1
|
Berg P, Svendsen SL, Ayasse N, Sorensen MV, Leipziger J. Secretin: a hormone for HCO 3- homeostasis. Pflugers Arch 2024; 476:545-554. [PMID: 38221598 DOI: 10.1007/s00424-024-02906-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 01/16/2024]
Abstract
Secretin is a key hormone of the intestinal phase of digestion which activates pancreatic, bile duct and Brunner gland HCO3- secretion. Recently, the secretin receptor (SCTR) was also found in the basolateral membrane of the beta-intercalated cell (B-IC) of the collecting duct. Experimental addition of secretin triggers a pronounced activation of urinary HCO3- excretion, which is fully dependent on key functional proteins of the B-IC, namely apical pendrin and CFTR and the basolateral SCTR. Recent studies demonstrated that the SCTR knock-out mouse is unable to respond to an acute base load. Here, SCTR KO mice could not rapidly increase urine base excretion, developed prolonged metabolic alkalosis and exhibited marked compensatory hypoventilation. Here, we review the physiological effects of secretin with distinct focus on how secretin activates renal HCO3- excretion. We describe its new function as a hormone for HCO3- homeostasis.
Collapse
Affiliation(s)
- Peder Berg
- Department of Biomedicine, Physiology, Health, Aarhus University, Høegh-Guldbergsgade 10, Bld. 1115, 8000, Aarhus C, Denmark
| | - Samuel L Svendsen
- Department of Biomedicine, Physiology, Health, Aarhus University, Høegh-Guldbergsgade 10, Bld. 1115, 8000, Aarhus C, Denmark
| | - Niklas Ayasse
- Vth Department of Medicine, University Hospital Mannheim, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany
| | - Mads Vaarby Sorensen
- Department of Biomedicine, Physiology, Health, Aarhus University, Høegh-Guldbergsgade 10, Bld. 1115, 8000, Aarhus C, Denmark
| | - Jens Leipziger
- Department of Biomedicine, Physiology, Health, Aarhus University, Høegh-Guldbergsgade 10, Bld. 1115, 8000, Aarhus C, Denmark.
| |
Collapse
|
2
|
Ramasamy I. Physiological Appetite Regulation and Bariatric Surgery. J Clin Med 2024; 13:1347. [PMID: 38546831 PMCID: PMC10932430 DOI: 10.3390/jcm13051347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/22/2024] [Accepted: 02/24/2024] [Indexed: 04/10/2024] Open
Abstract
Obesity remains a common metabolic disorder and a threat to health as it is associated with numerous complications. Lifestyle modifications and caloric restriction can achieve limited weight loss. Bariatric surgery is an effective way of achieving substantial weight loss as well as glycemic control secondary to weight-related type 2 diabetes mellitus. It has been suggested that an anorexigenic gut hormone response following bariatric surgery contributes to weight loss. Understanding the changes in gut hormones and their contribution to weight loss physiology can lead to new therapeutic treatments for weight loss. Two distinct types of neurons in the arcuate hypothalamic nuclei control food intake: proopiomelanocortin neurons activated by the anorexigenic (satiety) hormones and neurons activated by the orexigenic peptides that release neuropeptide Y and agouti-related peptide (hunger centre). The arcuate nucleus of the hypothalamus integrates hormonal inputs from the gut and adipose tissue (the anorexigenic hormones cholecystokinin, polypeptide YY, glucagon-like peptide-1, oxyntomodulin, leptin, and others) and orexigeneic peptides (ghrelin). Replicating the endocrine response to bariatric surgery through pharmacological mimicry holds promise for medical treatment. Obesity has genetic and environmental factors. New advances in genetic testing have identified both monogenic and polygenic obesity-related genes. Understanding the function of genes contributing to obesity will increase insights into the biology of obesity. This review includes the physiology of appetite control, the influence of genetics on obesity, and the changes that occur following bariatric surgery. This has the potential to lead to the development of more subtle, individualised, treatments for obesity.
Collapse
Affiliation(s)
- Indra Ramasamy
- Department of Blood Sciences, Conquest Hospital, Hastings TN37 7RD, UK
| |
Collapse
|
3
|
Zhang F, Qiao W, Wei JA, Tao Z, Chen C, Wu Y, Lin M, Ng KMC, Zhang L, Yeung KWK, Chow BKC. Secretin-dependent signals in the ventromedial hypothalamus regulate energy metabolism and bone homeostasis in mice. Nat Commun 2024; 15:1030. [PMID: 38310104 PMCID: PMC10838336 DOI: 10.1038/s41467-024-45436-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 01/22/2024] [Indexed: 02/05/2024] Open
Abstract
Secretin, though originally discovered as a gut-derived hormone, is recently found to be abundantly expressed in the ventromedial hypothalamus, from which the central neural system controls satiety, energy metabolism, and bone homeostasis. However, the functional significance of secretin in the ventromedial hypothalamus remains unclear. Here we show that the loss of ventromedial hypothalamus-derived secretin leads to osteopenia in male and female mice, which is primarily induced by diminished cAMP response element-binding protein phosphorylation and upregulation in peripheral sympathetic activity. Moreover, the ventromedial hypothalamus-secretin inhibition also contributes to hyperphagia, dysregulated lipogenesis, and impaired thermogenesis, resulting in obesity in male and female mice. Conversely, overexpression of secretin in the ventromedial hypothalamus promotes bone mass accrual in mice of both sexes. Collectively, our findings identify an unappreciated secretin signaling in the central neural system for the regulation of energy and bone metabolism, which may serve as a new target for the clinical management of obesity and osteoporosis.
Collapse
Affiliation(s)
- Fengwei Zhang
- School of Biological Sciences, the University of Hong Kong, Hong Kong, China
| | - Wei Qiao
- Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, the University of Hong Kong, Hong Kong, China.
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, the University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
| | - Ji-An Wei
- School of Biological Sciences, the University of Hong Kong, Hong Kong, China
- Key Laboratory of CNS Regeneration (Ministry of Education), GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Zhengyi Tao
- School of Biological Sciences, the University of Hong Kong, Hong Kong, China
| | - Congjia Chen
- School of Biological Sciences, the University of Hong Kong, Hong Kong, China
| | - Yefeng Wu
- Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, the University of Hong Kong, Hong Kong, China
| | - Minghui Lin
- School of Biological Sciences, the University of Hong Kong, Hong Kong, China
| | - Ka Man Carmen Ng
- School of Biological Sciences, the University of Hong Kong, Hong Kong, China
| | - Li Zhang
- Key Laboratory of CNS Regeneration (Ministry of Education), GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China
- Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Kelvin Wai-Kwok Yeung
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, the University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China.
| | | |
Collapse
|
4
|
Gilliam-Vigh H, Jorsal T, Nielsen SW, Forman JL, Pedersen J, Poulsen SS, Vilsbøll T, Knop FK. Expression of Secretin and its Receptor Along the Intestinal Tract in Type 2 Diabetes Patients and Healthy Controls. J Clin Endocrinol Metab 2023; 108:e1597-e1602. [PMID: 37335970 DOI: 10.1210/clinem/dgad372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/10/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
CONTEXT The hormone secretin (SCT) is released from intestinal S cells and acts via the SCT receptor (SCTR). Circulating SCT levels increase after Roux-en-Y gastric bypass surgery and have been associated with massive weight loss and high remission rates of type 2 diabetes (T2D) linked to these operations. Exogenous SCT was recently shown to reduce ad libitum food intake in healthy volunteers. OBJECTIVE To understand SCT biology and its potential role in T2D pathophysiology, we examined the intestinal mucosal expression profile of SCT and SCTR and evaluated the density of S cells along the intestinal tract of individuals with T2D and healthy controls. METHODS Using immunohistochemistry and messenger RNA (mRNA) sequencing, we analyzed intestinal mucosa biopsies sampled along the small intestine at 30-cm intervals and from 7 well-defined anatomical sites along the large intestine (during 2 sessions of double-balloon enteroscopy) in 12 individuals with T2D and 12 healthy controls. RESULTS Both groups exhibited a progressive and similar decrease in SCT and SCTR mRNA expression and S-cell density along the small intestine, with reductions of 14, 100, and 50 times, respectively, in the ileum compared to the duodenum (used as reference). Negligible amounts of SCTR and SCT mRNA, as well as low S-cell density, were found in the large intestine. No significant differences were observed between the groups. CONCLUSION SCT and SCTR mRNA expression and S-cell density were abundant in the duodenum and decreased along the small intestine. Very low SCT and SCTR mRNA levels and S-cell numbers were observed in the large intestine, without aberrations in individuals with T2D compared to healthy controls.
Collapse
Affiliation(s)
- Hannah Gilliam-Vigh
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, 2900 Hellerup, Denmark
| | - Tina Jorsal
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, 2900 Hellerup, Denmark
| | - Sophie W Nielsen
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, 2900 Hellerup, Denmark
| | - Julie L Forman
- Section of Biostatistics, Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, 1353 Copenhagen K, Denmark
| | - Jens Pedersen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Steen S Poulsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Tina Vilsbøll
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, 2900 Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
- Clinical Research, Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark
| | - Filip K Knop
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, 2900 Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
- Clinical Research, Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| |
Collapse
|
5
|
Gerstenberg MK, Andersen DB, Torz L, Castorena CM, Bookout AL, Hartmann B, Rehfeld JF, Petersen N, Holst JJ, Kuhre RE. Weight loss by calorie restriction does not alter appetite-regulating gut hormone responses from perfused rat small intestine. Acta Physiol (Oxf) 2023; 238:e13947. [PMID: 36755506 DOI: 10.1111/apha.13947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 01/27/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023]
Abstract
AIM Postprandial secretion of the appetite-inhibiting hormones, glucagon-like peptide-1 (GLP-1), and peptide YY are reduced with obesity. It is unclear if the reduced secretion persists following weight loss (WL), if other appetite-inhibiting hormones are also reduced, and if so whether reduced secretion results from intrinsic changes in the gut. METHODS To address whether WL may restore secretion of GLP-1 and other appetite-inhibiting hormones, we performed a gut perfusion study of the small intestine in diet-induced obese (DIO) rats after WL. A 20% weight loss (means ± SEM (g): 916 ± 53 vs. 703 ± 35, p < 0.01, n = 7) was induced by calorie restriction, and maintained stable for ≥7 days prior to gut perfusion to allow for complete renewal of enteroendocrine cells. Age-matched DIO rats were used as comparator. Several gut hormones were analyzed from the venous effluent, and gene expression was performed on gut tissue along the entire length of the intestine. RESULTS Secretion of cholecystokinin, gastrin, glucose-dependent insulinotropic peptide, GLP-1, neurotensin, and somatostatin was not affected by WL during basal conditions (p ≥ 0.25) or in response to macronutrients and bile acids (p ≥ 0.14). Glucose absorption was indistinguishable following WL. The expression of genes encoding the studied peptides, macronutrient transporters (glucose, fructose, and di-/tripeptides) and bile acid receptors did also not differ between DIO and WL groups. CONCLUSIONS These data suggest that the attenuated postprandial responses of GLP-1, as well as reduced responses of other appetite-inhibiting gut hormones, in people living with obesity may persist after weight loss and may contribute to their susceptibility for weight regain.
