1
|
Carvalho F, Tonon AC, Hidalgo MP, Martins Costa M, Mengue SS. Dispensing of zolpidem and benzodiazepines in Brazilian private pharmacies: a retrospective cohort study from 2014 to 2021. Front Pharmacol 2024; 15:1405838. [PMID: 39588152 PMCID: PMC11586159 DOI: 10.3389/fphar.2024.1405838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 10/28/2024] [Indexed: 11/27/2024] Open
Abstract
Objective The study aimed to evaluate Zolpidem and Benzodiazepines prescription and dispensing data in private pharmacies in Brazil from 2014 to 2021. Methods: This retrospective cohort study was carried out with retrospective open data from the Brazilian Federal Government from January 2014 to August 2021 containing medicines registered in the National Controlled Products Management System (SNGPC). Results Between January 2014 and August 2021, a total of 32,441,392 sales of thirteen drugs from the z-drug and benzodiazepine classes used to treat sleep disorders were recorded in Brazil. Throughout the entire period, clonazepam emerged as the most popular drug, accounting for 29.8% of total sales. Alprazolam followed in second place with 20.6% of sales, while zolpidem came in third with 14.4%. The normal-release form of zolpidem was consistently the highest-selling variant during the evaluation period. However, the fast-acting-release form exhibited the most significant growth, indicated by a noticeable upward trend in sales since 2020. In contrast, the extended-release form of zolpidem remained stable over the years. Conclusion The increased sales of zolpidem in Brazilian private pharmacies raise concerns about potential misuse and dependence on this drug mainly for the treatment of insomnia. The epidemic of sleeping pills arises in a scenario of expectancy of short-term amelioration of symptoms, with no correspondence in best clinical practice. Education and counseling for both healthcare professionals and the general population are essential to address this growing health concern and ensure the safe and appropriate use of medications for sleep disorders.
Collapse
Affiliation(s)
- Fabiana Carvalho
- Programa de Pós-Graduação em Epidemiologia, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - André Comiran Tonon
- Laboratório de Cronobiologia e Sono, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Maria Paz Hidalgo
- Laboratório de Cronobiologia e Sono, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Manuela Martins Costa
- Programa de Pós-Graduação em Epidemiologia, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Sotero Serrate Mengue
- Programa de Pós-Graduação em Epidemiologia, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
2
|
Henmi R, Nakamura T, Mashimoto M, Takase F, Ozone M. Preventive Effects of Ramelteon, Suvorexant, and Lemborexant on Delirium in Hospitalized Patients With Physical Disease: A Retrospective Cohort Study. J Clin Psychopharmacol 2024; 44:369-377. [PMID: 38820374 DOI: 10.1097/jcp.0000000000001876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
BACKGROUND New sleep-inducing drugs (eg, ramelteon, suvorexant, and lemborexant) have been shown to prevent delirium in high-risk groups. However, no single study has simultaneously evaluated the delirium-preventing effects of all novel sleep-inducing drugs in hospitalized patients. Therefore, this study aimed to clarify the relationship between sleep-inducing drugs and delirium prevention in patients hospitalized in general medical-surgical settings for nonpsychiatric conditions who underwent liaison interventions for insomnia. METHODS This retrospective cohort study included patients treated in general medical-surgical settings for nonpsychiatric conditions with consultation-liaison psychiatry consult for insomnia. Delirium was diagnosed by fully certified psychiatrists using the Diagnostic and Statistical Manual of Mental Disorders 5 th edition. The following items were retrospectively examined from medical records as factors related to delirium development: type of sleep-inducing drugs, age, sex, and delirium risk factors. The risk factors of delirium development were calculated using adjusted odds ratios (aORs) via multivariate logistic regression analysis. RESULTS Among the 710 patients analyzed, 257 (36.2%) developed delirium. Suvorexant (aOR, 0.61; 95% confidence interval [CI], 0.40-0.94; P = 0.02) and lemborexant (aOR, 0.23; 95% CI, 0.14-0.39; P < 0.0001) significantly reduced the risk of developing delirium. Benzodiazepines (aOR, 1.90; 95% CI, 1.15-3.13; P = 0.01) significantly increased this risk. Ramelteon (aOR, 1.30; 95% CI, 0.84-2.01; P = 0.24) and Z-drugs (aOR, 1.27; 95% CI, 0.81-1.98; P = 0.30) were not significantly associated with delirium development. CONCLUSIONS The use of suvorexant and lemborexant may prevent delirium in patients with a wide range of medical conditions.
Collapse
Affiliation(s)
- Ryuji Henmi
- From the Department of Neuropsychiatry, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Tomoyuki Nakamura
- From the Department of Neuropsychiatry, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | | | | | - Motohiro Ozone
- From the Department of Neuropsychiatry, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| |
Collapse
|
3
|
Yu Z, Han L, Yan P, Liu W, Ren L, Xu Y, Yang L, Ma L, Liu Y, Wang S. Doxepin is more effective than zolpidem in improving executive function in patients with insomnia disorder. Sleep Breath 2024; 28:929-934. [PMID: 38123719 DOI: 10.1007/s11325-023-02972-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND : Insomnia disorder is associated with an impairment in cognitive performance. Doxepin and zolpidem have been found to be effective in improving sleep. In this study, we aimed to compare the effects of doxepin and zolpidem on sleep structure and executive function in patients with insomnia disorder. METHODS Patients with primary insomnia were randomly assigned to receive doxepin 6 mg/day orally or zolpidem 5-10 mg/day orally. Polysomnography (PSG) and the Pittsburgh Sleep Quality Index (PSQI) were used at baseline and after the 8-week treatment to compare clinical efficacy in the two groups. Safety was assessed using the Treatment Emergent Symptom Scale (TESS). Executive function was evaluated using the Wisconsin sorting card test (WSCT). RESULTS Of 120 patients enrolled in the study, 60 participants were assigned to each group. A total of 109 participants (53 in the doxepin group and 56 in the zolpidem group) completed the study. After treatment, the wake after sleep onset (WASO) and total sleep time (TST) values in the doxepin group were 80.3 ± 21.4 min and 378.9 ± 21.9 min, respectively, which were significantly better than those in the zolpidem group (132.9 ± 26.5 min and 333.2 ± 24.2 min, respectively; (P < 0.05)). The sleep onset latency (SOL) value in the zolpidem group (20.3 ± 4.7 min) was significantly better than that in the doxepin group (28.2 ± 5.6 min; P < 0.05). The sleep efficiency (SE) in the doxepin group was 77.8 ± 4.2%, which was significantly better than that in the zolpidem group (68.6 ± 5.0%; P < 0.05). The PSQI score of the doxepin group was 6.1 ± 1.1, which was significantly lower than that in the zolpidem group (7.9 ± 1.9; P < 0.05). The treatment adverse events in the doxepin group was 23.3%, which was significantly higher than that in the zolpidem group (13.3%; P < 0.05). The WSCT showed a significant improvement in persistent errors (PE), random errors (RE), and categories in the two groups after 8-week treatment, and the improvement in RE and the categories was more obvious in the doxepin group (P < 0.05). CONCLUSIONS Both doxepin and zolpidem were found to be effective in improving sleep quality, but the effects exhibited different patterns. Doxepin improved executive function more effectively than zolpidem in patients with insomnia disorder.
Collapse
Affiliation(s)
- Zhenghe Yu
- Department of Medical Psychology, Hangzhou Seventh People's Hospital, Hangzhou, 310013, China
- Affiliated Mental Health Center, Zhejiang University School of Medicine, Hangzhou, 310013, China
| | - Li Han
- Department of Medical Psychology, Hangzhou Seventh People's Hospital, Hangzhou, 310013, China
- Affiliated Mental Health Center, Zhejiang University School of Medicine, Hangzhou, 310013, China
| | - Pan Yan
- Affiliated Mental Health Center, Zhejiang University School of Medicine, Hangzhou, 310013, China
- The Molecular Biology Laboratory, Hangzhou Seventh People's Hospital, Hangzhou, 310013, China
| | - Wenjuan Liu
- Department of Medical Psychology, Hangzhou Seventh People's Hospital, Hangzhou, 310013, China
- Affiliated Mental Health Center, Zhejiang University School of Medicine, Hangzhou, 310013, China
| | - Lishan Ren
- Department of Medical Psychology, Hangzhou Seventh People's Hospital, Hangzhou, 310013, China
- Affiliated Mental Health Center, Zhejiang University School of Medicine, Hangzhou, 310013, China
| | - You Xu
- Department of Medical Psychology, Hangzhou Seventh People's Hospital, Hangzhou, 310013, China
- Affiliated Mental Health Center, Zhejiang University School of Medicine, Hangzhou, 310013, China
| | - Lili Yang
- Department of Medical Psychology, Hangzhou Seventh People's Hospital, Hangzhou, 310013, China
- Affiliated Mental Health Center, Zhejiang University School of Medicine, Hangzhou, 310013, China
| | - Lisha Ma
- Department of Medical Psychology, Hangzhou Seventh People's Hospital, Hangzhou, 310013, China
- Affiliated Mental Health Center, Zhejiang University School of Medicine, Hangzhou, 310013, China
| | - Yi Liu
- Department of Medical Psychology, Hangzhou Seventh People's Hospital, Hangzhou, 310013, China
- Affiliated Mental Health Center, Zhejiang University School of Medicine, Hangzhou, 310013, China
| | - Shengdong Wang
- Affiliated Mental Health Center, Zhejiang University School of Medicine, Hangzhou, 310013, China.
- The Molecular Biology Laboratory, Hangzhou Seventh People's Hospital, Hangzhou, 310013, China.
| |
Collapse
|
4
|
Černý F, Piorecká V, Kliková M, Kopřivová J, Bušková J, Piorecký M. All-night spectral and microstate EEG analysis in patients with recurrent isolated sleep paralysis. Front Neurosci 2024; 18:1321001. [PMID: 38389790 PMCID: PMC10882627 DOI: 10.3389/fnins.2024.1321001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/25/2024] [Indexed: 02/24/2024] Open
Abstract
The pathophysiology of recurrent isolated sleep paralysis (RISP) has yet to be fully clarified. Very little research has been performed on electroencephalographic (EEG) signatures outside RISP episodes. This study aimed to investigate whether sleep is disturbed even without the occurrence of a RISP episode and in a stage different than conventional REM sleep. 17 RISP patients and 17 control subjects underwent two consecutive full-night video-polysomnography recordings. Spectral analysis was performed on all sleep stages in the delta, theta, and alpha band. EEG microstate (MS) analysis was performed on the NREM 3 phase due to the overall high correlation of subject template maps with canonical templates. Spectral analysis showed a significantly higher power of theta band activity in REM and NREM 2 sleep stages in RISP patients. The observed rise was also apparent in other sleep stages. Conversely, alpha power showed a downward trend in RISP patients' deep sleep. MS maps similar to canonical topographies were obtained indicating the preservation of prototypical EEG generators in RISP patients. RISP patients showed significant differences in the temporal dynamics of MS, expressed by different transitions between MS C and D and between MS A and B. Both spectral analysis and MS characteristics showed abnormalities in the sleep of non-episodic RISP subjects. Our findings suggest that in order to understand the neurobiological background of RISP, there is a need to extend the analyzes beyond REM-related processes and highlight the value of EEG microstate dynamics as promising functional biomarkers of RISP.
Collapse
Affiliation(s)
- Filip Černý
- Faculty of Biomedical Engineering, Czech Technical University, Prague, Czechia
- Sleep and Chronobiology Research Center, National Institute of Mental Health, Klecany, Czechia
| | - Václava Piorecká
- Faculty of Biomedical Engineering, Czech Technical University, Prague, Czechia
- Sleep and Chronobiology Research Center, National Institute of Mental Health, Klecany, Czechia
| | - Monika Kliková
- Sleep and Chronobiology Research Center, National Institute of Mental Health, Klecany, Czechia
| | - Jana Kopřivová
- Sleep and Chronobiology Research Center, National Institute of Mental Health, Klecany, Czechia
- Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Jitka Bušková
- Sleep and Chronobiology Research Center, National Institute of Mental Health, Klecany, Czechia
- Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Marek Piorecký
- Faculty of Biomedical Engineering, Czech Technical University, Prague, Czechia
- Sleep and Chronobiology Research Center, National Institute of Mental Health, Klecany, Czechia
| |
Collapse
|
5
|
Mayeli A, Donati FL, Ferrarelli F. Altered Sleep Oscillations as Neurophysiological Biomarkers of Schizophrenia. ADVANCES IN NEUROBIOLOGY 2024; 40:351-383. [PMID: 39562451 DOI: 10.1007/978-3-031-69491-2_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Sleep spindles and slow waves are the two main oscillatory activities occurring during nonrapid eye movement (NREM) sleep. Here, we will first describe the electrophysiological characteristics of these sleep oscillations along with the neurophysiological and molecular mechanisms underlying their generation and synchronization in the healthy brain. We will then review the extant evidence of deficits in sleep spindles and, to a lesser extent, slow waves, including in slow wave-spindle coupling, in patients with Schizophrenia (SCZ) across the course of the disorder, from at-risk to chronic stages. Next, we will discuss how these sleep oscillatory deficits point to defects in neuronal circuits within the thalamocortical network as well as to alterations in molecular neurotransmission implicating the GABAergic and glutamatergic systems in SCZ. Finally, after explaining how spindle and slow waves may represent neurophysiological biomarkers with predictive, diagnostic, and prognostic potential, we will present novel pharmacological and neuromodulatory interventions aimed at restoring sleep oscillatory deficits in SCZ, which in turn may serve as target engagement biomarkers to ameliorate the clinical symptoms and the quality of life of individuals affected by this devastating brain disorder.
