1
|
Imamura T, Wasilczuk AZ, Reitz SL, Lian J, Imamura M, Keenan BT, Shimizu N, Pack AI, Kelz MB. Parafacial GABAergic neurone ablation induces behavioural resistance to volatile anaesthetic-induced hypnosis without reducing sleep. Br J Anaesth 2025; 134:1696-1708. [PMID: 40240218 PMCID: PMC12106870 DOI: 10.1016/j.bja.2025.02.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 02/13/2025] [Accepted: 02/18/2025] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND It is hypothesised that general anaesthetics co-opt the neural circuits regulating endogenous sleep and wakefulness to produce hypnosis. To further probe this association, we focused on the GABAergic neurones of the parafacial zone (PZGABA), a brainstem site capable of promoting non-rapid eye movement sleep. METHODS To determine whether PZ neurones are activated by a hypnotic dose of anaesthetics, c-Fos immunohistochemistry was performed. The behavioural and physiological contributions of PZGABA neurones to anaesthetic sensitivity were assessed in mice transfected with an adeno-associated virus (AAV)-driving expression of an mCherry fluorescent control or a caspase that irreversibly eliminates PZGABA neurones. EEG-defined sleep was measured in PZGABA-ablated and mCherry control mice, as was the homeostatic drive to sleep after sleep deprivation. RESULTS Consistent with anaesthetic-induced depolarisation, hypnotic doses of isoflurane significantly increased c-Fos expression three-fold in PZGABA neurones compared with oxygen-exposed mice. PZGABA-ablated mice developed significant and durable behavioural resistance to both isoflurane- and sevoflurane-induced hypnosis, with roughly 50% higher likelihood of intact righting than controls. PZGABA-ablated mice emerged from isoflurane significantly faster than mCherry controls with purposeful movements. The degree of anaesthetic resistance was inversely correlated with the number of surviving PZGABA neurones. Despite confirming that PZGABA ablation reduced the potency of two distinct volatile anaesthetics behaviourally, ablation did not alter the amount of endogenous sleep or wakefulness, nor did it affect the homeostatic sleep drive after sleep deprivation, and it did not produce EEG signatures of anaesthetic resistance during isoflurane exposure. CONCLUSIONS There was an unexpected dissociation in which destruction of up to 70-80% of PZGABA neurones was sufficient to alter anaesthetic susceptibility behaviourally without causing insomnia or altering sleep pressure. These findings suggest that PZGABA neurones are more critical to drug-induced hypnosis than to the regulation of natural sleep and arousal.
Collapse
Affiliation(s)
- Toshihiro Imamura
- Chronobiology and Sleep Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Division of Pulmonary and Sleep Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Division of Sleep Medicine, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Neuroscience of Unconsciousness and Reanimation Research Alliance, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Andrzej Z Wasilczuk
- Neuroscience of Unconsciousness and Reanimation Research Alliance, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Department of Anesthesiology and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sarah L Reitz
- Neuroscience of Unconsciousness and Reanimation Research Alliance, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Department of Anesthesiology and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jie Lian
- Division of Sleep Medicine, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Miyoko Imamura
- Division of Sleep Medicine, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Brendan T Keenan
- Chronobiology and Sleep Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Division of Sleep Medicine, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Naoki Shimizu
- Department of Pediatrics, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Allan I Pack
- Chronobiology and Sleep Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Division of Sleep Medicine, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Max B Kelz
- Chronobiology and Sleep Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Neuroscience of Unconsciousness and Reanimation Research Alliance, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Department of Anesthesiology and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Langlais VC, Mountadem S, Benazzouz I, Amadio A, Matos M, Jourdes A, Cannich A, Julio-Kalajzic F, Belluomo I, Matias I, Maitre M, Lesté-Lasserre T, Marais S, Avignone E, Marsicano G, Bellocchio L, Oliet SHR, Panatier A. Astrocytic EphB3 receptors regulate d-serine-gated synaptic plasticity and memory. Prog Neurobiol 2025; 248:102747. [PMID: 40081519 DOI: 10.1016/j.pneurobio.2025.102747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/04/2025] [Accepted: 03/06/2025] [Indexed: 03/16/2025]
Abstract
The activation of classical NMDA receptors (NMDARs) requires the binding of a co-agonist in addition to glutamate. Whereas astrocytic-derived d-serine was shown to play such a role at CA3-CA1 hippocampal synapses, the exact mechanism by which neurons interact with neighboring astrocytes to regulate synaptic d-serine availability remains to be fully elucidated. Considering the close anatomical apposition of astrocytic and neuronal elements at synapses, the aforementioned process is likely to involve cells adhesion molecules. One very likely candidate could be the astrocytic EphB3 receptor and its neuronal partner, ephrinB3. Here, we first showed in acute hippocampal slices from adult mice that stimulation of EphB3 receptors with exogenous ephrinB3 increased d-serine availability at CA3-CA1 synapses, resulting in an increased NMDAR activity. Conversely, inhibiting endogenous EphB3 receptors caused an impairment of both synaptic NMDAR activity and NMDAR-dependent long-term synaptic potentiation (LTP), effects that could be rescued by exogenous d-serine. Most interestingly, knocking down EphB3 receptors specifically in astrocytes yielded a similar impairment in hippocampal plasticity and, most importantly, caused a deficit in novel object recognition memory. Altogether, our data thus indicate that EphB3 receptors in hippocampal astrocytes play a key role in regulating synaptic NMDAR function, activity-dependent plasticity and memory.
Collapse
Affiliation(s)
| | - Sarah Mountadem
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, Bordeaux F-33000, France
| | - Ines Benazzouz
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, Bordeaux F-33000, France
| | - Aurélie Amadio
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, Bordeaux F-33000, France
| | - Marco Matos
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, Bordeaux F-33000, France
| | - Aurélie Jourdes
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, Bordeaux F-33000, France
| | - Astrid Cannich
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, Bordeaux F-33000, France
| | - Francisca Julio-Kalajzic
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, Bordeaux F-33000, France; Univ. Bordeaux, CNRS, INSERM, BIC, US4, UAR 3420, Bordeaux F-33000, France; Lead contact, France
| | - Ilaria Belluomo
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, Bordeaux F-33000, France
| | - Isabelle Matias
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, Bordeaux F-33000, France
| | - Marlène Maitre
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, Bordeaux F-33000, France
| | | | - Sébastien Marais
- Univ. Bordeaux, CNRS, INSERM, BIC, US4, UAR 3420, Bordeaux F-33000, France
| | - Elena Avignone
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, Bordeaux F-33000, France
| | - Giovanni Marsicano
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, Bordeaux F-33000, France
| | - Luigi Bellocchio
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, Bordeaux F-33000, France
| | | | - Aude Panatier
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, Bordeaux F-33000, France; Lead contact, France.
| |
Collapse
|
3
|
Kourosh-Arami M, Ramezani M, Komaki A. The interaction between orexin, sleep deprivation and Alzheimer's disease: Unveiling an Emerging Connection. J Physiol Sci 2025; 75:100004. [PMID: 39823966 PMCID: PMC11979663 DOI: 10.1016/j.jphyss.2024.100004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/17/2024] [Accepted: 12/30/2024] [Indexed: 01/20/2025]
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disorder characterized by progressive cognitive decline and memory loss. Sleep-wake disorders are an extremely predominant and often disabling aspect of AD. Ox is vital in maintaining the sleep-wake cycle and promoting wakefulness. Dysfunction of Ox signaling has been associated with sleep disorders such as narcolepsy. In AD patients, the increase in cerebrospinal fluid Ox levels is related to parallel sleep deterioration. The relationship between AD and sleep disturbances has gained increasing attention due to their potential bidirectional influence. Disruptions in sleep patterns are commonly observed in AD patients, leading researchers to investigate the possible involvement of Ox in sleep disturbances characteristic of the disease. This review article explores the role of the Ox system in AD, and the intricate relationship between AD and sleep, highlighting the potential mechanisms, impact on disease pathology, and therapeutic interventions to improve sleep quality in affected individuals.
Collapse
Affiliation(s)
- Masoumeh Kourosh-Arami
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Mahdi Ramezani
- Department of Anatomy, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
4
|
Tang B, Tang J, Huang Y. Dexmedetomidine Reduces Presynaptic γ-Aminobutyric Acid Release and Prolongs Postsynaptic Responses in Layer 5 Pyramidal Neurons in the Primary Somatosensory Cortex of Mice. Int J Mol Sci 2025; 26:1931. [PMID: 40076557 PMCID: PMC11900034 DOI: 10.3390/ijms26051931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/18/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
Dexmedetomidine (DEX) exhibits notable sedative, analgesic, and anesthetic-sparing properties. While growing evidence suggests these effects are linked to the modulation of γ-aminobutyric acid (GABA) system, the precise pre- and postsynaptic mechanisms of DEX action on cortical GABAergic signaling remain unclear. In this study, we applied whole-cell patch-clamp recording to investigate the impact of DEX on GABAergic transmission in layer 5 pyramidal neurons of the mouse primary somatosensory cortex. We recorded spontaneous inhibitory postsynaptic currents (sIPSCs), miniature IPSCs (mIPSCs), and evoked inhibitory postsynaptic potentials (eIPSPs) before and during DEX application. Our findings demonstrated that DEX reduced activity-dependent spontaneous GABAergic transmission, as evidenced by a decrease in sIPSC frequency, while mIPSC frequency was unaffected. eIPSPs were not significantly influenced by DEX either. Additionally, DEX prolonged the kinetics of both sIPSCs and mIPSCs, increasing the rise and decay times of sIPSCs and the decay time of mIPSCs. We proposed that DEX modulated cortical neuronal activity by limiting GABA release and altering GABAA receptor kinetics. Collectively, these results indicated that DEX modulated cortical GABAergic signaling at both presynaptic and postsynaptic sites, which likely underlined its sedative, analgesic, and anesthetic-sparing effects.
Collapse
Affiliation(s)
| | - Jiali Tang
- Department of Anesthesiology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China;
| | - Yuguang Huang
- Department of Anesthesiology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China;
| |
Collapse
|
5
|
Silverman D, Chen C, Chang S, Bui L, Zhang Y, Raghavan R, Jiang A, Le A, Darmohray D, Sima J, Ding X, Li B, Ma C, Dan Y. Activation of locus coeruleus noradrenergic neurons rapidly drives homeostatic sleep pressure. SCIENCE ADVANCES 2025; 11:eadq0651. [PMID: 39823324 PMCID: PMC11740930 DOI: 10.1126/sciadv.adq0651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 12/17/2024] [Indexed: 01/19/2025]
Abstract
Homeostatic sleep regulation is essential for optimizing the amount and timing of sleep for its revitalizing function, but the mechanism underlying sleep homeostasis remains poorly understood. Here, we show that optogenetic activation of locus coeruleus (LC) noradrenergic neurons immediately increased sleep propensity following a transient wakefulness, contrasting with many other arousal-promoting neurons whose activation induces sustained wakefulness. Fiber photometry showed that repeated optogenetic or sensory stimulation caused a rapid reduction of calcium activity in LC neurons and steep declines in noradrenaline/norepinephrine (NE) release in both the LC and medial prefrontal cortex (mPFC). Knockdown of α2A adrenergic receptors in LC neurons mitigated the decline of NE release induced by repetitive stimulation and extended wakefulness, demonstrating an important role of α2A receptor-mediated auto-suppression of NE release. Together, these results suggest that functional fatigue of LC noradrenergic neurons, which reduces their wake-promoting capacity, contributes to sleep pressure.
Collapse
Affiliation(s)
- Daniel Silverman
- Department of Neuroscience, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Changwan Chen
- Department of Neuroscience, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Shuang Chang
- Department of Neuroscience, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | | | - Rishi Raghavan
- Department of Neuroscience, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Anna Jiang
- Department of Neuroscience, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - April Le
- Department of Neuroscience, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Dana Darmohray
- Department of Neuroscience, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jiao Sima
- Department of Neuroscience, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Xinlu Ding
- Department of Neuroscience, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | | | - Yang Dan
- Department of Neuroscience, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
6
|
Zhang Y, Wang W, Li J, Zhao D, Shu Y, Jia X, Wang Y, Cheng X, Wang L, Cheng J. Dexmedetomidine accelerates photoentrainment and affects sleep structure through the activation of SCN VIP neurons. Commun Biol 2024; 7:1707. [PMID: 39730868 DOI: 10.1038/s42003-024-07430-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 12/19/2024] [Indexed: 12/29/2024] Open
Abstract
Dexmedetomidine (DexM), a highly selective α2-adrenoceptor agonist, significantly reduces postoperative adverse effects, including sleep and circadian rhythm disruptions. Vasoactive intestinal peptide neurons in the suprachiasmatic nucleus (SCNVIP) regulate the synchronization of circadian rhythms with the external environment in mammals. We investigate the effects of DexM on sleep and circadian rhythms, as well as the underlying mechanisms. Using electrophysiological and chemogenetic methods, along with locomotor activity and electroencephalogram/electromyogram recordings, we found that DexM accelerates the rate of re-entrainment following an 8-hour phase advance in the 12-hour light:12-hour dark cycle, increases the amount of non-rapid eye movement sleep, and decreases the mean duration of rapid eye movement sleep. Chemogenetic inhibition of SCNVIP neurons hinders the acceleration of re-entrainment and the changes in the sleep-wakefulness cycle induced by DexM. Electrophysiological results show that DexM increases the firing rate and the frequency of spontaneous glutamatergic postsynaptic currents while decreasing the frequency of spontaneous GABAergic PSCs in SCNVIP neurons through the α2-adrenergic receptor. Additionally, DexM reduces the frequency of miniature GABAergic PSCs in SCNVIP neurons. In conclusion, these findings suggest that DexM promotes sleep and maintains the coordination of circadian rhythms with the external environment by activating SCNVIP neurons through the α2-adrenoceptor.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Wei Wang
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Jiaxin Li
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Dongmei Zhao
- Department of Infectious Disease, First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Yue Shu
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Xinlu Jia
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Yibo Wang
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Xinqi Cheng
- Department of Anesthesiology, First Affiliated Hospital of Anhui Medical University, Hefei, 230032, Anhui, China.
| | - Liecheng Wang
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China.