Collapse
Affiliation(s)
| | - Daniel B Andersen
- Department of Biomedical Sciences, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Lola Torz
- Global Drug Discovery, Novo Nordisk A/S, Måløv, Denmark
| | | | - Angie L Bookout
- Global Drug Discovery, Novo Nordisk A/S, Seattle, Washington, USA
| | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Jens F Rehfeld
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | | | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Rune E Kuhre
- Department of Biomedical Sciences, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark.,Global Drug Discovery, Novo Nordisk A/S, Måløv, Denmark
| |
Collapse
|
6
|
Wei JA, Han Q, Luo Z, Liu L, Cui J, Tan J, Chow BKC, So KF, Zhang L. Amygdala neural ensemble mediates mouse social investigation behaviors. Natl Sci Rev 2022; 10:nwac179. [PMID: 36845323 PMCID: PMC9952061 DOI: 10.1093/nsr/nwac179] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 05/22/2022] [Accepted: 08/15/2022] [Indexed: 11/15/2022] Open
Abstract
Innate social investigation behaviors are critical for animal survival and are regulated by both neural circuits and neuroendocrine factors. Our understanding of how neuropeptides regulate social interest, however, is incomplete at the current stage. In this study, we identified the expression of secretin (SCT) in a subpopulation of excitatory neurons in the basolateral amygdala. With distinct molecular and physiological features, BLASCT+ cells projected to the medial prefrontal cortex and were necessary and sufficient for promoting social investigation behaviors, whilst other basolateral amygdala neurons were anxiogenic and antagonized social behaviors. Moreover, the exogenous application of secretin effectively promoted social interest in both healthy and autism spectrum disorder model mice. These results collectively demonstrate a previously unrecognized group of amygdala neurons for mediating social behaviors and suggest promising strategies for social deficits.
Collapse
Affiliation(s)
| | | | | | - Linglin Liu
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Jing Cui
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Jiahui Tan
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Billy K C Chow
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Kwok-Fai So
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China,State Key Laboratory of Brain and Cognitive Science, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China,Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou 510030, China,BiolandLaboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510006, China,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 220619, China,Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao 266113, China,Institute of Clinical Research for Mental Health, Jinan University, Guangzhou 510632, China
| | | |
Collapse
|
7
|
Singh K, Nawabjan SA, Zhang L, El-Nezami H, Annapureddy RR, Chow BKC. Discovery of small-molecule modulators of the secretin receptor: Purmorphamine as novel anti-hypertensive agent. Eur J Med Chem 2022; 242:114642. [DOI: 10.1016/j.ejmech.2022.114642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/17/2022] [Accepted: 07/27/2022] [Indexed: 11/04/2022]
|
8
|
Xue L, Sun J, Liu J, Hu C, Wu D, Nie C, Zhang K, Wang Y, Zhao L, Li X, Lu Y, Zhang L, Zhang D, Fan M, Qian H, Jiang H, Wong J, Li Y, Ying H, Chow BKC, Wang L, Li Y. Maternal secretin ameliorates obesity by promoting white adipose tissue browning in offspring. EMBO Rep 2022; 23:e54132. [PMID: 35652247 PMCID: PMC9253765 DOI: 10.15252/embr.202154132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 04/26/2022] [Accepted: 05/05/2022] [Indexed: 12/09/2023] Open
Abstract
Our knowledge of the coordination of intergenerational inheritance and offspring metabolic reprogramming by gastrointestinal endocrine factors is largely unknown. Here, we showed that secretin (SCT), a brain-gut peptide, is downregulated by overnutrition in pregnant mice and women. More importantly, genetic loss of SCT in the maternal gut results in undesirable phenotypes developed in offspring including enhanced high-fat diet (HFD)-induced obesity and attenuated browning of inguinal white adipose tissue (iWAT). Mechanistically, loss of maternal SCT represses iWAT browning in offspring by a global change in genome methylation pattern through upregulation of DNMT1. SCT functions to facilitate ubiquitination and degradation of DNMT1 by activating AMPKα, which contributes to the observed alteration of DNMT1 in progeny. Lastly, we showed that SCT treatment during pregnancy can reduce the development of obesity and improve glucose tolerance and insulin resistance in offspring of HFD-fed females, suggesting that SCT may serve as a novel biomarker or a strategy for preventing metabolic diseases.
Collapse
Affiliation(s)
- Lamei Xue
- State Key Laboratory of Food Science and TechnologySchool of Food Science and TechnologyJiangnan UniversityWuxiChina
| | - Juan Sun
- State Key Laboratory of Food Science and TechnologySchool of Food Science and TechnologyJiangnan UniversityWuxiChina
| | - Jinxin Liu
- State Key Laboratory of Food Science and TechnologySchool of Food Science and TechnologyJiangnan UniversityWuxiChina
| | - Chaoping Hu
- Department of Neuromuscular DiseaseChildren’s Hospital of Fudan UniversityShanghaiChina
| | - Dandan Wu
- Shanghai Key Laboratory of StomatologyDepartment of Oral & Cranio‐maxillofacial ScienceShanghai 9th People's HospitalCollege of StomatologySchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Chenzhipeng Nie
- State Key Laboratory of Food Science and TechnologySchool of Food Science and TechnologyJiangnan UniversityWuxiChina
| | - Kuiliang Zhang
- State Key Laboratory of Food Science and TechnologySchool of Food Science and TechnologyJiangnan UniversityWuxiChina
| | - Yu Wang
- State Key Laboratory of Food Science and TechnologySchool of Food Science and TechnologyJiangnan UniversityWuxiChina
| | - Lei Zhao
- Department of Neuromuscular DiseaseChildren’s Hospital of Fudan UniversityShanghaiChina
| | - Xihua Li
- Department of Neuromuscular DiseaseChildren’s Hospital of Fudan UniversityShanghaiChina
| | - Yan Lu
- Department of Endocrinology and MetabolismZhongshan HospitalFudan UniversityShanghaiChina
| | - Li Zhang
- Joint International Research Laboratory of CNS RegenerationGuangdong‐Hong Kong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouChina
| | - Duo Zhang
- Clinical and Experimental TherapeuticsCollege of PharmacyUniversity of Georgia and Charlie Norwood VA Medical CenterAugustaGAUSA
| | - Mingcong Fan
- State Key Laboratory of Food Science and TechnologySchool of Food Science and TechnologyJiangnan UniversityWuxiChina
| | - Haifeng Qian
- State Key Laboratory of Food Science and TechnologySchool of Food Science and TechnologyJiangnan UniversityWuxiChina
| | - Haowen Jiang
- State Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
| | - Jiemin Wong
- Shanghai Key Laboratory of Regulatory BiologyFengxian District Central Hospital‐ECNU Joint Center of Translational MedicineInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghaiChina
| | - Yuying Li
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food SafetyShanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiChina
| | - Hao Ying
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food SafetyShanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiChina
| | - Billy KC Chow
- School of Biological SciencesUniversity of Hong KongHong KongChina
| | - Li Wang
- State Key Laboratory of Food Science and TechnologySchool of Food Science and TechnologyJiangnan UniversityWuxiChina
| | - Yan Li
- State Key Laboratory of Food Science and TechnologySchool of Food Science and TechnologyJiangnan UniversityWuxiChina
| |
Collapse
|
9
|
Martinou E, Stefanova I, Iosif E, Angelidi AM. Neurohormonal Changes in the Gut-Brain Axis and Underlying Neuroendocrine Mechanisms following Bariatric Surgery. Int J Mol Sci 2022; 23:3339. [PMID: 35328759 PMCID: PMC8954280 DOI: 10.3390/ijms23063339] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 02/05/2023] Open
Abstract
Obesity is a complex, multifactorial disease that is a major public health issue worldwide. Currently approved anti-obesity medications and lifestyle interventions lack the efficacy and durability needed to combat obesity, especially in individuals with more severe forms or coexisting metabolic disorders, such as poorly controlled type 2 diabetes. Bariatric surgery is considered an effective therapeutic modality with sustained weight loss and metabolic benefits. Numerous genetic and environmental factors have been associated with the pathogenesis of obesity, while cumulative evidence has highlighted the gut-brain axis as a complex bidirectional communication axis that plays a crucial role in energy homeostasis. This has led to increased research on the roles of neuroendocrine signaling pathways and various gastrointestinal peptides as key mediators of the beneficial effects following weight-loss surgery. The accumulate evidence suggests that the development of gut-peptide-based agents can mimic the effects of bariatric surgery and thus is a highly promising treatment strategy that could be explored in future research. This article aims to elucidate the potential underlying neuroendocrine mechanisms of the gut-brain axis and comprehensively review the observed changes of gut hormones associated with bariatric surgery. Moreover, the emerging role of post-bariatric gut microbiota modulation is briefly discussed.
Collapse
Affiliation(s)
- Eirini Martinou
- Department of Upper Gastrointestinal Surgery, Frimley Health NHS Foundation Trust, Camberley GU16 7UJ, UK;
- Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Irena Stefanova
- Department of General Surgery, Frimley Health NHS Foundation Trust, Camberley GU16 7UJ, UK;
| | - Evangelia Iosif
- Department of General Surgery, Royal Surrey County Hospital, Guildford GU2 7XX, UK;
| | - Angeliki M. Angelidi
- Division of Endocrinology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
10
|
Woodward ORM, Gribble FM, Reimann F, Lewis JE. Gut peptide regulation of food intake - evidence for the modulation of hedonic feeding. J Physiol 2022; 600:1053-1078. [PMID: 34152020 DOI: 10.1113/jp280581] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/17/2021] [Indexed: 12/13/2022] Open
Abstract
The number of people living with obesity has tripled worldwide since 1975 with serious implications for public health, as obesity is linked to a significantly higher chance of early death from associated comorbidities (metabolic syndrome, type 2 diabetes, cardiovascular disease and cancer). As obesity is a consequence of food intake exceeding the demands of energy expenditure, efforts are being made to better understand the homeostatic and hedonic mechanisms governing food intake. Gastrointestinal peptides are secreted from enteroendocrine cells in response to nutrient and energy intake, and modulate food intake either via afferent nerves, including the vagus nerve, or directly within the central nervous system, predominantly gaining access at circumventricular organs. Enteroendocrine hormones modulate homeostatic control centres at hypothalamic nuclei and the dorso-vagal complex. Additional roles of these peptides in modulating hedonic food intake and/or preference via the neural systems of reward are starting to be elucidated, with both peripheral and central peptide sources potentially contributing to central receptor activation. Pharmacological interventions and gastric bypass surgery for the treatment of type 2 diabetes and obesity elevate enteroendocrine hormone levels and also alter food preference. Hence, understanding of the hedonic mechanisms mediated by gut peptide action could advance development of potential therapeutic strategies for the treatment of obesity and its comorbidities.
