1
|
Thammavongsa DA, Jackvony TN, Bookland MJ, Tang-Schomer MD. Targeting Ion Channels: Blockers Suppress Calcium Signals and Induce Cytotoxicity Across Medulloblastoma Cell Models. Bioengineering (Basel) 2025; 12:268. [PMID: 40150732 PMCID: PMC11939613 DOI: 10.3390/bioengineering12030268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/25/2025] [Accepted: 03/05/2025] [Indexed: 03/29/2025] Open
Abstract
Medulloblastoma (MB) groups 3 and 4 lack targeted therapies despite their dismal prognoses. Ion channels and pumps have been implicated in promoting MB metastasis and growth; however, their roles remain poorly understood. In this study, we repurposed FDA-approved channel blockers and modulators to investigate their potential anti-tumor effects in MB cell lines (DAOY and D283) and primary cell cultures derived from a patient with MB. For the first time, we report spontaneous calcium signaling in MB cells. Spontaneous calcium signals were significantly reduced by mibefradil (calcium channel blocker), paxilline (calcium-activated potassium channel blocker), and thioridazine (potassium channel blocker). These drugs induced dose-dependent cytotoxicity in both the DAOY and D283 cell lines, as well as in primary cell cultures of a patient with group 3 or 4 MB. In contrast, digoxin and ouabain, inhibitors of the Na/K pump, reduced the calcium signaling by over 90% in DAOY cells and induced approximately 90% cell death in DAOY cells and 80% cell death in D283 cells. However, these effects were significantly diminished in the cells derived from a patient with MB, highlighting the variability in drug sensitivity among MB models. These findings demonstrate that calcium signaling is critical for MB cell survival and that the targeted inhibition of calcium pathways suppresses tumor cell growth across multiple MB models.
Collapse
Affiliation(s)
- Darani Ashley Thammavongsa
- UConn Health, Department of Pediatrics, 263 Farmington Avenue, Farmington, CT 06030, USA; (D.A.T.); (T.N.J.)
| | - Taylor N. Jackvony
- UConn Health, Department of Pediatrics, 263 Farmington Avenue, Farmington, CT 06030, USA; (D.A.T.); (T.N.J.)
| | - Markus J. Bookland
- Connecticut Children’s Medical Center, 282 Washington St, Hartford, CT 06106, USA;
| | - Min D. Tang-Schomer
- UConn Health, Department of Pediatrics, 263 Farmington Avenue, Farmington, CT 06030, USA; (D.A.T.); (T.N.J.)
- Connecticut Children’s Medical Center, 282 Washington St, Hartford, CT 06106, USA;
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT 06030, USA
| |
Collapse
|
2
|
Zhuang W, Mun SY, Park WS. Direct effects of antipsychotics on potassium channels. Biochem Biophys Res Commun 2025; 749:151344. [PMID: 39842331 DOI: 10.1016/j.bbrc.2025.151344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/11/2025] [Accepted: 01/14/2025] [Indexed: 01/24/2025]
Abstract
Schizophrenia (SCZ) and bipolar disorder (BD) and are severe psychiatric conditions that contribute to disability and increased healthcare costs globally. Although first-, second-, and third-generation antipsychotics are available for treating BD and SCZ, most have various side effects unrelated to their unique functions. Many antipsychotics affect K+ channels (Kv, KCa, Kir, K2P, and other channels), which change the functions of various organs. This review summarizes the biological actions of antipsychotics, including off-target side effects involving K+ channels.
Collapse
Affiliation(s)
- Wenwen Zhuang
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Seo-Yeong Mun
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Won Sun Park
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea.
| |
Collapse
|
3
|
Fan JJ, Erickson AW, Carrillo-Garcia J, Wang X, Skowron P, Wang X, Chen X, Shan G, Dou W, Bahrampour S, Xiong Y, Dong W, Abeysundara N, Francisco MA, Pusong RJ, Wang W, Li M, Ying E, Suárez RA, Farooq H, Holgado BL, Wu X, Daniels C, Dupuy AJ, Cadiñanos J, Bradley A, Bagchi A, Moriarity BS, Largaespada DA, Morrissy AS, Ramaswamy V, Mack SC, Garzia L, Dirks PB, Li X, Wanggou S, Egan S, Sun Y, Taylor MD, Huang X. A forward genetic screen identifies potassium channel essentiality in SHH medulloblastoma maintenance. Dev Cell 2025:S1534-5807(25)00001-2. [PMID: 39862856 DOI: 10.1016/j.devcel.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/28/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025]
Abstract
Distinguishing tumor maintenance genes from initiation, progression, and passenger genes is critical for developing effective therapies. We employed a functional genomic approach using the Lazy Piggy transposon to identify tumor maintenance genes in vivo and applied this to sonic hedgehog (SHH) medulloblastoma (MB). Combining Lazy Piggy screening in mice and transcriptomic profiling of human MB, we identified the voltage-gated potassium channel KCNB2 as a candidate maintenance driver. KCNB2 governs cell volume of MB-propagating cells (MPCs), with KCNB2 depletion causing osmotic swelling, decreased plasma membrane tension, and elevated endocytic internalization of epidermal growth factor receptor (EGFR), thereby mitigating proliferation of MPCs to ultimately impair MB growth. KCNB2 is largely dispensable for mouse development and KCNB2 knockout synergizes with anti-SHH therapy in treating MB. These results demonstrate the utility of the Lazy Piggy functional genomic approach in identifying cancer maintenance drivers and elucidate a mechanism by which potassium homeostasis integrates biomechanical and biochemical signaling to promote MB aggression.
Collapse
Affiliation(s)
- Jerry J Fan
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Anders W Erickson
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Julia Carrillo-Garcia
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Xin Wang
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Patryk Skowron
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Xian Wang
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Xin Chen
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Guanqiao Shan
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Wenkun Dou
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Shahrzad Bahrampour
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Yi Xiong
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Weifan Dong
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Namal Abeysundara
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Michelle A Francisco
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Ronwell J Pusong
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Wei Wang
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Miranda Li
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Elliot Ying
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Raúl A Suárez
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Hamza Farooq
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Borja L Holgado
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Xiaochong Wu
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Texas Children's Cancer and Hematology Center, Houston, TX 77030, USA; Department of Pediatrics, Hematology/Oncology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Craig Daniels
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Texas Children's Cancer and Hematology Center, Houston, TX 77030, USA; Department of Pediatrics, Hematology/Oncology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Adam J Dupuy
- Department of Anatomy & Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52246, USA
| | - Juan Cadiñanos
- Instituto de Medicina Oncológica y Molecular de Asturias (IMOMA), Oviedo 33193, Spain
| | - Allan Bradley
- T-Therapeutics Ltd. One Riverside, Granta Park, Cambridge CB21 6AD, UK
| | - Anindya Bagchi
- Tumor Initiation and Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Branden S Moriarity
- Masonic Cancer Center, Department of Pediatrics, and Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - David A Largaespada
- Masonic Cancer Center, Department of Pediatrics, and Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - A Sorana Morrissy
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB T2N 4Z6, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada; Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 2T8, Canada
| | - Vijay Ramaswamy
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Paediatrics, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Stephen C Mack
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Developmental Neurobiology, Neurobiology and Brain Tumor Program, Center of Excellence in Neuro-Oncology Sciences, St Jude Children's Hospital, Memphis, TN 38105, USA
| | - Livia Garzia
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Surgery, Division of Orthopedic Surgery, McGill University, Montreal, QC H4A 3J1, Canada; Cancer Research Program, RI-MUHC, Montreal, QC H4A 3J1, Canada
| | - Peter B Dirks
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Surgery, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Xuejun Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Siyi Wanggou
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Sean Egan
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Yu Sun
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Michael D Taylor
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Surgery, University of Toronto, Toronto, ON M5S 1A8, Canada; Texas Children's Cancer and Hematology Center, Houston, TX 77030, USA; Department of Pediatrics, Hematology/Oncology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neurosurgery, Texas Children's Hospital, Houston, TX 77030, USA; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Xi Huang
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
4
|
Shi Q, Yang Z, Yang H, Xu L, Xia J, Gu J, Chen M, Wang Y, Zhao X, Liao Z, Mou Y, Gu X, Xie T, Sui X. Targeting ion channels: innovative approaches to combat cancer drug resistance. Theranostics 2025; 15:521-545. [PMID: 39744692 PMCID: PMC11671388 DOI: 10.7150/thno.103384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 10/21/2024] [Indexed: 01/11/2025] Open
Abstract
Ion channels, as functional molecules that regulate the flow of ions across cell membranes, have emerged as a promising target in cancer therapy due to their pivotal roles in cell proliferation, metastasis, apoptosis, drug resistance, and so on. Recently, increasing evidence suggests that dysregulation of ion channels is a common characteristic of cancer cells, contributing to their survival and the resistance to conventional therapies. For example, the aberrant expression of sodium (Na+) and potassium ion (K+) channels is significantly correlated with the sensitivity of chemotherapy drugs. The endogenous calcium (Ca2+) channels contribute to the acquired resistance of osimertinib in epidermal growth factor receptor (EGFR) mutant non-small cell lung cancer cell lines. Ferrous ions (Fe2+) enhance the sensitivity of breast cancer cells to doxorubicin treatment. Preclinical models have also demonstrated the effect of specific ion channel blockers or modulators on anticancer drug resistance. This review describes the current understanding about the interaction between ion channels and the therapeutic efficacy of anticancer drugs. Then, the therapeutic potential of ion channel blockers or modulators in enhancing the sensitivity or overcoming the resistance of cancer cells to anticancer therapies is discussed. Targeting ion channels will hopefully offer a novel and promising strategy for overcoming cancer drug resistance.
Collapse
Affiliation(s)
- Qian Shi
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Zijing Yang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Huan Yang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Lihui Xu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Jing Xia
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Jie Gu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Mengting Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Yan Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Xiaohong Zhao
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Zehua Liao
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Yiping Mou
- General Surgery, Cancer Center, Department of Gastrointestinal-Pancreatic Surgery, Zhejiang Provincial People's Hospital, Hangzhou Medical University, Hangzhou, Zhejiang, China
| | - Xidong Gu
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Xinbing Sui
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
Soladogun AS, Zhang L. The Neural Palette of Heme: Altered Heme Homeostasis Underlies Defective Neurotransmission, Increased Oxidative Stress, and Disease Pathogenesis. Antioxidants (Basel) 2024; 13:1441. [PMID: 39765770 PMCID: PMC11672823 DOI: 10.3390/antiox13121441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 01/11/2025] Open
Abstract
Heme, a complex iron-containing molecule, is traditionally recognized for its pivotal role in oxygen transport and cellular respiration. However, emerging research has illuminated its multifaceted functions in the nervous system, extending beyond its canonical roles. This review delves into the diverse roles of heme in the nervous system, highlighting its involvement in neural development, neurotransmission, and neuroprotection. We discuss the molecular mechanisms by which heme modulates neuronal activity and synaptic plasticity, emphasizing its influence on ion channels and neurotransmitter receptors. Additionally, the review explores the potential neuroprotective properties of heme, examining its role in mitigating oxidative stress, including mitochondrial oxidative stress, and its implications in neurodegenerative diseases. Furthermore, we address the pathological consequences of heme dysregulation, linking it to conditions such as Alzheimer's disease, Parkinson's disease, and traumatic brain injuries. By providing a comprehensive overview of heme's multifunctional roles in the nervous system, this review underscores its significance as a potential therapeutic target and diagnostic biomarker for various neurological disorders.
Collapse
Affiliation(s)
| | - Li Zhang
- Department of Biological Sciences, School of Natural Sciences and Mathematics, University of Texas at Dallas, Richardson, TX 75080, USA;
| |
Collapse
|
6
|
Gest AM, Grenier V, Miller EW. Optical Estimation of Membrane Potential Values Using Fluorescence Lifetime Imaging Microscopy and Hybrid Chemical-Genetic Voltage Indicators. Bioelectricity 2024; 6:34-41. [PMID: 38516638 PMCID: PMC10951690 DOI: 10.1089/bioe.2023.0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024] Open
Abstract
Introduction Membrane potential (Vm), the voltage across a cell membrane, is an important biophysical phenomenon, central to the physiology of cells, tissues, and organisms. Voltage-sensitive fluorescent indicators are a powerful method for interrogating membrane potential in living systems, but most indicators are best suited for detecting changes in membrane potential rather than measuring values of the membrane potential. One promising approach is to use fluorescence lifetime imaging microscopy (FLIM) in combination of chemically synthesized dyes to estimate a value of membrane potential. However, a drawback is that chemically synthesized dyes show poor specificity of staining. Objectives To address this problem, we applied a chemical-genetic voltage imaging approach to FLIM to enable optical estimation of membrane potential values from genetically defined cells. Results In this report, we detail the characterization and evaluation of two of these systems in mammalian cells. We further validate the use of a FLIM-based chemical genetic voltage indicator in mammalian neurons. Conclusions Finally, we discuss opportunities for future improvements to chemical-genetic FLIM-based voltage indicators.
