1
|
Chuikova ZV, Filatov AA, Faber AY, Arsalidou M. Mapping common and distinct brain correlates among cognitive flexibility tasks: concordant evidence from meta-analyses. Brain Imaging Behav 2025; 19:50-71. [PMID: 39467932 PMCID: PMC11846771 DOI: 10.1007/s11682-024-00921-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2024] [Indexed: 10/30/2024]
Abstract
Cognitive flexibility allows individuals to switch between different tasks, strategies, or ideas; an ability that is important for everyday life. The Wisconsin card sorting test (WCST) and task switching paradigm (TSP) are popular measures of cognitive flexibility. Although both tasks require switching, the TSP requires participants to memorize switching rules and retrieve them when they view a cue (rule-retrieval), whereas the classic WCST requires participants to discover the switching rule via trial-and-error (rule-discovery). Many functional magnetic resonance imaging studies have examined brain responses to these tasks. Extant meta-analyses show concordance in activation in a widespread set of areas including frontal, parietal, and cingulate cortices. Critically, past meta-analyses have not specifically examined brain correlates associated with rule derivation (i.e., rule-discovery vs. rule-retrieval) in cognitive flexibility tasks. We examine for the first time common and distinct concordance in brain responses to rule-discovery (i.e., WCST) and rule-retrieval (i.e., TSP), as well as TSP subtypes using quantitative meta-analyses. We analyzed data from 69 eligible articles with a total of 1617 young-adult participants. Conjunction results show concordance in common fronto-parietal areas predominantly in the left hemisphere. Contrast analyses show that rule-discovery required increased involvement in multiple cortical and subcortical regions such as frontopolar (Brodmann Area 10), parietal, insular cortex, thalamus and caudate nucleus predominantly in the right hemisphere. No significant differences in concordance were observed among the three, task switching paradigm sub-types. We propose a neuroanatomical model of cognitive flexibility and discuss theoretical and practical applications.
Collapse
Affiliation(s)
- Zhanna V Chuikova
- Centre for Cognition and Decision making, Institute for Cognitive Neuroscience, HSE University, Moscow, Russian Federation.
- Department of Pedagogy and Medical Psychology, Sechenov University, Moscow, Russian Federation.
| | - Andrei A Filatov
- Laboratory for Cognitive Research, School of Psychology, Faculty of Social Sciences, HSE University, Moscow, Russian Federation
| | - Andrei Y Faber
- Laboratory for Cognitive Research, School of Psychology, Faculty of Social Sciences, HSE University, Moscow, Russian Federation
| | - Marie Arsalidou
- York University, Toronto, Canada.
- NeuroPsyLab.com, Toronto, Canada.
| |
Collapse
|
2
|
Istomina A, Arsalidou M. Add, subtract and multiply: Meta-analyses of brain correlates of arithmetic operations in children and adults. Dev Cogn Neurosci 2024; 69:101419. [PMID: 39098250 PMCID: PMC11342769 DOI: 10.1016/j.dcn.2024.101419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 05/24/2024] [Accepted: 07/21/2024] [Indexed: 08/06/2024] Open
Abstract
Mathematical operations are cognitive actions we take to calculate relations among numbers. Arithmetic operations, addition, subtraction, multiplication, and division are elemental in education. Addition is the first one taught in school and is most popular in functional magnetic resonance imaging (fMRI) studies. Division, typically taught last is least studied with fMRI. fMRI meta-analyses show that arithmetic operations activate brain areas in parietal, cingulate and insular cortices for children and adults. Critically, no meta-analysis examines concordance across brain correlates of separate arithmetic operations in children and adults. We review and examine using quantitative meta-analyses data from fMRI articles that report brain coordinates separately for addition, subtraction, multiplication, and division in children and adults. Results show that arithmetic operations elicit common areas of concordance in fronto-parietal and cingulo-opercular networks in adults and children. Between operations differences are observed primarily for adults. Interestingly, higher within-group concordance, expressed in activation likelihood estimates, is found in brain areas associated with the cingulo-opercular network rather than the fronto-parietal network in children, areas also common between adults and children. Findings are discussed in relation to constructivist cognitive theory and practical directions for future research.