- College of Stomatology, Anhui Medical University, Hefei, 230032, Anhui, China.
| | - Juan Cheng
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China.
| |
Collapse
|
7
|
Wilmot JH, Warren TL, Diniz CRAF, Carda D, Lafreniere MM, Nord AS, Wiltgen BJ. Abnormal c-Fos expression in TetTag mice containing fos-EGFP. Front Behav Neurosci 2024; 18:1500794. [PMID: 39741565 PMCID: PMC11685221 DOI: 10.3389/fnbeh.2024.1500794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/05/2024] [Indexed: 01/03/2025] Open
Abstract
Molecular and genetic techniques now allow selective tagging and manipulation of the population of neurons, often referred to as "engram cells," that were active during a specific experience. One common approach to labeling these cells is to use the fos-tTA transgenic mouse (TetTag). In addition to tagging cells active during learning, it is common to examine the reactivation of these cells using immediate early gene (IEG) expression as an index of neural activity. There are currently multiple TetTag lines available. The original line, cryopreserved at MMRRC, contains only the fos-tTA transgene, while Jackson Labs provides a version of the mouse that expresses both the fos-tTA and fos-shEGFP genes. In the current experiments, we examined IEG expression in these two mouse lines. Unexpectedly, we found that Jackson fos-tTA/fos-shEGFP mice express increased levels of c-Fos in the hippocampus compared to wild type animals when examined with immunohistochemistry (IHC). The expression of other IEGs, such as Arc and Egr-1, was not elevated in these mice, suggesting that the overexpression of c-Fos is not the result of increased excitability or broad changes in gene expression. qPCR revealed that Jackson fos-tTA/fos-shEGFP mice express mRNA corresponding to a c-Fos-Exon1-GFP fusion molecule, which may bind to C-Fos antibodies during IHC and inflate apparent c-Fos expression. Jackson fos-tTA/fos-shEGFP mice did not differ from their wild-type counterparts in fear expression or memory, indicating no behavioral effect of the presence of a c-Fos-GFP fusion protein. These results identify a major limitation inherent in the use of Jackson fos-tTA/fos-shEGFP mice.
Collapse
Affiliation(s)
- Jacob H. Wilmot
- Department of Psychology, University of California, Davis, Davis, CA, United States
- Center for Neuroscience, University of California, Davis, Davis, CA, United States
| | - Tracy L. Warren
- Center for Neuroscience, University of California, Davis, Davis, CA, United States
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, CA, United States
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, Davis, CA, United States
| | | | - Deger Carda
- Department of Psychology, University of California, Davis, Davis, CA, United States
- Center for Neuroscience, University of California, Davis, Davis, CA, United States
| | | | - Alex S. Nord
- Center for Neuroscience, University of California, Davis, Davis, CA, United States
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, CA, United States
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, Davis, CA, United States
| | - Brian J. Wiltgen
- Department of Psychology, University of California, Davis, Davis, CA, United States
- Center for Neuroscience, University of California, Davis, Davis, CA, United States
| |
Collapse
|
8
|
Hu Y, Wang Y, Zhang L, Luo M, Wang Y. Neural Network Mechanisms Underlying General Anesthesia: Cortical and Subcortical Nuclei. Neurosci Bull 2024; 40:1995-2011. [PMID: 39168960 PMCID: PMC11625048 DOI: 10.1007/s12264-024-01286-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/10/2024] [Indexed: 08/23/2024] Open
Abstract
General anesthesia plays a significant role in modern medicine. However, the precise mechanism of general anesthesia remains unclear, posing a key scientific challenge in anesthesiology. Advances in neuroscience techniques have enabled targeted manipulation of specific neural circuits and the capture of brain-wide neural activity at high resolution. These advances hold promise for elucidating the intricate mechanisms of action of general anesthetics. This review aims to summarize our current understanding of the role of cortical and subcortical nuclei in modulating general anesthesia, providing new evidence of cortico-cortical and thalamocortical networks in relation to anesthesia and consciousness. These insights contribute to a comprehensive understanding of the neural network mechanisms underlying general anesthesia.
Collapse
Affiliation(s)
- Yue Hu
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yun Wang
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Lingjing Zhang
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Mengqiang Luo
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| | - Yingwei Wang
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
9
|
Rao AG, Nashwan AJ. Cognitive clarity in colon surgery: The dexmedetomidine advantage. World J Gastrointest Surg 2024; 16:3629-3631. [PMID: 39649203 PMCID: PMC11622082 DOI: 10.4240/wjgs.v16.i11.3629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 10/30/2024] Open
Abstract
Colon cancer is one of the most prevalent cancers globally, especially in the older age group. A large number of older patients undergoing surgery for colon cancer suffer from postoperative cognitive dysfunction (POCD). The trial by Bu et al demonstrated that dexmedetomidine (Dex) significantly reduced the incidence of POCD compared to placebo in individuals undergoing colon cancer surgery. Additionally, better cerebral oxygenation and lower cerebral injury markers were reported with the use of Dex. The trial has some limitations, such as a single-center design and a smaller sample size, and further studies with larger patient populations and robust multi-center designs are warranted to establish these findings.
Collapse
Affiliation(s)
- Asad G Rao
- Department of Clinical Medicine, Dow Medical College, Karachi 74200, Pakistan
| | - Abdulqadir J Nashwan
- Department of Nursing and Midwifery Research, Hamad Medical Corporation, Doha 3050, Qatar
| |
Collapse
|
10
|
Fotiadis P, McKinstry-Wu AR, Weinstein SM, Cook PA, Elliott M, Cieslak M, Duda JT, Satterthwaite TD, Shinohara RT, Proekt A, Kelz MB, Detre JA, Bassett DS. Changes in brain connectivity and neurovascular dynamics during dexmedetomidine-induced loss of consciousness. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.04.616650. [PMID: 39416182 PMCID: PMC11482825 DOI: 10.1101/2024.10.04.616650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Understanding the neurophysiological changes that occur during loss and recovery of consciousness is a fundamental aim in neuroscience and has marked clinical relevance. Here, we utilize multimodal magnetic resonance neuroimaging to investigate changes in regional network connectivity and neurovascular dynamics as the brain transitions from wakefulness to dexmedetomidine-induced unconsciousness, and finally into early-stage recovery of consciousness. We observed widespread decreases in functional connectivity strength across the whole brain, and targeted increases in structure-function coupling (SFC) across select networks-especially the cerebellum-as individuals transitioned from wakefulness to hypnosis. We also observed robust decreases in cerebral blood flow (CBF) across the whole brain-especially within the brainstem, thalamus, and cerebellum. Moreover, hypnosis was characterized by significant increases in the amplitude of low-frequency fluctuations (ALFF) of the resting-state blood oxygen level-dependent signal, localized within visual and somatomotor regions. Critically, when transitioning from hypnosis to the early stages of recovery, functional connectivity strength and SFC-but not CBF-started reverting towards their awake levels, even before behavioral arousal. By further testing for a relationship between connectivity and neurovascular alterations, we observed that during wakefulness, brain regions with higher ALFF displayed lower functional connectivity with the rest of the brain. During hypnosis, brain regions with higher ALFF displayed weaker coupling between structural and functional connectivity. Correspondingly, brain regions with stronger functional connectivity strength during wakefulness showed greater reductions in CBF with the onset of hypnosis. Earlier recovery of consciousness was associated with higher baseline (awake) levels of functional connectivity strength, CBF, and ALFF, as well as female sex. Across our findings, we also highlight the role of the cerebellum as a recurrent marker of connectivity and neurovascular changes between states of consciousness. Collectively, these results demonstrate that induction of, and emergence from dexmedetomidine-induced unconsciousness are characterized by widespread changes in connectivity and neurovascular dynamics.
Collapse
Affiliation(s)
- Panagiotis Fotiadis
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA
| | - Andrew R. McKinstry-Wu
- Department of Anesthesiology & Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sarah M. Weinstein
- Department of Epidemiology and Biostatistics, Temple University College of Public Health, Philadelphia, PA, USA
| | - Philip A. Cook
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mark Elliott
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Matthew Cieslak
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Jeffrey T. Duda
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Theodore D. Satterthwaite
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA, USA
- Center for Biomedical Image Computing & Analytics, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Russell T. Shinohara
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA, USA
- Center for Biomedical Image Computing & Analytics, University of Pennsylvania, Philadelphia, PA, USA
| | - Alexander Proekt
- Department of Anesthesiology & Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Max B. Kelz
- Department of Anesthesiology & Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John A. Detre
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Dani S. Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Electrical & Systems Engineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Santa Fe Institute, Santa Fe, NM, USA
| |
Collapse
|
11
|
Zhang Y, Li J, Li Y, Wang W, Wang D, Ding J, Wang L, Cheng J. Dexmedetomidine Promotes NREM Sleep by Depressing Oxytocin Neurons in the Paraventricular Nucleus in Mice. Neurochem Res 2024; 49:2926-2939. [PMID: 39078522 DOI: 10.1007/s11064-024-04221-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 07/31/2024]
Abstract
Dexmedetomidine (DEX) is a highly selective α2-adrenoceptor agonist with sedative effects on sleep homeostasis. Oxytocin-expressing (OXT) neurons in the paraventricular nucleus (PVN) of the hypothalamus (PVNOXT) regulate sexual reproduction, drinking, sleep-wakefulness, and other instinctive behaviors. To investigate the effect of DEX on the activity and signal transmission of PVNOXT in regulating the sleep-wakefulness cycle. Here, we employed OXT-cre mice to selectively target and express the designer receptors exclusively activated by designer drugs (DREADD)-based chemogenetic tool hM3D(Gq) in PVNOXT neurons. Combining chemogenetic methods with electroencephalogram (EEG) /electromyogram (EMG) recordings, we found that cannula injection of DEX in PVN significantly increased the duration of non-rapid eye movement (NREM) sleep in mice. Furthermore, the chemogenetic activation of PVNOXT neurons using i.p. injection of clozapine N-oxide (CNO) after cannula injection of DEX to PVN led to a substantial increase in wakefulness. Electrophysiological results showed that DEX decreased the frequency of action potential (AP) and the spontaneous excitatory postsynaptic current (sEPSC) of PVNOXT neurons through α2-adrenoceptors. Therefore, these results identify that DEX promotes sleep and maintains sleep homeostasis by inhibiting PVNOXT neurons through the α2-adrenoceptor.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Jiaxin Li
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Yan Li
- Department of Pharmacy, Linquan People's Hospital, Linquan, 236400, Anhui, China
| | - Wei Wang
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Daming Wang
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230032, Anhui, China
| | - Junli Ding
- Department of Pediatrics, First Affiliated Hospital of Anhui Medical University, Hefei, 230032, Anhui, China
| | - Licheng Wang
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China.
- College of Stomatology, Anhui Medical University, Hefei, 230032, Anhui, China.
| | - Juan Cheng
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China.
| |
Collapse
|
12
|
Kupke J, Klimmt J, Mudlaff F, Schwab M, Lutsik P, Plass C, Sticht C, Oliveira AMM. Dnmt3a1 regulates hippocampus-dependent memory via the downstream target Nrp1. Neuropsychopharmacology 2024; 49:1528-1539. [PMID: 38499720 PMCID: PMC11319347 DOI: 10.1038/s41386-024-01843-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/04/2024] [Accepted: 03/04/2024] [Indexed: 03/20/2024]
Abstract
Epigenetic factors are well-established players in memory formation. Specifically, DNA methylation is necessary for the formation of long-term memory in multiple brain regions including the hippocampus. Despite the demonstrated role of DNA methyltransferases (Dnmts) in memory formation, it is unclear whether individual Dnmts have unique or redundant functions in long-term memory formation. Furthermore, the downstream processes controlled by Dnmts during memory consolidation have not been investigated. In this study, we demonstrated that Dnmt3a1, the predominant Dnmt in the adult brain, is required for long-term spatial object recognition and contextual fear memory. Using RNA sequencing, we identified an activity-regulated Dnmt3a1-dependent genomic program in which several genes were associated with functional and structural plasticity. Furthermore, we found that some of the identified genes are selectively dependent on Dnmt3a1, but not its isoform Dnmt3a2. Specifically, we identified Neuropilin 1 (Nrp1) as a downstream target of Dnmt3a1 and further demonstrated the involvement of Nrp1 in hippocampus-dependent memory formation. Importantly, we found that Dnmt3a1 regulates hippocampus-dependent memory via Nrp1. In contrast, Nrp1 overexpression did not rescue memory impairments triggered by reduced Dnmt3a2 levels. Taken together, our study uncovered a Dnmt3a-isoform-specific mechanism in memory formation, identified a novel regulator of memory, and further highlighted the complex and highly regulated functions of distinct epigenetic regulators in brain function.
Collapse
Affiliation(s)
- Janina Kupke
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120, Heidelberg, Germany
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, the Netherlands
| | - Julien Klimmt
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120, Heidelberg, Germany
- Institute for Stroke and Dementia Research, University Hospital, Ludwig-Maximilians-University Munich, 81377, Munich, Germany
| | - Franziska Mudlaff
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120, Heidelberg, Germany
- Integrated Program in Neuroscience, McGill University, Montreal, QC, H3A 2B4, Canada
- Centre for Research in Neuroscience, Research Institute of the McGill University Health Centre, Montreal, QC, H3G 1A4, Canada
| | - Maximilian Schwab
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120, Heidelberg, Germany
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Pavlo Lutsik
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Department of Oncology, KU Leuven, 3000, Leuven, Belgium
| | - Christoph Plass
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Carsten Sticht
- Next Generation Sequencing Core Facility, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Ana M M Oliveira
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120, Heidelberg, Germany.
