1
|
Scott DS, Subramanian M, Yamamoto J, Tamminga CA. Schizophrenia pathology reverse-translated into mouse shows hippocampal hyperactivity, psychosis behaviors and hyper-synchronous events. Mol Psychiatry 2025; 30:1746-1757. [PMID: 39407000 PMCID: PMC12015171 DOI: 10.1038/s41380-024-02781-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/18/2024]
Abstract
Decades of research into the function of the medial temporal lobe has driven curiosity around clinical outcomes associated with hippocampal dysfunction, including psychosis. Post-mortem analyses of brain tissue from human schizophrenia brain show decreased expression of the NMDAR subunit GluN1 confined to the dentate gyrus with evidence of downstream hippocampal hyperactivity in CA3 and CA1. Little is known about the mechanisms of the emergence of hippocampal hyperactivity as a putative psychosis biomarker. We have developed a reverse-translation mouse to study critical neural features. We had previously studied a dentate gyrus (DG)-specific GluN1 KO, which displays hippocampal hyperactivity and a psychosis-relevant behavioral phenotype. Here, we expressed an inhibitory DREADD (pAAV-CaMKIIa-hM4D(Gi)-mCherry) in granule cells of the mouse dentate gyrus, and continuously inhibited the region for 21 days in adolescent (6 weeks) and adult (10 weeks) C57BL/6 J mice with DREADD agonist Compound 21 (C21). Following this period, we quantified activity in the hippocampal subfields by assessing cFos expression, hippocampally mediated behaviors, and hippocampal local field potential with an intracerebral probe with continual monitoring over time. DG inhibition during adolescence generates an increase in hippocampal activity in CA3 and CA1, impairs social cognition and spatial working memory, as well as shows evidence of increased activity in local field potentials as spontaneous synchronous bursts of activity, which we term hyper-synchronous events (HSEs) in hippocampus. The same DG inhibition delivered during adulthood in the mouse lacks these outcomes. These results suggest a sensitive period in development in which the hippocampus is susceptible to DG inhibition resulting in hippocampal hyperactivity and psychosis-like behavioral outcomes.
Collapse
Affiliation(s)
- Daniel S Scott
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- O'Donnell Brain Institute, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Jun Yamamoto
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
- O'Donnell Brain Institute, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Carol A Tamminga
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
- O'Donnell Brain Institute, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
2
|
Yoshikawa A, Li J, Alliey-Rodriguez N, Meltzer HY. Genetic markers of early response to lurasidone in acute schizophrenia. THE PHARMACOGENOMICS JOURNAL 2025; 25:3. [PMID: 39979276 PMCID: PMC11842270 DOI: 10.1038/s41397-024-00360-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/26/2024] [Accepted: 12/19/2024] [Indexed: 02/22/2025]
Abstract
Prediction of treatment response by genetic biomarkers has potential for clinical use and contributes to the understanding of pathophysiology and drug mechanism of action. The purpose of this study is to detect genetic biomarkers possibly associated with response to lurasidone, during the first four weeks of treatment. One-hundred and seventy-one acutely psychotic patients from two placebo-controlled clinical trials of lurasidone were included. Genetic associations with changes in Positive and Negative Syndrome Scale total score at weeks one, two, and four were examined. Genotyping was done with the Affymetrix 6.0 microarray and associations were computed using PLINK regression model. Although genome-wide significance was not reached with a limited sample size, signals of potential interest for further studies were with genes important for neurogenesis. Possible week one marker, rs6459950 (p = 7.05 × 10-7), was close to the sonic hedgehog gene (SHH), involved in neuronal differentiation and neurogenesis. Possible week two marker, rs7435958, was a SNP of GABRB1, encoding the GABAA Receptor β1. Notably, possible week four signals included a SNP within PTCH1, a specific receptor for the SHH, the possible week one marker. Pathway analysis supported the possibility that neurogenesis might be involved in early antipsychotic response. Tissue enrichment analysis suggested that potential signals were enriched in anterior cingulate cortex, reported to be relevant in antipsychotic action. This is the first study to examine genes possibly associated with very early response to lurasidone. Further replication studies in larger sample size should be required.
Collapse
Affiliation(s)
- Akane Yoshikawa
- Department of Psychiatry and Behavioral Science Juntendo University Graduate School of Medicine, Hongo 2-1-1, Bunkyo, Tokyo, 113-8421, Japan.
| | - Jiang Li
- Molecular and functional genomics, Geisinger Healthcare System, Danville, PA, 17822, USA
| | - Ney Alliey-Rodriguez
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA
- Institute of Neuroscience, University of Texas Rio Grande Valley, Harlingen, TX, 78550, USA
| | - Herbert Y Meltzer
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA
| |
Collapse
|
3
|
Maximo J, Nelson E, Kraguljac N, Patton R, Bashir A, Lahti A. Changes in glutamate levels in anterior cingulate cortex following 16 weeks of antipsychotic treatment in antipsychotic-naïve first-episode psychosis patients. Psychol Med 2025; 55:e35. [PMID: 39927517 PMCID: PMC12017365 DOI: 10.1017/s0033291724003386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 02/11/2025]
Abstract
BACKGROUND Previous findings in psychosis have revealed mixed findings on glutamate (Glu) levels in the dorsal anterior cingulate cortex (dACC). Factors such as illness chronicity, methodology, and medication status have impeded a more nuanced evaluation of Glu in psychosis. The goal of this longitudinal neuroimaging study was to investigate the role of antipsychotics on Glu in the dACC in antipsychotic-naïve first-episode psychosis (FEP) patients. METHODS We enrolled 117 healthy controls (HCs) and 113 antipsychotic-naïve FEP patients for this study. 3T proton magnetic resonance spectroscopy (1H-MRS; PRESS; TE = 80 ms) data from a voxel prescribed in the dACC were collected from all participants at baseline, 6, and 16 weeks following antipsychotic treatment. Glutamate levels were quantified using the QUEST algorithm and analyzed longitudinally using linear mixed-effects models. RESULTS We found that baseline dACC glutamate levels in FEP were not significantly different than those of HCs. Examining Glu levels in FEP revealed a decrease in Glu levels after 16 weeks of antipsychotic treatment; this effect was weaker in HC. Finally, baseline Glu levels were associated with decreases in positive symptomology. CONCLUSIONS We report a progressive decrease of Glu levels over a period of 16 weeks after initiation of treatment and a baseline Glu level association with a reduction in positive symptomology, suggestive of a potential mechanism of antipsychotic drug (APD) action. Overall, these findings suggest that APDs can influence Glu within a period of 16 weeks, which has been deemed as an optimal window for symptom alleviation using APDs.
Collapse
Affiliation(s)
- Jose Maximo
- Department of Psychiatry and Behavioral Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Eric Nelson
- Department of Psychiatry and Behavioral Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nina Kraguljac
- Department of Psychiatry and Behavioral Health, College of Medicine, Ohio State University, Columbus, OH, USA
| | - Rita Patton
- Department of Psychiatry and Behavioral Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Adil Bashir
- Department of Electrical and Computer Engineering, Samuel Ginn College of Engineering, Auburn University, Auburn, AL, USA
| | - Adrienne Lahti
- Department of Psychiatry and Behavioral Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
4
|
Gao S, Sun Y, Wu F, Jiang J, Peng T, Zhang R, Ling C, Han Y, Xu Q, Zou L, Liao Y, Liang C, Zhang D, Qi S, Tang J, Xu X. Effects on Multimodal Connectivity Patterns in Female Schizophrenia During 8 Weeks of Antipsychotic Treatment. Schizophr Bull 2024:sbae176. [PMID: 39729483 DOI: 10.1093/schbul/sbae176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2024]
Abstract
BACKGROUND AND HYPOTHESIS Respective abnormal structural connectivity (SC) and functional connectivity (FC) have been reported in individuals with schizophrenia. However, transmodal associations between SC and FC following antipsychotic treatment, especially in female schizophrenia, remain unclear. We hypothesized that increased SC-FC coupling may be found in female schizophrenia, and could be normalized after antipsychotic treatment. STUDY DESIGN Sixty-four female drug-naïve patients with first-diagnosed schizophrenia treated with antipsychotic drugs for 8 weeks, and 55 female healthy controls (HCs) were enrolled. Magnetic resonance imaging (MRI) data were collected from HCs at baseline and from patients at baseline and after treatment. SC and FC were analyzed by network-based statistics, calculating nonzero SC-FC coupling of the whole brain and altered connectivity following treatment. Finally, an Elastic-net logistic regression analysis was employed to establish a predictive model for evaluating the clinical efficacy treatment. STUDY RESULTS At baseline, female schizophrenia patients exhibited abnormal SC in cortico-cortical, frontal-limbic, frontal-striatal, limbic-striatal, and limbic-cerebellar connectivity compared to HCs, while FC showed no abnormalities. Following treatment, cortico-cortical, frontal-limbic, frontal-striatal, limbic-striatal, temporal-cerebellar, and limbic-cerebellar connectivity were altered in both SC and FC. Additionally, SC-FC coupling of altered connectivity was higher in patients at baseline than in HC, trending toward normalization after treatment. Furthermore, identified FC or/and SC predicted changes in psychopathological symptoms and cognitive impairment among female schizophrenia following treatment. CONCLUSIONS SC-FC coupling may be a potential predictive biomarker of treatment response. Cortico-cortical, frontal-limbic, frontal-striatal, limbic-striatal, temporal-cerebellar, and limbic-cerebellar could represent major targets for antipsychotic drugs in female schizophrenia.
Collapse
Affiliation(s)
- Shuzhan Gao
- Department of Psychiatry, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
- Department of Psychiatry, Nanjing Brain Hospital, Medical School, Nanjing University, Nanjing, 210029, China
| | - Yunkai Sun
- Department of Psychiatry, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Fan Wu
- Department of Psychiatry, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Jing Jiang
- Department of Psychiatry, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Ting Peng
- Department of Psychiatry, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Rongrong Zhang
- Department of Psychiatry, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Chenxi Ling
- Department of Psychiatry, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yanlin Han
- Department of Psychiatry, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Qing Xu
- Department of Psychiatry, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Lulu Zou
- Department of Psychiatry, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yanhui Liao
- Department of Psychiatry, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Chuang Liang
- College of Computer Science and Technology and the Key Laboratory of Brain-Machine Intelligence Technology, Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Daoqiang Zhang
- College of Computer Science and Technology and the Key Laboratory of Brain-Machine Intelligence Technology, Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Shile Qi
- College of Computer Science and Technology and the Key Laboratory of Brain-Machine Intelligence Technology, Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Jinsong Tang
- Department of Psychiatry, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Xijia Xu
- Department of Psychiatry, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
- Department of Psychiatry, Nanjing Brain Hospital, Medical School, Nanjing University, Nanjing, 210029, China
| |
Collapse
|
5
|
Armio RL, Laurikainen H, Ilonen T, Walta M, Sormunen E, Tolvanen A, Salokangas RKR, Koutsouleris N, Tuominen L, Hietala J. Longitudinal study on hippocampal subfields and glucose metabolism in early psychosis. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:66. [PMID: 39085221 PMCID: PMC11291638 DOI: 10.1038/s41537-024-00475-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 05/11/2024] [Indexed: 08/02/2024]
Abstract
Altered hippocampal morphology and metabolic pathology, but also hippocampal circuit dysfunction, are established phenomena seen in psychotic disorders. Thus, we tested whether hippocampal subfield volume deficits link with deviations in glucose metabolism commonly seen in early psychosis, and whether the glucose parameters or subfield volumes change during follow-up period using one-year longitudinal study design of 78 first-episode psychosis patients (FEP), 48 clinical high-risk patients (CHR) and 83 controls (CTR). We also tested whether hippocampal morphology and glucose metabolism relate to clinical outcome. Hippocampus subfields were segmented with Freesurfer from 3T MRI images and parameters of glucose metabolism were determined in fasting plasma samples. Hippocampal subfield volumes were consistently lower in FEPs, and findings were more robust in non-affective psychoses, with strongest decreases in CA1, molecular layer and hippocampal tail, and in hippocampal tail of CHRs, compared to CTRs. These morphometric differences remained stable at one-year follow-up. Both non-diabetic CHRs and FEPs had worse glucose parameters compared to CTRs at baseline. We found that, insulin levels and insulin resistance increased during the follow-up period only in CHR, effect being largest in the CHRs converting to psychosis, independent of exposure to antipsychotics. The worsening of insulin resistance was associated with deterioration of function and symptoms in CHR. The smaller volume of hippocampal tail was associated with higher plasma insulin and insulin resistance in FEPs, at the one-year follow-up. Our longitudinal study supports the view that temporospatial hippocampal subfield volume deficits are stable near the onset of first psychosis, being more robust in non-affective psychoses, but less prominent in the CHR group. Specific subfield defects were related to worsening glucose metabolism during the progression of psychosis, suggesting that hippocampus is part of the circuits regulating aberrant glucose metabolism in early psychosis. Worsening of glucose metabolism in CHR group was associated with worse clinical outcome measures indicating a need for heightened clinical attention to metabolic problems already in CHR.
Collapse
Grants
- Turun Yliopistollisen Keskussairaalan Koulutus- ja Tutkimussäätiö (TYKS-säätiö)
- Alfred Kordelinin Säätiö (Alfred Kordelin Foundation)
- Finnish Cultural Foundation | Varsinais-Suomen Rahasto (Varsinais-Suomi Regional Fund)
- Suomalainen Lääkäriseura Duodecim (Finnish Medical Society Duodecim)
- Turun Yliopisto (University of Turku)
- This work was supported by funding for the VAMI-project (Turku University Hospital, state research funding, no. P3848), partly supported by EU FP7 grants (PRONIA, grant a # 602152 and METSY grant #602478). Dr. Armio received personal funding from Doctoral Programme in Clinical Research at the University of Turku, grants from State Research Funding, Turunmaa Duodecim Society, Finnish Psychiatry Research Foundation, Finnish University Society of Turku (Valto Takala Foundation), Tyks-foundation, The Finnish Medical Foundation (Maija and Matti Vaskio fund), University of Turku, The Alfred Kordelin Foundation, Finnish Cultural Foundation (Terttu Enckell fund and Ritva Helminen fund) and The Alfred Kordelin foundation. Further, Dr. Tuominen received personal grant from Sigrid Juselius and Orion research foundation and NARSAD Young Investigator Grant from the Brain & Behavior Research Foundation.
- This work was supported by funding for the VAMI-project (Turku University Hospital, state research funding, no. P3848), partly supported by EU FP7 grants (PRONIA, grant a # 602152 and METSY grant #602478). Dr. Tuominen received personal grant from Sigrid Juselius and Orion research foundation and NARSAD Young Investigator Grant from the Brain & Behavior Research Foundation.
Collapse
Affiliation(s)
- Reetta-Liina Armio
- PET Centre, Turku University Hospital, 20520, Turku, Finland.
- Department of Psychiatry, University of Turku, 20700, Turku, Finland.
- Department of Psychiatry, Turku University Hospital, 20520, Turku, Finland.