Collapse
|
3
|
Samuelsson R. The two-faced process of learning and the importance of Janus-faced solutions. NPJ SCIENCE OF LEARNING 2023; 8:58. [PMID: 38097603 PMCID: PMC10721835 DOI: 10.1038/s41539-023-00210-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/04/2023] [Indexed: 12/17/2023]
Affiliation(s)
- Robin Samuelsson
- Department of Scandinavian Languages, Uppsala University, Thunbergsv 3L, 751 20, Uppsala, Sweden.
| |
Collapse
|
4
|
Dattola S, Bonanno L, Ielo A, Quercia A, Quartarone A, La Foresta F. Brain Active Areas Associated with a Mental Arithmetic Task: An eLORETA Study. Bioengineering (Basel) 2023; 10:1388. [PMID: 38135979 PMCID: PMC10740510 DOI: 10.3390/bioengineering10121388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/10/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
The neural underpinnings of mental calculation, the fundamentals of arithmetic representations and processes, and the development of arithmetic abilities have been explored by researchers over the years. In the present work, we report a study that analyzes the brain-activated areas of a group of 35 healthy subjects (9 males, 26 females, mean age ± SD = 18.23 ± 2.20 years) who performed a serial subtraction arithmetic task. In contrast to most of the studies in the literature based on fMRI, we performed the brain active source reconstruction starting from EEG signals by means of the eLORETA method. In particular, the subjects were classified as bad counters or good counters, according to the results of the task, and the brain activity of the two groups was compared. The results were statistically significant only in the beta band, revealing that the left limbic lobe was found to be more active in people showing better performance. The limbic lobe is involved in visuospatial processing, memory, arithmetic fact retrieval, and emotions. However, the role of the limbic lobe in mental arithmetic has been barely explored, so these interesting findings could represent a starting point for future in-depth analyses. Since there is evidence in the literature that the motor system is affected by the execution of arithmetic tasks, a more extensive knowledge of the brain activation associated with arithmetic tasks could be exploited not only for the assessment of mathematical skills but also in the evaluation of motor impairments and, consequently, in rehabilitation for motor disorders.
Collapse
Affiliation(s)
- Serena Dattola
- IRCCS Centro Neurolesi Bonino-Pulejo, Via Palermo c/da Casazza, SS. 113, 98124 Messina, Italy; (S.D.); (L.B.); (A.Q.)
| | - Lilla Bonanno
- IRCCS Centro Neurolesi Bonino-Pulejo, Via Palermo c/da Casazza, SS. 113, 98124 Messina, Italy; (S.D.); (L.B.); (A.Q.)
| | - Augusto Ielo
- IRCCS Centro Neurolesi Bonino-Pulejo, Via Palermo c/da Casazza, SS. 113, 98124 Messina, Italy; (S.D.); (L.B.); (A.Q.)
| | - Angelica Quercia
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, 98122 Messina, Italy;
| | - Angelo Quartarone
- IRCCS Centro Neurolesi Bonino-Pulejo, Via Palermo c/da Casazza, SS. 113, 98124 Messina, Italy; (S.D.); (L.B.); (A.Q.)
| | - Fabio La Foresta
- DICEAM Department, Mediterranea University of Reggio Calabria, Via Graziella Feo di Vito, 89060 Reggio Calabria, Italy;
| |
Collapse
|
5
|
Bachurina V, Arsalidou M. Multiple levels of mental attentional demand modulate peak saccade velocity and blink rate. Heliyon 2022; 8:e08826. [PMID: 35128110 PMCID: PMC8800024 DOI: 10.1016/j.heliyon.2022.e08826] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/10/2021] [Accepted: 01/19/2022] [Indexed: 11/24/2022] Open
Abstract
Every day we mentally process new information that needs to be attended, encoded and retrieved. Processing demands depend on the amount of information and the mental attentional capacity of the individual. Research shows that eye movement indices such as peak saccade velocity and blink rate are related to processes of attentional control, however it is still unclear how eye movements are affected by graded changes in task demand. We examine for the first time relations of eye movements to mental attentional tasks with six levels of task demand and two interference conditions. We report data on 57 adults who completed two versions of the color matching task and provided subjective self rating for each mental attentional demand level. Results show that peak saccade velocity and blink rate decrease as a function of mental attentional demand and correlate negatively with self rating of mental effort. Theoretically, new findings related to mental attentional demand and eye movements inform models of visual processing and cognition. Practically, results point to directions for further research to better understand complex relations among eye movements and mental attentional demand in pediatric populations and individuals with cognitive deficits.