- Department of Molecular and Cellular Cognition Research, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany.
| |
Collapse
|
13
|
Brito DVC, Kupke J, Sokolov R, Cambridge S, Both M, Bengtson CP, Rozov A, Oliveira AMM. Biphasic Npas4 expression promotes inhibitory plasticity and suppression of fear memory consolidation in mice. Mol Psychiatry 2024; 29:1929-1940. [PMID: 38347124 PMCID: PMC11408256 DOI: 10.1038/s41380-024-02454-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/19/2024]
Abstract
Long-term memories are believed to be encoded by unique transcriptional signatures in the brain. The expression of immediate early genes (IEG) promotes structural and molecular changes required for memory consolidation. Recent evidence has shown that the brain is equipped with mechanisms that not only promote, but actively constrict memory formation. However, it remains unknown whether IEG expression may play a role in memory suppression. Here we uncovered a novel function of the IEG neuronal PAS domain protein 4 (Npas4), as an inducible memory suppressor gene of highly salient aversive experiences. Using a contextual fear conditioning paradigm, we found that low stimulus salience leads to monophasic Npas4 expression, while highly salient learning induces a biphasic expression of Npas4 in the hippocampus. The later phase requires N-methyl-D-aspartate (NMDA) receptor activity and is independent of dopaminergic neurotransmission. Our in vivo pharmacological and genetic manipulation experiments suggested that the later phase of Npas4 expression restricts the consolidation of a fear memory and promote behavioral flexibility, by facilitating fear extinction and the contextual specificity of fear responses. Moreover, immunofluorescence and electrophysiological analysis revealed a concomitant increase in synaptic input from cholecystokinin (CCK)-expressing interneurons. Our results demonstrate how salient experiences evoke unique temporal patterns of IEG expression that fine-tune memory consolidation. Moreover, our study provides evidence for inducible gene expression associated with memory suppression as a possible mechanism to balance the consolidation of highly salient memories, and thereby to evade the formation of maladaptive behavior.
Collapse
Affiliation(s)
- David V C Brito
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120, Heidelberg, Germany
- ABC-RI, Algarve Biomedical Center Research Institute, 8005-139, Faro, Portugal
- Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve, 8005-139, Faro, Portugal
| | - Janina Kupke
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120, Heidelberg, Germany
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, 1081 HV, the Netherlands
| | - Rostilav Sokolov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997, Moscow, Russia
- Federal Center of Brain Research and Neurotechnology, 117513, Moscow, Russia
- Institute of Neuroscience, Lobachevsky State University of Nizhniy Novgorod, Nizhny, Novgorod, Russia
| | - Sidney Cambridge
- Anatomy II, Dr. Senckenberg Anatomy, Goethe-University Frankfurt, 60590, Frankfurt am Main, Germany
| | - Martin Both
- Institute of Physiology and Pathophysiology, Medical Faculty, Heidelberg University, 69120, Heidelberg, Germany
| | - C Peter Bengtson
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120, Heidelberg, Germany
| | - Andrei Rozov
- Federal Center of Brain Research and Neurotechnology, 117513, Moscow, Russia
- Institute of Physiology and Pathophysiology, Medical Faculty, Heidelberg University, 69120, Heidelberg, Germany
- OpenLab of Neurobiology, Kazan Federal University, 420008, Kazan, Russia
| | - Ana M M Oliveira
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120, Heidelberg, Germany.
- Department of Molecular and Cellular Cognition Research, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany.
| |
Collapse
|
14
|
Mao R, Cavelli ML, Findlay G, Driessen K, Peterson MJ, Marshall W, Tononi G, Cirelli C. Behavioral and cortical arousal from sleep, muscimol-induced coma, and anesthesia by direct optogenetic stimulation of cortical neurons. iScience 2024; 27:109919. [PMID: 38812551 PMCID: PMC11134913 DOI: 10.1016/j.isci.2024.109919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/28/2023] [Accepted: 05/03/2024] [Indexed: 05/31/2024] Open
Abstract
The cerebral cortex is widely considered part of the neural substrate of consciousness, but direct causal evidence is missing. Here, we tested in mice whether optogenetic activation of cortical neurons in posterior parietal cortex (PtA) or medial prefrontal cortex (mPFC) is sufficient for arousal from three behavioral states characterized by progressively deeper unresponsiveness: sleep, a coma-like state induced by muscimol injection in the midbrain, and deep sevoflurane-dexmedetomidine anesthesia. We find that cortical stimulation always awakens the mice from both NREM sleep and REM sleep, with PtA requiring weaker/shorter light pulses than mPFC. Moreover, in most cases light pulses produce both cortical activation (decrease in low frequencies) and behavioral arousal (recovery of the righting reflex) from brainstem coma, as well as cortical activation from anesthesia. These findings provide evidence that direct activation of cortical neurons is sufficient for behavioral and/or cortical arousal from sleep, brainstem coma, and anesthesia.
Collapse
Affiliation(s)
- Rong Mao
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI 53719, USA
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53719, USA
| | - Matias Lorenzo Cavelli
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI 53719, USA
- Departamento de Fisiología de Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Graham Findlay
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI 53719, USA
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53719, USA
| | - Kort Driessen
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI 53719, USA
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53719, USA
| | - Michael J. Peterson
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI 53719, USA
| | - William Marshall
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI 53719, USA
- Department of Mathematics and Statistics, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Giulio Tononi
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI 53719, USA
| | - Chiara Cirelli
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI 53719, USA
| |
Collapse
|
15
|
Maurer JJ, Lin A, Jin X, Hong J, Sathi N, Cardis R, Osorio-Forero A, Lüthi A, Weber F, Chung S. Homeostatic regulation of rapid eye movement sleep by the preoptic area of the hypothalamus. eLife 2024; 12:RP92095. [PMID: 38884573 PMCID: PMC11182646 DOI: 10.7554/elife.92095] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024] Open
Abstract
Rapid eye movement sleep (REMs) is characterized by activated electroencephalogram (EEG) and muscle atonia, accompanied by vivid dreams. REMs is homeostatically regulated, ensuring that any loss of REMs is compensated by a subsequent increase in its amount. However, the neural mechanisms underlying the homeostatic control of REMs are largely unknown. Here, we show that GABAergic neurons in the preoptic area of the hypothalamus projecting to the tuberomammillary nucleus (POAGAD2→TMN neurons) are crucial for the homeostatic regulation of REMs in mice. POAGAD2→TMN neurons are most active during REMs, and inhibiting them specifically decreases REMs. REMs restriction leads to an increased number and amplitude of calcium transients in POAGAD2→TMN neurons, reflecting the accumulation of REMs pressure. Inhibiting POAGAD2→TMN neurons during REMs restriction blocked the subsequent rebound of REMs. Our findings reveal a hypothalamic circuit whose activity mirrors the buildup of homeostatic REMs pressure during restriction and that is required for the ensuing rebound in REMs.
Collapse
Affiliation(s)
- John J Maurer
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Alexandra Lin
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Xi Jin
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Jiso Hong
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Nicholas Sathi
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Romain Cardis
- Department of Fundamental Neurosciences, University of LausanneLausanneSwitzerland
| | | | - Anita Lüthi
- Department of Fundamental Neurosciences, University of LausanneLausanneSwitzerland
| | - Franz Weber
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Shinjae Chung
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
16
|
Smith SK, Kafashan M, Rios RL, Brown EN, Landsness EC, Guay CS, Palanca BJA. Daytime dexmedetomidine sedation with closed-loop acoustic stimulation alters slow wave sleep homeostasis in healthy adults. BJA OPEN 2024; 10:100276. [PMID: 38571816 PMCID: PMC10990715 DOI: 10.1016/j.bjao.2024.100276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/29/2024] [Indexed: 04/05/2024]
Abstract
Background The alpha-2 adrenergic agonist dexmedetomidine induces EEG patterns resembling those of non-rapid eye movement (NREM) sleep. Fulfilment of slow wave sleep (SWS) homeostatic needs would address the assumption that dexmedetomidine induces functional biomimetic sleep states. Methods In-home sleep EEG recordings were obtained from 13 healthy participants before and after dexmedetomidine sedation. Dexmedetomidine target-controlled infusions and closed-loop acoustic stimulation were implemented to induce and enhance EEG slow waves, respectively. EEG recordings during sedation and sleep were staged using modified American Academy of Sleep Medicine criteria. Slow wave activity (EEG power from 0.5 to 4 Hz) was computed for NREM stage 2 (N2) and NREM stage 3 (N3/SWS) epochs, with the aggregate partitioned into quintiles by time. The first slow wave activity quintile served as a surrogate for slow wave pressure, and the difference between the first and fifth quintiles as a measure of slow wave pressure dissipation. Results Compared with pre-sedation sleep, post-sedation sleep showed reduced N3 duration (mean difference of -17.1 min, 95% confidence interval -30.0 to -8.2, P=0.015). Dissipation of slow wave pressure was reduced (P=0.02). Changes in combined durations of N2 and N3 between pre- and post-sedation sleep correlated with total dexmedetomidine dose, (r=-0.61, P=0.03). Conclusions Daytime dexmedetomidine sedation and closed-loop acoustic stimulation targeting EEG slow waves reduced N3/SWS duration and measures of slow wave pressure dissipation on the post-sedation night in healthy young adults. Thus, the paired intervention induces sleep-like states that fulfil certain homeostatic NREM sleep needs in healthy young adults. Clinical trial registration ClinicalTrials.gov NCT04206059.
Collapse
Affiliation(s)
- S. Kendall Smith
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Center on Biological Rhythms and Sleep, Washington University in St. Louis, St. Louis, MO, USA
| | - MohammadMehdi Kafashan
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Center on Biological Rhythms and Sleep, Washington University in St. Louis, St. Louis, MO, USA
| | - Rachel L. Rios
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Center on Biological Rhythms and Sleep, Washington University in St. Louis, St. Louis, MO, USA
| | - Emery N. Brown
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Eric C. Landsness
- Center on Biological Rhythms and Sleep, Washington University in St. Louis, St. Louis, MO, USA
- Department of Neurology, Division of Sleep Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Christian S. Guay
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ben Julian A. Palanca
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Center on Biological Rhythms and Sleep, Washington University in St. Louis, St. Louis, MO, USA
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Division of Biology and Biomedical Sciences, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
17
|
Nagayama S, Hasegawa-Ishii S, Kikuta S. Anesthetized animal experiments for neuroscience research. Front Neural Circuits 2024; 18:1426689. [PMID: 38884008 PMCID: PMC11177690 DOI: 10.3389/fncir.2024.1426689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 05/20/2024] [Indexed: 06/18/2024] Open
Abstract
Brain research has progressed with anesthetized animal experiments for a long time. Recent progress in research techniques allows us to measure neuronal activity in awake animals combined with behavioral tasks. The trends became more prominent in the last decade. This new research style triggers the paradigm shift in the research of brain science, and new insights into brain function have been revealed. It is reasonable to consider that awake animal experiments are more ideal for understanding naturalistic brain function than anesthetized ones. However, the anesthetized animal experiment still has advantages in some experiments. To take advantage of the anesthetized animal experiments, it is important to understand the mechanism of anesthesia and carefully handle the obtained data. In this minireview, we will shortly summarize the molecular mechanism of anesthesia in animal experiments, a recent understanding of the neuronal activities in a sensory system in the anesthetized animal brain, and consider the advantages and disadvantages of the anesthetized and awake animal experiments. This discussion will help us to use both research conditions in the proper manner.
Collapse
Affiliation(s)
- Shin Nagayama
- Department of Neurobiology and Anatomy, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Sanae Hasegawa-Ishii
- Pathology Research Team, Faculty of Health Sciences, Kyorin University, Mitaka, Japan
| | - Shu Kikuta
- Department of Otorhinolaryngology, Medical School of Nihon University, Tokyo, Japan
| |
Collapse
|
18
|
Mieszczański P, Kołacz M, Trzebicki J. Opioid-Free Anesthesia in Bariatric Surgery: Is It the One and Only? A Comprehensive Review of the Current Literature. Healthcare (Basel) 2024; 12:1094. [PMID: 38891169 PMCID: PMC11171472 DOI: 10.3390/healthcare12111094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/13/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Opioid-free anesthesia (OFA) is a heterogeneous group of general anesthesia techniques in which the intraoperative use of opioids is eliminated. This strategy aims to decrease the risk of complications and improve the patient's safety and comfort. Such potential advantages are particularly beneficial for selected groups of patients, among them obese patients undergoing laparoscopic bariatric surgery. Opioids have been traditionally used as an element of balanced anesthesia, and replacing them requires using a combination of coanalgesics and various types of local and regional anesthesia, which also have their side effects, limitations, and potential disadvantages. Moreover, despite the growing amount of evidence, the empirical data on the superiority of OFA compared to standard anesthesia with multimodal analgesia are contradictory, and potential benefits in many studies are being questioned. Additionally, little is known about the long-term sequelae of such a strategy. Considering the above-mentioned issues, this study aims to present the potential benefits, risks, and difficulties of implementing OFA in bariatric surgery, considering the current state of knowledge and literature.