| | - Heikki Laurikainen
- PET Centre, Turku University Hospital, 20520, Turku, Finland
- Department of Psychiatry, University of Turku, 20700, Turku, Finland
- Department of Psychiatry, Turku University Hospital, 20520, Turku, Finland
| | - Tuula Ilonen
- Department of Psychiatry, University of Turku, 20700, Turku, Finland
| | - Maija Walta
- PET Centre, Turku University Hospital, 20520, Turku, Finland
- Department of Psychiatry, University of Turku, 20700, Turku, Finland
- Department of Psychiatry, Turku University Hospital, 20520, Turku, Finland
| | - Elina Sormunen
- PET Centre, Turku University Hospital, 20520, Turku, Finland
- Department of Psychiatry, University of Turku, 20700, Turku, Finland
- Department of Psychiatry, Turku University Hospital, 20520, Turku, Finland
| | - Arvi Tolvanen
- Department of Psychiatry, University of Turku, 20700, Turku, Finland
| | | | - Nikolaos Koutsouleris
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian University, D-80336, Munich, Germany
| | - Lauri Tuominen
- Department of Psychiatry, Turku University Hospital, 20520, Turku, Finland
- The Royal's Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada
- Department of Psychiatry, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Jarmo Hietala
- PET Centre, Turku University Hospital, 20520, Turku, Finland
- Department of Psychiatry, University of Turku, 20700, Turku, Finland
- Department of Psychiatry, Turku University Hospital, 20520, Turku, Finland
| |
Collapse
|
6
|
Ibragimov K, Keane GP, Carreño Glaría C, Cheng J, Llosa AE. Haloperidol (oral) versus olanzapine (oral) for people with schizophrenia and schizophrenia-spectrum disorders. Cochrane Database Syst Rev 2024; 7:CD013425. [PMID: 38958149 PMCID: PMC11220909 DOI: 10.1002/14651858.cd013425.pub2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
BACKGROUND Schizophrenia is often a severe and disabling psychiatric disorder. Antipsychotics remain the mainstay of psychotropic treatment for people with psychosis. In limited resource and humanitarian contexts, it is key to have several options for beneficial, low-cost antipsychotics, which require minimal monitoring. We wanted to compare oral haloperidol, as one of the most available antipsychotics in these settings, with a second-generation antipsychotic, olanzapine. OBJECTIVES To assess the clinical benefits and harms of haloperidol compared to olanzapine for people with schizophrenia and schizophrenia-spectrum disorders. SEARCH METHODS We searched the Cochrane Schizophrenia study-based register of trials, which is based on monthly searches of CENTRAL, CINAHL, ClinicalTrials.gov, Embase, ISRCTN, MEDLINE, PsycINFO, PubMed and WHO ICTRP. We screened the references of all included studies. We contacted relevant authors of trials for additional information where clarification was required or where data were incomplete. The register was last searched on 14 January 2023. SELECTION CRITERIA Randomised clinical trials comparing haloperidol with olanzapine for people with schizophrenia and schizophrenia-spectrum disorders. Our main outcomes of interest were clinically important change in global state, relapse, clinically important change in mental state, extrapyramidal side effects, weight increase, clinically important change in quality of life and leaving the study early due to adverse effects. DATA COLLECTION AND ANALYSIS We independently evaluated and extracted data. For dichotomous outcomes, we calculated risk ratios (RR) and their 95% confidence intervals (CI) and the number needed to treat for an additional beneficial or harmful outcome (NNTB or NNTH) with 95% CI. For continuous data, we estimated mean differences (MD) or standardised mean differences (SMD) with 95% CIs. For all included studies, we assessed risk of bias (RoB 1) and we used the GRADE approach to create a summary of findings table. MAIN RESULTS We included 68 studies randomising 9132 participants. We are very uncertain whether there is a difference between haloperidol and olanzapine in clinically important change in global state (RR 0.84, 95% CI 0.69 to 1.02; 6 studies, 3078 participants; very low-certainty evidence). We are very uncertain whether there is a difference between haloperidol and olanzapine in relapse (RR 1.42, 95% CI 1.00 to 2.02; 7 studies, 1499 participants; very low-certainty evidence). Haloperidol may reduce the incidence of clinically important change in overall mental state compared to olanzapine (RR 0.70, 95% CI 0.60 to 0.81; 13 studies, 1210 participants; low-certainty evidence). For every eight people treated with haloperidol instead of olanzapine, one fewer person would experience this improvement. The evidence suggests that haloperidol may result in a large increase in extrapyramidal side effects compared to olanzapine (RR 3.38, 95% CI 2.28 to 5.02; 14 studies, 3290 participants; low-certainty evidence). For every three people treated with haloperidol instead of olanzapine, one additional person would experience extrapyramidal side effects. For weight gain, the evidence suggests that there may be a large reduction in the risk with haloperidol compared to olanzapine (RR 0.47, 95% CI 0.35 to 0.61; 18 studies, 4302 participants; low-certainty evidence). For every 10 people treated with haloperidol instead of olanzapine, one fewer person would experience weight increase. A single study suggests that haloperidol may reduce the incidence of clinically important change in quality of life compared to olanzapine (RR 0.72, 95% CI 0.57 to 0.91; 828 participants; low-certainty evidence). For every nine people treated with haloperidol instead of olanzapine, one fewer person would experience clinically important improvement in quality of life. Haloperidol may result in an increase in the incidence of leaving the study early due to adverse effects compared to olanzapine (RR 1.99, 95% CI 1.60 to 2.47; 21 studies, 5047 participants; low-certainty evidence). For every 22 people treated with haloperidol instead of olanzapine, one fewer person would experience this outcome. Thirty otherwise relevant studies and several endpoints from 14 included studies could not be evaluated due to inconsistencies and poor transparency of several parameters. Furthermore, even within studies that were included, it was often not possible to use data for the same reasons. Risk of bias differed substantially for different outcomes and the certainty of the evidence ranged from very low to low. The most common risks of bias leading to downgrading of the evidence were blinding (performance bias) and selective reporting (reporting bias). AUTHORS' CONCLUSIONS Overall, the certainty of the evidence was low to very low for the main outcomes in this review, making it difficult to draw reliable conclusions. We are very uncertain whether there is a difference between haloperidol and olanzapine in terms of clinically important global state and relapse. Olanzapine may result in a slightly greater overall clinically important change in mental state and in a clinically important change in quality of life. Different side effect profiles were noted: haloperidol may result in a large increase in extrapyramidal side effects and olanzapine in a large increase in weight gain. The drug of choice needs to take into account side effect profiles and the preferences of the individual. These findings and the recent inclusion of olanzapine alongside haloperidol in the WHO Model List of Essential Medicines should increase the likelihood of it becoming more easily available in low- and middle- income countries, thereby improving choice and providing a greater ability to respond to side effects for people with lived experience of schizophrenia. There is a need for additional research using appropriate and equivalent dosages of these drugs. Some of this research needs to be done in low- and middle-income settings and should actively seek to account for factors relevant to these. Research on antipsychotics needs to be person-centred and prioritise factors that are of interest to people with lived experience of schizophrenia.
Collapse
Affiliation(s)
- Khasan Ibragimov
- Ecole des Hautes Etudes en Sante Publique (EHESP), Hautes Etudes en Sante Publique (EHESP), Paris, France
- Epicentre, Paris, France
| | | | | | - Jie Cheng
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Augusto Eduardo Llosa
- Epicentre, Paris, France
- Operational Centre Barcelona, Médecins Sans Frontières, Barcelona, Spain
| |
Collapse
|
7
|
Conring F, Gangl N, Derome M, Wiest R, Federspiel A, Walther S, Stegmayer K. Associations of resting-state perfusion and auditory verbal hallucinations with and without emotional content in schizophrenia. Neuroimage Clin 2023; 40:103527. [PMID: 37871539 PMCID: PMC10598456 DOI: 10.1016/j.nicl.2023.103527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/21/2023] [Accepted: 10/09/2023] [Indexed: 10/25/2023]
Abstract
Auditory Verbal Hallucinations (AVH) are highly prevalent in patients with schizophrenia. AVH with high emotional content lead to particularly poor functional outcome. Increasing evidence shows that AVH are associated with alterations in structure and function in language and memory related brain regions. However, neural correlates of AVH with emotional content remain unclear. In our study (n = 91), we related resting-state cerebral perfusion to AVH and emotional content, comparing four groups: patients with AVH with emotional content (n = 13), without emotional content (n = 14), without hallucinations (n = 20) and healthy controls (n = 44). Patients with AVH and emotional content presented with increased perfusion within the amygdala and the ventromedial and dorsomedial prefrontal cortex (vmPFC/ dmPFC) compared to patients with AVH without emotional content. In addition, patients with any AVH showed hyperperfusion within the anterior cingulate gyrus, the vmPFC/dmPFC, the right hippocampus, and the left pre- and postcentral gyrus compared to patients without AVH. Our results indicate metabolic alterations in brain areas critical for the processing of emotions as key for the pathophysiology of AVH with emotional content. Particularly, hyperperfusion of the amygdala may reflect and even trigger emotional content of AVH, while hyperperfusion of the vmPFC/dmPFC cluster may indicate insufficient top-down amygdala regulation in patients with schizophrenia.
Collapse
Affiliation(s)
- Frauke Conring
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland; Graduate School for Health Sciences, University of Bern, Bern, Switzerland.
| | - Nicole Gangl
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland; Graduate School for Health Sciences, University of Bern, Bern, Switzerland
| | - Melodie Derome
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Roland Wiest
- Support Center of Advanced Neuroimaging (SCAN), University Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern, Switzerland
| | - Andrea Federspiel
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Sebastian Walther
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Katharina Stegmayer
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| |
Collapse
|
8
|
Bojesen KB, Glenthøj BY, Sigvard AK, Tangmose K, Raghava JM, Ebdrup BH, Rostrup E. Cerebral blood flow in striatum is increased by partial dopamine agonism in initially antipsychotic-naïve patients with psychosis. Psychol Med 2023; 53:6691-6701. [PMID: 36754993 PMCID: PMC10600821 DOI: 10.1017/s0033291723000144] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 01/05/2023] [Accepted: 01/12/2023] [Indexed: 02/10/2023]
Abstract
BACKGROUND Resting cerebral blood flow (rCBF) in striatum and thalamus is increased in medicated patients with psychosis, but whether this is caused by treatment or illness pathology is unclear. Specifically, effects of partial dopamine agonism, sex, and clinical correlates on rCBF are sparsely investigated. We therefore assessed rCBF in antipsychotic-naïve psychosis patients before and after aripiprazole monotherapy and related findings to sex and symptom improvement. METHODS We assessed rCBF with the pseudo-Continuous Arterial Spin Labeling (PCASL) sequence in 49 first-episode patients (22.6 ± 5.2 years, 58% females) and 50 healthy controls (HCs) (22.3 ± 4.4 years, 63% females) at baseline and in 29 patients and 49 HCs after six weeks. RCBF in striatum and thalamus was estimated with a region-of-interest (ROI) approach. Psychopathology was assessed with the positive and negative syndrome scale. RESULTS Baseline rCBF in striatum and thalamus was not altered in the combined patient group compared with HCs, but female patients had lower striatal rCBF compared with male patients (p = 0.009). Treatment with a partial dopamine agonist increased rCBF significantly in striatum (p = 0.006) in the whole patient group, but not significantly in thalamus. Baseline rCBF in nucleus accumbens was negatively associated with improvement in positive symptoms (p = 0.046), but baseline perfusion in whole striatum and thalamus was not related to treatment outcome. CONCLUSIONS The findings suggest that striatal perfusion is increased by partial dopamine agonism and decreased in female patients prior to first treatment. This underlines the importance of treatment effects and sex differences when investigating the neurobiology of psychosis.
Collapse
Affiliation(s)
- Kirsten Borup Bojesen
- Center for Neuropsychiatric Schizophrenia Research (CNSR) & Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Center Glostrup, University of Copenhagen, Glostrup, Denmark
| | - Birte Yding Glenthøj
- Center for Neuropsychiatric Schizophrenia Research (CNSR) & Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Center Glostrup, University of Copenhagen, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne Korning Sigvard
- Center for Neuropsychiatric Schizophrenia Research (CNSR) & Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Center Glostrup, University of Copenhagen, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Karen Tangmose
- Center for Neuropsychiatric Schizophrenia Research (CNSR) & Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Center Glostrup, University of Copenhagen, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jayachandra Mitta Raghava
- Center for Neuropsychiatric Schizophrenia Research (CNSR) & Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Center Glostrup, University of Copenhagen, Glostrup, Denmark
- Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Glostrup, Denmark
| | - Bjørn Hylsebeck Ebdrup
- Center for Neuropsychiatric Schizophrenia Research (CNSR) & Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Center Glostrup, University of Copenhagen, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Egill Rostrup
- Center for Neuropsychiatric Schizophrenia Research (CNSR) & Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Center Glostrup, University of Copenhagen, Glostrup, Denmark
| |
Collapse
|
9
|
Nelson EA, Kraguljac NV, Maximo JO, Armstrong W, Lahti AC. Hippocampal Hyperconnectivity to the Visual Cortex Predicts Treatment Response. Schizophr Bull 2023; 49:605-613. [PMID: 36752830 PMCID: PMC10154738 DOI: 10.1093/schbul/sbac213] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
BACKGROUND Converging lines of evidence point to hippocampal dysfunction in psychosis spectrum disorders, including altered functional connectivity. Evidence also suggests that antipsychotic medications can modulate hippocampal dysfunction. The goal of this project was to identify patterns of hippocampal connectivity predictive of response to antipsychotic treatment in 2 cohorts of patients with a psychosis spectrum disorder, one medication-naïve and the other one unmedicated. HYPOTHESIS We hypothesized that we would identify reliable patterns of hippocampal connectivity in the 2 cohorts that were predictive of treatment response and that medications would modulate abnormal hippocampal connectivity after 6 weeks of treatment. STUDY DESIGN We used a prospective design to collect resting-state fMRI scans prior to antipsychotic treatment and after 6 weeks of treatment with risperidone, a commonly used antipsychotic medication, in both cohorts. We enrolled 44 medication-naïve first-episode psychosis patients (FEP) and 39 unmedicated patients with schizophrenia (SZ). STUDY RESULTS In both patient cohorts, we observed a similar pattern where greater hippocampal connectivity to regions of the occipital cortex was predictive of treatment response. Lower hippocampal connectivity of the frontal pole, orbitofrontal cortex, subcallosal area, and medial prefrontal cortex was predictive of treatment response in unmedicated SZ, but not in the medication-naïve cohort. Furthermore, greater reduction in hippocampal connectivity to the visual cortex with treatment was associated with better clinical response. CONCLUSIONS Our results suggest that greater connectivity between the hippocampus and occipital cortex is not only predictive of better treatment response, but that antipsychotic medications have a modulatory effect by reducing hyperconnectivity.
Collapse
Affiliation(s)
- Eric A Nelson
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nina V Kraguljac
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jose O Maximo
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - William Armstrong
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Adrienne C Lahti
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
10
|
Lahti AC. Discovery of early schizophrenia through neuroimaging. Psychiatry Res 2023; 322:114993. [PMID: 36773467 DOI: 10.1016/j.psychres.2022.114993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/22/2022] [Accepted: 11/27/2022] [Indexed: 11/29/2022]
Abstract
In order to understand the pathophysiology of schizophrenia we carried out a number of brain imaging studies in both medicated and unmedicated patients. In addition, to help unravel the pathophysiological mechanisms without the confound of prior exposure to antipsychotic medication or chronicity, we enrolled a large group of antipsychotic medication-naïve first episode psychosis patients at first treatment contact, and performed longitudinal multimodal neuroimaging studies over several months. In unmedicated patients we found both functional and structural connectivity alterations. Similarly, in medication-naïve patients we replicated many of our prior findings, suggesting that functional and structural connectivity alterations are core pathological features of the illness. We found that a longer duration of untreated psychosis, i.e. the time between first symptom onset and initial treatment contact, was associated with greater structural and functional connectivity abnormalities, which in turn was associated with worse subsequent clinical response to treatment. These results underscore the critical importance of early identification and treatment in patients with psychosis spectrum disorders.
Collapse
Affiliation(s)
- Adrienne C Lahti
- Department of Psychiatry and Behavioral Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, United States.
| |
Collapse
|
11
|
Yang C, Zhang W, Liu J, Yao L, Bishop JR, Lencer R, Gong Q, Yang Z, Lui S. Disrupted subcortical functional connectome gradient in drug-naïve first-episode schizophrenia and the normalization effects after antipsychotic treatment. Neuropsychopharmacology 2023; 48:789-796. [PMID: 36496508 PMCID: PMC10066388 DOI: 10.1038/s41386-022-01512-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022]
Abstract
Antipsychotics are thought to improve schizophrenia symptoms through the antagonism of dopamine D2 receptors, which are abundant mainly in subcortical regions. By introducing functional gradient, a novel approach to identify hierarchy alterations by capturing the similarity of whole brain fucntional connectivity (FC) profiles between two voxels, the present study aimed to characterize how the subcortical gradient is associated with treatment effects and response in first-episode schizophrenia in vivo. Two independent samples of first-episode schizophrenia (FES) patients with matched healthy controls (HC) were obtained: the discovery dataset included 71 patients (FES0W) and 64 HC at baseline, and patients were re-scanned after either 6 weeks (FES6W, N = 33) or 12 months (FES12M, N = 57) of antipsychotic treatment, of which 19 patients finished both 6-week and 12-month evaluation. The validation dataset included 22 patients and 24 HC at baseline and patients were re-scanned after 6 weeks. Gradient metrics were calculated using BrainSpace Toolbox. Voxel-based gradient values were generated and group-averaged gradient values were further extracted across all voxels (global), three systems (thalamus, limbic and striatum) and their subcortical subfields. The comparisons were conducted separately between FES0W and HC for investigating illness effects, and between FES6W/FES12M and FES0W for treatment effects. Correlational analyses were then conducted between the longitudinal gradient alterations and the improvement of clinical ratings. Before treatment, schizophrenia patients exhibited an expanded range of global gradient scores compared to HC which indicated functional segregation within subcortical systems. The increased gradient in limbic system and decreased gradient in thalamic and striatal system contributed to the baseline abnormalities and led to the disruption of the subcortical functional integration. After treatment, these disruptions were normalized and the longitudinal changes of gradient scores in limbic system were significantly associated with symptom improvement. Similar illness and treatment effects were also observed in the validation dataset. By measuring functional hierarchy of subcortical organization, our findings provide a novel imaging marker that is sensitive to treatment effects and may make a promising indicator of treatment response in schizophrenia.
Collapse
Affiliation(s)
- Chengmin Yang
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Wenjing Zhang
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Jiajun Liu
- College of Electronic Engineering, Chengdu University of Information Technology, Chengdu, China
| | - Li Yao
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Jeffrey R Bishop
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Rebekka Lencer
- Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Zhipeng Yang
- College of Electronic Engineering, Chengdu University of Information Technology, Chengdu, China.
| | - Su Lui
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China.
| |
Collapse
|
12
|
Percie du Sert O, Unrau J, Gauthier CJ, Chakravarty M, Malla A, Lepage M, Raucher-Chéné D. Cerebral blood flow in schizophrenia: A systematic review and meta-analysis of MRI-based studies. Prog Neuropsychopharmacol Biol Psychiatry 2023; 121:110669. [PMID: 36341843 DOI: 10.1016/j.pnpbp.2022.110669] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 10/19/2022] [Accepted: 10/23/2022] [Indexed: 11/06/2022]
Abstract
INTRODUCTION Schizophrenia-spectrum disorders (SSD) represent one of the leading causes of disability worldwide and are usually underpinned by neurodevelopmental brain abnormalities observed on a structural and functional level. Nuclear medicine imaging studies of cerebral blood flow (CBF) have already provided insights into the pathophysiology of these disorders. Recent developments in non-invasive MRI techniques such as arterial spin labeling (ASL) have allowed broader examination of CBF across SSD prompting us to conduct an updated literature review of MRI-based perfusion studies. In addition, we conducted a focused meta-analysis of whole brain studies to provide a complete picture of the literature on the topic. METHODS A systematic OVID search was performed in Embase, MEDLINEOvid, and PsycINFO. Studies eligible for inclusion in the review involved: 1) individuals with SSD, first-episode psychosis or clinical-high risk for psychosis, or; 2) had healthy controls for comparison; 3) involved MRI-based perfusion imaging methods; and 4) reported CBF findings. No time span was specified for the database queries (last search: 08/2022). Information related to participants, MRI techniques, CBF analyses, and results were systematically extracted. Whole-brain studies were then selected for the meta-analysis procedure. The methodological quality of each included studies was assessed. RESULTS For the systematic review, the initial Ovid search yielded 648 publications of which 42 articles were included, representing 3480 SSD patients and controls. The most consistent finding was that negative symptoms were linked to cortical fronto-limbic hypoperfusion while positive symptoms seemed to be associated with hyperperfusion, notably in subcortical structures. The meta-analysis integrated results from 13 whole-brain studies, across 426 patients and 401 controls, and confirmed the robustness of the hypoperfusion in the left superior and middle frontal gyri and right middle occipital gyrus while hyperperfusion was found in the left putamen. CONCLUSION This updated review of the literature supports the implication of hemodynamic correlates in the pathophysiology of psychosis symptoms and disorders. A more systematic exploration of brain perfusion could complete the search of a multimodal biomarker of SSD.