Collapse
Affiliation(s)
- Ahmad Mayeli
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Fabio Ferrarelli
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
6
|
Palepu K, Sadeghi K, Kleinschmidt DF, Donoghue J, Chapman S, Arslan AR, Westover MB, Cash SS, Pathmanathan J. An examination of sleep spindle metrics in the Sleep Heart Health Study: superiority of automated spindle detection over total sigma power in assessing age-related spindle decline. BMC Neurol 2023; 23:359. [PMID: 37803266 PMCID: PMC10557170 DOI: 10.1186/s12883-023-03376-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/08/2023] [Indexed: 10/08/2023] Open
Abstract
BACKGROUND Sleep spindle activity is commonly estimated by measuring sigma power during stage 2 non-rapid eye movement (NREM2) sleep. However, spindles account for little of the total NREM2 interval and therefore sigma power over the entire interval may be misleading. This study compares derived spindle measures from direct automated spindle detection with those from gross power spectral analyses for the purposes of clinical trial design. METHODS We estimated spindle activity in a set of 8,440 overnight electroencephalogram (EEG) recordings from 5,793 patients from the Sleep Heart Health Study using both sigma power and direct automated spindle detection. Performance of the two methods was evaluated by determining the sample size required to detect decline in age-related spindle coherence with each method in a simulated clinical trial. RESULTS In a simulated clinical trial, sigma power required a sample size of 115 to achieve 95% power to identify age-related changes in sigma coherence, while automated spindle detection required a sample size of only 60. CONCLUSIONS Measurements of spindle activity utilizing automated spindle detection outperformed conventional sigma power analysis by a wide margin, suggesting that many studies would benefit from incorporation of automated spindle detection. These results further suggest that some previous studies which have failed to detect changes in sigma power or coherence may have failed simply because they were underpowered.
Collapse
Affiliation(s)
- Kalyan Palepu
- Beacon Biosignals, 22 Boston Wharf Rd 7th Floor, Suite 41, Boston, MA, 02210, USA
| | - Kolia Sadeghi
- Beacon Biosignals, 22 Boston Wharf Rd 7th Floor, Suite 41, Boston, MA, 02210, USA
| | - Dave F Kleinschmidt
- Beacon Biosignals, 22 Boston Wharf Rd 7th Floor, Suite 41, Boston, MA, 02210, USA
| | - Jacob Donoghue
- Beacon Biosignals, 22 Boston Wharf Rd 7th Floor, Suite 41, Boston, MA, 02210, USA
| | - Seth Chapman
- Beacon Biosignals, 22 Boston Wharf Rd 7th Floor, Suite 41, Boston, MA, 02210, USA
| | - Alexander R Arslan
- Beacon Biosignals, 22 Boston Wharf Rd 7th Floor, Suite 41, Boston, MA, 02210, USA
| | - M Brandon Westover
- Beacon Biosignals, 22 Boston Wharf Rd 7th Floor, Suite 41, Boston, MA, 02210, USA
- Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA, 02215, USA
| | - Sydney S Cash
- Beacon Biosignals, 22 Boston Wharf Rd 7th Floor, Suite 41, Boston, MA, 02210, USA
- Clinical Data Animation Center (CDAC), Massachusetts General Hospital, 50 Staniford Street, Fruit St, Boston, MA, 02114, USA
| | - Jay Pathmanathan
- Beacon Biosignals, 22 Boston Wharf Rd 7th Floor, Suite 41, Boston, MA, 02210, USA.
| |
Collapse
|
7
|
Hoshikawa Y, Momma E, Kawami N, Iwakiri K. Lemborexant Attenuates Regurgitation without Worsening Objective Parameters on Reflux Monitoring in Patients with Gastroesophageal Reflux Disease and Insomnia: A Single-Arm Proof-of-Concept Study. Digestion 2023; 104:438-445. [PMID: 37429270 DOI: 10.1159/000531412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/31/2023] [Indexed: 07/12/2023]
Abstract
INTRODUCTION Esophageal hypersensitivity is associated with gastroesophageal reflux disease (GERD). Since sleep disturbance causes esophageal hypersensitivity, hypnotics may ameliorate GERD. However, zolpidem prolongs esophageal acid clearance. Lemborexant is a new hypnotic with higher efficacy and fewer adverse events than zolpidem. Therefore, the present study investigated the effects of lemborexant on GERD. METHODS Patients with heartburn and/or regurgitation and insomnia who did not take acid suppressants or hypnotics in the last month were recruited. Symptom assessments using GerdQ and reflux monitoring were performed before and after a 28-day treatment with 5 mg lemborexant at bedtime. The primary outcome was a change in the total GerdQ score, excluding the score for insomnia. Secondary outcomes were changes in each GerdQ score and the following parameters on reflux monitoring: the acid exposure time (AET), number of reflux events (RE), acid clearance time (ACT), and post-reflux swallow-induced peristaltic wave (PSPW) index. RESULTS Sixteen patients (age 45.0 [33.3-56.0], 11 females [68.8%]) completed the intervention (1 patient did not tolerate the second reflux monitoring). The total GerdQ score, excluding the score for insomnia, did not significantly change (8.0 [6.0-9.0] before vs. 7.0 [6.3-9.0] after p = 0.16). GerdQ showed the significant attenuation of regurgitation (2.0 [2.0-3.0] vs. 1.0 [0-2.8] p = 0.0054) but not heartburn (2.5 [1.0-3.0] vs. 1.0 [0.3-2.0] p = 0.175). No significant differences were observed in AET, RE, ACT, or PSPW index before and after the intervention. CONCLUSION Lemborexant attenuated regurgitation without the worsening of objective reflux parameters. A randomized placebo-controlled study is warranted in the future.
Collapse
Affiliation(s)
- Yoshimasa Hoshikawa
- Department of Gastroenterology, Nippon Medical School Graduate School of Medicine, Tokyo, Japan
| | - Eri Momma
- Department of Gastroenterology, Nippon Medical School Graduate School of Medicine, Tokyo, Japan
| | - Noriyuki Kawami
- Department of Gastroenterology, Nippon Medical School Graduate School of Medicine, Tokyo, Japan
| | - Katsuhiko Iwakiri
- Department of Gastroenterology, Nippon Medical School Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
8
|
Sheibani M, Shayan M, Khalilzadeh M, Ghasemi M, Dehpour AR. Orexin receptor antagonists in the pathophysiology and treatment of sleep disorders and epilepsy. Neuropeptides 2023; 99:102335. [PMID: 37003137 DOI: 10.1016/j.npep.2023.102335] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023]
Abstract
The correlation between sleep and epilepsy has been argued over the past decades among scientists. Although the similarities and contrasts between sleep and epilepsy had been considered, their intertwined nature was not revealed until the nineteenth century. Sleep is recognized as a recurring state of mind and body through alternating brain electrical activities. It is documented that sleep disorders are associated with epilepsy. The origin, suppression, and spread of seizures are affected by sleep. As such, in patients with epilepsy, sleep disorders are a frequent comorbidity. Meanwhile, orexin, a wake-promoting neuropeptide, provides a bidirectional effect on both sleep and epilepsy. Orexin and its cognate receptors, orexin receptor type 1 (OX1R) and type 2 (OX2R), orchestrate their effects by activating various downstream signaling pathways. Although orexin was considered a therapeutic target in insomnia shortly after its discovery, its potential usefulness for psychiatric disorders and epileptic seizures has been suggested in the pre-clinical studies. This review aimed to discuss whether the relationship between sleep, epilepsy, and orexin is clearly reciprocal.
Collapse
Affiliation(s)
- Mohammad Sheibani
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Razi Drug Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Shayan
- Experimental Medicine Research Centre, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Khalilzadeh
- Experimental Medicine Research Centre, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Ghasemi
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Centre, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Smith DM, Terhune DB. Pedunculopontine-induced cortical decoupling as the neurophysiological locus of dissociation. Psychol Rev 2023; 130:183-210. [PMID: 35084921 PMCID: PMC10511303 DOI: 10.1037/rev0000353] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Mounting evidence suggests an association between aberrant sleep phenomena and dissociative experiences. However, no wake-sleep boundary theory provides a compelling explanation of dissociation or specifies its physiological substrates. We present a theoretical account of dissociation that integrates theories and empirical results from multiple lines of research concerning the domain of dissociation and the regulation of rapid eye movement (REM) sleep. This theory posits that individual differences in the circuitry governing the REM sleep promoting Pedunculopontine Nucleus and Laterodorsal Tegmental Nucleus determine the degree of similarity in the cortical connectivity profiles of wakefulness and REM sleep. We propose that a latent trait characterized by elevated dissociative experiences emerges from the decoupling of frontal executive regions due to a REM sleep-like aminergic/cholinergic balance. The Pedunculopontine-Induced Cortical Decoupling Account of Dissociation (PICDAD) suggests multiple fruitful lines of inquiry and provides novel insights. (PsycInfo Database Record (c) 2023 APA, all rights reserved).
Collapse
Affiliation(s)
- Derek M. Smith
- Department of Psychology, Northwestern University
- Department of Neurology, Division of Cognitive Neurology/Neuropsychology, The Johns Hopkins University School of Medicine
| | | |
Collapse
|
10
|
Bajor LA, Balsara C, Osser DN. An evidence-based approach to psychopharmacology for posttraumatic stress disorder (PTSD) - 2022 update. Psychiatry Res 2022; 317:114840. [PMID: 36162349 DOI: 10.1016/j.psychres.2022.114840] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 01/04/2023]
Abstract
Algorithms for posttraumatic stress disorder were published by this team in 1999 and 2011. Developments since then warrant revision. New studies and review articles from January 2011 to November 2021 were identified via PubMed and analyzed for evidence supporting changes. Following consideration of variations required by special patient populations, treatment of sleep impairments remains as the first recommended step. Nightmares and non-nightmare disturbed awakenings are best addressed with the anti-adrenergic agent prazosin, with doxazosin and clonidine as alternatives. First choices for difficulty initiating sleep include hydroxyzine and trazodone. If significant non-sleep PTSD symptoms remain, an SSRI should be tried, followed by a second SSRI or venlafaxine as a third step. Second generation antipsychotics can be considered, particularly for SSRI augmentation when PTSD-associated psychotic symptoms are present, with the caveat that positive evidence is limited and side effects are considerable. Anti-adrenergic agents can also be considered for general PTSD symptoms if not already tried, though evidence for daytime use lags that available for sleep. Regarding other pharmacological and procedural options, e.g., transcranial magnetic stimulation, cannabinoids, ketamine, psychedelics, and stellate ganglion block, evidence does not yet support firm inclusion in the algorithm. An interactive version of this work can be found at www.psychopharm.mobi.
Collapse
Affiliation(s)
- Laura A Bajor
- James A. Haley VA Hospital, Tampa, FL, United States; University of South Florida Morsani School of Medicine, Tampa, FL, United States; VA Boston Healthcare System and Harvard South Shore Psychiatry Residency Training Program, Brockton, MA, United States.
| | - Charmi Balsara
- HCA Healthcare East Florida Division GME/HCA FL Aventura Hospital, United States
| | - David N Osser
- VA Boston Healthcare System and Harvard South Shore Psychiatry Residency Training Program, Brockton, MA, United States
| |
Collapse
|
11
|
Kitano J, Nishii Y, Miura M. Selective Synthesis of C4-Functionalized Benzofurans by Rhodium-Catalyzed Vinylene Transfer: Computational Study on the Cyclopentadienyl Ligand. Org Lett 2022; 24:5679-5683. [PMID: 35900136 DOI: 10.1021/acs.orglett.2c02030] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Benzofuran is a privileged structure in many bioactive compounds; however, the controlled synthesis of C2,C3-nonsubstituted benzofurans has been scarce. In particular, cumbersome multistep processes are inevitable for the most inaccessible C4-substituted isomers. Herein, we report a Rh-catalyzed direct vinylene annulation of readily available m-salicylic acid derivatives with vinylene carbonate to achieve selective construction of C4-substituted benzofurans. The Weinreb amide directing group facilitated the following product derivatization. The reaction mechanism was investigated by DFT calculations.