Collapse
Affiliation(s)
- Piotr Mieszczański
- 1st Department of Anaesthesiology and Intensive Care, Medical University of Warsaw, Lindleya 4 Str., 02-005 Warsaw, Poland; (M.K.); (J.T.)
| | | | | |
Collapse
|
19
|
Wan S, Wu W, Bu W. Application of intranasal dexmedetomidine in magnetic resonance imaging of preterm infants: The ED50, efficacy and safety analysis. Medicine (Baltimore) 2024; 103:e38040. [PMID: 38701317 PMCID: PMC11062713 DOI: 10.1097/md.0000000000038040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/05/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND Infants undergoing magnetic resonance imaging (MRI) often require pharmacological sedation. Dexmedetomidine serves as a novel sedative agent that induces a unique unconsciousness similar to natural sleep, and therefore has currently been used as the first choice for sedation in infants and young children. OBJECTIVE To determine the 50% effective dose (ED50) and 95% confidence interval (95%CI) of intranasal dexmedetomidine for MRI in preterm and term infants, and to observe the incidence of adverse events. To explore whether there were differences in ED50 and 95%CI, heart rate (HR) and blood oxygen saturation (SpO2), the induction time and wake-up time and the incidence of adverse events between the 2 groups, so as to provide guidance for clinical safe medication for the meanwhile. METHODS A total of 68 infants were prospectively recruited for MRI examination under drug sedation (1 week ≤ age ≤ 23 weeks or weight ≤ 5kg). The children were divided into 2 groups according to whether they had preterm birth experience (Preterm group, Atterm group). The Dixon up-and-down method was used to explore ED50. The basic vital signs of the 2 groups were recorded, and the heart rate and SpO2 were recorded every 5 minutes until the infants were discharged from the hospital. The induction time, wake-up time and adverse events were recorded. RESULTS The ED50 (95%CI) of intranasal dexmedetomidine in the Preterm group and the Atterm group were 2.23 (2.03-2.66) μg/kg and 2.64 (2.49-2.83) μg/kg, respectively (P < .05). the wake-up time was longer in Preterm group (98.00min) than in Atterm group (81.00 min) (P < .05), the incidence of bradycardia in Preterm group was 3/33, which was higher than that in Atterm group (1/35). There was no difference in the induction time between the 2 groups (P > .05), and there was no significant difference in other adverse events. CONCLUSIONS Intranasal dexmedetomidine can be safely used for sedation in preterm infants undergoing MRI. Compared with term infants, preterm infants have a lower dose of dexmedetomidine, a higher incidence of bradycardia, and a longer weak-up time.
Collapse
Affiliation(s)
- Shengjun Wan
- Department of Anesthesiology, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Wu
- Department of Anesthesiology, CR & WISCO General Hospital, Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Wenhao Bu
- Department of Anesthesiology, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
20
|
Song XJ, Hu JJ. Neurobiological basis of emergence from anesthesia. Trends Neurosci 2024; 47:355-366. [PMID: 38490858 DOI: 10.1016/j.tins.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/25/2024] [Accepted: 02/19/2024] [Indexed: 03/17/2024]
Abstract
The suppression of consciousness by anesthetics and the emergence of the brain from anesthesia are complex and elusive processes. Anesthetics may exert their inhibitory effects by binding to specific protein targets or through membrane-mediated targets, disrupting neural activity and the integrity and function of neural circuits responsible for signal transmission and conscious perception/subjective experience. Emergence from anesthesia was generally thought to depend on the elimination of the anesthetic from the body. Recently, studies have suggested that emergence from anesthesia is a dynamic and active process that can be partially controlled and is independent of the specific molecular targets of anesthetics. This article summarizes the fundamentals of anesthetics' actions in the brain and the mechanisms of emergence from anesthesia that have been recently revealed in animal studies.
Collapse
Affiliation(s)
- Xue-Jun Song
- Department of Medical Neuroscience and SUSTech Center for Pain Medicine, Southern University of Science and Technology School of Medicine, Shenzhen, China.
| | - Jiang-Jian Hu
- Department of Medical Neuroscience and SUSTech Center for Pain Medicine, Southern University of Science and Technology School of Medicine, Shenzhen, China
| |
Collapse
|
21
|
Merenick DR, Munro BA, Gee JM, Pang DSJ. Assessing Susceptibility to Carbon Dioxide Gas in Three Rat Strains Using the Loss of Righting Reflex. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2024; 63:310-315. [PMID: 38325835 PMCID: PMC11193416 DOI: 10.30802/aalas-jaalas-23-000104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/28/2023] [Accepted: 01/16/2024] [Indexed: 02/09/2024]
Abstract
Overdose of carbon dioxide gas (CO₂) is a common euthanasia method for rodents; however, CO₂ exposure activates nociceptors in rats at concentrations equal to or greater than 37% and is reported to be painful in humans at concentrations equal to or greater than 32.5%. Exposure of rats to CO₂ could cause pain before loss of consciousness. We used 2 standardized loss of righting reflex (LORR) methods to identify CO₂ concentrations associated with unconsciousness in Wistar, Long???Evans, and Sprague???Dawley rats (n = 28 animals per strain). A rotating, motorized cylinder was used to test LORR while the rat was being exposed to increasing concentrations of CO₂. LORR was defined based on a 15-second observation period. The 2 methods were 1) a 1-Paw assessment (the righting reflex was considered to be present if one or more paws contacted the cylinder after the rat was positioned in dorsal recumbency), and 2) a 4-Paw assessment (the righting reflex was considered to be present if all 4 paws contacted the cylinder after the rat was positioned in dorsal recumbency). Data were analyzed with Probit regression, and dose-response curves were plotted. 1-Paw EC95 values (CO₂ concentration at which LORR occurred for 95% of the population) were Wistar, 27.2%; Long???Evans, 29.2%; and Sprague???Dawley, 35.0%. 4-Paw EC95 values were Wistar, 26.2%; Long???Evans, 25.9%, and Sprague???Dawley, 31.1%. Sprague???Dawley EC95 values were significantly higher in both 1- and 4-Paw tests as compared with Wistar and Long???Evans rats. No differences were detected between sexes for any strain. The 1-Paw EC95 was significantly higher than the 4-Paw EC95 only for Sprague-Dawley rats. These results suggest that a low number of individual rats from the strains studied may experience pain during CO₂ euthanasia.
Collapse
Affiliation(s)
- Dexter R Merenick
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Brittany A Munro
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Julia M Gee
- College of Engineering and Physical Sciences, University of Guelph, Guelph, Ontario, Canada; and
| | - Daniel SJ Pang
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
- Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
| |
Collapse
|
22
|
Silverman D, Chen C, Chang S, Bui L, Zhang Y, Raghavan R, Jiang A, Darmohray D, Sima J, Ding X, Li B, Ma C, Dan Y. Activation of locus coeruleus noradrenergic neurons rapidly drives homeostatic sleep pressure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.29.582852. [PMID: 38496507 PMCID: PMC10942400 DOI: 10.1101/2024.02.29.582852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Homeostatic sleep regulation is essential for optimizing the amount and timing of sleep, but the underlying mechanism remains unclear. Optogenetic activation of locus coeruleus noradrenergic neurons immediately increased sleep propensity following transient wakefulness. Fiber photometry showed that repeated optogenetic or sensory stimulation caused rapid declines of locus coeruleus calcium activity and noradrenaline release. This suggests that functional fatigue of noradrenergic neurons, which reduces their wake-promoting capacity, contributes to sleep pressure.
Collapse
|
23
|
Maurer J, Lin A, Jin X, Hong J, Sathi N, Cardis R, Osorio-Forero A, Lüthi A, Weber F, Chung S. Homeostatic regulation of REM sleep by the preoptic area of the hypothalamus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.22.554341. [PMID: 37662417 PMCID: PMC10473649 DOI: 10.1101/2023.08.22.554341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Rapid-eye-movement sleep (REMs) is characterized by activated electroencephalogram (EEG) and muscle atonia, accompanied by vivid dreams. REMs is homeostatically regulated, ensuring that any loss of REMs is compensated by a subsequent increase in its amount. However, the neural mechanisms underlying the homeostatic control of REMs are largely unknown. Here, we show that GABAergic neurons in the preoptic area of the hypothalamus projecting to the tuberomammillary nucleus (POAGAD2→TMN neurons) are crucial for the homeostatic regulation of REMs. POAGAD2→TMN neurons are most active during REMs, and inhibiting them specifically decreases REMs. REMs restriction leads to an increased number and amplitude of calcium transients in POAGAD2→TMN neurons, reflecting the accumulation of REMs pressure. Inhibiting POAGAD2→TMN neurons during REMs restriction blocked the subsequent rebound of REMs. Our findings reveal a hypothalamic circuit whose activity mirrors the buildup of homeostatic REMs pressure during restriction and that is required for the ensuing rebound in REMs.
Collapse
Affiliation(s)
- John Maurer
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alex Lin
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xi Jin
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jiso Hong
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nicholas Sathi
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Romain Cardis
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, CH-1005 Lausanne, Switzerland
| | - Alejandro Osorio-Forero
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, CH-1005 Lausanne, Switzerland
| | - Anita Lüthi
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, CH-1005 Lausanne, Switzerland
| | - Franz Weber
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shinjae Chung
- Department of Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
24
|
Wasilczuk AZ, Rinehart C, Aggarwal A, Stone ME, Mashour GA, Avidan MS, Kelz MB, Proekt A, ReCCognition Study Group. Hormonal basis of sex differences in anesthetic sensitivity. Proc Natl Acad Sci U S A 2024; 121:e2312913120. [PMID: 38190526 PMCID: PMC10801881 DOI: 10.1073/pnas.2312913120] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/20/2023] [Indexed: 01/10/2024] Open
Abstract
General anesthesia-a pharmacologically induced reversible state of unconsciousness-enables millions of life-saving procedures. Anesthetics induce unconsciousness in part by impinging upon sexually dimorphic and hormonally sensitive hypothalamic circuits regulating sleep and wakefulness. Thus, we hypothesized that anesthetic sensitivity should be sex-dependent and modulated by sex hormones. Using distinct behavioral measures, we show that at identical brain anesthetic concentrations, female mice are more resistant to volatile anesthetics than males. Anesthetic sensitivity is bidirectionally modulated by testosterone. Castration increases anesthetic resistance. Conversely, testosterone administration acutely increases anesthetic sensitivity. Conversion of testosterone to estradiol by aromatase is partially responsible for this effect. In contrast, oophorectomy has no effect. To identify the neuronal circuits underlying sex differences, we performed whole brain c-Fos activity mapping under anesthesia in male and female mice. Consistent with a key role of the hypothalamus, we found fewer active neurons in the ventral hypothalamic sleep-promoting regions in females than in males. In humans, we demonstrate that females regain consciousness and recover cognition faster than males after identical anesthetic exposures. Remarkably, while behavioral and neurocognitive measures in mice and humans point to increased anesthetic resistance in females, cortical activity fails to show sex differences under anesthesia in either species. Cumulatively, we demonstrate that sex differences in anesthetic sensitivity are evolutionarily conserved and not reflected in conventional electroencephalographic-based measures of anesthetic depth. This covert resistance to anesthesia may explain the higher incidence of unintended awareness under general anesthesia in females.
Collapse
Affiliation(s)
- Andrzej Z. Wasilczuk
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA19104
- Neuroscience of Unconsciousness and Reanimation Research Alliance, Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA19104
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA19104
| | - Cole Rinehart
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA19104
- Neuroscience of Unconsciousness and Reanimation Research Alliance, Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA19104
| | - Adeeti Aggarwal
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA19104
- Neuroscience of Unconsciousness and Reanimation Research Alliance, Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA19104
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA19104
| | - Martha E. Stone
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA19104
- Neuroscience of Unconsciousness and Reanimation Research Alliance, Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA19104
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA19104
| | - George A. Mashour
- Center for Consciousness Science, Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI48105
| | - Michael S. Avidan
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO63110
| | - Max B. Kelz
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA19104
- Neuroscience of Unconsciousness and Reanimation Research Alliance, Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA19104
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA19104
- Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Alex Proekt
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA19104
- Neuroscience of Unconsciousness and Reanimation Research Alliance, Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA19104
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA19104
- Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - ReCCognition Study Group
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA19104
- Center for Consciousness Science, Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI48105
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO63110
| |
Collapse
|
25
|
He J, Zhu Y, Wu C, Wu J, Chen Y, Yuan M, Cheng Z, Zeng L, Ji X. Transcranial ultrasound neuromodulation facilitates isoflurane-induced general anesthesia recovery and improves cognition in mice. ULTRASONICS 2023; 135:107132. [PMID: 37604030 DOI: 10.1016/j.ultras.2023.107132] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/13/2023] [Accepted: 08/05/2023] [Indexed: 08/23/2023]
Abstract
Delayed arousal and cognitive dysfunction are common, especially in older patients after general anesthesia (GA). Elevating central nervous system serotonin (5-HT) levels can promote recovery from GA and increase synaptic plasticity to improve cognition. Ultrasound neuromodulation has become a noninvasive physical intervention therapy with high spatial resolution and penetration depth, which can modulate neuronal excitability to treat psychiatric and neurodegenerative diseases. This study aims to use ultrasound to noninvasively modulate the brain 5-HT levels of mice to promote recovery from GA and improve cognition in mice. The dorsal raphe nucleus (DRN) of mice during GA was stimulated by the 1.1 MHz ultrasound with a negative pressure of 356 kPa, and the liquid chromatography coupled tandem mass spectrometry (LC-MS/MS) method was used to measure the DRN 5-HT concentrations. The mice's recovery time from GA was assessed, and the cognition was evaluated through spontaneous alternation Y-maze and novel object recognition (NOR) tests. After ultrasound stimulation, the mice's DRN 5-HT levels were significantly increased (control: 554.0 ± 103.2 ng/g, anesthesia + US: 664.2 ± 84.1 ng/g, *p = 0.0389); the GA recovery time (return of the righting reflex (RORR) emergence latency time) of mice was significantly reduced (anesthesia: 331.6 ± 70 s, anesthesia + US: 223.2 ± 67.7 s, *p = 0.0215); the spontaneous rotation behavior score of mice was significantly increased (anesthesia: 59.46 ± 5.26 %, anesthesia + US: 68.55 ± 5.24 %; *p = 0.0126); the recognition index was significantly increased (anesthesia: 55.02 ± 6.23 %, anesthesia + US: 78.52 ± 12.21 %; ***p = 0.0009). This study indicates that ultrasound stimulation of DRN increases serotonin levels, accelerates recovery from anesthesia, and improves cognition, which could be an important strategy for treating delayed arousal, postoperative delirium, or even lasting cognitive dysfunction after GA.