Collapse
Affiliation(s)
- Olivier Percie du Sert
- McGill University, Montreal, QC, Canada; Douglas Mental Health University Institute, Montreal, QC, Canada
| | - Joshua Unrau
- McGill University, Montreal, QC, Canada; Douglas Mental Health University Institute, Montreal, QC, Canada
| | - Claudine J Gauthier
- Concordia University, Montreal, QC, Canada; Montreal Heart Institute, Montreal, QC, Canada
| | - Mallar Chakravarty
- McGill University, Montreal, QC, Canada; Douglas Mental Health University Institute, Montreal, QC, Canada
| | - Ashok Malla
- McGill University, Montreal, QC, Canada; Douglas Mental Health University Institute, Montreal, QC, Canada
| | - Martin Lepage
- McGill University, Montreal, QC, Canada; Douglas Mental Health University Institute, Montreal, QC, Canada.
| | - Delphine Raucher-Chéné
- McGill University, Montreal, QC, Canada; Douglas Mental Health University Institute, Montreal, QC, Canada; University of Reims Champagne-Ardenne, Cognition, Health, and Society Laboratory (EA 6291), Reims, France; Academic Department of Psychiatry, University Hospital of Reims, EPSM Marne, Reims, France
| |
Collapse
|
13
|
Egerton A, Griffiths K, Casetta C, Deakin B, Drake R, Howes OD, Kassoumeri L, Khan S, Lankshear S, Lees J, Lewis S, Mikulskaya E, Millgate E, Oloyede E, Pollard R, Rich N, Segev A, Sendt KV, MacCabe JH. Anterior cingulate glutamate metabolites as a predictor of antipsychotic response in first episode psychosis: data from the STRATA collaboration. Neuropsychopharmacology 2023; 48:567-575. [PMID: 36456813 PMCID: PMC9852590 DOI: 10.1038/s41386-022-01508-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 12/03/2022]
Abstract
Elevated brain glutamate has been implicated in non-response to antipsychotic medication in schizophrenia. Biomarkers that can accurately predict antipsychotic non-response from the first episode of psychosis (FEP) could allow stratification of patients; for example, patients predicted not to respond to standard antipsychotics could be fast-tracked to clozapine. Using proton magnetic resonance spectroscopy (1H-MRS), we examined the ability of glutamate and Glx (glutamate plus glutamine) in the anterior cingulate cortex (ACC) and caudate to predict response to antipsychotic treatment. A total of 89 minimally medicated patients with FEP not meeting symptomatic criteria for remission were recruited across two study sites. 1H-MRS and clinical data were acquired at baseline, 2 and 6 weeks. Response was defined as >20% reduction in Positive and Negative Syndrome Scale (PANSS) Total score from baseline to 6 weeks. In the ACC, baseline glutamate and Glx were higher in Non-Responders and significantly predicted response (P < 0.02; n = 42). Overall accuracy was greatest for ACC Glx (69%) and increased to 75% when symptom severity at baseline was included in the model. Glutamate metabolites in the caudate were not associated with response, and there was no significant change in glutamate metabolites over time in either region. These results add to the evidence linking elevations in ACC glutamate metabolites to a poor antipsychotic response. They indicate that glutamate may have utility in predicting response during early treatment of first episode psychosis. Improvements in accuracy may be made by combining glutamate measures with other response biomarkers.
Collapse
Affiliation(s)
- Alice Egerton
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
- NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, UK.
| | - Kira Griffiths
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Cecila Casetta
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Bill Deakin
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Greater Manchester Mental Health NHS Foundation Trust Bury New Road, Prestwich, Manchester, M25 3BL, UK
| | - Richard Drake
- Greater Manchester Mental Health NHS Foundation Trust Bury New Road, Prestwich, Manchester, M25 3BL, UK
- Division of Psychology and Mental Health, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Oliver D Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, UK
| | - Laura Kassoumeri
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Sobia Khan
- Greater Manchester Mental Health NHS Foundation Trust Bury New Road, Prestwich, Manchester, M25 3BL, UK
- Division of Psychology and Mental Health, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Steve Lankshear
- Greater Manchester Mental Health NHS Foundation Trust Bury New Road, Prestwich, Manchester, M25 3BL, UK
- Division of Psychology and Mental Health, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Jane Lees
- Division of Psychology and Mental Health, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Shon Lewis
- Greater Manchester Mental Health NHS Foundation Trust Bury New Road, Prestwich, Manchester, M25 3BL, UK
- Division of Psychology and Mental Health, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Elena Mikulskaya
- Greater Manchester Mental Health NHS Foundation Trust Bury New Road, Prestwich, Manchester, M25 3BL, UK
- Division of Psychology and Mental Health, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Edward Millgate
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Ebenezer Oloyede
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Rebecca Pollard
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Nathalie Rich
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Aviv Segev
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Kyra-Verena Sendt
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - James H MacCabe
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, UK
| |
Collapse
|
14
|
McHugo M, Avery S, Armstrong K, Rogers BP, Vandekar SN, Woodward ND, Blackford JU, Heckers S. Anterior hippocampal dysfunction in early psychosis: a 2-year follow-up study. Psychol Med 2023; 53:160-169. [PMID: 33875028 PMCID: PMC8919704 DOI: 10.1017/s0033291721001318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Cross-sectional studies indicate that hippocampal function is abnormal across stages of psychosis. Neural theories of psychosis pathophysiology suggest that dysfunction worsens with illness stage. Here, we test the hypothesis that hippocampal function is impaired in the early stage of psychosis and declines further over the next 2 years. METHODS We measured hippocampal function over 2 years using a scene processing task in 147 participants (76 individuals in the early stage of a non-affective psychotic disorder and 71 demographically similar healthy control individuals). Two-year follow-up was completed in 97 individuals (50 early psychosis, 47 healthy control). Voxelwise longitudinal analysis of activation in response to scenes was carried out within a hippocampal region of interest to test for group differences at baseline and a group by time interaction. RESULTS At baseline, we observed lower anterior hippocampal activation in the early psychosis group relative to the healthy control group. Contrary to our hypothesis, hippocampal activation remained consistent and did not show the predicted decline over 2 years in the early psychosis group. Healthy controls showed a modest reduction in hippocampal activation after 2 years. CONCLUSIONS The results of this study suggest that hippocampal dysfunction in early psychosis does not worsen over 2 years and highlight the need for longer-term longitudinal studies.
Collapse
Affiliation(s)
- Maureen McHugo
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Suzanne Avery
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kristan Armstrong
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Baxter P. Rogers
- Vanderbilt University Institute of Imaging Sciences, Nashville, TN, USA
| | - Simon N. Vandekar
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Neil D. Woodward
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jennifer Urbano Blackford
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Research and Development, Tennessee Valley Healthcare System, United States Department of Veteran Affairs
| | - Stephan Heckers
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
15
|
Kowalski J, Styła R. Visual worry in patients with schizophrenia. J Psychiatr Res 2022; 153:116-124. [PMID: 35810601 DOI: 10.1016/j.jpsychires.2022.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 06/22/2022] [Accepted: 07/01/2022] [Indexed: 10/17/2022]
Abstract
OBJECTIVE Worrying is a pervasive transdiagnostic symptom in schizophrenia. It is most often associated in the literature with verbal modality due to many studies of its presence in generalised anxiety disorder. The current study aimed to elucidate worry in different sensory modalities, visual and verbal, in individuals with schizophrenia. METHOD We tested persons with schizophrenia (n = 92) and healthy controls (n = 138) in a cross-sectional design. We used questionnaires of visual and verbal worry (original Worry Modality Questionnaire), trait worry (Penn State Worry Questionnaire) and general psychopathology symptoms (General Functioning Questionnaire-58 and Brief Psychiatric Rating Scale). RESULTS Both visual and verbal worry were associated with psychotic, anxiety and general symptoms of psychopathology in both groups with medium to large effect sizes. Regression analyses indicated that visual worry was a single significant predictor of positive psychotic symptoms in a model with verbal and trait worry, both in clinical and control groups (β's of 0.49 and 0.38, respectively). Visual worry was also a superior predictor of anxiety and general psychopathology severity (β's of 0.34 and 0.37, respectively) than verbal worry (β's of 0.03 and -0.02, respectively), under control of trait worry, in the schizophrenia group. We also proposed two indices of worry modality dominance and analysed profiles of dominating worry modality in both groups. CONCLUSIONS Our study is the first to demonstrate that visual worry might be of specific importance for understanding psychotic and general psychopathology symptoms in persons with schizophrenia.
Collapse
Affiliation(s)
- Joachim Kowalski
- Experimental Psychopathology Laboratory, Institute of Psychology, Polish Academy of Sciences, Warsaw, Poland.
| | - Rafał Styła
- Faculty of Psychology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
16
|
Blazer A, Chengappa KNR, Foran W, Parr AC, Kahn CE, Luna B, Sarpal DK. Changes in corticostriatal connectivity and striatal tissue iron associated with efficacy of clozapine for treatment‑resistant schizophrenia. Psychopharmacology (Berl) 2022; 239:2503-2514. [PMID: 35435461 PMCID: PMC9013738 DOI: 10.1007/s00213-022-06138-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/31/2022] [Indexed: 12/02/2022]
Abstract
RATIONALE Though numerous studies demonstrate the superiority of clozapine (CLZ) for treatment of persistent psychotic symptoms that are characteristic of treatment-refractory schizophrenia (TRS), what remains unknown are the neural and molecular mechanisms underlying CLZ's efficacy. Recent work implicates increased corticostriatal functional connectivity as a marker of response to non-CLZ, dopamine (DA) D2-receptor blocking antipsychotic drugs. However, it is undetermined whether this connectivity finding also relates to CLZ's unique efficacy, or if response to CLZ is associated with changes in striatal DA functioning. OBJECTIVE In a cohort of 22 individuals with TRS, we examined response to CLZ in relation to the following: (1) change in corticostriatal functional connectivity; and (2) change in a magnetic resonance-based measure of striatal tissue iron (R2'), which demonstrates utility as a proxy measure for elements of DA functioning. METHODS Participants underwent scanning while starting CLZ and after 12 weeks of CLZ treatment. We used both cortical and striatal regions of interest to examine changes in corticostriatal interactions and striatal R2' in relation to CLZ response (% reduction of psychotic symptoms). RESULTS We first found that response to CLZ was associated with an increase in corticostriatal connectivity between the dorsal caudate and regions of the frontoparietal network (P < 0.05, corrected). Secondly, we observed no significant changes in striatal R2' across CLZ treatment. CONCLUSION Overall, these results indicate that changes in corticostriatal networks without gross shifts in striatal DA functioning underlies CLZ response. Our results provide novel mechanistic insight into response to CLZ treatment.
Collapse
Affiliation(s)
- Annie Blazer
- Department of Psychiatry, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
| | - K N Roy Chengappa
- Department of Psychiatry, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
| | - William Foran
- Department of Psychiatry, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
| | - Ashley C Parr
- Department of Psychiatry, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
| | - Charles E Kahn
- Department of Psychiatry, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
| | - Beatriz Luna
- Department of Psychiatry, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Deepak K Sarpal
- Department of Psychiatry, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
17
|
Sonnenschein SF, Parr AC, Larsen B, Calabro FJ, Foran W, Eack SM, Luna B, Sarpal DK. Subcortical brain iron deposition in individuals with schizophrenia. J Psychiatr Res 2022; 151:272-278. [PMID: 35523067 DOI: 10.1016/j.jpsychires.2022.04.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 04/01/2022] [Accepted: 04/18/2022] [Indexed: 11/28/2022]
Abstract
Subcortical structures play a critical role the pathophysiology and treatment of schizophrenia (SZ), yet underlying neurophysiological processes, in vivo, remain largely unexplored. Brain tissue iron, which can be measured with magnetic resonance-based methods, is a crucial component of a variety of neuronal functions including neurotransmitter synthesis. Here we used a proxy measure of tissue iron to examine basal ganglia and thalamic structures in an adult cohort of individuals with chronic SZ. A publicly available dataset of 72 individuals with SZ between ages 18 and 65, and a matched sample of 74 healthy control (HC) participants were included. A novel method that calculated the inverse-normalized T2*-weighted contrast (1/nT2*) was used to estimate brain iron within the basal ganglia and thalamus. Between group, age- and sex-related differences in 1/nT2* were examined, in addition to correlations with measures of psychopathology and cognition. Individuals with SZ showed greater 1/nT2* (iron index) compared to HCs in the thalamus (p < 0.01, FWE corrected). Age-related 1/nT2* accumulation was noted in regions of the basal ganglia, coinciding with prior work, and prominent sex-differences were noted in the caudate and thalamus (p < 0.01, FWE corrected). No significant relationship was observed between 1/nT2* and measures of neurocognition or psychopathology. Overall, our findings characterize a non-invasive proxy measure of tissue iron in SZ and highlight thalamic iron accumulation as a potential marker of illness.
Collapse
Affiliation(s)
| | | | - Bart Larsen
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Shaun M Eack
- Department of Psychiatry, USA; School of Social Work, USA
| | - Beatriz Luna
- Department of Psychiatry, USA; Department of Psychology, USA; Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
| | | |
Collapse
|
18
|
Dion-Albert L, Bandeira Binder L, Daigle B, Hong-Minh A, Lebel M, Menard C. Sex differences in the blood-brain barrier: Implications for mental health. Front Neuroendocrinol 2022; 65:100989. [PMID: 35271863 DOI: 10.1016/j.yfrne.2022.100989] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/07/2022] [Accepted: 02/19/2022] [Indexed: 12/13/2022]
Abstract
Prevalence of mental disorders, including major depressive disorder (MDD), bipolar disorder (BD) and schizophrenia (SZ) are increasing at alarming rates in our societies. Growing evidence points toward major sex differences in these conditions, and high rates of treatment resistance support the need to consider novel biological mechanisms outside of neuronal function to gain mechanistic insights that could lead to innovative therapies. Blood-brain barrier alterations have been reported in MDD, BD and SZ. Here, we provide an overview of sex-specific immune, endocrine, vascular and transcriptional-mediated changes that could affect neurovascular integrity and possibly contribute to the pathogenesis of mental disorders. We also identify pitfalls in current literature and highlight promising vascular biomarkers. Better understanding of how these adaptations can contribute to mental health status is essential not only in the context of MDD, BD and SZ but also cardiovascular diseases and stroke which are associated with higher prevalence of these conditions.
Collapse
Affiliation(s)
- Laurence Dion-Albert
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Quebec City, Canada
| | - Luisa Bandeira Binder
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Quebec City, Canada
| | - Beatrice Daigle
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Quebec City, Canada
| | - Amandine Hong-Minh
- Smurfit Institute of Genetics, Trinity College Dublin, Lincoln Place Gate, Dublin 2, Ireland
| | - Manon Lebel
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Quebec City, Canada
| | - Caroline Menard
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Quebec City, Canada.
| |
Collapse
|
19
|
Reyes-Madrigal F, Guma E, León-Ortiz P, Gómez-Cruz G, Mora-Durán R, Graff-Guerrero A, Kegeles LS, Chakravarty MM, de la Fuente-Sandoval C. Striatal glutamate, subcortical structure and clinical response to first-line treatment in first-episode psychosis patients. Prog Neuropsychopharmacol Biol Psychiatry 2022; 113:110473. [PMID: 34748864 PMCID: PMC8643337 DOI: 10.1016/j.pnpbp.2021.110473] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Recent studies have observed that patients with treatment-resistant schizophrenia as well as patients with schizophrenia who do not respond within a medication trial exhibit excess activity of the glutamate system. In this study we sought to replicate the within-trial glutamate abnormality and to investigate the potential for structural differences and treatment-induced changes to improve identification of medication responders and non-responders. METHODS We enrolled 48 medication-naïve patients in a 4-week trial of risperidone and classified them retrospectively into responders and non-responders using clinical criteria. Proton magnetic resonance spectroscopy and T1-weighted structural MRI were acquired pre- and post-treatment to quantify striatal glutamate levels and several measures of subcortical brain structure. RESULTS Patients were classified as 29 responders and 19 non-responders. Striatal glutamate was higher in the non-responders than responders both pre- and post-treatment (F1,39 = 7.15, p = .01). Volumetric measures showed a significant group x time interaction (t = 5.163, <1%FDR), and group x time x glutamate interaction (t = 4.23, <15%FDR) were seen in several brain regions. Striatal volumes increased at trend level with treatment in both groups, and a positive association of striatal volumes with glutamate levels was seen in the non-responders. CONCLUSIONS Combining anatomic measures with glutamate levels offers the potential to enhance classification of responders and non-responders to antipsychotic medications as well as to provide mechanistic understanding of the interplay between neuroanatomical and neurochemical changes induced by these medications. Ethical statement The study was approved by the Ethics and Scientific committees of the Instituto Nacional de Neurología y Neurocirugía in Mexico City. All participants over 18 years fully understood and signed the informed consent; in case the patient was under 18 years, informed consent was obtained from both parents. Participants did not receive a stipend.
