we define EphB2 as a neuroblast-derived cue that controls migration along the RMS and helps to determine cell fate. Within the RMS, EphB2 is expressed selectively in, kinase-active in, and required for the migration of neuroblasts. As neuroblasts enter the OB and differentiate, EphB kinase activity is down-regulated, and in the granule cell layer (GCL), EphB2 expression is down-regulated. Blocking EphB kinase activity or knocking down EphB2 results in defects in migration and premature cellular differentiation in the RMS. Unexpectedly, premature loss of EphB2 expression causes neuroblasts to stop migrating and differentiate into astrocyte-like cells. Thus, EphB2 kinase activity and expression are linked to migration and specification of neuroblast fate.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Neuroscience and the Jefferson Synaptic Biology Center, Thomas Jefferson University, 900 Walnut Street, Philadelphia, PA 19107, USA
| | - James R. Munoz
- Present address: Department of Psychology and Neuroscience, Nova Southeastern University, 3301 College Avenue, Fort Lauderdale, FL 33314, USA
| | - Hsin-Yi Henry Ho
- Department of Cell Biology and Human Anatomy, UC Davis School of Medicine, One Shields Avenue, Davis, CA 95616
| | - Kenji Hanamura
- Department of Neuroscience and the Jefferson Synaptic Biology Center, Thomas Jefferson University, 900 Walnut Street, Philadelphia, PA 19107, USA
- Present address: Faculty of Medical Technology, Department of Radiological Technology, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata-City, 950-3198, Japan
| | - Matthew B. Dalva
- Department of Neuroscience and the Jefferson Synaptic Biology Center, Thomas Jefferson University, 900 Walnut Street, Philadelphia, PA 19107, USA
- Present Address: Tulane Brain Institute, Tulane University, 201 Flower Hall, 6823 St. Charles Avenue, New Orleans, LA 70118
| |
Collapse
|
3
|
Neřoldová M, Stuchlík A. Chemogenetic Tools and their Use in Studies of Neuropsychiatric Disorders. Physiol Res 2024; 73:S449-S470. [PMID: 38957949 PMCID: PMC11412350 DOI: 10.33549/physiolres.935401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Chemogenetics is a newly developed set of tools that allow for selective manipulation of cell activity. They consist of a receptor mutated irresponsive to endogenous ligands and a synthetic ligand that does not interact with the wild-type receptors. Many different types of these receptors and their respective ligands for inhibiting or excitating neuronal subpopulations were designed in the past few decades. It has been mainly the G-protein coupled receptors (GPCRs) selectively responding to clozapine-N-oxide (CNO), namely Designer Receptors Exclusively Activated by Designer Drugs (DREADDs), that have been employed in research. Chemogenetics offers great possibilities since the activity of the receptors is reversible, inducible on demand by the ligand, and non-invasive. Also, specific groups or types of neurons can be selectively manipulated thanks to the delivery by viral vectors. The effect of the chemogenetic receptors on neurons lasts longer, and even chronic activation can be achieved. That can be useful for behavioral testing. The great advantage of chemogenetic tools is especially apparent in research on brain diseases since they can manipulate whole neuronal circuits and connections between different brain areas. Many psychiatric or other brain diseases revolve around the dysfunction of specific brain networks. Therefore, chemogenetics presents a powerful tool for investigating the underlying mechanisms causing the disease and revealing the link between the circuit dysfunction and the behavioral or cognitive symptoms observed in patients. It could also contribute to the development of more effective treatments.
Collapse
Affiliation(s)
- M Neřoldová
- Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic. E-mail:
| | | |
Collapse
|
4
|
Chang C, Banerjee SL, Park SS, Zhang XL, Cotnoir-White D, Opperman KJ, Desbois M, Grill B, Kania A. Ubiquitin ligase and signalling hub MYCBP2 is required for efficient EPHB2 tyrosine kinase receptor function. eLife 2024; 12:RP89176. [PMID: 38289221 PMCID: PMC10945567 DOI: 10.7554/elife.89176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024] Open
Abstract
Eph receptor tyrosine kinases participate in a variety of normal and pathogenic processes during development and throughout adulthood. This versatility is likely facilitated by the ability of Eph receptors to signal through diverse cellular signalling pathways: primarily by controlling cytoskeletal dynamics, but also by regulating cellular growth, proliferation, and survival. Despite many proteins linked to these signalling pathways interacting with Eph receptors, the specific mechanisms behind such links and their coordination remain to be elucidated. In a proteomics screen for novel EPHB2 multi-effector proteins, we identified human MYC binding protein 2 (MYCBP2 or PAM or Phr1). MYCBP2 is a large signalling hub involved in diverse processes such as neuronal connectivity, synaptic growth, cell division, neuronal survival, and protein ubiquitination. Our biochemical experiments demonstrate that the formation of a complex containing EPHB2 and MYCBP2 is facilitated by FBXO45, a protein known to select substrates for MYCBP2 ubiquitin ligase activity. Formation of the MYCBP2-EPHB2 complex does not require EPHB2 tyrosine kinase activity and is destabilised by binding of ephrin-B ligands, suggesting that the MYCBP2-EPHB2 association is a prelude to EPHB2 signalling. Paradoxically, the loss of MYCBP2 results in increased ubiquitination of EPHB2 and a decrease of its protein levels suggesting that MYCBP2 stabilises EPHB2. Commensurate with this effect, our cellular experiments reveal that MYCBP2 is essential for efficient EPHB2 signalling responses in cell lines and primary neurons. Finally, our genetic studies in Caenorhabditis elegans provide in vivo evidence that the ephrin receptor VAB-1 displays genetic interactions with known MYCBP2 binding proteins. Together, our results align with the similarity of neurodevelopmental phenotypes caused by MYCBP2 and EPHB2 loss of function, and couple EPHB2 to a signalling effector that controls diverse cellular functions.