Collapse
Affiliation(s)
- Anneliese M.M. Gest
- Department of Chemistry, University of California, Berkeley, California, USA
| | - Vincent Grenier
- Department of Chemistry, University of California, Berkeley, California, USA
| | - Evan W. Miller
- Department of Chemistry, University of California, Berkeley, California, USA
- Department of Molecular & Cell Biology, University of California, Berkeley, California, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, California, USA
| |
Collapse
|
7
|
Bahcheli AT, Min HK, Bayati M, Zhao H, Fortuna A, Dong W, Dzneladze I, Chan J, Chen X, Guevara-Hoyer K, Dirks PB, Huang X, Reimand J. Pan-cancer ion transport signature reveals functional regulators of glioblastoma aggression. EMBO J 2024; 43:196-224. [PMID: 38177502 PMCID: PMC10897389 DOI: 10.1038/s44318-023-00016-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 01/06/2024] Open
Abstract
Ion channels, transporters, and other ion-flux controlling proteins, collectively comprising the "ion permeome", are common drug targets, however, their roles in cancer remain understudied. Our integrative pan-cancer transcriptome analysis shows that genes encoding the ion permeome are significantly more often highly expressed in specific subsets of cancer samples, compared to pan-transcriptome expectations. To enable target selection, we identified 410 survival-associated IP genes in 33 cancer types using a machine-learning approach. Notably, GJB2 and SCN9A show prominent expression in neoplastic cells and are associated with poor prognosis in glioblastoma, the most common and aggressive brain cancer. GJB2 or SCN9A knockdown in patient-derived glioblastoma cells induces transcriptome-wide changes involving neuron projection and proliferation pathways, impairs cell viability and tumor sphere formation in vitro, perturbs tunneling nanotube dynamics, and extends the survival of glioblastoma-bearing mice. Thus, aberrant activation of genes encoding ion transport proteins appears as a pan-cancer feature defining tumor heterogeneity, which can be exploited for mechanistic insights and therapy development.
Collapse
Affiliation(s)
- Alexander T Bahcheli
- Computational Biology Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Hyun-Kee Min
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Masroor Bayati
- Computational Biology Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Hongyu Zhao
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Neurosurgery and Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Alexander Fortuna
- Computational Biology Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Weifan Dong
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Irakli Dzneladze
- Computational Biology Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Jade Chan
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Xin Chen
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Songjiang Research Institute, Songjiang Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kissy Guevara-Hoyer
- Computational Biology Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
- Cancer Immunomonitoring and Immuno-Mediated Pathologies Support Unit, Department of Clinical Immunology, Institute of Laboratory Medicine (IML) and Biomedical Research Foundation (IdiSCC), San Carlos Clinical Hospital, Madrid, Spain
| | - Peter B Dirks
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Xi Huang
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada.
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada.
| | - Jüri Reimand
- Computational Biology Program, Ontario Institute for Cancer Research, Toronto, ON, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
8
|
Dong W, Fekete A, Chen X, Liu H, Beilhartz GL, Chen X, Bahrampour S, Xiong Y, Yang Q, Zhao H, Kong T, Morioka MS, Jung G, Kim JE, Schramek D, Dirks PB, Song Y, Kim TH, He Y, Wanggou S, Li X, Melnyk RA, Wang LY, Huang X. A designer peptide against the EAG2-Kvβ2 potassium channel targets the interaction of cancer cells and neurons to treat glioblastoma. NATURE CANCER 2023; 4:1418-1436. [PMID: 37697045 DOI: 10.1038/s43018-023-00626-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/02/2023] [Indexed: 09/13/2023]
Abstract
Glioblastoma (GBM) is an incurable brain cancer that lacks effective therapies. Here we show that EAG2 and Kvβ2, which are predominantly expressed by GBM cells at the tumor-brain interface, physically interact to form a potassium channel complex due to a GBM-enriched Kvβ2 isoform. In GBM cells, EAG2 localizes at neuron-contacting regions in a Kvβ2-dependent manner. Genetic knockdown of the EAG2-Kvβ2 complex decreases calcium transients of GBM cells, suppresses tumor growth and invasion and extends the survival of tumor-bearing mice. We engineered a designer peptide to disrupt EAG2-Kvβ2 interaction, thereby mitigating tumor growth in patient-derived xenograft and syngeneic mouse models across GBM subtypes without overt toxicity. Neurons upregulate chemoresistant genes in GBM cells in an EAG2-Kvβ2-dependent manner. The designer peptide targets neuron-associated GBM cells and possesses robust efficacy in treating temozolomide-resistant GBM. Our findings may lead to the next-generation therapeutic agent to benefit patients with GBM.
Collapse
Affiliation(s)
- Weifan Dong
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Adam Fekete
- Neurosciences and Mental Health Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Xiaodi Chen
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Hongwei Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Greg L Beilhartz
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Xin Chen
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Shahrzad Bahrampour
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Yi Xiong
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Qi Yang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Hongyu Zhao
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Tian Kong
- Neurosciences and Mental Health Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Malia S Morioka
- Macaulay Honors College, City College of New York, New York, NY, USA
- Advanced Science Research Center at the Graduate Center, City University of New York, New York, NY, USA
| | - Geena Jung
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ji-Eun Kim
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Daniel Schramek
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Peter B Dirks
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Yuanquan Song
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tae-Hee Kim
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Ye He
- Macaulay Honors College, City College of New York, New York, NY, USA
- Advanced Science Research Center at the Graduate Center, City University of New York, New York, NY, USA
| | - Siyi Wanggou
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Xuejun Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Roman A Melnyk
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Lu-Yang Wang
- Neurosciences and Mental Health Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Xi Huang
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada.
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
9
|
Robbins SM, Senger DL. Targeting network circuitry in glioma. NATURE CANCER 2023; 4:1406-1407. [PMID: 37880415 DOI: 10.1038/s43018-023-00640-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Affiliation(s)
- Stephen M Robbins
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec, Canada
| | - Donna L Senger
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada.
- Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
10
|
Randhawa K, Jahani-Asl A. CLIC1 regulation of cancer stem cells in glioblastoma. CURRENT TOPICS IN MEMBRANES 2023; 92:99-123. [PMID: 38007271 DOI: 10.1016/bs.ctm.2023.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
Chloride intracellular channel 1 (CLIC1) has emerged as a therapeutic target in various cancers. CLIC1 promotes cell cycle progression and cancer stem cell (CSC) self-renewal. Furthermore, CLIC1 is shown to play diverse roles in proliferation, cell volume regulation, tumour invasion, migration, and angiogenesis. In glioblastoma (GB), CLIC1 facilitates the G1/S phase transition and tightly regulates glioma stem-like cells (GSCs), a rare population of self-renewing CSCs with central roles in tumour resistance to therapy and tumour recurrence. CLIC1 is found as either a monomeric soluble protein or as a non-covalent dimeric protein that can form an ion channel. The ratio of dimeric to monomeric protein is altered in GSCs and depends on the cell redox state. Elucidating the mechanisms underlying the alterations in CLIC1 expression and structural transitions will further our understanding of its role in GSC biology. This review will highlight the role of CLIC1 in GSCs and its significance in facilitating different hallmarks of cancer.
Collapse
Affiliation(s)
- Kamaldeep Randhawa
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada; Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Arezu Jahani-Asl
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada; Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada; Regenerative Medicine Program and Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.
| |
Collapse
|
11
|
Xing J, Gumerov VM, Zhulin IB. Origin and functional diversification of PAS domain, a ubiquitous intracellular sensor. SCIENCE ADVANCES 2023; 9:eadi4517. [PMID: 37647406 PMCID: PMC10468136 DOI: 10.1126/sciadv.adi4517] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/28/2023] [Indexed: 09/01/2023]
Abstract
Signal perception is a key function in regulating biological activities and adapting to changing environments. Per-Arnt-Sim (PAS) domains are ubiquitous sensors found in diverse receptors in bacteria, archaea, and eukaryotes, but their origins, distribution across the tree of life, and extent of their functional diversity are not fully characterized. Here, we show that using sequence conservation and structural information, it is possible to propose specific and potential functions for a large portion of nearly 3 million PAS domains. Our analysis suggests that PAS domains originated in bacteria and were horizontally transferred to archaea and eukaryotes. We reveal that gas sensing via a heme cofactor evolved independently in several lineages, whereas redox and light sensing via flavin adenine dinucleotide and flavin mononucleotide cofactors have the same origin. The close relatedness of human PAS domains to those in bacteria provides an opportunity for drug design by exploring potential natural ligands and cofactors for bacterial homologs.
Collapse
Affiliation(s)
- Jiawei Xing
- Department of Microbiology, The Ohio State University, Columbus, OH, USA
- Translational Data Analytics Institute, The Ohio State University, Columbus, OH USA
| | - Vadim M. Gumerov
- Department of Microbiology, The Ohio State University, Columbus, OH, USA
- Translational Data Analytics Institute, The Ohio State University, Columbus, OH USA
| | - Igor B. Zhulin
- Department of Microbiology, The Ohio State University, Columbus, OH, USA
- Translational Data Analytics Institute, The Ohio State University, Columbus, OH USA
| |
Collapse
|
12
|
Childhood Brain Tumors: A Review of Strategies to Translate CNS Drug Delivery to Clinical Trials. Cancers (Basel) 2023; 15:cancers15030857. [PMID: 36765816 PMCID: PMC9913389 DOI: 10.3390/cancers15030857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 02/01/2023] Open
Abstract
Brain and spinal tumors affect 1 in 1000 people by 25 years of age, and have diverse histological, biological, anatomical and dissemination characteristics. A mortality of 30-40% means the majority are cured, although two-thirds have life-long disability, linked to accumulated brain injury that is acquired prior to diagnosis, and after surgery or chemo-radiotherapy. Only four drugs have been licensed globally for brain tumors in 40 years and only one for children. Most new cancer drugs in clinical trials do not cross the blood-brain barrier (BBB). Techniques to enhance brain tumor drug delivery are explored in this review, and cover those that augment penetration of the BBB, and those that bypass the BBB. Developing appropriate delivery techniques could improve patient outcomes by ensuring efficacious drug exposure to tumors (including those that are drug-resistant), reducing systemic toxicities and targeting leptomeningeal metastases. Together, this drug delivery strategy seeks to enhance the efficacy of new drugs and enable re-evaluation of existing drugs that might have previously failed because of inadequate delivery. A literature review of repurposed drugs is reported, and a range of preclinical brain tumor models available for translational development are explored.
Collapse
|
13
|
Ion Channels in Gliomas-From Molecular Basis to Treatment. Int J Mol Sci 2023; 24:ijms24032530. [PMID: 36768856 PMCID: PMC9916861 DOI: 10.3390/ijms24032530] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 01/31/2023] Open
Abstract
Ion channels provide the basis for the nervous system's intrinsic electrical activity. Neuronal excitability is a characteristic property of neurons and is critical for all functions of the nervous system. Glia cells fulfill essential supportive roles, but unlike neurons, they also retain the ability to divide. This can lead to uncontrolled growth and the formation of gliomas. Ion channels are involved in the unique biology of gliomas pertaining to peritumoral pathology and seizures, diffuse invasion, and treatment resistance. The emerging picture shows ion channels in the brain at the crossroads of neurophysiology and fundamental pathophysiological processes of specific cancer behaviors as reflected by uncontrolled proliferation, infiltration, resistance to apoptosis, metabolism, and angiogenesis. Ion channels are highly druggable, making them an enticing therapeutic target. Targeting ion channels in difficult-to-treat brain tumors such as gliomas requires an understanding of their extremely heterogenous tumor microenvironment and highly diverse molecular profiles, both representing major causes of recurrence and treatment resistance. In this review, we survey the current knowledge on ion channels with oncogenic behavior within the heterogeneous group of gliomas, review ion channel gene expression as genomic biomarkers for glioma prognosis and provide an update on therapeutic perspectives for repurposed and novel ion channel inhibitors and electrotherapy.
Collapse
|
14
|
Anastasaki C, Gao Y, Gutmann DH. Neurons as stromal drivers of nervous system cancer formation and progression. Dev Cell 2023; 58:81-93. [PMID: 36693322 PMCID: PMC9883043 DOI: 10.1016/j.devcel.2022.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/24/2022] [Accepted: 12/27/2022] [Indexed: 01/24/2023]
Abstract
Similar to their pivotal roles in nervous system development, neurons have emerged as critical regulators of cancer initiation, maintenance, and progression. Focusing on nervous system tumors, we describe the normal relationships between neurons and other cell types relevant to normal nerve function, and discuss how disruptions of these interactions promote tumor evolution, focusing on electrical (gap junctions) and chemical (synaptic) coupling, as well as the establishment of new paracrine relationships. We also review how neuron-tumor communication contributes to some of the complications of cancer, including neuropathy, chemobrain, seizures, and pain. Finally, we consider the implications of cancer neuroscience in establishing risk for tumor penetrance and in the design of future anti-tumoral treatments.