Collapse
Affiliation(s)
- Francisco Reyes-Madrigal
- Laboratory of Experimental Psychiatry, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Elisa Guma
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada; Computational Brain Anatomy (CoBrA) Lab, Cerebral Imaging Centre, Douglas Research Centre, Montreal, QC, Canada
| | - Pablo León-Ortiz
- Laboratory of Experimental Psychiatry, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Gladys Gómez-Cruz
- Laboratory of Experimental Psychiatry, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Ricardo Mora-Durán
- Emergency Department, Hospital Fray Bernardino Álvarez, Mexico City, Mexico
| | - Ariel Graff-Guerrero
- Multimodal Neuroimaging Schizophrenia Group, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Lawrence S Kegeles
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, USA
| | - M Mallar Chakravarty
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada; Computational Brain Anatomy (CoBrA) Lab, Cerebral Imaging Centre, Douglas Research Centre, Montreal, QC, Canada; Department of Psychiatry, McGill University, Montreal, QC, Canada; Department of Biological and Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - Camilo de la Fuente-Sandoval
- Laboratory of Experimental Psychiatry, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico; Neuropsychiatry Department, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico.
| |
Collapse
|
20
|
Shan X, Zhang H, Dong Z, Chen J, Liu F, Zhao J, Zhang H, Guo W. Increased subcortical region volume induced by electroconvulsive therapy in patients with schizophrenia. Eur Arch Psychiatry Clin Neurosci 2021; 271:1285-1295. [PMID: 34275006 DOI: 10.1007/s00406-021-01303-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 07/04/2021] [Indexed: 02/08/2023]
Abstract
Electroconvulsive therapy (ECT) has been widely used to treat patients with schizophrenia. However, the underlying mechanisms of ECT remain unknown. In the present study, the treatment effects of ECT on brain structure in patients with schizophrenia were explored. Seventy patients with schizophrenia were scanned using structural magnetic resonance imaging. Patients in the drug group were scanned at baseline (time 1) and follow-up (time 2, 6 weeks of treatment). Patients in the ECT group were scanned before ECT treatment (baseline, time 1) and 10-12 h after the last ECT treatment (time 2). Voxel-based morphometry was applied to analyze the imaging data. Patients in the ECT group showed significantly increased gray matter volume (GMV) in the bilateral hippocampus/amygdala and left superior temporal gyrus (STG)/middle temporal gyrus (MTG) after ECT combined with antipsychotic therapy at time 2. In contrast, patients in the drug group showed decreased GMV in widespread brain regions. Correlation analysis results showed significantly negative correlations between the increased GMV in the bilateral hippocampus/amygdala and PANSS scores at baseline in the ECT group. ECT may modulate brain structure in patients with schizophrenia. The GMV in distinct subcortical regions was related to the individual therapeutic response in patients with schizophrenia.
Collapse
Affiliation(s)
- Xiaoxiao Shan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Haisan Zhang
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, Henan, China.,Xinxiang Key Laboratory of Multimodal Brain Imaging, Xinxiang, 453002, Henan, China
| | - Zhao Dong
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, Henan, China.,Zhumadian Psychiatric Hospital, Zhumadian, 463000, Henan, China
| | - Jindong Chen
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Feng Liu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, 300000, China
| | - Jingping Zhao
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Hongxing Zhang
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, Henan, China. .,Xinxiang Key Laboratory of Multimodal Brain Imaging, Xinxiang, 453002, Henan, China. .,School of Psychology, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
| | - Wenbin Guo
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China. .,Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, 528000, Guangdong, China.
| |
Collapse
|
21
|
Increased Homotopic Connectivity in the Prefrontal Cortex Modulated by Olanzapine Predicts Therapeutic Efficacy in Patients with Schizophrenia. Neural Plast 2021; 2021:9954547. [PMID: 34512748 PMCID: PMC8429031 DOI: 10.1155/2021/9954547] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 08/08/2021] [Accepted: 08/18/2021] [Indexed: 11/18/2022] Open
Abstract
Background Previous studies have revealed the abnormalities in homotopic connectivity in schizophrenia. However, the relationship of these deficits to antipsychotic treatment in schizophrenia remains unclear. This study explored the effects of antipsychotic therapy on brain homotopic connectivity and whether the homotopic connectivity of these regions might predict individual treatment response in schizophrenic patients. Methods A total of 21 schizophrenic patients and 20 healthy controls were scanned by the resting-state functional magnetic resonance imaging. The patients received olanzapine treatment and were scanned at two time points. Voxel-mirrored homotopic connectivity (VMHC) and pattern classification techniques were applied to analyze the imaging data. Results Schizophrenic patients presented significantly decreased VMHC in the temporal and inferior frontal gyri, medial prefrontal cortex (MPFC), and motor and low-level sensory processing regions (including the fusiform gyrus and cerebellum lobule VI) relative to healthy controls. The VMHC in the superior/middle MPFC was significantly increased in the patients after eight weeks of treatment. Support vector regression (SVR) analyses revealed that VMHC in the superior/middle MPFC at baseline can predict the symptomatic improvement of the positive and negative syndrome scale after eight weeks of treatment. Conclusions This study demonstrated that olanzapine treatment may normalize decreased homotopic connectivity in the superior/middle MPFC in schizophrenic patients. The VMHC in the superior/middle MPFC may predict individual response for antipsychotic therapy. The findings of this study conduce to the comprehension of the therapy effects of antipsychotic medications on homotopic connectivity in schizophrenia.
Collapse
|
22
|
Neural Correlates of Aberrant Salience and Source Monitoring in Schizophrenia and At-Risk Mental States-A Systematic Review of fMRI Studies. J Clin Med 2021; 10:jcm10184126. [PMID: 34575237 PMCID: PMC8468329 DOI: 10.3390/jcm10184126] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/22/2021] [Accepted: 09/07/2021] [Indexed: 01/03/2023] Open
Abstract
Cognitive biases are an important factor contributing to the development and symptom severity of psychosis. Despite the fact that various cognitive biases are contributing to psychosis, they are rarely investigated together. In the current systematic review, we aimed at investigating specific and shared functional neural correlates of two important cognitive biases: aberrant salience and source monitoring. We conducted a systematic search of fMRI studies of said cognitive biases. Eight studies on aberrant salience and eleven studies on source monitoring were included in the review. We critically discussed behavioural and neuroimaging findings concerning cognitive biases. Various brain regions are associated with aberrant salience and source monitoring in individuals with schizophrenia and the risk of psychosis. The ventral striatum and insula contribute to aberrant salience. The medial prefrontal cortex, superior and middle temporal gyrus contribute to source monitoring. The anterior cingulate cortex and hippocampus contribute to both cognitive biases, constituting a neural overlap. Our review indicates that aberrant salience and source monitoring may share neural mechanisms, suggesting their joint role in producing disrupted external attributions of perceptual and cognitive experiences, thus elucidating their role in positive symptoms of psychosis. Account bridging mechanisms of these two biases is discussed. Further studies are warranted.
Collapse
|
23
|
Kraguljac NV, McDonald WM, Widge AS, Rodriguez CI, Tohen M, Nemeroff CB. Neuroimaging Biomarkers in Schizophrenia. Am J Psychiatry 2021; 178:509-521. [PMID: 33397140 PMCID: PMC8222104 DOI: 10.1176/appi.ajp.2020.20030340] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Schizophrenia is a complex neuropsychiatric syndrome with a heterogeneous genetic, neurobiological, and phenotypic profile. Currently, no objective biological measures-that is, biomarkers-are available to inform diagnostic or treatment decisions. Neuroimaging is well positioned for biomarker development in schizophrenia, as it may capture phenotypic variations in molecular and cellular disease targets, or in brain circuits. These mechanistically based biomarkers may represent a direct measure of the pathophysiological underpinnings of the disease process and thus could serve as true intermediate or surrogate endpoints. Effective biomarkers could validate new treatment targets or pathways, predict response, aid in selection of patients for therapy, determine treatment regimens, and provide a rationale for personalized treatments. In this review, the authors discuss a range of mechanistically plausible neuroimaging biomarker candidates, including dopamine hyperactivity, N-methyl-d-aspartate receptor hypofunction, hippocampal hyperactivity, immune dysregulation, dysconnectivity, and cortical gray matter volume loss. They then focus on the putative neuroimaging biomarkers for disease risk, diagnosis, target engagement, and treatment response in schizophrenia. Finally, they highlight areas of unmet need and discuss strategies to advance biomarker development.
Collapse
Affiliation(s)
- Nina V. Kraguljac
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL,Corresponding Author: Nina Vanessa Kraguljac, MD, Department of Psychiatry and Behavioral Neurobiology, The University of Alabama at Birmingham, SC 501, 1720 7th Ave S, Birmingham, AL 35294-0017, 205-996-7171,
| | - William M. McDonald
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine
| | - Alik S. Widge
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN
| | - Carolyn I. Rodriguez
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA,Veterans Affairs Palo Alto Health Care System, Palo Alto, CA
| | - Mauricio Tohen
- Department of Psychiatry and Behavioral Sciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Charles B. Nemeroff
- Department of Psychiatry, University of Texas Dell Medical School, Austin, TX
| |
Collapse
|
24
|
Foucher JR, de Billy C, Jeanjean LC, Obrecht A, Mainberger O, Clauss JME, Schorr B, Lupu MC, de Sousa PL, Lamy J, Noblet V, Sauleau EA, Landré L, Berna F. A Brain Imaging-Based Diagnostic Biomarker for Periodic Catatonia: Preliminary Evidence Using a Bayesian Approach. Neuropsychobiology 2021; 79:352-365. [PMID: 31505494 DOI: 10.1159/000501830] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 06/24/2019] [Indexed: 11/19/2022]
Abstract
Periodic catatonia (PC) is a psychomotor phenotype with a progressive-remitting course. While it can fit any disorder diagnosis of the schizoaffective spectrum, its core features consist of a mix of hypo- and hyperkinesias resulting in distortions of expressive movements such as grimacing and parakinesias. The replication of cerebral blood flow (CBF) increases in the left supplementary motor area (L-SMA) and lateral premotor cortex (L-LPM) in acute and remitting PC patients indicates that these increases could be used as diagnostic biomarkers. In this proof-of-concept study, 2 different MRI sequences were repeated on 3 separate days to get reliable measurement values of CBF in 9 PC and 26 non-PC patients during different cognitive tasks. Each patient was compared to 37 controls. In L-SMA [-9; +10; +60] and L-LPM [-46; -12; +43], a test was positive if the t value was >2.02 (α < 0.05; two tailed). The measurements had good analytical performance. Regarding the tests, their sensitivities and specificities were significantly different from the chance level on both measures, except for L-SMA sensitivities. When combining all the tests, among regions and methods, sensitivity was 98% (95% credible interval [CI] 76-100%) and specificity 88% (72-97%). Bayesian inferences of its negative predictive values for PC were >95% regardless of the context, while its positive predictive values reached 94% but only when used in combination with clinical criteria. The case-by-case analysis suggests that non-PC patients with neurological motor deficits are at risk to be false positive.
Collapse
Affiliation(s)
- Jack René Foucher
- ICube - CNRS UMR 7357, Neurophysiology, FMTS, University of Strasbourg, Strasbourg, France, .,CEMNIS - Noninvasive Neuromodulation Center, University Hospital Strasbourg, Strasbourg, France,
| | - Clément de Billy
- ICube - CNRS UMR 7357, Neurophysiology, FMTS, University of Strasbourg, Strasbourg, France.,CEMNIS - Noninvasive Neuromodulation Center, University Hospital Strasbourg, Strasbourg, France
| | - Ludovic Christophe Jeanjean
- ICube - CNRS UMR 7357, Neurophysiology, FMTS, University of Strasbourg, Strasbourg, France.,CEMNIS - Noninvasive Neuromodulation Center, University Hospital Strasbourg, Strasbourg, France
| | - Alexandre Obrecht
- CEMNIS - Noninvasive Neuromodulation Center, University Hospital Strasbourg, Strasbourg, France.,Pôle de Psychiatrie, Santé Mentale et Addictologie, University Hospital Strasbourg, Strasbourg, France
| | - Olivier Mainberger
- ICube - CNRS UMR 7357, Neurophysiology, FMTS, University of Strasbourg, Strasbourg, France.,CEMNIS - Noninvasive Neuromodulation Center, University Hospital Strasbourg, Strasbourg, France
| | - Julie Marie Estelle Clauss
- Pôle de Psychiatrie, Santé Mentale et Addictologie, University Hospital Strasbourg, Strasbourg, France.,SAGE - CNRS UMR 7363, FMTS, University of Strasbourg, Strasbourg, France
| | - Benoit Schorr
- Pôle de Psychiatrie, Santé Mentale et Addictologie, University Hospital Strasbourg, Strasbourg, France.,Physiopathologie et Psychopathologie Cognitive de la Schizophrénie - INSERM 1114, FMTS, University of Strasbourg, Strasbourg, France
| | | | | | - Julien Lamy
- ICube - CNRS UMR 7357, Neurophysiology, FMTS, University of Strasbourg, Strasbourg, France
| | - Vincent Noblet
- ICube - CNRS UMR 7357, Neurophysiology, FMTS, University of Strasbourg, Strasbourg, France
| | - Erik André Sauleau
- Biostatistical Laboratory, iCube - CNRS UMR 7357, University of Strasbourg, Strasbourg, France
| | - Lionel Landré
- ICube - CNRS UMR 7357, Neurophysiology, FMTS, University of Strasbourg, Strasbourg, France
| | - Fabrice Berna
- Pôle de Psychiatrie, Santé Mentale et Addictologie, University Hospital Strasbourg, Strasbourg, France.,Physiopathologie et Psychopathologie Cognitive de la Schizophrénie - INSERM 1114, FMTS, University of Strasbourg, Strasbourg, France
| |
Collapse
|
25
|
Influence of cytochrome P450 2D6 polymorphism on hippocampal white matter and treatment response in schizophrenia. NPJ SCHIZOPHRENIA 2021; 7:5. [PMID: 33514751 PMCID: PMC7846743 DOI: 10.1038/s41537-020-00134-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 11/12/2020] [Indexed: 12/16/2022]
Abstract
Cytochrome P450 2D6 (CYP2D6) is expressed at high levels in the brain and plays a considerable role in the biotransformation and neurotransmission of dopamine. This raises the question of whether CYP2D6 variations and its impact on the brain can confer susceptibility to schizophrenia. We investigated the possible links among the CYP2D6 genotype, white matter (WM) integrity of the hippocampus, and the treatment response to antipsychotic drugs in Korean patients with schizophrenia (n = 106). Brain magnetic resonance imaging and genotyping for CYP2D6 were conducted at baseline. The severity of clinical symptoms and the treatment response were assessed using the Positive and Negative Syndrome Scale (PANSS). After genotyping, 43 participants were classified as intermediate metabolizers (IM), and the remainder (n = 63) were classified as extensive metabolizers (EM). IM participants showed significantly higher fractional anisotropy (FA) values in the right hippocampus compared to EM participants. Radial diffusivity (RD) values were significantly lower in the overlapping region of the right hippocampus in the IM group than in the EM group. After 4 weeks of antipsychotic treatment, the EM group showed more improvements in positive symptoms than the IM group. FAs and RDs in the CYP2D6-associated hippocampal WM region were significantly correlated with a reduction in the positive symptom subscale of the PANSS. Greater improvements in positive symptoms were negatively associated with FAs, and positively associated with RDs in the right hippocampal region. The findings suggest that CYP26D-associated hippocampal WM alterations could be a possible endophenotype for schizophrenia that accounts for individual differences in clinical features and treatment responses.
Collapse
|
26
|
Shan X, Liao R, Ou Y, Pan P, Ding Y, Liu F, Chen J, Zhao J, Guo W, He Y. Increased regional homogeneity modulated by metacognitive training predicts therapeutic efficacy in patients with schizophrenia. Eur Arch Psychiatry Clin Neurosci 2021; 271:783-798. [PMID: 32215727 PMCID: PMC8119286 DOI: 10.1007/s00406-020-01119-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 03/11/2020] [Indexed: 02/07/2023]
Abstract
Previous studies have demonstrated the efficacy of metacognitive training (MCT) in schizophrenia. However, the underlying mechanisms related to therapeutic effect of MCT remain unknown. The present study explored the treatment effects of MCT on brain regional neural activity using regional homogeneity (ReHo) and whether these regions' activities could predict individual treatment response in schizophrenia. Forty-one patients with schizophrenia and 20 healthy controls were scanned using resting-state functional magnetic resonance imaging. Patients were randomly divided into drug therapy (DT) and drug plus psychotherapy (DPP) groups. The DT group received only olanzapine treatment, whereas the DPP group received olanzapine and MCT for 8 weeks. The results revealed that ReHo in the right precuneus, left superior medial prefrontal cortex (MPFC), right parahippocampal gyrus and left rectus was significantly increased in the DPP group after 8 weeks of treatment. Patients in the DT group showed significantly increased ReHo in the left ventral MPFC/anterior cingulate cortex (ACC), left superior MPFC/middle frontal gyrus (MFG), left precuneus, right rectus and left MFG, and significantly decreased ReHo in the bilateral cerebellum VIII and left inferior occipital gyrus (IOG) after treatment. Support vector regression analyses showed that high ReHo levels at baseline in the right precuneus and left superior MPFC could predict symptomatic improvement of Positive and Negative Syndrome Scale (PANSS) after 8 weeks of DPP treatment. Moreover, high ReHo levels at baseline and alterations of ReHo in the left ventral MPFC/ACC could predict symptomatic improvement of PANSS after 8 weeks of DT treatment. This study suggests that MCT is associated with the modulation of ReHo in schizophrenia. ReHo in the right precuneus and left superior MPFC may predict individual therapeutic response for MCT in patients with schizophrenia.
