1
|
Lai KO, Wong JH, Tham N, Fairley L, Naik RR, Wang Y, Langley SR, Barron AM. Age-Dependent Regulation of Hippocampal Inflammation by the Mitochondrial Translocator Protein in Mice. Aging Cell 2025:e70039. [PMID: 40275629 DOI: 10.1111/acel.70039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 01/31/2025] [Accepted: 02/20/2025] [Indexed: 04/26/2025] Open
Abstract
The mitochondrial translocator protein (TSPO) is a biomarker of inflammation associated with neurodegenerative diseases, widely regarded to be upregulated in the aging brain. Here we investigated the interaction between aging and TSPO immunomodulatory function in the mouse hippocampus, a region severely affected in Alzheimer's Disease (AD). Surprisingly, we found that TSPO levels were decreased in brain innate immune populations in aging. Aging resulted in a reversal of TSPO knockout transcriptional signatures following inflammatory insult. TSPO deletion drastically exacerbated inflammatory transcriptional responses in the aging hippocampus, while dampening inflammation in the young hippocampus. This age-dependent effect of TSPO was linked to NF-kβ and interferon regulatory transcriptional networks. Drugs that disrupt the cell cycle and induce DNA damage, such as heat shock protein and topoisomerase inhibitors, were identified to mimic the inflammatory transcriptional signature characterizing aging in TSPO knockout mice most closely. These findings indicate that TSPO plays a protective role in brain aging. This TSPO-aging interaction is an important consideration in the interpretation of TSPO-targeted biomarker and therapeutic studies, as well as in vitro studies that cannot model the aging brain.
Collapse
Affiliation(s)
- Kei Onn Lai
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Jia Hui Wong
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Nevin Tham
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Lauren Fairley
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Roshan Ratnakar Naik
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Yulan Wang
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
- Singapore Phenome Centre, Nanyang Technological University, Singapore, Singapore
| | | | - Anna M Barron
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| |
Collapse
|
2
|
Ihara D, Rasli NR, Katsuyama Y. How do neurons live long and healthy? The mechanism of neuronal genome integrity. Front Neurosci 2025; 19:1552790. [PMID: 40177377 PMCID: PMC11961891 DOI: 10.3389/fnins.2025.1552790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 02/17/2025] [Indexed: 04/05/2025] Open
Abstract
Genome DNA of neurons in the brain is unstable, and mutations caused by inaccurate repair can lead to neurodevelopmental and neurodegenerative disorders. Damage to the neuronal genome is induced both exogenously and endogenously. Rapid cell proliferation of neural stem cells during embryonic brain development can lead to errors in genome duplication. Electrical excitations and drastic changes in gene expression in functional neurons cause risks of damaging genomic DNA. The precise repair of DNA damages caused by events making genomic DNA unstable maintains neuronal functions. The maintenance of the DNA sequence and structure of the genome is known as genomic integrity. Molecular mechanisms that maintain genomic integrity are critical for healthy neuronal function. In this review, we describe recent progress in understanding the genome integrity in functional neurons referring to their disruptions reported in neurological diseases.
Collapse
Affiliation(s)
| | | | - Yu Katsuyama
- Division of Neuroanatomy, Department of Anatomy, Shiga University of Medical Science, Otsu, Shiga, Japan
| |
Collapse
|
3
|
Abe T, Yoshimoto Y, Matsuno S, Yoshimura A, Hirota K, Seki M. TIPIN is essential for chromosome stability and cell viability in BRCA1-deficient cells. Biochem Biophys Res Commun 2025; 752:151467. [PMID: 39955949 DOI: 10.1016/j.bbrc.2025.151467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 02/08/2025] [Indexed: 02/18/2025]
Abstract
The mutations of breast cancer type 1 susceptibility gene (BRCA1) cause hereditary breast cancer. One of the medical revolutions of cancer therapy for BRCA1-mutated breast cancer is the drug approval of Poly (ADP-ribose) polymerase (PARP) inhibitors because of the synthetic lethal interaction between BRCA1 mutation and PARP inhibition. Here, we report another synthetic lethal interaction between BRCA1 and TIMELESS interacting protein (TIPIN), the latter of which encodes a protein involved in DNA replication, DNA damage checkpoint and sister chromatid cohesion. Cells deficient for both BRCA1 and TIPIN die due to elevated chromosomal aberrations including chromosomal breaks and radial chromosomes. The synthetic lethality of TIPIN/BRCA1-deficient cells is restored by the depletion of Tumor protein p53 binding protein 1 (53BP1), which prevents homologous recombination (HR) by its restricting DNA processing. Thus, spontaneous DNA lesions in TIPIN deficient cells could be preferentially repaired by BRCA1-mediated HR pathway. The viability of TIPIN/53BP1/BRCA1 triple mutant is lost by the depletion of Ring finger protein 8 (RNF8) E3-ubiquitin ligase, implicating that RNF8-mediated sub-HR pathway may work in a complementary manner of BRCA1 and 53BP1 pathway.
Collapse
Affiliation(s)
- Takuya Abe
- Department of Biochemistry, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan.
| | - Yui Yoshimoto
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji-shi, Tokyo, 192-0397, Japan
| | - Seiya Matsuno
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji-shi, Tokyo, 192-0397, Japan
| | - Akari Yoshimura
- Department of Biochemistry, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Kouji Hirota
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji-shi, Tokyo, 192-0397, Japan
| | - Masayuki Seki
- Department of Biochemistry, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| |
Collapse
|
4
|
Ahmad R, Sayyad F, Naeem M, Houlden H. Report of a novel missense TDP1 variant in a Pakistani family affected with an extremely rare disorder congenital spinocerebellar ataxia with axonal neuropathy type 1 (SCAN1). Mol Biol Rep 2024; 52:7. [PMID: 39576382 PMCID: PMC11584435 DOI: 10.1007/s11033-024-10085-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/31/2024] [Indexed: 11/24/2024]
Abstract
BACKGROUND Spinocerebellar ataxia with axonal neuropathy type 1 (OMIM: 607250) is an extremely rare autosomal recessive disorder caused by a mutation in the tyrosyl-DNA phosphodiesterase 1 (TDP1) gene. Only a single missense variant (p.His493Arg) in this gene has been reported. This variant was found in three Arab families with a possible common founder effect. METHODS AND RESULTS We report a female patient born to a consanguineous Pakistani family segregating autosomal recessive spinocerebellar ataxia with axonal neuropathy type 1. The patient presents additional clinical features distinct from previously reported Arab families including congenital onset of the disease. We performed whole exome sequencing with the patient's DNA and identified a novel missense variant (NC_000014.9:g.89991982C > T; p.His478Tyr) in exon 13 of the TDP1 gene. Sanger sequencing was performed to verify the autosomal recessive segregation of the p.His478Tyr variant in the family. CONCLUSION The current study expands both the clinical and mutation spectrum of the TDP1 associated spinocerebellar ataxia with axonal neuropathy type 1 and increases the body of evidence that supports the pathogenic role of TDP1 in cerebellar ataxias with peripheral neuropathy.
Collapse
Affiliation(s)
- Riaz Ahmad
- Medical Genetics Research Laboratory, Department of Biotechnology, Quaid-I-Azam University, Islamabad, 45320, Pakistan
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, Queen Square House, London, WC1N 3BG, UK
| | - Filza Sayyad
- Medical Genetics Research Laboratory, Department of Biotechnology, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Muhammad Naeem
- Medical Genetics Research Laboratory, Department of Biotechnology, Quaid-I-Azam University, Islamabad, 45320, Pakistan.
| | - Henry Houlden
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, Queen Square House, London, WC1N 3BG, UK.
| |
Collapse
|
5
|
Tang L, Tam NFY, Lam W, Lee TCH, Xu SJL, Lee FWF. Insights into Nitrogen-Associated Protein 50 (NAP50) as a Tyrosyl-DNA Phosphodiesterase in Dinoflagellates. Microorganisms 2024; 12:2286. [PMID: 39597675 PMCID: PMC11596271 DOI: 10.3390/microorganisms12112286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/01/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
Nitrogen-associated protein 50 (NAP50) is an abundant plastid protein with an unknown function identified in Alexandrium affine (Dinophyceae). No progress has been made in discovering the function of NAP50 since its first characterization in 2009. The present study is a continuation of work on the predicted function of NAP50. The results show that the NAP50 gene lacks introns but contains abundant base substitutions, consistent with the characteristics of dinoflagellate nuclear genes. The NAP50 protein is found to be widely expressed in dinoflagellate lineages through bioinformatics analysis and Western blotting, suggesting that NAP50 is not exclusive to Alexandrium, which differs from previous understandings. Phylogenetic analysis reveals that NAP50 belongs to the tyrosyl-DNA phosphodiesterase (TDP) family; however, it is structurally distinct from the TDP2 that is present in some dinoflagellate species. The three-dimensional structure and biological functions of NAP50 are predicted using deep learning algorithms. Based on evolutionary relationships and functional predictions, NAP50 may play a role in repairing plastid DNA damage and potentially contribute to the transcription of plastid genes in dinoflagellates.
Collapse
Affiliation(s)
- Lu Tang
- School of Science and Technology, Hong Kong Metropolitan University, Hong Kong SAR, China; (L.T.); (N.F.-Y.T.); (W.L.); (T.C.-H.L.); (S.J.-L.X.)
| | - Nora Fung-Yee Tam
- School of Science and Technology, Hong Kong Metropolitan University, Hong Kong SAR, China; (L.T.); (N.F.-Y.T.); (W.L.); (T.C.-H.L.); (S.J.-L.X.)
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, China
| | - Winnie Lam
- School of Science and Technology, Hong Kong Metropolitan University, Hong Kong SAR, China; (L.T.); (N.F.-Y.T.); (W.L.); (T.C.-H.L.); (S.J.-L.X.)
| | - Thomas Chun-Hung Lee
- School of Science and Technology, Hong Kong Metropolitan University, Hong Kong SAR, China; (L.T.); (N.F.-Y.T.); (W.L.); (T.C.-H.L.); (S.J.-L.X.)
| | - Steven Jing-Liang Xu
- School of Science and Technology, Hong Kong Metropolitan University, Hong Kong SAR, China; (L.T.); (N.F.-Y.T.); (W.L.); (T.C.-H.L.); (S.J.-L.X.)
| | - Fred Wang-Fat Lee
- School of Science and Technology, Hong Kong Metropolitan University, Hong Kong SAR, China; (L.T.); (N.F.-Y.T.); (W.L.); (T.C.-H.L.); (S.J.-L.X.)
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
6
|
Stavgiannoudaki I, Goulielmaki E, Garinis GA. Broken strands, broken minds: Exploring the nexus of DNA damage and neurodegeneration. DNA Repair (Amst) 2024; 140:103699. [PMID: 38852477 DOI: 10.1016/j.dnarep.2024.103699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/15/2024] [Accepted: 05/28/2024] [Indexed: 06/11/2024]
Abstract
Neurodegenerative disorders are primarily characterized by neuron loss progressively leading to cognitive decline and the manifestation of incurable and debilitating conditions, such as Alzheimer's, Parkinson's, and Huntington's diseases. Loss of genome maintenance causally contributes to age-related neurodegeneration, as exemplified by the premature appearance of neurodegenerative features in a growing family of human syndromes and mice harbouring inborn defects in DNA repair. Here, we discuss the relevance of persistent DNA damage, key DNA repair mechanisms and compromised genome integrity in age-related neurodegeneration highlighting the significance of investigating these connections to pave the way for the development of rationalized intervention strategies aimed at delaying the onset of neurodegenerative disorders and promoting healthy aging.
Collapse
Affiliation(s)
- Ioanna Stavgiannoudaki
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology-Hellas, Crete, Heraklion, Greece; Department of Biology, University of Crete, Crete, Heraklion, Greece
| | - Evi Goulielmaki
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology-Hellas, Crete, Heraklion, Greece
| | - George A Garinis
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology-Hellas, Crete, Heraklion, Greece; Department of Biology, University of Crete, Crete, Heraklion, Greece.
| |
Collapse
|
7
|
Wang G, Gan X, Chen X, Zeng Q, Zhang Z, Li J, Guo Z, Hou LC, Xu J, Kang H, Guo F. Genomic Insights into the Role of TOP Gene Family in Soft-Tissue Sarcomas: Implications for Prognosis and Therapy. Adv Biol (Weinh) 2024; 8:e2300678. [PMID: 38837283 DOI: 10.1002/adbi.202300678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/19/2024] [Indexed: 06/07/2024]
Abstract
This study focuses on the role of topoisomerases (TOPs) in sarcomas (SARCs), highlighting TOPs' influence on sarcoma prognosis through mRNA expression, genetic mutations, immune infiltration, and DNA methylation analysis using transcriptase sequencing and other techniques. The findings indicate that TOP gene mutations correlate with increased inflammation, immune cell infiltration, DNA repair abnormalities, and mitochondrial fusion genes alterations, all of which negatively affect sarcoma prognosis. Abnormal TOP expression may independently affect sarcoma patients' survival. Cutting-edge genomic tools such as Oncomine, gene expression profiling interactive analysis (GEPIA), and cBio Cancer Genomics Portal (cBioPortal) are utilized to explore the TOP gene family (TOP1/1MT/2A/2B/3A/3B) in soft-tissue sarcomas (STSs). This in-depth analysis reveals a notable upregulation of TOP mRNA in STS patients arcoss various SARC subtypes, French Federation Nationale des Centres de Lutte Contre le Cancer classification (FNCLCC) grades, and specific molecular profiles correlating with poorer clinical outcomes. Furthermore, this investigation identifies distinct patterns of immune cell infiltration, genetic mutations, and somatic copy number variations linked to TOP genes that inversely affect patient survival rates. These findings underscore the diagnostic and therapeutic relevance of the TOP gene suite in STSs.