Collapse
Affiliation(s)
- Corina Anastasaki
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yunqing Gao
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
15
|
Li M, Tian P, Zhao Q, Ma X, Zhang Y. Potassium channels: Novel targets for tumor diagnosis and chemoresistance. Front Oncol 2023; 12:1074469. [PMID: 36703789 PMCID: PMC9872028 DOI: 10.3389/fonc.2022.1074469] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/21/2022] [Indexed: 01/11/2023] Open
Abstract
In recent years, the role of potassium channels in tumors has been intensively studied. Potassium channel proteins are widely involved in various physiological and pathological processes of cells. The expression and dysfunction of potassium channels are closely related to tumor progression. Potassium channel blockers or activators present antitumor effects by directly inhibiting tumor growth or enhancing the potency of classical antitumor agents in combination therapy. This article reviews the mechanisms by which potassium channels contribute to tumor development in various tumors in recent years, introduces the potential of potassium channels as diagnostic targets and therapeutic means for tumors, and provides further ideas for the proper individualized treatment of tumors.
Collapse
Affiliation(s)
- Meizeng Li
- School of Basic Medical Science, Weifang Medical University, Weifang, China
| | - Peijie Tian
- School of Basic Medical Science, Weifang Medical University, Weifang, China
| | - Qing Zhao
- School of Basic Medical Science, Weifang Medical University, Weifang, China
| | - Xialin Ma
- School of Basic Medical Science, Weifang Medical University, Weifang, China
| | - Yunxiang Zhang
- Department of Pathology, Weifang People’ s Hospital, Weifang, China,*Correspondence: Yunxiang Zhang,
| |
Collapse
|
16
|
Boyle Y, Johns TG, Fletcher EV. Potassium Ion Channels in Malignant Central Nervous System Cancers. Cancers (Basel) 2022; 14:cancers14194767. [PMID: 36230692 PMCID: PMC9563970 DOI: 10.3390/cancers14194767] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
Malignant central nervous system (CNS) cancers are among the most difficult to treat, with low rates of survival and a high likelihood of recurrence. This is primarily due to their location within the CNS, hindering adequate drug delivery and tumour access via surgery. Furthermore, CNS cancer cells are highly plastic, an adaptive property that enables them to bypass targeted treatment strategies and develop drug resistance. Potassium ion channels have long been implicated in the progression of many cancers due to their integral role in several hallmarks of the disease. Here, we will explore this relationship further, with a focus on malignant CNS cancers, including high-grade glioma (HGG). HGG is the most lethal form of primary brain tumour in adults, with the majority of patient mortality attributed to drug-resistant secondary tumours. Hence, targeting proteins that are integral to cellular plasticity could reduce tumour recurrence, improving survival. This review summarises the role of potassium ion channels in malignant CNS cancers, specifically how they contribute to proliferation, invasion, metastasis, angiogenesis, and plasticity. We will also explore how specific modulation of these proteins may provide a novel way to overcome drug resistance and improve patient outcomes.
Collapse
Affiliation(s)
- Yasmin Boyle
- Telethon Kids Institute, Perth Children’s Hospital, 15 Hospital Ave, Nedlands, Perth, WA 6009, Australia
- School of Biomedicine, The University of Western Australia, 35 Stirling Hwy, Crawley, Perth, WA 6009, Australia
- Correspondence:
| | - Terrance G. Johns
- Telethon Kids Institute, Perth Children’s Hospital, 15 Hospital Ave, Nedlands, Perth, WA 6009, Australia
- School of Biomedicine, The University of Western Australia, 35 Stirling Hwy, Crawley, Perth, WA 6009, Australia
| | - Emily V. Fletcher
- Telethon Kids Institute, Perth Children’s Hospital, 15 Hospital Ave, Nedlands, Perth, WA 6009, Australia
- School of Biomedicine, The University of Western Australia, 35 Stirling Hwy, Crawley, Perth, WA 6009, Australia
| |
Collapse
|
17
|
Brown JS. Treatment of cancer with antipsychotic medications: Pushing the boundaries of schizophrenia and cancer. Neurosci Biobehav Rev 2022; 141:104809. [PMID: 35970416 DOI: 10.1016/j.neubiorev.2022.104809] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/30/2022] [Accepted: 07/31/2022] [Indexed: 10/15/2022]
Abstract
Over a century ago, the phenothiazine dye, methylene blue, was discovered to have both antipsychotic and anti-cancer effects. In the 20th-century, the first phenothiazine antipsychotic, chlorpromazine, was found to inhibit cancer. During the years of elucidating the pharmacology of the phenothiazines, reserpine, an antipsychotic with a long historical background, was likewise discovered to have anti-cancer properties. Research on the effects of antipsychotics on cancer continued slowly until the 21st century when efforts to repurpose antipsychotics for cancer treatment accelerated. This review examines the history of these developments, and identifies which antipsychotics might treat cancer, and which cancers might be treated by antipsychotics. The review also describes the molecular mechanisms through which antipsychotics may inhibit cancer. Although the overlap of molecular pathways between schizophrenia and cancer have been known or suspected for many years, no comprehensive review of the subject has appeared in the psychiatric literature to assess the significance of these similarities. This review fills that gap and discusses what, if any, significance the similarities have regarding the etiology of schizophrenia.
Collapse
|
18
|
Ozbek MA, Yardibi F, Genç B, Basak AT, Tahta A, Akalan N. Pediatric brain tumors: a bibliometric analysis. Childs Nerv Syst 2022; 38:1095-1104. [PMID: 35306574 DOI: 10.1007/s00381-022-05506-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/16/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE The purpose of this study was to identify tendency and current issues in research on pediatric brain tumors over the past 20 years and to help researchers and investors explore new directions for future research in this subject. METHODS Web of Science Core Collection was used for article selection and CiteSpace 5.8.R 1 was used for bibliometric analyses with these articles. RESULTS The overall h-index was found to be 131 in the analysis made in a total of 4019 publications on the subject between the years 2000 and 2021. A total of 16,101 authors have published articles on pediatric brain tumors. The most active author in this field was Michael D. Taylor (h-index: 105). The publication which received the strongest citation burst among publications was published in 2016 by Louis et al. published in Acta Neuropathologica, and its content is the World Health Organization's classification of central nervous system tumors. Considering the country contribution, the USA is seen in the leading position. The most publications on the subject were followed by the Journal of Clinical Oncology. CONCLUSION By examining the studies on childhood brain tumors carried out around the world, the subjects that can be determined as the focus were tried to be highlighted. And it has been seen that the scientific and industrial community should work together and the financial support for multidisciplinary studies should increase.
Collapse
Affiliation(s)
- Muhammet Arif Ozbek
- Department of Neurosurgery, Istanbul Medipol University, TEM Avrupa Otoyolu Göztepe Çıkışı No:1, D:1, 34214, Bağcılar/İstanbul, Turkey.
| | - Fatma Yardibi
- Department of Animal Science, Akdeniz University, Antalya, Turkey
| | - Berkhan Genç
- Department of Neurosurgery, Istanbul Medipol University, TEM Avrupa Otoyolu Göztepe Çıkışı No:1, D:1, 34214, Bağcılar/İstanbul, Turkey
| | | | - Alican Tahta
- Department of Neurosurgery, Istanbul Medipol University, TEM Avrupa Otoyolu Göztepe Çıkışı No:1, D:1, 34214, Bağcılar/İstanbul, Turkey
| | - Nejat Akalan
- Department of Neurosurgery, Istanbul Medipol University, TEM Avrupa Otoyolu Göztepe Çıkışı No:1, D:1, 34214, Bağcılar/İstanbul, Turkey
| |
Collapse
|
19
|
Wang YX, Wu H, Ren Y, Lv S, Ji C, Xiang D, Zhang M, Lu H, Fu W, Liu Q, Yan Z, Ma Q, Miao J, Cai R, Lan X, Wu B, Wang W, Liu Y, Wang DZ, Cao M, He Z, Shi Y, Ping Y, Yao X, Zhang X, Zhang P, Wang JM, Wang Y, Cui Y, Bian XW. Elevated Kir2.1/nuclear N2ICD defines a highly malignant subtype of non-WNT/SHH medulloblastomas. Signal Transduct Target Ther 2022; 7:72. [PMID: 35273141 PMCID: PMC8913686 DOI: 10.1038/s41392-022-00890-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 11/20/2021] [Accepted: 12/13/2021] [Indexed: 11/09/2022] Open
Abstract
Medulloblastoma (MB) is one of the most common childhood malignant brain tumors (WHO grade IV), traditionally divided into WNT, SHH, Group 3, and Group 4 subgroups based on the transcription profiles, somatic DNA alterations, and clinical outcomes. Unlike WNT and SHH subgroup MBs, Group 3 and Group 4 MBs have similar transcriptomes and lack clearly specific drivers and targeted therapeutic options. The recently revised WHO Classification of CNS Tumors has assigned Group 3 and 4 to a provisional non-WNT/SHH entity. In the present study, we demonstrate that Kir2.1, an inwardly-rectifying potassium channel, is highly expressed in non-WNT/SHH MBs, which promotes tumor cell invasion and metastasis by recruiting Adam10 to enhance S2 cleavage of Notch2 thereby activating the Notch2 signaling pathway. Disruption of the Notch2 pathway markedly inhibited the growth and metastasis of Kir2.1-overexpressing MB cell-derived xenograft tumors in mice. Moreover, Kir2.1high/nuclear N2ICDhigh MBs are associated with the significantly shorter lifespan of the patients. Thus, Kir2.1high/nuclear N2ICDhigh can be used as a biomarker to define a novel subtype of non-WNT/SHH MBs. Our findings are important for the modification of treatment regimens and the development of novel-targeted therapies for non-WNT/SHH MBs.
Collapse
Affiliation(s)
- Yan-Xia Wang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (former Third Military Medical University), 400038, Chongqing, China
| | - Haibo Wu
- Department of Pathology, The First Affiliated Hospital of University of Science and Technology of China, 230036, Hefei, Anhui, China.,Intelligent Pathology Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, 230036, Hefei, Anhui, China
| | - Yong Ren
- Department of Pathology, General Hospital of Central Theater Command of PLA, 627 Wuluo Road, Hongshan District, 430070, Wuhan, Hubei, China
| | - Shengqing Lv
- Xinqiao Hospital, Army Medical University, 400038, Chongqing, China
| | - Chengdong Ji
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (former Third Military Medical University), 400038, Chongqing, China
| | - Dongfang Xiang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (former Third Military Medical University), 400038, Chongqing, China
| | - Mengsi Zhang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (former Third Military Medical University), 400038, Chongqing, China
| | - Huimin Lu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (former Third Military Medical University), 400038, Chongqing, China
| | - Wenjuan Fu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (former Third Military Medical University), 400038, Chongqing, China
| | - Qing Liu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (former Third Military Medical University), 400038, Chongqing, China
| | - Zexuan Yan
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (former Third Military Medical University), 400038, Chongqing, China
| | - Qinghua Ma
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (former Third Military Medical University), 400038, Chongqing, China
| | - Jingya Miao
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (former Third Military Medical University), 400038, Chongqing, China
| | - Ruili Cai
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (former Third Military Medical University), 400038, Chongqing, China
| | - Xi Lan
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (former Third Military Medical University), 400038, Chongqing, China
| | - Bin Wu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (former Third Military Medical University), 400038, Chongqing, China
| | - Wenying Wang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (former Third Military Medical University), 400038, Chongqing, China
| | - Yinhua Liu
- Department of Pathology, The First Affiliated Hospital of Wannan Medical College, 241001, Wuhu, Anhui, China
| | - Dai-Zhong Wang
- Department of Pathology, Taihe Hospital, Hubei University of Medicine, 442000, Shiyan, Hubei, China
| | - Mianfu Cao
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (former Third Military Medical University), 400038, Chongqing, China
| | - Zhicheng He
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (former Third Military Medical University), 400038, Chongqing, China
| | - Yu Shi
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (former Third Military Medical University), 400038, Chongqing, China
| | - Yifang Ping
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (former Third Military Medical University), 400038, Chongqing, China
| | - Xiaohong Yao
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (former Third Military Medical University), 400038, Chongqing, China
| | - Xia Zhang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (former Third Military Medical University), 400038, Chongqing, China
| | - Peng Zhang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (former Third Military Medical University), 400038, Chongqing, China
| | - Ji Ming Wang
- Laboratory of Cancer and Immunometabolism, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21703, US
| | - Yan Wang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (former Third Military Medical University), 400038, Chongqing, China.