Collapse
Affiliation(s)
- Xiaoxiao Shan
- grid.452708.c0000 0004 1803 0208Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, 410011 Hunan China ,National Clinical Research Center on Mental Disorders, Changsha, 410011 Hunan China
| | - Rongyuan Liao
- grid.412990.70000 0004 1808 322XThe Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan China
| | - Yangpan Ou
- grid.452708.c0000 0004 1803 0208Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, 410011 Hunan China ,National Clinical Research Center on Mental Disorders, Changsha, 410011 Hunan China
| | - Pan Pan
- grid.452708.c0000 0004 1803 0208Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, 410011 Hunan China ,National Clinical Research Center on Mental Disorders, Changsha, 410011 Hunan China
| | - Yudan Ding
- grid.452708.c0000 0004 1803 0208Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, 410011 Hunan China ,National Clinical Research Center on Mental Disorders, Changsha, 410011 Hunan China
| | - Feng Liu
- grid.412645.00000 0004 1757 9434Department of Radiology, Tianjin Medical University General Hospital, Tianjin, 300000 China
| | - Jindong Chen
- grid.452708.c0000 0004 1803 0208Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, 410011 Hunan China ,National Clinical Research Center on Mental Disorders, Changsha, 410011 Hunan China
| | - Jingping Zhao
- grid.452708.c0000 0004 1803 0208Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, 410011 Hunan China ,National Clinical Research Center on Mental Disorders, Changsha, 410011 Hunan China
| | - Wenbin Guo
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China. .,National Clinical Research Center on Mental Disorders, Changsha, 410011, Hunan, China.
| | - Yiqun He
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China.
| |
Collapse
|
27
|
Kraguljac NV, Lahti AC. Neuroimaging as a Window Into the Pathophysiological Mechanisms of Schizophrenia. Front Psychiatry 2021; 12:613764. [PMID: 33776813 PMCID: PMC7991588 DOI: 10.3389/fpsyt.2021.613764] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 02/15/2021] [Indexed: 12/16/2022] Open
Abstract
Schizophrenia is a complex neuropsychiatric disorder with a diverse clinical phenotype that has a substantial personal and public health burden. To advance the mechanistic understanding of the illness, neuroimaging can be utilized to capture different aspects of brain pathology in vivo, including brain structural integrity deficits, functional dysconnectivity, and altered neurotransmitter systems. In this review, we consider a number of key scientific questions relevant in the context of neuroimaging studies aimed at unraveling the pathophysiology of schizophrenia and take the opportunity to reflect on our progress toward advancing the mechanistic understanding of the illness. Our data is congruent with the idea that the brain is fundamentally affected in the illness, where widespread structural gray and white matter involvement, functionally abnormal cortical and subcortical information processing, and neurometabolic dysregulation are present in patients. Importantly, certain brain circuits appear preferentially affected and subtle abnormalities are already evident in first episode psychosis patients. We also demonstrated that brain circuitry alterations are clinically relevant by showing that these pathological signatures can be leveraged for predicting subsequent response to antipsychotic treatment. Interestingly, dopamine D2 receptor blockers alleviate neural abnormalities to some extent. Taken together, it is highly unlikely that the pathogenesis of schizophrenia is uniform, it is more plausible that there may be multiple different etiologies that converge to the behavioral phenotype of schizophrenia. Our data underscore that mechanistically oriented neuroimaging studies must take non-specific factors such as antipsychotic drug exposure or illness chronicity into consideration when interpreting disease signatures, as a clear characterization of primary pathophysiological processes is an imperative prerequisite for rational drug development and for alleviating disease burden in our patients.
Collapse
Affiliation(s)
- Nina Vanessa Kraguljac
- Neuroimaging and Translational Research Laboratory, Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Adrienne Carol Lahti
- Neuroimaging and Translational Research Laboratory, Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
28
|
Gurler D, White DM, Kraguljac NV, Ver Hoef L, Martin C, Tennant B, Lahti AC. Neural Signatures of Memory Encoding in Schizophrenia Are Modulated by Antipsychotic Treatment. Neuropsychobiology 2021; 80:12-24. [PMID: 32316023 PMCID: PMC7874518 DOI: 10.1159/000506402] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 02/07/2020] [Indexed: 12/17/2022]
Abstract
There is no pharmacological treatment to remediate cognitive impairment in schizophrenia (SZ). It is imperative to characterize underlying pathologies of memory processing in order to effectively develop new treatments. In this longitudinal study, we combined functional magnetic resonance imaging during a memory encoding task with proton MR spectroscopy to measure hippocampal glutamate + glutamine (Glx). Seventeen SZ were scanned while unmedicated and after 6 weeks of treatment with risperidone and compared to a group of matched healthy controls (HC) scanned 6 weeks apart. Unmedicated patients showed reduced blood oxygen level dependent (BOLD) response in several regions, including the hippocampus, and greater BOLD response in regions of the default mode network (DMN) during correct memory encoding. Post hoc contrasts from significant group by time interactions indicated reduced hippocampal BOLD response at baseline with subsequent increase following treatment. Hippocampal Glx was not different between groups at baseline, but at week 6, hippocampal Glx was significantly lower in SZ compared to HC. Finally, in unmedicated SZ, higher hippocampal Glx predicted less deactivation of the BOLD response in regions of the DMN. Using 2 brain imaging modalities allowed us to concurrently investigate different mechanisms involved in memory encoding dysfunction in SZ. Hippocampal pathology during memory encoding stems from decreased hippocampal recruitment and faulty deactivation of the DMN, and hippocampal recruitment during encoding can be modulated by antipsychotic treatment. High Glx in unmedicated patients predicted less deactivation of the DMN; these results suggest a mechanism by which faulty DMN deactivation, a hallmark of pathological findings in SZ, is achieved.
Collapse
Affiliation(s)
- Demet Gurler
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham
| | - David Matthew White
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham
| | - Nina Vanessa Kraguljac
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham
| | | | - Clinton Martin
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham
| | - Blake Tennant
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham
| | - Adrienne Carol Lahti
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, USA,
| |
Collapse
|
29
|
Yao C, Hu N, Cao H, Tang B, Zhang W, Xiao Y, Zhao Y, Gong Q, Lui S. A Multimodal Fusion Analysis of Pretreatment Anatomical and Functional Cortical Abnormalities in Responsive and Non-responsive Schizophrenia. Front Psychiatry 2021; 12:737179. [PMID: 34925087 PMCID: PMC8671303 DOI: 10.3389/fpsyt.2021.737179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/29/2021] [Indexed: 02/05/2023] Open
Abstract
Background: Antipsychotic medications provide limited long-term benefit to ~30% of schizophrenia patients. Multimodal magnetic resonance imaging (MRI) data have been used to investigate brain features between responders and nonresponders to antipsychotic treatment; however, these analytical techniques are unable to weigh the interrelationships between modalities. Here, we used multiset canonical correlation and joint independent component analysis (mCCA + jICA) to fuse MRI data to examine the shared and specific multimodal features between the patients and healthy controls (HCs) and between the responders and non-responders. Method: Resting-state functional and structural MRI data were collected from 55 patients with drug-naïve first-episode schizophrenia (FES) and demographically matched HCs. Based on the decrease in Positive and Negative Syndrome Scale scores from baseline to the 1-year follow-up, FES patients were divided into a responder group (RG) and a non-responder group (NRG). Gray matter volume (GMV), fractional amplitude of low-frequency fluctuation (fALFF), and regional homogeneity (ReHo) maps were used as features in mCCA + jICA. Results: Between FES patients and HCs, there were three modality-specific discriminative independent components (ICs) showing the difference in mixing coefficients (GMV-IC7, GMV-IC8, and fALFF-IC5). The fusion analysis indicated one modality-shared IC (GMV-IC2 and ReHo-IC2) and three modality-specific ICs (GMV-IC1, GMV-IC3, and GMV-IC6) between the RG and NRG. The right postcentral gyrus showed a significant difference in GMV features between FES patients and HCs and modality-shared features (GMV and ReHo) between responders and nonresponders. The modality-shared component findings were highlighted by GMV, mainly in the bilateral temporal gyrus and the right cerebellum associated with ReHo in the right postcentral gyrus. Conclusions: This study suggests that joint anatomical and functional features of the cortices may reflect an early pathophysiological mechanism that is related to a 1-year treatment response.
Collapse
Affiliation(s)
- Chenyang Yao
- Department of Radiology, Huaxi Magnetic Resonance Research Center, West China Hospital, Sichuan University, Chengdu, China.,Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.,Department of Imaging Medicine, Inner Mongolia Autonomous Region People's Hospital, Hohhot, China
| | - Na Hu
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Hengyi Cao
- Department of Radiology, Huaxi Magnetic Resonance Research Center, West China Hospital, Sichuan University, Chengdu, China.,Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset, NY, United States.,Division of Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, NY, United States
| | - Biqiu Tang
- Department of Radiology, Huaxi Magnetic Resonance Research Center, West China Hospital, Sichuan University, Chengdu, China.,Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Wenjing Zhang
- Department of Radiology, Huaxi Magnetic Resonance Research Center, West China Hospital, Sichuan University, Chengdu, China.,Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Yuan Xiao
- Department of Radiology, Huaxi Magnetic Resonance Research Center, West China Hospital, Sichuan University, Chengdu, China.,Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Youjin Zhao
- Department of Radiology, Huaxi Magnetic Resonance Research Center, West China Hospital, Sichuan University, Chengdu, China.,Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Qiyong Gong
- Department of Radiology, Huaxi Magnetic Resonance Research Center, West China Hospital, Sichuan University, Chengdu, China.,Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Su Lui
- Department of Radiology, Huaxi Magnetic Resonance Research Center, West China Hospital, Sichuan University, Chengdu, China.,Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
30
|
Bryll A, Krzyściak W, Karcz P, Śmierciak N, Kozicz T, Skrzypek J, Szwajca M, Pilecki M, Popiela TJ. The Relationship between the Level of Anterior Cingulate Cortex Metabolites, Brain-Periphery Redox Imbalance, and the Clinical State of Patients with Schizophrenia and Personality Disorders. Biomolecules 2020; 10:E1272. [PMID: 32899276 PMCID: PMC7565827 DOI: 10.3390/biom10091272] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/17/2020] [Accepted: 08/28/2020] [Indexed: 01/10/2023] Open
Abstract
Schizophrenia is a complex mental disorder whose course varies with periods of deterioration and symptomatic improvement without diagnosis and treatment specific for the disease. So far, it has not been possible to clearly define what kinds of functional and structural changes are responsible for the onset or recurrence of acute psychotic decompensation in the course of schizophrenia, and to what extent personality disorders may precede the appearance of the appropriate symptoms. The work combines magnetic resonance spectroscopy imaging with clinical evaluation and laboratory tests to determine the likely pathway of schizophrenia development by identifying peripheral cerebral biomarkers compared to personality disorders. The relationship between the level of metabolites in the brain, the clinical status of patients according to International Statistical Classification of Diseases and Related Health Problems, 10th Revision ICD-10, duration of untreated psychosis (DUP), and biochemical indices related to redox balance (malondialdehyde), the efficiency of antioxidant systems (FRAP), and bioenergetic metabolism of mitochondria, were investigated. There was a reduction in the level of brain N-acetyl-aspartate and glutamate in the anterior cingulate gyrus of patients with schisophrenia compared to the other groups that seems more to reflect a biological etiopathological factor of psychosis. Decreased activity of brain metabolites correlated with increased peripheral oxidative stress (increased malondialdehyde MDA) associated with decreased efficiency of antioxidant systems (FRAP) and the breakdown of clinical symptoms in patients with schizophrenia in the course of psychotic decompensation compared to other groups. The period of untreated psychosis correlated negatively with glucose value in the brain of people with schizophrenia, and positively with choline level. The demonstrated differences between two psychiatric units, such as schizophrenia and personality disorders in relation to healthy people, may be used to improve the diagnosis and prognosis of schizophrenia compared to other heterogenous psychopathology in the future. The collapse of clinical symptoms of patients with schizophrenia in the course of psychotic decompensation may be associated with the occurrence of specific schizotypes, the determination of which is possible by determining common relationships between changes in metabolic activity of particular brain structures and peripheral parameters, which may be an important biological etiopathological factor of psychosis. Markers of peripheral redox imbalance associated with disturbed bioenergy metabolism in the brain may provide specific biological factors of psychosis however, they need to be confirmed in further studies.
Collapse
Affiliation(s)
- Amira Bryll
- Department of Radiology, Jagiellonian University Medical College, Kopernika 19, 31-501 Krakow, Poland;
| | - Wirginia Krzyściak
- Department of Medical Diagnostics, Jagiellonian University, Medical College, Medyczna 9, 30-688 Krakow, Poland;
| | - Paulina Karcz
- Department of Electroradiology, Jagiellonian University Medical College, Michałowskiego 12, 31-126 Krakow, Poland;
| | - Natalia Śmierciak
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Jagiellonian University, Medical College, Kopernika 21a, 31-501 Krakow, Poland; (N.Ś.); (M.S.); (M.P.)
| | - Tamas Kozicz
- Department of Clinical Genomics, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA;
| | - Justyna Skrzypek
- Department of Medical Diagnostics, Jagiellonian University, Medical College, Medyczna 9, 30-688 Krakow, Poland;
| | - Marta Szwajca
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Jagiellonian University, Medical College, Kopernika 21a, 31-501 Krakow, Poland; (N.Ś.); (M.S.); (M.P.)
| | - Maciej Pilecki
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Jagiellonian University, Medical College, Kopernika 21a, 31-501 Krakow, Poland; (N.Ś.); (M.S.); (M.P.)
| | - Tadeusz J. Popiela
- Department of Radiology, Jagiellonian University Medical College, Kopernika 19, 31-501 Krakow, Poland;
| |
Collapse
|
31
|
Blessing EM, Murty VP, Zeng B, Wang J, Davachi L, Goff DC. Anterior Hippocampal-Cortical Functional Connectivity Distinguishes Antipsychotic Naïve First-Episode Psychosis Patients From Controls and May Predict Response to Second-Generation Antipsychotic Treatment. Schizophr Bull 2020; 46:680-689. [PMID: 31433843 PMCID: PMC7147586 DOI: 10.1093/schbul/sbz076] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Converging evidence implicates the anterior hippocampus in the proximal pathophysiology of schizophrenia. Although resting state functional connectivity (FC) holds promise for characterizing anterior hippocampal circuit abnormalities and their relationship to treatment response, this technique has not yet been used in first-episode psychosis (FEP) patients in a manner that distinguishes the anterior from posterior hippocampus. METHODS We used masked-hippocampal-group-independent component analysis with dual regression to contrast subregional hippocampal-whole brain FC between healthy controls (HCs) and antipsychotic naïve FEP patients (N = 61, 36 female). In a subsample of FEP patients (N = 27, 15 female), we repeated this analysis following 8 weeks of second-generation antipsychotic treatment and explored whether baseline FC predicted treatment response using random forest. RESULTS Relative to HC, untreated FEP subjects displayed reproducibly lower FC between the left anteromedial hippocampus and cortical regions including the anterior cingulate and insular cortex (P < .05, corrected). Anteromedial hippocampal FC increased in FEP patients following treatment (P < .005), and no longer differed from HC. Random forest analysis showed baseline anteromedial hippocampal FC with four brain regions, namely the insular-opercular cortex, superior frontal gyrus, precentral gyrus, and postcentral gyrus predicted treatment response (area under the curve = 0.95). CONCLUSIONS Antipsychotic naïve FEP is associated with lower FC between the anterior hippocampus and cortical regions previously implicated in schizophrenia. Preliminary analysis suggests that random forest models based on hippocampal FC may predict treatment response in FEP patients, and hence could be a useful biomarker for treatment development.
Collapse
Affiliation(s)
- Esther M Blessing
- Department of Psychiatry, New York University Langone Medical Center, New York, NY,To whom correspondence should be addressed; tel: +1-646-754-4808, fax: 646-754-4871, e-mail:
| | - Vishnu P Murty
- Department of Neuroscience, Temple University, Philadelphia, PA
| | - Botao Zeng
- Department of Psychiatry, Qingdao Mental Health Center, Qingdao, China
| | - Jijun Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China,Center for Excellence in Brain Science and Intelligence Technology Chinese Academy of Science (CEBSIT), Shanghai, China
| | - Lila Davachi
- Department of Psychology, Columbia University, New York, NY,Nathan Kline Institute, Orangeburg, NY
| | - Donald C Goff
- Department of Psychiatry, New York University Langone Medical Center, New York, NY,Nathan Kline Institute, Orangeburg, NY
| |
Collapse
|
32
|
Gault JM, Thompson JA, Maharajh K, Hosokawa P, Stevens KE, Olincy A, Liedtke EI, Ojemann A, Ojemann S, Abosch A. Striatal and Thalamic Auditory Response During Deep Brain Stimulation for Essential Tremor: Implications for Psychosis. Neuromodulation 2020; 23:478-488. [PMID: 32022409 DOI: 10.1111/ner.13101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 12/04/2019] [Accepted: 01/02/2020] [Indexed: 12/20/2022]
Abstract
INTRODUCTION The P50, a positive auditory-evoked potential occurring 50 msec after an auditory click, has been characterized extensively with electroencephalography (EEG) to detect aberrant auditory electrophysiology in disorders like schizophrenia (SZ) where 61-74% have an auditory gating deficit. The P50 response occurs in primary auditory cortex and several thalamocortical regions. In rodents, the gated P50 response has been identified in the reticular thalamic nucleus (RT)-a deep brain structure traversed during deep brain stimulation (DBS) targeting of the ventral intermediate nucleus (VIM) of the thalamus to treat essential tremor (ET) allowing for interspecies comparison. The goal was to utilize the unique opportunity provided by DBS surgery for ET to map the P50 response in multiple deep brain structures in order to determine the utility of intraoperative P50 detection for facilitating DBS targeting of auditory responsive subterritories. MATERIALS AND METHODS We developed a method to assess P50 response intraoperatively with local field potentials (LFP) using microelectrode recording during routine clinical electrophysiologic mapping for awake DBS surgery in seven ET patients. Recording sites were mapped into a common stereotactic space. RESULTS Forty significant P50 responses of 155 recordings mapped to the ventral thalamus, RT and CN head/body interface at similar rates of 22.7-26.7%. P50 response exhibited anatomic specificity based on distinct positions of centroids of positive and negative responses within brain regions and the fact that P50 response was not identified in the recordings from either the internal capsule or the dorsal thalamus. CONCLUSIONS Detection of P50 response intraoperatively may guide DBS targeting RT and subterritories within CN head/body interface-DBS targets with the potential to treat psychosis and shown to modulate schizophrenia-like aberrancies in mouse models.