Collapse
Affiliation(s)
- Junya Kitano
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yuji Nishii
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masahiro Miura
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
12
|
Abstract
The hypocretins (Hcrts), also known as orexins, are two neuropeptides produced exclusively in the lateral hypothalamus. They act on two specific receptors that are widely distributed across the brain and involved in a myriad of neurophysiological functions that include sleep, arousal, feeding, reward, fear, anxiety and cognition. Hcrt cell loss in humans leads to narcolepsy with cataplexy (narcolepsy type 1), a disorder characterized by intrusions of sleep into wakefulness, demonstrating that the Hcrt system is nonredundant and essential for sleep/wake stability. The causal link between Hcrts and arousal/wakefulness stabilisation has led to the development of a new class of drugs, Hcrt receptor antagonists to treat insomnia, based on the assumption that blocking orexin-induced arousal will facilitate sleep. This has been clinically validated: currently, two Hcrt receptor antagonists are approved to treat insomnia (suvorexant and lemborexant), with a New Drug Application recently submitted to the US Food and Drug Administration for a third drug (daridorexant). Other therapeutic applications under investigation include reduction of cravings in substance-use disorders and prevention of neurodegenerative disorders such as Alzheimer's disease, given the apparent bidirectional relationship between poor sleep and worsening of the disease. Circuit neuroscience findings suggest that the Hcrt system is a hub that integrates diverse inputs modulating arousal (e.g., circadian rhythms, metabolic status, positive and negative emotions) and conveys this information to multiple output regions. This neuronal architecture explains the wealth of physiological functions associated with Hcrts and highlights the potential of the Hcrt system as a therapeutic target for a number of disorders. We discuss present and future possible applications of drugs targeting the Hcrt system for the treatment of circuit-related neuropsychiatric and neurodegenerative conditions.
Collapse
Affiliation(s)
- Laura H Jacobson
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia.,Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia.,Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Daniel Hoyer
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia.,Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia.,Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Luis de Lecea
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
13
|
Dual Orexin Receptor Antagonists (DORAs) as an Adjunct Treatment for Smoking Cessation. CNS Drugs 2022; 36:411-417. [PMID: 35451800 DOI: 10.1007/s40263-022-00918-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/30/2022] [Indexed: 12/27/2022]
Abstract
Smoking is recognized as the most avoidable cause for multiplicity of chronic diseases. However, smoking cessation rates remain low, in part due to the limited target engagement of the currently approved medications for smoking cessation. Sleep is a promising focus for increasing smoking cessation rates because smokers' sleep problems are exacerbated during the first week of smoking abstinence and are associated with poor smoking cessation outcomes. Furthermore, the currently approved smoking cessation pharmacological agents varenicline and nicotine replacement treatment exacerbate sleep problems beyond what would be observed as a consequence of natural nicotine withdrawal. Addressing sleep problems with dual orexin receptor antagonists (DORAs) is positioned to remedy the shortcoming of overlooking sleep as a viable smoking cessation intervention target. Based on previous animal literature, DORA agents suvorexant and lemborexant may accomplish this by diminishing withdrawal difficulty and reducing nicotine cravings. The pharmacologic focus is the orexin system, not only because orexin peptides mediate the sleep-wake cycle, but also because DORA agents have a milder adverse event profile over previous treatments for insomnia. A novel adjunct DORA treatment to a currently approved smoking cessation pharmacotherapy holds a potential to reduce morbidity and mortality caused by smoking.
Collapse
|
14
|
Revell VL, Della Monica C, Mendis J, Hassanin H, Halter RJ, Chaplan SR, Dijk DJ. Effects of the selective orexin-2 receptor antagonist JNJ-48816274 on sleep initiated in the circadian wake maintenance zone: a randomised trial. Neuropsychopharmacology 2022; 47:719-727. [PMID: 34628482 PMCID: PMC8782905 DOI: 10.1038/s41386-021-01175-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/23/2021] [Accepted: 08/30/2021] [Indexed: 12/13/2022]
Abstract
The effects of orexinergic peptides are diverse and are mediated by orexin-1 and orexin-2 receptors. Antagonists that target both receptors have been shown to promote sleep initiation and maintenance. Here, we investigated the role of the orexin-2 receptor in sleep regulation in a randomised, double-blind, placebo-controlled, three-period crossover clinical trial using two doses (20 and 50 mg) of a highly selective orexin-2 receptor antagonist (2-SORA) (JNJ-48816274). We used a phase advance model of sleep disruption where sleep initiation is scheduled in the circadian wake maintenance zone. We assessed objective and subjective sleep parameters, pharmacokinetic profiles and residual effects on cognitive performance in 18 healthy male participants without sleep disorders. The phase advance model alone (placebo condition) resulted in disruption of sleep at the beginning of the sleep period compared to baseline sleep (scheduled at habitual time). Compared to placebo, both doses of JNJ-48816274 significantly increased total sleep time, REM sleep duration and sleep efficiency, and reduced latency to persistent sleep, sleep onset latency, and REM latency. All night EEG spectral power density for both NREM and REM sleep were unaffected by either dose. Participants reported significantly better quality of sleep and feeling more refreshed upon awakening following JNJ-48816274 compared to placebo. No significant residual effects on objective performance measures were observed and the compound was well tolerated. In conclusion, the selective orexin-2 receptor antagonist JNJ-48816274 rapidly induced sleep when sleep was scheduled earlier in the circadian cycle and improved self-reported sleep quality without impact on waking performance.
Collapse
Affiliation(s)
- Victoria L Revell
- Surrey Sleep Research Centre, University of Surrey, Guildford, Surrey, GU2 7XP, UK
| | - Ciro Della Monica
- Surrey Sleep Research Centre, University of Surrey, Guildford, Surrey, GU2 7XP, UK
| | - Jeewaka Mendis
- Surrey Clinical Trials Unit, University of Surrey, Guildford, Surrey, GU2 7XP, UK
| | - Hana Hassanin
- Surrey Clinical Research Facility, University of Surrey, Guildford, Surrey, GU2 7XP, UK
| | | | | | - Derk-Jan Dijk
- Surrey Sleep Research Centre, University of Surrey, Guildford, Surrey, GU2 7XP, UK.
- UK Dementia Research Institute Care Research and Technology Centre, Imperial College London and the University of Surrey, Guildford, UK.
| |
Collapse
|
15
|
Rivas M, Serantes D, Peña F, González J, Ferreira A, Torterolo P, Benedetto L. Role of Hypocretin in the Medial Preoptic Area in the Regulation of Sleep, Maternal Behavior and Body Temperature of Lactating Rats. Neuroscience 2021; 475:148-162. [PMID: 34500018 DOI: 10.1016/j.neuroscience.2021.08.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/23/2021] [Accepted: 08/29/2021] [Indexed: 12/11/2022]
Abstract
Hypocretins (HCRT), also known as orexins, includes two neuroexcitatory peptides, HCRT-1 and HCRT-2 (orexin A y B, respectively), synthesized by neurons located in the postero-lateral hypothalamus, whose projections and receptors are widely distributed throughout the brain, including the medial preoptic area (mPOA). HCRT have been associated with a wide range of physiological functions including sleep-wake cycle, maternal behavior and body temperature, all regulated by the mPOA. Previously, we showed that HCRT in the mPOA facilitates certain active maternal behaviors, while the blockade of HCRT-R1 increases the time spent in nursing. As mother rats mainly sleep while they nurse, we hypothesize that HCRT in the mPOA of lactating rats reduce sleep and nursing, while intra-mPOA administration of a dual orexin receptor antagonist (DORA) would cause the opposite effect. Therefore, the aim of this study was to determine the role of HCRT within the mPOA, in the regulation and integration of the sleep-wake cycle, maternal behavior and body temperature of lactating rats. For that purpose, we assessed the sleep-wake states, maternal behavior and body temperature of lactating rats following microinjections of HCRT-1 (100 and 200 µM) and DORA (5 mM) into the mPOA. As expected, our data show that HCRT-1 in mPOA promote wakefulness and a slightly increase in body temperature, whereas DORA increases both NREM and REM sleep together with an increment of nursing and milk ejection. Taken together, our results strongly suggest that the endogenous reduction of HCRT within the mPOA contribute to the promotion of sleep, milk ejection and nursing behavior in lactating rats.
Collapse
Affiliation(s)
- Mayda Rivas
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Diego Serantes
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Florencia Peña
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Joaquín González
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Annabel Ferreira
- Sección de Fisiología y Nutrición, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Pablo Torterolo
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Luciana Benedetto
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
16
|
Efficacy and safety of Zolpidem in the treatment of insomnia disorder for one month: a meta-analysis of a randomized controlled trial. Sleep Med 2021; 87:250-256. [PMID: 34688027 DOI: 10.1016/j.sleep.2021.09.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/30/2021] [Accepted: 09/07/2021] [Indexed: 11/21/2022]
Abstract
SUBJECT A meta-analysis of a randomized placebo-controlled trial was used to evaluate the effectiveness and safety of Zolpidem in the treatment of insomnia disorder for one month. METHOD Searched from PubMed, EMBASE, MEDLINE, PsycINFO, Cochrane Central Register of Controlled Trials and web of science from inception to May 13, 2021. In addition, we also searched ClinicalTrials.gov trials register to obtain relevant research and related data. Include all randomized controlled trials that meet the criteria. The primary efficacy outcome were total sleep time and sleep latency. The secondary outcome was wake-time after sleep onset. And to evaluate the safety of Zolpidem in the treatment of insomnia. RESULTS Total of 6 randomized placebo-controlled trials involving 1068 patients with insomnia disorder were included in our study. Our analysis results showed that compared with placebo, zolpidem treatment for one month was more effective in increasing the total sleep time of patients with insomnia disorder, reducing sleep latency and improving sleep quality. There was no significant statistical difference between the two groups in the amount of change in the wake after sleep onset. Meanwhile, there was no significant statistical difference in adverse events between Zolpidem and placebo after one month of treatment. CONCLUSION Our meta-analysis showed that zolpidem is an effective and safe therapy option to treat insomnia disorder for one month. However, when using zolpidem to treat insomnia, its effect on sleep structure should be considered. In the future, large-scale clinical trials are needed to compare the effectiveness and safety of zolpidem in the treatment of insomnia from subjective and objective indicators combined with zolpidem on sleep structure.
Collapse
|
17
|
Exploring the Role of Orexinergic Neurons in Parkinson's Disease. Neurotox Res 2021; 39:2141-2153. [PMID: 34495449 DOI: 10.1007/s12640-021-00411-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 07/31/2021] [Accepted: 09/01/2021] [Indexed: 12/14/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease affecting about 2% of the population. A neuropeptide, orexin, is linked with sleep abnormalities in the parkinsonian patient. This study aimed to review the changes in the orexinergic system in parkinsonian subjects and the effects of orexin. A number of search techniques were used and presumed during the search, including cloud databank searches of PubMed and Medline using title words, keywords, and MeSH terms. PD is characterised by motor dysfunctions (postural instability, rigidity, tremor) and cognitive disorders, sleep-wake abnormalities grouped under non-motor disorders. The Orexinergic system found in the hypothalamus is linked with autonomic function, neuroprotection, learning and memory, and the sleep-wake cycle. Prepro-orexin, a precursor peptide (130 amino acids), gives rise to orexins (Orx-A and Orx-B). Serum orexin level measurement is vital for evaluating several neurological disorders (Alzheimer's disease, Huntington's disease, and PD). Orexinergic neurons are activated by hypoglycemia and ghrelin, while they are restrained by food consumption and leptin. Orexinergic system dysfunctioning was found to be linked with non-motor symptoms (sleep abnormalities) in PD. Orexinergic neuron's behaviour may be either inhibitory or excitatory depending on the environment in which they are present. As well, orexin antagonists are found to improve the abnormal sleep pattern. Since the orexinergic system plays a role in several psychological and neurological disorders, therefore, these disorders can be managed by targeting this system.
Collapse
|
18
|
Moline M, Zammit G, Cheng JY, Perdomo C, Kumar D, Mayleben D. Comparison of the effect of lemborexant with placebo and zolpidem tartrate extended release on sleep architecture in older adults with insomnia disorder. J Clin Sleep Med 2021; 17:1167-1174. [PMID: 33590823 DOI: 10.5664/jcsm.9150] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
STUDY OBJECTIVES Changes to sleep architecture that occur as a result of the normal aging process may also exacerbate insomnia in older individuals. Therefore, this study assessed the impact of lemborexant compared with placebo and zolpidem tartrate extended release on objective sleep architecture parameters, as measured by polysomnography, in older adults (ages ≥ 55 years) with insomnia disorder from a phase 3 study. METHODS Study E2006-G000-304 (SUNRISE 1; NCT02783729) was a global, multicenter, randomized, double-blind, placebo-controlled, active comparator (zolpidem)-controlled, parallel-group study comparing 2 dose levels of lemborexant (5 mg and 10 mg). Sleep architecture was measured using polysomnography. Assessments were collected at baseline during a single-blind placebo run-in and during the first 2 nights and last 2 nights of treatment. Mean values for each sleep stage were based on the 2 consecutive polysomnograms. RESULTS Treatment with lemborexant resulted in significantly greater increases from baseline in total sleep time compared with both placebo and zolpidem. Significant increases from baseline in rapid eye movement sleep and significant decreases from baseline in latency to rapid eye movement sleep were also observed with lemborexant compared with placebo and zolpidem. CONCLUSIONS These findings suggest that treatment with lemborexant may address some of the alterations in sleep architecture normally observed in older individuals with insomnia. CLINICAL TRIAL REGISTRATION Registry: ClinicalTrials.gov; Name: Study of the Efficacy and Safety of Lemborexant in Subjects 55 Years and Older With Insomnia Disorder (SUNRISE 1); URL: https://clinicaltrials.gov/ct2/show/NCT02783729; Identifier: NCT02783729.