Collapse
Affiliation(s)
- Genchun Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Xin Gan
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Xin Chen
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Qunqian Zeng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Zhuoran Zhang
- The Second Clinical School of Hubei University of Medicine, Shiyan City, Hubei, 442000, China
| | - Jiantao Li
- The Fifth Clinical School of Hubei University of Medicine, Shiyan City, Hubei, 442000, China
| | - Zhou Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Liang Cai Hou
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - JingTing Xu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Hao Kang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Fengjing Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| |
Collapse
|
8
|
Geraud M, Cristini A, Salimbeni S, Bery N, Jouffret V, Russo M, Ajello AC, Fernandez Martinez L, Marinello J, Cordelier P, Trouche D, Favre G, Nicolas E, Capranico G, Sordet O. TDP1 mutation causing SCAN1 neurodegenerative syndrome hampers the repair of transcriptional DNA double-strand breaks. Cell Rep 2024; 43:114214. [PMID: 38761375 DOI: 10.1016/j.celrep.2024.114214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/05/2024] [Accepted: 04/24/2024] [Indexed: 05/20/2024] Open
Abstract
TDP1 removes transcription-blocking topoisomerase I cleavage complexes (TOP1ccs), and its inactivating H493R mutation causes the neurodegenerative syndrome SCAN1. However, the molecular mechanism underlying the SCAN1 phenotype is unclear. Here, we generate human SCAN1 cell models using CRISPR-Cas9 and show that they accumulate TOP1ccs along with changes in gene expression and genomic distribution of R-loops. SCAN1 cells also accumulate transcriptional DNA double-strand breaks (DSBs) specifically in the G1 cell population due to increased DSB formation and lack of repair, both resulting from abortive removal of transcription-blocking TOP1ccs. Deficient TDP1 activity causes increased DSB production, and the presence of mutated TDP1 protein hampers DSB repair by a TDP2-dependent backup pathway. This study provides powerful models to study TDP1 functions under physiological and pathological conditions and unravels that a gain of function of the mutated TDP1 protein, which prevents DSB repair, rather than a loss of TDP1 activity itself, could contribute to SCAN1 pathogenesis.
Collapse
Affiliation(s)
- Mathéa Geraud
- Cancer Research Center of Toulouse (CRCT), INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, 31037 Toulouse, France
| | - Agnese Cristini
- Cancer Research Center of Toulouse (CRCT), INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, 31037 Toulouse, France
| | - Simona Salimbeni
- Cancer Research Center of Toulouse (CRCT), INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, 31037 Toulouse, France; Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
| | - Nicolas Bery
- Cancer Research Center of Toulouse (CRCT), INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, 31037 Toulouse, France
| | - Virginie Jouffret
- MCD, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France; BigA Core Facility, Centre de Biologie Intégrative (CBI), Université de Toulouse, 31062 Toulouse, France
| | - Marco Russo
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
| | - Andrea Carla Ajello
- Cancer Research Center of Toulouse (CRCT), INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, 31037 Toulouse, France
| | - Lara Fernandez Martinez
- Cancer Research Center of Toulouse (CRCT), INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, 31037 Toulouse, France
| | - Jessica Marinello
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
| | - Pierre Cordelier
- Cancer Research Center of Toulouse (CRCT), INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, 31037 Toulouse, France
| | - Didier Trouche
- MCD, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Gilles Favre
- Cancer Research Center of Toulouse (CRCT), INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, 31037 Toulouse, France
| | - Estelle Nicolas
- MCD, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Giovanni Capranico
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy.
| | - Olivier Sordet
- Cancer Research Center of Toulouse (CRCT), INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, 31037 Toulouse, France.
| |
Collapse
|
9
|
Duardo RC, Marinello J, Russo M, Morelli S, Pepe S, Guerra F, Gómez-González B, Aguilera A, Capranico G. Human DNA topoisomerase I poisoning causes R loop-mediated genome instability attenuated by transcription factor IIS. SCIENCE ADVANCES 2024; 10:eadm8196. [PMID: 38787953 PMCID: PMC11122683 DOI: 10.1126/sciadv.adm8196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/18/2024] [Indexed: 05/26/2024]
Abstract
DNA topoisomerase I can contribute to cancer genome instability. During catalytic activity, topoisomerase I forms a transient intermediate, topoisomerase I-DNA cleavage complex (Top1cc) to allow strand rotation and duplex relaxation, which can lead to elevated levels of DNA-RNA hybrids and micronuclei. To comprehend the underlying mechanisms, we have integrated genomic data of Top1cc-triggered hybrids and DNA double-strand breaks (DSBs) shortly after Top1cc induction, revealing that Top1ccs increase hybrid levels with different mechanisms. DSBs are at highly transcribed genes in early replicating initiation zones and overlap with hybrids downstream of accumulated RNA polymerase II (RNAPII) at gene 5'-ends. A transcription factor IIS mutant impairing transcription elongation further increased RNAPII accumulation likely due to backtracking. Moreover, Top1ccs can trigger micronuclei when occurring during late G1 or early/mid S, but not during late S. As micronuclei and transcription-replication conflicts are attenuated by transcription factor IIS, our results support a role of RNAPII arrest in Top1cc-induced transcription-replication conflicts leading to DSBs and micronuclei.
Collapse
Affiliation(s)
- Renée C. Duardo
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum–University of Bologna, via Selmi 3, 40126, Bologna, Italy
| | - Jessica Marinello
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum–University of Bologna, via Selmi 3, 40126, Bologna, Italy
| | - Marco Russo
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum–University of Bologna, via Selmi 3, 40126, Bologna, Italy
| | - Sara Morelli
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum–University of Bologna, via Selmi 3, 40126, Bologna, Italy
| | - Simona Pepe
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum–University of Bologna, via Selmi 3, 40126, Bologna, Italy
| | - Federico Guerra
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum–University of Bologna, via Selmi 3, 40126, Bologna, Italy
| | - Belén Gómez-González
- Centro Andaluz de Biología Molecular y Medicina Regenerativa—CABIMER, Universidad de Sevilla–CSIC, Calle Américo Vespucio 24, 41092 Seville, Spain
- Departamento de Genetica, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| | - Andrés Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa—CABIMER, Universidad de Sevilla–CSIC, Calle Américo Vespucio 24, 41092 Seville, Spain
- Departamento de Genetica, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| | - Giovanni Capranico
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum–University of Bologna, via Selmi 3, 40126, Bologna, Italy
| |
Collapse
|
10
|
Maliar NL, Talbot EJ, Edwards AR, Khoronenkova SV. Microglial inflammation in genome instability: A neurodegenerative perspective. DNA Repair (Amst) 2024; 135:103634. [PMID: 38290197 DOI: 10.1016/j.dnarep.2024.103634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/08/2024] [Accepted: 01/21/2024] [Indexed: 02/01/2024]
Abstract
The maintenance of genome stability is crucial for cell homeostasis and tissue integrity. Numerous human neuropathologies display chronic inflammation in the central nervous system, set against a backdrop of genome instability, implying a close interplay between the DNA damage and immune responses in the context of neurological disease. Dissecting the molecular mechanisms of this crosstalk is essential for holistic understanding of neuroinflammatory pathways in genome instability disorders. Non-neuronal cell types, specifically microglia, are major drivers of neuroinflammation in the central nervous system with neuro-protective and -toxic capabilities. Here, we discuss how persistent DNA damage affects microglial homeostasis, zooming in on the cytosolic DNA sensing cGAS-STING pathway and the downstream inflammatory response, which can drive neurotoxic outcomes in the context of genome instability.
Collapse
Affiliation(s)
- Nina L Maliar
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Emily J Talbot
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Abigail R Edwards
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
| | | |
Collapse
|
11
|
Paull TT, Woolley PR. A-T neurodegeneration and DNA damage-induced transcriptional stress. DNA Repair (Amst) 2024; 135:103647. [PMID: 38377644 PMCID: PMC11707827 DOI: 10.1016/j.dnarep.2024.103647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/08/2024] [Indexed: 02/22/2024]
Abstract
Loss of the ATM protein kinase in humans results in Ataxia-telangiectasia, a disorder characterized by childhood-onset neurodegeneration of the cerebellum as well as cancer predisposition and immunodeficiency. Although many aspects of ATM function are well-understood, the mechanistic basis of the progressive cerebellar ataxia that occurs in patients is not. Here we review recent progress related to the role of ATM in neurons and the cerebellum that comes from many sources: animal models, post-mortem brain tissue samples, and human neurons in culture. These observations have revealed new insights into the consequences of ATM loss on DNA damage, gene expression, and immune signaling in the brain. Many results point to the importance of reactive oxygen species as well as single-strand DNA breaks in the progression of molecular events leading to neuronal dysfunction. In addition, innate immunity signaling pathways appear to play a critical role in ATM functions in microglia, responding to various forms of nucleic acid sensors and regulating survival of neurons and other cell types. Overall, the results lead to an updated view of transcriptional stress and DNA damage resulting from ATM loss that results in changes in gene expression as well as neuroinflammation that contribute to the cerebellar neurodegeneration observed in patients.
Collapse
Affiliation(s)
- Tanya T Paull
- The University of Texas at Austin, Department of Molecular Biosciences, Austin, TX 78712, USA.
| | - Phillip R Woolley
- The University of Texas at Austin, Department of Molecular Biosciences, Austin, TX 78712, USA
| |
Collapse
|
12
|
Jayakumar S, Patel M, Boulet F, Aziz H, Brooke GN, Tummala H, Pradeepa MM. PSIP1/LEDGF reduces R-loops at transcription sites to maintain genome integrity. Nat Commun 2024; 15:361. [PMID: 38191578 PMCID: PMC10774266 DOI: 10.1038/s41467-023-44544-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 12/18/2023] [Indexed: 01/10/2024] Open
Abstract
R-loops that accumulate at transcription sites pose a persistent threat to genome integrity. PSIP1 is a chromatin protein associated with transcriptional elongation complex, possesses histone chaperone activity, and is implicated in recruiting RNA processing and DNA repair factors to transcription sites. Here, we show that PSIP1 interacts with R-loops and other proteins involved in R-loop homeostasis, including PARP1. Genome-wide mapping of PSIP1, R-loops and γ-H2AX in PSIP1-depleted human and mouse cell lines revealed an accumulation of R-loops and DNA damage at gene promoters in the absence of PSIP1. R-loop accumulation causes local transcriptional arrest and transcription-replication conflict, leading to DNA damage. PSIP1 depletion increases 53BP1 foci and reduces RAD51 foci, suggesting altered DNA repair choice. Furthermore, PSIP1 depletion increases the sensitivity of cancer cells to PARP1 inhibitors and DNA-damaging agents that induce R-loop-induced DNA damage. These findings provide insights into the mechanism through which PSIP1 maintains genome integrity at the site of transcription.
Collapse
Affiliation(s)
- Sundarraj Jayakumar
- Blizard Institute; Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
- Bhabha Atomic Research Centre, Mumbai, India
| | - Manthan Patel
- Blizard Institute; Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Fanny Boulet
- Blizard Institute; Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Hadicha Aziz
- Blizard Institute; Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Greg N Brooke
- School of Life Sciences, University of Essex, Colchester, UK
| | - Hemanth Tummala
- Blizard Institute; Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Madapura M Pradeepa
- Blizard Institute; Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK.
| |
Collapse
|
13
|
Milano L, Gautam A, Caldecott KW. DNA damage and transcription stress. Mol Cell 2024; 84:70-79. [PMID: 38103560 DOI: 10.1016/j.molcel.2023.11.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 12/19/2023]
Abstract
Genome damage and transcription are intimately linked. Tens to hundreds of thousands of DNA lesions arise in each cell each day, many of which can directly or indirectly impede transcription. Conversely, the process of gene expression is itself a source of endogenous DNA lesions as a result of the susceptibility of single-stranded DNA to damage, conflicts with the DNA replication machinery, and engagement by cells of topoisomerases and base excision repair enzymes to regulate the initiation and progression of gene transcription. Although such processes are tightly regulated and normally accurate, on occasion, they can become abortive and leave behind DNA breaks that can drive genome rearrangements, instability, or cell death.