Collapse
Affiliation(s)
- Chao Chang
- Institut de recherches cliniques de Montréal (IRCM)MontréalCanada
- Integrated Program in Neuroscience, McGill UniversityMontréalCanada
| | - Sara L Banerjee
- Institut de recherches cliniques de Montréal (IRCM)MontréalCanada
- Division of Experimental Medicine, McGill UniversityMontréalCanada
| | - Sung Soon Park
- Institut de recherches cliniques de Montréal (IRCM)MontréalCanada
- Integrated Program in Neuroscience, McGill UniversityMontréalCanada
| | - Xiao Lei Zhang
- Institut de recherches cliniques de Montréal (IRCM)MontréalCanada
| | | | - Karla J Opperman
- Center for Integrative Brain Research, Seattle Children’s Research InstituteSeattleUnited States
| | - Muriel Desbois
- Center for Integrative Brain Research, Seattle Children’s Research InstituteSeattleUnited States
- School of Life Sciences, Keele UniversityKeeleUnited Kingdom
| | - Brock Grill
- Center for Integrative Brain Research, Seattle Children’s Research InstituteSeattleUnited States
- Department of Pediatrics, University of Washington School of MedicineSeattleUnited States
- Department of Pharmacology, University of Washington School of MedicineSeattleUnited States
| | - Artur Kania
- Institut de recherches cliniques de Montréal (IRCM)MontréalCanada
- Integrated Program in Neuroscience, McGill UniversityMontréalCanada
- Division of Experimental Medicine, McGill UniversityMontréalCanada
- Department of Anatomy and Cell Biology, McGill UniversityMontréalCanada
| |
Collapse
|
5
|
Chang C, Banerjee SL, Park SS, Zhang X, Cotnoir-White D, Opperman KJ, Desbois M, Grill B, Kania A. Ubiquitin ligase and signalling hub MYCBP2 is required for efficient EPHB2 tyrosine kinase receptor function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.12.544638. [PMID: 37693478 PMCID: PMC10491099 DOI: 10.1101/2023.06.12.544638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Eph receptor tyrosine kinases participate in a variety of normal and pathogenic processes during development and throughout adulthood. This versatility is likely facilitated by the ability of Eph receptors to signal through diverse cellular signalling pathways: primarily by controlling cytoskeletal dynamics, but also by regulating cellular growth, proliferation, and survival. Despite many proteins linked to these signalling pathways interacting with Eph receptors, the specific mechanisms behind such links and their coordination remain to be elucidated. In a proteomics screen for novel EPHB2 multi-effector proteins, we identified human MYC binding protein 2 (MYCBP2 or PAM or Phr1). MYCBP2 is a large signalling hub involved in diverse processes such as neuronal connectivity, synaptic growth, cell division, neuronal survival, and protein ubiquitination. Our biochemical experiments demonstrate that the formation of a complex containing EPHB2 and MYCBP2 is facilitated by FBXO45, a protein known to select substrates for MYCBP2 ubiquitin ligase activity. Formation of the MYCBP2-EPHB2 complex does not require EPHB2 tyrosine kinase activity and is destabilised by binding of ephrin-B ligands, suggesting that the MYCBP2-EPHB2 association is a prelude to EPHB2 signalling. Paradoxically, the loss of MYCBP2 results in increased ubiquitination of EPHB2 and a decrease of its protein levels suggesting that MYCBP2 stabilises EPHB2. Commensurate with this effect, our cellular experiments reveal that MYCBP2 is essential for efficient EPHB2 signalling responses in cell lines and primary neurons. Finally, our genetic studies in C. elegans provide in vivo evidence that the ephrin receptor VAB-1 displays genetic interactions with known MYCBP2 binding proteins. Together, our results align with the similarity of neurodevelopmental phenotypes caused by MYCBP2 and EPHB2 loss of function, and couple EPHB2 to a signaling effector that controls diverse cellular functions.
Collapse
Affiliation(s)
- Chao Chang
- Institut de recherches cliniques de Montréal (IRCM), Montréal, QC, H2W 1R7, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, QC, H3A 2B4, Canada
| | - Sara L. Banerjee
- Institut de recherches cliniques de Montréal (IRCM), Montréal, QC, H2W 1R7, Canada
- Division of Experimental Medicine, McGill University, Montréal, QC, H3A 2B2, Canada
| | - Sung Soon Park
- Institut de recherches cliniques de Montréal (IRCM), Montréal, QC, H2W 1R7, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, QC, H3A 2B4, Canada
| | - Xiaolei Zhang
- Institut de recherches cliniques de Montréal (IRCM), Montréal, QC, H2W 1R7, Canada
| | - David Cotnoir-White
- Institut de recherches cliniques de Montréal (IRCM), Montréal, QC, H2W 1R7, Canada
| | - Karla J. Opperman
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Muriel Desbois
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
- School of Life Sciences, Keele University, Keele, Staffordshire ST5 5BG, UK
| | - Brock Grill
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98101, USA
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Artur Kania
- Institut de recherches cliniques de Montréal (IRCM), Montréal, QC, H2W 1R7, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, QC, H3A 2B4, Canada
- Division of Experimental Medicine, McGill University, Montréal, QC, H3A 2B2, Canada
- Department of Anatomy and Cell Biology, McGill University, Montréal, QC, H3A 0C7, Canada
| |
Collapse
|
6
|
Eph Receptors in Cancer. Biomedicines 2023; 11:biomedicines11020315. [PMID: 36830852 PMCID: PMC9953285 DOI: 10.3390/biomedicines11020315] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/13/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
Eph receptor tyrosine kinases play critical functions during development, in the formation of tissue and organ borders, and the vascular and neural systems. Uniquely among tyrosine kinases, their activities are controlled by binding to membrane-bound ligands, called ephrins. Ephs and ephrins generally have a low expression in adults, functioning mainly in tissue homeostasis and plasticity, but are often overexpressed in cancers, where they are especially associated with undifferentiated or progenitor cells, and with tumour development, vasculature, and invasion. Mutations in Eph receptors also occur in various tumour types and are suspected to promote tumourigenesis. Ephs and ephrins have the capacity to operate as both tumour promoters and tumour suppressors, depending on the circumstances. They have been demonstrated to impact tumour cell proliferation, migration, and invasion in vitro, as well as tumour development, angiogenesis, and metastases in vivo, making them potential therapeutic targets. However, successful development of therapies will require detailed understanding of the opposing roles of Ephs in various cancers. In this review, we discuss the variations in Eph expression and functions in a variety of malignancies. We also describe the multiple strategies that are currently available to target them in tumours, including preclinical and clinical development.
Collapse
|
7
|
Abstract
The EPH receptor tyrosine kinases and their signaling partners, the EPHRINS, comprise a large class of cell signaling molecules that plays diverse roles in development. As cell membrane-anchored signaling molecules, they regulate cellular organization by modulating the strength of cellular contacts, usually by impacting the actin cytoskeleton or cell adhesion programs. Through these cellular functions, EPH/EPHRIN signaling often regulates tissue shape. Indeed, recent evidence indicates that this signaling family is ancient and associated with the origin of multicellularity. Though extensively studied, our understanding of the signaling mechanisms employed by this large family of signaling proteins remains patchwork, and a truly "canonical" EPH/EPHRIN signal transduction pathway is not known and may not exist. Instead, several foundational evolutionarily conserved mechanisms are overlaid by a myriad of tissue -specific functions, though common themes emerge from these as well. Here, I review recent advances and the related contexts that have provided new understanding of the conserved and varied molecular and cellular mechanisms employed by EPH/EPHRIN signaling during development.