| | - Youhong Cui
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (former Third Military Medical University), 400038, Chongqing, China.
| | - Xiu-Wu Bian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (former Third Military Medical University), 400038, Chongqing, China.
| |
Collapse
|
20
|
Payne SL, Ram P, Srinivasan DH, Le TT, Levin M, Oudin MJ. Potassium channel-driven bioelectric signalling regulates metastasis in triple-negative breast cancer. EBioMedicine 2022; 75:103767. [PMID: 34933180 PMCID: PMC8688589 DOI: 10.1016/j.ebiom.2021.103767] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 11/22/2021] [Accepted: 12/06/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND There is a critical need to better understand the mechanisms that drive local cell invasion and metastasis to develop new therapeutics targeting metastatic disease. Bioelectricity is an important mediator of cellular processes and changes in the resting membrane potential (RMP) are associated with increased cancer cell invasion. However, whether the RMP can be used to target invading cancer cells is unknown. METHODS We employed both genetic and pharmacological manipulation of potassium channel activity and characterized the effects on breast cancer cell migration and invasion in vitro, and metastasis in an animal model of breast cancer. FINDINGS Our data demonstrate that altering the RMP of triple-negative breast cancer (TNBC) cells by manipulating potassium channel expression increases in vitro invasion, in vivo tumour growth and metastasis, and is accompanied by changes in gene expression associated with cell adhesion. INTERPRETATION We describe a novel mechanism for RMP-mediated cell migration involving cadherin-11 and the MAPK pathway. Importantly, we identify a new strategy to target metastatic TNBC in vivo by repurposing an FDA-approved potassium channel blocker. Our results demonstrate that bioelectricity regulates cancer cell invasion and metastasis which could lead to a new class of therapeutics for patients with metastatic disease. FUNDING This work was supported by the National Institutes of Health (R00-CA207866 to M.J.O.), Tufts University (Start-up funds from the School of Engineering to M.J.O., Tufts Collaborates Award to M.J.O. and M.L.), Allen Discovery centre program (Paul G. Allen Frontiers Group (12,171) to M.L.), and Breast Cancer Alliance Young Investigator Grant to M.J.O, Laidlaw Scholar funding to D.S. M.L. also gratefully acknowledges support of the Barton Family Foundation.
Collapse
Affiliation(s)
- Samantha L Payne
- Department of Biomedical Engineering, 200 College Avenue, Tufts University, Medford MA 02155, United States of America
| | - Priyanka Ram
- Department of Biomedical Engineering, 200 College Avenue, Tufts University, Medford MA 02155, United States of America
| | - Deepti H Srinivasan
- Department of Biomedical Engineering, 200 College Avenue, Tufts University, Medford MA 02155, United States of America
| | - Thanh T Le
- Department of Biomedical Engineering, 200 College Avenue, Tufts University, Medford MA 02155, United States of America
| | - Michael Levin
- Allen Discovery Center, 200 College Avenue, Tufts University, Medford, MA 02155, United States of America
| | - Madeleine J Oudin
- Department of Biomedical Engineering, 200 College Avenue, Tufts University, Medford MA 02155, United States of America.
| |
Collapse
|
21
|
You F, Zhang C, Liu X, Ji D, Zhang T, Yu R, Gao S. Drug repositioning: Using psychotropic drugs for the treatment of glioma. Cancer Lett 2021; 527:140-149. [PMID: 34923043 DOI: 10.1016/j.canlet.2021.12.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/24/2021] [Accepted: 12/10/2021] [Indexed: 12/23/2022]
Abstract
Psychotropic drugs can penetrate the blood-brain barrier and regulate the levels of neurotransmitters and neuromodulators such as γ-aminobutyric acid, glutamate, serotonin, dopamine, and norepinephrine in the brain, and thus influence neuronal activity. Neuronal activity in the tumor microenvironment can promote the growth and expansion of glioma. There is increasing evidence that in addition to their use in the treatment of mental disorders, antipsychotic, antidepressant, and mood-stabilizing drugs have clinical potential for cancer therapy. These drugs have been shown to inhibit the malignant progression of glioma by targeting signaling pathways related to cell proliferation, apoptosis, or invasion/migration or by increasing the sensitivity of glioma cells to conventional chemotherapy or radiotherapy. In this review, we summarize findings from preclinical and clinical studies investigating the use of antipsychotics, antidepressants, and mood stabilizers in the treatment of various types of cancer, with a focus on glioma; and discuss their presumed antitumor mechanisms. The existing evidence indicates that psychotropic drugs with established pharmacologic and safety profiles can be repurposed as anticancer agents, thus providing new options for the treatment of glioma.
Collapse
Affiliation(s)
- Fangting You
- Department of Neurosurgery, Institute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, 99 West Huai-Hai Road, Xuzhou, 221002, China
| | - Caiyi Zhang
- Department of Psychiatry, The Affiliated Xuzhou Oriental Hospital of Xuzhou Medical University, 379 Tong-Shan Road, Xuzhou, 221004, China
| | - Xiaoxiao Liu
- Department of Radiation Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huai-Hai Road, Xuzhou, 221002, China
| | - Daofei Ji
- Department of Neurosurgery, The Second Affiliated Hospital of Xuzhou Medical University, 32 Mei-Jian Road, Xuzhou, 221006, China
| | - Tong Zhang
- Department of Neurosurgery, Institute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, 99 West Huai-Hai Road, Xuzhou, 221002, China.
| | - Rutong Yu
- Department of Neurosurgery, Institute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, 99 West Huai-Hai Road, Xuzhou, 221002, China.
| | - Shangfeng Gao
- Department of Neurosurgery, Institute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, 99 West Huai-Hai Road, Xuzhou, 221002, China.
| |
Collapse
|
22
|
Conformation-sensitive antibody reveals an altered cytosolic PAS/CNBh assembly during hERG channel gating. Proc Natl Acad Sci U S A 2021; 118:2108796118. [PMID: 34716268 DOI: 10.1073/pnas.2108796118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 09/22/2021] [Indexed: 11/18/2022] Open
Abstract
The human ERG (hERG) K+ channel has a crucial function in cardiac repolarization, and mutations or channel block can give rise to long QT syndrome and catastrophic ventricular arrhythmias. The cytosolic assembly formed by the Per-Arnt-Sim (PAS) and cyclic nucleotide binding homology (CNBh) domains is the defining structural feature of hERG and related KCNH channels. However, the molecular role of these two domains in channel gating remains unclear. We have previously shown that single-chain variable fragment (scFv) antibodies can modulate hERG function by binding to the PAS domain. Here, we mapped the scFv2.12 epitope to a site overlapping with the PAS/CNBh domain interface using NMR spectroscopy and mutagenesis and show that scFv binding in vitro and in the cell is incompatible with the PAS interaction with CNBh. By generating a fluorescently labeled scFv2.12, we demonstrate that association with the full-length hERG channel is state dependent. We detect Förster resonance energy transfer (FRET) with scFv2.12 when the channel gate is open but not when it is closed. In addition, state dependence of scFv2.12 FRET signal disappears when the R56Q mutation, known to destabilize the PAS-CNBh interaction, is introduced in the channel. Altogether, these data are consistent with an extensive structural alteration of the PAS/CNBh assembly when the cytosolic gate opens, likely favoring PAS domain dissociation from the CNBh domain.
Collapse
|
23
|
Codding SJ, Johnson AA, Trudeau MC. Gating and regulation of KCNH (ERG, EAG, and ELK) channels by intracellular domains. Channels (Austin) 2021; 14:294-309. [PMID: 32924766 PMCID: PMC7515569 DOI: 10.1080/19336950.2020.1816107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The KCNH family comprises the ERG, EAG, and ELK voltage-activated, potassium-selective channels. Distinct from other K channels, KCNH channels contain unique structural domains, including a PAS (Per-Arnt-Sim) domain in the N-terminal region and a CNBHD (cyclic nucleotide-binding homology domain) in the C-terminal region. The intracellular PAS domains and CNBHDs interact directly and regulate some of the characteristic gating properties of each type of KCNH channel. The PAS-CNBHD interaction regulates slow closing (deactivation) of hERG channels, the kinetics of activation and pre-pulse dependent population of closed states (the Cole-Moore shift) in EAG channels and voltage-dependent potentiation in ELK channels. KCNH channels are all regulated by an intrinsic ligand motif in the C-terminal region which binds to the CNBHD. Here, we focus on some recent advances regarding the PAS-CNBHD interaction and the intrinsic ligand.
Collapse
Affiliation(s)
- Sara J Codding
- Department of Physiology, University of Maryland School of Medicine , Baltimore, MD, USA
| | - Ashley A Johnson
- Department of Physiology, University of Maryland School of Medicine , Baltimore, MD, USA
| | - Matthew C Trudeau
- Department of Physiology, University of Maryland School of Medicine , Baltimore, MD, USA
| |
Collapse
|
24
|
Kamgar-Dayhoff P, Brelidze TI. Multifaceted effect of chlorpromazine in cancer: implications for cancer treatment. Oncotarget 2021; 12:1406-1426. [PMID: 34262651 PMCID: PMC8274723 DOI: 10.18632/oncotarget.28010] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/14/2021] [Indexed: 12/14/2022] Open
Abstract
Since its discovery in 1951, chlorpromazine (CPZ) has been one of the most widely used antipsychotic medications for treating schizophrenia and other psychiatric disorders. In addition to its antipsychotic effect, many studies in the last several decades have found that CPZ has a potent antitumorigenic effect. These studies have shown that CPZ affects a number of molecular oncogenic targets through multiple pathways, including the regulation of cell cycle, cancer growth and metastasis, chemo-resistance and stemness of cancer cells. Here we review studies on molecular mechanisms of CPZ’s action on key proteins involved in cancer, including p53, YAP, Ras protein, ion channels, and MAPKs. We discuss common and overlapping signaling pathways of CPZ’s action, its cancer-type specificity, antitumorigenic effects of CPZ reported in animal models and population studies on the rate of cancer in psychiatric patients. We also discuss the potential benefits and limitations of repurposing CPZ for cancer treatment.
Collapse
Affiliation(s)
- Pareesa Kamgar-Dayhoff
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, D.C., USA
| | - Tinatin I Brelidze
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, D.C., USA
| |
Collapse
|
25
|
Hou X, Tang L, Li X, Xiong F, Mo Y, Jiang X, Deng X, Peng M, Wu P, Zhao M, Ouyang J, Shi L, He Y, Yan Q, Zhang S, Gong Z, Li G, Zeng Z, Wang F, Guo C, Xiong W. Potassium Channel Protein KCNK6 Promotes Breast Cancer Cell Proliferation, Invasion, and Migration. Front Cell Dev Biol 2021; 9:616784. [PMID: 34195184 PMCID: PMC8237943 DOI: 10.3389/fcell.2021.616784] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 03/31/2021] [Indexed: 01/18/2023] Open
Abstract
Breast cancer is the most common malignant tumor in women, and its incidence is increasing each year. To effectively treat breast cancer, it is important to identify genes involved in its occurrence and development and to exploit them as potential drug therapy targets. Here, we found that potassium channel subfamily K member 6 (KCNK6) is significantly overexpressed in breast cancer, however, its function in tumors has not been reported. We further verified that KCNK6 expression is upregulated in breast cancer biopsies. Moreover, overexpressed KCNK6 was found to enhance the proliferation, invasion, and migration ability of breast cancer cells. These effects may occur by weakening cell adhesion and reducing cell hardness, thus affecting the malignant phenotype of breast cancer cells. Our study confirmed, for the first time, that increased KCNK6 expression in breast cancer cells may promote their proliferation, invasion, and migration. Moreover, considering that ion channels serve as therapeutic targets for many small molecular drugs in clinical treatment, targeting KCNK6 may represent a novel strategy for breast cancer therapies. Hence, the results of this study provide a theoretical basis for KCNK6 to become a potential molecular target for breast cancer treatment in the future.
Collapse
Affiliation(s)
- Xiangchan Hou
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Le Tang
- Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Xiayu Li
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Fang Xiong
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Yongzhen Mo
- Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Xianjie Jiang
- Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Xiangying Deng
- Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Miao Peng
- Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Pan Wu
- Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Mengyao Zhao
- Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Jiawei Ouyang
- Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Lei Shi
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yi He
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Qijia Yan
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Shanshan Zhang
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhaojian Gong
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Guiyuan Li
- Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Zhaoyang Zeng
- Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Fuyan Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Can Guo
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
26
|
Abstract
Neoplastic transformation is reportedly associated with alterations of the potassium transport across plasma and intracellular membranes. These alterations have been identified as crucial elements of the tumourigenic reprogramming of cells. Potassium channels may contribute to cancer initiation, malignant progression and therapy resistance of tumour cells. The book chapter focusses on (oncogenic) potassium channels frequently upregulated in different tumour entities, upstream and downstream signalling of these channels, their contribution to the maintenance of cancer stemness and the formation of an immunosuppressive tumour microenvironment. In addition, their role in adaptation to tumour hypoxia, metabolic reprogramming, as well as tumour spreading and metastasis is discussed. Finally, we discuss how (oncogenic) potassium channels may confer treatment resistance of tumours against radiation and chemotherapy and thus might be harnessed for new therapy strategies, for instance, by repurposing approved drugs known to target potassium channels.