Collapse
Affiliation(s)
- Orla R M Woodward
- Wellcome Trust - MRC Institute of Metabolic Science Metabolic Research Laboratories, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - Fiona M Gribble
- Wellcome Trust - MRC Institute of Metabolic Science Metabolic Research Laboratories, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - Frank Reimann
- Wellcome Trust - MRC Institute of Metabolic Science Metabolic Research Laboratories, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - Jo E Lewis
- Wellcome Trust - MRC Institute of Metabolic Science Metabolic Research Laboratories, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| |
Collapse
|
11
|
Klussmeier A, Aurich S, Niederstadt L, Wiedenmann B, Grötzinger C. Secretin Receptor as a Target in Gastrointestinal Cancer: Expression Analysis and Ligand Development. Biomedicines 2022; 10:biomedicines10030536. [PMID: 35327338 PMCID: PMC8944975 DOI: 10.3390/biomedicines10030536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 02/01/2023] Open
Abstract
Secretin was originally discovered as a gastrointestinal peptide that stimulates fluid secretion from the pancreas and liver and delays gastric emptying. In disease, a secretin receptor (SCTR) was found to occur as a splice variant in gastrinoma and pancreatic adenocarcinoma. Overexpression of SCTR has been described for gastrinomas, carcinoid tumors of the lung and cholangiocarcinoma. SCTR therefore is considered a candidate target for molecular tumor imaging as well as for peptide receptor radioligand therapy (PRRT) in a number of oncological indications. The aim of this study was to characterize SCTR expression in esophageal and pancreatic cancer, demonstrating for the first time high SCTR overexpression in these tumor types. In total, 65 of 70 pancreatic ductal adenocarcinoma tissues stained strongly positive for SCTR in immunohistochemistry, as did most of the 151 esophageal cancer samples, with minor influence of grading in both entities. In addition, the aim of this study was to further delineate residues in human secretin that are critical for binding to and activation of human SCTR. For a potential development of short and metabolically stable analogs for clinical use, it was intended to probe the peptide for its capacity to incorporate deletions and substitutions without losing its affinity to SCTR. In a systematic approach, a library of 146 secretin variants containing single amino acid substitutions as well as truncations on either end was tested in β-arrestin2-GFP translocation and fluorescent ligand internalization assays employing high-content analysis, in cAMP assays which run in agonist and antagonist mode, and in radioligand binding. The main structural determinants of SCTR binding and activation were localized to the N-terminus, with His1, Asp3 being among the most sensitive positions, followed by Phe6, Thr7 and Leu10. Aminoterminal truncation caused a rapid decline in receptor activity and most of these variants proved to be partial agonists showing antagonistic properties. In this study, the most potent novel antagonist showed an IC50 of 309 ± 74 nM in the β-arrestin2-GFP translocation assay on human SCTR while remaining a weak partial agonist. Future studies will have to demonstrate the utility of further enhanced secretin analogues as tracers for in vivo imaging and therapy.
Collapse
Affiliation(s)
- Anja Klussmeier
- Department of Hepatology and Gastroenterology, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (A.K.); (S.A.); (L.N.); (B.W.)
- Institut für Chemie und Biochemie, Fachbereich Biologie, Chemie, Pharmazie, Freie Universität Berlin, 14195 Berlin, Germany
| | - Stefan Aurich
- Department of Hepatology and Gastroenterology, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (A.K.); (S.A.); (L.N.); (B.W.)
| | - Lars Niederstadt
- Department of Hepatology and Gastroenterology, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (A.K.); (S.A.); (L.N.); (B.W.)
| | - Bertram Wiedenmann
- Department of Hepatology and Gastroenterology, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (A.K.); (S.A.); (L.N.); (B.W.)
| | - Carsten Grötzinger
- Department of Hepatology and Gastroenterology, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (A.K.); (S.A.); (L.N.); (B.W.)
- Partner Site Berlin, German Cancer Consortium (DKTK), 13353 Berlin, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Correspondence:
| |
Collapse
|
12
|
Sugiyama M, Nishijima I, Nakamura W, Nakamura TJ. Secretin receptor-deficient mice exhibit robust food anticipatory activity. Neurosci Lett 2022; 772:136462. [PMID: 35051436 DOI: 10.1016/j.neulet.2022.136462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/20/2021] [Accepted: 01/12/2022] [Indexed: 11/26/2022]
Abstract
In mammals, the suprachiasmatic nucleus (SCN) is a principal circadian pacemaker that optimizes the timing of behavioral rhythms and physiological events. Normally, circadian behavioral rhythms are entrained by the environmental light-dark (LD) cycle via the SCN. However, daily rhythms of other synchronizing signals, such as food availability, also emerge. When food availability is restricted to a single recurring daytime meal in nocturnal rodents, they exhibit increased activity during the hours immediately preceding feeding time; this is called food anticipatory activity (FAA). Many reports suggest that FAA is mediated by the food-entrainable oscillator (FEO) with circadian properties, but not the SCN. However, the neural locus and timekeeping mechanisms of the FEO, including its relationship with gastrointestinal hormone signaling, remain unclear. Herein, to examine whether secretin receptor signaling is necessary for the FEO, the effect of daily food restriction was studied in secretin receptor-deficient (Sctr-/-) mice. Adult wild-type (WT) and Sctr-/- mice were housed in separate cages containing a running wheel, with ad libitum food access and in a LD cycle (12 hours : 12 hours) for at least 2 weeks. After acclimation to the condition, food access times were gradually restricted and 4-hour restricted feeding lasted over 10 days. Subsequently, mice had ad libitum food access for 2 days and then fasted for 2 days. Thereafter, robust FAAs were observed in both WT and Sctr-/- mice during restricted feeding and subsequent fasting. These results indicate that secretin receptor signaling is not essential for the timekeeping mechanism of FEO.
Collapse
Affiliation(s)
- Mizuki Sugiyama
- Laboratory of Animal Physiology, School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571, Japan
| | - Ichiko Nishijima
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi 980-8575, Japan
| | - Wataru Nakamura
- Department of Oral-Chrono Physiology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Nagasaki, 852-8588, Japan
| | - Takahiro J Nakamura
- Laboratory of Animal Physiology, School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571, Japan.
| |
Collapse
|
13
|
Le N, Hernandez J, Gastelum C, Perez L, Vahrson I, Sayers S, Wagner EJ. Pituitary Adenylate Cyclase Activating Polypeptide Inhibits A 10 Dopamine Neurons and Suppresses the Binge-like Consumption of Palatable Food. Neuroscience 2021; 478:49-64. [PMID: 34597709 DOI: 10.1016/j.neuroscience.2021.09.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 10/20/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) binds to PACAP-specific (PAC1) receptors in multiple hypothalamic areas, especially those regulating energy balance. PACAP neurons in the ventromedial nucleus (VMN) exert anorexigenic effects within the homeostatic energy balance circuitry. Since PACAP can also reduce the consumption of palatable food, we tested the hypothesis that VMN PACAP neurons project to the ventral tegmental area (VTA) to inhibit A10 dopamine neurons via PAC1 receptors and KATP channels, and thereby suppress binge-like consumption. We performed electrophysiological recordings in mesencephalic slices from male PACAP-Cre and tyrosine hydroxylase (TH)-Cre mice. Initially, we injected PACAP (30 pmol) into the VTA, where it suppressed binge intake in wildtype male but not female mice. Subsequent tract tracing studies uncovered projections of VMN PACAP neurons to the VTA. Optogenetic stimulation of VMN PACAP neurons in voltage clamp induced an outward current and increase in conductance in VTA neurons, and a hyperpolarization and decrease in firing in current clamp. These effects were markedly attenuated by the KATP channel blocker tolbutamide (100 μM) and PAC1 receptor antagonist PACAP6-38 (200 nM). In recordings from A10 dopamine neurons in TH-Cre mice, we replicated the outward current by perfusing PACAP1-38 (100 nM). This response was again completely blocked by tolbutamide and PACAP6-38, and associated with a hyperpolarization and decrease in firing. These findings demonstrate that PACAP activates PAC1 receptors and KATP channels to inhibit A10 dopamine neurons and sex-dependently suppress binge-like consumption. Accordingly, they advance our understanding of how PACAP regulates energy homeostasis via the hedonic energy balance circuitry.
Collapse
Affiliation(s)
- Nikki Le
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, USA
| | - Jennifer Hernandez
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, USA
| | - Cassandra Gastelum
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, USA
| | - Lynnea Perez
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, USA
| | - Isabella Vahrson
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, USA
| | - Sarah Sayers
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, USA
| | - Edward J Wagner
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, USA; College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, USA.
| |
Collapse
|
14
|
Schnabl K, Li Y, U-Din M, Klingenspor M. Secretin as a Satiation Whisperer With the Potential to Turn into an Obesity-curbing Knight. Endocrinology 2021; 162:6294014. [PMID: 34089599 DOI: 10.1210/endocr/bqab113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Indexed: 01/01/2023]
Abstract
The obesity pandemic requires effective preventative and therapeutic intervention strategies. Successful and sustained obesity treatment is currently limited to bariatric surgery. Modulating the release of gut hormones is considered promising to mimic bariatric surgery with its beneficial effects on food intake, body weight, and blood glucose levels. The gut peptide secretin was the first molecule to be termed a hormone; nevertheless, only recently has it been established as a legitimate anorexigenic peptide. In contrast to gut hormones that crosstalk with the brain either directly or by afferent neuronal projections, secretin mediates meal-associated brown fat thermogenesis to induce meal termination, thereby qualifying this physiological mechanism as an attractive, peripheral target for the treatment of obesity. In this perspective, it is of pivotal interest to deepen our as yet superficial knowledge on the physiological roles of secretin as well as meal-associated thermogenesis in energy balance and body weight regulation. Of note, the emerging differences between meal-associated thermogenesis and cold-induced thermogenesis must be taken into account. In fact, there is no correlation between these 2 entities. In addition, the investigation of potential effects of secretin in hedonic-driven food intake, bariatric surgery and chronic treatment using suitable application strategies to overcome pharmacokinetic limitations will provide further insight into its potential to influence energy balance. The aim of this article is to review the facts on secretin's metabolic effects, address prevailing gaps in our knowledge, and provide an overview on the opportunities and challenges of the therapeutic potential of secretin in body weight control.
Collapse
Affiliation(s)
- Katharina Schnabl
- Chair for Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- EKFZ-Else Kröner Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, Germany
- ZIEL-Institute for Food & Health, Technical University of Munich, Freising, Germany
| | - Yongguo Li
- Chair for Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- EKFZ-Else Kröner Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, Germany
| | - Mueez U-Din
- Turku PET Centre, Turku University Hospital, Turku, Finland
| | - Martin Klingenspor
- Chair for Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- EKFZ-Else Kröner Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, Germany
- ZIEL-Institute for Food & Health, Technical University of Munich, Freising, Germany
| |
Collapse
|
15
|
Berg P, Svendsen SL, Sorensen MV, Schreiber R, Kunzelmann K, Leipziger J. The molecular mechanism of CFTR- and secretin-dependent renal bicarbonate excretion. J Physiol 2021; 599:3003-3011. [PMID: 33963548 DOI: 10.1113/jp281285] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 04/12/2021] [Indexed: 11/08/2022] Open
Abstract
This review summarizes the newly discovered molecular mechanism of secretin-stimulated urine HCO3 - excretion and the role of cystic fibrosis transmembrane conductance regulator (CFTR) in renal HCO3 - excretion. The secretin receptor is functionally expressed in the basolateral membrane of the HCO3 - -secreting β-intercalated cells of the collecting duct. Here it activates a fast and efficient secretion of HCO3 - into the urine serving to normalize metabolic alkalosis. The ability to acutely increase renal base excretion is entirely dependent on functional pendrin (SLC26A4) and CFTR, and both proteins localize to the apical membrane of the β-intercalated cells. In cystic fibrosis mice and patients, this function is absent or markedly reduced. We discuss that the alkaline tide, namely the transient urine alkalinity after a meal, has now received a clear physiological explanation.
Collapse
Affiliation(s)
- Peder Berg
- Department of Biomedicine, Physiology, Health, Aarhus University, Aarhus, Denmark
| | - Samuel L Svendsen
- Department of Biomedicine, Physiology, Health, Aarhus University, Aarhus, Denmark
| | - Mads Vaarby Sorensen
- Department of Biomedicine, Physiology, Health, Aarhus University, Aarhus, Denmark
| | - Rainer Schreiber
- Department of Physiology, University of Regensburg, Regensburg, Germany
| | - Karl Kunzelmann
- Department of Physiology, University of Regensburg, Regensburg, Germany
| | - Jens Leipziger
- Department of Biomedicine, Physiology, Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
16
|
Montégut L, Lopez-Otin C, Magnan C, Kroemer G. Old Paradoxes and New Opportunities for Appetite Control in Obesity. Trends Endocrinol Metab 2021; 32:264-294. [PMID: 33707095 DOI: 10.1016/j.tem.2021.02.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 12/13/2022]
Abstract
Human obesity is accompanied by alterations in the blood concentrations of multiple circulating appetite regulators. Paradoxically, most of the appetite-inhibitory hormones are elevated in nonsyndromic obesity, while most of the appetite stimulatory hormones are reduced, perhaps reflecting vain attempts of regulation by inefficient feedback circuitries. In this context, it is important to understand which appetite regulators exhibit a convergent rather than paradoxical behavior and hence are likely to contribute to the maintenance of the obese state. Pharmacological interventions in obesity should preferentially consist of the supplementation of deficient appetite inhibitors or the neutralization of excessive appetite stimulators. Here, we critically analyze the current literature on appetite-regulatory peptide hormones. We propose a short-list of appetite modulators that may constitute the best candidates for therapeutic interventions.