Collapse
Affiliation(s)
- Jeffrey O Bush
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA, United States; Program in Craniofacial Biology, University of California San Francisco, San Francisco, CA, United States; Institute for Human Genetics, University of California San Francisco, San Francisco, CA, United States; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, United States.
| |
Collapse
|
8
|
Piergiorge RM, de Vasconcelos ATR, Gonçalves Pimentel MM, Santos-Rebouças CB. Strict network analysis of evolutionary conserved and brain-expressed genes reveals new putative candidates implicated in Intellectual Disability and in Global Development Delay. World J Biol Psychiatry 2021; 22:435-445. [PMID: 32914658 DOI: 10.1080/15622975.2020.1821916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
OBJECTIVES Intellectual Disability (ID) and Global Development Delay (GDD) are frequent reasons for referral to genetic services and although they present overlapping phenotypes concerning cognitive, motor, language, or social skills, they are not exactly synonymous. Aiming to better understand independent or shared mechanisms related to these conditions and to identify new candidate genes, we performed a highly stringent protein-protein interaction network based on genes previously related to ID/GDD in the Human Phenotype Ontology portal. METHODS ID/GDD genes were searched for reliable interactions through STRING and clustering analysis was applied to detect biological complexes through the MCL algorithm. Six coding hub genes (TP53, CDC42, RAC1, GNB1, APP, and EP300) were recognised by the Cytoscape NetworkAnalyzer plugin, interacting with 1625 proteins not yet associated with ID or GDD. Genes encoding these proteins were explored by gene ontology, associated diseases, evolutionary conservation, and brain expression. RESULTS One hundred and seventy-two new putative genes playing a role in enriched processes/pathways previously related to ID and GDD were revealed, some of which were already postulated to be linked to ID/GDD in additional databases. CONCLUSIONS Our findings expanded the aetiological genetic landscape of ID/GDD and showed evidence that both conditions are closely related at the molecular and functional levels.
Collapse
Affiliation(s)
- Rafael Mina Piergiorge
- Department of Genetics, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Márcia Mattos Gonçalves Pimentel
- Department of Genetics, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cíntia Barros Santos-Rebouças
- Department of Genetics, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
9
|
Chen C, Ma Q, Deng P, Lin M, Gao P, He M, Lu Y, Pi H, He Z, Zhou C, Zhang Y, Yu Z, Zhang L. 1800 MHz Radiofrequency Electromagnetic Field Impairs Neurite Outgrowth Through Inhibiting EPHA5 Signaling. Front Cell Dev Biol 2021; 9:657623. [PMID: 33912567 PMCID: PMC8075058 DOI: 10.3389/fcell.2021.657623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/24/2021] [Indexed: 12/16/2022] Open
Abstract
The increasing intensity of environmental radiofrequency electromagnetic fields (RF-EMF) has increased public concern about its health effects. Of particular concern are the influences of RF-EMF exposure on the development of the brain. The mechanisms of how RF-EMF acts on the developing brain are not fully understood. Here, based on high-throughput RNA sequencing techniques, we revealed that transcripts related to neurite development were significantly influenced by 1800 MHz RF-EMF exposure during neuronal differentiation. Exposure to RF-EMF remarkably decreased the total length of neurite and the number of branch points in neural stem cells-derived neurons and retinoic acid-induced Neuro-2A cells. The expression of Eph receptors 5 (EPHA5), which is required for neurite outgrowth, was inhibited remarkably after RF-EMF exposure. Enhancing EPHA5 signaling rescued the inhibitory effects of RF-EMF on neurite outgrowth. Besides, we identified that cAMP-response element-binding protein (CREB) and RhoA were critical downstream factors of EPHA5 signaling in mediating the inhibitory effects of RF-EMF on neurite outgrowth. Together, our finding revealed that RF-EMF exposure impaired neurite outgrowth through EPHA5 signaling. This finding explored the effects and key mechanisms of how RF-EMF exposure impaired neurite outgrowth and also provided a new clue to understanding the influences of RF-EMF on brain development.
Collapse
Affiliation(s)
- Chunhai Chen
- Department of Occupational Health, Third Military Medical University, Chongqing, China.,Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education, Chongqing, China
| | - Qinglong Ma
- Department of Occupational Health, Third Military Medical University, Chongqing, China.,Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education, Chongqing, China
| | - Ping Deng
- Department of Occupational Health, Third Military Medical University, Chongqing, China.,Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education, Chongqing, China
| | - Min Lin
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Peng Gao
- Department of Occupational Health, Third Military Medical University, Chongqing, China.,Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education, Chongqing, China
| | - Mindi He
- Department of Occupational Health, Third Military Medical University, Chongqing, China.,Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education, Chongqing, China
| | - Yonghui Lu
- Department of Occupational Health, Third Military Medical University, Chongqing, China.,Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education, Chongqing, China
| | - Huifeng Pi
- Department of Occupational Health, Third Military Medical University, Chongqing, China.,Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education, Chongqing, China
| | - Zhixin He
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Chao Zhou
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Yanwen Zhang
- Department of Occupational Health, Third Military Medical University, Chongqing, China.,Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education, Chongqing, China
| | - Zhengping Yu
- Department of Occupational Health, Third Military Medical University, Chongqing, China.,Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education, Chongqing, China
| | - Lei Zhang
- Department of Occupational Health, Third Military Medical University, Chongqing, China.,Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education, Chongqing, China
| |
Collapse
|
10
|
Ong JY, Bradley MC, Torres JZ. Phospho-regulation of mitotic spindle assembly. Cytoskeleton (Hoboken) 2020; 77:558-578. [PMID: 33280275 PMCID: PMC7898546 DOI: 10.1002/cm.21649] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/08/2020] [Accepted: 12/02/2020] [Indexed: 12/23/2022]
Abstract
The assembly of the bipolar mitotic spindle requires the careful orchestration of a myriad of enzyme activities like protein posttranslational modifications. Among these, phosphorylation has arisen as the principle mode for spatially and temporally activating the proteins involved in early mitotic spindle assembly processes. Here, we review key kinases, phosphatases, and phosphorylation events that regulate critical aspects of these processes. We highlight key phosphorylation substrates that are important for ensuring the fidelity of centriole duplication, centrosome maturation, and the establishment of the bipolar spindle. We also highlight techniques used to understand kinase-substrate relationships and to study phosphorylation events. We conclude with perspectives on the field of posttranslational modifications in early mitotic spindle assembly.