Collapse
|
27
|
Li M, Deng Y, Zhang W. Molecular Determinants of Medulloblastoma Metastasis and Leptomeningeal Dissemination. Mol Cancer Res 2021; 19:743-752. [PMID: 33608450 DOI: 10.1158/1541-7786.mcr-20-1026] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/15/2021] [Accepted: 02/15/2021] [Indexed: 11/16/2022]
Abstract
Medulloblastoma is the most common malignant brain cancer in pediatrics consisting of four molecular subgroups, namely wingless (WNT), sonic hedgehog (SHH), Group 3, and Group 4. One of the biggest challenges in the clinical management of this disease is the leptomeningeal dissemination (LMD) of tumor cells with high morbidity and mortality. Many molecular regulators to date have been identified to participate in medulloblastoma metastasis. In the SHH subgroup, the co-upregulation of CXCR4 and PDGFR, as well as the activation of c-MET, show significant promigratory effects on medulloblastoma cells. Amplification or overexpression of genes on the long arm of chromosome 17, such as LASP1 and WIP1, facilitates tumor invasion in both Group 3 and Group 4 medulloblastomas. PRUNE1, NOTCH1, and MYC interactor JPO2 are more specific genetic drivers of metastatic Group 3 tumors. The RAS/MAPK and PI3K/AKT pathways are two crucial signal transduction pathways that may work as the convergent downstream mechanism of various metastatic drivers. Extracellular signals and cellular components in the tumor microenvironment also play a vital role in promoting the spread and colonization of medulloblastoma cells. For instance, the stromal granule cells and astrocytes support tumor growth and dissemination by secreting PlGF and CCL2, respectively. Importantly, the genetic divergence has been determined between the matched primary and metastatic medulloblastoma samples. However, the difficulty of obtaining metastatic medulloblastoma tissue hinders more profound studies of LMD. Therefore, identifying and analyzing the subclone with the metastatic propensity in the primary tumor is essential for future investigation.
Collapse
Affiliation(s)
- Min Li
- Department of Pediatrics Neurosurgery, Neurosurgery Center, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yuhao Deng
- Department of Pediatrics Neurosurgery, Neurosurgery Center, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wangming Zhang
- Department of Pediatrics Neurosurgery, Neurosurgery Center, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
28
|
Aslostovar L, Boyd AL, Benoit YD, Di Lu J, Garcia Rodriguez JL, Nakanishi M, Porras DP, Reid JC, Mitchell RR, Leber B, Xenocostas A, Foley R, Bhatia M. Abnormal dopamine receptor signaling allows selective therapeutic targeting of neoplastic progenitors in AML patients. CELL REPORTS MEDICINE 2021; 2:100202. [PMID: 33665638 PMCID: PMC7897800 DOI: 10.1016/j.xcrm.2021.100202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 11/02/2020] [Accepted: 01/19/2021] [Indexed: 12/17/2022]
Abstract
The aberrant expression of dopamine receptors (DRDs) in acute myeloid leukemia (AML) cells has encouraged the repurposing of DRD antagonists such as thioridazine (TDZ) as anti-leukemic agents. Here, we access patient cells from a Phase I dose escalation trial to resolve the cellular and molecular bases of response to TDZ, and we extend these findings to an additional independent cohort of AML patient samples tested preclinically. We reveal that in DRD2+ AML patients, DRD signaling in leukemic progenitors provides leukemia-exclusive networks of sensitivity that spare healthy hematopoiesis. AML progenitor cell suppression can be increased by the isolation of the positive enantiomer from the racemic TDZ mixture (TDZ+), and this is accompanied by reduced cardiac liability. Our study indicates that the development of DRD-directed therapies provides a targeting strategy for a subset of AML patients and potentially other cancers that acquire DRD expression upon transformation from healthy tissue. Leukemic progenitors are a critical cellular target of DRD2 antagonist TDZ DRD2 protein expression is a reliable biomarker of TDZ response DRD2 antagonism selectively triggers leukemic maturation programs via cyclic AMP An enantiomer of TDZ displays a superior efficacy:risk ratio relative to racemic TDZ
Collapse
Affiliation(s)
- Lili Aslostovar
- Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, Canada
| | - Allison L Boyd
- Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, Canada
| | - Yannick D Benoit
- Department of Cellular and Molecular Medicine, Ottawa University, Ottawa, ON, Canada
| | - Justin Di Lu
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | | | - Mio Nakanishi
- Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, Canada
| | - Deanna P Porras
- Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, Canada.,Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Jennifer C Reid
- Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, Canada.,Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Ryan R Mitchell
- Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, Canada
| | - Brian Leber
- Department of Medicine, McMaster University, Juravinski Hospital, Hamilton, ON, Canada
| | - Anargyros Xenocostas
- Division of Hematology, Department of Medicine, University of Western Ontario, London Health Sciences Centre, London, ON, Canada
| | - Ronan Foley
- Department of Pathology and Molecular Medicine, McMaster University, Juravinski Hospital, Hamilton, ON, Canada
| | - Mickie Bhatia
- Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, Canada.,Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
29
|
Gao S, Liang H, Shou Z, Yao Y, Lv Y, Shang J, Lu W, Jia C, Liu Q, Zhang H, Xiao L. De novo transcriptomic and proteomic analysis and potential toxin screening of Mesobuthus martensii samples from four different provinces. JOURNAL OF ETHNOPHARMACOLOGY 2021; 265:113268. [PMID: 32810618 DOI: 10.1016/j.jep.2020.113268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/04/2020] [Accepted: 08/09/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE As well-known medicinal materials in traditional Chinese medicine, scorpions, commonly called as Quanxie () in Chinese, have been widely used to treat several diseases such as rheumatoid arthritis, apoplexy, epilepsy and chronic pain for more than a thousand years. Not only in the ancient times, the scorpions have also been recorded nowadays in the Pharmacopoeia of the People's Republic of China since 1963. AIM OF STUDY This study aims to explore the differences in composition of the venom of scorpions from different regions by using the method of transcriptomics and proteomics. MATERIALS AND METHODS Whole de novo transcriptomes, proteomics and their bioinformatic analyses were performed on samples of the scorpion Mesobuthus martensii and their venoms from four different provinces with clear geographical boundaries, including Hebei, Henan, Shandong and Shanxi. RESULTS The four captured samples had the same morphology, and the conserved CO-1 sequence matched that of M. martensii. A total of 141,003 of 174,653 transcripts were identified as unigenes, of which we successfully annotated 51,627 (36.61%), 21,970 (15.58%), 7,168 (5.08%), and 45,263 (32.10%) unigenes with the NR, GO, KEGG and SWISSPROT databases, respectively, while a total of 427 proteins were collected from the protein extracted from venoms. Both GO and KEGG annotations exhibited only slight differences among the four samples while the expression level of gene and protein was quite different. A total of 249 toxin-related unigenes were successfully screened, including 41 serine proteases and serine protease inhibitors, 39 potassium channel toxins, 38 phospholipases, 16 host defense peptides, 9 metalloproteases, and 50 other toxins. Although the toxin species were similar among the four samples, the gene expression of each toxin varied considerably, for example, the scorpion from HB province has the most abundant expression quality in sequences c48391_g1, c55239_g1 and c47749_g1 while the lowest expressions of c51178_g1, c62033_g3 and c63754_g2. CONCLUSION The regional differences in the transcriptomes and proteomes of M. martensii are mainly from expression levels e.g. toxins rather than expression species, of which the method can be further extended to evaluate the qualities of traditional Chinese medicines obtained from different regions.
Collapse
Affiliation(s)
- Songyu Gao
- Faculty of Naval Medicine, Second Military Medical University (Naval Medical University), Shanghai, 200433, China.
| | - Hongyu Liang
- Faculty of Naval Medicine, Second Military Medical University (Naval Medical University), Shanghai, 200433, China; College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun, 130118, China.
| | - Zhaoyong Shou
- Faculty of Health Service, Second Military Medical University (Naval Medical University), Shanghai, 200433, China.
| | - Yuzhe Yao
- School of Nursing, Second Military Medical University (Naval Medical University), Shanghai, 200433, China.
| | - Yang Lv
- Faculty of Naval Medicine, Second Military Medical University (Naval Medical University), Shanghai, 200433, China.
| | - Jing Shang
- School of Nursing, Second Military Medical University (Naval Medical University), Shanghai, 200433, China.
| | - Wei Lu
- 905th Hospital of PLA Navy, Second Military Medical University (Naval Medical University), Shanghai, 200052, China.
| | - Changliang Jia
- Faculty of Naval Medicine, Second Military Medical University (Naval Medical University), Shanghai, 200433, China.
| | - Qing Liu
- College of Animal Science and Veterinary Medicine, ShanXi Agricultural University, ShanXi, TaiGu, 030801, China.
| | - Haiyan Zhang
- Department of Health Care, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai, 200433, China.
| | - Liang Xiao
- Faculty of Naval Medicine, Second Military Medical University (Naval Medical University), Shanghai, 200433, China.
| |
Collapse
|
30
|
Francisco MA, Wanggou S, Fan JJ, Dong W, Chen X, Momin A, Abeysundara N, Min HK, Chan J, McAdam R, Sia M, Pusong RJ, Liu S, Patel N, Ramaswamy V, Kijima N, Wang LY, Song Y, Kafri R, Taylor MD, Li X, Huang X. Chloride intracellular channel 1 cooperates with potassium channel EAG2 to promote medulloblastoma growth. J Exp Med 2020; 217:133839. [PMID: 32097463 PMCID: PMC7201926 DOI: 10.1084/jem.20190971] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 11/27/2019] [Accepted: 01/16/2020] [Indexed: 01/13/2023] Open
Abstract
Ion channels represent a large class of drug targets, but their role in brain cancer is underexplored. Here, we identify that chloride intracellular channel 1 (CLIC1) is overexpressed in human central nervous system malignancies, including medulloblastoma, a common pediatric brain cancer. While global knockout does not overtly affect mouse development, genetic deletion of CLIC1 suppresses medulloblastoma growth in xenograft and genetically engineered mouse models. Mechanistically, CLIC1 enriches to the plasma membrane during mitosis and cooperates with potassium channel EAG2 at lipid rafts to regulate cell volume homeostasis. CLIC1 deficiency is associated with elevation of cell/nuclear volume ratio, uncoupling between RNA biosynthesis and cell size increase, and activation of the p38 MAPK pathway that suppresses proliferation. Concurrent knockdown of CLIC1/EAG2 and their evolutionarily conserved channels synergistically suppressed the growth of human medulloblastoma cells and Drosophila melanogaster brain tumors, respectively. These findings establish CLIC1 as a molecular dependency in rapidly dividing medulloblastoma cells, provide insights into the mechanism by which CLIC1 regulates tumorigenesis, and reveal that targeting CLIC1 and its functionally cooperative potassium channel is a disease-intervention strategy.
Collapse
Affiliation(s)
- Michelle A Francisco
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Siyi Wanggou
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jerry J Fan
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Weifan Dong
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Xin Chen
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ali Momin
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Namal Abeysundara
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Hyun-Kee Min
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Jade Chan
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Rochelle McAdam
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Marian Sia
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ronwell J Pusong
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Shixuan Liu
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.,Program in Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Nish Patel
- Program in Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Vijay Ramaswamy
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Noriyuki Kijima
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Lu-Yang Wang
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Canada.,Department of Physiology, University of Toronto, Toronto, Canada
| | - Yuanquan Song
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA.,Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA
| | - Ran Kafri
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.,Program in Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Michael D Taylor
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Surgery, University of Toronto, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Xuejun Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xi Huang
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
31
|
Drug Repurposing in Medulloblastoma: Challenges and Recommendations. Curr Treat Options Oncol 2020; 22:6. [PMID: 33245404 DOI: 10.1007/s11864-020-00805-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2020] [Indexed: 02/06/2023]
Abstract
OPINION STATEMENT Medulloblastoma is the most frequently diagnosed primary malignant brain tumor among children. Currently available therapeutic strategies are based on surgical resection, chemotherapy, and/or radiotherapy. However, majority of patients quickly develop therapeutic resistance and are often left with long-term therapy-related side effects and sequelae. Therefore, there remains a dire need to develop more effective therapeutics to overcome the acquired resistance to currently available therapies. Unfortunately, the process of developing novel anti-neoplastic drugs from bench to bedside is highly time-consuming and very expensive. A wide range of drugs that are already in clinical use for treating non-cancerous diseases might commonly target tumor-associated signaling pathways as well and hence be of interest in treating different cancers. This is referred to as drug repurposing or repositioning. In medulloblastoma, drug repurposing has recently gained a remarkable interest as an alternative therapy to overcome therapy resistance, wherein existing non-tumor drugs are being tested for their potential anti-neoplastic effects outside the scope of their original use.