Collapse
Affiliation(s)
- Léa Montégut
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France; Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Carlos Lopez-Otin
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, 33006, Oviedo, Spain
| | | | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France; Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France; Unité de Biologie Fonctionnelle et Adaptative, Sorbonne Paris Cité, CNRS UMR8251, Université Paris Diderot, Paris, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-, HP, Paris, France; Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China; Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
17
|
Zhao L, Li Y, Ding Q, Li Y, Chen Y, Ruan XZ. CD36 Senses Dietary Lipids and Regulates Lipids Homeostasis in the Intestine. Front Physiol 2021; 12:669279. [PMID: 33995128 PMCID: PMC8113691 DOI: 10.3389/fphys.2021.669279] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/22/2021] [Indexed: 12/24/2022] Open
Abstract
Dietary lipids absorbed in the intestine are closely related to the development of metabolic syndrome. CD36 is a multi-functional scavenger receptor with multiple ligands, which plays important roles in developing hyperlipidemia, insulin resistance, and metabolic syndrome. In the intestine, CD36 is abundant on the brush border membrane of the enterocytes mainly localized in proximal intestine. This review recapitulates the update and current advances on the importance of intestinal CD36 in sensing dietary lipids and regulating intestinal lipids uptake, synthesis and transport, and regulating intestinal hormones secretion. However, further studies are still needed to demonstrate the complex interactions between intestinal CD36 and dietary lipids, as well as its importance in diet associated metabolic syndrome.
Collapse
Affiliation(s)
- Lei Zhao
- Centre for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yuqi Li
- Centre for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Qiuying Ding
- Centre for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yanping Li
- Centre for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yaxi Chen
- Centre for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xiong Z Ruan
- Centre for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.,John Moorhead Research Laboratory, Centre for Nephrology, University College London Medical School, Royal Free Campus, University College London, London, United Kingdom
| |
Collapse
|
18
|
Lu VB, Gribble FM, Reimann F. Nutrient-Induced Cellular Mechanisms of Gut Hormone Secretion. Nutrients 2021; 13:nu13030883. [PMID: 33803183 PMCID: PMC8000029 DOI: 10.3390/nu13030883] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/27/2021] [Accepted: 03/05/2021] [Indexed: 02/06/2023] Open
Abstract
The gastrointestinal tract can assess the nutrient composition of ingested food. The nutrient-sensing mechanisms in specialised epithelial cells lining the gastrointestinal tract, the enteroendocrine cells, trigger the release of gut hormones that provide important local and central feedback signals to regulate nutrient utilisation and feeding behaviour. The evidence for nutrient-stimulated secretion of two of the most studied gut hormones, glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), along with the known cellular mechanisms in enteroendocrine cells recruited by nutrients, will be the focus of this review. The mechanisms involved range from electrogenic transporters, ion channel modulation and nutrient-activated G-protein coupled receptors that converge on the release machinery controlling hormone secretion. Elucidation of these mechanisms will provide much needed insight into postprandial physiology and identify tractable dietary approaches to potentially manage nutrition and satiety by altering the secreted gut hormone profile.
Collapse
|
19
|
Anjum S, Khattak MNK, Tsutsui K, Krishna A. RF-amide related peptide-3 (RFRP-3): a novel neuroendocrine regulator of energy homeostasis, metabolism, and reproduction. Mol Biol Rep 2021; 48:1837-1852. [PMID: 33566226 DOI: 10.1007/s11033-021-06198-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 01/28/2021] [Indexed: 11/29/2022]
Abstract
A hypothalamic neuropeptide, RF-amide related peptide-3 (RFRP-3), the mammalian ortholog of the avian gonadotropin-inhibitory hormone (GnIH) has inhibitory signals for reproductive axis via G-protein coupled receptor 147 in mammals. Moreover, RFRP-3 has orexigenic action but the mechanism involved in energy homeostasis and glucose metabolism is not yet known. Though, the RFRP-3 modulates orexigenic action in co-operation with other neuropeptides, which regulates metabolic cues in the hypothalamus. Administration of GnIH/RFRP-3 suppresses plasma luteinizing hormone, at the same time stimulates feeding behavior in birds and mammals. Likewise, in the metabolically deficient conditions, its expression is up-regulated suggests that RFRP-3 contributes to the integration of energy balance and reproduction. However, in many other metabolic conditions like induced diabetes and high-fat diet obesity, etc. its role is still not clear while, RFRP-3 induces the glucose homeostasis by adipocytes is reported. The physiological role of RFRP-3 in metabolic homeostasis and the metabolic effects of RFRP-3 signaling in pharmacological studies need a detailed discussion. Further studies are required to find out whether RFRP-3 is associated with restricted neuroendocrine function observed in type II diabetes mellitus, aging, or sub-fertility. In this context, the current review is focused on the role of RFRP-3 in the above-mentioned mechanisms. Studies from search engines including PubMed, Google Scholar, and science.gov are included after following set inclusion/exclusion criteria. As a developing field few mechanisms are still inconclusive, however, based on the available information RFRP-3 seems to be a putative tool in future treatment strategies towards metabolic disease.
Collapse
Affiliation(s)
- Shabana Anjum
- Department of Zoology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
- Sharjah Institute of Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | | | - Kazuyoshi Tsutsui
- Graduate School of Integrated Sciences for Life, Hiroshima University, Kagamiyama 1-7-1, Higashi-Hiroshima, 739-8521, Japan
| | - Amitabh Krishna
- Department of Zoology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
20
|
Wong MKH, Chen Y, He M, Lin C, Bian Z, Wong AOL. Mouse Spexin: (II) Functional Role as a Satiety Factor inhibiting Food Intake by Regulatory Actions Within the Hypothalamus. Front Endocrinol (Lausanne) 2021; 12:681647. [PMID: 34276562 PMCID: PMC8283969 DOI: 10.3389/fendo.2021.681647] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/13/2021] [Indexed: 11/17/2022] Open
Abstract
Spexin (SPX) is a pleiotropic peptide with highly conserved protein sequence from fish to mammals and its biological actions are mediated by GalR2/GalR3 receptors expressed in target tissues. Recently, SPX has been confirmed to be a novel satiety factor in fish species but whether the peptide has a similar function in mammals is still unclear. Using the mouse as a model, the functional role of SPX in feeding control and the mechanisms involved were investigated. After food intake, serum SPX in mice could be up-regulated with elevations of transcript expression and tissue content of SPX in the glandular stomach but not in other tissues examined. As revealed by immunohistochemical staining, food intake also intensified SPX signals in the major cell types forming the gastric glands (including the foveolar cells, parietal cells, and chief cells) within the gastric mucosa of glandular stomach. Furthermore, IP injection of SPX was effective in reducing food intake with parallel attenuation in transcript expression of NPY, AgRP, NPY type 5 receptor (NPY5R), and ghrelin receptor (GHSR) in the hypothalamus, and these inhibitory effects could be blocked by GalR3 but not GalR2 antagonism. In agreement with the central actions of SPX, similar inhibition on feeding and hypothalamic expression of NPY, AgRP, NPY5R, and GHSR could also be noted with ICV injection of SPX. In the same study, in contrast to the drop in NPY5R and GHSR, SPX treatment could induce parallel rises of transcript expression of leptin receptor (LepR) and melanocortin 4 receptor (MC4R) in the hypothalamus. These findings, as a whole, suggest that the role of SPX as a satiety factor is well conserved in the mouse. Apparently, food intake can induce SPX production in glandular stomach and contribute to the postprandial rise of SPX in circulation. Through GalR3 activation, this SPX signal can act within the hypothalamus to trigger feedback inhibition on feeding by differential modulation of feeding regulators (NPY and AgRP) and their receptors (NPY5R, GHSR, LepR, and MC4R) involved in the feeding circuitry within the CNS.
Collapse
Affiliation(s)
- Matthew K. H. Wong
- School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong
| | - Yuan Chen
- School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong
| | - Mulan He
- School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong
| | - Chengyuan Lin
- School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong
| | - Zhaoxiang Bian
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong
| | - Anderson O. L. Wong
- School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong
- *Correspondence: Anderson O. L. Wong,
| |
Collapse
|
21
|
Laurila S, Rebelos E, Honka MJ, Nuutila P. Pleiotropic Effects of Secretin: A Potential Drug Candidate in the Treatment of Obesity? Front Endocrinol (Lausanne) 2021; 12:737686. [PMID: 34671320 PMCID: PMC8522834 DOI: 10.3389/fendo.2021.737686] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/15/2021] [Indexed: 12/18/2022] Open
Abstract
Secretin is the first hormone that has been discovered, inaugurating the era and the field of endocrinology. Despite the initial focus, the interest in its actions faded away over the decades. However, there is mounting evidence regarding the pleiotropic beneficial effects of secretin on whole-body homeostasis. In this review, we discuss the evidence from preclinical and clinical studies based on which secretin may have a role in the treatment of obesity.
Collapse
Affiliation(s)
- Sanna Laurila
- Turku PET Centre, University of Turku, Turku, Finland
- Heart Center, Turku University Hospital, Turku, Finland
- Department of Cardiology, Satakunta Central Hospital, Pori, Finland
| | - Eleni Rebelos
- Turku PET Centre, University of Turku, Turku, Finland
| | | | - Pirjo Nuutila
- Turku PET Centre, University of Turku, Turku, Finland
- Department of Endocrinology, Turku University Hospital, Turku, Finland
- *Correspondence: Pirjo Nuutila,
| |
Collapse
|
22
|
Structure of the human secretin receptor coupled to an engineered heterotrimeric G protein. Biochem Biophys Res Commun 2020; 533:861-866. [DOI: 10.1016/j.bbrc.2020.08.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 08/17/2020] [Indexed: 01/05/2023]
|
23
|
Abstract
Since the discovery of functionally competent, energy-consuming brown adipose tissue (BAT) in adult humans, much effort has been devoted to exploring this tissue as a means for increasing energy expenditure to counteract obesity. However, despite promising effects on metabolic rate and insulin sensitivity, no convincing evidence for weight-loss effects of cold-activated human BAT exists to date. Indeed, increasing energy expenditure would naturally induce compensatory feedback mechanisms to defend body weight. Interestingly, BAT is regulated by multiple interactions with the hypothalamus from regions overlapping with centers for feeding behavior and metabolic control. Therefore, in the further exploration of BAT as a potential source of novel drug targets, we discuss the hypothalamic orchestration of BAT activity and the relatively unexplored BAT feedback mechanisms on neuronal regulation. With a holistic view on hypothalamic-BAT interactions, we aim to raise ideas and provide a new perspective on this circuit and highlight its clinical relevance.