Collapse
Affiliation(s)
- Judith M Gault
- Department of Neurosurgery, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA.,Department of Psychiatry, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
| | - John A Thompson
- Department of Neurosurgery, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
| | - Keeran Maharajh
- Department of Psychiatry, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA.,Department of Neurology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Patrick Hosokawa
- Department of Neurosurgery, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
| | - Karen E Stevens
- Department of Psychiatry, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
| | - Ann Olincy
- Department of Psychiatry, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
| | - Erin I Liedtke
- Department of Neurosurgery, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
| | - Alex Ojemann
- Department of Neurosurgery, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
| | - Steven Ojemann
- Department of Neurosurgery, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
| | - Aviva Abosch
- Department of Neurosurgery, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA.,Department of Neurology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
33
|
Reduced connectivity in anterior cingulate cortex as an early predictor for treatment response in drug-naive, first-episode schizophrenia: A global-brain functional connectivity analysis. Schizophr Res 2020; 215:337-343. [PMID: 31522869 DOI: 10.1016/j.schres.2019.09.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/27/2019] [Accepted: 09/02/2019] [Indexed: 01/13/2023]
Abstract
BACKGROUND Antipsychotic medications may have acute effect on brain functional connectivity (FC) after only a few days of treatment. It is unclear if early changes in FC can predict treatment response in patients with schizophrenia. METHODS The study included 32 patients with drug-naive, first-episode schizophrenia and 32 healthy controls. Resting-state functional magnetic resonance imaging was obtained from the patients at two time-points (pre-treatment baseline and 1 week after treatment) and healthy controls at baseline. Patients were treated with olanzapine for 8 weeks, and clinical symptoms were assessed using the Positive and Negative Syndrome Scale (PANSS) at three time points (baseline, 1 week and 8 weeks after treatment). Imaging data were analyzed using global-brain FC (GFC) and support vector regression (SVR). RESULTS At baseline, an increased GFC was observed in bilateral anterior cingulate cortex (ACC) in patients compared with healthy controls. After 1 week of olanzapine treatment, patients showed decreased GFC in bilateral ACC compared to the baseline values. SVR analysis suggested a positive relationship between GFC changes in bilateral ACC at week 1 and improvement in negative symptoms at week 8 (r = 0.957, p < 0.001). CONCLUSION An early decrease in GFC in bilateral ACC may serve as a predictor for treatment response in patients with schizophrenia. If further confirmed, our finding may be able to help clinicians decide, during the early treatment course, whether the patient should stay on the chosen antipsychotic medication or switch to a different one.
Collapse
|
34
|
Blair Thies M, DeRosse P, Sarpal DK, Argyelan M, Fales CL, Gallego JA, Robinson DG, Lencz T, Homan P, Malhotra AK. Interaction of Cannabis Use Disorder and Striatal Connectivity in Antipsychotic Treatment Response. SCHIZOPHRENIA BULLETIN OPEN 2020; 1:sgaa014. [PMID: 32803161 PMCID: PMC7418867 DOI: 10.1093/schizbullopen/sgaa014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Antipsychotic (AP) medications are the mainstay for the treatment of schizophrenia spectrum disorders (SSD), but their efficacy is unpredictable and widely variable. Substantial efforts have been made to identify prognostic biomarkers that can be used to guide optimal prescription strategies for individual patients. Striatal regions involved in salience and reward processing are disrupted as a result of both SSD and cannabis use, and research demonstrates that striatal circuitry may be integral to response to AP drugs. In the present study, we used functional magnetic resonance imaging (fMRI) to investigate the relationship between a history of cannabis use disorder (CUD) and a striatal connectivity index (SCI), a previously developed neural biomarker for AP treatment response in SSD. Patients were part of a 12-week randomized, double-blind controlled treatment study of AP drugs. A sample of 48 first-episode SSD patients with no more than 2 weeks of lifetime exposure to AP medications, underwent a resting-state fMRI scan pretreatment. Treatment response was defined a priori as a binary (response/nonresponse) variable, and a SCI was calculated in each patient. We examined whether there was an interaction between lifetime CUD history and the SCI in relation to treatment response. We found that CUD history moderated the relationship between SCI and treatment response, such that it had little predictive value in SSD patients with a CUD history. In sum, our findings highlight that biomarker development can be critically impacted by patient behaviors that influence neurobiology, such as a history of CUD.
Collapse
Affiliation(s)
- Melanie Blair Thies
- Division of Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, NY
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, NY
| | - Pamela DeRosse
- Division of Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, NY
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, NY
- Department of Psychiatry, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY
| | - Deepak K Sarpal
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
| | - Miklos Argyelan
- Division of Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, NY
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, NY
- Department of Psychiatry, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY
| | - Christina L Fales
- Division of Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, NY
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, NY
| | - Juan A Gallego
- Division of Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, NY
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, NY
- Graduate Center—City University of New York, New York, NY
- Department of Psychiatry, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY
| | - Delbert G Robinson
- Division of Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, NY
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, NY
- Department of Psychiatry, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY
| | - Todd Lencz
- Division of Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, NY
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, NY
- Department of Psychiatry, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY
| | - Philipp Homan
- Division of Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, NY
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, NY
| | - Anil K Malhotra
- Division of Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, NY
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, NY
- Department of Psychiatry, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY
| |
Collapse
|
35
|
Drazanova E, Kratka L, Vaskovicova N, Skoupy R, Horska K, Babinska Z, Kotolova H, Vrlikova L, Buchtova M, Starcuk Z, Ruda-Kucerova J. Olanzapine exposure diminishes perfusion and decreases volume of sensorimotor cortex in rats. Pharmacol Rep 2019; 71:839-847. [PMID: 31394417 DOI: 10.1016/j.pharep.2019.04.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/24/2019] [Accepted: 04/29/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Olanzapine is a frequently used atypical antipsychotic drug known to exert structural brain alterations in animals. This study investigated whether chronic olanzapine exposure alters regional blood brain perfusion assessed by Arterial Spin Labelling (ASL) magnetic resonance imaging (MRI) in a validated model of olanzapine-induced metabolic disturbances. An effect of acute olanzapine exposure on brain perfusion was also assessed for comparison. METHODS Adult Sprague-Dawley female rats were treated by intramuscular depot olanzapine injections (100 mg/kg every 14 days) or vehicle for 8 weeks. ASL scanning was performed on a 9.4 T Bruker BioSpec 94/30USR scanner under isoflurane anesthesia. Serum samples were used to assay leptin and TNF-α level while brains were sliced for histology. Another group received only one non-depot intraperitoneal dose of olanzapine (7 mg/kg) during MRI scanning, thus exposing its acute effect on brain perfusion. RESULTS Both acute and chronic dosing of olanzapine resulted in decreased perfusion in the sensorimotor cortex, while no effect was observed in the piriform cortex or hippocampus. Furthermore, in the chronically treated group decreased cortex volume was observed. Chronic olanzapine dosing led to increased body weight, adipose tissue mass and leptin level, confirming its expected metabolic effects. CONCLUSION This study demonstrates region-specific decreases in blood perfusion associated with olanzapine exposure present already after the first dose. These findings extend our understanding of olanzapine-induced functional and structural brain changes.
Collapse
Affiliation(s)
- Eva Drazanova
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic; Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic.
| | - Lucie Kratka
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | - Nadezda Vaskovicova
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | - Radim Skoupy
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | - Katerina Horska
- Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - Zuzana Babinska
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Hana Kotolova
- Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - Lucie Vrlikova
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | - Marcela Buchtova
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | - Zenon Starcuk
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | - Jana Ruda-Kucerova
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
36
|
Legind CS, Broberg BV, Brouwer R, Mandl RCW, Ebdrup BH, Anhøj SJ, Jensen MH, Hilker R, Fagerlund B, Hulshoff Pol HE, Glenthøj BY, Rostrup E. Heritability of Cerebral Blood Flow and the Correlation to Schizophrenia Spectrum Disorders: A Pseudo-continuous Arterial Spin Labeling Twin Study. Schizophr Bull 2019; 45:1231-1241. [PMID: 30776063 PMCID: PMC6811820 DOI: 10.1093/schbul/sbz007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Whether aberrant cerebral blood flow (CBF) in schizophrenia is affected by genetic influences, and consequently a potential marker for genetic susceptibility, is unknown. Our aims were to determine the heritability of CBF in thalamic, frontal, and striatal areas, and to ascertain if associations with disease were under genetic influence. Monozygotic (MZ) twin pairs concordant (n = 2) or discordant (n = 20) for schizophrenia spectrum disorders (ICD-10 F2x.x), matched on sex and age with dizygotic (DZ; n = 20) and healthy control pairs (MZ: n = 27; DZ: n = 18; total: n = 181 individuals), were recruited via the National Danish Twin Register. CBF in thalamus, frontal lobes, and putamen was measured with pseudo-continuous arterial spin labeling on a 3 T magnetic resonance scanner. Twin statistics were performed with structural equation modeling. CBF in the frontal lobes was heritable (h2 = 0.44, 95% CI [0.22-0.60]) but not correlated to disease. CBF correlated to schizophrenia spectrum disorders in the left thalamus (r = 0.17, [0.03-0.31]; P = 0.02), as well as in the left putamen (r = 0.19, [0.05-0.32]; P = 0.007) and the right putamen (r = 0.18, [0.03-0.32]; P = 0.02). When restricting the sample to schizophrenia (F20.x) only, shared genetic influences between CBF in the left putamen and schizophrenia liability (phenotypic correlation = 0.44, [0.28-0.58], P < 0.001) were found. Our results provide heritability estimates of CBF in the frontal lobes, and we find CBF in thalamus and putamen to be altered in schizophrenia spectrum disorders. Furthermore, shared genetic factors influence schizophrenia liability and striatal perfusion. Specifically, higher perfusion in the left putamen may constitute a marker of genetic susceptibility for schizophrenia.
Collapse
Affiliation(s)
- Christian S Legind
- Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, CINS, Mental Health Centre Glostrup, University of Copenhagen, Copenhagen, Denmark,Center for Neuropsychiatric Schizophrenia Research, CNSR, Mental Health Centre Glostrup, University of Copenhagen, Copenhagen, Denmark,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark,To whom correspondence should be addressed; Center for Neuropsychiatric Schizophrenia Research, CNSR, Mental Health Centre Glostrup, Nordre Ringvej 29-67, DK-2600 Glostrup, Denmark; tel: + 45 20862904, fax: +45 38640555, e-mail:
| | - Brian V Broberg
- Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, CINS, Mental Health Centre Glostrup, University of Copenhagen, Copenhagen, Denmark,Center for Neuropsychiatric Schizophrenia Research, CNSR, Mental Health Centre Glostrup, University of Copenhagen, Copenhagen, Denmark
| | - Rachel Brouwer
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - René C W Mandl
- Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, CINS, Mental Health Centre Glostrup, University of Copenhagen, Copenhagen, Denmark,Center for Neuropsychiatric Schizophrenia Research, CNSR, Mental Health Centre Glostrup, University of Copenhagen, Copenhagen, Denmark,Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Bjørn H Ebdrup
- Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, CINS, Mental Health Centre Glostrup, University of Copenhagen, Copenhagen, Denmark,Center for Neuropsychiatric Schizophrenia Research, CNSR, Mental Health Centre Glostrup, University of Copenhagen, Copenhagen, Denmark,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Simon J Anhøj
- Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, CINS, Mental Health Centre Glostrup, University of Copenhagen, Copenhagen, Denmark,Center for Neuropsychiatric Schizophrenia Research, CNSR, Mental Health Centre Glostrup, University of Copenhagen, Copenhagen, Denmark
| | - Maria H Jensen
- Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, CINS, Mental Health Centre Glostrup, University of Copenhagen, Copenhagen, Denmark,Center for Neuropsychiatric Schizophrenia Research, CNSR, Mental Health Centre Glostrup, University of Copenhagen, Copenhagen, Denmark
| | - Rikke Hilker
- Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, CINS, Mental Health Centre Glostrup, University of Copenhagen, Copenhagen, Denmark,Center for Neuropsychiatric Schizophrenia Research, CNSR, Mental Health Centre Glostrup, University of Copenhagen, Copenhagen, Denmark
| | - Birgitte Fagerlund
- Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, CINS, Mental Health Centre Glostrup, University of Copenhagen, Copenhagen, Denmark,Center for Neuropsychiatric Schizophrenia Research, CNSR, Mental Health Centre Glostrup, University of Copenhagen, Copenhagen, Denmark,Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| | - Hilleke E Hulshoff Pol
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Birte Y Glenthøj
- Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, CINS, Mental Health Centre Glostrup, University of Copenhagen, Copenhagen, Denmark,Center for Neuropsychiatric Schizophrenia Research, CNSR, Mental Health Centre Glostrup, University of Copenhagen, Copenhagen, Denmark,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Egill Rostrup
- Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, CINS, Mental Health Centre Glostrup, University of Copenhagen, Copenhagen, Denmark,Center for Neuropsychiatric Schizophrenia Research, CNSR, Mental Health Centre Glostrup, University of Copenhagen, Copenhagen, Denmark,Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet–Glostrup, Copenhagen, Denmark
| |
Collapse
|
37
|
Bryant JE, Frölich M, Tran S, Reid MA, Lahti AC, Kraguljac NV. Ketamine induced changes in regional cerebral blood flow, interregional connectivity patterns, and glutamate metabolism. J Psychiatr Res 2019; 117:108-115. [PMID: 31376621 PMCID: PMC7291620 DOI: 10.1016/j.jpsychires.2019.07.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/19/2019] [Accepted: 07/26/2019] [Indexed: 12/31/2022]
Abstract
Several imaging studies have attempted to characterize the contribution of glutamatergic dysfunction to functional dysconnectivity of large-scale brain networks using ketamine models. However, findings from BOLD imaging studies are conflicting, in part because the signal stems from a complex interaction between blood flow, blood volume, and oxygen consumption. We used arterial spin labelling imaging to measure regional cerebral blood flow (rCBF) in a group of healthy volunteers during a saline and during a ketamine infusion. We examined changes in rCBF and interregional connectivity patterns, as well as their associations with clinical symptom severity and Glx (glutamate + glutamine) assessed with magnetic resonance spectroscopy. We report a regionally selective pattern of rCBF changes following ketamine administration and complex changes in interregional connectivity patterns. We also found that the increase in rCBF in the bilateral putamen and left hippocampus was positively correlated with ketamine induced clinical symptom severity while anterior cingulate rCBF during the ketamine challenge was negatively correlated with change in hippocampal Glx. Our study adds to the efforts to empirically confirm putative links between an NMDA receptor blockage and dysconnectivity of large-scale brain networks, specifically the salience, executive control and default mode networks, suggesting that a glutamatergic imbalance may contribute to dysconnectivity. Development of glutamatergic compounds that alleviate disease burden, possibly through normalizing glutamate excess related increased rCBF, is direly needed.
Collapse
Affiliation(s)
- James Edward Bryant
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, United States
| | - Michael Frölich
- Department of Anesthesiology, University of Alabama at Birmingham, United States
| | - Steve Tran
- Department of Anesthesiology, University of Alabama at Birmingham, United States
| | - Meredith Amanda Reid
- MRI Research Center, Department of Electrical and Computer Engineering, Auburn University, United States
| | - Adrienne Carol Lahti
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, United States
| | - Nina Vanessa Kraguljac
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, United States.
| |
Collapse
|
38
|
Altered coupling of spontaneous brain activities and brain temperature in patients with adolescent-onset, first-episode, drug-naïve schizophrenia. Neuroradiology 2019; 61:575-584. [PMID: 30843095 DOI: 10.1007/s00234-019-02181-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 01/29/2019] [Indexed: 10/27/2022]
Abstract
PURPOSE A recent study has reported that schizophrenia patients show an uncoupled association between intraventricular brain temperature (BT) and cerebral blood flow (CBF). CBF has been found to be closely coupled with spontaneous brain activities (SBAs) derived from resting-state BOLD fMRI metrics. Yet, it is unclear so far whether the relationship between the intraventricular BT and the SBAs may change in patients with adolescent-onset schizophrenia (AOS) compared with that in healthy controls (HCs). METHODS The present study recruited 28 first-episode, drug-naïve AOS patients and 22 matched HCs. We measured the temperature of the lateral ventricles (LV) using diffusion-weighted imaging thermometry and measured SBAs using both regional homogeneity and amplitude of low-frequency fluctuation methods. A nonparametric Wilcoxon rank sum test was used to detect the difference in intraventricular BT between AOS patients and HCs with LV volume, age, and sex as covariates. We also evaluated the relationship between the intraventricular BT and the SBAs using partial correlation analysis controlling for LV volume, age, and sex. RESULTS We found that HCs showed a significant negative correlation between the intraventricular BT and the local SBAs in the bilateral putamina and left superior temporal gyrus, while such a correlation was absent in AOS patients. Additionally, no significant difference between the two groups was found in the intraventricular BT. CONCLUSION These findings suggest that AOS patients may experience an uncoupling between intraventricular BT and SBAs in several schizophrenia-related brain areas, which may be associated with the altered relationships among intraventricular BT, CBF, and metabolism.