Collapse
Affiliation(s)
- Joseph Y Ong
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA
| | - Michelle C Bradley
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA
| | - Jorge Z Torres
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA.,Molecular Biology Institute, University of California, Los Angeles, California, USA.,Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, USA
| |
Collapse
|
11
|
Leonard CE, Baydyuk M, Stepler MA, Burton DA, Donoghue MJ. EphA7 isoforms differentially regulate cortical dendrite development. PLoS One 2020; 15:e0231561. [PMID: 33275600 PMCID: PMC7717530 DOI: 10.1371/journal.pone.0231561] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 11/22/2020] [Indexed: 02/06/2023] Open
Abstract
The shape of a neuron facilitates its functionality within neural circuits. Dendrites integrate incoming signals from axons, receiving excitatory input onto small protrusions called dendritic spines. Therefore, understanding dendritic growth and development is fundamental for discerning neural function. We previously demonstrated that EphA7 receptor signaling during cortical development impacts dendrites in two ways: EphA7 restricts dendritic growth early and promotes dendritic spine formation later. Here, the molecular basis for this shift in EphA7 function is defined. Expression analyses reveal that EphA7 full-length (EphA7-FL) and truncated (EphA7-T1; lacking kinase domain) isoforms are dynamically expressed in the developing cortex. Peak expression of EphA7-FL overlaps with dendritic elaboration around birth, while highest expression of EphA7-T1 coincides with dendritic spine formation in early postnatal life. Overexpression studies in cultured neurons demonstrate that EphA7-FL inhibits both dendritic growth and spine formation, while EphA7-T1 increases spine density. Furthermore, signaling downstream of EphA7 shifts during development, such that in vivo inhibition of mTOR by rapamycin in EphA7-mutant neurons ameliorates dendritic branching, but not dendritic spine phenotypes. Finally, direct interaction between EphA7-FL and EphA7-T1 is demonstrated in cultured cells, which results in reduction of EphA7-FL phosphorylation. In cortex, both isoforms are colocalized to synaptic fractions and both transcripts are expressed together within individual neurons, supporting a model where EphA7-T1 modulates EphA7-FL repulsive signaling during development. Thus, the divergent functions of EphA7 during cortical dendrite development are explained by the presence of two variants of the receptor.
Collapse
Affiliation(s)
- Carrie E. Leonard
- Department of Biology, Georgetown University, Washington, DC, United States of America
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, United States of America
| | - Maryna Baydyuk
- Department of Biology, Georgetown University, Washington, DC, United States of America
| | - Marissa A. Stepler
- Department of Biology, Georgetown University, Washington, DC, United States of America
| | - Denver A. Burton
- Department of Biology, Georgetown University, Washington, DC, United States of America
| | - Maria J. Donoghue
- Department of Biology, Georgetown University, Washington, DC, United States of America
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, United States of America
| |
Collapse
|
12
|
Use of kinase inhibitors against schistosomes to improve and broaden praziquantel efficacy. Parasitology 2020; 147:1488-1498. [PMID: 32741402 DOI: 10.1017/s0031182020001250] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Praziquantel (PZQ) is the drug of choice for schistosomiasis. The potential drug resistance necessitates the search for adjunct or alternative therapies to PZQ. Previous functional genomics has shown that RNAi inhibition of Ca2+/calmodulin-dependent protein kinase II (CaMKII) gene in Schistosoma adult worms significantly improved the effectiveness of PZQ. Here we tested the in vitro efficacy of 15 selective and non-selective CaMK inhibitors against Schistosoma mansoni and showed that PZQ efficacy was improved against refractory juvenile parasites when combined with these CaMK inhibitors. By measuring CaMK activity and the mobility of adult S. mansoni, we identified two non-selective CaMK inhibitors, Staurosporine (STSP) and 1Naphthyl PP1 (1NAPP1), as promising candidates for further study. The impact of STSP and 1NAPP1 was investigated in mice infected with S. mansoni in the presence or absence of a sub-lethal dose of PZQ against 2- and 7-day-old schistosomula and adults. Treatment with STSP/PZQ induced a significant (47-68%) liver egg burden reduction compared with mice treated with PZQ alone. The findings indicate that the combination of STSP and PZQ dosages significantly improved anti-schistosomal activity compared to PZQ alone, demonstrating the potential of selective and non-selective CaMK/kinase inhibitors as a combination therapy with PZQ in treating schistosomiasis.
Collapse
|
13
|
Activation of EphB receptors contributes to primary sensory neuron excitability by facilitating Ca2+ influx directly or through Src kinase-mediated N-methyl-D-aspartate receptor phosphorylation. Pain 2020; 161:1584-1596. [DOI: 10.1097/j.pain.0000000000001855] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
14
|
Niethamer TK, Bush JO. Getting direction(s): The Eph/ephrin signaling system in cell positioning. Dev Biol 2019; 447:42-57. [PMID: 29360434 PMCID: PMC6066467 DOI: 10.1016/j.ydbio.2018.01.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/21/2017] [Accepted: 01/18/2018] [Indexed: 12/16/2022]
Abstract
In vertebrates, the Eph/ephrin family of signaling molecules is a large group of membrane-bound proteins that signal through a myriad of mechanisms and effectors to play diverse roles in almost every tissue and organ system. Though Eph/ephrin signaling has functions in diverse biological processes, one core developmental function is in the regulation of cell position and tissue morphology by regulating cell migration and guidance, cell segregation, and boundary formation. Often, the role of Eph/ephrin signaling is to translate patterning information into physical movement of cells and changes in morphology that define tissue and organ systems. In this review, we focus on recent advances in the regulation of these processes, and our evolving understanding of the in vivo signaling mechanisms utilized in distinct developmental contexts.
Collapse
Affiliation(s)
- Terren K Niethamer
- Department of Cell and Tissue Biology, Program in Craniofacial Biology, and Institute of Human Genetics, University of California at San Francisco, San Francisco, CA 94143, USA
| | - Jeffrey O Bush
- Department of Cell and Tissue Biology, Program in Craniofacial Biology, and Institute of Human Genetics, University of California at San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
15
|
Henderson NT, Dalva MB. EphBs and ephrin-Bs: Trans-synaptic organizers of synapse development and function. Mol Cell Neurosci 2018; 91:108-121. [PMID: 30031105 PMCID: PMC6159941 DOI: 10.1016/j.mcn.2018.07.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/17/2018] [Accepted: 07/18/2018] [Indexed: 12/31/2022] Open
Abstract
Synapses are specialized cell-cell junctions that underlie the function of neural circuits by mediating communication between neurons. Both the formation and function of synapses require tight coordination of signaling between pre- and post-synaptic neurons. Trans-synaptic organizing molecules are important mediators of such signaling. Here we discuss how the EphB and ephrin-B families of trans-synaptic organizing proteins direct synapse formation during early development and regulate synaptic function and plasticity at mature synapses. Finally, we highlight recent evidence linking the synaptic organizing role of EphBs and ephrin-Bs to diseases of maladaptive synaptic function and plasticity.