Collapse
Affiliation(s)
- Jo B Henningsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark;
| | - Camilla Scheele
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark;
| |
Collapse
|
24
|
Dong M, Deganutti G, Piper SJ, Liang YL, Khoshouei M, Belousoff MJ, Harikumar KG, Reynolds CA, Glukhova A, Furness SGB, Christopoulos A, Danev R, Wootten D, Sexton PM, Miller LJ. Structure and dynamics of the active Gs-coupled human secretin receptor. Nat Commun 2020; 11:4137. [PMID: 32811827 PMCID: PMC7435274 DOI: 10.1038/s41467-020-17791-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 07/15/2020] [Indexed: 01/08/2023] Open
Abstract
The class B secretin GPCR (SecR) has broad physiological effects, with target potential for treatment of metabolic and cardiovascular disease. Molecular understanding of SecR binding and activation is important for its therapeutic exploitation. We combined cryo-electron microscopy, molecular dynamics, and biochemical cross-linking to determine a 2.3 Å structure, and interrogate dynamics, of secretin bound to the SecR:Gs complex. SecR exhibited a unique organization of its extracellular domain (ECD) relative to its 7-transmembrane (TM) core, forming more extended interactions than other family members. Numerous polar interactions formed between secretin and the receptor extracellular loops (ECLs) and TM helices. Cysteine-cross-linking, cryo-electron microscopy multivariate analysis and molecular dynamics simulations revealed that interactions between peptide and receptor were dynamic, and suggested a model for initial peptide engagement where early interactions between the far N-terminus of the peptide and SecR ECL2 likely occur following initial binding of the peptide C-terminus to the ECD.
Collapse
Affiliation(s)
- Maoqing Dong
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, AZ, 85259, USA
| | - Giuseppe Deganutti
- School of Biological Sciences, University of Essex, Colchester, CO4 3SQ, UK.,Centre for Sport, Exercise and Life Sciences, Faculty of Health and Life Sciences, Alison Gingell Building, Coventry University, CV1 2DS, Coventry, UK
| | - Sarah J Piper
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Yi-Lynn Liang
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Maryam Khoshouei
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany.,Novartis Institutes for Biomedical Research, Novartis Pharma AG, 4002, Basel, Switzerland
| | - Matthew J Belousoff
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Kaleeckal G Harikumar
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, AZ, 85259, USA
| | | | - Alisa Glukhova
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Sebastian G B Furness
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Arthur Christopoulos
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Radostin Danev
- Graduate School of Medicine, University of Tokyo, N415, 7-3-1 Hongo, Bunkyo-ku, 113-0033, Tokyo, Japan
| | - Denise Wootten
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.
| | - Patrick M Sexton
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.
| | - Laurence J Miller
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, AZ, 85259, USA.
| |
Collapse
|
25
|
Wang L, Zhang L. Involvement of Secretin in the Control of Cell Survival and Synaptic Plasticity in the Central Nervous System. Front Neurosci 2020; 14:387. [PMID: 32435180 PMCID: PMC7218122 DOI: 10.3389/fnins.2020.00387] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 03/30/2020] [Indexed: 01/30/2023] Open
Abstract
With emerging evidence showing a wide distribution of secretin (SCT) and its receptor (SCTR) in the central nervous system (CNS), the putative neuropeptide role of SCT has become more appreciated since the disruption of SCT/SCTR axis affects various neural functions. This mini review thus focuses on the effects of SCT on cell survival and synaptic plasticity, both of which play critical roles in constructing and maintaining neural circuits with optimal output of behavioral phenotypes. Specifically, SCT-dependent cellular and molecular mechanisms that may regulate these two aspects will be discussed. The potential complementary or synergistical mechanisms between SCT and other peptides of the SCT superfamily will also be discussed for bridging their actions in the brain. A full understanding of functional SCT/SCTR in the brain may lead to future perspectives regarding therapeutic implications of SCT in relieving neural symptoms.
Collapse
Affiliation(s)
- Lei Wang
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Li Zhang
- GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China
| |
Collapse
|
26
|
Schnabl K, Li Y, Klingenspor M. The gut hormone secretin triggers a gut-brown fat-brain axis in the control of food intake. Exp Physiol 2020; 105:1206-1213. [PMID: 32271980 DOI: 10.1113/ep087878] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/06/2020] [Indexed: 12/25/2022]
Abstract
NEW FINDINGS What is the topic of this review? Brown fat's role in meal-associated thermogenesis and the related consequences for energy balance regulation with a focus on the gut hormone secretin, which has been identified as the endocrine molecular mediator of meal-associated brown fat thermogenesis. What advances does it highlight? The finding of the secretin-induced gut-brown fat-brain axis creates new opportunities to manipulate brown fat and thereby energy balance in a natural way while living in a thermoneutral environment. The role of brown fat as a mere catabolic heater organ needs to be revised and more attention should be directed towards the regulatory role of brown fat beyond energy expenditure. ABSTRACT Brown fat research concentrates on the energy expenditure function of this heating organ, whereas previous evidence for a role of brown fat in regulating energy intake has been mostly neglected. Ingestion of a single mixed meal activates human brown fat thermogenesis to the same degree as cold. In mice, activation of brown fat thermogenesis with a β3 -adrenergic receptor agonist inhibits food intake. Pharmacological β-blockade, however, inhibits neither meal-associated thermogenesis nor food intake. We recently identified the gut hormone secretin as a non-adrenergic activator of brown fat. In vivo, secretin treatment acutely increases energy expenditure and inhibits food intake in wild-type, but not in uncoupling protein 1 (UCP1)-knockout (KO) mice, which lack thermogenic brown fat function. Concurrently, secretin alters gene expression of melanocortinergic peptides of hypothalamic neurons in wild-type mice, but not UCP1-KO. Blocking endogenous secretin with a neutralizing antibody attenuates brown fat thermogenesis during refeeding, increases food intake of mice, and alters ad libitum feeding behaviour. Taken together, these findings demonstrate that secretin triggers an endocrine gut-brown adipose tissue-brain axis in the control of satiation. We hypothesize that meal-associated activation of brown adipose tissue thermogenesis induced by secretin results in a rise in brain temperature and increased melanocortinergic signalling. Taken together, brown fat is not a mere heating organ dissipating excess calories but also involved in gut-brain communication in the control of food intake.
Collapse
Affiliation(s)
- Katharina Schnabl
- TUM School of Life Sciences, Technical University of Munich, Freising, Germany.,EKFZ - Else Kröner-Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, Germany.,ZIEL - Institute for Food & Health, Technical University of Munich, Freising, Germany
| | - Yongguo Li
- TUM School of Life Sciences, Technical University of Munich, Freising, Germany.,EKFZ - Else Kröner-Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, Germany
| | - Martin Klingenspor
- TUM School of Life Sciences, Technical University of Munich, Freising, Germany.,EKFZ - Else Kröner-Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, Germany.,ZIEL - Institute for Food & Health, Technical University of Munich, Freising, Germany
| |
Collapse
|
27
|
Kokkinos A, Tsilingiris D, le Roux CW, Rubino F, Mantzoros CS. Will medications that mimic gut hormones or target their receptors eventually replace bariatric surgery? Metabolism 2019; 100:153960. [PMID: 31412266 DOI: 10.1016/j.metabol.2019.153960] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/31/2019] [Accepted: 08/05/2019] [Indexed: 02/07/2023]
Abstract
Bariatric surgery is currently the most effective therapeutic modality through which sustained beneficial effects on weight loss and metabolic improvement are achieved. During recent years, indications for bariatric surgery have been expanded to include cases of poorly controlled type 2 (T2DM) diabetes mellitus in lesser extremes of body weight. A spectrum of the beneficial effects of surgery is attributed to robust changes of postprandial gut peptide responses that are observed post operatively. Consolidated knowledge regarding gut peptide physiology as well as emerging new evidence shedding light on the mode of action of previously overlooked gut hormones provide appealing potential obesity and T2DM therapeutic perspectives. The accumulation of evidence from the effect of exogenous administration of native gut peptides alone or in combinations to humans as well as the development of mimetic agents exerting agonistic effects on combinations of gut hormone receptors pave the way for future integrated gut peptide-based treatments, which may mimic the effects of bariatric surgery.
Collapse
Affiliation(s)
- Alexander Kokkinos
- First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece.
| | - Dimitrios Tsilingiris
- First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| | - Carel W le Roux
- Diabetes Complications Research Centre, University College Dublin, Dublin, Ireland
| | - Francesco Rubino
- Department of Metabolic and Bariatric Surgery, Diabetes and Nutritional Science Division, King's College Hospital, London, United Kingdom
| | - Christos S Mantzoros
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, USA
| |
Collapse
|
28
|
Castillo‐Armengol J, Fajas L, Lopez‐Mejia IC. Inter-organ communication: a gatekeeper for metabolic health. EMBO Rep 2019; 20:e47903. [PMID: 31423716 PMCID: PMC6726901 DOI: 10.15252/embr.201947903] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/21/2019] [Accepted: 05/24/2019] [Indexed: 12/17/2022] Open
Abstract
Multidirectional interactions between metabolic organs in the periphery and the central nervous system have evolved concomitantly with multicellular organisms to maintain whole-body energy homeostasis and ensure the organism's adaptation to external cues. These interactions are altered in pathological conditions such as obesity and type 2 diabetes. Bioactive peptides and proteins, such as hormones and cytokines, produced by both peripheral organs and the central nervous system, are key messengers in this inter-organ communication. Despite the early discovery of the first hormones more than 100 years ago, recent studies taking advantage of novel technologies have shed light on the multiple ways used by cells in the body to communicate and maintain energy balance. This review briefly summarizes well-established concepts and focuses on recent advances describing how specific proteins and peptides mediate the crosstalk between gut, brain, and other peripheral metabolic organs in order to maintain energy homeostasis. Additionally, this review outlines how the improved knowledge about these inter-organ networks is helping us to redefine therapeutic strategies in an effort to promote healthy living and fight metabolic disorders and other diseases.
Collapse
Affiliation(s)
| | - Lluis Fajas
- Center for Integrative GenomicsUniversity of LausanneLausanneSwitzerland
| | | |
Collapse
|
29
|
Csillag V, Vastagh C, Liposits Z, Farkas I. Secretin Regulates Excitatory GABAergic Neurotransmission to GnRH Neurons via Retrograde NO Signaling Pathway in Mice. Front Cell Neurosci 2019; 13:371. [PMID: 31507377 PMCID: PMC6716020 DOI: 10.3389/fncel.2019.00371] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 07/30/2019] [Indexed: 01/28/2023] Open
Abstract
In mammals, reproduction is regulated by a wide range of metabolic hormones that maintain the proper energy balance. In addition to regulating feeding and energy expenditure, these metabolic messengers also modulate the functional performance of the hypothalamic-pituitary-gonadal (HPG) axis. Secretin, a member of the secretin-glucagon-vasoactive intestinal peptide hormone family, has been shown to alter reproduction centrally, although the underlying mechanisms have not been explored yet. In order to elucidate its central action in the neuroendocrine regulation of reproduction, in vitro electrophysiological slice experiments were carried out on GnRH-GFP neurons in male mice. Bath application of secretin (100 nM) significantly increased the frequency of the spontaneous postsynaptic currents (sPSCs) to 118.0 ± 2.64% compared to the control, and that of the GABAergic miniature postsynaptic currents (mPSCs) to 147.6 ± 19.19%. Resting membrane potential became depolarized by 12.74 ± 4.539 mV after secretin treatment. Frequency of evoked action potentials (APs) also increased to 144.3 ± 10.8%. The secretin-triggered elevation of the frequency of mPSCs was prevented by using either a secretin receptor antagonist (3 μM) or intracellularly applied G-protein-coupled receptor blocker (GDP-β-S; 2 mM) supporting the involvement of secretin receptor in the process. Regarding the actions downstream to secretin receptor, intracellular blockade of protein kinase A (PKA) with KT-5720 (2 μM) or intracellular inhibition of the neuronal nitric oxide synthase (nNOS) by NPLA (1 μM) abolished the stimulatory effect of secretin on mPSCs. These data suggest that secretin acts on GnRH neurons via secretin receptors whose activation triggers the cAMP/PKA/nNOS signaling pathway resulting in nitric oxide release and in the presynaptic terminals this retrograde NO machinery regulates the GABAergic input to GnRH neurons.