Collapse
Affiliation(s)
- Jiaru He
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
| | - Yiyue Zhu
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
| | - Canwen Wu
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
| | - Junwei Wu
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
| | - Yan Chen
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
| | - Maodan Yuan
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhongwen Cheng
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
| | - Lvming Zeng
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
| | - Xuanrong Ji
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
26
|
Adamantidis AR, de Lecea L. Sleep and the hypothalamus. Science 2023; 382:405-412. [PMID: 37883555 DOI: 10.1126/science.adh8285] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/08/2023] [Indexed: 10/28/2023]
Abstract
Neural substrates of wakefulness, rapid eye movement sleep (REMS), and non-REMS (NREMS) in the mammalian hypothalamus overlap both anatomically and functionally with cellular networks that support physiological and behavioral homeostasis. Here, we review the roles of sleep neurons of the hypothalamus in the homeostatic control of thermoregulation or goal-oriented behaviors during wakefulness. We address how hypothalamic circuits involved in opposing behaviors such as core body temperature and sleep compute conflicting information and provide a coherent vigilance state. Finally, we highlight some of the key unresolved questions and challenges, and the promise of a more granular view of the cellular and molecular diversity underlying the integrative role of the hypothalamus in physiological and behavioral homeostasis.
Collapse
Affiliation(s)
- Antoine R Adamantidis
- Zentrum für Experimentelle Neurologie, Department of Neurology, Inselspital University Hospital Bern, Bern, Switzerland
- Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Luis de Lecea
- Department of Psychiatry and Behavioural Sciences, Stanford, CA, USA
- Wu Tsai Neurosciences Institute Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
27
|
Zhang XW, Chen L, Chen CF, Cheng J, Zhang PP, Wang LC. Dexmedetomidine modulates neuronal activity of horizontal limbs of diagonal band via α2 adrenergic receptor in mice. BMC Anesthesiol 2023; 23:327. [PMID: 37784079 PMCID: PMC10544551 DOI: 10.1186/s12871-023-02278-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/11/2023] [Indexed: 10/04/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Dexmedetomidine (DEX) is widely used in clinical sedation which has little effect on cardiopulmonary inhibition, however the mechanism remains to be elucidated. The basal forebrain (BF) is a key nucleus that controls sleep-wake cycle. The horizontal limbs of diagonal bundle (HDB) is one subregions of the BF. The purpose of this study was to examine whether the possible mechanism of DEX is through the α2 adrenergic receptor of BF (HDB). METHODS In this study, we investigated the effects of DEX on the BF (HDB) by using whole cell patch clamp recordings. The threshold stimulus intensity, the inter-spike-intervals (ISIs) and the frequency of action potential firing in the BF (HDB) neurons were recorded by application of DEX (2 µM) and co-application of a α2 adrenergic receptor antagonist phentolamine (PHEN) (10 µM). RESULTS DEX (2 µM) increased the threshold stimulus intensity, inhibited the frequency of action potential firing and enlarged the inter-spike-interval (ISI) in the BF (HDB) neurons. These effects were reversed by co-application of PHEN (10 µM). CONCLUSION Taken together, our findings revealed DEX decreased the discharge activity of BF (HDB) neuron via α2 adrenergic receptors.
Collapse
Affiliation(s)
- Xia-Wei Zhang
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, 230032, Hefei, China
| | - Lei Chen
- Departments of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, 230031, Hefei, China
| | - Chang-Feng Chen
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, 230032, Hefei, China
| | - Juan Cheng
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, 230032, Hefei, China
| | - Ping-Ping Zhang
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, 230032, Hefei, China
| | - Lie-Cheng Wang
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, 230032, Hefei, China.
| |
Collapse
|
28
|
Fan S, Jin Q, Zhang P, Xu D, Cheng J, Wang L. Isoliquiritigenin modulates the activity of LTS and non-LTS cells in the ventrolateral preoptic area via GABA A receptors. Heliyon 2023; 9:e20620. [PMID: 37876454 PMCID: PMC10590785 DOI: 10.1016/j.heliyon.2023.e20620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/22/2023] [Accepted: 10/02/2023] [Indexed: 10/26/2023] Open
Abstract
Objective Isoliquiritigenin (ILTG) is a chalcone compound that exhibits hypnotic effects via gamma-aminobutyric acid type A (GABAA) receptors. The ventrolateral preoptic area (VLPO) is a sleep-promoting center that contains a large number of GABA-releasing cells. There are two cell types in the VLPO: one generates a low-threshold spike (LTS), whereas the other lacks an LTS (non-LTS). Method Whole-cell patch-clamp technology was used to detect the firing and currents of LTS and non-LTS cells in the VLPO. Results Bath administration of ILTG (10 μM) increased the firing rate of VLPO LTS cells, reversed by flumazenil (5 μM), a GABAA benzodiazepine site antagonist. However, the firing rate of VLPO non-LTS cells was inhibited by ILTG (10 μM), also reversed by flumazenil (5 μM). No differences were detected regarding resting membrane potential (RMP) amplitude, spike threshold, afterhyperpolarization (AHP) amplitude, or action potential duration (APD50) after ILTG (10 μM) perfusion in VLPO LTS cells. RMP amplitude was more hyperpolarized and spike threshold was higher after ILTG (10 μM) application in VLPO non-LTS cells. In addition, ILTG significantly reduced the frequency of miniature inhibitory postsynaptic currents (mIPSCs) in VLPO LTS cells. ILTG significantly increased the amplitude of mIPSCs in VLPO non-LTS cells. Conclusions This study revealed that ILTG suppresses presynaptic GABA release on VLPO LTS cells, thereby increasing their excitability. ILTG enhances postsynaptic GABAA receptor function on VLPO non-LTS cells, thereby decreasing their excitability. These results suggest that ILTG may produce hypnotic effects by modulating the GABAergic synaptic transmission properties of these two cell types.
Collapse
Affiliation(s)
- Sumei Fan
- Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Qiaoling Jin
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Pingping Zhang
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Dejiao Xu
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Juan Cheng
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Liecheng Wang
- Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- School of Stomatology, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
29
|
Tossell K, Yu X, Giannos P, Anuncibay Soto B, Nollet M, Yustos R, Miracca G, Vicente M, Miao A, Hsieh B, Ma Y, Vyssotski AL, Constandinou T, Franks NP, Wisden W. Somatostatin neurons in prefrontal cortex initiate sleep-preparatory behavior and sleep via the preoptic and lateral hypothalamus. Nat Neurosci 2023; 26:1805-1819. [PMID: 37735497 PMCID: PMC10545541 DOI: 10.1038/s41593-023-01430-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/14/2023] [Indexed: 09/23/2023]
Abstract
The prefrontal cortex (PFC) enables mammals to respond to situations, including internal states, with appropriate actions. One such internal state could be 'tiredness'. Here, using activity tagging in the mouse PFC, we identified particularly excitable, fast-spiking, somatostatin-expressing, γ-aminobutyric acid (GABA) (PFCSst-GABA) cells that responded to sleep deprivation. These cells projected to the lateral preoptic (LPO) hypothalamus and the lateral hypothalamus (LH). Stimulating PFCSst-GABA terminals in the LPO hypothalamus caused sleep-preparatory behavior (nesting, elevated theta power and elevated temperature), and stimulating PFCSst-GABA terminals in the LH mimicked recovery sleep (non-rapid eye-movement sleep with higher delta power and lower body temperature). PFCSst-GABA terminals had enhanced activity during nesting and sleep, inducing inhibitory postsynaptic currents on diverse cells in the LPO hypothalamus and the LH. The PFC also might feature in deciding sleep location in the absence of excessive fatigue. These findings suggest that the PFC instructs the hypothalamus to ensure that optimal sleep takes place in a suitable place.
Collapse
Affiliation(s)
- Kyoko Tossell
- Department of Life Sciences, Imperial College London, London, UK
| | - Xiao Yu
- Department of Life Sciences, Imperial College London, London, UK
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | | | - Berta Anuncibay Soto
- Department of Life Sciences, Imperial College London, London, UK
- UK Dementia Research Institute, Imperial College London, London, UK
| | - Mathieu Nollet
- Department of Life Sciences, Imperial College London, London, UK
- UK Dementia Research Institute, Imperial College London, London, UK
| | - Raquel Yustos
- Department of Life Sciences, Imperial College London, London, UK
| | - Giulia Miracca
- Department of Life Sciences, Imperial College London, London, UK
| | - Mikal Vicente
- Department of Life Sciences, Imperial College London, London, UK
| | - Andawei Miao
- Department of Life Sciences, Imperial College London, London, UK
- UK Dementia Research Institute, Imperial College London, London, UK
| | - Bryan Hsieh
- Department of Life Sciences, Imperial College London, London, UK
- Department of Electrical and Electronic Engineering, Imperial College London, London, UK
- Center for Neurotechnology, Imperial College London, London, UK
| | - Ying Ma
- Department of Life Sciences, Imperial College London, London, UK
| | - Alexei L Vyssotski
- Institute of Neuroinformatics, University of Zürich-ETH Zürich, Zürich, Switzerland
| | - Tim Constandinou
- Department of Electrical and Electronic Engineering, Imperial College London, London, UK
- Center for Neurotechnology, Imperial College London, London, UK
- Care Research and Technology Centre, UK Dementia Research Institute, London, UK
| | - Nicholas P Franks
- Department of Life Sciences, Imperial College London, London, UK.
- UK Dementia Research Institute, Imperial College London, London, UK.
- Center for Neurotechnology, Imperial College London, London, UK.
| | - William Wisden
- Department of Life Sciences, Imperial College London, London, UK.
- UK Dementia Research Institute, Imperial College London, London, UK.
- Center for Neurotechnology, Imperial College London, London, UK.
| |
Collapse
|
30
|
Ip CK, Rezitis J, Qi Y, Bajaj N, Koller J, Farzi A, Shi YC, Tasan R, Zhang L, Herzog H. Critical role of lateral habenula circuits in the control of stress-induced palatable food consumption. Neuron 2023; 111:2583-2600.e6. [PMID: 37295418 DOI: 10.1016/j.neuron.2023.05.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 12/15/2022] [Accepted: 05/11/2023] [Indexed: 06/12/2023]
Abstract
Chronic stress fuels the consumption of palatable food and can enhance obesity development. While stress- and feeding-controlling pathways have been identified, how stress-induced feeding is orchestrated remains unknown. Here, we identify lateral habenula (LHb) Npy1r-expressing neurons as the critical node for promoting hedonic feeding under stress, since lack of Npy1r in these neurons alleviates the obesifying effects caused by combined stress and high fat feeding (HFDS) in mice. Mechanistically, this is due to a circuit originating from central amygdala NPY neurons, with the upregulation of NPY induced by HFDS initiating a dual inhibitory effect via Npy1r signaling onto LHb and lateral hypothalamus neurons, thereby reducing the homeostatic satiety effect through action on the downstream ventral tegmental area. Together, these results identify LHb-Npy1r neurons as a critical node to adapt the response to chronic stress by driving palatable food intake in an attempt to overcome the negative valence of stress.
Collapse
Affiliation(s)
- Chi Kin Ip
- Neuroscience Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia; Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Jemma Rezitis
- Neuroscience Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia
| | - Yue Qi
- Neuroscience Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia
| | - Nikita Bajaj
- Neuroscience Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia
| | - Julia Koller
- Neuroscience Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia
| | - Aitak Farzi
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria
| | - Yan-Chuan Shi
- Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia; Neuroendocrinology Group, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia
| | - Ramon Tasan
- Department of Pharmacology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Lei Zhang
- Neuroscience Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia; Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Herbert Herzog
- Neuroscience Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia; Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
31
|
Huang R, Fan Z, Xue B, Ma J, Shen Q. Near-Infrared Light-Responsive Hydrogels for Highly Flexible Bionic Photosensors. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23094560. [PMID: 37177763 PMCID: PMC10181775 DOI: 10.3390/s23094560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 04/30/2023] [Accepted: 05/06/2023] [Indexed: 05/15/2023]
Abstract
Soft biological tissues perform various functions. Sensory nerves bring sensations of light, voice, touch, pain, or temperature variation to the central nervous system. Animal senses have inspired tremendous sensors for biomedical applications. Following the same principle as photosensitive nerves, we design flexible ionic hydrogels to achieve a biologic photosensor. The photosensor allows responding to near-infrared light, which is converted into a sensory electric signal that can communicate with nerve cells. Furthermore, with adjustable thermal and/or electrical signal outputs, it provides abundant tools for biological regulation. The tunable photosensitive performances, high flexibility, and low cost endow the photosensor with widespread applications ranging from neural prosthetics to human-machine interfacing systems.
Collapse
Affiliation(s)
- Rui Huang
- Key Laboratory of High-Performance Polymer Materials and Technology of MOE, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zhenhua Fan
- Key Laboratory of High-Performance Polymer Materials and Technology of MOE, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Bin Xue
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid-State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Junpeng Ma
- Key Laboratory of High-Performance Polymer Materials and Technology of MOE, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Qundong Shen
- Key Laboratory of High-Performance Polymer Materials and Technology of MOE, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing 210023, China
| |
Collapse
|
32
|
Bao WW, Jiang S, Qu WM, Li WX, Miao CH, Huang ZL. Understanding the Neural Mechanisms of General Anesthesia from Interaction with Sleep-Wake State: A Decade of Discovery. Pharmacol Rev 2023; 75:532-553. [PMID: 36627210 DOI: 10.1124/pharmrev.122.000717] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 12/10/2022] [Accepted: 11/16/2022] [Indexed: 01/11/2023] Open
Abstract
The development of cutting-edge techniques to study specific brain regions and neural circuits that regulate sleep-wake brain states and general anesthesia (GA), has increased our understanding of these states that exhibit similar neurophysiologic traits. This review summarizes current knowledge focusing on cell subtypes and neural circuits that control wakefulness, rapid eye movement (REM) sleep, non-REM sleep, and GA. We also review novel insights into their interactions and raise unresolved questions and challenges in this field. Comparisons of the overlapping neural substrates of sleep-wake and GA regulation will help us to understand sleep-wake transitions and how anesthetics cause reversible loss of consciousness. SIGNIFICANCE STATEMENT: General anesthesia (GA), sharing numerous neurophysiologic traits with the process of natural sleep, is administered to millions of surgical patients annually. In the past decade, studies exploring the neural mechanisms underlying sleep-wake and GA have advanced our understanding of their interactions and how anesthetics cause reversible loss of consciousness. Pharmacotherapies targeting the neural substrates associated with sleep-wake and GA regulations have significance for clinical practice in GA and sleep medicine.