Collapse
Affiliation(s)
- Nathan T Henderson
- The Jefferson Synaptic Biology Center, Department of Neuroscience, The Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University, Jefferson Hospital for Neuroscience, Suite 463, 900 Walnut St., Philadelphia, PA 19107, United States
| | - Matthew B Dalva
- The Jefferson Synaptic Biology Center, Department of Neuroscience, The Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University, Jefferson Hospital for Neuroscience, Suite 463, 900 Walnut St., Philadelphia, PA 19107, United States.
| |
Collapse
|
16
|
Protein Tyrosine Phosphatase Receptor Type J (PTPRJ) Regulates Retinal Axonal Projections by Inhibiting Eph and Abl Kinases in Mice. J Neurosci 2018; 38:8345-8363. [PMID: 30082414 DOI: 10.1523/jneurosci.0128-18.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 07/05/2018] [Accepted: 07/30/2018] [Indexed: 12/28/2022] Open
Abstract
Eph receptors play pivotal roles in the axon guidance of retinal ganglion cells (RGCs) at the optic chiasm and the establishment of the topographic retinocollicular map. We previously demonstrated that protein tyrosine phosphatase receptor type O (PTPRO) is specifically involved in the control of retinotectal projections in chicks through the dephosphorylation of EphA and EphB receptors. We subsequently revealed that all the mouse R3 subfamily members (PTPRB, PTPRH, PTPRJ, and PTPRO) of the receptor protein tyrosine phosphatase (RPTP) family inhibited Eph receptors as their substrates in cultured mammalian cells. We herein investigated the functional roles of R3 RPTPs in the projection of mouse retinal axon of both sexes. Ptpro and Ptprj were expressed in mouse RGCs; however, Ptprj expression levels were markedly higher than those of Ptpro Consistent with their expression levels, Eph receptor activity was significantly enhanced in Ptprj-knock-out (Ptprj-KO) retinas. In Ptprj-KO and Ptprj/Ptpro-double-KO (DKO) mice, the number of retinal axons that projected ipsilaterally or to the contralateral eye was significantly increased. Furthermore, retinal axons in Ptprj-KO and DKO mice formed anteriorly shifted ectopic terminal zones in the superior colliculus (SC). We found that c-Abl (Abelson tyrosine kinase) was downstream of ephrin-Eph signaling for the repulsion of retinal axons at the optic chiasm and in the SC. c-Abl was identified as a novel substrate for PTPRJ and PTPRO, and the phosphorylation of c-Abl was upregulated in Ptprj-KO and DKO retinas. Thus, PTPRJ regulates retinocollicular projections in mice by controlling the activity of Eph and c-Abl kinases.SIGNIFICANCE STATEMENT Correct retinocollicular projection is a prerequisite for proper vision. Eph receptors have been implicated in retinal axon guidance at the optic chiasm and the establishment of the topographic retinocollicular map. We herein demonstrated that protein tyrosine phosphatase receptor type J (PTPRJ) regulated retinal axonal projections by controlling Eph activities. The retinas of Ptprj-knock-out (KO) and Ptpro/Ptprj double-KO mice exhibited significantly enhanced Eph activities over those in wild-type mice, and their axons showed defects in pathfinding at the chiasm and retinocollicular topographic map formation. We also revealed that c-Abl (Abelson tyrosine kinase) downstream of Eph receptors was regulated by PTPRJ. These results indicate that the regulation of the ephrin-Eph-c-Abl axis by PTPRJ plays pivotal roles in the proper central projection of retinal axons during development.
Collapse
|
17
|
Mao YT, Zhu JX, Hanamura K, Iurilli G, Datta SR, Dalva MB. Filopodia Conduct Target Selection in Cortical Neurons Using Differences in Signal Kinetics of a Single Kinase. Neuron 2018; 98:767-782.e8. [PMID: 29731254 DOI: 10.1016/j.neuron.2018.04.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/26/2017] [Accepted: 04/09/2018] [Indexed: 02/07/2023]
Abstract
Dendritic filopodia select synaptic partner axons by interviewing the cell surface of potential targets, but how filopodia decipher the complex pattern of adhesive and repulsive molecular cues to find appropriate contacts is unknown. Here, we demonstrate in cortical neurons that a single cue is sufficient for dendritic filopodia to reject or select specific axonal contacts for elaboration as synaptic sites. Super-resolution and live-cell imaging reveals that EphB2 is located in the tips of filopodia and at nascent synaptic sites. Surprisingly, a genetically encoded indicator of EphB kinase activity, unbiased classification, and a photoactivatable EphB2 reveal that simple differences in the kinetics of EphB kinase signaling at the tips of filopodia mediate the choice between retraction and synaptogenesis. This may enable individual filopodia to choose targets based on differences in the activation rate of a single tyrosine kinase, greatly simplifying the process of partner selection and suggesting a general principle.
Collapse
Affiliation(s)
- Yu-Ting Mao
- Department of Neuroscience and Jefferson Synaptic Biology Center, The Vickie and Jack Farber Institute, Jefferson Hospital for Neuroscience, Thomas Jefferson University, Suite 461, 900 Walnut Street, Philadelphia, PA 19107, USA
| | - Julia X Zhu
- Department of Neuroscience and Jefferson Synaptic Biology Center, The Vickie and Jack Farber Institute, Jefferson Hospital for Neuroscience, Thomas Jefferson University, Suite 461, 900 Walnut Street, Philadelphia, PA 19107, USA
| | - Kenji Hanamura
- Department of Neuroscience and Jefferson Synaptic Biology Center, The Vickie and Jack Farber Institute, Jefferson Hospital for Neuroscience, Thomas Jefferson University, Suite 461, 900 Walnut Street, Philadelphia, PA 19107, USA; Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi City, Gunma 371-8511, Japan
| | - Giuliano Iurilli
- Department of Neurobiology, Harvard Medical School, Room 336 Warren Alpert Building, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Sandeep Robert Datta
- Department of Neurobiology, Harvard Medical School, Room 336 Warren Alpert Building, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Matthew B Dalva
- Department of Neuroscience and Jefferson Synaptic Biology Center, The Vickie and Jack Farber Institute, Jefferson Hospital for Neuroscience, Thomas Jefferson University, Suite 461, 900 Walnut Street, Philadelphia, PA 19107, USA.
| |
Collapse
|
18
|
Kung A, Schimpl M, Ekanayake A, Chen YC, Overman R, Zhang C. A Chemical-Genetic Approach to Generate Selective Covalent Inhibitors of Protein Kinases. ACS Chem Biol 2017; 12:1499-1503. [PMID: 28459525 DOI: 10.1021/acschembio.6b01083] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Although a previously developed bump-hole approach has proven powerful in generating specific inhibitors for mapping functions of protein kinases, its application is limited by the intolerance of the large-to-small mutation by certain kinases and the inability to control two kinases separately in the same cells. Herein, we describe the development of an alternative chemical-genetic approach to overcome these limitations. Our approach features the use of an engineered cysteine residue at a particular position as a reactive feature to sensitize a kinase of interest to selective covalent blockade by electrophilic inhibitors and is thus termed the Ele-Cys approach. We successfully applied the Ele-Cys approach to identify selective covalent inhibitors of a receptor tyrosine kinase EphB1 and solved cocrystal structures to determine the mode of covalent binding. Importantly, the Ele-Cys and bump-hole approaches afforded orthogonal inhibition of two distinct kinases in the cell, opening the door to their combined use in the study of multikinase signaling pathways.