Collapse
Affiliation(s)
| | - Marie Arsalidou
- HSE University, Moscow, Russian Federation
- York University, Toronto, Canada
| |
Collapse
|
6
|
Arsalidou M, Vijayarajah S, Sharaev M. Basal ganglia lateralization in different types of reward. Brain Imaging Behav 2021; 14:2618-2646. [PMID: 31927758 DOI: 10.1007/s11682-019-00215-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Reward processing is a fundamental human activity. The basal ganglia are recognized for their role in reward processes; however, specific roles of the different nuclei (e.g., nucleus accumbens, caudate, putamen and globus pallidus) remain unclear. Using quantitative meta-analyses we assessed whole-brain and basal ganglia specific contributions to money, erotic, and food reward processing. We analyzed data from 190 fMRI studies which reported stereotaxic coordinates of whole-brain, within-group results from healthy adult participants. Results showed concordance in overlapping and distinct cortical and sub-cortical brain regions as a function of reward type. Common to all reward types was concordance in basal ganglia nuclei, with distinct differences in hemispheric dominance and spatial extent in response to the different reward types. Food reward processing favored the right hemisphere; erotic rewards favored the right lateral globus pallidus and left caudate body. Money rewards engaged the basal ganglia bilaterally including its most anterior part, nucleus accumbens. We conclude by proposing a model of common reward processing in the basal ganglia and separate models for money, erotic, and food rewards.
Collapse
Affiliation(s)
- Marie Arsalidou
- Department of Psychology, National Research University Higher School of Economics, Moscow, Russian Federation. .,Department of Psychology, Faculty of Health, York University, Toronto, ON, Canada.
| | - Sagana Vijayarajah
- Department of Psychology, Faculty of Arts and Science, University of Toronto, Toronto, ON, Canada
| | - Maksim Sharaev
- Skolkovo Institute of Science and Technology, Moscow, Russian Federation
| |
Collapse
|
7
|
Yaple ZA, Yu R, Arsalidou M. Spatial migration of human reward processing with functional development: Evidence from quantitative meta-analyses. Hum Brain Mapp 2020; 41:3993-4009. [PMID: 32638450 PMCID: PMC7469823 DOI: 10.1002/hbm.25103] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 11/30/2022] Open
Abstract
Functional magnetic resonance imaging (fMRI) studies have shown notable age‐dependent differences in reward processing. We analyzed data from a total of 554 children, 1,059 adolescents, and 1,831 adults from 70 articles. Quantitative meta‐analyses results show that adults engage an extended set of regions that include anterior and posterior cingulate gyri, insula, basal ganglia, and thalamus. Adolescents engage the posterior cingulate and middle frontal gyri as well as the insula and amygdala, whereas children show concordance in right insula and striatal regions almost exclusively. Our data support the notion of reorganization of function over childhood and adolescence and may inform current hypotheses relating to decision‐making across age.