Collapse
Affiliation(s)
- Veronika Csillag
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.,Roska Tamás Doctoral School of Sciences and Technology, Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Csaba Vastagh
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Zsolt Liposits
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.,Department of Neuroscience, Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Imre Farkas
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
30
|
Klingenspor M. Secretin Links Brown Fat to Food Intake: New Perspectives for Targeting Energy Balance in Humans. Obesity (Silver Spring) 2019; 27:875-877. [PMID: 31119880 DOI: 10.1002/oby.22477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 02/20/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Martin Klingenspor
- Molecular Nutritional Medicine, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
- EKFZ-Else Kröner-Fresenius Zentrum for Nutritional Medicine, Technical University of Munich, Freising, Germany
- ZIEL-Institute for Food & Health, Technical University of Munich, Freising, Germany
| |
Collapse
|
31
|
Clemmensen C, Finan B, Müller TD, DiMarchi RD, Tschöp MH, Hofmann SM. Emerging hormonal-based combination pharmacotherapies for the treatment of metabolic diseases. Nat Rev Endocrinol 2019; 15:90-104. [PMID: 30446744 DOI: 10.1038/s41574-018-0118-x] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Obesity and its comorbidities, such as type 2 diabetes mellitus and cardiovascular disease, constitute growing challenges for public health and economies globally. The available treatment options for these metabolic disorders cannot reverse the disease in most individuals and have not substantially reduced disease prevalence, which underscores the unmet need for more efficacious interventions. Neurobiological resilience to energy homeostatic perturbations, combined with the heterogeneous pathophysiology of human metabolic disorders, has limited the sustainability and efficacy of current pharmacological options. Emerging insights into the molecular origins of eating behaviour, energy expenditure, dyslipidaemia and insulin resistance suggest that coordinated targeting of multiple signalling pathways is probably necessary for sizeable improvements to reverse the progression of these diseases. Accordingly, a broad set of combinatorial approaches targeting feeding circuits, energy expenditure and glucose metabolism in concert are currently being explored and developed. Notably, several classes of peptide-based multi-agonists and peptide-small molecule conjugates with superior preclinical efficacy have emerged and are currently undergoing clinical evaluation. Here, we summarize advances over the past decade in combination pharmacotherapy for the management of obesity and type 2 diabetes mellitus, exclusively focusing on large-molecule formats (notably enteroendocrine peptides and proteins) and discuss the associated therapeutic opportunities and challenges.
Collapse
Affiliation(s)
- Christoffer Clemmensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany.
| | - Brian Finan
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | | | - Matthias H Tschöp
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- Division of Metabolic Diseases, Department of Medicine, Technische Universität, Munich, Germany
| | - Susanna M Hofmann
- Institute for Diabetes and Regeneration, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany.
- Medizinische Klinik und Poliklinik IV, Klinikum der Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
32
|
Mak SOK, Zhang L, Chow BKC. In vivo
actions of SCTR/AT1aR heteromer in controlling Vp expression and release
via
cFos/cAMP/CREB pathway in magnocellular neurons of PVN. FASEB J 2019; 33:5389-5398. [DOI: 10.1096/fj.201801732rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Sarah O. K. Mak
- School of Biological SciencesThe University of Hong Kong Hong Kong China
| | - Li Zhang
- Guangdong‐Hong Kong‐Macau (GHM) Institute of Central Nervous System (CNS) RegenerationJinan University Guangzhou China
| | - Billy K. C. Chow
- School of Biological SciencesThe University of Hong Kong Hong Kong China
| |
Collapse
|
33
|
Abstract
Most theories of meal-induced thermogenesis involve a gut-brain-brown adipose tissue axis driving sympathetic nervous system-mediated thermogenesis. Li et al. demonstrate that secretin released by the gut after a meal binds to abundant receptors in brown adipose tissue to stimulate thermogenesis, inhibiting food intake and thereby suggesting a novel role for secretin regulating satiety.
Collapse
Affiliation(s)
- Randall L Mynatt
- Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| | - Eric Ravussin
- Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, USA.
| |
Collapse
|
34
|
Li Y, Schnabl K, Gabler SM, Willershäuser M, Reber J, Karlas A, Laurila S, Lahesmaa M, u Din M, Bast-Habersbrunner A, Virtanen KA, Fromme T, Bolze F, O’Farrell LS, Alsina-Fernandez J, Coskun T, Ntziachristos V, Nuutila P, Klingenspor M. Secretin-Activated Brown Fat Mediates Prandial Thermogenesis to Induce Satiation. Cell 2018; 175:1561-1574.e12. [DOI: 10.1016/j.cell.2018.10.016] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 08/06/2018] [Accepted: 10/02/2018] [Indexed: 12/31/2022]
|
35
|
Fetissov SO, Averina OV, Danilenko VN. Neuropeptides in the microbiota-brain axis and feeding behavior in autism spectrum disorder. Nutrition 2018; 61:43-48. [PMID: 30684851 DOI: 10.1016/j.nut.2018.10.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 10/24/2018] [Indexed: 12/26/2022]
Abstract
A combination of altered social and feeding behaviors is common in children with autism spectrum disorder (ASD); however, the underlying mechanisms are unknown. Nevertheless, it has been established that several specific neuropeptides are critically involved in the regulation of both feeding and social behavior, such as α-melanocyte-stimulating hormone (α-MSH) and oxytocin, respectively. Moreover, recent data implicated gut microbiota in regulation of host feeding and emotion and revealed its dysbiosis in ASD, suggesting a mechanistic role of altered microbiota-brain axis in ASD. In this review, we discuss how gut microbiota dysbiosis may alter hunger and satiety peptide hormones as well as brain peptidergic pathways involved in the regulation of host feeding and social behaviors and hence may contribute to the ASD pathophysiology. In particular, we show that interactions between α-MSH and oxytocin systems in the brain can provide clues for better understanding of the mechanisms underlying altered feeding and social behaviors in ASD and that the origin of such alterations can be linked to gut microbiota.
Collapse
Affiliation(s)
- Sergueï O Fetissov
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Mont-Saint-Aignan, France; University of Rouen Normandy, Institute for Research and Innovation in Biomedicine, Rouen, France.
| | - Olga V Averina
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia; Pirogov Russian National Research Medical University, Moscow, Russia
| | - Valery N Danilenko
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
36
|
Adriaenssens AE, Reimann F, Gribble FM. Distribution and Stimulus Secretion Coupling of Enteroendocrine Cells along the Intestinal Tract. Compr Physiol 2018; 8:1603-1638. [DOI: 10.1002/cphy.c170047] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
37
|
Bliss ES, Whiteside E. The Gut-Brain Axis, the Human Gut Microbiota and Their Integration in the Development of Obesity. Front Physiol 2018; 9:900. [PMID: 30050464 PMCID: PMC6052131 DOI: 10.3389/fphys.2018.00900] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/21/2018] [Indexed: 12/17/2022] Open
Abstract
Obesity is a global epidemic, placing socioeconomic strain on public healthcare systems, especially within the so-called Western countries, such as Australia, United States, United Kingdom, and Canada. Obesity results from an imbalance between energy intake and energy expenditure, where energy intake exceeds expenditure. Current non-invasive treatments lack efficacy in combating obesity, suggesting that obesity is a multi-faceted and more complex disease than previously thought. This has led to an increase in research exploring energy homeostasis and the discovery of a complex bidirectional communication axis referred to as the gut-brain axis. The gut-brain axis is comprised of various neurohumoral components that allow the gut and brain to communicate with each other. Communication occurs within the axis via local, paracrine and/or endocrine mechanisms involving a variety of gut-derived peptides produced from enteroendocrine cells (EECs), including glucagon-like peptide 1 (GLP1), cholecystokinin (CCK), peptide YY3-36 (PYY), pancreatic polypeptide (PP), and oxyntomodulin. Neural networks, such as the enteric nervous system (ENS) and vagus nerve also convey information within the gut-brain axis. Emerging evidence suggests the human gut microbiota, a complex ecosystem residing in the gastrointestinal tract (GIT), may influence weight-gain through several inter-dependent pathways including energy harvesting, short-chain fatty-acids (SCFA) signalling, behaviour modifications, controlling satiety and modulating inflammatory responses within the host. Hence, the gut-brain axis, the microbiota and the link between these elements and the role each plays in either promoting or regulating energy and thereby contributing to obesity will be explored in this review.
Collapse
Affiliation(s)
- Edward S. Bliss
- School of Health and Wellbeing, University of Southern Queensland, Toowoomba, QLD, Australia
| | | |
Collapse
|
38
|
Wang R, Chow BKC, Zhang L. Distribution and Functional Implication of Secretin in Multiple Brain Regions. J Mol Neurosci 2018; 68:485-493. [PMID: 29882022 DOI: 10.1007/s12031-018-1089-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 05/11/2018] [Indexed: 12/15/2022]
Abstract
Secretin is a polypeptide hormone initially identified for its gastrointestinal functions. However, emerging evidences show wide distribution of secretin and secretin receptor across various brain regions from cerebral cortex, hippocampus, hypothalamus to cerebellum. In this mini review, we will firstly describe the region-specific expression pattern of secretin and secretin receptor in the brain, followed by a summary of central physiological and neurological functions mediated by secretin. Using genetic manipulation and pharmaceutical approaches, one can elucidate the role of secretin in mediating various neurological functions from simple behaviors, such as water and food intake, to more complex functions including emotion, motor, and learning or memory. At last, current weakness and future perspectives of secretin in the central nervous system will be discussed, aiming to provide the potency of using secretin or its analog for treating various neurological disorders.