Collapse
|
32
|
Ion Channels in Cancer: Orchestrators of Electrical Signaling and Cellular Crosstalk. Rev Physiol Biochem Pharmacol 2020; 183:103-133. [PMID: 32894333 DOI: 10.1007/112_2020_48] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ion channels are pore-forming transmembrane proteins that govern ion flux to regulate a myriad of biological processes in development, physiology, and disease. Across various types of cancer, ion channel expression and activity are often dysregulated. We review the contribution of ion channels to multiple stages of tumorigenesis based on data from in vivo model systems. As intertumoral and intratumoral heterogeneities are major obstacles in developing effective therapies, we provide perspectives on how ion channels in tumor cells and their microenvironment represent targetable vulnerabilities in the areas of tumor-stromal cell interactions, cancer neuroscience, and cancer mechanobiology.
Collapse
|
33
|
Porta LC, Campeiro JD, Papa GB, Oliveira EB, Godinho RO, Rodrigues T, Hayashi MAF. In vivo effects of the association of the psychoactive phenotiazine thioridazine on antitumor activity and hind limb paralysis induced by the native polypeptide crotamine. Toxicon 2020; 185:64-71. [PMID: 32621838 DOI: 10.1016/j.toxicon.2020.06.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/28/2020] [Accepted: 06/21/2020] [Indexed: 11/18/2022]
Abstract
Crotamine is a cationic polypeptide composed by 42 amino acid residues with several pharmacological and biological properties, including the selective ability to enter and kill actively proliferating tumour cells, which led us to propose its use as a theranostic agent for cancer therapy. At the moment, the improvement of crotamine antitumoral efficacy by association with chemotherapeutic adjuvants is envisioned. In the present work, we evaluated the association of crotamine with the antitumoral adjuvant phenotiazine thioridazine (THD). In spite of the clear efficacy of these both compounds as anticancer agents in long-term in vivo treatment of animal model bearing implanted xenograph melanoma tumor, the expected mutual potentiation of the antitumor effects was not observed here. Moreover, this association revealed for the first time the influence of THD on crotamine ability to trigger the hind limb paralysis in mice, and this discovery may represent the first report suggesting the potential involvement of the CNS in the action of this snake polypeptide on the skeletal muscle paralysis, which was classically believed to be essentially limited to a direct action in peripheral tissues as the skeletal muscle. This is also supported by the observed ability of crotamine to potentiate the sedative effects of THD which action was consistently demonstrated to be based on its central action. The better characterization of crotamine properties in CNS may certainly bring important insights for the knowledge needed to pave the way toward the use of this molecule as a theranostic compound in human diseases as cancer.
Collapse
Affiliation(s)
- Lucas C Porta
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), SP, Brazil
| | - Joana D Campeiro
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), SP, Brazil
| | - Giovanna B Papa
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), SP, Brazil
| | - Eduardo B Oliveira
- Departamento de Bioquímica e Imunologia, Universidade de São Paulo (USP-RP), Ribeirão Preto, Brazil
| | - Rosely O Godinho
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), SP, Brazil
| | | | - Mirian A F Hayashi
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), SP, Brazil.
| |
Collapse
|
34
|
Amador-Muñoz D, Gutiérrez ÁM, Payán-Gómez C, Matheus LM. In silico and in vitro analysis of cation-activated potassium channels in human corneal endothelial cells. Exp Eye Res 2020; 197:108114. [PMID: 32561484 DOI: 10.1016/j.exer.2020.108114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/02/2020] [Accepted: 06/07/2020] [Indexed: 12/31/2022]
Abstract
The corneal endothelium is the inner cell monolayer involved in the maintenance of corneal transparence by the generation of homeostatic dehydration. The glycosaminoglycans of the corneal stroma develop a continuous swelling pressure that should be counteracted by the corneal endothelial cells through active transport mechanisms to move the water to the anterior chamber. Protein transporters for sodium (Na+), potassium (K+), chloride (Cl-) and bicarbonate (HCO3-) are involved in this endothelial "pump function", however despite its physiological importance, the efflux mechanism is not completely understood. There is experimental evidence describing transendothelial diffusion of water in the absence of osmotic gradients. Therefore, it is important to get a deeper understanding of alternative models that drive the fluid transport across the endothelium such as the electrochemical gradients. Three transcriptomic datasets of the corneal endothelium were used in this study to analyze the expression of genes that encode proteins that participate in the transport and the reestablishment of the membrane potential across the semipermeable endothelium. Subsequently, the expression of the identified channels was validated in vitro both at mRNA and protein levels. The results of this study provide the first evidence of the expression of KCNN2, KCNN3 and KCNT2 genes in the corneal endothelium. Differences among the level of expression of KCNN2, KCNT2 and KCNN4 genes were found in a differentially expressed gene analysis of the dataset. Taken together these results underscore the potential importance of the ionic channels in the pathophysiology of corneal diseases. Moreover, we elucidate novel mechanisms that might be involved in the pivotal dehydrating function of the endothelium and in others physiologic functions of these cells using in silico pathways analysis.
Collapse
Affiliation(s)
- Diana Amador-Muñoz
- Neuroscience (NEUROS) Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 No. 63 C 69, P.O 111221, Bogotá, Colombia.
| | - Ángela María Gutiérrez
- Escuela Superior de Oftalmología, Instituto Barraquer de América, Calle 100 No. 18 A 51, Bogotá, Colombia.
| | - César Payán-Gómez
- Department of Biology, Faculty of Natural Sciences, Universidad del Rosario, Carrera 24 No. 63 C 69, Bogotá, P.O 111221, Colombia.
| | - Luisa Marina Matheus
- Neuroscience (NEUROS) Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 No. 63 C 69, P.O 111221, Bogotá, Colombia.
| |
Collapse
|
35
|
Guo S, Qiu L, Chen Y, Wang X, Ma B, Qu C, Cui J, Zhang H, Xing C, Zhan Y, An H. TMEM16A-inhibitor loaded pH-responsive nanoparticles: A novel dual-targeting antitumor therapy for lung adenocarcinoma. Biochem Pharmacol 2020; 178:114062. [PMID: 32492446 DOI: 10.1016/j.bcp.2020.114062] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 05/12/2020] [Accepted: 05/27/2020] [Indexed: 12/24/2022]
Abstract
To overcome the adverse effects of conventional chemotherapy for cancers, various nanoparticles based drug delivery systems have been developed. However, nanoparticles delivering drugs directly to kill tumor cells still faced with challenges, because tumors possessed adopt complex mechanism to resist damages, which compromised the therapeutic efficacy. TMEM16A/CaCCs (Calcium activates chloride channels) has been identified to be overexpressed in lung adenocarcinoma which can serve as a novel tumor specific drug target in our previous work. Here, we developed a novel dual-targeted antitumor strategy via designing a novel nano-assembled, pH-sensitive drug-delivery system loading with specific inhibitors of TMEM16A against lung adenocarcinoma. For validation, we assayed the novel dual-targeting therapy on xenograft mouse model which exhibited significant antitumor activity and not affect mouse body weight. The dual targeting therapy accomplished in this study will shed light on the development of advanced antitumor strategy.
Collapse
Affiliation(s)
- Shuai Guo
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China; Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, Hebei University of Technology, Tianjin 300130, China; Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin 300401, China
| | - Liang Qiu
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin 300401, China
| | - Yafei Chen
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin 300401, China
| | - Xuzhao Wang
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China; Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, Hebei University of Technology, Tianjin 300130, China; Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin 300401, China
| | - Biao Ma
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China; Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, Hebei University of Technology, Tianjin 300130, China; Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin 300401, China
| | - Chang Qu
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China; Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, Hebei University of Technology, Tianjin 300130, China; Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin 300401, China
| | - Jianmin Cui
- Department of Biomedical Engineering, Washington University, St Louis, MO 63130, USA
| | - Hailin Zhang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang 050017, China
| | - Chengfen Xing
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin 300401, China
| | - Yong Zhan
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China; Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, Hebei University of Technology, Tianjin 300130, China; Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin 300401, China.
| | - Hailong An
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China; Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, Hebei University of Technology, Tianjin 300130, China; Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin 300401, China.
| |
Collapse
|
36
|
Lynch-Sutherland CF, Chatterjee A, Stockwell PA, Eccles MR, Macaulay EC. Reawakening the Developmental Origins of Cancer Through Transposable Elements. Front Oncol 2020; 10:468. [PMID: 32432029 PMCID: PMC7214541 DOI: 10.3389/fonc.2020.00468] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/16/2020] [Indexed: 12/12/2022] Open
Abstract
Transposable elements (TEs) have an established role as important regulators of early human development, functioning as tissue-specific genes and regulatory elements. Functional TEs are highly active during early development, and interact with important developmental genes, some of which also function as oncogenes. Dedifferentiation is a hallmark of cancer, and is characterized by genetic and epigenetic changes that enable proliferation, self-renewal and a metabolism reminiscent of embryonic stem cells. There is also compelling evidence suggesting that the path to dedifferentiation in cancer can contribute to invasion and metastasis. TEs are frequently expressed in cancer, and recent work has identified a newly proposed mechanism involving extensive recruitment of TE-derived promoters to drive expression of oncogenes and subsequently promote oncogenesis—a process termed onco-exaptation. However, the mechanism by which this phenomenon occurs, and the extent to which it contributes to oncogenesis remains unknown. Initial hypotheses have proposed that onco-exaptation events are cancer-specific and arise randomly due to the dysregulated and hypomethylated state of cancer cells and abundance of TEs across the genome. However, we suspect that exaptation-like events may not just arise due to chance activation of novel regulatory relationships as proposed previously, but as a result of the reestablishment of early developmental regulatory relationships. Dedifferentiation in cancer is well-documented, along with expression of TEs. The known interactions between TEs and pluripotency factors such as NANOG and OCTt4 during early development, along with the expression of some placental-specific TE-derived transcripts in cancer support a possible link between TEs and dedifferentiation of tumor cells. Thus, we hypothesize that onco-exaptation events can be associated with the epigenetic reawakening of early developmental TEs to regulate expression of oncogenes and promote oncogenesis. We also suspect that activation of these early developmental regulatory TEs may promote dedifferentiation, although at this stage it is hard to predict whether TE activation is one of the initial drivers of dedifferentiation. We expect that developmental TE activation occurs as a result of the establishment of an epigenetic landscape in cancer that resembles that of early development and that developmental TE activation may also enable cancers to exploit early developmental pathways, repurposing them to promote malignancy.
Collapse
Affiliation(s)
| | - Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Peter A Stockwell
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Michael R Eccles
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Erin C Macaulay
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| |
Collapse
|
37
|
Liu Y, Duan Y, Du D, Chen F. Rescuing Kv10.2 protein changes cognitive and emotional function in kainic acid-induced status epilepticus rats. Epilepsy Behav 2020; 106:106894. [PMID: 32222671 DOI: 10.1016/j.yebeh.2019.106894] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/27/2019] [Accepted: 12/27/2019] [Indexed: 10/24/2022]
Abstract
Voltage-gated potassium (Kv) channels are widely expressed in the central and peripheral nervous system and are crucial mediators of neuronal excitability. Importantly, these channels also actively participate in cellular and molecular signaling pathways that regulate the life and death processes of neurons. The current study used a kainic acid (KA)-induced temporal lobe epilepsy model to examine the role of the Kv10.2 gene in status epilepticus (SE). Lentiviral plasmids containing the coding sequence region of the KCNH5 gene (LV-KCNH5) were injected into the CA3 subarea of the right dorsal hippocampus within 24 h in post-SE rats to rescue Kv10.2 protein expression. Open-field and elevated plus maze test results indicated that anxiety-like behavior was ameliorated in the KA + LV-KCNH5 group rats compared with the SE group rats, and working memory was improved in the Y-maze test. However, the spatial reference memory of the LV-KCNH5 group rats did not improve in the Morris water maze test, and no difference was found in the light-dark transition box test. The results of this study indicate that Kv10.2 protein may play an important role in epilepsy, providing new potential therapeutic directions and drug targets for epilepsy treatment.