Collapse
Affiliation(s)
- Larissa Milano
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, UK.
| | - Amit Gautam
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, UK.
| | - Keith W Caldecott
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, UK.
| |
Collapse
|
14
|
Caldecott KW. Causes and consequences of DNA single-strand breaks. Trends Biochem Sci 2024; 49:68-78. [PMID: 38040599 DOI: 10.1016/j.tibs.2023.11.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/20/2023] [Accepted: 11/03/2023] [Indexed: 12/03/2023]
Abstract
DNA single-strand breaks (SSBs) are among the most common lesions arising in human cells, with tens to hundreds of thousands arising in each cell, each day. Cells have efficient mechanisms for the sensing and repair of these ubiquitous DNA lesions, but the failure of these processes to rapidly remove SSBs can lead to a variety of pathogenic outcomes. The threat posed by unrepaired SSBs is illustrated by the existence of at least six genetic diseases in which SSB repair (SSBR) is defective, all of which are characterised by neurodevelopmental and/or neurodegenerative pathology. Here, I review current understanding of how SSBs arise and impact on critical molecular processes, such as DNA replication and gene transcription, and their links to human disease.
Collapse
Affiliation(s)
- Keith W Caldecott
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, UK.
| |
Collapse
|
15
|
Rubio-Contreras D, Gómez-Herreros F. TDP1 suppresses chromosomal translocations and cell death induced by abortive TOP1 activity during gene transcription. Nat Commun 2023; 14:6940. [PMID: 37945566 PMCID: PMC10636166 DOI: 10.1038/s41467-023-42622-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 10/17/2023] [Indexed: 11/12/2023] Open
Abstract
DNA topoisomerase I (TOP1) removes torsional stress by transiently cutting one DNA strand. Such cuts are rejoined by TOP1 but can occasionally become abortive generating permanent protein-linked single strand breaks (SSBs). The repair of these breaks is initiated by tyrosyl-DNA phosphodiesterase 1 (TDP1), a conserved enzyme that unlinks the TOP1 peptide from the DNA break. Additionally, some of these SSBs can result in double strand breaks (DSBs) either during replication or by a poorly understood transcription-associated process. In this study, we identify these DSBs as a source of genome rearrangements, which are suppressed by TDP1. Intriguingly, we also provide a mechanistic explanation for the formation of chromosomal translocations unveiling an error-prone pathway that relies on the MRN complex and canonical non-homologous end-joining. Collectively, these data highlight the threat posed by TOP1-induced DSBs during transcription and demonstrate the importance of TDP1-dependent end-joining in protecting both gene transcription and genome stability.
Collapse
Affiliation(s)
- Diana Rubio-Contreras
- Instituto de Biomedicina de Sevilla, IBiS, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013, Seville, Spain
- Departamento de Genética, Universidad de Sevilla, 41012, Seville, Spain
| | - Fernando Gómez-Herreros
- Instituto de Biomedicina de Sevilla, IBiS, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013, Seville, Spain.
- Departamento de Genética, Universidad de Sevilla, 41012, Seville, Spain.
| |
Collapse
|
16
|
El-Khamisy SF. Oxidative DNA damage and repair at non-coding regulatory regions. Trends Cell Biol 2023; 33:939-949. [PMID: 37029073 DOI: 10.1016/j.tcb.2023.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 04/09/2023]
Abstract
DNA breaks at protein-coding sequences are well-established threats to tissue homeostasis and maintenance. They arise from the exposure to intracellular and environmental genotoxins, causing damage in one or two strands of the DNA. DNA breaks have been also reported in non-coding regulatory regions such as enhancers and promoters. They arise from essential cellular processes required for gene transcription, cell identity and function. One such process that has attracted recent attention is the oxidative demethylation of DNA and histones, which generates abasic sites and DNA single-strand breaks. Here, we discuss how oxidative DNA breaks at non-coding regulatory regions are generated and the recently reported role of NuMA (nuclear mitotic apparatus) protein in promoting transcription and repair at these regions.
Collapse
Affiliation(s)
- Sherif F El-Khamisy
- School of Biosciences, The Healthy Lifespan and Neuroscience Institutes, Firth Court, University of Sheffield, Sheffield, UK; Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, University of Bradford, Bradford, UK.
| |
Collapse
|
17
|
Jin Y, Li Y, He S, Ge Y, Zhao Y, Zhu K, He A, Li S, Yan S, Cao C. ATM participates in fine particulate matter-induced airway inflammation through regulating DNA damage and DNA damage response. ENVIRONMENTAL TOXICOLOGY 2023; 38:2668-2678. [PMID: 37483094 DOI: 10.1002/tox.23901] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/20/2023] [Accepted: 07/06/2023] [Indexed: 07/25/2023]
Abstract
The relationship between fine particulate matter (PM2.5) and chronic airway inflammatory diseases, such as chronic obstructive pulmonary disease and asthma, have garnered public attention, while the detailed mechanisms of PM2.5-induced airway inflammation remain unclear. This study reveals that PM2.5 induces airway inflammation both in vivo and in vitro, and, moreover, identifies DNA damage and DNA damage repair (DDR) as results of this exposure. Ataxia telangiectasia-mutated heterozygous (ATM+/- ) and wild-type C57BL/6 (WT) mice were exposed to PM2.5. The results show that, following exposure to PM2.5, the number of neutrophils in broncho alveolar lavage fluid and the mRNA expression of CXCL-1 in lung tissues of the ATM+/- mice were lower than those of the WT mice. The mRNA expression of FANCD2 and FANCI were also down-regulated. Human bronchial epithelial (HBE) cells were transfected with ATM-siRNA to induce down-regulation of ATM gene expression and were subsequently stimulated with PM2.5. The results show that the mRNA expression of TNF-α decreased in the ATM-siRNA-transfected cells. The mRNA expression of CXCL-1 and CXCL-2 in peritoneal macrophages, derived from ATM-null mice in which experiments showed that the protein expression of FANCD2 and FANCI decreased, were also decreased after PM2.5 exposure in ATM-siRNA-transfected HBE cells. In conclusion, PM2.5-induced airway inflammation is alleviated in ATM+/- mice compared with WT mice. ATM promotes PM2.5-induced airway inflammation, which may be attributed to the regulation of DNA damage and DDR.
Collapse
Affiliation(s)
- Yan Jin
- Department of Respiratory and Critical Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, Ningbo, China
- Department of Respiratory and Critical Care Medicine, Municipal Hospital Affiliated to Taizhou University, Taizhou, China
| | - Yiting Li
- Department of Respiratory and Critical Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Shiyi He
- Department of Respiratory and Critical Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Yijun Ge
- Department of Respiratory and Critical Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Yun Zhao
- Department of Respiratory and Critical Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Ke Zhu
- Department of Respiratory and Critical Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Andong He
- Department of Respiratory and Critical Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Siyu Li
- Department of Respiratory and Critical Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Siyu Yan
- Department of Respiratory and Critical Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Chao Cao
- Department of Respiratory and Critical Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
18
|
Kobayashi M, Wakaguri H, Shimizu M, Higasa K, Matsuda F, Honjo T. Ago2 and a miRNA reduce Topoisomerase 1 for enhancing DNA cleavage in antibody diversification by activation-induced cytidine deaminase. Proc Natl Acad Sci U S A 2023; 120:e2216918120. [PMID: 37094168 PMCID: PMC10161001 DOI: 10.1073/pnas.2216918120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 03/31/2023] [Indexed: 04/26/2023] Open
Abstract
Activation-induced cytidine deaminase (AID) is the essential enzyme for imprinting immunological memory through class switch recombination (CSR) and somatic hypermutation (SHM) of the immunoglobulin (Ig) gene. AID-dependent reduction of Topoisomerase 1 (Top1) promotes DNA cleavage that occurs upon Ig gene diversification, whereas the mechanism behind AID-induced Top1 reduction remains unclear. Here, we clarified the contribution of the microRNA-Ago2 complex in AID-dependent Top1 decrease. Ago2 binds to Top1 3'UTR with two regions of AID-dependent Ago2-binding sites (5'- and 3'dABs). Top1 3'UTR knockout (3'UTRKO) in B lymphoma cells leads to decreases in DNA break efficiency in the IgH gene accompanied by a reduction in CSR and SHM frequencies. Furthermore, AID-dependent Top1 protein reduction and Ago2-binding to Top1 mRNA are down-regulated in 3'UTRKO cells. Top1 mRNA in the highly translated fractions of the sucrose gradient is decreased in an AID-dependent and Top1 3'UTR-mediated manner, resulting in a decrease in Top1 protein synthesis. Both AID and Ago2 localize in the mRNA-binding protein fractions and they interact with each other. Furthermore, we found some candidate miRNAs which possibly bind to 5'- and 3'dAB in Top1 mRNA. Among them, miR-92a-3p knockdown induces the phenotypes of 3'UTRKO cells to wild-type cells whereas it does not impact on 3'UTRKO cells. Taken together, the Ago2-miR-92a-3p complex will be recruited to Top1 3'UTR in an AID-dependent manner and posttranscriptionally reduces Top1 protein synthesis. These consequences cause the increase in a non-B-DNA structure, enhance DNA cleavage by Top1 in the Ig gene and contribute to immunological memory formation.
Collapse
Affiliation(s)
- Maki Kobayashi
- Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University, Kyoto606-8501, Japan
| | - Hiroyuki Wakaguri
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto606-8501, Japan
| | - Masakazu Shimizu
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto606-8501, Japan
| | - Koichiro Higasa
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto606-8501, Japan
| | - Fumihiko Matsuda
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto606-8501, Japan
| | - Tasuku Honjo
- Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University, Kyoto606-8501, Japan
| |
Collapse
|
19
|
Shadfar S, Parakh S, Jamali MS, Atkin JD. Redox dysregulation as a driver for DNA damage and its relationship to neurodegenerative diseases. Transl Neurodegener 2023; 12:18. [PMID: 37055865 PMCID: PMC10103468 DOI: 10.1186/s40035-023-00350-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/16/2023] [Indexed: 04/15/2023] Open
Abstract
Redox homeostasis refers to the balance between the production of reactive oxygen species (ROS) as well as reactive nitrogen species (RNS), and their elimination by antioxidants. It is linked to all important cellular activities and oxidative stress is a result of imbalance between pro-oxidants and antioxidant species. Oxidative stress perturbs many cellular activities, including processes that maintain the integrity of DNA. Nucleic acids are highly reactive and therefore particularly susceptible to damage. The DNA damage response detects and repairs these DNA lesions. Efficient DNA repair processes are therefore essential for maintaining cellular viability, but they decline considerably during aging. DNA damage and deficiencies in DNA repair are increasingly described in age-related neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and Huntington's disease. Furthermore, oxidative stress has long been associated with these conditions. Moreover, both redox dysregulation and DNA damage increase significantly during aging, which is the biggest risk factor for neurodegenerative diseases. However, the links between redox dysfunction and DNA damage, and their joint contributions to pathophysiology in these conditions, are only just emerging. This review will discuss these associations and address the increasing evidence for redox dysregulation as an important and major source of DNA damage in neurodegenerative disorders. Understanding these connections may facilitate a better understanding of disease mechanisms, and ultimately lead to the design of better therapeutic strategies based on preventing both redox dysregulation and DNA damage.
Collapse
Affiliation(s)
- Sina Shadfar
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Macquarie University, Sydney, NSW, 2109, Australia.
| | - Sonam Parakh
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Macquarie University, Sydney, NSW, 2109, Australia
| | - Md Shafi Jamali
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Macquarie University, Sydney, NSW, 2109, Australia
| | - Julie D Atkin
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Macquarie University, Sydney, NSW, 2109, Australia.
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
20
|
Oxidative-Stress-Associated Proteostasis Disturbances and Increased DNA Damage in the Hippocampal Granule Cells of the Ts65Dn Model of Down Syndrome. Antioxidants (Basel) 2022; 11:antiox11122438. [PMID: 36552646 PMCID: PMC9774833 DOI: 10.3390/antiox11122438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress (OS) is one of the neuropathological mechanisms responsible for the deficits in cognition and neuronal function in Down syndrome (DS). The Ts65Dn (TS) mouse replicates multiple DS phenotypes including hippocampal-dependent learning and memory deficits and similar brain oxidative status. To better understand the hippocampal oxidative profile in the adult TS mouse, we analyzed cellular OS-associated alterations in hippocampal granule cells (GCs), a neuronal population that plays an important role in memory formation and that is particularly affected in DS. For this purpose, we used biochemical, molecular, immunohistochemical, and electron microscopy techniques. Our results indicate that TS GCs show important OS-associated alterations in the systems essential for neuronal homeostasis: DNA damage response and proteostasis, particularly of the proteasome and lysosomal system. Specifically, TS GCs showed: (i) increased DNA damage, (ii) reorganization of nuclear proteolytic factories accompanied by a decline in proteasome activity and cytoplasmic aggregation of ubiquitinated proteins, (iii) formation of lysosomal-related structures containing lipid droplets of cytotoxic peroxidation products, and (iv) mitochondrial ultrastructural defects. These alterations could be implicated in enhanced cellular senescence, accelerated aging and neurodegeneration, and the early development of Alzheimer's disease neuropathology present in TS mice and the DS population.