Collapse
Affiliation(s)
| | - Marianne Schimpl
- Discovery
Sciences, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Building 310, Cambridge Science Park, Milton Road, Cambridge, CB4 0WG, United Kingdom
| | | | | | - Ross Overman
- Discovery
Sciences, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Alderley Park, Macclesfield,
Cheshire, SK10 4TG, United Kingdom
| | | |
Collapse
|
19
|
O'Neill AK, Kindberg AA, Niethamer TK, Larson AR, Ho HYH, Greenberg ME, Bush JO. Unidirectional Eph/ephrin signaling creates a cortical actomyosin differential to drive cell segregation. J Cell Biol 2016; 215:217-229. [PMID: 27810913 PMCID: PMC5084648 DOI: 10.1083/jcb.201604097] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 09/13/2016] [Indexed: 01/01/2023] Open
Abstract
Cell segregation is the process by which cells self-organize to establish developmental boundaries, an essential step in tissue formation. Cell segregation is a common outcome of Eph/ephrin signaling, but the mechanisms remain unclear. In craniofrontonasal syndrome, X-linked mosaicism for ephrin-B1 expression has been hypothesized to lead to aberrant Eph/ephrin-mediated cell segregation. Here, we use mouse genetics to exploit mosaicism to study cell segregation in the mammalian embryo and integrate live-cell imaging to examine the underlying cellular and molecular mechanisms. Our data demonstrate that dramatic ephrin-B1-mediated cell segregation occurs in the early neuroepithelium. In contrast to the paradigm that repulsive bidirectional signaling drives cell segregation, unidirectional EphB kinase signaling leads to cell sorting by the Rho kinase-dependent generation of a cortical actin differential between ephrin-B1- and EphB-expressing cells. These results define mechanisms of Eph/ephrin-mediated cell segregation, implicating unidirectional regulation of cortical actomyosin contractility as a key effector of this fundamental process.
Collapse
Affiliation(s)
- Audrey K O'Neill
- Department of Cell and Tissue Biology, Program in Craniofacial Biology and Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143
| | - Abigail A Kindberg
- Department of Cell and Tissue Biology, Program in Craniofacial Biology and Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143
| | - Terren K Niethamer
- Department of Cell and Tissue Biology, Program in Craniofacial Biology and Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143
| | - Andrew R Larson
- Department of Cell and Tissue Biology, Program in Craniofacial Biology and Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143
| | - Hsin-Yi Henry Ho
- Department of Cell Biology and Human Anatomy, University of California Davis School of Medicine, Davis, CA 95817
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
| | | | - Jeffrey O Bush
- Department of Cell and Tissue Biology, Program in Craniofacial Biology and Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143
| |
Collapse
|
20
|
Cui J, Ding Y, Chen S, Zhu X, Wu Y, Zhang M, Zhao Y, Li TRR, Sun LV, Zhao S, Zhuang Y, Jia W, Xue L, Han M, Xu T, Wu X. Disruption of Gpr45 causes reduced hypothalamic POMC expression and obesity. J Clin Invest 2016; 126:3192-206. [PMID: 27500489 DOI: 10.1172/jci85676] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 06/09/2016] [Indexed: 01/16/2023] Open
Abstract
A rise in the occurrence of obesity has driven exploration of its underlying genetic basis and potential targets for intervention. GWAS studies have identified obesity susceptibility pathways involving several neuropeptides that control energy homeostasis, suggesting that variations in the genes that regulate food intake and energy expenditure may contribute to obesity. In this study, we identified 5 additional obesity loci, including a neuronal orphan GPCR called Gpr45, in a forward genetic screen of mutant mice generated by piggyBac insertional mutagenesis. Disruption of Gpr45 led to increased adiposity at the time of weaning and increases in body mass, fat content, glucose intolerance, and hepatic steatosis with advancing age. Mice with disruptions in Gpr45 also displayed a reduction in expression of the metabolic regulator POMC and less energy expenditure prior to the onset of obesity. Mechanistically, we determined that GPR45 regulates POMC expression via the JAK/STAT pathway in a cell-autonomous manner. Consistent with this finding, intraventricular administration of melanotan-2, an analog of the POMC derivative α-MSH, suppressed adult obesity in Gpr45 mutants. These results reveal that GPR45 is a regulator of POMC signaling and energy expenditure, which suggests that it may be a potential intervention target to combat obesity.
Collapse
|
21
|
Abstract
To understand brain function, it is essential that we discover how cellular signaling specifies normal and pathological brain function. In this regard, chemogenetic technologies represent valuable platforms for manipulating neuronal and non-neuronal signal transduction in a cell-type-specific fashion in freely moving animals. Designer Receptors Exclusively Activated by Designer Drugs (DREADD)-based chemogenetic tools are now commonly used by neuroscientists to identify the circuitry and cellular signals that specify behavior, perceptions, emotions, innate drives, and motor functions in species ranging from flies to nonhuman primates. Here I provide a primer on DREADDs highlighting key technical and conceptual considerations and identify challenges for chemogenetics going forward.
Collapse
|
22
|
Mechanisms of ephrin-Eph signalling in development, physiology and disease. Nat Rev Mol Cell Biol 2016; 17:240-56. [PMID: 26790531 DOI: 10.1038/nrm.2015.16] [Citation(s) in RCA: 461] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Eph receptor Tyr kinases and their membrane-tethered ligands, the ephrins, elicit short-distance cell-cell signalling and thus regulate many developmental processes at the interface between pattern formation and morphogenesis, including cell sorting and positioning, and the formation of segmented structures and ordered neural maps. Their roles extend into adulthood, when ephrin-Eph signalling regulates neuronal plasticity, homeostatic events and disease processes. Recently, new insights have been gained into the mechanisms of ephrin-Eph signalling in different cell types, and into the physiological importance of ephrin-Eph in different organs and in disease, raising questions for future research directions.