Collapse
Affiliation(s)
| | - Gary Zammit
- Clinilabs Drug Development Corporation, New York, New York
| | | | | | | | | |
Collapse
|
19
|
Sun Y, Tisdale RK, Kilduff TS. Hypocretin/Orexin Receptor Pharmacology and Sleep Phases. FRONTIERS OF NEUROLOGY AND NEUROSCIENCE 2021; 45:22-37. [PMID: 34052813 DOI: 10.1159/000514963] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 02/02/2021] [Indexed: 12/15/2022]
Abstract
The hypocretins/orexins are two excitatory neuropeptides, alternately called HCRT1 or orexin-A and HCRT2 or orexin-B, that are the endogenous ligands for two G-protein-coupled receptors, HCRTR1/OX1R and HCRTR2/OX2R. Shortly after the discovery of this system, degeneration of hypocretin/orexin-producing neurons was implicated in the etiology of the sleep disorder narcolepsy. The involvement of this system in a disorder characterized by the loss of control over arousal state boundaries also suggested its role as a critical component of endogenous sleep-wake regulatory circuitry. The broad projections of the hypocretin/orexin-producing neurons, along with differential expression of the two receptors in the projection fields of these neurons, suggest distinct roles for these receptors. While HCRTR1/OX1R is associated with regulation of motivation, reward, and autonomic functions, HCRTR2/OX2R is strongly linked to sleep-wake control. The association of hypocretin/orexin with these physiological processes has led to intense interest in the therapeutic potential of compounds targeting these receptors. Agonists and antagonists for the hypocretin/orexin receptors have shown potential for the treatment of disorders of excessive daytime somnolence and nocturnal hyperarousal, respectively, with the first antagonists approved by the US Food and Drug Administration (FDA) in 2014 and 2019 for the treatment of insomnia. These and related compounds have also been useful tools to advance hypocretin/orexin neurobiology.
Collapse
Affiliation(s)
- Yu Sun
- Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, California, USA
| | - Ryan K Tisdale
- Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, California, USA
| | - Thomas S Kilduff
- Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, California, USA
| |
Collapse
|
20
|
Rosenberg R, Citrome L, Drake CL. Advances in the Treatment of Chronic Insomnia: A Narrative Review of New Nonpharmacologic and Pharmacologic Therapies. Neuropsychiatr Dis Treat 2021; 17:2549-2566. [PMID: 34393484 PMCID: PMC8354724 DOI: 10.2147/ndt.s297504] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/16/2021] [Indexed: 12/13/2022] Open
Abstract
Chronic insomnia disorder, which affects 6-10% of the population, is diagnostically characterized by ongoing difficulties with initiating or maintaining sleep occurring at least three times per week, persisting for at least 3 months, and associated with daytime impairment. While chronic insomnia is often considered a condition primarily related to impaired sleep, the disorder can also adversely affect domains of physical and mental health, quality of life, and daytime function, which highlights the importance of treating the multidimensional sleep disorder. Owing to misperceptions about the safety and effectiveness of treatment options, many individuals with insomnia may not seek professional treatment, and alternatively use ineffective home remedies or over-the-counter medications to improve sleep. Some physicians may even believe that insomnia is remediated by simply having the patient "get more sleep". Unfortunately, treatment of insomnia is not always that simple. The disorder's complex underlying pathophysiology warrants consideration of different nonpharmacologic and pharmacologic treatment options. Indeed, recent insights gained from research into the pathophysiology of insomnia have facilitated development of newer treatment approaches with more efficacious outcomes. This narrative review provides a summary of the diagnostic criteria and pathophysiology of insomnia and its subtypes. Further, this review emphasizes new and emerging nonpharmacologic and pharmacologic treatments for chronic insomnia, including recent enhancements in approaches to cognitive behavioral therapy for insomnia (CBT-I) and the new dual orexin receptor antagonist (DORA) pharmacologics. These advances in treatment have expanded the treatment options and are likely to result in improved outcomes in patients with chronic insomnia.
Collapse
Affiliation(s)
| | - Leslie Citrome
- Department of Psychiatry and Behavioral Sciences, New York Medical College, Valhalla, NY, USA
| | - Christopher L Drake
- Thomas Roth Sleep Disorders and Research Center, Henry Ford Health System, Detroit, MI, USA
| |
Collapse
|
21
|
Nonclinical pharmacology of daridorexant: a new dual orexin receptor antagonist for the treatment of insomnia. Psychopharmacology (Berl) 2021; 238:2693-2708. [PMID: 34415378 PMCID: PMC8455402 DOI: 10.1007/s00213-021-05954-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/03/2021] [Indexed: 12/29/2022]
Abstract
Dual orexin receptor antagonists (DORAs) represent a novel type of sleep medication that provide an alternative to the traditionally used positive allosteric gamma-aminobutyric acid (GABA)-A receptor modulators. Daridorexant is a new DORA that exhibited in phase 3 trials in insomnia not only a beneficial effect on sleep variables, measured objectively and assessed subjectively, but also an improvement in daytime functioning. Daridorexant was discovered through a tailored research program aimed at identifying an optimized sleep-promoting molecule with pharmacokinetic properties appropriate for covering the whole night while avoiding next-morning residual activity at efficacious doses. By specific binding to both orexin receptors, daridorexant inhibits the actions of the wake-promoting orexin (also called hypocretin) neuropeptides. This mechanism avoids a more widespread inhibition of neuronal pathways and associated side effects that are intrinsic to positive allosteric GABA-A receptor modulators. Here, we review the general pharmacology of daridorexant, based on nonclinical pharmacology studies of daridorexant, unpublished or already described, or based on work with other DORAs. Some unique features of daridorexant will be highlighted, such as the promotion of natural and surmountable sleep, the preservation of memory and cognition, the absence of tolerance development or risk of physical dependence, and how it can benefit daytime functioning.
Collapse
|
22
|
Abstract
Twenty-two years after their discovery, the hypocretins (Hcrts), also known as orexins, are two of the most studied peptidergic systems, involved in myriad physiological systems that range from sleep, arousal, motivation, homeostatic regulation, fear, anxiety and learning. A causal relationship between activity of Hcrt and arousal stability was established shortly after their discovery and have led to the development of a new class of drugs to treat insomnia. In this review we discuss the many faces of the Hcrt system and examine recent findings that implicate decreased Hcrt function in the pathogenesis of a number of neuropsychiatric conditions. We also discuss future therapeutic strategies to replace or enhance Hcrt function as a treatment option for these neuropsychiatric conditions.
Collapse
Affiliation(s)
- Erica Seigneur
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA
| | - Luis de Lecea
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
23
|
Clark JW, Brian ML, Drummond SP, Hoyer D, Jacobson LH. Effects of orexin receptor antagonism on human sleep architecture: A systematic review. Sleep Med Rev 2020; 53:101332. [DOI: 10.1016/j.smrv.2020.101332] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 03/09/2020] [Accepted: 03/16/2020] [Indexed: 10/24/2022]
|
24
|
Han Y, Yuan K, Zheng Y, Lu L. Orexin Receptor Antagonists as Emerging Treatments for Psychiatric Disorders. Neurosci Bull 2020; 36:432-448. [PMID: 31782044 PMCID: PMC7142186 DOI: 10.1007/s12264-019-00447-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 09/27/2019] [Indexed: 12/12/2022] Open
Abstract
Orexins comprise two neuropeptides produced by orexin neurons in the lateral hypothalamus and are released by extensive projections of these neurons throughout the central nervous system. Orexins bind and activate their associated G protein-coupled orexin type 1 receptors (OX1Rs) and OX2Rs and act on numerous physiological processes, such as sleep-wake regulation, feeding, reward, emotion, and motivation. Research on the development of orexin receptor antagonists has dramatically increased with the approval of suvorexant for the treatment of primary insomnia. In the present review, we discuss recent findings on the involvement of the orexin system in the pathophysiology of psychiatric disorders, including sleep disorders, depression, anxiety, and drug addiction. We discuss the actions of orexin receptor antagonists, including selective OX1R antagonists (SORA1s), selective OX2R antagonists (SORA2s), and dual OX1/2R antagonists (DORAs), in the treatment of these disorders based on both preclinical and clinical evidence. SORA2s and DORAs have more pronounced efficacy in the treatment of sleep disorders, whereas SORA1s may be promising for the treatment of anxiety and drug addiction. We also discuss potential challenges and opportunities for the application of orexin receptor antagonists to clinical interventions.
Collapse
Affiliation(s)
- Ying Han
- National Institute of Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, 100191, China
| | - Kai Yuan
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
- Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Yongbo Zheng
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Lin Lu
- National Institute of Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, 100191, China.
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China.
- Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China.
| |
Collapse
|
25
|
Bai P, Bai S, Placzek MS, Lu X, Fiedler SA, Ntaganda B, Wey HY, Wang C. A New Positron Emission Tomography Probe for Orexin Receptors Neuroimaging. Molecules 2020; 25:molecules25051018. [PMID: 32106419 PMCID: PMC7179119 DOI: 10.3390/molecules25051018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 01/16/2023] Open
Abstract
The orexin receptor (OX) is critically involved in motivation and sleep−wake regulation and holds promising therapeutic potential in various mood disorders. To further investigate the role of orexin receptors (OXRs) in the living human brain and to evaluate the treatment potential of orexin-targeting therapeutics, we herein report a novel PET probe ([11C]CW24) for OXRs in the brain. CW24 has moderate binding affinity for OXRs (IC50 = 0.253 μM and 1.406 μM for OX1R and OX2R, respectively) and shows good selectivity to OXRs over 40 other central nervous system (CNS) targets. [11C]CW24 has high brain uptake in rodents and nonhuman primates, suitable metabolic stability, and appropriate distribution and pharmacokinetics for brain positron emission tomography (PET) imaging. [11C]CW24 warrants further evaluation as a PET imaging probe of OXRs in the brain.
Collapse
Affiliation(s)
- Ping Bai
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; (P.B.); (X.L.)
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; (S.B.); (S.A.F.); (B.N.); (H.-Y.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sha Bai
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; (S.B.); (S.A.F.); (B.N.); (H.-Y.W.)
| | - Michael S. Placzek
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; (S.B.); (S.A.F.); (B.N.); (H.-Y.W.)
| | - Xiaoxia Lu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; (P.B.); (X.L.)
| | - Stephanie A. Fiedler
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; (S.B.); (S.A.F.); (B.N.); (H.-Y.W.)
| | - Brenda Ntaganda
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; (S.B.); (S.A.F.); (B.N.); (H.-Y.W.)
| | - Hsiao-Ying Wey
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; (S.B.); (S.A.F.); (B.N.); (H.-Y.W.)
| | - Changning Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; (S.B.); (S.A.F.); (B.N.); (H.-Y.W.)
- Correspondence:
| |
Collapse
|
26
|
Shariq AS, Rosenblat JD, Alageel A, Mansur RB, Rong C, Ho RC, Ragguett RM, Pan Z, Brietzke E, McIntyre RS. Evaluating the role of orexins in the pathophysiology and treatment of depression: A comprehensive review. Prog Neuropsychopharmacol Biol Psychiatry 2019; 92:1-7. [PMID: 30576764 DOI: 10.1016/j.pnpbp.2018.12.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 12/14/2018] [Accepted: 12/17/2018] [Indexed: 10/27/2022]
Abstract
Orexins are neuropeptides that are postulated to play a central role in the regulation of the sleep-wake cycle, appetite, affect, and reward circuitry. The objectives of the current review are to comprehensively evaluate (1) the potential role of orexins in the pathophysiology of major depressive disorders (MDD) and (2) the orexin system as a novel target in the treatment of MDD. Dysfunction of the sleep-wake cycle is observed as a central feature of MDD pathophysiology. Orexin system disturbances produce sleep-wake dysfunction, as observed in MDD. Orexin antagonists have been shown to treat insomnia effectively without disrupting normal sleep architecture in both preclinical (e.g., animal models) and clinical studies. Orexin antagonists are generally safe, well-tolerated, and associated with an acceptable long-term adverse effect profile with relatively low propensity for tolerance or dependence. Orexin antagonists have also been shown to possess antidepressant-like properties in some animal models of MDD. Extant evidence indicates that orexin-modulating treatments exert pleiotropic effects on multiple neural systems implicated in the phenomenology of mood disorders and suggests orexins as a promising target for investigation and intervention in mood disorders. To date, no human clinical trials evaluating the antidepressant effects of orexin antagonists in MDD have been completed. Given the promising results from preclinical studies, clinical trials are merited to evaluate the antidepressant effects of orexin antagonists in MDD.