Collapse
|
21
|
Liao C, Talluri S, Zhao J, Mu S, Kumar S, Shi J, Buon L, Munshi NC, Shammas MA. RAD51 Is Implicated in DNA Damage, Chemoresistance and Immune Dysregulation in Solid Tumors. Cancers (Basel) 2022; 14:5697. [PMID: 36428789 PMCID: PMC9688595 DOI: 10.3390/cancers14225697] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND In normal cells, homologous recombination (HR) is tightly regulated and plays an important role in the maintenance of genomic integrity and stability through precise repair of DNA damage. RAD51 is a recombinase that mediates homologous base pairing and strand exchange during DNA repair by HR. Our previous data in multiple myeloma and esophageal adenocarcinoma (EAC) show that dysregulated HR mediates genomic instability. Purpose of this study was to investigate role of HR in genomic instability, chemoresistance and immune dysregulation in solid tumors including colon and breast cancers. METHODS The GEO dataset were used to investigate correlation of RAD51 expression with patient survival and expression of various immune markers in EAC, breast and colorectal cancers. RAD51 was inhibited in cancer cell lines using shRNAs and a small molecule inhibitor. HR activity was evaluated using a plasmid-based assay, DNA breaks assessed by evaluating expression of γ-H2AX (a marker of DNA breaks) and p-RPA32 (a marker of DNA end resection) using Western blotting. Genomic instability was monitored by investigating micronuclei (a marker of genomic instability). Impact of RAD51 inhibitor and/or a DNA-damaging agent was assessed on viability and apoptosis in EAC, breast and colon cancer cell lines in vitro and in a subcutaneous tumor model of EAC. Impact of RAD51 inhibitor on expression profile was monitored by RNA sequencing. RESULTS Elevated RAD51 expression correlated with poor survival of EAC, breast and colon cancer patients. RAD51 knockdown in cancer cell lines inhibited DNA end resection and strand exchange activity (key steps in the initiation of HR) as well as spontaneous DNA breaks, whereas its overexpression increased DNA breaks and genomic instability. Treatment of EAC, colon and breast cancer cell lines with a small molecule inhibitor of RAD51 inhibited DNA breaking agent-induced DNA breaks and genomic instability. RAD51 inhibitor potentiated cytotoxicity of DNA breaking agent in all cancer cell types tested in vitro as well as in a subcutaneous model of EAC. Evaluation by RNA sequencing demonstrated that DNA repair and cell cycle related pathways were induced by DNA breaking agent whereas their induction either prevented or reversed by RAD51 inhibitor. In addition, immune-related pathways such as PD-1 and Interferon Signaling were also induced by DNA breaking agent whereas their induction prevented by RAD51 inhibitor. Consistent with these observations, elevated RAD51 expression also correlated with that of genes involved in inflammation and other immune surveillance. CONCLUSIONS Elevated expression of RAD51 and associated HR activity is involved in spontaneous and DNA damaging agent-induced DNA breaks and genomic instability thus contributing to chemoresistance, immune dysregulation and poor prognosis in cancer. Therefore, inhibitors of RAD51 have great potential as therapeutic agents for EAC, colon, breast and probably other solid tumors.
Collapse
Affiliation(s)
- Chengcheng Liao
- Department of Adult Oncology, Harvard (Dana Farber) Cancer Institute, 450 Brookline Ave, Boston, MA 02215, USA
- VA Health Care System, Boston, MA 02215, USA
- Department of Hematology/Oncology, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Srikanth Talluri
- Department of Adult Oncology, Harvard (Dana Farber) Cancer Institute, 450 Brookline Ave, Boston, MA 02215, USA
- VA Health Care System, Boston, MA 02215, USA
| | - Jiangning Zhao
- Department of Adult Oncology, Harvard (Dana Farber) Cancer Institute, 450 Brookline Ave, Boston, MA 02215, USA
- VA Health Care System, Boston, MA 02215, USA
| | - Shidai Mu
- Department of Adult Oncology, Harvard (Dana Farber) Cancer Institute, 450 Brookline Ave, Boston, MA 02215, USA
- VA Health Care System, Boston, MA 02215, USA
| | - Subodh Kumar
- Department of Adult Oncology, Harvard (Dana Farber) Cancer Institute, 450 Brookline Ave, Boston, MA 02215, USA
- VA Health Care System, Boston, MA 02215, USA
| | - Jialan Shi
- Department of Adult Oncology, Harvard (Dana Farber) Cancer Institute, 450 Brookline Ave, Boston, MA 02215, USA
- VA Health Care System, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Leutz Buon
- Department of Adult Oncology, Harvard (Dana Farber) Cancer Institute, 450 Brookline Ave, Boston, MA 02215, USA
| | - Nikhil C. Munshi
- Department of Adult Oncology, Harvard (Dana Farber) Cancer Institute, 450 Brookline Ave, Boston, MA 02215, USA
- VA Health Care System, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Masood A. Shammas
- Department of Adult Oncology, Harvard (Dana Farber) Cancer Institute, 450 Brookline Ave, Boston, MA 02215, USA
- VA Health Care System, Boston, MA 02215, USA
| |
Collapse
|
22
|
Aditi, McKinnon PJ. Genome integrity and inflammation in the nervous system. DNA Repair (Amst) 2022; 119:103406. [PMID: 36148701 PMCID: PMC9844216 DOI: 10.1016/j.dnarep.2022.103406] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 01/19/2023]
Abstract
Preservation of genomic integrity is crucial for nervous system development and function. DNA repair deficiency results in several human diseases that are characterized by both neurodegeneration and neuroinflammation. Recent research has highlighted a role for compromised genomic integrity as a key factor driving neuropathology and triggering innate immune signaling to cause inflammation. Here we review the mechanisms by which DNA damage engages innate immune signaling and how this may promote neurological disease. We also consider the contributions of different neural cell types towards DNA damage-driven neuroinflammation. A deeper knowledge of genome maintenance mechanisms that prevent aberrant immune activation in neural cells will guide future therapies to ameliorate neurological disease.
Collapse
Affiliation(s)
- Aditi
- Center for Pediatric Neurological Disease Research, St. Jude Pediatric Translational Neuroscience Initiative, Dept. Cell & Mol. Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Peter J McKinnon
- Center for Pediatric Neurological Disease Research, St. Jude Pediatric Translational Neuroscience Initiative, Dept. Cell & Mol. Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
23
|
Caldecott KW. DNA single-strand break repair and human genetic disease. Trends Cell Biol 2022; 32:733-745. [PMID: 35643889 DOI: 10.1016/j.tcb.2022.04.010] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 04/13/2022] [Accepted: 04/22/2022] [Indexed: 12/15/2022]
Abstract
DNA single-strand breaks (SSBs) are amongst the commonest DNA lesions arising in cells, with many tens of thousands induced in each cell each day. SSBs arise not only from exposure to intracellular and environmental genotoxins but also as intermediates of normal DNA metabolic processes, such as the removal of torsional stress in DNA by topoisomerase enzymes and the epigenetic regulation of gene expression by DNA base excision repair (BER). If not rapidly detected and repaired, SSBs can result in RNA polymerase stalling, DNA replication fork collapse, and hyperactivation of the SSB sensor protein poly(ADP-ribose) polymerase 1 (PARP1). The potential impact of unrepaired SSBs is illustrated by the existence of genetic diseases in which proteins involved in SSB repair (SSBR) are mutated, and which are typified by hereditary neurodevelopmental and/or neurodegenerative disease. Here, I review our current understanding of SSBR and its impact on human neurological disease, with a focus on recent developments and concepts.
Collapse
Affiliation(s)
- Keith W Caldecott
- Genome Damage and Stability Centre, School of Life Sciences, Science Park Road, University of Sussex, Falmer, Brighton BN1 9RQ, UK.
| |
Collapse
|
24
|
Petermann E, Lan L, Zou L. Sources, resolution and physiological relevance of R-loops and RNA-DNA hybrids. Nat Rev Mol Cell Biol 2022; 23:521-540. [PMID: 35459910 DOI: 10.1038/s41580-022-00474-x] [Citation(s) in RCA: 178] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2022] [Indexed: 12/12/2022]
Abstract
RNA-DNA hybrids are generated during transcription, DNA replication and DNA repair and are crucial intermediates in these processes. When RNA-DNA hybrids are stably formed in double-stranded DNA, they displace one of the DNA strands and give rise to a three-stranded structure called an R-loop. R-loops are widespread in the genome and are enriched at active genes. R-loops have important roles in regulating gene expression and chromatin structure, but they also pose a threat to genomic stability, especially during DNA replication. To keep the genome stable, cells have evolved a slew of mechanisms to prevent aberrant R-loop accumulation. Although R-loops can cause DNA damage, they are also induced by DNA damage and act as key intermediates in DNA repair such as in transcription-coupled repair and RNA-templated DNA break repair. When the regulation of R-loops goes awry, pathological R-loops accumulate, which contributes to diseases such as neurodegeneration and cancer. In this Review, we discuss the current understanding of the sources of R-loops and RNA-DNA hybrids, mechanisms that suppress and resolve these structures, the impact of these structures on DNA repair and genome stability, and opportunities to therapeutically target pathological R-loops.
Collapse
Affiliation(s)
- Eva Petermann
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
- Birmingham Centre for Genome Biology, University of Birmingham, Birmingham, UK
| | - Li Lan
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Lee Zou
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA.
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
25
|
Qing X, Zhang G, Wang Z. DNA
damage response in neurodevelopment and neuromaintenance. FEBS J 2022. [DOI: 10.1111/febs.16535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/24/2022] [Indexed: 01/01/2023]
Affiliation(s)
- Xiaobing Qing
- Leibniz Institute on Aging – Fritz Lipmann Institute (FLI) Jena Germany
| | - Guangyu Zhang
- Leibniz Institute on Aging – Fritz Lipmann Institute (FLI) Jena Germany
| | - Zhao‐Qi Wang
- Leibniz Institute on Aging – Fritz Lipmann Institute (FLI) Jena Germany
- Faculty of Biological Sciences Friedrich‐Schiller‐University of Jena Germany
| |
Collapse
|
26
|
Welch G, Tsai LH. Mechanisms of DNA damage-mediated neurotoxicity in neurodegenerative disease. EMBO Rep 2022; 23:e54217. [PMID: 35499251 PMCID: PMC9171412 DOI: 10.15252/embr.202154217] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/18/2022] [Accepted: 04/19/2022] [Indexed: 12/26/2022] Open
Abstract
Neurons are highly susceptible to DNA damage accumulation due to their large energy requirements, elevated transcriptional activity, and long lifespan. While newer research has shown that DNA breaks and mutations may facilitate neuron diversity during development and neuronal function throughout life, a wealth of evidence indicates deficient DNA damage repair underlies many neurological disorders, especially age-associated neurodegenerative diseases. Recently, efforts to clarify the molecular link between DNA damage and neurodegeneration have improved our understanding of how the genomic location of DNA damage and defunct repair proteins impact neuron health. Additionally, work establishing a role for senescence in the aging and diseased brain reveals DNA damage may play a central role in neuroinflammation associated with neurodegenerative disease.
Collapse
Affiliation(s)
- Gwyneth Welch
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Li-Huei Tsai
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
27
|
Bourseguin J, Cheng W, Talbot E, Hardy L, Lai J, Jeffries A, Lodato MA, Lee EA, Khoronenkova S. Persistent DNA damage associated with ATM kinase deficiency promotes microglial dysfunction. Nucleic Acids Res 2022; 50:2700-2718. [PMID: 35212385 PMCID: PMC8934660 DOI: 10.1093/nar/gkac104] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 01/21/2023] Open
Abstract
The autosomal recessive genome instability disorder Ataxia-telangiectasia, caused by mutations in ATM kinase, is characterized by the progressive loss of cerebellar neurons. We find that DNA damage associated with ATM loss results in dysfunctional behaviour of human microglia, immune cells of the central nervous system. Microglial dysfunction is mediated by the pro-inflammatory RELB/p52 non-canonical NF-κB transcriptional pathway and leads to excessive phagocytic clearance of neuronal material. Activation of the RELB/p52 pathway in ATM-deficient microglia is driven by persistent DNA damage and is dependent on the NIK kinase. Activation of non-canonical NF-κB signalling is also observed in cerebellar microglia of individuals with Ataxia-telangiectasia. These results provide insights into the underlying mechanisms of aberrant microglial behaviour in ATM deficiency, potentially contributing to neurodegeneration in Ataxia-telangiectasia.