Collapse
Affiliation(s)
- Zachary A Yaple
- Department of Psychology, National University of Singapore, Singapore, Singapore
| | - Rongjun Yu
- Department of Psychology, National University of Singapore, Singapore, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
| | - Marie Arsalidou
- Department of Psychology, National Research University Higher School of Economics, Moscow, Russian Federation.,Department of Psychology, Faculty of Health, York University, Toronto, Canada
| |
Collapse
|
8
|
Polspoel B, Vandermosten M, De Smedt B. The association of grey matter volume and cortical complexity with individual differences in children's arithmetic fluency. Neuropsychologia 2019; 137:107293. [PMID: 31809780 DOI: 10.1016/j.neuropsychologia.2019.107293] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 10/01/2019] [Accepted: 12/01/2019] [Indexed: 11/15/2022]
Abstract
Only a small amount of studies have looked at the structural neural correlates of children's arithmetic. Furthermore, these studies mainly implemented voxel-based morphometry, which only takes the volume of regions into account, without looking at other structural properties. The current study aimed to contribute knowledge on which brain regions are important for children's arithmetic on a structural level, by not only implementing voxel-based morphometry, but also cortical complexity analyses, based on the fractal dimension index. This complexity measure describes a characteristic of surface shape. Data of 43 typically developing 9-10 year-olds were analyzed. All children were asked to take part in two test sessions: behavioral data collection and MRI data acquisition. For data analysis, mean values for volume and cortical complexity were estimated within regions of interest (ROIs) and extracted for further analysis. The selected ROIs were based on regions found to be related to children's mathematical abilities in previous research. Results point towards associations between arithmetic fluency and the volume of the right fusiform gyrus, as well as the cortical complexity of the left postcentral gyrus, right insular sulcus, and left lateral orbital sulcus. Remarkably, no significant associations were observed between the children's arithmetic fluency and the volume or cortical complexity of typically arithmetic-associated parietal regions, such as the superior parietal lobe, intraparietal sulcus, or angular gyrus. Accordingly, the current study highlights the importance of structural characteristics of brain regions other than these typically arithmetic-associated parietal regions for children's arithmetic fluency.
Collapse
Affiliation(s)
- Brecht Polspoel
- Parenting and Special Education Research Unit, KU Leuven, Belgium
| | | | - Bert De Smedt
- Parenting and Special Education Research Unit, KU Leuven, Belgium.
| |
Collapse
|
9
|
Yaple ZA, Stevens WD, Arsalidou M. Meta-analyses of the n-back working memory task: fMRI evidence of age-related changes in prefrontal cortex involvement across the adult lifespan. Neuroimage 2019; 196:16-31. [DOI: 10.1016/j.neuroimage.2019.03.074] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 03/20/2019] [Accepted: 03/30/2019] [Indexed: 10/27/2022] Open
|
10
|
Pascual-Leone J. Growing minds have a maturing mental attention: A review of Demetriou and Spanoudis (2018). INTELLIGENCE 2019. [DOI: 10.1016/j.intell.2018.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Silva MAD, Mendonça Filho EJD, Bandeira DR. Development of the Dimensional Inventory of Child Development Assessment (IDADI). PSICO-USF 2019. [DOI: 10.1590/1413-82712019240102] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstract Child development is complex and includes multiple domains, such as cognition, communication and language, motor skills, socialization, and emotional development. The objective of this paper was to present the development process of the Dimensional Inventory of Child Development Assessment (IDADI) and evidence of its content validity. IDADI was conceived to assess child development of children from zero to 72 months of age through parental reports covering Cognitive, Motor (Gross and Fine), Communication and Language (Receptive and Expressive), Socioemotional and Adaptive Behavior domains. The development process involved: description of the theoretical foundation; development of the preliminary version of the instrument; expert item analysis; semantic analysis of the items by the target population; and a pilot study. The initial item pool had 2,365 items and the final version consisted of 524, after exclusions, modifications and additions. The stages of development led to changes in most of the items. This process is considered to have ensured IDADI’s content validity. Thus, it is believed that IDADI will contribute to child development assessment in Brazil in clinical and research contexts.