Collapse
Affiliation(s)
- Aisha S Shariq
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON M5T 2S8, Canada; Department of Psychiatry, Texas Tech University Health Science Center, Paul L. Foster SOM, El Paso, TX 79905, USA
| | - Joshua D Rosenblat
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON M5T 2S8, Canada; Department of Psychiatry, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Asem Alageel
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON M5T 2S8, Canada; Department of Psychiatry, College of Medicine, Imam University, Riyadh, Saudi Arabia
| | - Rodrigo B Mansur
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON M5T 2S8, Canada; Department of Psychiatry, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Carola Rong
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON M5T 2S8, Canada
| | - Roger C Ho
- National University of Singapore, 119077, Singapore; National University of Hong Kong, 999077, Hong Kong
| | - Renee-Marie Ragguett
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON M5T 2S8, Canada
| | - Zihang Pan
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON M5T 2S8, Canada; Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Elisa Brietzke
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON M5T 2S8, Canada; Research Group in Molecular and Behavioral Neuroscience of Bipolar Disorder, Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP), São Paulo 14021-001, Brazil
| | - Roger S McIntyre
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON M5T 2S8, Canada; Department of Psychiatry, University of Toronto, Toronto, ON M5S 1A1, Canada; Department of Pharmacology, University of Toronto, Toronto, ON M5S 1A1, Canada; Brain and Cognition Discovery Foundation (BCDF), Toronto, ON M5T 2S8, Canada.
| |
Collapse
|
27
|
Sauter C, Kowalski JT, Stein M, Röttger S, Danker-Hopfe H. Effects of a Workplace-Based Sleep Health Program on Sleep in Members of the German Armed Forces. J Clin Sleep Med 2019; 15:417-429. [PMID: 30853042 DOI: 10.5664/jcsm.7666] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 10/30/2018] [Indexed: 01/06/2023]
Abstract
STUDY OBJECTIVES To develop and evaluate a brief manual-based sleep health program within the workplace health promotion of the German Armed Forces. METHODS The sleep health program comprised four weekly group sessions. Sixty-three members (48 males) were randomly allocated to either a treatment group or a waiting control group matching for age, sex, and baseline Pittsburgh Sleep Quality Index (PSQI). The control group had to wait before participating in the sleep health program until the treatment group finished the intervention. Sleep was assessed by ambulatory polysomnography (PSG) as well as with evening and morning protocols at baseline (t0), directly after the treatment group participated in the sleep health program (t1), and after the control group finished participation (t2). The PSQI, the Insomnia Severity Index (ISI), and the Epworth Sleepiness Scale (ESS) were applied at the same three time points, and during a 3-month follow-up evaluation (t3). RESULTS Fifty-seven out of the 63 randomized individuals (42 males, mean age = 40.6 years; complete PSG data: n = 36; complete questionnaire data: n = 39) participated in the sleep health program. Objective wake after sleep onset, sleep efficiency, latency to persistent sleep, self-reported sleep latency, restfulness, PSQI, and ISI scores improved with medium or large effects in both groups. ESS scores decreased with moderate effects in the treatment group only. CONCLUSIONS The sleep health program had a positive and stable effect on objective and self-reported sleep parameters, and it is suitable as a preventive measure in members of the German Armed Forces. CLINICAL TRIAL REGISTRATION Registry: ClinicalTrials.gov; Title: Development and Evaluation of a Sleep-coaching Program; Identifier: NCT02896062; URL: https://clinicaltrials.gov/ct2/show/record/NCT02896062.
Collapse
Affiliation(s)
- Cornelia Sauter
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Competence Center of Sleep Medicine at Campus Benjamin Franklin, Berlin, Germany
| | - Jens T Kowalski
- German Armed Forces Office, Applied Military Psychology and Research Group, Hamburg, Germany
| | - Michael Stein
- German Armed Forces Office, Applied Military Psychology and Research Group, Hamburg, Germany
| | - Stefan Röttger
- German Armed Forces Office, Applied Military Psychology and Research Group, Hamburg, Germany
| | - Heidi Danker-Hopfe
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Competence Center of Sleep Medicine at Campus Benjamin Franklin, Berlin, Germany
| |
Collapse
|
28
|
Winsky-Sommerer R, de Oliveira P, Loomis S, Wafford K, Dijk DJ, Gilmour G. Disturbances of sleep quality, timing and structure and their relationship with other neuropsychiatric symptoms in Alzheimer’s disease and schizophrenia: Insights from studies in patient populations and animal models. Neurosci Biobehav Rev 2019; 97:112-137. [DOI: 10.1016/j.neubiorev.2018.09.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 08/31/2018] [Accepted: 09/30/2018] [Indexed: 02/06/2023]
|
29
|
Dijk DJ, Landolt HP. Sleep Physiology, Circadian Rhythms, Waking Performance and the Development of Sleep-Wake Therapeutics. Handb Exp Pharmacol 2019; 253:441-481. [PMID: 31254050 DOI: 10.1007/164_2019_243] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Disturbances of the sleep-wake cycle are highly prevalent and diverse. The aetiology of some sleep disorders, such as circadian rhythm sleep-wake disorders, is understood at the conceptual level of the circadian and homeostatic regulation of sleep and in part at a mechanistic level. Other disorders such as insomnia are more difficult to relate to sleep regulatory mechanisms or sleep physiology. To further our understanding of sleep-wake disorders and the potential of novel therapeutics, we discuss recent findings on the neurobiology of sleep regulation and circadian rhythmicity and its relation with the subjective experience of sleep and the quality of wakefulness. Sleep continuity and to some extent REM sleep emerge as determinants of subjective sleep quality and waking performance. The effects of insufficient sleep primarily concern subjective and objective sleepiness as well as vigilant attention, whereas performance on higher cognitive functions appears to be better preserved albeit at the cost of increased effort. We discuss age-related, sex and other trait-like differences in sleep physiology and sleep need and compare the effects of existing pharmacological and non-pharmacological sleep- and wake-promoting treatments. Successful non-pharmacological approaches such as sleep restriction for insomnia and light and melatonin treatment for circadian rhythm sleep disorders target processes such as sleep homeostasis or circadian rhythmicity. Most pharmacological treatments of sleep disorders target specific signalling pathways with no well-established role in either sleep homeostasis or circadian rhythmicity. Pharmacological sleep therapeutics induce changes in sleep structure and the sleep EEG which are specific to the mechanism of action of the drug. Sleep- and wake-promoting therapeutics often induce residual effects on waking performance and sleep, respectively. The need for novel therapeutic approaches continues not at least because of the societal demand to sleep and be awake out of synchrony with the natural light-dark cycle, the high prevalence of sleep-wake disturbances in mental health disorders and in neurodegeneration. Novel approaches, which will provide a more comprehensive description of sleep and allow for large-scale sleep and circadian physiology studies in the home environment, hold promise for continued improvement of therapeutics for disturbances of sleep, circadian rhythms and waking performance.
Collapse
Affiliation(s)
- Derk-Jan Dijk
- Surrey Sleep Research Centre, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK.
| | - Hans-Peter Landolt
- Institute of Pharmacology and Toxicology, Sleep and Health Zurich, University Center of Competence, University of Zurich, Zurich, Switzerland
| |
Collapse
|
30
|
Zhang Y, Su J, Wang J, Tang G, Hu W, Mao J, Ren W, Liu Y, Yu Z. Cognitive behavioral therapy for insomnia combined with eszopiclone for the treatment of sleep disorder patients transferred out of the intensive care unit: A single-centred retrospective observational study. Medicine (Baltimore) 2018; 97:e12383. [PMID: 30213004 PMCID: PMC6156064 DOI: 10.1097/md.0000000000012383] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Patients transferred out of the intensive care unit (ICU) are always impaired by sleep disorders. Cognitive behavioral therapy for insomnia (CBT-I) and eszopiclone are 2 commonly prescribed strategies for insomnia. In the current study, the effect of the combined application of the 2 methods on sleep disorders in ICU transferred out patients was assessed.Twenty-nine insomnia patients receiving combined treatment of CBT-I and eszopiclone and a corresponding number of patients treated with eszopiclone were collected. The incidence of discomfort experiences in ICU was recorded. Polysomnogram (PSG), Pittsburgh Sleep Quality Index (PSQI), self-rating anxiety scale (SAS), self-rating depression scale (SDS), and treatment emergent symptom scale (TESS) were used to assess the treatment efficacy and side effects.Hospitalization for over 7 days, use of benzodiazepines, and experiencing anxiety, insomnia, and mechanical ventilation increased chances of sleep disorders. The sleep latency, awakening time, and total sleep time were further improved in patients treated with the combined therapy than patients treated with eszopiclone (t = -2.334, -2.412, 2.383, P < .05). Similar changing pattern was observed for PSQI score (t = -2.262, P < .05). The improvement effect of the combined therapy on the sleep efficacy, SWS phase III, and rapid eye movement sleep was also significantly stronger (t = 2.112, 2.268, 2.311, P < .05). Moreover, the SAS and SDS scores in patients treated with the combined therapy decreased more than those of patients treated with eszopiclone.The efficacy of CBT-I combined with eszopiclone in the treatment of sleep disorders in ICU transferred out patients was better than eszopiclone.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Medical Psychosomatic, Hangzhou Seventh People's Hospital
| | - Jun Su
- Department of Intensive Care Unit, Hangzhou First People's Hospital, Hangzhou
| | - Jingquan Wang
- Department of Intensive Care Unit , Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Guangzhang Tang
- Department of Medical Psychosomatic, Hangzhou Seventh People's Hospital
| | - Wei Hu
- Department of Intensive Care Unit, Hangzhou First People's Hospital, Hangzhou
| | - Jinghong Mao
- Department of Medical Psychosomatic, Hangzhou Seventh People's Hospital
| | - Wanwen Ren
- Department of Medical Psychosomatic, Hangzhou Seventh People's Hospital
| | - Yi Liu
- Department of Medical Psychosomatic, Hangzhou Seventh People's Hospital
| | - Zhenghe Yu
- Department of Medical Psychosomatic, Hangzhou Seventh People's Hospital
| |
Collapse
|
31
|
Matsunaga Y, Tagaya H, Fukase Y, Hakamata Y, Murayama N, Kumagai Y, Kuroyama M. Effects of zolpidem/triazolam on cognitive performance 12 hours after acute administration. Sleep Med 2018; 52:213-218. [PMID: 30097333 DOI: 10.1016/j.sleep.2018.06.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 06/15/2018] [Accepted: 06/21/2018] [Indexed: 10/28/2022]
Abstract
OBJECTIVE Most previous studies have concluded that decreased cognitive function and performance due to ultra-short acting hypnotics do not persist after 6-9 h post-administration. This study examined the effects of ultra-short acting hypnotics on cognitive function and performance 12 h after administration, ie, a time considered sufficient for the effects of hypnotics to disappear. METHODS Thirteen healthy young male volunteers (mean age, 23.4 ± 3.2 years) participated in this study. Participants attended three sessions of polysomnography (PSG) recording preceded by oral administration of placebo for the first session, and 5 mg zolpidem or 0.25 mg triazolam for the second and third sessions, in a double-blinded, randomized manner at intervals of at least five days. A cognitive test battery was administered following each session, consisting of a psychomotor vigilance task (PVT), which reflects alertness and sleepiness, digit symbol substitution test (DSST), which reflects attention and working memory function, and assessment of subjective sleepiness and mental condition using a visual analog scale (VAS). RESULTS AND CONCLUSIONS The administration of hypnotics significantly increased total sleep time, sleep efficiency, and sleep stages 2 and 4, and significantly decreased wake after sleep onset and sleep stage 1. PVT parameters were not affected by the administration of hypnotics, but DSST score was significantly lower, and "subjective alertness," "vigor," and "sadness" significantly deteriorated, after administration. In conclusion, while objective sleepiness disappeared 12 h after the administration of ultra-short acting hypnotics, their effects to decrease cognitive function persisted even after 12 h post-administration.
Collapse
Affiliation(s)
- Yusuke Matsunaga
- Department of Sleep Medicine, Graduate School of Medical Sciences, Kitasato University, Japan.
| | - Hirokuni Tagaya
- Department of Sleep Medicine, Graduate School of Medical Sciences, Kitasato University, Japan; Department of Health Science, School of Allied Health Sciences, Kitasato University, Japan; Department of Psychiatry, Kitasato University East Hospital, Japan
| | - Yuko Fukase
- Department of Health Science, School of Allied Health Sciences, Kitasato University, Japan
| | - Yuko Hakamata
- Department of Health Science, School of Allied Health Sciences, Kitasato University, Japan; Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Japan
| | - Norio Murayama
- Department of Health Science, School of Allied Health Sciences, Kitasato University, Japan; Faculty of Health and Sports Science, Juntendo University, Japan
| | - Yuji Kumagai
- Department of Pharmacology, School of Medicine, Kitasato University, Japan; Kitasato University East Hospital Clinical Trial Center, Japan
| | | |
Collapse
|
32
|
Foltin RW, Evans SM. Hypocretin/orexin antagonists decrease cocaine self-administration by female rhesus monkeys. Drug Alcohol Depend 2018; 188:318-327. [PMID: 29852449 PMCID: PMC7059601 DOI: 10.1016/j.drugalcdep.2018.04.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/10/2018] [Accepted: 04/10/2018] [Indexed: 01/02/2023]
Abstract
BACKGROUND The hypocretin/orexin system is involved in regulating arousal, and much recent work demonstrates that decreasing hypocretin receptor-1 (HCRTr1) activity using antagonists decreases appetitive behavior, including stimulant drug self-administration and reinstatement. METHODS The present study determined the effects of hypocretin-1 and HCRTr1 antagonists on responding reinforced by intravenous (i.v.) cocaine self-administration (0.0125 - 0.05 mg/kg/infusion) in 5 female rhesus monkeys. Responding was examined using 3 schedules of reinforcement: 1) a Fixed interval 1 min, Fixed ratio 10 Chain schedule [FI 1-min (FR10:S)], 2) a Progressive Ratio (PR) schedule, and 3) a cocaine vs. candy. RESULTS Choice schedule: the HCRTr1 antagonist SB-334867 (8-24 mg/kg, i.m.) decreased cocaine taking under the Chain schedule and PR schedule in all 5 monkeys and in 4 of the 5 monkeys under the Choice schedule. d- Amphetamine (0.06 - 0.25 mg/kg, i.m.), tested as a control manipulation, decreased cocaine taking in all 5 monkeys under the Chain schedule. The peptide hypocretin-1 (0.072 mg/kg, i.v.) increased cocaine taking in the monkeys with low rates of cocaine taking under the Chain (3/4) and Choice (4/5) schedules. Reinstatement of extinguished cocaine responding following response-independent delivery of a large dose of cocaine (0.3 mg/kg) was attenuated in 3 of the 5 monkeys by the HCRTr1 antagonist SB-334867. CONCLUSIONS These data expand upon work accomplished in predominantly male rodents suggesting that the hypocretin system modulates the response to appetitive stimuli. A better understanding of this system offers promise as a novel approach in medication development for appetitive disorders.