Collapse
Affiliation(s)
- Julie Bourseguin
- Department of Biochemistry, University of Cambridge, 80 Tennis Court road, CambridgeCB2 1GA, UK
| | - Wen Cheng
- Department of Biochemistry, University of Cambridge, 80 Tennis Court road, CambridgeCB2 1GA, UK
| | - Emily Talbot
- Department of Biochemistry, University of Cambridge, 80 Tennis Court road, CambridgeCB2 1GA, UK
| | - Liana Hardy
- Department of Biochemistry, University of Cambridge, 80 Tennis Court road, CambridgeCB2 1GA, UK
| | - Jenny Lai
- Division of Genetics and Genomics, Boston Children's Hospital; Department of Pediatrics, Harvard Medical School, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Program in Neuroscience, Harvard University, Boston, MA 02115, USA
| | - Ailsa M Jeffries
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Michael A Lodato
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Eunjung Alice Lee
- Division of Genetics and Genomics, Boston Children's Hospital; Department of Pediatrics, Harvard Medical School, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Svetlana V Khoronenkova
- Department of Biochemistry, University of Cambridge, 80 Tennis Court road, CambridgeCB2 1GA, UK
| |
Collapse
|
28
|
Pommier Y, Nussenzweig A, Takeda S, Austin C. Human topoisomerases and their roles in genome stability and organization. Nat Rev Mol Cell Biol 2022; 23:407-427. [PMID: 35228717 PMCID: PMC8883456 DOI: 10.1038/s41580-022-00452-3] [Citation(s) in RCA: 226] [Impact Index Per Article: 75.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2022] [Indexed: 12/15/2022]
Abstract
Human topoisomerases comprise a family of six enzymes: two type IB (TOP1 and mitochondrial TOP1 (TOP1MT), two type IIA (TOP2A and TOP2B) and two type IA (TOP3A and TOP3B) topoisomerases. In this Review, we discuss their biochemistry and their roles in transcription, DNA replication and chromatin remodelling, and highlight the recent progress made in understanding TOP3A and TOP3B. Because of recent advances in elucidating the high-order organization of the genome through chromatin loops and topologically associating domains (TADs), we integrate the functions of topoisomerases with genome organization. We also discuss the physiological and pathological formation of irreversible topoisomerase cleavage complexes (TOPccs) as they generate topoisomerase DNA–protein crosslinks (TOP-DPCs) coupled with DNA breaks. We discuss the expanding number of redundant pathways that repair TOP-DPCs, and the defects in those pathways, which are increasingly recognized as source of genomic damage leading to neurological diseases and cancer. Topoisomerases have essential roles in transcription, DNA replication, chromatin remodelling and, as recently revealed, 3D genome organization. However, topoisomerases also generate DNA–protein crosslinks coupled with DNA breaks, which are increasingly recognized as a source of disease-causing genomic damage.
Collapse
|
29
|
Palminha NM, Dos Santos Souza C, Griffin J, Liao C, Ferraiuolo L, El-Khamisy SF. Defective repair of topoisomerase I induced chromosomal damage in Huntington's disease. Cell Mol Life Sci 2022; 79:160. [PMID: 35224690 PMCID: PMC8882575 DOI: 10.1007/s00018-022-04204-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 02/06/2022] [Accepted: 02/08/2022] [Indexed: 11/30/2022]
Abstract
Topoisomerase1 (TOP1)-mediated chromosomal breaks are endogenous sources of DNA damage that affect neuronal genome stability. Whether TOP1 DNA breaks are sources of genomic instability in Huntington's disease (HD) is unknown. Here, we report defective 53BP1 recruitment in multiple HD cell models, including striatal neurons derived from HD patients. Defective 53BP1 recruitment is due to reduced H2A ubiquitination caused by the limited RNF168 activity. The reduced availability of RNF168 is caused by an increased interaction with p62, a protein involved in selective autophagy. Depletion of p62 or disruption of the interaction between RNAF168 and p62 was sufficient to restore 53BP1 enrichment and subsequent DNA repair in HD models, providing new opportunities for therapeutic interventions. These findings are reminiscent to what was described for p62 accumulation caused by C9orf72 expansion in ALS/FTD and suggest a common mechanism by which protein aggregation perturb DNA repair signaling.
Collapse
Affiliation(s)
- Nelma M Palminha
- School of Biosciences, Firth Court, Healthy Lifespan and Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Cleide Dos Santos Souza
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Jon Griffin
- School of Biosciences, Firth Court, Healthy Lifespan and Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Chunyan Liao
- School of Biosciences, Firth Court, Healthy Lifespan and Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Laura Ferraiuolo
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Sherif F El-Khamisy
- School of Biosciences, Firth Court, Healthy Lifespan and Neuroscience Institute, University of Sheffield, Sheffield, UK.
- Institute of Cancer Therapeutics, University of Bradford, Bradford, UK.
| |
Collapse
|
30
|
Caldecott KW, Ward ME, Nussenzweig A. The threat of programmed DNA damage to neuronal genome integrity and plasticity. Nat Genet 2022; 54:115-120. [PMID: 35145299 DOI: 10.1038/s41588-021-01001-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/09/2021] [Indexed: 02/08/2023]
Abstract
The neuronal genome is particularly sensitive to loss or attenuation of DNA repair, and many neurological diseases ensue when DNA repair is impaired. It is well-established that the neuronal genome is subjected to stochastic DNA damage, most likely because of extensive oxidative stress in the brain. However, recent studies have identified unexpected high levels of 'programmed' DNA breakage in neurons, which we propose arise during physiological DNA metabolic processes intrinsic to neuronal development, differentiation and maintenance. The role of programmed DNA breaks in normal neuronal physiology and disease remains relatively unexplored thus far. However, bulk and single-cell sequencing analyses of neurodegenerative diseases have revealed age-related somatic mutational signatures that are enriched in regulatory regions of the genome. Here, we explore a paradigm of DNA repair in neurons, in which the genome is safeguarded from erroneous impacts of programmed genome breakage intrinsic to normal neuronal function.
Collapse
Affiliation(s)
- Keith W Caldecott
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK.
| | - Michael E Ward
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA.
| | - André Nussenzweig
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA.
| |
Collapse
|
31
|
Peze-Heidsieck E, Bonnifet T, Znaidi R, Ravel-Godreuil C, Massiani-Beaudoin O, Joshi RL, Fuchs J. Retrotransposons as a Source of DNA Damage in Neurodegeneration. Front Aging Neurosci 2022; 13:786897. [PMID: 35058771 PMCID: PMC8764243 DOI: 10.3389/fnagi.2021.786897] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/30/2021] [Indexed: 01/09/2023] Open
Abstract
The etiology of aging-associated neurodegenerative diseases (NDs), such as Parkinson's disease (PD) and Alzheimer's disease (AD), still remains elusive and no curative treatment is available. Age is the major risk factor for PD and AD, but the molecular link between aging and neurodegeneration is not fully understood. Aging is defined by several hallmarks, some of which partially overlap with pathways implicated in NDs. Recent evidence suggests that aging-associated epigenetic alterations can lead to the derepression of the LINE-1 (Long Interspersed Element-1) family of transposable elements (TEs) and that this derepression might have important implications in the pathogenesis of NDs. Almost half of the human DNA is composed of repetitive sequences derived from TEs and TE mobility participated in shaping the mammalian genomes during evolution. Although most TEs are mutated and no longer mobile, more than 100 LINE-1 elements have retained their full coding potential in humans and are thus retrotransposition competent. Uncontrolled activation of TEs has now been reported in various models of neurodegeneration and in diseased human brain tissues. We will discuss in this review the potential contribution of LINE-1 elements in inducing DNA damage and genomic instability, which are emerging pathological features in NDs. TEs might represent an important molecular link between aging and neurodegeneration, and a potential target for urgently needed novel therapeutic disease-modifying interventions.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Julia Fuchs
- Center for Interdisciplinary Research in Biology (CIRB), CNRS, INSERM, Collège de France, Université PSL, Paris, France
| |
Collapse
|
32
|
Abstract
TEX264 (testes expressed gene 264) is a single-pass transmembrane protein, consisting of an N-terminal hydrophobic region, a gyrase inhibitory (GyrI)-like domain, and a loosely structured C terminus. TEX264 was first identified as an endoplasmic reticulum (ER)-resident Atg8-family-binding protein that mediates the degradation of portions of the ER during starvation (i.e., reticulophagy). More recently, TEX264 was identified as a cofactor of VCP/p97 ATPase that promotes the repair of covalently trapped TOP1 (DNA topoisomerase 1)-DNA crosslinks. This review summarizes the current knowledge of TEX264 as a protein with roles in both autophagy and DNA repair and provides an evolutionary and structural analysis of GyrI proteins. Based on our phylogenetic analysis, we provide evidence that TEX264 is a member of a large superfamily of GyrI-like proteins that evolved in bacteria and are present in metazoans, including invertebrates and chordates.Abbreviations: Atg8: autophagy related 8; Atg39: autophagy related 39; Cdc48: cell division cycle 48; CGAS: cyclic GMP-AMP synthase; DPC: DNA-protein crosslinks; DSB: DNA double-strand break; ER: endoplasmic reticulum; GyrI: gyrase inhibitory domain; LRR: leucine-rich repeat; MAFFT: multiple alignment using fast Fourier transform; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MTOR: mechanistic target of rapamycin kinase; STUBL: SUMO targeted ubiquitin ligase; SUMO: small ubiquitin-like modifier; TEX264: testis expressed gene 264; TOP1cc: topoisomerase 1-cleavage complex; UBZ: ubiquitin binding Zn finger domain; VCP: valosin containing protein.
Collapse
Affiliation(s)
- John Fielden
- Medical Research Council (MRC) Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Marta Popović
- Laboratory for Molecular Ecotoxicology, Division for Marine and Environmental Research, Ruđer Bošković Institute, Zagreb, Croatia
| | - Kristijan Ramadan
- Medical Research Council (MRC) Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
- CONTACT Kristijan Ramadan Medical Research Council (MRC) Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| |
Collapse
|
33
|
Bhattacharjee S, Rehman I, Nandy S, Das BB. Post-translational regulation of Tyrosyl-DNA phosphodiesterase (TDP1 and TDP2) for the repair of the trapped topoisomerase-DNA covalent complex. DNA Repair (Amst) 2022; 111:103277. [DOI: 10.1016/j.dnarep.2022.103277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/24/2021] [Accepted: 01/20/2022] [Indexed: 12/23/2022]
|
34
|
Aditi, Downing SM, Schreiner PA, Kwak YD, Li Y, Shaw TI, Russell HR, McKinnon PJ. Genome instability independent of type I interferon signaling drives neuropathology caused by impaired ribonucleotide excision repair. Neuron 2021; 109:3962-3979.e6. [PMID: 34655526 PMCID: PMC8686690 DOI: 10.1016/j.neuron.2021.09.040] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/22/2021] [Accepted: 09/20/2021] [Indexed: 12/25/2022]
Abstract
Aicardi-Goutières syndrome (AGS) is a monogenic type I interferonopathy characterized by neurodevelopmental defects and upregulation of type I interferon signaling and neuroinflammation. Mutations in genes that function in nucleic acid metabolism, including RNASEH2, are linked to AGS. Ribonuclease H2 (RNASEH2) is a genome surveillance factor critical for DNA integrity by removing ribonucleotides incorporated into replicating DNA. Here we show that RNASEH2 is necessary for neurogenesis and to avoid activation of interferon-responsive genes and neuroinflammation. Cerebellar defects after RNASEH2B inactivation are rescued by p53 but not cGAS deletion, suggesting that DNA damage signaling, not neuroinflammation, accounts for neuropathology. Coincident inactivation of Atm and Rnaseh2 further affected cerebellar development causing ataxia, which was dependent upon aberrant activation of non-homologous end-joining (NHEJ). The loss of ATM also markedly exacerbates cGAS-dependent type I interferon signaling. Thus, DNA damage-dependent signaling rather than type I interferon signaling underlies neurodegeneration in this class of neurodevelopmental/neuroinflammatory disease.