Collapse
Affiliation(s)
- Ruanna Wang
- Joint International Research Laboratory of CNS Regeneration, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Billy K C Chow
- School of Biological Sciences, University of Hong Kong, Hong Kong SAR, China.
| | - Li Zhang
- Joint International Research Laboratory of CNS Regeneration, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China.
| |
Collapse
|
39
|
van Witteloostuijn SB, Dalbøge LS, Hansen G, Midtgaard SR, Jensen GV, Jensen KJ, Vrang N, Jelsing J, Pedersen SL. GUB06-046, a novel secretin/glucagon-like peptide 1 co-agonist, decreases food intake, improves glycemic control, and preserves beta cell mass in diabetic mice. J Pept Sci 2017; 23:845-854. [DOI: 10.1002/psc.3048] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 09/18/2017] [Accepted: 09/19/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Søren B. van Witteloostuijn
- Gubra ApS; Hørsholm Kongevej 11B 2970 Hørsholm Denmark
- Department of Chemistry, Faculty of Science; University of Copenhagen; Thorvaldsensvej 40 1871 Frederiksberg C Denmark
| | | | - Gitte Hansen
- Gubra ApS; Hørsholm Kongevej 11B 2970 Hørsholm Denmark
| | - Søren Roi Midtgaard
- The Niels Bohr Institute, Faculty of Science; University of Copenhagen; Universitetsparken 5 2100 Copenhagen Denmark
| | - Grethe Vestergaard Jensen
- The Niels Bohr Institute, Faculty of Science; University of Copenhagen; Universitetsparken 5 2100 Copenhagen Denmark
| | - Knud J. Jensen
- Department of Chemistry, Faculty of Science; University of Copenhagen; Thorvaldsensvej 40 1871 Frederiksberg C Denmark
| | - Niels Vrang
- Gubra ApS; Hørsholm Kongevej 11B 2970 Hørsholm Denmark
| | - Jacob Jelsing
- Gubra ApS; Hørsholm Kongevej 11B 2970 Hørsholm Denmark
| | | |
Collapse
|
40
|
Sominsky L, Ziko I, Nguyen TX, Quach J, Spencer SJ. Hypothalamic effects of neonatal diet: reversible and only partially leptin dependent. J Endocrinol 2017; 234:41-56. [PMID: 28455431 DOI: 10.1530/joe-16-0631] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 04/28/2017] [Indexed: 12/16/2022]
Abstract
Early life diet influences metabolic programming, increasing the risk for long-lasting metabolic ill health. Neonatally overfed rats have an early increase in leptin that is maintained long term and is associated with a corresponding elevation in body weight. However, the immediate and long-term effects of neonatal overfeeding on hypothalamic anorexigenic pro-opiomelanocortin (POMC) and orexigenic agouti-related peptide (AgRP)/neuropeptide Y (NPY) circuitry, and if these are directly mediated by leptin, have not yet been examined. Here, we examined the effects of neonatal overfeeding on leptin-mediated development of hypothalamic POMC and AgRP/NPY neurons and whether these effects can be normalised by neonatal leptin antagonism in male Wistar rats. Neonatal overfeeding led to an acute (neonatal) resistance of hypothalamic neurons to exogenous leptin, but this leptin resistance was resolved by adulthood. While there were no effects of neonatal overfeeding on POMC immunoreactivity in neonates or adults, the neonatal overfeeding-induced early increase in arcuate nucleus (ARC) AgRP/NPY fibres was reversed by adulthood so that neonatally overfed adults had reduced NPY immunoreactivity in the ARC compared with controls, with no further differences in AgRP immunoreactivity. Short-term neonatal leptin antagonism did not reverse the excess body weight or hyperleptinaemia in the neonatally overfed, suggesting factors other than leptin may also contribute to the phenotype. Our findings show that changes in the availability of leptin during early life period influence the development of hypothalamic connectivity short term, but this is partly resolved by adulthood indicating an adaptation to the metabolic mal-programming effects of neonatal overfeeding.
Collapse
Affiliation(s)
- Luba Sominsky
- School of Health and Biomedical SciencesRMIT University, Melbourne, Victoria, Australia
| | - Ilvana Ziko
- School of Health and Biomedical SciencesRMIT University, Melbourne, Victoria, Australia
| | - Thai-Xinh Nguyen
- School of Health and Biomedical SciencesRMIT University, Melbourne, Victoria, Australia
| | - Julie Quach
- School of Health and Biomedical SciencesRMIT University, Melbourne, Victoria, Australia
| | - Sarah J Spencer
- School of Health and Biomedical SciencesRMIT University, Melbourne, Victoria, Australia
| |
Collapse
|
41
|
Niot I, Besnard P. Appetite control by the tongue-gut axis and evaluation of the role of CD36/SR-B2. Biochimie 2017; 136:27-32. [PMID: 28238842 DOI: 10.1016/j.biochi.2017.02.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 02/22/2017] [Indexed: 12/31/2022]
Abstract
Understanding the mechanisms governing food intake is a public health issue given the dramatic rise of obesity over the world. The overconsumption of tasty energy-dense foods rich in lipids is considered to be one of the nutritional causes of this epidemic. Over the last decade, the identification of fatty acid receptors in strategic places in the body (i.e. oro-intestinal tract and brain) has provided a major progress in the deciphering of regulatory networks involved in the control of dietary intake. Among these lipid sensors, CD36/SR-B2 appears to play a significant role since this membrane protein, known to bind long-chain fatty acid with a high affinity, was specifically found both in enterocytes and in a subset of taste bud cells and entero-endocrine cells. After a short overview on CD36/SR-B2 structure, function and regulation, this mini-review proposes to analyze the key findings about the role of CD36/SR-B2 along of the tongue-gut axis in relation to appetite control. In addition, we discuss whether obesogenic diets might impair lipid sensing mediated by CD36/SR-B2 along this axis.
Collapse
Affiliation(s)
- Isabelle Niot
- Physiologie de la Nutrition et Toxicologie (NUTox), LCN UMR 1231, INSERM/AgroSupDijon/Univ. Bourgogne Franche-Comté, F-21000, Dijon, France.
| | - Philippe Besnard
- Physiologie de la Nutrition et Toxicologie (NUTox), LCN UMR 1231, INSERM/AgroSupDijon/Univ. Bourgogne Franche-Comté, F-21000, Dijon, France.
| |
Collapse
|
42
|
Sekar R, Wang L, Chow BKC. Central Control of Feeding Behavior by the Secretin, PACAP, and Glucagon Family of Peptides. Front Endocrinol (Lausanne) 2017; 8:18. [PMID: 28223965 PMCID: PMC5293785 DOI: 10.3389/fendo.2017.00018] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/18/2017] [Indexed: 12/25/2022] Open
Abstract
Constituting a group of structurally related brain-gut peptides, secretin (SCT), pituitary adenylate cyclase-activating peptide (PACAP), and glucagon (GCG) family of peptide hormones exert their functions via interactions with the class B1 G protein-coupled receptors. In recent years, the roles of these peptides in neuroendocrine control of feeding behavior have been a specific area of research focus for development of potential therapeutic drug targets to combat obesity and metabolic disorders. As a result, some members in the family and their analogs have already been utilized as therapeutic agents in clinical application. This review aims to provide an overview of the current understanding on the important role of SCT, PACAP, and GCG family of peptides in central control of feeding behavior.
Collapse
Affiliation(s)
- Revathi Sekar
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Lei Wang
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | | |
Collapse
|
43
|
Takayanagi Y, Yoshida M, Takashima A, Takanami K, Yoshida S, Nishimori K, Nishijima I, Sakamoto H, Yamagata T, Onaka T. Activation of Supraoptic Oxytocin Neurons by Secretin Facilitates Social Recognition. Biol Psychiatry 2017; 81:243-251. [PMID: 26803341 DOI: 10.1016/j.biopsych.2015.11.021] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 11/13/2015] [Accepted: 11/21/2015] [Indexed: 01/17/2023]
Abstract
BACKGROUND Social recognition underlies social behavior in animals, and patients with psychiatric disorders associated with social deficits show abnormalities in social recognition. Oxytocin is implicated in social behavior and has received attention as an effective treatment for sociobehavioral deficits. Secretin receptor-deficient mice show deficits in social behavior. The relationship between oxytocin and secretin concerning social behavior remains to be determined. METHODS Expression of c-Fos in oxytocin neurons and release of oxytocin from their dendrites after secretin application were investigated. Social recognition was examined after intracerebroventricular or local injection of secretin, oxytocin, or an oxytocin receptor antagonist in rats, oxytocin receptor-deficient mice, and secretin receptor-deficient mice. Electron and light microscopic immunohistochemical analysis was also performed to determine whether oxytocin neurons extend their dendrites into the medial amygdala. RESULTS Supraoptic oxytocin neurons expressed the secretin receptor. Secretin activated supraoptic oxytocin neurons and facilitated oxytocin release from dendrites. Secretin increased acquisition of social recognition in an oxytocin receptor-dependent manner. Local application of secretin into the supraoptic nucleus facilitated social recognition, and this facilitation was blocked by an oxytocin receptor antagonist injected into, but not outside of, the medial amygdala. In the medial amygdala, dendrite-like thick oxytocin processes were found to extend from the supraoptic nucleus. Furthermore, oxytocin treatment restored deficits of social recognition in secretin receptor-deficient mice. CONCLUSIONS The results of our study demonstrate that secretin-induced dendritic oxytocin release from supraoptic neurons enhances social recognition. The newly defined secretin-oxytocin system may lead to a possible treatment for social deficits.
Collapse
Affiliation(s)
- Yuki Takayanagi
- Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University, Tochigi
| | - Masahide Yoshida
- Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University, Tochigi
| | - Akihide Takashima
- Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University, Tochigi
| | - Keiko Takanami
- Ushimado Marine Institute, Graduate School of Natural Science and Technology, Okayama University, Okayama
| | - Shoma Yoshida
- Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University, Tochigi
| | - Katsuhiko Nishimori
- Laboratory of Molecular Biology, Department of Molecular and Cell Biology, Graduate School of Agricultural Science, Tohoku University, Miyagi, Japan
| | - Ichiko Nishijima
- Department of Biobank Lifescience, Tohoku Medical Megabank Organization, Tohoku University, Miyagi, Japan
| | - Hirotaka Sakamoto
- Ushimado Marine Institute, Graduate School of Natural Science and Technology, Okayama University, Okayama
| | | | - Tatsushi Onaka
- Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University, Tochigi.
| |
Collapse
|
44
|
Ziko I, Sominsky L, Nguyen TX, Yam KY, De Luca S, Korosi A, Spencer SJ. Hyperleptinemia in Neonatally Overfed Female Rats Does Not Dysregulate Feeding Circuitry. Front Endocrinol (Lausanne) 2017; 8:287. [PMID: 29123503 PMCID: PMC5662871 DOI: 10.3389/fendo.2017.00287] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 10/11/2017] [Indexed: 12/03/2022] Open
Abstract
Neonatal overfeeding during the first weeks of life in male rats is associated with a disruption in the peripheral and central leptin systems. Neonatally overfed male rats have increased circulating leptin in the first 2 weeks of life, which corresponds to an increase in body weight compared to normally fed counterparts. These effects are associated with a short-term disruption in the connectivity of neuropeptide Y (NPY), agouti-related peptide (AgRP), and pro-opiomelanocortin (POMC) neurons within the regions of the hypothalamus responsible for control of energy balance and food intake. Female rats that are overfed during the first weeks of their life experience similar changes in circulating leptin levels as well as in their body weight. However, it has not yet been studied whether these metabolic changes are associated with the same central effects as observed in males. Here, we hypothesized that hyperleptinemia associated with neonatal overfeeding would lead to changes in central feeding circuitry in females as it does in males. We assessed hypothalamic NPY, AgRP, and POMC gene expression and immunoreactivity at 7, 12, or 14 days of age, as well as neuronal activation in response to exogenous leptin in neonatally overfed and control female rats. Neonatally overfed female rats were hyperleptinemic and were heavier than controls. However, these metabolic changes were not mirrored centrally by changes in hypothalamic NPY, AGRP, and POMC fiber density. These findings are suggestive of sex differences in the effects of neonatal overfeeding and of differences in the ability of the female and male central systems to respond to changes in the early life nutritional environment.