Collapse
Affiliation(s)
- Mônia Aparecida da Silva
- Universidade Federal do Rio Grande do Sul, Brazil; Grupo de Estudo, Aplicação e Pesquisa em Avaliação Psicológica, Brazil; Universidade Federal de São João del-Rei, Brazil
| | | | - Denise Ruschel Bandeira
- Universidade Federal do Rio Grande do Sul, Brazil; Grupo de Estudo, Aplicação e Pesquisa em Avaliação Psicológica, Brazil
| |
Collapse
|
12
|
Hung Y, Gaillard SL, Yarmak P, Arsalidou M. Dissociations of cognitive inhibition, response inhibition, and emotional interference: Voxelwise ALE meta-analyses of fMRI studies. Hum Brain Mapp 2018; 39:4065-4082. [PMID: 29923271 DOI: 10.1002/hbm.24232] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 05/14/2018] [Accepted: 05/15/2018] [Indexed: 12/19/2022] Open
Abstract
Inhibitory control is the stopping of a mental process with or without intention, conceptualized as mental suppression of competing information because of limited cognitive capacity. Inhibitory control dysfunction is a core characteristic of many major psychiatric disorders. Inhibition is generally thought to involve the prefrontal cortex; however, a single inhibitory mechanism is insufficient for interpreting the heterogeneous nature of human cognition. It remains unclear whether different dimensions of inhibitory processes-specifically cognitive inhibition, response inhibition, and emotional interference-rely on dissociated neural systems. We conducted systematic meta-analyses of fMRI studies in the BrainMap database supplemented by PubMed using whole-brain activation likelihood estimation. A total of 66 study experiments including 1,447 participants and 987 foci revealed that while the left anterior insula was concordant in all inhibitory dimensions, cognitive inhibition reliably activated specific dorsal frontal inhibitory system, engaging dorsal anterior cingulate, dorsolateral prefrontal cortex, and parietal areas, whereas emotional interference reliably implicated a ventral inhibitory system, involving the ventral surface of the inferior frontal gyrus and the amygdala. Response inhibition showed concordant clusters in the fronto-striatal system, including the dorsal anterior cingulate region and extended supplementary motor areas, the dorsal and ventral lateral prefrontal cortex, basal ganglia, midbrain regions, and parietal regions. We provide an empirically derived dimensional model of inhibition characterizing neural systems underlying different aspects of inhibitory mechanisms. This study offers a fundamental framework to advance current understanding of inhibition and provides new insights for future clinical research into disorders with different types of inhibition-related dysfunctions.
Collapse
Affiliation(s)
- Yuwen Hung
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139
| | - Schuyler L Gaillard
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139
| | - Pavel Yarmak
- Psychology and Neuroscience, University of Toronto, Toronto, Ontario, Canada
| | - Marie Arsalidou
- Department of Psychology, National Research University Higher School of Economics, Moscow, Russian Federation.,Department of Psychology, York University, Toronto, Ontario, Canada
| |
Collapse
|
13
|
Yaple Z, Arsalidou M. N
-back Working Memory Task: Meta-analysis of Normative fMRI Studies With Children. Child Dev 2018; 89:2010-2022. [DOI: 10.1111/cdev.13080] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Zachary Yaple
- National Research University Higher School of Economics
| | - Marie Arsalidou
- National Research University Higher School of Economics
- York University
| |
Collapse
|
14
|
Zinchenko O, Arsalidou M. Brain responses to social norms: Meta-analyses of fMRI studies. Hum Brain Mapp 2017; 39:955-970. [PMID: 29160930 DOI: 10.1002/hbm.23895] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 10/24/2017] [Accepted: 11/10/2017] [Indexed: 12/20/2022] Open
Abstract
Social norms have a critical role in everyday decision-making, as frequent interaction with others regulates our behavior. Neuroimaging studies show that social-based and fairness-related decision-making activates an inconsistent set of areas, which sometimes includes the anterior insula, anterior cingulate cortex, and others lateral prefrontal cortices. Social-based decision-making is complex and variability in findings may be driven by socio-cognitive activities related to social norms. To distinguish among social-cognitive activities related to social norms, we identified 36 eligible articles in the functional magnetic resonance imaging (fMRI) literature, which we separate into two categories (a) social norm representation and (b) norm violations. The majority of original articles (>60%) used tasks associated with fairness norms and decision-making, such as ultimatum game, dictator game, or prisoner's dilemma; the rest used tasks associated to violation of moral norms, such as scenarios and sentences of moral depravity ratings. Using quantitative meta-analyses, we report common and distinct brain areas that show concordance as a function of category. Specifically, concordance in ventromedial prefrontal regions is distinct to social norm representation processing, whereas concordance in right insula, dorsolateral prefrontal, and dorsal cingulate cortices is distinct to norm violation processing. We propose a neurocognitive model of social norms for healthy adults, which could help guide future research in social norm compliance and mechanisms of its enforcement.