Collapse
Affiliation(s)
- Aditi
- Center for Pediatric Neurological Disease Research, St. Jude Pediatric Translational Neuroscience Initiative, Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Susanna M Downing
- Center for Pediatric Neurological Disease Research, St. Jude Pediatric Translational Neuroscience Initiative, Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Patrick A Schreiner
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Young Don Kwak
- Center for Pediatric Neurological Disease Research, St. Jude Pediatric Translational Neuroscience Initiative, Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yang Li
- Center for Pediatric Neurological Disease Research, St. Jude Pediatric Translational Neuroscience Initiative, Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Helen R Russell
- Center for Pediatric Neurological Disease Research, St. Jude Pediatric Translational Neuroscience Initiative, Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Peter J McKinnon
- Center for Pediatric Neurological Disease Research, St. Jude Pediatric Translational Neuroscience Initiative, Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA; St. Jude Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
35
|
Crewe M, Madabhushi R. Topoisomerase-Mediated DNA Damage in Neurological Disorders. Front Aging Neurosci 2021; 13:751742. [PMID: 34899270 PMCID: PMC8656403 DOI: 10.3389/fnagi.2021.751742] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/23/2021] [Indexed: 12/12/2022] Open
Abstract
The nervous system is vulnerable to genomic instability and mutations in DNA damage response factors lead to numerous developmental and progressive neurological disorders. Despite this, the sources and mechanisms of DNA damage that are most relevant to the development of neuronal dysfunction are poorly understood. The identification of primarily neurological abnormalities in patients with mutations in TDP1 and TDP2 suggest that topoisomerase-mediated DNA damage could be an important underlying source of neuronal dysfunction. Here we review the potential sources of topoisomerase-induced DNA damage in neurons, describe the cellular mechanisms that have evolved to repair such damage, and discuss the importance of these repair mechanisms for preventing neurological disorders.
Collapse
Affiliation(s)
| | - Ram Madabhushi
- Departments of Psychiatry, Neuroscience, and Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
36
|
Abstract
Topoisomerases are enzymes that play essential roles in DNA replication, transcription, chromosome segregation, and recombination. All cells have two major forms of DNA topoisomerases: type I enzymes, which make single-stranded cuts in DNA, and type II enzymes, which cut and decatenate double-stranded DNA. DNA topoisomerases are important targets of approved and experimental anti-cancer agents. Provided in this article are protocols to assess activities of topoisomerases and their inhibitors. Included are an assay for topoisomerase I activity based on relaxation of supercoiled DNA; an assay for topoisomerase II based on the decatenation of double-stranded DNA; and approaches for enriching and quantifying DNA-protein covalent complexes formed as obligatory intermediates in the reactions of type I and II topoisomerases with DNA; and assays for measuring DNA cleavage in vitro. Topoisomerases are not the only proteins that form covalent adducts with DNA in living cells, and the approaches described here are likely to find use in characterizing other protein-DNA adducts and exploring their utility as targets for therapy. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Assay of topoisomerase I activity Basic Protocol 2: Assay of topoisomerase II activity Basic Protocol 3: In vivo determination of topoisomerase covalent complexes using the in vivo complex of enzyme (ICE) assay Support Protocol 1: Preparation of mouse tissue for determination of topoisomerase covalent complexes using the ICE assay Support Protocol 2: Using recombinant topoisomerase standard for absolute quantification of cellular TOP2CC Basic Protocol 4: Quantification of topoisomerase-DNA covalent complexes by RADAR/ELISA: The rapid approach to DNA adduct recovery (RADAR) combined with the enzyme-linked immunosorbent assay (ELISA) Basic Protocol 5: Analysis of protein-DNA covalent complexes by RADAR/Western Support Protocol 3: Adduct-Seq to characterize adducted DNA Support Protocol 4: Nuclear fractionation and RNase treatment to reduce sample complexity Basic Protocol 6: Determination of DNA cleavage by purified topoisomerase I Basic Protocol 7: Determination of inhibitor effects on DNA cleavage by topoisomerase II using a plasmid linearization assay Alternate Protocol: Gel electrophoresis determination of topoisomerase II cleavage.
Collapse
Affiliation(s)
- John L Nitiss
- Pharmaceutical Sciences Department, University of Illinois College of Pharmacy, Rockford, Illinois
| | - Kostantin Kiianitsa
- Departments of Immunology and Biochemistry, University of Washington, Seattle, Washington
| | - Yilun Sun
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Karin C Nitiss
- Pharmaceutical Sciences Department, University of Illinois College of Pharmacy, Rockford, Illinois.,Biomedical Sciences Department, University of Illinois College of Medicine, Rockford, Illinois
| | - Nancy Maizels
- Departments of Immunology and Biochemistry, University of Washington, Seattle, Washington
| |
Collapse
|
37
|
Cellular functions of the protein kinase ATM and their relevance to human disease. Nat Rev Mol Cell Biol 2021; 22:796-814. [PMID: 34429537 DOI: 10.1038/s41580-021-00394-2] [Citation(s) in RCA: 148] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2021] [Indexed: 02/07/2023]
Abstract
The protein kinase ataxia telangiectasia mutated (ATM) is a master regulator of double-strand DNA break (DSB) signalling and stress responses. For three decades, ATM has been investigated extensively to elucidate its roles in the DNA damage response (DDR) and in the pathogenesis of ataxia telangiectasia (A-T), a human neurodegenerative disease caused by loss of ATM. Although hundreds of proteins have been identified as ATM phosphorylation targets and many important roles for this kinase have been identified, it is still unclear how ATM deficiency leads to the early-onset cerebellar degeneration that is common in all individuals with A-T. Recent studies suggest the existence of links between ATM deficiency and other cerebellum-specific neurological disorders, as well as the existence of broader similarities with more common neurodegenerative disorders. In this Review, we discuss recent structural insights into ATM regulation, and possible aetiologies of A-T phenotypes, including reactive oxygen species, mitochondrial dysfunction, alterations in transcription, R-loop metabolism and alternative splicing, defects in cellular proteostasis and metabolism, and potential pathogenic roles for hyper-poly(ADP-ribosyl)ation.
Collapse
|
38
|
Cristini A, Géraud M, Sordet O. Transcription-associated DNA breaks and cancer: A matter of DNA topology. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 364:195-240. [PMID: 34507784 DOI: 10.1016/bs.ircmb.2021.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Transcription is an essential cellular process but also a major threat to genome integrity. Transcription-associated DNA breaks are particularly detrimental as their defective repair can induce gene mutations and oncogenic chromosomal translocations, which are hallmarks of cancer. The past few years have revealed that transcriptional breaks mainly originate from DNA topological problems generated by the transcribing RNA polymerases. Defective removal of transcription-induced DNA torsional stress impacts on transcription itself and promotes secondary DNA structures, such as R-loops, which can induce DNA breaks and genome instability. Paradoxically, as they relax DNA during transcription, topoisomerase enzymes introduce DNA breaks that can also endanger genome integrity. Stabilization of topoisomerases on chromatin by various anticancer drugs or by DNA alterations, can interfere with transcription machinery and cause permanent DNA breaks and R-loops. Here, we review the role of transcription in mediating DNA breaks, and discuss how deregulation of topoisomerase activity can impact on transcription and DNA break formation, and its connection with cancer.
Collapse
Affiliation(s)
- Agnese Cristini
- Cancer Research Center of Toulouse, INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, Toulouse, France.
| | - Mathéa Géraud
- Cancer Research Center of Toulouse, INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, Toulouse, France
| | - Olivier Sordet
- Cancer Research Center of Toulouse, INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, Toulouse, France.
| |
Collapse
|
39
|
Komulainen E, Badman J, Rey S, Rulten S, Ju L, Fennell K, Kalasova I, Ilievova K, McKinnon PJ, Hanzlikova H, Staras K, Caldecott KW. Parp1 hyperactivity couples DNA breaks to aberrant neuronal calcium signalling and lethal seizures. EMBO Rep 2021; 22:e51851. [PMID: 33932076 PMCID: PMC8097344 DOI: 10.15252/embr.202051851] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 12/21/2022] Open
Abstract
Defects in DNA single-strand break repair (SSBR) are linked with neurological dysfunction but the underlying mechanisms remain poorly understood. Here, we show that hyperactivity of the DNA strand break sensor protein Parp1 in mice in which the central SSBR protein Xrcc1 is conditionally deleted (Xrcc1Nes-Cre ) results in lethal seizures and shortened lifespan. Using electrophysiological recording and synaptic imaging approaches, we demonstrate that aberrant Parp1 activation triggers seizure-like activity in Xrcc1-defective hippocampus ex vivo and deregulated presynaptic calcium signalling in isolated hippocampal neurons in vitro. Moreover, we show that these defects are prevented by Parp1 inhibition or deletion and, in the case of Parp1 deletion, that the lifespan of Xrcc1Nes-Cre mice is greatly extended. This is the first demonstration that lethal seizures can be triggered by aberrant Parp1 activity at unrepaired SSBs, highlighting PARP inhibition as a possible therapeutic approach in hereditary neurological disease.
Collapse
Affiliation(s)
- Emilia Komulainen
- Genome Damage and Stability CentreSchool of Life SciencesUniversity of SussexBrightonUK
| | - Jack Badman
- Genome Damage and Stability CentreSchool of Life SciencesUniversity of SussexBrightonUK
- Sussex NeuroscienceSchool of Life SciencesUniversity of SussexBrightonUK
| | - Stephanie Rey
- Sussex NeuroscienceSchool of Life SciencesUniversity of SussexBrightonUK
| | - Stuart Rulten
- Genome Damage and Stability CentreSchool of Life SciencesUniversity of SussexBrightonUK
| | - Limei Ju
- Genome Damage and Stability CentreSchool of Life SciencesUniversity of SussexBrightonUK
| | - Kate Fennell
- Sussex NeuroscienceSchool of Life SciencesUniversity of SussexBrightonUK
| | - Ilona Kalasova
- Department of Genome DynamicsInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Kristyna Ilievova
- Department of Genome DynamicsInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Peter J McKinnon
- Department of GeneticsSt Jude Children’s Research HospitalMemphisTNUSA
| | - Hana Hanzlikova
- Genome Damage and Stability CentreSchool of Life SciencesUniversity of SussexBrightonUK
- Department of Genome DynamicsInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Kevin Staras
- Sussex NeuroscienceSchool of Life SciencesUniversity of SussexBrightonUK
| | - Keith W Caldecott
- Genome Damage and Stability CentreSchool of Life SciencesUniversity of SussexBrightonUK
- Department of Genome DynamicsInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| |
Collapse
|
40
|
Lee JH, Ryu SW, Ender NA, Paull TT. Poly-ADP-ribosylation drives loss of protein homeostasis in ATM and Mre11 deficiency. Mol Cell 2021; 81:1515-1533.e5. [PMID: 33571423 PMCID: PMC8026623 DOI: 10.1016/j.molcel.2021.01.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 12/14/2020] [Accepted: 01/19/2021] [Indexed: 12/11/2022]
Abstract
Loss of the ataxia-telangiectasia mutated (ATM) kinase causes cerebellum-specific neurodegeneration in humans. We previously demonstrated that deficiency in ATM activation via oxidative stress generates insoluble protein aggregates in human cells, reminiscent of protein dysfunction in common neurodegenerative disorders. Here, we show that this process is driven by poly-ADP-ribose polymerases (PARPs) and that the insoluble protein species arise from intrinsically disordered proteins associating with PAR-associated genomic sites in ATM-deficient cells. The lesions implicated in this process are single-strand DNA breaks dependent on reactive oxygen species, transcription, and R-loops. Human cells expressing Mre11 A-T-like disorder mutants also show PARP-dependent aggregation identical to ATM deficiency. Lastly, analysis of A-T patient cerebellum samples shows widespread protein aggregation as well as loss of proteins known to be critical in human spinocerebellar ataxias that is not observed in neocortex tissues. These results provide a hypothesis accounting for loss of protein integrity and cerebellum function in A-T.
Collapse
Affiliation(s)
- Ji-Hoon Lee
- The University of Texas at Austin, Department of Molecular Biosciences, Austin, TX 78712, USA
| | - Seung W Ryu
- The University of Texas at Austin, Department of Molecular Biosciences, Austin, TX 78712, USA
| | - Nicolette A Ender
- The University of Texas at Austin, Department of Molecular Biosciences, Austin, TX 78712, USA
| | - Tanya T Paull
- The University of Texas at Austin, Department of Molecular Biosciences, Austin, TX 78712, USA.
| |
Collapse
|
41
|
Sensitivity of cells to ATR and CHK1 inhibitors requires hyperactivation of CDK2 rather than endogenous replication stress or ATM dysfunction. Sci Rep 2021; 11:7077. [PMID: 33782497 PMCID: PMC8007816 DOI: 10.1038/s41598-021-86490-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 03/15/2021] [Indexed: 12/19/2022] Open
Abstract
DNA damage activates cell cycle checkpoint proteins ATR and CHK1 to arrest cell cycle progression, providing time for repair and recovery. Consequently, inhibitors of ATR (ATRi) and CHK1 (CHK1i) enhance damage-induced cell death. Intriguingly, both CHK1i and ATRi alone elicit cytotoxicity in some cell lines. Sensitivity has been attributed to endogenous replications stress, but many more cell lines are sensitive to ATRi than CHK1i. Endogenous activation of the DNA damage response also did not correlate with drug sensitivity. Sensitivity correlated with the appearance of γH2AX, a marker of DNA damage, but without phosphorylation of mitotic markers, contradicting suggestions that the damage is due to premature mitosis. Sensitivity to ATRi has been associated with ATM mutations, but dysfunction in ATM signaling did not correlate with sensitivity. CHK1i and ATRi circumvent replication stress by reactivating stalled replicons, a process requiring a low threshold activity of CDK2. In contrast, γH2AX induced by single agent ATRi and CHK1i requires a high threshold activity CDK2. Hence, phosphorylation of different CDK2 substrates is required for cytotoxicity induced by replication stress plus ATRi/CHK1i as compared to their single agent activity. In summary, sensitivity to ATRi and CHK1i as single agents is elicited by premature hyper-activation of CDK2.