Collapse
|
23
|
Poliak S, Morales D, Croteau LP, Krawchuk D, Palmesino E, Morton S, Cloutier JF, Charron F, Dalva MB, Ackerman SL, Kao TJ, Kania A. Synergistic integration of Netrin and ephrin axon guidance signals by spinal motor neurons. eLife 2015; 4. [PMID: 26633881 PMCID: PMC4764565 DOI: 10.7554/elife.10841] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 12/02/2015] [Indexed: 01/09/2023] Open
Abstract
During neural circuit assembly, axonal growth cones are exposed to multiple guidance signals at trajectory choice points. While axonal responses to individual guidance cues have been extensively studied, less is known about responses to combination of signals and underlying molecular mechanisms. Here, we studied the convergence of signals directing trajectory selection of spinal motor axons entering the limb. We first demonstrate that Netrin-1 attracts and repels distinct motor axon populations, according to their expression of Netrin receptors. Quantitative in vitro assays demonstrate that motor axons synergistically integrate both attractive or repulsive Netrin-1 signals together with repulsive ephrin signals. Our investigations of the mechanism of ephrin-B2 and Netrin-1 integration demonstrate that the Netrin receptor Unc5c and the ephrin receptor EphB2 can form a complex in a ligand-dependent manner and that Netrin–ephrin synergistic growth cones responses involve the potentiation of Src family kinase signaling, a common effector of both pathways. DOI:http://dx.doi.org/10.7554/eLife.10841.001 The ability of animals to walk and perform skilled movements depends on particular groups of muscles contracting in a coordinated manner. Muscles are activated by nerve cells called motor neurons found in the spinal cord. The connections between the motor neurons and muscles are established in the developing embryo. Each motor neuron produces a long projection called an axon whose growth is guided towards the target muscle by signal proteins. The motor neurons are exposed to many such signal proteins at the same time and it is not clear how they integrate all this information so that their axons target the correct muscles. Poliak, Morales et al. used a variety of genetic and biochemical approaches to study the formation of motor neuron and muscle connections in the limbs of mice and chicks. The experiments show that a signal protein called Netrin-1 is produced in the limbs of developing embryos and attracts the axons of some types of motor neurons and repels others. This is due to the motor neurons producing different types of receptor proteins to detect Netrin-1. Further experiments show that individual axons can combine information from attractive or repulsive Netrin-1 signals together with repulsive signals from another family of proteins called ephrins in a 'synergistic' manner. That is, the combined effect of both cues is stronger than their individual effects added together. This synergy involves ligand-dependent interactions between the Netrin-1 and ephrin receptor proteins, and the activation of a common enzyme. Poliak, Morales et al.’s findings reveal a new role for Netrin-1 in guiding the development of motor neurons in the limb. Future work will focus on further understanding the mechanism of synergy between Netrin-1 and ephrins. Netrin-1 and ephrins are also involved in the formation of blood vessels and many other developmental processes, so understanding how they work together would have a wide-reaching impact on research into human health and disease. DOI:http://dx.doi.org/10.7554/eLife.10841.002
Collapse
Affiliation(s)
- Sebastian Poliak
- Department of Neuroscience, Columbia University, New York, United States.,Department of Biochemistry and Molecular Biophysics, Columbia University, New York, United States
| | - Daniel Morales
- Institut de recherches cliniques de Montréal, Montréal, Canada.,Integrated Program in Neuroscience, McGill University, Montréal, Canada
| | | | - Dayana Krawchuk
- Institut de recherches cliniques de Montréal, Montréal, Canada.,The Jackson Laboratory, Bar Harbor, United States
| | - Elena Palmesino
- Institut de recherches cliniques de Montréal, Montréal, Canada
| | - Susan Morton
- Department of Neuroscience, Columbia University, New York, United States.,Department of Biochemistry and Molecular Biophysics, Columbia University, New York, United States.,Howard Hughes Medical Institute, Columbia University, New York, United States
| | - Jean-François Cloutier
- Integrated Program in Neuroscience, McGill University, Montréal, Canada.,Montréal Neurological Institute, Montréal, Canada
| | - Frederic Charron
- Institut de recherches cliniques de Montréal, Montréal, Canada.,Faculté de Médecine, Université de Montréal, Montréal, Canada.,Department of Biology, McGill University, Montréal, Canada.,Department of Anatomy and Cell Biology, McGill University, Montréal, Canada.,Division of Experimental Medicine, McGill University, Montréal, Canada
| | - Matthew B Dalva
- Department of Neuroscience, The Farber Institute for Neurosciences, Jefferson Hospital for Neuroscience, Thomas Jefferson University, Philadelphia, United States
| | - Susan L Ackerman
- The Jackson Laboratory, Bar Harbor, United States.,Howard Hughes Medical Institute, The Jackson Laboratory, Bar Harbor, United States
| | - Tzu-Jen Kao
- Institut de recherches cliniques de Montréal, Montréal, Canada.,Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei, Taiwan
| | - Artur Kania
- Institut de recherches cliniques de Montréal, Montréal, Canada.,Faculté de Médecine, Université de Montréal, Montréal, Canada.,Integrated Program in Neuroscience, McGill University, Montréal, Canada.,Department of Biology, McGill University, Montréal, Canada.,Department of Anatomy and Cell Biology, McGill University, Montréal, Canada.,Division of Experimental Medicine, McGill University, Montréal, Canada
| |
Collapse
|
24
|
Robichaux MA, Chenaux G, Ho HYH, Soskis MJ, Greenberg ME, Henkemeyer M, Cowan CW. EphB1 and EphB2 intracellular domains regulate the formation of the corpus callosum and anterior commissure. Dev Neurobiol 2015; 76:405-20. [PMID: 26148571 DOI: 10.1002/dneu.22323] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 05/28/2015] [Accepted: 06/30/2015] [Indexed: 12/24/2022]
Abstract
The two cortical hemispheres of the mammalian forebrain are interconnected by major white matter tracts, including the corpus callosum (CC) and the posterior branch of the anterior commissure (ACp), that bridge the telencephalic midline. We show here that the intracellular signaling domains of the EphB1 and EphB2 receptors are critical for formation of both the ACp and CC. We observe partial and complete agenesis of the corpus callosum, as well as highly penetrant ACp misprojection phenotypes in truncated EphB1/2 mice that lack intracellular signaling domains. Consistent with the roles for these receptors in formation of the CC and ACp, we detect expression of these receptors in multiple brain regions associated with the formation of these forebrain structures. Taken together, our findings suggest that a combination of forward and reverse EphB1/2 receptor-mediated signaling contribute to ACp and CC axon guidance.
Collapse
Affiliation(s)
- Michael A Robichaux
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, Massachusetts, 02478.,Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, Texas, 75390
| | - George Chenaux
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, Texas, 75390.,Developmental Biology, The University of Texas Southwestern Medical Center, Dallas, Texas, 75390
| | - Hsin-Yi Henry Ho
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, 02115
| | - Michael J Soskis
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, 02115
| | - Michael E Greenberg
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, 02115
| | - Mark Henkemeyer
- Developmental Biology, The University of Texas Southwestern Medical Center, Dallas, Texas, 75390
| | - Christopher W Cowan
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, Massachusetts, 02478.,Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, Texas, 75390
| |
Collapse
|
25
|
Klein R, Kania A. Ephrin signalling in the developing nervous system. Curr Opin Neurobiol 2014; 27:16-24. [PMID: 24608162 DOI: 10.1016/j.conb.2014.02.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 01/20/2014] [Accepted: 02/06/2014] [Indexed: 12/27/2022]
Abstract
Ephrin ligands and their Eph receptors hold our attention since their link to axon guidance almost twenty years ago. Since then, they have been shown to be critical for short distance cell-cell interactions in the nervous system. The interest in their function has not abated, leading to ever-more sophisticated studies generating as many surprising answers about their function as new questions. We discuss recent insights into their functions in the developing nervous system, including neuronal progenitor sorting, stochastic cell migration, guidance of neuronal growth cones, topographic map formation, as well as synaptic plasticity.