Collapse
Affiliation(s)
- Ilvana Ziko
- School of Health and Biomedical Sciences RMIT University, Melbourne, VIC, Australia
| | - Luba Sominsky
- School of Health and Biomedical Sciences RMIT University, Melbourne, VIC, Australia
| | - Thai-Xinh Nguyen
- School of Health and Biomedical Sciences RMIT University, Melbourne, VIC, Australia
| | - Kit-Yi Yam
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, Netherlands
| | - Simone De Luca
- School of Health and Biomedical Sciences RMIT University, Melbourne, VIC, Australia
| | - Aniko Korosi
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, Netherlands
| | - Sarah J. Spencer
- School of Health and Biomedical Sciences RMIT University, Melbourne, VIC, Australia
- *Correspondence: Sarah J. Spencer,
| |
Collapse
|
45
|
Feng X, Cao X, Zhao S, Wang X, Hua X, Chen L, Chen L. Exposure of Pregnant Mice to Perfluorobutanesulfonate Causes Hypothyroxinemia and Developmental Abnormalities in Female Offspring. Toxicol Sci 2016; 155:409-419. [PMID: 27803384 DOI: 10.1093/toxsci/kfw219] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Perfluorobutanesulfonate (PFBS) is widely used in many industrial products. We evaluated the influence of prenatal PFBS exposure on perinatal growth and development, pubertal onset, and reproductive and thyroid endocrine system in female mice. Here, we show that when PFBS (200 and 500 mg/kg/day) was orally administered to pregnant mice (PFBS-dams) on days 1-20 of gestation; their female offspring (PFBS-offspring) exhibited decreased perinatal body weight and delayed eye opening compared with control offspring. Vaginal opening and first estrus were also significantly delayed in PFBS-offspring, and diestrus was prolonged. Ovarian and uterine size, as well as follicle and corpus luteum numbers, were reduced in adult PFBS-offspring. Furthermore, pubertal and adult PFBS-offspring exhibited decreases in serum estrogen (E2) and progesterone (P4) levels with the elevation of luteinizing hormone levels. Notably, decreases in serum total thyroxine (T4) and 3,3', 5-triiodothyronine (T3) levels were observed in fetal, pubertal, and adult PFBS-offspring in conjunction with slight increases in thyroid-stimulating hormone (TSH) and thyrotropin-releasing hormone levels. In addition, PFBS-dams exhibited significant decreases in total T4 and T3 levels and free T4 levels and increases in TSH levels, but no changes in E2 and P4 levels. These results indicate that prenatal PFBS exposure (≥200 mg/kg/day) causes permanent hypothyroxinemia accompanied by deficits in perinatal growth, pubertal onset, and reproductive organ development in female mice.
Collapse
Affiliation(s)
- Xuejiao Feng
- State Key Lab of Reproductive Medicine, Nanjing Medical University.,Department of Physiology, Nanjing Medical University, Nanjing 210029, China
| | - Xinyuan Cao
- Department of Physiology, Nanjing Medical University, Nanjing 210029, China
| | - Shasha Zhao
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Xiaoli Wang
- Department of Physiology, Nanjing Medical University, Nanjing 210029, China
| | - Xu Hua
- Department of Physiology, Nanjing Medical University, Nanjing 210029, China
| | - Lin Chen
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Ling Chen
- State Key Lab of Reproductive Medicine, Nanjing Medical University; .,Department of Physiology, Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
46
|
Motojima Y, Kawasaki M, Matsuura T, Saito R, Yoshimura M, Hashimoto H, Ueno H, Maruyama T, Suzuki H, Ohnishi H, Sakai A, Ueta Y. Effects of peripherally administered cholecystokinin-8 and secretin on feeding/drinking and oxytocin-mRFP1 fluorescence in transgenic rats. Neurosci Res 2016; 109:63-9. [PMID: 26919961 DOI: 10.1016/j.neures.2016.02.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 02/17/2016] [Accepted: 02/18/2016] [Indexed: 12/27/2022]
Abstract
Peripheral administration of cholecystokinin (CCK)-8 or secretin activates oxytocin (OXT)-secreting neurons in the hypothalamus. Although OXT is involved in the regulation of feeding behavior, detailed mechanism remains unclear. In the present study, we examined the central OXTergic pathways after intraperitoneally (i.p.) administration of CCK-8 and secretin using male OXT-monomeric red fluorescent protein 1 (mRFP1) transgenic rats and male Wistar rats. I.p. administration of CCK-8 (50μg/kg) and secretin (100μg/kg) decreased food intake in these rats. While i.p. administration of CCK-8 decreased water intake, i.p. administration of secretin increased water intake. Immunohistochemical study revealed that Fos-Like-Immunoreactive cells were observed abundantly in the brainstem and in the OXT neurons in the dorsal division of the parvocellular paraventricular nucleus (dpPVN). We could observe marked increase of mRFP1 fluorescence, as an indicator for OXT, in the dpPVN and mRFP1-positive granules in axon terminals of the dpPVN OXT neurons in the nucleus tractus solitarius (NTS) after i.p. administration of CCK-8 and secretin. These results provide us the evidence that, at least in part, i.p. administration of CCK-8 or secretin might be involved in the regulation of feeding/drinking via a OXTergic pathway from the dpPVN to the NTS.
Collapse
Affiliation(s)
- Yasuhito Motojima
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan; Department of Orthopaedics, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Makoto Kawasaki
- Department of Orthopaedics, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Takanori Matsuura
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan; Department of Orthopaedics, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Reiko Saito
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Mitsuhiro Yoshimura
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Hirofumi Hashimoto
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Hiromichi Ueno
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Takashi Maruyama
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Hitoshi Suzuki
- Department of Orthopaedics, Wakamatsu Hospital for University of Occupational and Environmental Health, Kitakyushu 808-0024, Japan
| | - Hideo Ohnishi
- Department of Orthopaedics, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Akinori Sakai
- Department of Orthopaedics, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Yoichi Ueta
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan.
| |
Collapse
|
47
|
Bai JJ, Tan CD, Chow BKC. Secretin, at the hub of water-salt homeostasis. Am J Physiol Renal Physiol 2016; 312:F852-F860. [PMID: 27279485 DOI: 10.1152/ajprenal.00191.2015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 06/01/2016] [Indexed: 01/13/2023] Open
Abstract
Water and salt metabolism are tightly regulated processes. Maintaining this milieu intérieur within narrow limits is critical for normal physiological processes to take place. Disturbances to this balance can result in disease and even death. Some of the better-characterized regulators of water and salt homeostasis include angiotensin II, aldosterone, arginine vasopressin, and oxytocin. Although secretin (SCT) was first described >100 years ago, little is known about the role of this classic gastrointestinal hormone in the maintenance of water-salt homeostasis. In recent years, increasing body of evidence suggested that SCT and its receptor play important roles in the central nervous system and kidney to ensure that the mammalian extracellular fluid osmolarity is kept within a healthy range. In this review, we focus on recent advances in our understanding of the molecular, cellular, and network mechanisms by which SCT and its receptor mediate the control of osmotic homeostasis. Implications of hormonal cross talk and receptor-receptor interaction are highlighted.
Collapse
Affiliation(s)
- Jenny Juan Bai
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| | - Chong Da Tan
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| | - Billy K C Chow
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| |
Collapse
|
48
|
Singh K, Senthil V, Arokiaraj AWR, Leprince J, Lefranc B, Vaudry D, Allam AA, Ajarem J, Chow BKC. Structure-Activity Relationship Studies of N- and C-Terminally Modified Secretin Analogs for the Human Secretin Receptor. PLoS One 2016; 11:e0149359. [PMID: 26930505 PMCID: PMC4773067 DOI: 10.1371/journal.pone.0149359] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 01/03/2016] [Indexed: 11/18/2022] Open
Abstract
The pleiotropic role of human secretin (hSCT) validates its potential use as a therapeutic agent. Nevertheless, the structure of secretin in complex with its receptor is necessary to develop a suitable therapeutic agent. Therefore, in an effort to design a three-dimensional virtual homology model and identify a peptide agonist and/or antagonist for the human secretin receptor (hSR), the significance of the primary sequence of secretin peptides in allosteric binding and activation was elucidated using virtual docking, FRET competitive binding and assessment of the cAMP response. Secretin analogs containing various N- or C-terminal modifications were prepared based on previous findings of the role of these domains in receptor binding and activation. These analogs exhibited very low or no binding affinity in a virtual model, and were found to neither exhibit in vitro binding nor agonistic or antagonistic properties. A parallel analysis of the analogs in the virtual model and in vitro studies revealed instability of these peptide analogs to bind and activate the receptor.
Collapse
Affiliation(s)
- Kailash Singh
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Vijayalakshmi Senthil
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | | | - Jérôme Leprince
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Neurotrophic Factors and Neuronal Differentiation Team, Inserm U982, Associated International Laboratory Samuel de Champlain, Regional Platform for Cell Imaging of Haute-Normandie (PRIMACEN), University of Rouen, Mont-Saint-Aignan, France
| | - Benjamin Lefranc
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Neurotrophic Factors and Neuronal Differentiation Team, Inserm U982, Associated International Laboratory Samuel de Champlain, Regional Platform for Cell Imaging of Haute-Normandie (PRIMACEN), University of Rouen, Mont-Saint-Aignan, France
| | - David Vaudry
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Neurotrophic Factors and Neuronal Differentiation Team, Inserm U982, Associated International Laboratory Samuel de Champlain, Regional Platform for Cell Imaging of Haute-Normandie (PRIMACEN), University of Rouen, Mont-Saint-Aignan, France
| | - Ahmed A. Allam
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
- Department of Zoology, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Jamaan Ajarem
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Billy K. C. Chow
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
- * E-mail:
| |
Collapse
|
49
|
Posovszky C, Wabitsch M. Regulation of appetite, satiation, and body weight by enteroendocrine cells. Part 1: characteristics of enteroendocrine cells and their capability of weight regulation. Horm Res Paediatr 2015; 83:1-10. [PMID: 25471008 DOI: 10.1159/000368898] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 09/23/2014] [Indexed: 11/19/2022] Open
Abstract
The gastrointestinal tract is the gateway for food in our body. Food ingestion and the ensuing digestive processes depend on the composition and amount of ingested nutrients. This complex process of nutrient digestion and absorption is effectively regulated by the enteroendocrine system. Enteroendocrine cells (EECs) reside scattered throughout the intestinal epithelium. They express nutrient receptors that face the lumen and secrete peptide hormones in response to food. Besides regulating digestion, gastrointestinal endocrine cells are involved in the regulation of appetite and satiety. The first part of this review describes the anatomical and biological characteristics of EECs and discusses the capability of their hormones to influence appetite, satiety, and body weight. In the second part, we then discuss the therapeutic potential of EECs in the treatment of obesity.
Collapse
Affiliation(s)
- Carsten Posovszky
- University Outpatient Clinic for Pediatric Gastroenterology, and Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | | |
Collapse
|
50
|
Sundaresan S, Abumrad NA. Dietary Lipids Inform the Gut and Brain about Meal Arrival via CD36-Mediated Signal Transduction. J Nutr 2015; 145:2195-200. [PMID: 26269236 PMCID: PMC4580959 DOI: 10.3945/jn.115.215483] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Sensing mechanisms for nutrients, in particular dietary fat, operate in the mouth, brain, and gastrointestinal tract and play a key role in regulating feeding behavior and energy balance. Critical to these regulatory mechanisms are the specialized receptors present on taste buds on the tongue, on neurons in specialized centers in the brain, and on epithelial and enteroendocrine cells in the intestinal mucosa. These receptors recognize nutrients and respond by inducing intracellular signals that trigger release of bioactive compounds that influence other organs and help coordinate the response to the meal. Components of dietary fat that are recognized by these receptors are the long-chain fatty acids that act as ligands for 2 G protein-coupled receptors, GPR40 and GPR120, and the fatty acid (FA) translocase/CD36. Recent evidence that emphasizes the important role of CD36 in orosensory, intestinal, and neuronal sensing of FAs under physiologic conditions is highlighted in the review. How this role intersects with that of GPR120 and GPR40 in the regulation of food preference and energy balance is briefly discussed.
Collapse
Affiliation(s)
- Sinju Sundaresan
- Department of Medicine, Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO; and Department of Internal Medicine, Gastroenterology Division, University of Michigan, Ann Arbor, MI
| | - Nada A Abumrad
- Department of Medicine, Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO; and
| |
Collapse
|