Collapse
|
42
|
Sinha A, Katyal S, Kauppinen TM. PARP-DNA trapping ability of PARP inhibitors jeopardizes astrocyte viability: Implications for CNS disease therapeutics. Neuropharmacology 2021; 187:108502. [PMID: 33631119 DOI: 10.1016/j.neuropharm.2021.108502] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/29/2021] [Accepted: 02/16/2021] [Indexed: 12/21/2022]
Abstract
There is emerging interest in the role of poly(ADP-ribose) polymerase-1 (PARP-1) in neurodegeneration and potential of its therapeutic targeting in neurodegenerative disorders. New generations of PARP inhibitors exhibit polypharmacological properties; they do not only block enzymatic activity with lower doses, but also alter how PARP-1 interacts with DNA. While these new inhibitors have proven useful in cancer therapy due to their ability to kill cancer cell, their use in neurodegenerative disorders has an opposite goal: cell protection. We hypothesize that newer generation PARP-1 inhibitors jeopardize the viability of dividing CNS cells by promoting DNA damage upon the PARP-DNA interaction. Using enriched murine astrocyte cultures, our study evaluates the effects of a variety of drugs known to inhibit PARP; talazoparib, olaparib, PJ34 and minocycline. Despite similar PARP enzymatic inhibiting activities, we show here that these drugs result in varied cell viability. Talazoparib and olaparib reduce astrocyte growth in a dose-dependent manner, while astrocytes remain unaffected by PJ34 and minocycline. Similarly, PJ34 and minocycline do not jeopardize DNA integrity, while treatment with talazoparib and olaparib promote DNA damage. These two drugs impact astrocytes similarly in basal conditions and upon nitrosative stress, a pathological condition typical for neurodegeneration. Mechanistic assessment revealed that talazoparib and olaparib promote PARP trapping onto DNA in a dose-dependent manner, while PJ34 and minocycline do not induce PARP-DNA trapping. This study provides unique insight into the selective use of PARP inhibitors to treat neurodegenerative disorders whereby inhibition of PARP enzymatic activity must occur without deleteriously trapping PARP onto DNA.
Collapse
Affiliation(s)
- Asha Sinha
- Department of Pharmacology & Therapeutics, Max Rady College of Medicine, University of Manitoba, 753 McDermot Avenue, Winnipeg, Manitoba, R3E 0T6, Canada; Research Institute in Oncology and Hematology, CancerCare Manitoba, 675 McDermot Ave, RM ON5010, Winnipeg, Manitoba, R3E0V9, Canada; Kleysen Institute for Advance Medicine, Health Sciences Centre, 710 William Avenue, Winnipeg, Manitoba, R3E 0Z3, Canada.
| | - Sachin Katyal
- Department of Pharmacology & Therapeutics, Max Rady College of Medicine, University of Manitoba, 753 McDermot Avenue, Winnipeg, Manitoba, R3E 0T6, Canada; Research Institute in Oncology and Hematology, CancerCare Manitoba, 675 McDermot Ave, RM ON5010, Winnipeg, Manitoba, R3E0V9, Canada.
| | - Tiina M Kauppinen
- Department of Pharmacology & Therapeutics, Max Rady College of Medicine, University of Manitoba, 753 McDermot Avenue, Winnipeg, Manitoba, R3E 0T6, Canada; Kleysen Institute for Advance Medicine, Health Sciences Centre, 710 William Avenue, Winnipeg, Manitoba, R3E 0Z3, Canada.
| |
Collapse
|
43
|
Statello L, Ali MM, Reischl S, Mahale S, Kosalai ST, Huarte M, Kanduri C. The DNA damage inducible lncRNA SCAT7 regulates genomic integrity and topoisomerase 1 turnover in lung adenocarcinoma. NAR Cancer 2021; 3:zcab002. [PMID: 34316698 PMCID: PMC8209975 DOI: 10.1093/narcan/zcab002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/26/2020] [Accepted: 01/06/2021] [Indexed: 12/15/2022] Open
Abstract
Despite the rapid improvements in unveiling the importance of lncRNAs in all aspects of cancer biology, there is still a void in mechanistic understanding of their role in the DNA damage response. Here we explored the potential role of the oncogenic lncRNA SCAT7 (ELF3-AS1) in the maintenance of genome integrity. We show that SCAT7 is upregulated in response to DNA-damaging drugs like cisplatin and camptothecin, where SCAT7 expression is required to promote cell survival. SCAT7 silencing leads to decreased proliferation of cisplatin-resistant cells in vitro and in vivo through interfering with cell cycle checkpoints and DNA repair molecular pathways. SCAT7 regulates ATR signaling, promoting homologous recombination. Importantly, SCAT7 also takes part in proteasome-mediated topoisomerase I (TOP1) degradation, and its depletion causes an accumulation of TOP1–cc structures responsible for the high levels of intrinsic DNA damage. Thus, our data demonstrate that SCAT7 is an important constituent of the DNA damage response pathway and serves as a potential therapeutic target for hard-to-treat drug resistant cancers.
Collapse
Affiliation(s)
- Luisa Statello
- Department of Medical Biochemistry and Cell Biology, The Sahlgrenska Academy, Institute of Biomedicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | - Mohamad M Ali
- Department of Medical Biochemistry and Cell Biology, The Sahlgrenska Academy, Institute of Biomedicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | - Silke Reischl
- Department of Medical Biochemistry and Cell Biology, The Sahlgrenska Academy, Institute of Biomedicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | - Sagar Mahale
- Department of Medical Biochemistry and Cell Biology, The Sahlgrenska Academy, Institute of Biomedicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | - Subazini Thankaswamy Kosalai
- Department of Medical Biochemistry and Cell Biology, The Sahlgrenska Academy, Institute of Biomedicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | - Maite Huarte
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research, University of Navarra, Pamplona 31008, Spain
| | - Chandrasekhar Kanduri
- Department of Medical Biochemistry and Cell Biology, The Sahlgrenska Academy, Institute of Biomedicine, University of Gothenburg, SE-40530 Gothenburg, Sweden
| |
Collapse
|
44
|
Saha S, Sun Y, Huang SYN, Baechler SA, Pongor LS, Agama K, Jo U, Zhang H, Tse-Dinh YC, Pommier Y. DNA and RNA Cleavage Complexes and Repair Pathway for TOP3B RNA- and DNA-Protein Crosslinks. Cell Rep 2020; 33:108569. [PMID: 33378676 PMCID: PMC7859927 DOI: 10.1016/j.celrep.2020.108569] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 11/20/2020] [Accepted: 12/07/2020] [Indexed: 12/31/2022] Open
Abstract
The present study demonstrates that topoisomerase 3B (TOP3B) forms both RNA and DNA cleavage complexes (TOP3Bccs) in vivo and reveals a pathway for repairing TOP3Bccs. For inducing and detecting cellular TOP3Bccs, we engineer a “self-trapping” mutant of TOP3B (R338W-TOP3B). Transfection with R338W-TOP3B induces R-loops, genomic damage, and growth defect, which highlights the importance of TOP3Bcc repair mechanisms. To determine how cells repair TOP3Bccs, we deplete tyrosyl-DNA phosphodiesterases (TDP1 and TDP2). TDP2-deficient cells show elevated TOP3Bccs both in DNA and RNA. Conversely, overexpression of TDP2 lowers cellular TOP3Bccs. Using recombinant human TDP2, we demonstrate that TDP2 can process both denatured and proteolyzed TOP3Bccs. We also show that cellular TOP3Bccs are ubiquitinated by the E3 ligase TRIM41 before undergoing proteasomal processing and excision by TDP2. Saha et al. introduce an approach to generate and detect the catalytic intermediates of TOP3B in DNA and RNA by engineering a self-poisoning enzyme, R338W-TOP3B. They reveal the cellular consequences of abortive TOP3Bcc formation and a repair pathway involving TRIM41, the proteasome, and TDP2 for processing of TOP3Bcc.
Collapse
Affiliation(s)
- Sourav Saha
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Yilun Sun
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Shar-Yin Naomi Huang
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Simone Andrea Baechler
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Lorinc Sandor Pongor
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Keli Agama
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Ukhyun Jo
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Hongliang Zhang
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Yuk-Ching Tse-Dinh
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA; Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Yves Pommier
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
45
|
Atkins A, Xu MJ, Li M, Rogers NP, Pryzhkova MV, Jordan PW. SMC5/6 is required for replication fork stability and faithful chromosome segregation during neurogenesis. eLife 2020; 9:e61171. [PMID: 33200984 PMCID: PMC7723410 DOI: 10.7554/elife.61171] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 11/16/2020] [Indexed: 12/21/2022] Open
Abstract
Mutations of SMC5/6 components cause developmental defects, including primary microcephaly. To model neurodevelopmental defects, we engineered a mouse wherein Smc5 is conditionally knocked out (cKO) in the developing neocortex. Smc5 cKO mice exhibited neurodevelopmental defects due to neural progenitor cell (NPC) apoptosis, which led to reduction in cortical layer neurons. Smc5 cKO NPCs formed DNA bridges during mitosis and underwent chromosome missegregation. SMC5/6 depletion triggers a CHEK2-p53 DNA damage response, as concomitant deletion of the Trp53 tumor suppressor or Chek2 DNA damage checkpoint kinase rescued Smc5 cKO neurodevelopmental defects. Further assessment using Smc5 cKO and auxin-inducible degron systems demonstrated that absence of SMC5/6 leads to DNA replication stress at late-replicating regions such as pericentromeric heterochromatin. In summary, SMC5/6 is important for completion of DNA replication prior to entering mitosis, which ensures accurate chromosome segregation. Thus, SMC5/6 functions are critical in highly proliferative stem cells during organism development.