Collapse
Affiliation(s)
- Yamei Liu
- School of Life Sciences, Shanghai University, Shanghai 200444, PR China
| | - Yanhong Duan
- Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, PR China
| | - Dongshu Du
- School of Life Sciences, Shanghai University, Shanghai 200444, PR China
| | - Fuxue Chen
- School of Life Sciences, Shanghai University, Shanghai 200444, PR China.
| |
Collapse
|
38
|
Abstract
Being originally discovered as cellular recycling bins, lysosomes are today recognized as versatile signaling organelles that control a wide range of cellular functions that are essential not only for the well-being of normal cells but also for malignant transformation and cancer progression. In addition to their core functions in waste disposal and recycling of macromolecules and energy, lysosomes serve as an indispensable support system for malignant phenotype by promoting cell growth, cytoprotective autophagy, drug resistance, pH homeostasis, invasion, metastasis, and genomic integrity. On the other hand, malignant transformation reduces the stability of lysosomal membranes rendering cancer cells sensitive to lysosome-dependent cell death. Notably, many clinically approved cationic amphiphilic drugs widely used for the treatment of other diseases accumulate in lysosomes, interfere with their cancer-promoting and cancer-supporting functions and destabilize their membranes thereby opening intriguing possibilities for cancer therapy. Here, we review the emerging evidence that supports the supplementation of current cancer therapies with lysosome-targeting cationic amphiphilic drugs.
Collapse
|
39
|
Liang C, Niu L, Xiao Z, Zheng C, Shen Y, Shi Y, Han X. Whole-genome sequencing of prostate cancer reveals novel mutation-driven processes and molecular subgroups. Life Sci 2019; 254:117218. [PMID: 31884093 DOI: 10.1016/j.lfs.2019.117218] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 12/02/2019] [Accepted: 12/19/2019] [Indexed: 01/27/2023]
Abstract
Prostate cancer (PCa) is the second most frequently diagnosed cancer in men. However, its genetic characteristics in the Chinese population have not been extensively profiled. Here we screened 27 Chinese patients and preformed whole-genome sequencing to dissect their genomic patterns. We found that 18.5% (5/27) tumors harbored non-protein coding mutations on FOXA1. Besides, novel focal amplifications/deletions involving ZBTB7B, SLC4A4, TBX18, CYSLTR2 and EFNA5 were frequently present in tumors. Notably, group specificity of base substitution signature B displayed a strong link to hotspot mutations on SPOP gene. Furthermore, based on six rearrangement signatures, tumors were assigned to five subgroups that revealed different biological mechanisms. Of which, tandem duplicator subgroup harbored all CDK12 mutations, small deletor subgroup owned 75% TP53 changes, and large deletor subgroup had 66.7% SPOP mutations. Taken together, we provide a comprehensive view of genomic patterns which affect the critical cell regulators of PCa in the Chinese population. Our findings may provide valuable insights for designing specific treatments for Chinese patients with PCa.
Collapse
Affiliation(s)
- Caixia Liang
- Department of Medical Oncology, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Lijuan Niu
- Department of Ultrasound, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Zejun Xiao
- Department of Urinary Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Cuiling Zheng
- Department of Clinical Laboratory, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yinchen Shen
- Department of Medical Oncology, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yuankai Shi
- Department of Medical Oncology, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.
| | - Xiaohong Han
- Department of Medical Oncology, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Department of Clinical Laboratory, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
40
|
Piggott BJ, Peters CJ, He Y, Huang X, Younger S, Jan LY, Jan YN. Paralytic, the Drosophila voltage-gated sodium channel, regulates proliferation of neural progenitors. Genes Dev 2019; 33:1739-1750. [PMID: 31753914 PMCID: PMC6942049 DOI: 10.1101/gad.330597.119] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/28/2019] [Indexed: 12/23/2022]
Abstract
Proliferating cells, typically considered "nonexcitable," nevertheless, exhibit regulation by bioelectric signals. Notably, voltage-gated sodium channels (VGSC) that are crucial for neuronal excitability are also found in progenitors and up-regulated in cancer. Here, we identify a role for VGSC in proliferation of Drosophila neuroblast (NB) lineages within the central nervous system. Loss of paralytic (para), the sole gene that encodes Drosophila VGSC, reduces neuroblast progeny cell number. The type II neuroblast lineages, featuring a population of transit-amplifying intermediate neural progenitors (INP) similar to that found in the developing human cortex, are particularly sensitive to para manipulation. Following a series of asymmetric divisions, INPs normally exit the cell cycle through a final symmetric division. Our data suggests that loss of Para induces apoptosis in this population, whereas overexpression leads to an increase in INPs and overall neuroblast progeny cell numbers. These effects are cell autonomous and depend on Para channel activity. Reduction of Para expression not only affects normal NB development, but also strongly suppresses brain tumor mass, implicating a role for Para in cancer progression. To our knowledge, our studies are the first to identify a role for VGSC in neural progenitor proliferation. Elucidating the contribution of VGSC in proliferation will advance our understanding of bioelectric signaling within development and disease states.
Collapse
Affiliation(s)
- Beverly J Piggott
- Department of Physiology, Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California 94158, USA
- Howard Hughes Medical Institute
| | - Christian J Peters
- Department of Physiology, Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California 94158, USA
| | - Ye He
- Neuroscience Initiative, Advanced Science Research Center, the Graduate Center, City University of New York, New York 10031, New York
| | - Xi Huang
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 3E1, Canada
| | - Susan Younger
- Department of Physiology, Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California 94158, USA
- Howard Hughes Medical Institute
| | - Lily Yeh Jan
- Department of Physiology, Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California 94158, USA
- Howard Hughes Medical Institute
| | - Yuh Nung Jan
- Department of Physiology, Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California 94158, USA
- Howard Hughes Medical Institute
| |
Collapse
|
41
|
Wang J, Feng S, Li M, Liu Y, Yan J, Tang Y, Du D, Chen F. Increased Expression of Kv10.2 in the Hippocampus Attenuates Valproic Acid-Induced Autism-Like Behaviors in Rats. Neurochem Res 2019; 44:2796-2808. [DOI: 10.1007/s11064-019-02903-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/22/2019] [Accepted: 10/25/2019] [Indexed: 12/13/2022]
|
42
|
Abstract
As the leading cause of death in cancer, there is an urgent need to develop treatments to target the dissemination of primary tumor cells to secondary organs, known as metastasis. Bioelectric signaling has emerged in the last century as an important controller of cell growth, and with the development of current molecular tools we are now beginning to identify its role in driving cell migration and metastasis in a variety of cancer types. This review summarizes the currently available research for bioelectric signaling in solid tumor metastasis. We review the steps of metastasis and discuss how these can be controlled by bioelectric cues at the level of a cell, a population of cells, and the tissue. The role of ion channel, pump, and exchanger activity and ion flux is discussed, along with the importance of the membrane potential and the relationship between ion flux and membrane potential. We also provide an overview of the evidence for control of metastasis by external electric fields (EFs) and draw from examples in embryogenesis and regeneration to discuss the implications for endogenous EFs. By increasing our understanding of the dynamic properties of bioelectric signaling, we can develop new strategies that target metastasis to be translated into the clinic.
Collapse
Affiliation(s)
- Samantha L. Payne
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
| | - Michael Levin
- Allen Discovery Center, Tufts University, Medford, Massachusetts
| | - Madeleine J. Oudin
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
| |
Collapse
|
43
|
Wang ZJ, Tiwari PB, Üren A, Brelidze TI. Identification of undecylenic acid as EAG channel inhibitor using surface plasmon resonance-based screen of KCNH channels. BMC Pharmacol Toxicol 2019; 20:42. [PMID: 31315662 PMCID: PMC6637479 DOI: 10.1186/s40360-019-0324-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/11/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND KCNH family of potassium channels is responsible for diverse physiological functions ranging from the regulation of neuronal excitability and cardiac contraction to the regulation of cancer progression. KCNH channels contain a Per-Arn-Sim (PAS) domain in their N-terminal and cyclic nucleotide-binding homology (CNBH) domain in their C-terminal regions. These intracellular domains shape the function of KCNH channels and are important targets for drug development. METHODS Here we describe a surface plasmon resonance (SPR)-based screening method aimed in identifying small molecule binders of PAS and CNBH domains for three KCNH channel subfamilies: ether-à-go-go (EAG), EAG-related gene (ERG), and EAG-like K+ (ELK). The method involves purification of the PAS and CNBH domains, immobilization of the purified domains on the SPR senor chip and screening small molecules in a chemical library for binding to the immobilized domains using changes in the SPR response as a reporter of the binding. The advantages of this method include low quantity of purified PAS and CNBH domains necessary for the implementation of the screen, direct assessment of the small molecule binding to the PAS and CNBH domains and easiness of assessing KCNH subfamily specificity of the small molecule binders. RESULTS Using the SPR-based method we screened the Spectrum Collection Library of 2560 compounds against the PAS and CNBH domains of the three KCNH channel subfamilies and identified a pool of small molecules that bind to the PAS or CNBH domains. To further evaluate the effectiveness of the screen we tested the functional effect of one of the identified mEAG PAS domain specific small molecule binders on currents recorded from EAG channels. Undecylenic acid inhibited currents recorded from EAG channels in a concentration-dependent manner with IC50 of ~ 1 μM. CONCLUSION Our results show that the SPR-based method is well suited for identifying small molecule binders of KCNH channels and can facilitate drug discovery for other ion channels as well.
Collapse
Affiliation(s)
- Ze-Jun Wang
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC USA
| | | | - Aykut Üren
- Department of Oncology, Georgetown University Medical Center, Washington, DC USA
| | - Tinatin I. Brelidze
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC USA
| |
Collapse
|
44
|
Abstract
Ion channels play as a pivotal role in hypertension in the processes of maintenance of vascular tone and sympathetic excitement of hypertension. The Kv10.2 channel (encoded by the Kcnh5 gene) belongs to the EAG voltage-gated superfamily. It is distributed widely in the brain, such as the hippocampus, the cortex, and the olfactory bulb. To date, the expression of Kv10.2 in central nervous system nuclei that regulates cardiovascular function and its inter-relationship with hypertension are still unclear. Here, electric foot-shock stressors with noise were used to establish the stress-induced hypertensive (SIH) rat model. The expression of Kv10.2 in the rostral ventrolateral medulla, the nucleus tractus solitarius, and the paraventricular nucleus (PVN) was examined by immunohistochemical staining and western blots. The following results were obtained: (a) the expression level of Kv10.2 was increased obviously in the paraventricular nucleus of SIH rats, whereas no significant difference was found in the rostral ventrolateral medulla and the nucleus tractus solitarius. (b) Kv10.2 was located in neurons. (c) Vesicular glutamate transporter 1 as a protein mark of glutamate neurons was increased in the paraventricular nucleus of the SIH group. (d) The expression of vesicular glutamate transporter 1 protein in neurons was significantly decreased when the Kcnh5 gene was knocked down by small interfering RNA in vitro. These findings indicate that the changes in Kv10.2 may be related to SIH, which may provide a potential avenue for further investigation of SIH.
Collapse
|
45
|
Eckerdt F, Bell JB, Beauchamp EM, Clymer J, Blyth GT, Kosciuczuk EM, Ma Q, Chen DZ, Horbinski C, Goldman S, Munshi HG, Hashizume R, Platanias LC. Potent Antineoplastic Effects of Combined PI3Kα-MNK Inhibition in Medulloblastoma. Mol Cancer Res 2019; 17:1305-1315. [PMID: 30842251 PMCID: PMC6548590 DOI: 10.1158/1541-7786.mcr-18-1193] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 01/15/2019] [Accepted: 03/01/2019] [Indexed: 12/28/2022]
Abstract
Medulloblastoma is a highly malignant pediatric brain tumor associated with poor outcome. Developing treatments that target the cancer stem cell (CSC) population in medulloblastoma are important to prevent tumor relapse and induce long-lasting clinical responses. We utilized medulloblastoma neurospheres that display CSC characteristics and found activation of the PI3K/AKT pathway in sphere-forming cells. Of all class IA PI3Ks, only the PI3Kα isoform was required for sphere formation by medulloblastoma cells. Knockdown of p110α, but not p110β or p110δ, significantly disrupted cancer stem cell frequencies as determined by extreme limiting dilution analysis (ELDA), indicating an essential role for the PI3Kα catalytic isoform in medulloblastoma CSCs. Importantly, pharmacologic inhibition of the MAPK-interacting kinase (MNK) enhanced the antineoplastic effects of targeted PI3Kα inhibition in medulloblastoma. This indicates that MNK signaling promotes survival in medulloblastoma, suggesting dual PI3Kα and MNK inhibition may provide a novel approach to target and eliminate medulloblastoma CSCs. We also observed a significant reduction in tumor formation in subcutaneous and intracranial mouse xenograft models, which further suggests that this combinatorial approach may represent an efficient therapeutic strategy for medulloblastoma. IMPLICATIONS: These findings raise the possibility of a unique therapeutic approach for medulloblastoma, involving MNK targeting to sensitize medulloblastoma CSCs to PI3Kα inhibition.