Collapse
Affiliation(s)
- Rüdiger Klein
- Department of Molecules - Signaling - Development, Max Planck Institute of Neurobiology, Am Klopferspitz 18, 82152 Martinsried, Germany; Munich Cluster for Systems Neurology (Synergy), Munich, Germany.
| | - Artur Kania
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC, Canada H2W 1R7; Département de Médecine, Université de Montréal, Montréal, QC, Canada H3T 1J4; Division of Experimental Medicine, Departments of Biology, and, Anatomy and Cell Biology and Integrated Program in Neurosciences, McGill University, Montréal, QC, Canada H3A 1A3.
| |
Collapse
|
26
|
EphB receptor forward signaling regulates area-specific reciprocal thalamic and cortical axon pathfinding. Proc Natl Acad Sci U S A 2014; 111:2188-93. [PMID: 24453220 DOI: 10.1073/pnas.1324215111] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
In early brain development, ascending thalamocortical axons (TCAs) navigate through the ventral telencephalon (VTel) to reach their target regions in the young cerebral cortex. Descending, deep-layer cortical axons subsequently target appropriate thalamic and subcortical target regions. However, precisely how and when corticothalamic axons (CTAs) identify their appropriate, reciprocal thalamic targets remains unclear. We show here that EphB1 and EphB2 receptors control proper navigation of a subset of TCA and CTA projections through the VTel. We show in vivo that EphB receptor forward signaling and the ephrinB1 ligand are required during the early navigation of L1-CAM(+) thalamic fibers in the VTel, and that the misguided thalamic fibers in EphB1/2 KO mice appear to interact with cortical subregion-specific axon populations during reciprocal cortical axon guidance. As such, our findings suggest that descending cortical axons identify specific TCA subpopulations in the dorsal VTel to coordinate reciprocal cortical-thalamic connectivity in the early developing brain.
Collapse
|
27
|
Lopez MS, Choy JW, Peters U, Sos ML, Morgan DO, Shokat KM. Staurosporine-derived inhibitors broaden the scope of analog-sensitive kinase technology. J Am Chem Soc 2013; 135:18153-9. [PMID: 24171479 DOI: 10.1021/ja408704u] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Analog-sensitive (AS) kinase technology is a powerful approach for studying phospho-signaling pathways in diverse organisms and physiological processes. The key feature of this technique is that a kinase-of-interest can be mutated to sensitize it to inhibitor analogs that do not target wild-type (WT) kinases. In theory, this enables specific inhibition of any kinase in cells and in mouse models of human disease. Typically, these inhibitors are identified from a small library of molecules based on the pyrazolopyrimidine (PP) scaffold. However, we recently identified a subset of native human kinases, including the Ephrin A kinase family, that are sensitive to commonly used PP inhibitors. In an effort to develop a bioorthogonal AS-kinase inhibitor and to extend this technique to PP-sensitive kinases, we sought an alternative inhibitor scaffold. Here we report the structure-based design of synthetically tractable, potent, and extremely selective AS-kinase inhibitors based on the natural product staurosporine. We demonstrate that these molecules, termed staralogs, potently target AS kinases in cells, and we employ X-ray crystallography to elucidate their mechanism of efficacy. Finally, we demonstrate that staralogs target AS mutants of PP-sensitive kinases at concentrations where there is little to no inhibition of native human kinases. Thus, staralogs represent a new class of AS-kinase inhibitors and a core component of the chemical genetic tool kit for probing kinase-signaling pathways.
Collapse
Affiliation(s)
- Michael S Lopez
- Howard Hughes Medical Institute and Department of Cellular & Molecular Pharmacology, University of California , San Francisco, California 94143, United States
| | | | | | | | | | | |
Collapse
|
28
|
Zhang C, Lopez MS, Dar AC, LaDow E, Finkbeiner S, Yun CH, Eck MJ, Shokat KM. Structure-guided inhibitor design expands the scope of analog-sensitive kinase technology. ACS Chem Biol 2013; 8:1931-8. [PMID: 23841803 DOI: 10.1021/cb400376p] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Engineered analog-sensitive (AS) protein kinases have emerged as powerful tools for dissecting phospho-signaling pathways, for elucidating the cellular function of individual kinases, and for deciphering unanticipated effects of clinical therapeutics. A crucial and necessary feature of this technology is a bioorthogonal small molecule that is innocuous toward native cellular systems but potently inhibits the engineered kinase. In order to generalize this method, we sought a molecule capable of targeting divergent AS-kinases. Here we employ X-ray crystallography and medicinal chemistry to unravel the mechanism of current inhibitors and use these insights to design the most potent, selective, and general AS-kinase inhibitors reported to date. We use large-scale kinase inhibitor profiling to characterize the selectivity of these molecules as well as examine the consequences of potential off-target effects in chemical genetic experiments. The molecules reported here will serve as powerful tools in efforts to extend AS-kinase technology to the entire kinome and the principles discovered may help in the design of other engineered enzyme/ligand pairs.
Collapse
Affiliation(s)
- Chao Zhang
- Howard Hughes Medical Institute and Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, California 94158, United States
| | - Michael S. Lopez
- Howard Hughes Medical Institute and Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, California 94158, United States
- Chemistry
and Chemical Biology
Graduate Program, University of California, San Francisco, 600 16th Street, MC2280, San Francisco, California 94158, United
States
| | - Arvin C. Dar
- Howard Hughes Medical Institute and Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, California 94158, United States
| | - Eva LaDow
- Gladstone Institute of Neurological Disease, San Francisco, California 94158,
United States
| | - Steven Finkbeiner
- Gladstone Institute of Neurological Disease, San Francisco, California 94158,
United States
| | - Cai-Hong Yun
- Department
of Biological Chemistry
and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Michael J. Eck
- Department
of Biological Chemistry
and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Kevan M. Shokat
- Howard Hughes Medical Institute and Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, California 94158, United States
- Department of Chemistry, University of California, Berkeley, Berkeley, California
94720, United States
| |
Collapse
|
29
|
Dhanasobhon D, Savier E, Lelievre V. To phosphorylate or not to phosphorylate: Selective alterations in tyrosine kinase-inhibited EphB mutant mice. Cell Adh Migr 2013; 8:1-4. [PMID: 24589619 DOI: 10.4161/cam.27478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
EphB tyrosine kinase receptors have been implicated in multiple developmental processes; however, the signaling mechanism underlying these events remains unclear. Through a triple knock-in mouse line for three neurally expressed EphBs, Sokis et al. demonstrated that EphB tyrosine kinase activity is required for axon guidance but does not influence synapse formation. This short communication highlights their study and appealing molecular approach that elucidated the functions of EphB tyrosine kinase during developmental events.
Collapse
Affiliation(s)
- Dhanasak Dhanasobhon
- Joint master in Neuroscience; University of Strasbourg-France; Strasbourg, France
| | - Elise Savier
- Joint master in Neuroscience; University of Strasbourg-France; Strasbourg, France
| | - Vincent Lelievre
- Joint master in Neuroscience; University of Strasbourg-France; Strasbourg, France
| |
Collapse
|