Collapse
Affiliation(s)
- Wei-Wei Bao
- Department of Anesthesiology, Zhongshan Hospital; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College (W.W.B., C.H.M., Z.L.H.); Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College (W.W.B., S.J., W.M.Q., Z.L.H.), and Department of Anesthesiology, Eye and Ear, Nose and Throat Hospital (W.X.L.), Fudan University, Shanghai, China
| | - Shan Jiang
- Department of Anesthesiology, Zhongshan Hospital; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College (W.W.B., C.H.M., Z.L.H.); Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College (W.W.B., S.J., W.M.Q., Z.L.H.), and Department of Anesthesiology, Eye and Ear, Nose and Throat Hospital (W.X.L.), Fudan University, Shanghai, China
| | - Wei-Min Qu
- Department of Anesthesiology, Zhongshan Hospital; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College (W.W.B., C.H.M., Z.L.H.); Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College (W.W.B., S.J., W.M.Q., Z.L.H.), and Department of Anesthesiology, Eye and Ear, Nose and Throat Hospital (W.X.L.), Fudan University, Shanghai, China
| | - Wen-Xian Li
- Department of Anesthesiology, Zhongshan Hospital; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College (W.W.B., C.H.M., Z.L.H.); Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College (W.W.B., S.J., W.M.Q., Z.L.H.), and Department of Anesthesiology, Eye and Ear, Nose and Throat Hospital (W.X.L.), Fudan University, Shanghai, China
| | - Chang-Hong Miao
- Department of Anesthesiology, Zhongshan Hospital; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College (W.W.B., C.H.M., Z.L.H.); Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College (W.W.B., S.J., W.M.Q., Z.L.H.), and Department of Anesthesiology, Eye and Ear, Nose and Throat Hospital (W.X.L.), Fudan University, Shanghai, China
| | - Zhi-Li Huang
- Department of Anesthesiology, Zhongshan Hospital; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College (W.W.B., C.H.M., Z.L.H.); Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College (W.W.B., S.J., W.M.Q., Z.L.H.), and Department of Anesthesiology, Eye and Ear, Nose and Throat Hospital (W.X.L.), Fudan University, Shanghai, China
| |
Collapse
|
33
|
Yi T, Wang N, Huang J, Wang Y, Ren S, Hu Y, Xia J, Liao Y, Li X, Luo F, Ouyang Q, Li Y, Zheng Z, Xiao Q, Ren R, Yao Z, Tang X, Wang Y, Chen X, He C, Li H, Hu Z. A Sleep-Specific Midbrain Target for Sevoflurane Anesthesia. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300189. [PMID: 36961096 PMCID: PMC10214273 DOI: 10.1002/advs.202300189] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/02/2023] [Indexed: 05/27/2023]
Abstract
Sevoflurane has been the most widely used inhaled anesthetics with a favorable recovery profile; however, the precise mechanisms underlying its anesthetic action are still not completely understood. Here the authors show that sevoflurane activates a cluster of urocortin 1 (UCN1+ )/cocaine- and amphetamine-regulated transcript (CART+ ) neurons in the midbrain involved in its anesthesia. Furthermore, growth hormone secretagogue receptor (GHSR) is highly enriched in sevoflurane-activated UCN1+ /CART+ cells and is necessary for sleep induction. Blockade of GHSR abolishes the excitatory effect of sevoflurane on UCN1+ /CART+ neurons and attenuates its anesthetic effect. Collectively, their data suggest that anesthetic action of sevoflurane necessitates the GHSR activation in midbrain UCN1+ /CART+ neurons, which provides a novel target including the nucleus and receptor in the field of anesthesia.
Collapse
Affiliation(s)
- Tingting Yi
- Department of AnesthesiologySecond Affiliated HospitalThird Military Medical UniversityChongqing400037China
- Department of AnesthesiologyYongchuan HospitalChongqing Medical UniversityChongqing402160China
| | - Na Wang
- Department of PhysiologyThird Military Medical UniversityChongqing400038China
- College of BioengineeringChongqing UniversityChongqing400044China
| | - Jing Huang
- Department of AnesthesiologySecond Affiliated HospitalThird Military Medical UniversityChongqing400037China
| | - Yaling Wang
- Department of PhysiologyThird Military Medical UniversityChongqing400038China
| | - Shuancheng Ren
- Department of PhysiologyThird Military Medical UniversityChongqing400038China
| | - Yiwen Hu
- Department of AnesthesiologySecond Affiliated HospitalThird Military Medical UniversityChongqing400037China
| | - Jianxia Xia
- Department of PhysiologyThird Military Medical UniversityChongqing400038China
| | - Yixiang Liao
- Department of PhysiologyThird Military Medical UniversityChongqing400038China
| | - Xin Li
- Department of PhysiologyThird Military Medical UniversityChongqing400038China
| | - Fenlan Luo
- Department of PhysiologyThird Military Medical UniversityChongqing400038China
| | - Qin Ouyang
- School of PharmacyThird Military Medical UniversityChongqing400038China
| | - Yu Li
- Department of AnesthesiologySecond Affiliated HospitalThird Military Medical UniversityChongqing400037China
| | - Ziyi Zheng
- Department of PhysiologyThird Military Medical UniversityChongqing400038China
| | - Qin Xiao
- Department of PhysiologyThird Military Medical UniversityChongqing400038China
| | - Rong Ren
- Sleep Medicine CenterDepartment of Respiratory and Critical Care MedicineMental Health CenterWest China HospitalSichuan UniversityChengdu610041China
| | - Zhongxiang Yao
- Department of PhysiologyThird Military Medical UniversityChongqing400038China
| | - Xiangdong Tang
- Sleep Medicine CenterDepartment of Respiratory and Critical Care MedicineMental Health CenterWest China HospitalSichuan UniversityChengdu610041China
| | - Yanjiang Wang
- Department of NeurologyDaping HospitalThird Military Medical UniversityChongqing400042China
| | - Xiaowei Chen
- Brain Research CenterCollaborative Innovation Center for Brain ScienceThird Military Medical UniversityChongqing400038China
| | - Chao He
- Department of PhysiologyThird Military Medical UniversityChongqing400038China
| | - Hong Li
- Department of AnesthesiologySecond Affiliated HospitalThird Military Medical UniversityChongqing400037China
| | - Zhian Hu
- Department of PhysiologyThird Military Medical UniversityChongqing400038China
- College of BioengineeringChongqing UniversityChongqing400044China
- Chongqing Institute for Brain and IntelligenceGuangyang Bay LaboratoryChongqing400064China
| |
Collapse
|
34
|
Stegemann A, Liu S, Retana Romero OA, Oswald MJ, Han Y, Beretta CA, Gan Z, Tan LL, Wisden W, Gräff J, Kuner R. Prefrontal engrams of long-term fear memory perpetuate pain perception. Nat Neurosci 2023; 26:820-829. [PMID: 37024573 PMCID: PMC10166861 DOI: 10.1038/s41593-023-01291-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 02/24/2023] [Indexed: 04/08/2023]
Abstract
A painful episode can lead to a life-long increase in an individual's experience of pain. Fearful anticipation of imminent pain could play a role in this phenomenon, but the neurobiological underpinnings are unclear because fear can both suppress and enhance pain. Here, we show in mice that long-term associative fear memory stored in neuronal engrams in the prefrontal cortex determines whether a painful episode shapes pain experience later in life. Furthermore, under conditions of inflammatory and neuropathic pain, prefrontal fear engrams expand to encompass neurons representing nociception and tactile sensation, leading to pronounced changes in prefrontal connectivity to fear-relevant brain areas. Conversely, silencing prefrontal fear engrams reverses chronically established hyperalgesia and allodynia. These results reveal that a discrete subset of prefrontal cortex neurons can account for the debilitating comorbidity of fear and chronic pain and show that attenuating the fear memory of pain can alleviate chronic pain itself.
Collapse
Affiliation(s)
- Alina Stegemann
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Sheng Liu
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | | | | | - Yechao Han
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | | | - Zheng Gan
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Linette Liqi Tan
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - William Wisden
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Johannes Gräff
- Laboratory of Neuroepigenetics, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Rohini Kuner
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
35
|
McKinstry-Wu AR, Wasilczuk AZ, Dailey WP, Eckenhoff RG, Kelz MB. In Vivo Photoadduction of Anesthetic Ligands in Mouse Brain Markedly Extends Sedation and Hypnosis. J Neurosci 2023; 43:2338-2348. [PMID: 36849414 PMCID: PMC10072292 DOI: 10.1523/jneurosci.1884-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 03/01/2023] Open
Abstract
Photoaffinity ligands are best known as tools used to identify the specific binding sites of drugs to their molecular targets. However, photoaffinity ligands have the potential to further define critical neuroanatomic targets of drug action. In the brains of WT male mice, we demonstrate the feasibility of using photoaffinity ligands in vivo to prolong anesthesia via targeted yet spatially restricted photoadduction of azi-m-propofol (aziPm), a photoreactive analog of the general anesthetic propofol. Systemic administration of aziPm with bilateral near-ultraviolet photoadduction in the rostral pons, at the border of the parabrachial nucleus and locus coeruleus, produced a 20-fold increase in the duration of sedative and hypnotic effects compared with control mice without UV illumination. Photoadduction that missed the parabrachial-coerulean complex also failed to extend the sedative or hypnotic actions of aziPm and was indistinguishable from nonadducted controls. Paralleling the prolonged behavioral and EEG consequences of on target in vivo photoadduction, we conducted electrophysiologic recordings in rostral pontine brain slices. Using neurons within the locus coeruleus to further highlight the cellular consequences of irreversible aziPm binding, we demonstrate transient slowing of spontaneous action potentials with a brief bath application of aziPm that becomes irreversible on photoadduction. Together, these findings suggest that photochemistry-based strategies are a viable new approach for probing CNS physiology and pathophysiology.SIGNIFICANCE STATEMENT Photoaffinity ligands are drugs capable of light-induced irreversible binding, which have unexploited potential to identify the neuroanatomic sites of drug action. We systemically administer a centrally acting anesthetic photoaffinity ligand in mice, conduct localized photoillumination within the brain to covalently adduct the drug at its in vivo sites of action, and successfully enrich irreversible drug binding within a restricted 250 µm radius. When photoadduction encompassed the pontine parabrachial-coerulean complex, anesthetic sedation and hypnosis was prolonged 20-fold, thus illustrating the power of in vivo photochemistry to help unravel neuronal mechanisms of drug action.
Collapse
Affiliation(s)
- Andrew R McKinstry-Wu
- Department of Anesthesiology and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, Philadelphia 19104
- Neuroscience of Unconsciousness and Reanimation Research Alliance, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Philadelphia 19104
| | - Andrzej Z Wasilczuk
- Department of Anesthesiology and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, Philadelphia 19104
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Philadelphia 19104
- Neuroscience of Unconsciousness and Reanimation Research Alliance, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Philadelphia 19104
| | - William P Dailey
- Department of Chemistry, University of Pennsylvania School of Arts and Sciences, Philadelphia, Pennsylvania 19104
| | - Roderic G Eckenhoff
- Department of Anesthesiology and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, Philadelphia 19104
| | - Max B Kelz
- Department of Anesthesiology and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, Philadelphia 19104
- Mahoney Institute for Neurosciences, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Philadelphia 19104
- Neuroscience of Unconsciousness and Reanimation Research Alliance, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Philadelphia 19104
| |
Collapse
|
36
|
Hu JJ, Liu Y, Yao H, Cao B, Liao H, Yang R, Chen P, Song XJ. Emergence of consciousness from anesthesia through ubiquitin degradation of KCC2 in the ventral posteromedial nucleus of the thalamus. Nat Neurosci 2023; 26:751-764. [PMID: 36973513 DOI: 10.1038/s41593-023-01290-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 02/23/2023] [Indexed: 03/29/2023]
Abstract
The emergence of consciousness from anesthesia, once assumed to be a passive process, is now considered as an active and controllable process. In the present study, we show in mice that, when the brain is forced into a minimum responsive state by diverse anesthetics, a rapid downregulation of K+/Cl- cotransporter 2 (KCC2) in the ventral posteromedial nucleus (VPM) serves as a common mechanism by which the brain regains consciousness. Ubiquitin-proteasomal degradation is responsible for KCC2 downregulation, which is driven by ubiquitin ligase Fbxl4. Phosphorylation of KCC2 at Thr1007 promotes interaction between KCC2 and Fbxl4. KCC2 downregulation leads to γ-aminobutyric acid type A receptor-mediated disinhibition, enabling accelerated recovery of VPM neuron excitability and emergence of consciousness from anesthetic inhibition. This pathway to recovery is an active process and occurs independent of anesthetic choice. The present study demonstrates that ubiquitin degradation of KCC2 in the VPM is an important intermediate step en route to emergence of consciousness from anesthesia.
Collapse
|
37
|
Bosch OG, Dornbierer DA, Bavato F, Quednow BB, Landolt HP, Seifritz E. Dexmedetomidine in Psychiatry: Repurposing of its Fast-Acting Anxiolytic, Analgesic and Sleep Modulating Properties. PHARMACOPSYCHIATRY 2023; 56:44-50. [PMID: 36384232 DOI: 10.1055/a-1970-3453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Drug repurposing is a strategy to identify new indications for already approved drugs. A recent successful example in psychiatry is ketamine, an anesthetic drug developed in the 1960s, now approved and clinically used as a fast-acting antidepressant. Here, we describe the potential of dexmedetomidine as a psychopharmacological repurposing candidate. This α2-adrenoceptor agonist is approved in the US and Europe for procedural sedation in intensive care. It has shown fast-acting inhibitory effects on perioperative stress-related pathologies, including psychomotor agitation, hyperalgesia, and neuroinflammatory overdrive, proving potentially useful in clinical psychiatry. We offer an overview of the pharmacological profile and effects of dexmedetomidine with potential utility for the treatment of neuropsychiatric symptoms. Dexmedetomidine exerts fast-acting and robust sedation, anxiolytic, analgesic, sleep-modulating, and anti-inflammatory effects. Moreover, the drug prevents postoperative agitation and delirium, possibly via neuroprotective mechanisms. While evidence in animals and humans supports these properties, larger controlled trials in clinical samples are generally scarce, and systematic studies with psychiatric patients do not exist. In conclusion, dexmedetomidine is a promising candidate for an experimental treatment targeting stress-related pathologies common in neuropsychiatric disorders such as depression, anxiety disorders, and posttraumatic stress disorder. First small proof-of-concept studies and then larger controlled clinical trials are warranted in psychiatric populations to test the feasibility and efficacy of dexmedetomidine in these conditions.