Collapse
Affiliation(s)
- Frank Eckerdt
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Jonathan B Bell
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
| | - Elspeth M Beauchamp
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
- Division of Hematology/Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Medicine Service, Jesse Brown VA Medical Center, Chicago, Illinois
| | - Jessica Clymer
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
- Division of Hematology/Oncology/Stem Cell Transplantation, Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - Gavin T Blyth
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
| | - Ewa M Kosciuczuk
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
- Division of Hematology/Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Medicine Service, Jesse Brown VA Medical Center, Chicago, Illinois
| | - Quanhong Ma
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - David Z Chen
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
| | - Craig Horbinski
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Stewart Goldman
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
- Division of Hematology/Oncology/Stem Cell Transplantation, Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - Hidayatullah G Munshi
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
- Division of Hematology/Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Medicine Service, Jesse Brown VA Medical Center, Chicago, Illinois
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Rintaro Hashizume
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Leonidas C Platanias
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois.
- Division of Hematology/Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Medicine Service, Jesse Brown VA Medical Center, Chicago, Illinois
| |
Collapse
|
46
|
Churchill CDM, Winter P, Tuszynski JA, Levin M. EDEn-Electroceutical Design Environment: Ion Channel Tissue Expression Database with Small Molecule Modulators. iScience 2019; 11:42-56. [PMID: 30590250 PMCID: PMC6308252 DOI: 10.1016/j.isci.2018.12.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/22/2018] [Accepted: 12/06/2018] [Indexed: 02/06/2023] Open
Abstract
The emerging field of bioelectricity has revealed numerous new roles for ion channels beyond the nervous system, which can be exploited for applications in regenerative medicine. Developing such biomedical interventions for birth defects, cancer, traumatic injury, and bioengineering first requires knowledge of ion channel targets expressed in tissues of interest. This information can then be used to select combinations of small molecule inhibitors and/or activators that manipulate the bioelectric state. Here, we provide an overview of electroceutical design environment (EDEn), the first bioinformatic platform that facilitates the design of such therapeutic strategies. This database includes information on ion channels and ion pumps, linked to known chemical modulators and their properties. The database also provides information about the expression levels of the ion channels in over 100 tissue types. The graphical interface allows the user to readily identify chemical entities that can alter the electrical properties of target cells and tissues.
Collapse
Affiliation(s)
| | - Philip Winter
- Department of Oncology, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| | - Jack A Tuszynski
- Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada; Department of Oncology, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| | - Michael Levin
- Allen Discovery Center, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155, USA.
| |
Collapse
|
47
|
Teng J, Hejazi S, Hiddingh L, Carvalho L, de Gooijer MC, Wakimoto H, Barazas M, Tannous M, Chi AS, Noske DP, Wesseling P, Wurdinger T, Batchelor TT, Tannous BA. Recycling drug screen repurposes hydroxyurea as a sensitizer of glioblastomas to temozolomide targeting de novo DNA synthesis, irrespective of molecular subtype. Neuro Oncol 2019; 20:642-654. [PMID: 29099956 DOI: 10.1093/neuonc/nox198] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background Glioblastoma (GBM) is the most common and most aggressive primary malignant brain tumor. Standard-of-care treatment involves maximal surgical resection of the tumor followed by radiation and chemotherapy (temozolomide [TMZ]). The 5-year survival rate of patients with GBM is <10%, a colossal failure that has been partially attributed to intrinsic and/or acquired resistance to TMZ through O6-methylguanine DNA methyltransferase (MGMT) promoter methylation status in the tumor. Methods A drug screening aimed at evaluating the potential recycling and repurposing of known drugs was conducted in TMZ-resistant GBM cell lines and primary cultures of newly diagnosed GBM with different MGMT promoter methylation status, phenotypic/genotypic background and subtype, and validated with sphere formation, cell migration assays, and quantitative invasive orthotopic in vivo models. Results We identified hydroxyurea (HU) to synergize with TMZ in GBM cells in culture and in vivo, irrespective of MGMT promoter methylation status, subtype, and/or stemness. HU acts specifically on the S-phase of the cell cycle by inhibiting the M2 unit of enzyme ribonucleotide reductase. Knockdown of this enzyme using RNA interference and other known chemical inhibitors exerted a similar effect to HU in combination with TMZ both in culture and in vivo. Conclusions We demonstrate preclinical efficacy of repurposing hydroxyurea in combination with TMZ for adjuvant GBM therapy. This combination benefit is of direct clinical interest given the extensive use of TMZ and the associated problems with TMZ-related resistance and treatment failure.
Collapse
Affiliation(s)
- Jian Teng
- Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Boston, Massachusetts, USA.,NeuroDiscovery Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Seyedali Hejazi
- Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Boston, Massachusetts, USA.,NeuroDiscovery Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Lotte Hiddingh
- Department of Neurosurgery, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, the Netherlands.,Department of Pediatric Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, the Netherlands
| | - Litia Carvalho
- Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Boston, Massachusetts, USA.,NeuroDiscovery Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Mark C de Gooijer
- Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Neurosurgery, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, the Netherlands
| | - Hiroaki Wakimoto
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Marco Barazas
- Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Neurosurgery, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, the Netherlands
| | - Marie Tannous
- Faculty of Natural and Applied Sciences, Notre Dame University-Louaize, Zouk Mosbeh, Lebanon
| | - Andrew S Chi
- Division of Neuro-Oncology, Perlmutter Cancer Center, NYU Langone Medical Center, New York, New York, USA
| | - David P Noske
- Department of Neurosurgery, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, the Netherlands.,Neuro-oncology Research Group, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, the Netherlands
| | - Pieter Wesseling
- Neuro-oncology Research Group, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, the Netherlands.,Department of Pathology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, the Netherlands.,Department of Pathology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Thomas Wurdinger
- Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Boston, Massachusetts, USA.,NeuroDiscovery Center, Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurosurgery, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, the Netherlands.,Neuro-oncology Research Group, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, the Netherlands
| | - Tracy T Batchelor
- Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Boston, Massachusetts, USA.,Stephen E. and Catherine Pappas Center for Neuro-Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Bakhos A Tannous
- Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Boston, Massachusetts, USA.,NeuroDiscovery Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
48
|
Hutchings CJ, Colussi P, Clark TG. Ion channels as therapeutic antibody targets. MAbs 2018; 11:265-296. [PMID: 30526315 PMCID: PMC6380435 DOI: 10.1080/19420862.2018.1548232] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 11/01/2018] [Accepted: 11/03/2018] [Indexed: 12/12/2022] Open
Abstract
It is now well established that antibodies have numerous potential benefits when developed as therapeutics. Here, we evaluate the technical challenges of raising antibodies to membrane-spanning proteins together with enabling technologies that may facilitate the discovery of antibody therapeutics to ion channels. Additionally, we discuss the potential targeting opportunities in the anti-ion channel antibody landscape, along with a number of case studies where functional antibodies that target ion channels have been reported. Antibodies currently in development and progressing towards the clinic are highlighted.
Collapse
Affiliation(s)
| | | | - Theodore G. Clark
- TetraGenetics Inc, Arlington Massachusetts, USA
- Department of Microbiology and Immunology, Cornell University, Ithaca New York, USA
| |
Collapse
|
49
|
Prevarskaya N, Skryma R, Shuba Y. Ion Channels in Cancer: Are Cancer Hallmarks Oncochannelopathies? Physiol Rev 2018; 98:559-621. [PMID: 29412049 DOI: 10.1152/physrev.00044.2016] [Citation(s) in RCA: 307] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Genomic instability is a primary cause and fundamental feature of human cancer. However, all cancer cell genotypes generally translate into several common pathophysiological features, often referred to as cancer hallmarks. Although nowadays the catalog of cancer hallmarks is quite broad, the most common and obvious of them are 1) uncontrolled proliferation, 2) resistance to programmed cell death (apoptosis), 3) tissue invasion and metastasis, and 4) sustained angiogenesis. Among the genes affected by cancer, those encoding ion channels are present. Membrane proteins responsible for signaling within cell and among cells, for coupling of extracellular events with intracellular responses, and for maintaining intracellular ionic homeostasis ion channels contribute to various extents to pathophysiological features of each cancer hallmark. Moreover, tight association of these hallmarks with ion channel dysfunction gives a good reason to classify them as special type of channelopathies, namely oncochannelopathies. Although the relation of cancer hallmarks to ion channel dysfunction differs from classical definition of channelopathies, as disease states causally linked with inherited mutations of ion channel genes that alter channel's biophysical properties, in a broader context of the disease state, to which pathogenesis ion channels essentially contribute, such classification seems absolutely appropriate. In this review the authors provide arguments to substantiate such point of view.
Collapse
Affiliation(s)
- Natalia Prevarskaya
- INSERM U-1003, Equipe Labellisée par la Ligue Nationale contre le Cancer et LABEX, Université Lille1 , Villeneuve d'Ascq , France ; Bogomoletz Institute of Physiology and International Center of Molecular Physiology, NASU, Kyiv-24, Ukraine
| | - Roman Skryma
- INSERM U-1003, Equipe Labellisée par la Ligue Nationale contre le Cancer et LABEX, Université Lille1 , Villeneuve d'Ascq , France ; Bogomoletz Institute of Physiology and International Center of Molecular Physiology, NASU, Kyiv-24, Ukraine
| | - Yaroslav Shuba
- INSERM U-1003, Equipe Labellisée par la Ligue Nationale contre le Cancer et LABEX, Université Lille1 , Villeneuve d'Ascq , France ; Bogomoletz Institute of Physiology and International Center of Molecular Physiology, NASU, Kyiv-24, Ukraine
| |
Collapse
|
50
|
Zhang W, Zhang C, Liu F, Mao Y, Xu W, Fan T, Sun Q, He S, Chen Y, Guo W, Tan Y, Jiang Y. Antiproliferative activities of the second-generation antipsychotic drug sertindole against breast cancers with a potential application for treatment of breast-to-brain metastases. Sci Rep 2018; 8:15753. [PMID: 30361678 PMCID: PMC6202417 DOI: 10.1038/s41598-018-33740-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 09/19/2018] [Indexed: 01/24/2023] Open
Abstract
Epidemiological observations have shown that schizophrenia patients after long-term drug treatment exhibited reduced tumor incidences. The potential anticancer effects of antipsychotic drugs are subsequently demonstrated. These drugs are of great interest as agents against untreatable brain metastases because of their ability to traverse the blood-brain barrier (BBB). Most drugs tested thus far are the first-generation antipsychotics (FGAs). But their clinical application may be limited due to high risks of deaths in elderly patients. There is an urgent need to find additional BBB-traversing anticancer agents with lower risks of deaths. In this work, we investigated antitumor activities of eight second-generation-antipsychotic (SGA) drugs, since they exhibit lower mortality rates than FGAs. We discovered that sertindole showed broad antiproliferative activities against seven cancer types including 29 cell-lines and exhibited potent effects toward breast cancer cell-lines, with half maximal concentration to inhibit proliferation by 50% (IC50) as low as 800 nM. We further found that sertindole caused cell death through autophagy-associated apoptosis and its directly-binding inhibition of 5-HT6 involved in this process. In xenotransplant mice, sertindole administration approaching maximal therapeutic dose attenuated breast-tumor growth by 22.7%. Therefore, our study reveals promising anticancer potentials of sertindole against breast cancers, with probable applications for breast-to-brain metastases.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory of Chemical Oncogenomics, the Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, P. R. China.,School of Medicine, Tsinghua University, Beijing, 100084, P. R. China
| | - Cunlong Zhang
- Shenzhen Technology and Engineering Laboratory for Personalized Cancer Diagnostics and Therapeutics, Shenzhen Kivita Innovative Drug Discovery Institute, Shenzhen, 518055, P. R. China
| | - Feng Liu
- State Key Laboratory of Chemical Oncogenomics, the Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Yu Mao
- State Key Laboratory of Chemical Oncogenomics, the Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Wei Xu
- School of Medicine, Tsinghua University, Beijing, 100084, P. R. China
| | - Tingting Fan
- State Key Laboratory of Chemical Oncogenomics, the Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Qinsheng Sun
- State Key Laboratory of Chemical Oncogenomics, the Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, P. R. China.,School of Medicine, Tsinghua University, Beijing, 100084, P. R. China
| | - Shengnan He
- State Key Laboratory of Chemical Oncogenomics, the Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Yuzong Chen
- Shenzhen Technology and Engineering Laboratory for Personalized Cancer Diagnostics and Therapeutics, Shenzhen Kivita Innovative Drug Discovery Institute, Shenzhen, 518055, P. R. China
| | - Wei Guo
- School of Medicine, Tsinghua University, Beijing, 100084, P. R. China.
| | - Ying Tan
- State Key Laboratory of Chemical Oncogenomics, the Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, P. R. China.
| | - Yuyang Jiang
- State Key Laboratory of Chemical Oncogenomics, the Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, P. R. China. .,Department of Pharmacology and Pharmaceutical Sciences, School of Medicine, Tsinghua University, Beijing, 100084, P. R. China.
| |
Collapse
|