Collapse
|
39
|
Schneider K, Michels L, Hartmann-Riemer MN, Burrer A, Tobler PN, Stämpfli P, Kirschner M, Seifritz E, Kaiser S. Cerebral blood flow in striatal regions is associated with apathy in patients with schizophrenia. J Psychiatry Neurosci 2019; 44:102-110. [PMID: 30246686 PMCID: PMC6397041 DOI: 10.1503/jpn.170150] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Striatal dysfunction has been proposed as a pathomechanism for negative symptoms in schizophrenia. There is consensus that negative symptoms can be grouped into 2 dimensions: apathy and diminished expression. Recent studies suggest that different neural mechanisms underlie these dimensions, but the relationship between regional resting-state cerebral blood flow (rCBF) and negative symptom dimensions has not been investigated. METHODS This study included 29 patients with schizophrenia and 20 healthy controls. We measured rCBF in the striatum using arterial spin labelling (ASL) MRI. We assessed negative symptoms using the Brief Negative Symptom Scale. RESULTS In the ventral and dorsal striatum, rCBF was not different between patients with schizophrenia and controls. However, we did find a positive association between the severity of apathy and increased rCBF in the ventral and dorsal striatum in patients with schizophrenia. This effect was not present for diminished expression. LIMITATIONS All patients were taking atypical antipsychotics, so an effect of antipsychotic medication on rCBF could not be excluded, although we did not find a significant association between rCBF and chlorpromazine equivalents. CONCLUSION The main finding of this study was a specific association between increased striatal rCBF and the negative symptom dimension of apathy. Our results further support the separate assessment of apathy and diminished expression when investigating the neural basis of negative symptoms. The ASL technique can provide a direct and quantitative approach to investigating the role of rCBF changes in the pathophysiology of negative symptoms.
Collapse
Affiliation(s)
- Karoline Schneider
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich (Schneider, Hartmann-Riemer, Burrer, Stämpfli, Kirschner, Seifritz); Institute of Neuroradiology, University Hospital Zurich (Michels); Laboratory for Social and Neural Systems Research, Department of Economics, University of Zurich (Hartmann-Riemer, Tobler); MR Center of the Psychiatric University Hospital and the Department of Child and Adolescent Psychiatry, University of Zurich (Stämpfli); and the Adult Psychiatry Division, Department of Mental Health and Psychiatry, Geneva University Hospitals (Kaiser)
| | - Lars Michels
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich (Schneider, Hartmann-Riemer, Burrer, Stämpfli, Kirschner, Seifritz); Institute of Neuroradiology, University Hospital Zurich (Michels); Laboratory for Social and Neural Systems Research, Department of Economics, University of Zurich (Hartmann-Riemer, Tobler); MR Center of the Psychiatric University Hospital and the Department of Child and Adolescent Psychiatry, University of Zurich (Stämpfli); and the Adult Psychiatry Division, Department of Mental Health and Psychiatry, Geneva University Hospitals (Kaiser)
| | - Matthias N Hartmann-Riemer
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich (Schneider, Hartmann-Riemer, Burrer, Stämpfli, Kirschner, Seifritz); Institute of Neuroradiology, University Hospital Zurich (Michels); Laboratory for Social and Neural Systems Research, Department of Economics, University of Zurich (Hartmann-Riemer, Tobler); MR Center of the Psychiatric University Hospital and the Department of Child and Adolescent Psychiatry, University of Zurich (Stämpfli); and the Adult Psychiatry Division, Department of Mental Health and Psychiatry, Geneva University Hospitals (Kaiser)
| | - Achim Burrer
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich (Schneider, Hartmann-Riemer, Burrer, Stämpfli, Kirschner, Seifritz); Institute of Neuroradiology, University Hospital Zurich (Michels); Laboratory for Social and Neural Systems Research, Department of Economics, University of Zurich (Hartmann-Riemer, Tobler); MR Center of the Psychiatric University Hospital and the Department of Child and Adolescent Psychiatry, University of Zurich (Stämpfli); and the Adult Psychiatry Division, Department of Mental Health and Psychiatry, Geneva University Hospitals (Kaiser)
| | - Philippe N Tobler
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich (Schneider, Hartmann-Riemer, Burrer, Stämpfli, Kirschner, Seifritz); Institute of Neuroradiology, University Hospital Zurich (Michels); Laboratory for Social and Neural Systems Research, Department of Economics, University of Zurich (Hartmann-Riemer, Tobler); MR Center of the Psychiatric University Hospital and the Department of Child and Adolescent Psychiatry, University of Zurich (Stämpfli); and the Adult Psychiatry Division, Department of Mental Health and Psychiatry, Geneva University Hospitals (Kaiser)
| | - Philipp Stämpfli
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich (Schneider, Hartmann-Riemer, Burrer, Stämpfli, Kirschner, Seifritz); Institute of Neuroradiology, University Hospital Zurich (Michels); Laboratory for Social and Neural Systems Research, Department of Economics, University of Zurich (Hartmann-Riemer, Tobler); MR Center of the Psychiatric University Hospital and the Department of Child and Adolescent Psychiatry, University of Zurich (Stämpfli); and the Adult Psychiatry Division, Department of Mental Health and Psychiatry, Geneva University Hospitals (Kaiser)
| | - Matthias Kirschner
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich (Schneider, Hartmann-Riemer, Burrer, Stämpfli, Kirschner, Seifritz); Institute of Neuroradiology, University Hospital Zurich (Michels); Laboratory for Social and Neural Systems Research, Department of Economics, University of Zurich (Hartmann-Riemer, Tobler); MR Center of the Psychiatric University Hospital and the Department of Child and Adolescent Psychiatry, University of Zurich (Stämpfli); and the Adult Psychiatry Division, Department of Mental Health and Psychiatry, Geneva University Hospitals (Kaiser)
| | - Erich Seifritz
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich (Schneider, Hartmann-Riemer, Burrer, Stämpfli, Kirschner, Seifritz); Institute of Neuroradiology, University Hospital Zurich (Michels); Laboratory for Social and Neural Systems Research, Department of Economics, University of Zurich (Hartmann-Riemer, Tobler); MR Center of the Psychiatric University Hospital and the Department of Child and Adolescent Psychiatry, University of Zurich (Stämpfli); and the Adult Psychiatry Division, Department of Mental Health and Psychiatry, Geneva University Hospitals (Kaiser)
| | - Stefan Kaiser
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich (Schneider, Hartmann-Riemer, Burrer, Stämpfli, Kirschner, Seifritz); Institute of Neuroradiology, University Hospital Zurich (Michels); Laboratory for Social and Neural Systems Research, Department of Economics, University of Zurich (Hartmann-Riemer, Tobler); MR Center of the Psychiatric University Hospital and the Department of Child and Adolescent Psychiatry, University of Zurich (Stämpfli); and the Adult Psychiatry Division, Department of Mental Health and Psychiatry, Geneva University Hospitals (Kaiser)
| |
Collapse
|
40
|
Cadena EJ, White DM, Kraguljac NV, Reid MA, Jindal R, Pixley RM, Lahti AC. Cognitive control network dysconnectivity and response to antipsychotic treatment in schizophrenia. Schizophr Res 2019; 204:262-270. [PMID: 30098853 PMCID: PMC7909720 DOI: 10.1016/j.schres.2018.07.045] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 07/26/2018] [Accepted: 07/31/2018] [Indexed: 12/13/2022]
Abstract
To better understand cognitive control impairment in schizophrenia, it is vital to determine the extent of dysfunctional connectivity in the associated fronto-striatal brain network, with a focus on the connections with the anterior cingulate cortex (ACC), prior to the potential confounding effect of medication. It is also essential to determine the effects following antipsychotic medication and the relationship of those effects on psychosis improvement. Twenty-two patients with schizophrenia, initially unmedicated and after a 6-week course of risperidone, and 20 matched healthy controls (HC) performed a fMRI task twice, six weeks apart. We investigated group and longitudinal differences in ACC-related functional connectivity during performance of a Stroop color task as well as connectivity patterns associated with improvement in psychosis symptoms. Unmedicated patients with schizophrenia showed greater functional connectivity between ACC and bilateral caudate and midbrain and lower connectivity with left putamen compared to healthy controls. At baseline, greater functional connectivity between ACC and bilateral putamen predicted subsequent better treatment response. Change in functional connectivity between ACC and left putamen positively correlated with better treatment response. These results suggest that patterns of functional connectivity in fronto-striatal networks can be utilized to predict potential response to antipsychotic medication. Prior to treatment, brain function may be structured with a predisposition that favors or not treatment response.
Collapse
|
41
|
Manivannan A, Foran W, Jalbrzikowski M, Murty VP, Haas GL, Tarcijonas G, Luna B, Sarpal DK. Association Between Duration of Untreated Psychosis and Frontostriatal Connectivity During Maintenance of Visuospatial Working Memory. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2019; 4:454-461. [PMID: 30852127 DOI: 10.1016/j.bpsc.2019.01.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/09/2019] [Accepted: 01/16/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND A longer duration of untreated psychosis (DUP) has been linked with poor clinical outcomes and variation in resting-state striatal connectivity with central executive regions. However, the link between DUP and task-based activation of executive neurocognition has not previously been examined. This functional magnetic resonance imaging study examined the association between DUP and both activation and frontostriatal functional connectivity during a visual working memory (WM) paradigm in patients with first-episode psychosis. METHODS Patients with first-episode psychosis (n = 37) underwent functional magnetic resonance imaging scanning while performing a visual WM task. At the single-subject level, task conditions were modeled; at the group level, each condition was examined along with DUP. Activation was examined within the dorsolateral prefrontal cortex, a primary region supporting visual WM activation. Frontostriatal functional connectivity during the WM was examined via psychophysical interaction between the dorsal caudate and the dorsolateral prefrontal cortex. Results were compared with a reference range of connectivity values in a matched group of healthy volunteers (n = 25). Task performance was also examined in relation to neuroimaging findings. RESULTS No significant association was observed between DUP and WM activation. Longer DUP showed less functional frontostriatal connectivity with the maintenance of increasing WM load. Results were not related to task performance measures, consistent with previous work. CONCLUSIONS Our data suggest that DUP may affect frontostriatal circuitry that supports executive functioning. Future work is necessary to examine if these findings contribute to the mechanism underlying the relationship between DUP and worsened clinical outcomes.
Collapse
Affiliation(s)
- Ashwinee Manivannan
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - William Foran
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Maria Jalbrzikowski
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Vishnu P Murty
- Department of Psychology, Temple University, Philadelphia, Pennsylvania
| | - Gretchen L Haas
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Goda Tarcijonas
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Beatriz Luna
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Deepak K Sarpal
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
42
|
Gault JM, Davis R, Cascella NG, Saks ER, Corripio-Collado I, Anderson WS, Olincy A, Thompson JA, Pomarol-Clotet E, Sawa A, Daskalakis ZJ, Lipsman N, Abosch A. Approaches to neuromodulation for schizophrenia. J Neurol Neurosurg Psychiatry 2018; 89:777-787. [PMID: 29242310 DOI: 10.1136/jnnp-2017-316946] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/09/2017] [Accepted: 10/29/2017] [Indexed: 11/03/2022]
Abstract
Based on the success of deep brain stimulation (DBS) for treating movement disorders, there is growing interest in using DBS to treat schizophrenia (SZ). We review the unmet needs of patients with SZ and the scientific rationale behind the DBS targets proposed in the literature in order to guide future development of DBS to treat this vulnerable patient population. SZ remains a devastating disorder despite treatment. Relapse, untreated psychosis, intolerable side effects and the lack of effective treatment for negative and cognitive symptoms contribute to poor outcome. Novel therapeutic interventions are needed to treat SZ and DBS is emerging as a potential intervention. Convergent genetic, pharmacological and neuroimaging evidence implicating neuropathology associated with psychosis is consistent with SZ being a circuit disorder amenable to striatal modulation with DBS. Many of the DBS targets proposed in the literature may modulate striatal dysregulation. Additional targets are considered for treating tardive dyskinesia and negative and cognitive symptoms. A need is identified for the concurrent development of neurophysiological biomarkers relevant to SZ pathology in order to inform DBS targeting. Finally, we discuss the current clinical trials of DBS for SZ, and their ethical considerations. We conclude that patients with severe symptoms despite treatment must have the capacity to consent for a DBS clinical trial in which risks can be estimated, but benefit is not known. In addition, psychiatric populations should have access to the potential benefits of neurosurgical advances.
Collapse
Affiliation(s)
- Judith M Gault
- Department of Neurosurgery, University of Colorado at Denver Anschutz Medical Campus, Aurora, Colorado, USA.,Department of Psychiatry, University of Colorado Anschutz Medical Center, Aurora, Colorado, USA
| | - Rachel Davis
- Department of Psychiatry, University of Colorado Anschutz Medical Center, Aurora, Colorado, USA
| | - Nicola G Cascella
- Department of Psychiatry, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Elyn R Saks
- University of Southern California Law School, Los Angeles, California, USA
| | - Iluminada Corripio-Collado
- Psychiatric Department, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IIB-Sant Pau), Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain
| | - William S Anderson
- Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Ann Olincy
- Department of Psychiatry, University of Colorado Anschutz Medical Center, Aurora, Colorado, USA
| | - John A Thompson
- Department of Neurosurgery, University of Colorado at Denver Anschutz Medical Campus, Aurora, Colorado, USA
| | - Edith Pomarol-Clotet
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
| | - Akira Sawa
- Department of Psychiatry, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Zafiris J Daskalakis
- Centre for Addiction and Mental Health Collaborative Program in Neuroscience, University of Toronto, Toronto, Ontario, Canada
| | - Nir Lipsman
- Division of Neurosurgery, Sunnybrook Health Science Centre, University of Toronto, Toronto, Ontario, Canada
| | - Aviva Abosch
- Department of Neurosurgery, University of Colorado at Denver Anschutz Medical Campus, Aurora, Colorado, USA.,Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
43
|
Modinos G, Egerton A, McMullen K, McLaughlin A, Kumari V, Barker GJ, Williams SCR, Zelaya F. Increased resting perfusion of the hippocampus in high positive schizotypy: A pseudocontinuous arterial spin labeling study. Hum Brain Mapp 2018; 39:4055-4064. [PMID: 29885018 PMCID: PMC6174983 DOI: 10.1002/hbm.24231] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/08/2018] [Accepted: 05/15/2018] [Indexed: 12/16/2022] Open
Abstract
Arterial spin labeling (ASL) provides absolute quantification of resting tissue cerebral blood flow (CBF) as an entirely noninvasive approach with good reproducibility. As a result of neurovascular coupling, ASL provides a useful marker of resting neuronal activity. Recent ASL studies in individuals at clinical high risk of psychosis (CHR) have reported increased resting hippocampal perfusion compared with healthy controls. Schizotypy refers to the presence of subclinical psychotic-like experiences in healthy individuals and represents a robust framework to study neurobiological mechanisms involved in the extended psychosis phenotype while avoiding potentially confounding effects of antipsychotic medications or disease comorbidity. Here we applied pseudo-continuous ASL to examine differences in resting CBF in 21 subjects with high positive schizotypy (HS) relative to 22 subjects with low positive schizotypy (LS), as determined by the Oxford and Liverpool Inventory of Feelings and Experiences. Based on preclinical evidence that hippocampal hyperactivity leads to increased activity in mesostriatal dopamine projections, CBF in hippocampus, midbrain, and striatum was assessed. Participants with HS showed higher CBF of the right hippocampus compared to those with LS (p = .031, family-wise error corrected). No differences were detected in the striatum or midbrain. The association between increased hippocampal CBF and HS supports the notion that hippocampal hyperactivity might be a central characteristic of the extended psychosis phenotype, while hyperactivity in subcortical dopamine pathways may only emerge at a higher intensity of psychotic experiences.