Collapse
|
33
|
O'Callaghan EK, Green EW, Franken P, Mongrain V. Omics Approaches in Sleep-Wake Regulation. Handb Exp Pharmacol 2018; 253:59-81. [PMID: 29796779 DOI: 10.1007/164_2018_125] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Although sleep seems an obvious and simple behaviour, it is extremely complex involving numerous interactions both at the neuronal and the molecular levels. While we have gained detailed insight into the molecules and neuronal networks responsible for the circadian organization of sleep and wakefulness, the molecular underpinnings of the homeostatic aspect of sleep regulation are still unknown and the focus of a considerable research effort. In the last 20 years, the development of techniques allowing the simultaneous measurement of hundreds to thousands of molecular targets (i.e. 'omics' approaches) has enabled the unbiased study of the molecular pathways regulated by and regulating sleep. In this chapter, we will review how the different omics approaches, including transcriptomics, epigenomics, proteomics, and metabolomics, have advanced sleep research. We present relevant data in the framework of the two-process model in which circadian and homeostatic processes interact to regulate sleep. The integration of the different omics levels, known as 'systems genetics', will eventually lead to a better understanding of how information flows from the genome, to molecules, to networks, and finally to sleep both in health and disease.
Collapse
Affiliation(s)
- Emma K O'Callaghan
- Center for Advanced Research in Sleep Medicine and Research Center, Hôpital du Sacré-Coeur de Montréal, Montreal, QC, Canada.,Department of Neuroscience, Université de Montréal, Montreal, QC, Canada
| | - Edward W Green
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Paul Franken
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Valérie Mongrain
- Center for Advanced Research in Sleep Medicine and Research Center, Hôpital du Sacré-Coeur de Montréal, Montreal, QC, Canada. .,Department of Neuroscience, Université de Montréal, Montreal, QC, Canada.
| |
Collapse
|
34
|
|
35
|
Roth T, Black J, Cluydts R, Charef P, Cavallaro M, Kramer F, Zammit G, Walsh J. Dual Orexin Receptor Antagonist, Almorexant, in Elderly Patients With Primary Insomnia: A Randomized, Controlled Study. Sleep 2017; 40:2740595. [PMID: 28364509 DOI: 10.1093/sleep/zsw034] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Objective Sleep laboratory study to determine the dose-related efficacy and safety of almorexant in elderly patients with primary chronic insomnia. Methods Patients aged ≥65 years with primary insomnia were enrolled into a prospective, randomized, double-blind, placebo-controlled, multicenter dose-finding study with a five-period, five-way Latin square cross-over design. Patients were randomized to one of 10 unique sequences of two-night treatment with oral almorexant 25, 50, 100, or 200 mg capsules, or matching placebo. The primary efficacy endpoint was polysomnography (PSG)-determined mean wake time after sleep onset (WASO). Secondary and exploratory efficacy endpoints were also assessed. Results 112 patients were randomized (mean [SD] age 72.1 [5.0] years; 69.9% female). Significant, dose-related improvements (reductions) in mean WASO were observed with almorexant. Least-squares mean (95% CI) treatment effects in the almorexant 200, 100, 50, and 25 mg dose groups versus placebo were -46.5 minutes (-53.0, -39.9; p < .0001), -31.4 minutes (-38.0, -24.9; p < .0001), -19.2 minutes (-25.7, -12.6; p < .0001), and -10.4 minutes (-17.0, -3.9; p = .0018), respectively. Mean total sleep time was significantly increased with each almorexant dose (mean increases versus placebo ranged 55.1-14.3 minutes; p < .0001 for each dose). Latency to persistent sleep was statistically significantly reduced only with almorexant 200 mg versus placebo (mean [95% CI] treatment effect -10.2 minutes, [-15.4, -5.0]; p = .0001). No unexpected safety concerns were identified. Adverse events were similar between all almorexant dose groups and placebo. Conclusions Two-night oral administration of almorexant was effective and well tolerated in treating primary insomnia in elderly patients.
Collapse
Affiliation(s)
- Thomas Roth
- Thomas Roth Sleep Disorders and Research Center, Detroit, MI
| | - Jed Black
- Actelion Pharmaceuticals Ltd, Allschwil, Switzerland.,Center for Sleep Research and Medicine, Stanford, CA
| | | | - Pascal Charef
- Actelion Pharmaceuticals Ltd, Allschwil, Switzerland.,Multidisciplinary Sleep Disorders Centre, University Hospital Antwerp, Antwerp, Belgium
| | | | | | | | - James Walsh
- Sleep Medicine and Research Center, St. Luke's Hospital, Chesterfield, MO
| |
Collapse
|
36
|
Treiber A, de Kanter R, Roch C, Gatfield J, Boss C, von Raumer M, Schindelholz B, Muehlan C, van Gerven J, Jenck F. The Use of Physiology-Based Pharmacokinetic and Pharmacodynamic Modeling in the Discovery of the Dual Orexin Receptor Antagonist ACT-541468. J Pharmacol Exp Ther 2017; 362:489-503. [PMID: 28663311 DOI: 10.1124/jpet.117.241596] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 06/20/2017] [Indexed: 03/08/2025] Open
Abstract
The identification of new sleep drugs poses particular challenges in drug discovery owing to disease-specific requirements such as rapid onset of action, sleep maintenance throughout major parts of the night, and absence of residual next-day effects. Robust tools to estimate drug levels in human brain are therefore key for a successful discovery program. Animal models constitute an appropriate choice for drugs without species differences in receptor pharmacology or pharmacokinetics. Translation to man becomes more challenging when interspecies differences are prominent. This report describes the discovery of the dual orexin receptor 1 and 2 (OX1 and OX2) antagonist ACT-541468 out of a class of structurally related compounds, by use of physiology-based pharmacokinetic and pharmacodynamic (PBPK-PD) modeling applied early in drug discovery. Although all drug candidates exhibited similar target receptor potencies and efficacy in a rat sleep model, they exhibited large interspecies differences in key factors determining their pharmacokinetic profile. Human PK models were built on the basis of in vitro metabolism and physicochemical data and were then used to predict the time course of OX2 receptor occupancy in brain. An active ACT-541468 dose of 25 mg was estimated on the basis of OX2 receptor occupancy thresholds of about 65% derived from clinical data for two other orexin antagonists, almorexant and suvorexant. Modeling predictions for ACT-541468 in man were largely confirmed in a single-ascending dose trial in healthy subjects. PBPK-PD modeling applied early in drug discovery, therefore, has great potential to assist in the identification of drug molecules when specific pharmacokinetic and pharmacodynamic requirements need to be met.
Collapse
Affiliation(s)
- Alexander Treiber
- Departments of Preclinical Drug Metabolism and Pharmacokinetics (A.T., R.d.K.), Preclinical Pharmacology (C.R., F.J.), Biology (J.G.), Chemistry (C.B.), Clinical Pharmacology (C.M.), and Preclinical Development (M.v.R., B.S.), Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland; Center for Human Drug Research, Leiden, The Netherlands (J.v.G.)
| | - Ruben de Kanter
- Departments of Preclinical Drug Metabolism and Pharmacokinetics (A.T., R.d.K.), Preclinical Pharmacology (C.R., F.J.), Biology (J.G.), Chemistry (C.B.), Clinical Pharmacology (C.M.), and Preclinical Development (M.v.R., B.S.), Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland; Center for Human Drug Research, Leiden, The Netherlands (J.v.G.)
| | - Catherine Roch
- Departments of Preclinical Drug Metabolism and Pharmacokinetics (A.T., R.d.K.), Preclinical Pharmacology (C.R., F.J.), Biology (J.G.), Chemistry (C.B.), Clinical Pharmacology (C.M.), and Preclinical Development (M.v.R., B.S.), Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland; Center for Human Drug Research, Leiden, The Netherlands (J.v.G.)
| | - John Gatfield
- Departments of Preclinical Drug Metabolism and Pharmacokinetics (A.T., R.d.K.), Preclinical Pharmacology (C.R., F.J.), Biology (J.G.), Chemistry (C.B.), Clinical Pharmacology (C.M.), and Preclinical Development (M.v.R., B.S.), Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland; Center for Human Drug Research, Leiden, The Netherlands (J.v.G.)
| | - Christoph Boss
- Departments of Preclinical Drug Metabolism and Pharmacokinetics (A.T., R.d.K.), Preclinical Pharmacology (C.R., F.J.), Biology (J.G.), Chemistry (C.B.), Clinical Pharmacology (C.M.), and Preclinical Development (M.v.R., B.S.), Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland; Center for Human Drug Research, Leiden, The Netherlands (J.v.G.)
| | - Markus von Raumer
- Departments of Preclinical Drug Metabolism and Pharmacokinetics (A.T., R.d.K.), Preclinical Pharmacology (C.R., F.J.), Biology (J.G.), Chemistry (C.B.), Clinical Pharmacology (C.M.), and Preclinical Development (M.v.R., B.S.), Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland; Center for Human Drug Research, Leiden, The Netherlands (J.v.G.)
| | - Benno Schindelholz
- Departments of Preclinical Drug Metabolism and Pharmacokinetics (A.T., R.d.K.), Preclinical Pharmacology (C.R., F.J.), Biology (J.G.), Chemistry (C.B.), Clinical Pharmacology (C.M.), and Preclinical Development (M.v.R., B.S.), Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland; Center for Human Drug Research, Leiden, The Netherlands (J.v.G.)
| | - Clemens Muehlan
- Departments of Preclinical Drug Metabolism and Pharmacokinetics (A.T., R.d.K.), Preclinical Pharmacology (C.R., F.J.), Biology (J.G.), Chemistry (C.B.), Clinical Pharmacology (C.M.), and Preclinical Development (M.v.R., B.S.), Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland; Center for Human Drug Research, Leiden, The Netherlands (J.v.G.)
| | - Joop van Gerven
- Departments of Preclinical Drug Metabolism and Pharmacokinetics (A.T., R.d.K.), Preclinical Pharmacology (C.R., F.J.), Biology (J.G.), Chemistry (C.B.), Clinical Pharmacology (C.M.), and Preclinical Development (M.v.R., B.S.), Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland; Center for Human Drug Research, Leiden, The Netherlands (J.v.G.)
| | - Francois Jenck
- Departments of Preclinical Drug Metabolism and Pharmacokinetics (A.T., R.d.K.), Preclinical Pharmacology (C.R., F.J.), Biology (J.G.), Chemistry (C.B.), Clinical Pharmacology (C.M.), and Preclinical Development (M.v.R., B.S.), Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland; Center for Human Drug Research, Leiden, The Netherlands (J.v.G.)
| |
Collapse
|
37
|
Abstract
The discovery of the orexin system represents the single major progress in the sleep field of the last three to four decades. The two orexin peptides and their two receptors play a major role in arousal and sleep/wake cycles. Defects in the orexin system lead to narcolepsy with cataplexy in humans and dogs and can be experimentally reproduced in rodents. At least six orexin receptor antagonists have reached Phase II or Phase III clinical trials in insomnia, five of which are dual orexin receptor antagonists (DORAs) that target both OX1 and OX2 receptors (OX2Rs). All clinically tested DORAs induce and maintain sleep: suvorexant, recently registered in the USA and Japan for insomnia, represents the first hypnotic principle that acts in a completely different manner from the current standard medications. It is clear, however, that in the clinic, all DORAs promote sleep primarily by increasing rapid eye movement (REM) and are almost devoid of effects on slow-wave (SWS) sleep. At present, there is no consensus on whether the sole promotion of REM sleep has a negative impact in patients suffering from insomnia. However, sleep onset REM (SOREM), which has been documented with DORAs, is clearly an undesirable effect, especially for narcoleptic patients and also in fragile populations (e.g. elderly patients) where REM-associated loss of muscle tone may promote an elevated risk of falls. Debate thus remains as to the ideal orexin agent to achieve a balanced increase in REM and non-rapid eye movement (NREM) sleep. Here, we review the evidence that an OX2R antagonist should be at least equivalent, or perhaps superior, to a DORA for the treatment of insomnia. An OX2R antagonist may produce more balanced sleep than a DORA. Rodent sleep experiments show that the OX2R is the primary target of orexin receptor antagonists in sleep modulation. Furthermore, an OX2R antagonist should, in theory, have a lower narcoleptic/cataplexic potential. In the clinic, the situation remains equivocal, since OX2R antagonists are in early stages: MK-1064 has completed Phase I, and MIN202 is currently in clinical Phase II/III trials. However, data from insomnia patients have not yet been released. Promotional material suggests that balanced sleep is indeed induced by MIN-202, whereas in volunteers MK-1064 has been reported to act similarly to DORAs.