Collapse
Affiliation(s)
- Oliver G Bosch
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Lenggstrasse, Zurich, Switzerland
| | - Dario A Dornbierer
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Lenggstrasse, Zurich, Switzerland
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse, Zürich
| | - Francesco Bavato
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Lenggstrasse, Zurich, Switzerland
| | - Boris B Quednow
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Lenggstrasse, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Switzerland
| | - Hans-Peter Landolt
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse, Zürich
- Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Switzerland
- Sleep & Health Zurich, University Center of Competence, University of Zurich, Switzerland
| | - Erich Seifritz
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Lenggstrasse, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Switzerland
| |
Collapse
|
38
|
Wang HB, Jia Y, Zhang CB, Zhang L, Li YN, Ding J, Wu X, Zhang Z, Wang JH, Wang Y, Yan FX, Yuan S, Sessler DI. A randomised controlled trial of dexmedetomidine for delirium in adults undergoing heart valve surgery. Anaesthesia 2023; 78:571-576. [PMID: 36794600 DOI: 10.1111/anae.15983] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2023] [Indexed: 02/17/2023]
Abstract
Dexmedetomidine might reduce delirium after cardiac surgery. We allocated 326 participants to an infusion of dexmedetomidine at a rate of 0.6 μg kg-1 for 10 min and then at 0.4 μg.kg-1 .h-1 until the end of surgery; 326 control participants received comparable volumes of saline. We detected delirium in 98/652 (15%) participants during the first seven postoperative days: 47/326 after dexmedetomidine vs. 51/326 after placebo, p = 0.62, adjusted relative risk (95%CI) 0.86 (0.56-1.33), p = 0.51. Postoperative renal impairment (Kidney Disease Improving Global Outcomes stages 1, 2 and 3) was detected in 46, 9 and 2 participants after dexmedetomidine and 25, 7 and 4 control participants, p = 0.040. Intra-operative dexmedetomidine infusion did not reduce the incidence of delirium after cardiac valve surgery but might impair renal function.
Collapse
Affiliation(s)
- H-B Wang
- Department of Anaesthesiology, Fuwai Hospital, National Centre for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Y Jia
- Department of Anaesthesiology, Fuwai Hospital, National Centre for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - C-B Zhang
- Department of Anaesthesiology, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen (Sun Yat-sen Cardiovascular Hospital, Shenzhen), Shenzhen, China
| | - L Zhang
- Department of Anaesthesiology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Y-N Li
- Department of Anaesthesiology, Fuwai Hospital, National Centre for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - J Ding
- Department of Anaesthesiology, Fuwai Hospital, National Centre for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - X Wu
- Department of Anaesthesiology, Fuwai Hospital, National Centre for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Z Zhang
- Department of Anaesthesiology, Fuwai Hospital, National Centre for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - J-H Wang
- Department of Anaesthesiology, Fuwai Hospital, National Centre for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Y Wang
- Department of Medical Research & Biometrics Centre, Fuwai Hospital, National Centre for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - F-X Yan
- Department of Anaesthesiology, Fuwai Hospital, National Centre for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - S Yuan
- Department of Anaesthesiology, Fuwai Hospital, National Centre for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - D I Sessler
- Department of Outcomes Research, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
39
|
Sulaman BA, Wang S, Tyan J, Eban-Rothschild A. Neuro-orchestration of sleep and wakefulness. Nat Neurosci 2023; 26:196-212. [PMID: 36581730 DOI: 10.1038/s41593-022-01236-w] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/16/2022] [Indexed: 12/31/2022]
Abstract
Although considered an inactive state for centuries, sleep entails many active processes occurring at the cellular, circuit and organismal levels. Over the last decade, several key technological advances, including calcium imaging and optogenetic and chemogenetic manipulations, have facilitated a detailed understanding of the functions of different neuronal populations and circuits in sleep-wake regulation. Here, we present recent progress and summarize our current understanding of the circuitry underlying the initiation, maintenance and coordination of wakefulness, rapid eye movement sleep (REMS) and non-REMS (NREMS). We propose a de-arousal model for sleep initiation, in which the neuromodulatory milieu necessary for sleep initiation is achieved by engaging in repetitive pre-sleep behaviors that gradually reduce vigilance to the external environment and wake-promoting neuromodulatory tone. We also discuss how brain processes related to thermoregulation, hunger and fear intersect with sleep-wake circuits to control arousal. Lastly, we discuss controversies and lingering questions in the sleep field.
Collapse
Affiliation(s)
- Bibi A Sulaman
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | - Su Wang
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Jean Tyan
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
40
|
Murthy BKB, Somatakis S, Ulivi AF, Klimmt H, Castello-Waldow TP, Haynes N, Huettl RE, Chen A, Attardo A. Arc-driven mGRASP highlights CA1 to CA3 synaptic engrams. Front Behav Neurosci 2023; 16:1072571. [PMID: 36793796 PMCID: PMC9924068 DOI: 10.3389/fnbeh.2022.1072571] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/29/2022] [Indexed: 02/03/2023] Open
Abstract
Subpopulations of neurons display increased activity during memory encoding and manipulating the activity of these neurons can induce artificial formation or erasure of memories. Thus, these neurons are thought to be cellular engrams. Moreover, correlated activity between pre- and postsynaptic engram neurons is thought to lead to strengthening of their synaptic connections, thus increasing the probability of neural activity patterns occurring during encoding to reoccur at recall. Therefore, synapses between engram neurons can also be considered as a substrate of memory, or a synaptic engram. One can label synaptic engrams by targeting two complementary, non-fluorescent, synapse-targeted GFP fragments separately to the pre- and postsynaptic compartment of engram neurons; the two GFP fragments reconstitute a fluorescent GFP at the synaptic cleft between the engram neurons, thereby highlighting synaptic engrams. In this work we explored a transsynaptic GFP reconstitution system (mGRASP) to label synaptic engrams between hippocampal CA1 and CA3 engram neurons identified by different Immediate-Early Genes: cFos and Arc. We characterized the expression of the cellular and synaptic labels of the mGRASP system upon exposure to a novel environment or learning of a hippocampal-dependent memory task. We found that mGRASP under the control of transgenic ArcCreERT2 labeled synaptic engrams more efficiently than when controlled by viral cFostTA, possibly due to differences in the genetic systems rather than the specific IEG promoters.
Collapse
Affiliation(s)
- B. K. B. Murthy
- Leibniz Institute for Neurobiology, Magdeburg, Germany,Graduate School of Systemic Neurosciences, Munich, Germany,Max Planck Institute of Psychiatry, Munich, Germany
| | - S. Somatakis
- Max Planck Institute of Psychiatry, Munich, Germany
| | - A. F. Ulivi
- Leibniz Institute for Neurobiology, Magdeburg, Germany,Max Planck Institute of Psychiatry, Munich, Germany
| | - H. Klimmt
- Leibniz Institute for Neurobiology, Magdeburg, Germany,Max Planck Institute of Psychiatry, Munich, Germany,International Max Planck Research School for Translational Psychiatry, Munich, Germany
| | | | - N. Haynes
- Max Planck Institute of Psychiatry, Munich, Germany
| | - R. E. Huettl
- Max Planck Institute of Psychiatry, Munich, Germany
| | - A. Chen
- Graduate School of Systemic Neurosciences, Munich, Germany,Max Planck Institute of Psychiatry, Munich, Germany,International Max Planck Research School for Translational Psychiatry, Munich, Germany,Weizmann Institute of Science, Rehovot, Israel
| | - Alessio Attardo
- Leibniz Institute for Neurobiology, Magdeburg, Germany,Graduate School of Systemic Neurosciences, Munich, Germany,Max Planck Institute of Psychiatry, Munich, Germany,International Max Planck Research School for Translational Psychiatry, Munich, Germany,*Correspondence: Alessio Attardo,
| |
Collapse
|
41
|
Sitnikova E, Rutskova E, Smirnov K. Alpha2-Adrenergic Receptors as a Pharmacological Target for Spike-Wave Epilepsy. Int J Mol Sci 2023; 24:1477. [PMID: 36674992 PMCID: PMC9862736 DOI: 10.3390/ijms24021477] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/30/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Spike-wave discharges are the hallmark of idiopathic generalized epilepsy. They are caused by a disorder in the thalamocortical network. Commercially available anti-epileptic drugs have pronounced side effects (i.e., sedation and gastroenterological concerns), which might result from a low selectivity to molecular targets. We suggest a specific subtype of adrenergic receptors (ARs) as a promising anti-epileptic molecular target. In rats with a predisposition to absence epilepsy, alpha2 ARs agonists provoke sedation and enhance spike-wave activity during transitions from awake/sedation. A number of studies together with our own observations bring evidence that the sedative and proepileptic effects require different alpha2 ARs subtypes activation. Here we introduce a new concept on target pharmacotherapy of absence epilepsy via alpha2B ARs which are presented almost exclusively in the thalamus. We discuss HCN and calcium channels as the most relevant cellular targets of alpha2 ARs involved in spike-wave activity generation.
Collapse
Affiliation(s)
- Evgenia Sitnikova
- Institute of the Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences, Butlerova Str., 5A, Moscow 117485, Russia
| | - Elizaveta Rutskova
- Institute of the Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences, Butlerova Str., 5A, Moscow 117485, Russia
| | - Kirill Smirnov
- Institute of the Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences, Butlerova Str., 5A, Moscow 117485, Russia
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Bld. 1, Moscow 121205, Russia
| |
Collapse
|
42
|
Fernández-Blanco Á, Zamora-Moratalla A, Sabariego-Navarro M, Dierssen M. Defective engram allocation contributes to impaired fear memory performance in Down syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.11.523460. [PMID: 36711850 PMCID: PMC9882045 DOI: 10.1101/2023.01.11.523460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Down syndrome (DS) is the most common genetic form of intellectual disability (ID). The cellular and molecular mechanisms contributing to ID in DS are not completely understood. Recent evidence indicates that a given memory is encoded by sparsely distributed neurons, highly activated during learning, the engram cells. Intriguingly, mechanisms that are of paramount importance for engram formation are impaired in DS. Here we explored engram formation in a DS mouse model, the Ts65Dn and we found a reduced number of engram cells in the dentate gyrus (DG), suggesting reduced neuronal allocation to engrams. We also show that trisomic engram cells present reduced number of mature spines than WT engram cells and their excitability is not enhanced during memory recall. In fact, activation of engram cells using a chemogenetic approach does not recover memory deficits in Ts65Dn. Altogether, our findings suggest that perturbations in engram neurons may play a significant role in memory alterations in DS.
Collapse
|
43
|
Fan S, Cheng X, Zhang P, Wang Y, Wang L, Cheng J. The α 2 Adrenoceptor Agonist and Sedative/Anaesthetic Dexmedetomidine Excites Diverse Neuronal Types in the Ventrolateral Preoptic Area of Male Mice. ASN Neuro 2023; 15:17590914231191016. [PMID: 37499170 PMCID: PMC10388635 DOI: 10.1177/17590914231191016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 06/30/2023] [Accepted: 07/13/2023] [Indexed: 07/29/2023] Open
Abstract
SUMMARY STATEMENT Dexmedetomidine is an important ICU sedative. The mechanism of dexmedetomidine is not fully understood. Activating NA(-) and NA(+) neurons in the VLPO by dexmedetomidine using polysomnography and electrophysiological recording, this may explain the unique sedative properties with rapid arousal.
Collapse
Affiliation(s)
- Sumei Fan
- Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Xinqi Cheng
- Department of Anesthesiology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Pingping Zhang
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yuanyin Wang
- School of Stomatology, Anhui Medical University, Hefei, China
| | - Liecheng Wang
- Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Juan Cheng
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
44
|
Luo M, Fei X, Liu X, Jin Z, Wang Y, Xu M. Divergent Neural Activity in the VLPO During Anesthesia and Sleep. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2203395. [PMID: 36461756 PMCID: PMC9839870 DOI: 10.1002/advs.202203395] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/10/2022] [Indexed: 05/27/2023]
Abstract
The invention of general anesthesia (GA) represents a significant advance in modern clinical practices. However, the exact mechanisms of GA are not entirely understood. Because of the multitude of similarities between GA and sleep, one intriguing hypothesis is that anesthesia may engage the sleep-wake regulation circuits. Here, using fiber photometry and micro-endoscopic imaging of Ca2+ signals at both population and single-cell levels, it investigates how various anesthetics modulate the neural activity in the ventrolateral preoptic nucleus (vLPO), a brain region essential for the initiation of sleep. It is found that different anesthetics primarily induced suppression of neural activity and tended to recruit a similar group of vLPO neurons; however, each anesthetic caused comparable modulations of both wake-active and sleep-active neurons. These results demonstrate that anesthesia creates a different state of neural activity in the vLPO than during natural sleep, suggesting that anesthesia may not engage the same vLPO circuits for sleep generation.