Collapse
Affiliation(s)
- Oksana Zinchenko
- Centre for Cognition and Decision Making, National Research University Higher School of Economics, Moscow, Russian Federation
| | - Marie Arsalidou
- Department of Psychology, National Research University Higher School of Economics, Moscow, Russian Federation.,Department of Psychology, Faculty of Health, York University, Toronto, Canada
| |
Collapse
|
15
|
Tao T, Wang L, Fan C, Gao W, Shi J. Latent Factors in Attention Emerge from 9 Years of Age among Elementary School Children. Front Psychol 2017; 8:1725. [PMID: 29051743 PMCID: PMC5633677 DOI: 10.3389/fpsyg.2017.01725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 09/19/2017] [Indexed: 11/13/2022] Open
Abstract
We explored the development of attention among elementary school children. Three hundred and sixty-five primary school children aged 7-12 years completed seven attention tests (alertness, focused attention, divided attention, attentional switching, sustained attention, spatial attention, and supervisory attention). A factor analysis indicated that there was no stable construct of attention among 7- to 8-year-old children. However, from 9 years on, children's attention could be separated into perceptual and executive attention. Notably, however, the attention types included in these two factors differed from those among adults.
Collapse
Affiliation(s)
- Ting Tao
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Ligang Wang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Chunlei Fan
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Wenbin Gao
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Jiannong Shi
- Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
16
|
Arsalidou M, Pawliw-Levac M, Sadeghi M, Pascual-Leone J. Brain areas associated with numbers and calculations in children: Meta-analyses of fMRI studies. Dev Cogn Neurosci 2017; 30:239-250. [PMID: 28844728 PMCID: PMC6969084 DOI: 10.1016/j.dcn.2017.08.002] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 07/05/2017] [Accepted: 08/02/2017] [Indexed: 01/01/2023] Open
Abstract
Children use numbers every day and typically receive formal mathematical training from an early age, as it is a main subject in school curricula. Despite an increase in children neuroimaging studies, a comprehensive neuropsychological model of mathematical functions in children is lacking. Using quantitative meta-analyses of functional magnetic resonance imaging (fMRI) studies, we identify concordant brain areas across articles that adhere to a set of selection criteria (e.g., whole-brain analysis, coordinate reports) and report brain activity to tasks that involve processing symbolic and non-symbolic numbers with and without formal mathematical operations, which we called respectively number tasks and calculation tasks. We present data on children 14 years and younger, who solved these tasks. Results show activity in parietal (e.g., inferior parietal lobule and precuneus) and frontal (e.g., superior and medial frontal gyri) cortices, core areas related to mental-arithmetic, as well as brain regions such as the insula and claustrum, which are not typically discussed as part of mathematical problem solving models. We propose a topographical atlas of mathematical processes in children, discuss findings within a developmental constructivist theoretical model, and suggest practical methodological considerations for future studies.
Collapse
Affiliation(s)
- Marie Arsalidou
- Department of Psychology, Faculty of Health, York University, Toronto, Canada; Department of Psychology, National Research University Higher School of Economics, Moscow, Russian Federation.
| | | | - Mahsa Sadeghi
- Department of Psychology, Faculty of Health, York University, Toronto, Canada
| | - Juan Pascual-Leone
- Department of Psychology, Faculty of Health, York University, Toronto, Canada
| |
Collapse
|
17
|
Arsalidou M, Sharaev MG, Kotova T, Martynova O. Commentary: Selective Development of Anticorrelated Networks in the Intrinsic Functional Organization of the Human Brain. Front Hum Neurosci 2017; 11:13. [PMID: 28167907 PMCID: PMC5253350 DOI: 10.3389/fnhum.2017.00013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 01/09/2017] [Indexed: 11/23/2022] Open
Affiliation(s)
- Marie Arsalidou
- Department of Psychology, National Research University Higher School of EconomicsMoscow, Russia
- Department of Psychology, York UniversityToronto, Canada
| | | | - Tatyana Kotova
- Cognitive Research Lab, Russian Academy for National Economy and Public Administration (RANEPA)Moscow, Russia
| | - Olga Martynova
- Department of Psychology, National Research University Higher School of EconomicsMoscow, Russia
- Centre for Cognition and Decision Making, National Research University Higher School of EconomicsMoscow, Russia
| |
Collapse
|