Collapse
Affiliation(s)
- Alisa Atkins
- Biochemistry and Molecular Biology Department, Johns Hopkins University Bloomberg School of Public HealthBaltimoreUnited States
| | - Michelle J Xu
- Biochemistry and Molecular Biology Department, Johns Hopkins University Bloomberg School of Public HealthBaltimoreUnited States
| | - Maggie Li
- Biochemistry and Molecular Biology Department, Johns Hopkins University Bloomberg School of Public HealthBaltimoreUnited States
| | - Nathaniel P Rogers
- Biochemistry and Molecular Biology Department, Johns Hopkins University Bloomberg School of Public HealthBaltimoreUnited States
| | - Marina V Pryzhkova
- Biochemistry and Molecular Biology Department, Johns Hopkins University Bloomberg School of Public HealthBaltimoreUnited States
| | - Philip W Jordan
- Biochemistry and Molecular Biology Department, Johns Hopkins University Bloomberg School of Public HealthBaltimoreUnited States
| |
Collapse
|
46
|
Sinha A, Saleh A, Endersby R, Yuan SH, Chokshi CR, Brown KR, Kuzio B, Kauppinen T, Singh SK, Baker SJ, McKinnon PJ, Katyal S. RAD51-Mediated DNA Homologous Recombination Is Independent of PTEN Mutational Status. Cancers (Basel) 2020; 12:cancers12113178. [PMID: 33138032 PMCID: PMC7693555 DOI: 10.3390/cancers12113178] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 10/20/2020] [Indexed: 12/22/2022] Open
Abstract
Simple Summary PTEN is an important tumor suppressor that is frequently mutated in malignancy. PTEN mutational loss has been associated with reduced RAD51 expression and homologous recombination deficiency (HRD), however; recent studies have failed to recapitulate these findings. Here, we show that RAD51 expression, foci formation and homologous recombination repair activity are unaltered in normal and tumorigenic PTEN-deficient cells and patient samples. Furthermore, we show that PTEN-deficient tumor cell lines do not synergize with the clinical PARP inhibitor olaparib, underscoring a need to discontinue its use in treating patients with PTEN-deficient tumors that do not otherwise exhibit HRD. Abstract PTEN mutation occurs in a variety of aggressive cancers and is associated with poor patient outcomes. Recent studies have linked mutational loss of PTEN to reduced RAD51 expression and function, a key factor involved in the homologous recombination (HR) pathway. However, these studies remain controversial, as they fail to establish a definitive causal link to RAD51 expression that is PTEN-dependent, while other studies have not been able to recapitulate the relationship between the PTEN expression and the RAD51/HR function. Resolution of this apparent conundrum is essential due to the clinically-significant implication that PTEN-deficient tumors may be sensitive to poly (ADP-ribose) polymerase (PARP) inhibitors (PARPi) commonly used in the clinical management of BRCA-mutated and other HR-deficient (HRD) tumors. Methods: Primary Pten-deficient (and corresponding wild-type) mouse embryonic fibroblasts (MEFs) and astrocytes and PTEN-null human tumor cell lines and primary cells were assessed for RAD51 expression (via the Western blot analysis) and DNA damage repair analyses (via alkali comet and γH2AX foci assays). RAD51 foci analysis was used to measure HR-dependent DNA repair. Xrcc2-deficient MEFs served as an HR-deficient control, while the stable knockdown of RAD51 (shRAD51) served to control for the relative RAD51/HR-mediated repair and the phospho-53BP1 foci analysis served to confirm and measure non-homologous end joining (NHEJ) activity in PTEN-deficient and shRAD51-expressing (HRD) lines. Cell proliferation studies were used to measure any potential added sensitivity of PTEN-null cells to the clinically-relevant PARPi, olaparib. RAD51 levels and DNA damage response signaling were assessed in PTEN-mutant brain tumor initiating cells (BTICs) derived from primary and recurrent glioblastoma multiforme (GBM) patients, while expression of RAD51 and its paralogs were examined as a function of the PTEN status in the RNA expression datasets isolated from primary GBM tumor specimens and BTICs. Results: Pten knockout primary murine cells display unaltered RAD51 expression, endogenous and DNA strand break-induced RAD51 foci and robust DNA repair activity. Defective HR was only observed in the cells lacking Xrcc2. Likewise, human glioblastoma multiforme (GBM) cell lines with known PTEN deficiency (U87, PTEN-mutated; U251 and U373, PTEN-null) show apparent expression of RAD51 and display efficient DNA repair activity. Only GBM cells stably expressing shRNAs against RAD51 (shRAD51) display dysfunctional DNA repair activity and reduced proliferative capacity, which is exacerbated by PARPi treatment. Furthermore, GBM patient-derived BTICs displayed robust RAD51 expression and intact DNA damage response signaling in spite of PTEN-inactivating mutations. RNA expression analysis of primary GBM tissue specimens and BTICs demonstrate stable levels of RAD51 and its paralogs (RAD51B, RAD51C, RAD51D, XRCC2, XRCC3, and DMC1), regardless of the PTEN mutational status. Conclusions: Our findings demonstrate definitively that PTEN loss does not alter the RAD51 expression, its paralogs, or the HR activity. Furthermore, deficiency in PTEN alone is not sufficient to impart enhanced sensitivity to PARPi associated with HRD. This study is the first to unequivocally demonstrate that PTEN deficiency is not linked to the RAD51 expression or the HR activity amongst primary neural and non-neural Pten-null cells, PTEN-deficient tumor cell lines, and primary PTEN-mutant GBM patient-derived tissue specimens and BTICs.
Collapse
Affiliation(s)
- Asha Sinha
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB R3E 0T6, Canada; (A.S.); (A.S.); (S.H.Y.); (B.K.); (T.K.)
- Research Institute in Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Ali Saleh
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB R3E 0T6, Canada; (A.S.); (A.S.); (S.H.Y.); (B.K.); (T.K.)
- Research Institute in Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Raelene Endersby
- Telethon Kids Institute, Perth Children’s Hospital, 15 Hospital Avenue, Perth, WA 6009, Australia;
- Centre for Child Health Research, University of Western Australia, 15 Hospital Avenue, Perth, WA 6009, Australia
| | - Shek H. Yuan
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB R3E 0T6, Canada; (A.S.); (A.S.); (S.H.Y.); (B.K.); (T.K.)
- Research Institute in Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Chirayu R. Chokshi
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1200 Main Street West, Hamilton, ON L8S 4L8, Canada; (C.R.C.); (S.K.S.)
| | - Kevin R. Brown
- Donnelly Centre, University of Toronto, 160 College St, Toronto, ON M5S 3E1, Canada;
| | - Bozena Kuzio
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB R3E 0T6, Canada; (A.S.); (A.S.); (S.H.Y.); (B.K.); (T.K.)
- Research Institute in Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Tiina Kauppinen
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB R3E 0T6, Canada; (A.S.); (A.S.); (S.H.Y.); (B.K.); (T.K.)
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Health Sciences Centre, 710 William Avenue, Winnipeg, MB R3E 0Z3, Canada
| | - Sheila K. Singh
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1200 Main Street West, Hamilton, ON L8S 4L8, Canada; (C.R.C.); (S.K.S.)
- Department of Surgery, Faculty of Health Sciences, McMaster University, 1200 Main Street West, Hamilton, ON L8S 4L8, Canada
| | - Suzanne J. Baker
- Department of Developmental Neurobiology, St Jude Children’s Research Hospital, Memphis, TN 38105-3678, USA;
| | - Peter J. McKinnon
- Department of Genetics, St Jude Children’s Research Hospital, Memphis, TN 38105-3678, USA;
| | - Sachin Katyal
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB R3E 0T6, Canada; (A.S.); (A.S.); (S.H.Y.); (B.K.); (T.K.)
- Research Institute in Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada
- Correspondence: ; Tel.: +1-204-787-2765; Fax: +1-204-787-2190
| |
Collapse
|
47
|
Zagnoli-Vieira G, Caldecott KW. Untangling trapped topoisomerases with tyrosyl-DNA phosphodiesterases. DNA Repair (Amst) 2020; 94:102900. [PMID: 32653827 DOI: 10.1016/j.dnarep.2020.102900] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/14/2020] [Accepted: 06/14/2020] [Indexed: 02/08/2023]
Abstract
DNA topoisomerases alleviate the torsional stress that is generated by processes that are central to genome metabolism such as transcription and DNA replication. To do so, these enzymes generate an enzyme intermediate known as the cleavage complex in which the topoisomerase is covalently linked to the termini of a DNA single- or double-strand break. Whilst cleavage complexes are normally transient they can occasionally become abortive, creating protein-linked DNA breaks that threaten genome stability and cell survival; a process promoted and exploited in the cancer clinic by the use of topoisomerase 'poisons'. Here, we review the consequences to genome stability and human health of abortive topoisomerase-induced DNA breakage and the cellular pathways that cells have adopted to mitigate them, with particular focus on an important class of enzymes known as tyrosyl-DNA phosphodiesterases.
Collapse
Affiliation(s)
- Guido Zagnoli-Vieira
- Wellcome Trust Cancer Research UK Gurdon Institute, Tennis Court Road, Cambridge, CB2 1QN, UK.
| | - Keith W Caldecott
- Genome Damage Stability Centre, University of Sussex, Falmer Road, Brighton, BN1 9RQ, UK.
| |
Collapse
|
48
|
Amplification and overexpression of E2 ubiquitin conjugase UBE2T promotes homologous recombination in multiple myeloma. Blood Adv 2020; 3:3968-3972. [PMID: 31805191 DOI: 10.1182/bloodadvances.2019000181] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 09/25/2019] [Indexed: 12/31/2022] Open
Abstract
Key Points
UBE2T is frequently amplified and/or overexpressed and is required for homologous recombination activity in multiple myeloma cells. UBE2T is a potential therapeutic target to increase chemosensitivity in multiple myeloma cells.
Collapse
|
49
|
Cristini A, Ricci G, Britton S, Salimbeni S, Huang SYN, Marinello J, Calsou P, Pommier Y, Favre G, Capranico G, Gromak N, Sordet O. Dual Processing of R-Loops and Topoisomerase I Induces Transcription-Dependent DNA Double-Strand Breaks. Cell Rep 2020; 28:3167-3181.e6. [PMID: 31533039 DOI: 10.1016/j.celrep.2019.08.041] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 07/08/2019] [Accepted: 08/12/2019] [Indexed: 12/25/2022] Open
Abstract
Although accumulation of DNA damage and genomic instability in resting cells can cause neurodegenerative disorders, our understanding of how transcription produces DNA double-strand breaks (DSBs) is limited. Transcription-blocking topoisomerase I cleavage complexes (TOP1ccs) are frequent events that prime DSB production in non-replicating cells. Here, we report a mechanism of their formation by showing that they arise from two nearby single-strand breaks (SSBs) on opposing DNA strands: one SSB from the removal of transcription-blocking TOP1ccs by the TDP1 pathway and the other from the cleavage of R-loops by endonucleases, including XPF, XPG, and FEN1. Genetic defects in TOP1cc removal (TDP1, PNKP, and XRCC1) or in the resolution of R-loops (SETX) enhance DSB formation and prevent their repair. Such deficiencies cause neurological disorders. Owing to the high frequency of TOP1cc trapping and the widespread distribution of R-loops, these persistent transcriptional DSBs could accumulate over time in neuronal cells, contributing to the neurodegenerative diseases.
Collapse
Affiliation(s)
- Agnese Cristini
- Cancer Research Center of Toulouse, INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, 31037 Toulouse, France; Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Giulia Ricci
- Cancer Research Center of Toulouse, INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, 31037 Toulouse, France; Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Sébastien Britton
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Equipe Labellisée Ligue contre le Cancer 2018, 31077 Toulouse, France
| | - Simona Salimbeni
- Cancer Research Center of Toulouse, INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, 31037 Toulouse, France; Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Shar-Yin Naomi Huang
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Jessica Marinello
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Patrick Calsou
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Equipe Labellisée Ligue contre le Cancer 2018, 31077 Toulouse, France
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Gilles Favre
- Cancer Research Center of Toulouse, INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, 31037 Toulouse, France
| | - Giovanni Capranico
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Natalia Gromak
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| | - Olivier Sordet
- Cancer Research Center of Toulouse, INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, 31037 Toulouse, France.
| |
Collapse
|
50
|
Kalasova I, Hailstone R, Bublitz J, Bogantes J, Hofmann W, Leal A, Hanzlikova H, Caldecott KW. Pathological mutations in PNKP trigger defects in DNA single-strand break repair but not DNA double-strand break repair. Nucleic Acids Res 2020; 48:6672-6684. [PMID: 32504494 PMCID: PMC7337934 DOI: 10.1093/nar/gkaa489] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/30/2020] [Accepted: 06/04/2020] [Indexed: 12/20/2022] Open
Abstract
Hereditary mutations in polynucleotide kinase-phosphatase (PNKP) result in a spectrum of neurological pathologies ranging from neurodevelopmental dysfunction in microcephaly with early onset seizures (MCSZ) to neurodegeneration in ataxia oculomotor apraxia-4 (AOA4) and Charcot-Marie-Tooth disease (CMT2B2). Consistent with this, PNKP is implicated in the repair of both DNA single-strand breaks (SSBs) and DNA double-strand breaks (DSBs); lesions that can trigger neurodegeneration and neurodevelopmental dysfunction, respectively. Surprisingly, however, we did not detect a significant defect in DSB repair (DSBR) in primary fibroblasts from PNKP patients spanning the spectrum of PNKP-mutated pathologies. In contrast, the rate of SSB repair (SSBR) is markedly reduced. Moreover, we show that the restoration of SSBR in patient fibroblasts collectively requires both the DNA kinase and DNA phosphatase activities of PNKP, and the fork-head associated (FHA) domain that interacts with the SSBR protein, XRCC1. Notably, however, the two enzymatic activities of PNKP appear to affect different aspects of disease pathology, with reduced DNA phosphatase activity correlating with neurodevelopmental dysfunction and reduced DNA kinase activity correlating with neurodegeneration. In summary, these data implicate reduced rates of SSBR, not DSBR, as the source of both neurodevelopmental and neurodegenerative pathology in PNKP-mutated disease, and the extent and nature of this reduction as the primary determinant of disease severity.
Collapse
Affiliation(s)
- Ilona Kalasova
- Department of Genome Dynamics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague 4, 142 20, Czech Republic
| | - Richard Hailstone
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| | - Janin Bublitz
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Jovel Bogantes
- Servicio de Cirugía Reconstructiva, Hospital Rafael Ángel Calderón Guardia, Caja Costarricense de Seguro Social, San José, Costa Rica
| | - Winfried Hofmann
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Alejandro Leal
- Section of Genetics and Biotechnology, School of Biology, University of Costa Rica, San José, Costa Rica
| | - Hana Hanzlikova
- Department of Genome Dynamics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague 4, 142 20, Czech Republic.,Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| | - Keith W Caldecott
- Department of Genome Dynamics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague 4, 142 20, Czech Republic.,Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| |
Collapse
|