Collapse
Affiliation(s)
- Mengqiang Luo
- Department of AnesthesiologyHuashan HospitalFudan UniversityShanghai200040China
| | - Xiang Fei
- Institute of NeuroscienceState Key Laboratory of NeuroscienceCenter for Excellence in Brain Science and Intelligence TechnologyChinese Academy of SciencesShanghai200031China
| | - Xiaotong Liu
- Institute of NeuroscienceState Key Laboratory of NeuroscienceCenter for Excellence in Brain Science and Intelligence TechnologyChinese Academy of SciencesShanghai200031China
| | - Zikang Jin
- Institute of NeuroscienceState Key Laboratory of NeuroscienceCenter for Excellence in Brain Science and Intelligence TechnologyChinese Academy of SciencesShanghai200031China
| | - Yingwei Wang
- Department of AnesthesiologyHuashan HospitalFudan UniversityShanghai200040China
| | - Min Xu
- Institute of NeuroscienceState Key Laboratory of NeuroscienceCenter for Excellence in Brain Science and Intelligence TechnologyChinese Academy of SciencesShanghai200031China
- Shanghai Center for Brain Science and Brain‐Inspired Intelligence TechnologyShanghai201210China
| |
Collapse
|
45
|
Mu B, Xu W, Li H, Suo Z, Wang X, Zheng Y, Tian Y, Zhang B, Yu J, Tian N, Lin N, Zhao D, Zheng Z, Zheng H, Ni C. Determination of the effective dose of dexmedetomidine to achieve loss of consciousness during anesthesia induction. Front Med (Lausanne) 2023; 10:1158085. [PMID: 37153107 PMCID: PMC10159180 DOI: 10.3389/fmed.2023.1158085] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/29/2023] [Indexed: 05/09/2023] Open
Abstract
Background Dexmedetomidine (DEX) is a sedative with greater preservation of cognitive function, reduced respiratory depression, and improved patient arousability. This study was designed to investigate the performance of DEX during anesthesia induction and to establish an effective DEX induction strategy, which could be valuable for multiple clinical conditions. Methods Patients undergoing abdominal surgery were involved in this dose-finding trial. Dixon's up-and-down sequential method was employed to determine the effective dose of DEX to achieve the state of "loss of consciousness", and an effective induction strategy was established with continuous infusion of DEX and remifentanil. The effects of DEX on hemodynamics, respiratory state, EEG, and anesthetic depth were monitored and analyzed. Results Through the strategy mentioned, the depth of surgical anesthesia was successfully achieved by DEX-led anesthesia induction. The ED50 and ED95 of the initial infusion rate of DEX were 0.115 and 0.200 μg/kg/min, respectively, and the mean induction time was 18.3 min. The ED50 and ED95 of DEX to achieve the state of "loss of consciousness" were 2.899 (95% CI: 2.703-3.115) and 5.001 (95% CI: 4.544-5.700) μg/kg, respectively. The mean PSI on the loss of consciousness was 42.8 among the patients. During anesthesia induction, the hemodynamics including BP and HR were stable, and the EEG monitor showed decreased α and β powers and increased θ and δ in the frontal and pre-frontal cortices of the brain. Conclusion This study indicated that continuous infusion of combined DEX and remifentanil could be an effective strategy for anesthesia induction. The EEG during the induction was similar to the physiological sleep process.
Collapse
Affiliation(s)
- Bing Mu
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenjie Xu
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongyi Li
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zizheng Suo
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoxiao Wang
- Clinical Epidemiology Research Center, Peking University Third Hospital, Beijing, China
| | - Yuxiang Zheng
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yi Tian
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bowen Zhang
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie Yu
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Naiyuan Tian
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Nan Lin
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Dan Zhao
- Department of Gynecology Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhaoxu Zheng
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hui Zheng
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Hui Zheng
| | - Cheng Ni
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Cheng Ni
| |
Collapse
|
46
|
Chima AM, Mahmoud MA, Narayanasamy S. What Is the Role of Dexmedetomidine in Modern Anesthesia and Critical Care? Adv Anesth 2022; 40:111-130. [PMID: 36333042 DOI: 10.1016/j.aan.2022.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Dexmedetomidine's unique sedative properties have led to its widespread use. Dexmedetomidine has a beneficial pharmacologic profile including analgesic sparing effects, anxiolysis, sympatholysis, organ-protective effects against ischemic and hypoxic injury, and sedation which parallels natural sleep. An understanding of predictable side effects, effects of age-related physiologic changes, and pharmacokinetic and pharmacodynamic effects of dexmedetomidine is crucial to maximize its safe administration in adults and children. This review focuses on the growing body of literature examining advances in applications of dexmedetomidine in children and adults.
Collapse
Affiliation(s)
- Adaora M Chima
- Department of Anesthesiology, Cincinnati Children's Hospital Medical Center, MLC 2001, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; University of Cincinnati, College of Medicine, Cincinnati, OH, USA.
| | - Mohamed A Mahmoud
- Department of Anesthesiology, Cincinnati Children's Hospital Medical Center, MLC 2001, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; University of Cincinnati, College of Medicine, Cincinnati, OH, USA
| | - Suryakumar Narayanasamy
- Department of Anesthesiology, Cincinnati Children's Hospital Medical Center, MLC 2001, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; University of Cincinnati, College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
47
|
Weakly Correlated Local Cortical State Switches under Anesthesia Lead to Strongly Correlated Global States. J Neurosci 2022; 42:8980-8996. [PMID: 36288946 PMCID: PMC9732829 DOI: 10.1523/jneurosci.0123-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/30/2022] [Accepted: 07/15/2022] [Indexed: 01/05/2023] Open
Abstract
During recovery from anesthesia, brain activity switches abruptly between a small set of discrete states. Surprisingly, this switching also occurs under constant doses of anesthesia, even in the absence of stimuli. These metastable states and the transitions between them are thought to form a "scaffold" that ultimately guides the brain back to wakefulness. The processes that constrain cortical activity patterns to these states and govern how states are coordinated between different cortical regions are unknown. If state transitions were driven by subcortical modulation, different cortical sites should exhibit near-synchronous state transitions. Conversely, spatiotemporal heterogeneity would suggest that state transitions are coordinated through corticocortical interactions. To differentiate between these hypotheses, we quantified synchrony of brain states in male rats exposed to a fixed isoflurane concentration. States were defined from spectra of local field potentials recorded across layers of visual and motor cortices. A transition synchrony measure shows that most state transitions are highly localized. Furthermore, while most pairs of cortical sites exhibit statistically significant coupling of both states and state transition times, coupling strength is typically weak. States and state transitions in the thalamic input layer (L4) are particularly decoupled from those in supragranular and infragranular layers. This suggests that state transitions are not imposed on the cortex by broadly projecting modulatory systems. Although each pairwise interaction is typically weak, we show that the multitude of such weak interactions is sufficient to confine global activity to a small number of discrete states.SIGNIFICANCE STATEMENT The brain consistently recovers to wakefulness after anesthesia, but this process is poorly understood. Previous work revealed that, during recovery from anesthesia, corticothalamic activity falls into one of several discrete patterns. The neuronal mechanisms constraining the cortex to just a few discrete states remain unknown. Global states could be coordinated by fluctuations in subcortical nuclei that project broadly to the cortex. Alternatively, these states may emerge from interactions within the cortex itself. Here, we provide evidence for the latter possibility by demonstrating that most pairs of cortical sites exhibit weak coupling. We thereby lay groundwork for future investigations of the specific cellular and network mechanisms of corticocortical activity state coupling.
Collapse
|
48
|
Zhao X, Zhang Y, Zuo X, Wang S, Dong X. Knockdown of Adra2a Increases Secretion of Growth Factors and Wound Healing Ability in Diabetic Adipose-Derived Stem Cells. Stem Cells Int 2022; 2022:5704628. [PMID: 36420091 PMCID: PMC9678456 DOI: 10.1155/2022/5704628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/11/2022] [Accepted: 10/18/2022] [Indexed: 08/04/2024] Open
Abstract
Studies showed that compared to normal adipose-derived stem cells (ASCs), ASCs from type 2 diabetic (T2D) mice were less effective in treating diabetic cutaneous wounds. However, the mechanisms remain unclear. Our transcriptomic profiling comparison showed that the expression of α2A-adrenergic receptor (Adra2a) was significantly increased in ASCs from T2D mice (T2D ASCs). Therefore, the purpose of this study was to investigate whether the elevated Adra2a is involved in the diminished wound-healing capabilities of T2D ASCs. RNA-seq was used to compare the transcriptomic profiles of T2D and normal ASCs. The differential genes were verified by real-time RT-qPCR. Clonidine was used to active Adra2a, and lentivirus-mediated RNAi was used to knockdown Adra2a. The secretion and expression of growth factors were detected by enzyme-linked immunosorbent assay (ELISA) and real-time RT-qPCR, respectively. The cAMP and PKA activity were also detected. Wound healing abilities of various ASCs were assessed in T2D mouse excisional wound models. The results showed Adra2a agonist clonidine decreased the expression and secretion of growth factors, cAMP content, and activity of PKA in ASCs, while Adra2a knockdown T2D ASCs showed the opposite effects. Adra2a knockdown T2D ASCs also showed increased wound-healing capabilities compared to untreated T2D ASCs. Altogether, T2D increased Adra2a expression, which may subsequently decrease the expression and secretion of growth factors and eventually diminish the wound-healing capabilities of T2D ASCs. Adra2a knockdown can restore the secretion of growth factors in T2D ASCs and then accelerate the wound healing, which may provide a new possibility in the treatment of diabetic wounds.
Collapse
Affiliation(s)
- Xiangyuan Zhao
- College of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Yong Zhang
- College of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Xinzhen Zuo
- College of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Shubai Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Xiao Dong
- College of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| |
Collapse
|
49
|
Bergman L, Krom AJ, Sela Y, Marmelshtein A, Hayat H, Regev N, Nir Y. Propofol anesthesia concentration rather than abrupt behavioral unresponsiveness linearly degrades responses in the rat primary auditory cortex. Cereb Cortex 2022; 32:5005-5019. [PMID: 35169834 DOI: 10.1093/cercor/bhab528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 12/27/2022] Open
Abstract
Despite extensive knowledge of its molecular and cellular effects, how anesthesia affects sensory processing remains poorly understood. In particular, it remains unclear whether anesthesia modestly or robustly degrades activity in primary sensory regions, and whether such changes are linked to anesthesia drug concentration versus behavioral unresponsiveness, which are typically confounded. Here, we used slow gradual intravenous propofol anesthesia induction together with auditory stimulation and intermittent assessment of behavioral responsiveness while recording epidural electroencephalogram, and neuronal spiking activity in primary auditory cortex (PAC) of eight rats. We found that all main components of neuronal activity including spontaneous firing rates, onset response magnitudes, onset response latencies, postonset neuronal silence duration, late-locking to 40 Hz click-trains, and offset responses, gradually changed in a dose-dependent manner with increasing anesthesia levels without showing abrupt shifts around loss of righting reflex or other time-points. Thus, the dominant factor affecting PAC responses is the anesthesia drug concentration rather than any sudden, dichotomous behavioral state changes. Our findings explain a wide array of seemingly conflicting results in the literature that, depending on the precise definition of wakefulness (vigilant vs. drowsy) and anesthesia (light vs. deep/surgical), report a spectrum of effects in primary regions ranging from minimal to dramatic differences.
Collapse
Affiliation(s)
- Lottem Bergman
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel.,Department of Neurosurgery, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
| | - Aaron J Krom
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel.,Department of Anesthesiology and Critical Care Medicine, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel.,Department of Anesthesiology and Critical Care Medicine, Hadassah Medical Organization, Jerusalem 91120, Israel
| | - Yaniv Sela
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Amit Marmelshtein
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Hanna Hayat
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Noa Regev
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Yuval Nir
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel.,The Sieratzki-Sagol Center for Sleep Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel.,Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
50
|
Antila H, Kwak I, Choi A, Pisciotti A, Covarrubias I, Baik J, Eisch A, Beier K, Thomas S, Weber F, Chung S. A noradrenergic-hypothalamic neural substrate for stress-induced sleep disturbances. Proc Natl Acad Sci U S A 2022; 119:e2123528119. [PMID: 36331996 PMCID: PMC9659376 DOI: 10.1073/pnas.2123528119] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 08/19/2022] [Indexed: 11/06/2022] Open
Abstract
In our daily life, we are exposed to uncontrollable and stressful events that disrupt our sleep. However, the underlying neural mechanisms deteriorating the quality of non-rapid eye movement sleep (NREMs) and REM sleep are largely unknown. Here, we show in mice that acute psychosocial stress disrupts sleep by increasing brief arousals (microarousals [MAs]), reducing sleep spindles, and impairing infraslow oscillations in the spindle band of the electroencephalogram during NREMs, while reducing REMs. This poor sleep quality was reflected in an increased number of calcium transients in the activity of noradrenergic (NE) neurons in the locus coeruleus (LC) during NREMs. Opto- and chemogenetic LC-NE activation in naïve mice is sufficient to change the sleep microarchitecture similar to stress. Conversely, chemogenetically inhibiting LC-NE neurons reduced MAs during NREMs and normalized their number after stress. Specifically inhibiting LC-NE neurons projecting to the preoptic area of the hypothalamus (POA) decreased MAs and enhanced spindles and REMs after stress. Optrode recordings revealed that stimulating LC-NE fibers in the POA indeed suppressed the spiking activity of POA neurons that are activated during sleep spindles and REMs and inactivated during MAs. Our findings reveal that changes in the dynamics of the stress-regulatory LC-NE neurons during sleep negatively affect sleep quality, partially through their interaction with the POA.
Collapse
Affiliation(s)
- Hanna Antila
- Department of Neuroscience, Chronobiology, and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Iris Kwak
- Department of Neuroscience, Chronobiology, and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Ashley Choi
- Department of Neuroscience, Chronobiology, and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Alexa Pisciotti
- Department of Neuroscience, Chronobiology, and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Ivan Covarrubias
- Department of Neuroscience, Chronobiology, and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Justin Baik
- Department of Neuroscience, Chronobiology, and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Amelia Eisch
- Department of Neuroscience, Chronobiology, and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia Research Institute, Philadelphia, PA 19104
| | - Kevin Beier
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA 92617
| | - Steven Thomas
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Franz Weber
- Department of Neuroscience, Chronobiology, and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Shinjae Chung
- Department of Neuroscience, Chronobiology, and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|