Collapse
Affiliation(s)
- Gemma Modinos
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom.,Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Alice Egerton
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Katrina McMullen
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Anna McLaughlin
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Veena Kumari
- Department of Psychology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom.,Centre for Cognitive Neuroscience, College of Health and Life Sciences, Brunel University London, London, United Kingdom
| | - Gareth J Barker
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Steve C R Williams
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Fernando Zelaya
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
44
|
Cadena EJ, White DM, Kraguljac NV, Reid MA, Lahti AC. Evaluation of fronto-striatal networks during cognitive control in unmedicated patients with schizophrenia and the effect of antipsychotic medication. NPJ SCHIZOPHRENIA 2018; 4:8. [PMID: 29736018 PMCID: PMC5938238 DOI: 10.1038/s41537-018-0051-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 03/29/2018] [Accepted: 04/09/2018] [Indexed: 01/24/2023]
Abstract
To understand the mechanism of cognitive control dysfunction in schizophrenia, it is critical to characterize brain function without the confounding effect of medication. It is also important to establish the extent to which antipsychotic medication restores brain function and whether those changes are related to psychosis improvement. Twenty-two patients with schizophrenia, initially unmedicated and after a 6-week course of risperidone, and 20 healthy controls (HC) studied twice, 6 weeks apart, performed an fMRI task. We examined group and longitudinal differences in anterior cingulate cortex (ACC), striatum, and midbrain functional activity during performance of a Stroop color task as well as activity patterns associated with improvement in psychosis symptoms. Unmedicated patients showed reduced functional activity in the ACC, striatum, and midbrain compared to HC. Post hoc contrasts from significant group-by-time interactions indicated that, in patients, drug administration was associated with both activity increases and decreases. In unmedicated patients, greater baseline functional activity in the striatum and midbrain predicted subsequent better treatment response. Greater changes in functional activity in ACC and ventral putamen over the course of 6 weeks positively correlated with better treatment response. Unmedicated patients show reduced activity in brain networks pivotal for cognitive control and medication is associated with functional changes in these regions. These results suggest a mechanism by which antipsychotic medication has a beneficial effect on cognition. Our results also support the notion that treatment response is determined by a combination of the baseline pattern of brain function and by the pharmacological modulation of these regions.
Collapse
Affiliation(s)
- Elyse J Cadena
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - David M White
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nina V Kraguljac
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Meredith A Reid
- Magnetic Imaging Research Center, Auburn University, Auburn, AL, USA
| | - Adrienne C Lahti
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
45
|
Guma E, Rocchetti J, Devenyi GA, Tanti A, Mathieu A, Lerch JP, Elgbeili G, Courcot B, Mechawar N, Chakravarty MM, Giros B. Regional brain volume changes following chronic antipsychotic administration are mediated by the dopamine D2 receptor. Neuroimage 2018; 176:226-238. [PMID: 29704613 DOI: 10.1016/j.neuroimage.2018.04.054] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/17/2018] [Accepted: 04/23/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Neuroanatomical alterations are well established in patients suffering from schizophrenia, however the extent to which these changes are attributable to illness, antipsychotic drugs (APDs), or their interaction is unclear. APDs have been extremely effective for treatment of positive symptoms in major psychotic disorders. Their therapeutic effects are mediated, in part, through blockade of D2-like dopamine (DA) receptors, i.e. the D2, D3 and D4 dopamine receptors. Furthermore, the dependency of neuroanatomical change on DA system function and D2-like receptors has yet to be explored. METHODS We undertook a preclinical longitudinal study to examine the effects of typical (haloperidol (HAL)) and atypical (clozapine (CLZ)) APDs in wild type (WT) and dopamine D2 knockout (D2KO) mice over 9-weeks using structural magnetic resonance imaging (MRI). RESULTS Chronic typical APD administration in WT mice was associated with reductions in total brain (p = 0.009) and prelimbic area (PL) (p = 0.02) volumes following 9-weeks, and an increase in striatal volume (p = 0.04) after six weeks. These APD-induced changes were not present in D2KOs, where, at baseline, we observed significantly smaller overall brain volume (p < 0.01), thinner cortices (q < 0.05), and enlarged striata (q < 0.05). Stereological assessment revealed increased glial density in PL area of HAL treated wild types. Interestingly, in WT and D2KO mice, chronic CLZ administration caused more limited changes in brain structure. CONCLUSIONS Our results present evidence for the role of D2 DA receptors in structural alterations induced by the administration of the typical APD HAL and that chronic administration of CLZ has a limited influence on brain structure.
Collapse
Affiliation(s)
- Elisa Guma
- Department of Psychiatry & Integrated Program in Neuroscience, McGill University, 845 Sherbrooke St W, Montreal, QC, H3A 0G4 Canada; Cerebral Imaging Center, Douglas Mental Health University Institute, Verdun, Quebec, H4H 1R3, Canada
| | - Jill Rocchetti
- Department of Psychiatry & Integrated Program in Neuroscience, McGill University, 845 Sherbrooke St W, Montreal, QC, H3A 0G4 Canada
| | - Gabriel A Devenyi
- Cerebral Imaging Center, Douglas Mental Health University Institute, Verdun, Quebec, H4H 1R3, Canada
| | - Arnaud Tanti
- McGill Group for Suicide Studies, Department of Psychiatry, McGill University, Douglas Mental Health University Institute, Montreal, QC, Canada
| | - Axel Mathieu
- Cerebral Imaging Center, Douglas Mental Health University Institute, Verdun, Quebec, H4H 1R3, Canada
| | - Jason P Lerch
- Mouse Imaging Center - Hospital for Sick Children, Department of Medical Biophysics -University of Toronto, Toronto, Ontario, M5T 3H7, Canada
| | - Guillaume Elgbeili
- Department of Psychiatry & Integrated Program in Neuroscience, McGill University, 845 Sherbrooke St W, Montreal, QC, H3A 0G4 Canada
| | - Blandine Courcot
- Cerebral Imaging Center, Douglas Mental Health University Institute, Verdun, Quebec, H4H 1R3, Canada
| | - Naguib Mechawar
- McGill Group for Suicide Studies, Department of Psychiatry, McGill University, Douglas Mental Health University Institute, Montreal, QC, Canada
| | - M Mallar Chakravarty
- Department of Psychiatry & Integrated Program in Neuroscience, McGill University, 845 Sherbrooke St W, Montreal, QC, H3A 0G4 Canada; Cerebral Imaging Center, Douglas Mental Health University Institute, Verdun, Quebec, H4H 1R3, Canada; Department of Biological and Biomedical Engineering, McGill University, 845 Sherbrooke St W, Montreal, QC, H3A 0G4, Canada
| | - Bruno Giros
- Department of Psychiatry & Integrated Program in Neuroscience, McGill University, 845 Sherbrooke St W, Montreal, QC, H3A 0G4 Canada; Sorbonne University, Neuroscience Paris Seine, CNRS UMR 8246, INSERM U 1130, UPMC Univ Paris 06, UM119, 75005, Paris, France.
| |
Collapse
|
46
|
Drazanova E, Ruda-Kucerova J, Kratka L, Horska K, Demlova R, Starcuk Z, Kasparek T. Poly(I:C) model of schizophrenia in rats induces sex-dependent functional brain changes detected by MRI that are not reversed by aripiprazole treatment. Brain Res Bull 2017; 137:146-155. [PMID: 29155259 DOI: 10.1016/j.brainresbull.2017.11.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/06/2017] [Accepted: 11/08/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND PURPOSE One of the hallmarks of schizophrenia is altered brain structure, potentially due to antipsychotic treatment, the disorder itself or both. It was proposed that functional changes may precede the structural ones. In order to understand and potentially prevent this unwanted process, brain function assessment should be validated as a diagnostic tool. METHODS We used Arterial Spin Labelling MRI technique for the evaluation of brain perfusion in several brain regions in a neurodevelopmental poly(I:C) model of schizophrenia (8mg/kg on a gestational day 15) in rats taking into account sex-dependent effects and chronic treatment with aripiprazole (30days), an atypical antipsychotic acting as a partial agonist on dopaminergic receptors. RESULTS We found the sex of the animal to have a highly significant effect in all regions of interest, with females showing lower blood perfusion than males. However, both males and females treated prenatally with poly(I:C) showed enlargement of the lateral ventricles. Furthermore, we detected increased perfusion in the circle of Willis, hippocampus, and sensorimotor cortex, which was not influenced by chronic atypical antipsychotic aripiprazole treatment in male poly(I:C) rats. CONCLUSION We hypothesize that perfusion alterations may be caused by the hyperdopaminergic activity in the poly(I:C) model, and the absence of aripiprazole effect on perfusion in brain regions related to schizophrenia may be due to its partial agonistic mechanism.
Collapse
Affiliation(s)
- Eva Drazanova
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic; Institute of Scientific Instruments, The Czech Academy of Sciences, Brno, Czech Republic
| | - Jana Ruda-Kucerova
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| | - Lucie Kratka
- Institute of Scientific Instruments, The Czech Academy of Sciences, Brno, Czech Republic
| | - Katerina Horska
- Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - Regina Demlova
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Zenon Starcuk
- Institute of Scientific Instruments, The Czech Academy of Sciences, Brno, Czech Republic
| | - Tomas Kasparek
- Department of Psychiatry, University Hospital and Masaryk University, Brno, Czech Republic
| |
Collapse
|
47
|
Sarpal DK, Robinson DG, Fales C, Lencz T, Argyelan M, Karlsgodt KH, Gallego JA, John M, Kane JM, Szeszko PR, Malhotra AK. Relationship between Duration of Untreated Psychosis and Intrinsic Corticostriatal Connectivity in Patients with Early Phase Schizophrenia. Neuropsychopharmacology 2017; 42:2214-2221. [PMID: 28294137 PMCID: PMC5603815 DOI: 10.1038/npp.2017.55] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 01/31/2017] [Accepted: 02/11/2017] [Indexed: 11/09/2022]
Abstract
Patients with first-episode psychosis experience psychotic symptoms for a mean of up to 2 years prior to initiation of treatment, and long duration of untreated psychosis (DUP) is associated with poor clinical outcomes. Meanwhile, evidence compiled from numerous studies suggests that longer DUP is not associated with structural brain abnormalities. To date, few studies have examined the relationship between DUP and functional neuroimaging measures. In the present study, we used seed-based resting-state functional connectivity to examine the impact of DUP on corticostriatal circuitry. We included 83 patients with early phase schizophrenia and minimal exposure to antipsychotic drugs (<2 years), who underwent resting state scanning while entering 12 weeks of prospective treatment with second-generation antipsychotic drugs. Functional connectivity maps of the striatum were generated and examined in relation to DUP as a covariate. Mediation analyses were performed on a composite measure of corticostriatal connectivity derived from the significant results of our DUP analysis. We found that longer DUP correlated with worse response to treatment as well as overall decreased functional connectivity between striatal nodes and specific regions within frontal and parietal cortices. Moreover, the relationship between DUP and treatment response was significantly mediated by corticostriatal connectivity. Our results indicate that variation in corticostriatal circuitry may play a role in the relationship between longer DUP and worsened response to treatment. Future prospective studies are necessary to further characterize potential causal links between DUP, striatal circuitry and clinical outcomes.
Collapse
Affiliation(s)
- Deepak K Sarpal
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Delbert G Robinson
- Department of Psychiatry, The Zucker Hillside Hospital, Northwell Health, Glen Oaks, NY, USA,Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset, NY, USA,Department of Psychiatry, Hofstra Northwell School of Medicine, Hempstead, NY, USA
| | - Christina Fales
- Department of Psychiatry, The Zucker Hillside Hospital, Northwell Health, Glen Oaks, NY, USA
| | - Todd Lencz
- Department of Psychiatry, The Zucker Hillside Hospital, Northwell Health, Glen Oaks, NY, USA,Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset, NY, USA,Department of Psychiatry, Hofstra Northwell School of Medicine, Hempstead, NY, USA
| | - Miklos Argyelan
- Department of Psychiatry, The Zucker Hillside Hospital, Northwell Health, Glen Oaks, NY, USA,Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset, NY, USA,Department of Psychiatry, Hofstra Northwell School of Medicine, Hempstead, NY, USA
| | | | - Juan A Gallego
- Department of Psychiatry, Weill Cornell Medical College, New York, NY, USA
| | - Majnu John
- Department of Psychiatry, The Zucker Hillside Hospital, Northwell Health, Glen Oaks, NY, USA,Department of Psychiatry, Hofstra Northwell School of Medicine, Hempstead, NY, USA
| | - John M Kane
- Department of Psychiatry, The Zucker Hillside Hospital, Northwell Health, Glen Oaks, NY, USA,Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset, NY, USA,Department of Psychiatry, Hofstra Northwell School of Medicine, Hempstead, NY, USA
| | - Philip R Szeszko
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA,James J. Peters VA Medical Center, Bronx, NY, USA
| | - Anil K Malhotra
- Department of Psychiatry, The Zucker Hillside Hospital, Northwell Health, Glen Oaks, NY, USA,Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset, NY, USA,Department of Psychiatry, Hofstra Northwell School of Medicine, Hempstead, NY, USA,Division of Psychiatry Research, Department of Psychiatry, The Zucker Hillside Hospital, 75-59 263rd Street, Glen Oaks, NY 11004, USA, Tel: 718 470 8012, Fax: 718 343 1659, E-mail:
| |
Collapse
|
48
|
Presynaptic Dopamine Synthesis Capacity in Schizophrenia and Striatal Blood Flow Change During Antipsychotic Treatment and Medication-Free Conditions. Neuropsychopharmacology 2017; 42:2232-2241. [PMID: 28387222 PMCID: PMC5603816 DOI: 10.1038/npp.2017.67] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 03/23/2017] [Accepted: 03/24/2017] [Indexed: 02/03/2023]
Abstract
Standard-of-care biological treatment of schizophrenia remains dependent upon antipsychotic medications, which demonstrate D2 receptor affinity and elicit variable, partial clinical responses via neural mechanisms that are not entirely understood. In the striatum, where D2 receptors are abundant, antipsychotic medications may affect neural function in studies of animals, healthy volunteers, and patients, yet the relevance of this to pharmacotherapeutic actions remains unresolved. In this same brain region, some individuals with schizophrenia may demonstrate phenotypes consistent with exaggerated dopaminergic signaling, including alterations in dopamine synthesis capacity; however, the hypothesis that dopamine system characteristics underlie variance in medication-induced regional blood flow changes has not been directly tested. We therefore studied a cohort of 30 individuals with schizophrenia using longitudinal, multi-session [15O]-water and [18F]-FDOPA positron emission tomography to determine striatal blood flow during active atypical antipsychotic medication treatment and after at least 3 weeks of placebo treatment, along with presynaptic dopamine synthesis capacity (ie, DOPA decarboxylase activity). Regional striatal blood flow was significantly higher during active treatment than during the placebo condition. Furthermore, medication-related increases in ventral striatal blood flow were associated with more robust amelioration of excited factor symptoms during active medication and with higher dopamine synthesis capacity. These data indicate that atypical medications enact measureable physiological alterations in limbic striatal circuitry that vary as a function of dopaminergic tone and may have relevance to aspects of therapeutic responses.
Collapse
|
49
|
Roberts RC. Postmortem studies on mitochondria in schizophrenia. Schizophr Res 2017; 187:17-25. [PMID: 28189530 PMCID: PMC5550365 DOI: 10.1016/j.schres.2017.01.056] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 01/27/2017] [Accepted: 01/30/2017] [Indexed: 01/02/2023]
Abstract
The aim of this paper is to provide a brief review of mitochondrial structure as it relates to function and then present abnormalities in mitochondria in postmortem schizophrenia with a focus on ultrastructure. Function, morphology, fusion, fission, motility, ΔΨmem, ATP production, mitochondrial derived vesicles, and mitochondria-associated ER membranes will be briefly covered. Pathology in mitochondria has long been implicated in schizophrenia, as shown by genetic, proteomic, enzymatic and anatomical abnormalities. The cortex and basal ganglia will be reviewed. In the anterior cingulate cortex, the number of mitochondria per neuronal somata in layers 5/6 in schizophrenia is decreased by 43%. There are also fewer mitochondria in terminals forming axospinous synapses. In the caudate and putamen the number of mitochondria is abnormal in both glial cells and neurons in schizophrenia subjects, the extent of which depends on treatment, response and predominant lifetime symptoms. Treatment-responsive schizophrenia subjects had about a 40% decrease in the number of mitochondria per synapse in the caudate nucleus and putamen, while treatment resistant cases had normal values. A decrease in mitochondrial density in the neuropil distinguishes paranoid from undifferentiated schizophrenia. The appearance, size and density of mitochondria were normal in the nucleus accumbens. In the substantia nigra, COX subunits were affected in rostral regions. Mitochondrial hyperplasia occurs within axon terminals that synapse onto dopamine neurons, but mitochondria in dopamine neuronal somata are similar in size and number. In schizophrenia, mitochondria are differentially affected depending on the brain region, cell type, subcellular location, treatment status, treatment response and symptoms.
Collapse
Affiliation(s)
- Rosalinda C. Roberts
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama, Birmingham, AL 35294
| |
Collapse
|
50
|
Ketamine modulates hippocampal neurochemistry and functional connectivity: a combined magnetic resonance spectroscopy and resting-state fMRI study in healthy volunteers. Mol Psychiatry 2017; 22:562-569. [PMID: 27480494 PMCID: PMC5562151 DOI: 10.1038/mp.2016.122] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 06/08/2016] [Accepted: 06/20/2016] [Indexed: 11/21/2022]
Abstract
A growing body of evidence suggests glutamate excess in schizophrenia and that N-methyl-d-aspartate receptor (NMDAR) hypofunction on γ-aminobutyric acid (GABA) interneurons disinhibiting pyramidal cells may be relevant to this hyperglutamatergic state. To better understand how NMDAR hypofunction affects the brain, we used magnetic resonance spectroscopy and resting-state functional magnetic resonance imaging (MRI) to study the effects of ketamine on hippocampal neurometabolite levels and functional connectivity in 15 healthy human subjects. We observed a ketamine-induced increase in hippocampal Glx (glutamate+glutamine; F=3.76; P=0.04), a decrease in fronto-temporal (t=4.92, PFDR<0.05, kE=2198, x=-30, y=52, z=14) and temporo-parietal functional connectivity (t=5.07, PFDR<0.05, kE=6094, x=-28, y=-36, z=-2), and a possible link between connectivity changes and elevated Glx. Our data empirically support that hippocampal glutamatergic elevation and resting-state network alterations may arise from NMDAR hypofunction and establish a proof of principle whereby experimental modelling of a disorder can help mechanistically integrate distinct neuroimaging abnormalities in schizophrenia.
Collapse
|