Collapse
Affiliation(s)
- Laura H Jacobson
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, VIC, 3052, Australia
- Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Sui Chen
- Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Sanjida Mir
- Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Daniel Hoyer
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, VIC, 3052, Australia.
- Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia.
- Department of Chemical Physiology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA.
| |
Collapse
|
38
|
Beuckmann CT, Suzuki M, Ueno T, Nagaoka K, Arai T, Higashiyama H. In Vitro and In Silico Characterization of Lemborexant (E2006), a Novel Dual Orexin Receptor Antagonist. J Pharmacol Exp Ther 2017; 362:287-295. [PMID: 28559480 DOI: 10.1124/jpet.117.241422] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 05/23/2017] [Indexed: 12/18/2022] Open
Abstract
Orexin (hypocretin) neuropeptides have, among others, been implicated in arousal/sleep control, and antagonizing the orexin signaling pathway has been previously demonstrated to promote sleep in animals and humans. This mechanism opens up a new therapeutic approach to curb excessive wakefulness in insomnia disorder rather than to promote sleep-related signaling. Here we describe the preclinical pharmacological in vitro and in silico characterization of lemborexant ((1R,2S)-2-{[(2,4-dimethylpyrimidin-5-yl)oxy]methyl}-2-(3-fluorophenyl)-N-(5-fluoropyridin-2-yl)cyclopropanecarboxamide)), a dual orexin receptor antagonist (DORA), as a novel experimental therapeutic agent for the symptomatic treatment of insomnia disorder and compare its properties to two other DORAs, almorexant and suvorexant. Lemborexant binds to both orexin receptors and functionally inhibits them in a competitive manner with low nanomolar potency, without any species difference apparent among human, rat, and mouse receptors. Binding and dissociation kinetics on both orexin receptors are rapid. Lemborexant is selective for both orexin receptors over 88 other receptors, transporters, and ion channels of important physiologic function. In silico modeling of lemborexant into the orexin receptors showed that it assumes the same type of conformation within the receptor-binding pocket as suvorexant, the π-stacked horseshoe-like conformation.
Collapse
Affiliation(s)
- Carsten Theodor Beuckmann
- Neurology Business Group, Discovery (C.T.B.), Drug Metabolism and Pharmacokinetics (T.U.), hhc Data Creation Center (K.N.), and Medicine Development Center (T.A.), Eisai Co., Ltd., Tsukuba, Ibaraki, Japan; and Global Regulatory Affairs (M.S.), Neurology Business Group (H.H.), Japan and Asia Clinical Development, Eisai Co., Ltd., Bunkyo, Tokyo, Japan
| | - Michiyuki Suzuki
- Neurology Business Group, Discovery (C.T.B.), Drug Metabolism and Pharmacokinetics (T.U.), hhc Data Creation Center (K.N.), and Medicine Development Center (T.A.), Eisai Co., Ltd., Tsukuba, Ibaraki, Japan; and Global Regulatory Affairs (M.S.), Neurology Business Group (H.H.), Japan and Asia Clinical Development, Eisai Co., Ltd., Bunkyo, Tokyo, Japan
| | - Takashi Ueno
- Neurology Business Group, Discovery (C.T.B.), Drug Metabolism and Pharmacokinetics (T.U.), hhc Data Creation Center (K.N.), and Medicine Development Center (T.A.), Eisai Co., Ltd., Tsukuba, Ibaraki, Japan; and Global Regulatory Affairs (M.S.), Neurology Business Group (H.H.), Japan and Asia Clinical Development, Eisai Co., Ltd., Bunkyo, Tokyo, Japan
| | - Kazuya Nagaoka
- Neurology Business Group, Discovery (C.T.B.), Drug Metabolism and Pharmacokinetics (T.U.), hhc Data Creation Center (K.N.), and Medicine Development Center (T.A.), Eisai Co., Ltd., Tsukuba, Ibaraki, Japan; and Global Regulatory Affairs (M.S.), Neurology Business Group (H.H.), Japan and Asia Clinical Development, Eisai Co., Ltd., Bunkyo, Tokyo, Japan
| | - Tohru Arai
- Neurology Business Group, Discovery (C.T.B.), Drug Metabolism and Pharmacokinetics (T.U.), hhc Data Creation Center (K.N.), and Medicine Development Center (T.A.), Eisai Co., Ltd., Tsukuba, Ibaraki, Japan; and Global Regulatory Affairs (M.S.), Neurology Business Group (H.H.), Japan and Asia Clinical Development, Eisai Co., Ltd., Bunkyo, Tokyo, Japan
| | - Hiroyuki Higashiyama
- Neurology Business Group, Discovery (C.T.B.), Drug Metabolism and Pharmacokinetics (T.U.), hhc Data Creation Center (K.N.), and Medicine Development Center (T.A.), Eisai Co., Ltd., Tsukuba, Ibaraki, Japan; and Global Regulatory Affairs (M.S.), Neurology Business Group (H.H.), Japan and Asia Clinical Development, Eisai Co., Ltd., Bunkyo, Tokyo, Japan
| |
Collapse
|
39
|
Drinkenburg WHIM, Ahnaou A, Ruigt GSF. Pharmaco-EEG Studies in Animals: A History-Based Introduction to Contemporary Translational Applications. Neuropsychobiology 2016; 72:139-50. [PMID: 26901675 DOI: 10.1159/000443175] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Current research on the effects of pharmacological agents on human neurophysiology finds its roots in animal research, which is also reflected in contemporary animal pharmaco-electroencephalography (p-EEG) applications. The contributions, present value and translational appreciation of animal p-EEG-based applications are strongly interlinked with progress in recording and neuroscience analysis methodology. After the pioneering years in the late 19th and early 20th century, animal p-EEG research flourished in the pharmaceutical industry in the early 1980s. However, around the turn of the millennium the emergence of structurally and functionally revealing imaging techniques and the increasing application of molecular biology caused a temporary reduction in the use of EEG as a window into the brain for the prediction of drug efficacy. Today, animal p-EEG is applied again for its biomarker potential - extensive databases of p-EEG and polysomnography studies in rats and mice hold EEG signatures of a broad collection of psychoactive reference and test compounds. A multitude of functional EEG measures has been investigated, ranging from simple spectral power and sleep-wake parameters to advanced neuronal connectivity and plasticity parameters. Compared to clinical p-EEG studies, where the level of vigilance can be well controlled, changes in sleep-waking behaviour are generally a prominent confounding variable in animal p-EEG studies and need to be dealt with. Contributions of rodent pharmaco-sleep EEG research are outlined to illustrate the value and limitations of such preclinical p-EEG data for pharmacodynamic and chronopharmacological drug profiling. Contemporary applications of p-EEG and pharmaco-sleep EEG recordings in animals provide a common and relatively inexpensive window into the functional brain early in the preclinical and clinical development of psychoactive drugs in comparison to other brain imaging techniques. They provide information on the impact of drugs on arousal and sleep architecture, assessing their neuropharmacological characteristics in vivo, including central exposure and information on kinetics. In view of the clear disadvantages as well as advantages of animal p-EEG as compared to clinical p-EEG, general statements about the usefulness of EEG as a biomarker to demonstrate the translatability of p-EEG effects should be made with caution, however, because they depend on the particular EEG or sleep parameter that is being studied. The contribution of animal p-EEG studies to the translational characterisation of centrally active drugs can be furthered by adherence to guidelines for methodological standardisation, which are presently under construction by the International Pharmaco-EEG Society (IPEG).
Collapse
|
40
|
Struyk A, Gargano C, Drexel M, Stoch SA, Svetnik V, Ma J, Mayleben D. Pharmacodynamic effects of suvorexant and zolpidem on EEG during sleep in healthy subjects. Eur Neuropsychopharmacol 2016; 26:1649-56. [PMID: 27554636 DOI: 10.1016/j.euroneuro.2016.07.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 06/30/2016] [Accepted: 07/02/2016] [Indexed: 01/22/2023]
Abstract
The objective of this study was to evaluate sleep electrophysiology in healthy subjects after bedtime administration of therapeutic doses of two insomnia treatments - the orexin receptor antagonist suvorexant or the GABAergic agonist zolpidem. Eighteen healthy men received single bedtime doses of suvorexant 20mg, zolpidem 10mg, or placebo in a double-blinded, randomized, balanced 3-period crossover study. EEG power spectral densities during non-rapid eye movement (NREM) and rapid eye movement (REM) sleep were recorded in a polysomnography (PSG) laboratory using a 19-lead EEG recording array. Spectral density was analyzed for each lead for frequencies between 1-32Hz. During NREM and REM sleep, zolpidem treatment reduced spectral density across theta and alpha frequency bands in all leads. In contrast, suvorexant had no significant effects on spectral density in any frequency band during NREM sleep, and modestly increased spectral density in the theta frequency band during REM sleep. Although the study was not designed to detect effects on PSG sleep endpoints in healthy subjects, both suvorexant and zolpidem increased mean total sleep time and sleep efficiency. Zolpidem reduced latency to persistent sleep whereas suvorexant did not. Suvorexant decreased wake after sleep onset, whereas zolpidem did not. These findings suggest that EEG power spectral density profile after administration of suvorexant in healthy subjects more closely approximates placebo sleep physiology than after zolpidem treatment.
Collapse
|
41
|
Mander BA, Winer JR, Jagust WJ, Walker MP. Sleep: A Novel Mechanistic Pathway, Biomarker, and Treatment Target in the Pathology of Alzheimer's Disease? Trends Neurosci 2016; 39:552-566. [PMID: 27325209 PMCID: PMC4967375 DOI: 10.1016/j.tins.2016.05.002] [Citation(s) in RCA: 318] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 04/13/2016] [Accepted: 05/10/2016] [Indexed: 12/16/2022]
Abstract
Sleep disruption appears to be a core component of Alzheimer's disease (AD) and its pathophysiology. Signature abnormalities of sleep emerge before clinical onset of AD. Moreover, insufficient sleep facilitates accumulation of amyloid-β (Aβ), potentially triggering earlier cognitive decline and conversion to AD. Building on such findings, this review has four goals: evaluating (i) associations and plausible mechanisms linking non-rapid-eye-movement (NREM) sleep disruption, Aβ, and AD; (ii) a role for NREM sleep disruption as a novel factor linking cortical Aβ to impaired hippocampus-dependent memory consolidation; (iii) the potential diagnostic utility of NREM sleep disruption as a new biomarker of AD; and (iv) the possibility of sleep as a new treatment target in aging, affording preventative and therapeutic benefits.
Collapse
Affiliation(s)
- Bryce A Mander
- Sleep and Neuroimaging Laboratory University of California, Berkeley, CA 94720-1650, USA.
| | - Joseph R Winer
- Sleep and Neuroimaging Laboratory University of California, Berkeley, CA 94720-1650, USA
| | - William J Jagust
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720-1650, USA; Molecular Biophysics and Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Matthew P Walker
- Sleep and Neuroimaging Laboratory University of California, Berkeley, CA 94720-1650, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720-1650, USA.
| |
Collapse
|
42
|
Gotter AL, Forman MS, Harrell CM, Stevens J, Svetnik V, Yee KL, Li X, Roecker AJ, Fox SV, Tannenbaum PL, Garson SL, Lepeleire ID, Calder N, Rosen L, Struyk A, Coleman PJ, Herring WJ, Renger JJ, Winrow CJ. Orexin 2 Receptor Antagonism is Sufficient to Promote NREM and REM Sleep from Mouse to Man. Sci Rep 2016; 6:27147. [PMID: 27256922 PMCID: PMC4891657 DOI: 10.1038/srep27147] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 05/16/2016] [Indexed: 11/26/2022] Open
Abstract
Orexin neuropeptides regulate sleep/wake through orexin receptors (OX1R, OX2R); OX2R is the predominant mediator of arousal promotion. The potential for single OX2R antagonism to effectively promote sleep has yet to be demonstrated in humans. MK-1064 is an OX2R-single antagonist. Preclinically, MK-1064 promotes sleep and increases both rapid eye movement (REM) and non-REM (NREM) sleep in rats at OX2R occupancies higher than the range observed for dual orexin receptor antagonists. Similar to dual antagonists, MK-1064 increases NREM and REM sleep in dogs without inducing cataplexy. Two Phase I studies in healthy human subjects evaluated safety, tolerability, pharmacokinetics and sleep-promoting effects of MK-1064, and demonstrated dose-dependent increases in subjective somnolence (via Karolinska Sleepiness Scale and Visual Analogue Scale measures) and sleep (via polysomnography), including increased REM and NREM sleep. Thus, selective OX2R antagonism is sufficient to promote REM and NREM sleep across species, similarly to that seen with dual orexin receptor antagonism.
Collapse
Affiliation(s)
| | - Mark S. Forman
- Department of Translational Medicine, Merck & Co. Inc., Kenilworth, NJ, USA
| | | | - Joanne Stevens
- Department of in vivo Pharmacology, Merck & Co. Inc., Kenilworth, NJ, USA
| | - Vladimir Svetnik
- Department of Biostatistics and Research Decision Sciences, Merck & Co. Inc., Kenilworth, NJ, USA
| | - Ka Lai Yee
- Department of Pharmacokinetics Pharmacodynamics and Drug Metabolism, Merck & Co. Inc., Kenilworth, NJ, USA
| | - Xiaodong Li
- Department of Pharmacokinetics Pharmacodynamics and Drug Metabolism, Merck & Co. Inc., Kenilworth, NJ, USA
| | - Anthony J. Roecker
- Department of Medicinal Chemistry, Merck & Co. Inc., Kenilworth, NJ, USA
| | - Steven V. Fox
- Department of in vivo Pharmacology, Merck & Co. Inc., Kenilworth, NJ, USA
| | | | - Susan L. Garson
- Department of Neuroscience, Merck & Co. Inc., Kenilworth, NJ, USA
| | - Inge De Lepeleire
- Department of Translational Medicine, Merck & Co. Inc., Kenilworth, NJ, USA
| | - Nicole Calder
- Department of Clinical Neuroscience, Merck & Co. Inc., Kenilworth, NJ, USA
| | - Laura Rosen
- Department of Clinical Neuroscience, Merck & Co. Inc., Kenilworth, NJ, USA
| | - Arie Struyk
- Department of Translational Medicine, Merck & Co. Inc., Kenilworth, NJ, USA
| | - Paul J. Coleman
- Department of Medicinal Chemistry, Merck & Co. Inc., Kenilworth, NJ, USA
| | - W. Joseph Herring
- Department of Clinical Neuroscience, Merck & Co. Inc., Kenilworth, NJ, USA
| | - John J. Renger
- Department of Neuroscience, Merck & Co. Inc., Kenilworth, NJ, USA
| | | |
Collapse
|
43
|
Tannenbaum PL, Tye SJ, Stevens J, Gotter AL, Fox SV, Savitz AT, Coleman PJ, Uslaner JM, Kuduk SD, Hargreaves R, Winrow CJ, Renger JJ. Inhibition of Orexin Signaling Promotes Sleep Yet Preserves Salient Arousability in Monkeys. Sleep 2016; 39:603-12. [PMID: 26943466 DOI: 10.5665/sleep.5536] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 10/04/2015] [Indexed: 11/03/2022] Open
Abstract
STUDY OBJECTIVES In addition to enhancing sleep onset and maintenance, a desirable insomnia therapeutic agent would preserve healthy sleep's ability to wake and respond to salient situations while maintaining sleep during irrelevant noise. Dual orexin receptor antagonists (DORAs) promote sleep by selectively inhibiting wake-promoting neuropeptide signaling, unlike global inhibition of central nervous system excitation by gamma-aminobutyric acid (GABA)-A receptor (GABAaR) modulators. We evaluated the effect of DORA versus GABAaR modulators on underlying sleep architecture, ability to waken to emotionally relevant stimuli versus neutral auditory cues, and performance on a sleepiness-sensitive cognitive task upon awakening. METHODS DORA-22 and GABAaR modulators (eszopiclone, diazepam) were evaluated in adult male rhesus monkeys (n = 34) with continuous polysomnography recordings in crossover studies of sleep architecture, arousability to a classically conditioned salient versus neutral acoustical stimulus, and psychomotor vigilance task (PVT) performance if awakened. RESULTS All compounds decreased wakefulness, but only DORA-22 sleep resembled unmedicated sleep in terms of underlying sleep architecture, preserved ability to awaken to salient-conditioned acoustic stimuli while maintaining sleep during neutral acoustic stimuli, and no congnitive impairment in PVT performance. Although GABAaR modulators induced lighter sleep, monkeys rarely woke to salient stimuli and PVT performance was impaired if monkeys were awakened. CONCLUSIONS In nonhuman primates, DORAs' targeted mechanism for promoting sleep protects the ability to selectively arouse to salient stimuli and perform attentional tasks unimpaired, suggesting meaningful differentiation between a hypnotic agent that works through antagonizing orexin wake signaling versus the sedative hypnotic effects of the GABAaR modulator mechanism of action.
Collapse
Affiliation(s)
- Pamela L Tannenbaum
- Department of Pharmacology, Merck Research Laboratories, Merck & Co., Inc., West Point, PA
| | - Spencer J Tye
- Department of Pharmacology, Merck Research Laboratories, Merck & Co., Inc., West Point, PA
| | - Joanne Stevens
- Department of Pharmacology, Merck Research Laboratories, Merck & Co., Inc., West Point, PA
| | - Anthony L Gotter
- Department of Neuroscience, Merck Research Laboratories, Merck & Co., Inc., West Point, PA
| | - Steven V Fox
- Department of Pharmacology, Merck Research Laboratories, Merck & Co., Inc., West Point, PA
| | - Alan T Savitz
- Department of Pharmacology, Merck Research Laboratories, Merck & Co., Inc., West Point, PA
| | - Paul J Coleman
- Department of Medicinal Chemistry, Merck Research Laboratories, Merck & Co., Inc., West Point, PA
| | - Jason M Uslaner
- Department of Pharmacology, Merck Research Laboratories, Merck & Co., Inc., West Point, PA
| | - Scott D Kuduk
- Department of Medicinal Chemistry, Merck Research Laboratories, Merck & Co., Inc., West Point, PA
| | - Richard Hargreaves
- Department of Neuroscience, Merck Research Laboratories, Merck & Co., Inc., West Point, PA
| | - Christopher J Winrow
- Department of Neuroscience, Merck Research Laboratories, Merck & Co., Inc., West Point, PA
| | - John J Renger
- Department of Neuroscience, Merck Research Laboratories, Merck & Co., Inc., West Point, PA
| |
Collapse
|
44
|
Arbon EL, Knurowska M, Dijk DJ. Randomised clinical trial of the effects of prolonged-release melatonin, temazepam and zolpidem on slow-wave activity during sleep in healthy people. J Psychopharmacol 2015; 29:764-76. [PMID: 25922426 DOI: 10.1177/0269881115581963] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Current pharmacological treatments for insomnia include benzodiazepine and non-benzodiazepine hypnotics targeting γ-aminobutyric acid (GABA)A receptors, as well as agonists of the melatonin receptors MT1 and MT2. Melatonin, temazepam and zolpidem are thought to exert their effect through different mechanisms of action, but whether this leads to differential effects on electroencephalogram (EEG) power spectra during sleep in middle-aged people is currently not known. To establish whether the effects of prolonged-release melatonin (2 mg) on the nocturnal sleep EEG are different to those of temazepam (20 mg) and zolpidem (10 mg). Sixteen healthy men and women aged 55-64 years participated in a double-blind, placebo-controlled, four-way cross-over trial. Nocturnal sleep was assessed with polysomnography and spectral analysis of the EEG. The effects of single oral doses of prolonged-release melatonin, temazepam and zolpidem on EEG slow-wave activity (SWA, 0.75-4.5 Hz) and other frequencies during nocturnal non-rapid eye movement (NREM) sleep were compared. In an entire night analysis prolonged-release melatonin did not affect SWA, whereas temazepam and zolpidem significantly reduced SWA compared with placebo. Temazepam significantly reduced SWA compared with prolonged-release melatonin. Prolonged-release melatonin only reduced SWA during the first third of the night compared with placebo. These data show that the effects of prolonged-release melatonin on the nocturnal sleep EEG are minor and are different from those of temazepam and zolpidem; this is likely due to the different mechanisms of action of the medications.
Collapse
Affiliation(s)
- Emma L Arbon
- Surrey Sleep Research Centre, University of Surrey, Guildford, UK
| | | | - Derk-Jan Dijk
- Surrey Sleep Research Centre, University of Surrey, Guildford, UK
| |
Collapse
|
45
|
Abstract
Suvorexant (Belsorma(®)) is the first orexin receptor antagonist approved by the US FDA (August 2014) for insomnia treatment. Following comprehensive Phase II/III studies, with up to 12 months of treatment in adult and elderly patients, there is little doubt that suvorexant induces and maintains sleep. However, the FDA and sponsor disagreed about effective versus safe doses (November 2012). The FDA considered that 5-15 mg were efficient and probably safe, whereas the sponsors had proposed 15-40 mg. The final approved doses are 5, 10, 15 and 20 mg. The major issues are next-morning somnolence and safety as seen in driving tests, with possible signs of muscle weakness, weird dreams, sleep walking, other nighttime behaviors and suicidal ideation. Despite its limitations, suvorexant's market entry offers a truly novel treatment for insomnia, paving the way for follow-up compounds and opening therapeutic avenues in other disorders for orexin receptor modulating compounds.
Collapse
Affiliation(s)
- Laura H Jacobson
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | | | | |
Collapse
|
46
|
An experimental evaluation of a new designed apparatus (NDA) for the rapid measurement of impaired motor function in rats. J Neurosci Methods 2015; 251:138-42. [PMID: 26051554 DOI: 10.1016/j.jneumeth.2015.05.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/17/2015] [Accepted: 05/28/2015] [Indexed: 11/20/2022]
Abstract
BACKGROUND Assessment of the ability of rat to balance by rotarod apparatus (ROTA) is frequently used as a measure of impaired motor system function. Most of these methods have some disadvantages, such as failing to sense motor coordination rather than endurance and as the sensitivity of the method is low, more animals are needed to obtain statistically significant results. NEW METHOD We have designed and tested a new designed apparatus (NDA) to measure motor system function in rats. Our system consists of a glass box containing 4 beams which placed with 1cm distance between them, two electrical motors for rotating the beams, and a camera to record the movements of the rats. The RPM of the beams is adjustable digitally between 0 and 50 rounds per minute. RESULTS We evaluated experimentally the capability of the NDA for the rapid measurement of impaired motor function in rats. Also we demonstrated that the sensitivity of the NDA increases by faster rotation speeds and may be more sensitive than ROTA for evaluating of impaired motor system function. COMPARISON WITH EXISTING METHODS Compared to a previous version of this task, our NDA provides a more efficient method to test rodents for studies of motor system function after impaired motor nervous system. CONCLUSIONS In summary, our NDA will allow high efficient monitoring of rat motor system function and may be more sensitive than ROTA for evaluating of impaired motor system function in rats.
Collapse
|
47
|
Suzuki R, Nozawa D, Futamura A, Nishikawa-Shimono R, Abe M, Hattori N, Ohta H, Araki Y, Kambe D, Ohmichi M, Tokura S, Aoki T, Ohtake N, Kawamoto H. Discovery and in vitro and in vivo profiles of N-ethyl-N-[2-[3-(5-fluoro-2-pyridinyl)-1H-pyrazol-1-yl]ethyl]-2-(2H-1,2,3-triazol-2-yl)-benzamide as a novel class of dual orexin receptor antagonist. Bioorg Med Chem 2015; 23:1260-75. [DOI: 10.1016/j.bmc.2015.01.044] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 01/23/2015] [Accepted: 01/23/2015] [Indexed: 12/11/2022]
|
48
|
Abad VC, Guilleminault C. Pharmacological treatment of sleep disorders and its relationship with neuroplasticity. Curr Top Behav Neurosci 2015; 25:503-53. [PMID: 25585962 DOI: 10.1007/7854_2014_365] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Sleep and wakefulness are regulated by complex brain circuits located in the brain stem, thalamus, subthalamus, hypothalamus, basal forebrain, and cerebral cortex. Wakefulness and NREM and REM sleep are modulated by the interactions between neurotransmitters that promote arousal and neurotransmitters that promote sleep. Various lines of evidence suggest that sleep disorders may negatively affect neuronal plasticity and cognitive function. Pharmacological treatments may alleviate these effects but may also have adverse side effects by themselves. This chapter discusses the relationship between sleep disorders, pharmacological treatments, and brain plasticity, including the treatment of insomnia, hypersomnias such as narcolepsy, restless legs syndrome (RLS), obstructive sleep apnea (OSA), and parasomnias.
Collapse
Affiliation(s)
- Vivien C Abad
- Psychiatry and Behavioral Science-Division of Sleep Medicine, Stanford University School of Medicine, Palo Alto, CA, USA
| | | |
Collapse
|
49
|
Cerri M, Del Vecchio F, Mastrotto M, Luppi M, Martelli D, Perez E, Tupone D, Zamboni G, Amici R. Enhanced slow-wave EEG activity and thermoregulatory impairment following the inhibition of the lateral hypothalamus in the rat. PLoS One 2014; 9:e112849. [PMID: 25398141 PMCID: PMC4232523 DOI: 10.1371/journal.pone.0112849] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 10/15/2014] [Indexed: 12/21/2022] Open
Abstract
Neurons within the lateral hypothalamus (LH) are thought to be able to evoke behavioural responses that are coordinated with an adequate level of autonomic activity. Recently, the acute pharmacological inhibition of LH has been shown to depress wakefulness and promote NREM sleep, while suppressing REM sleep. These effects have been suggested to be the consequence of the inhibition of specific neuronal populations within the LH, i.e. the orexin and the MCH neurons, respectively. However, the interpretation of these results is limited by the lack of quantitative analysis of the electroencephalographic (EEG) activity that is critical for the assessment of NREM sleep quality and the presence of aborted NREM-to-REM sleep transitions. Furthermore, the lack of evaluation of the autonomic and thermoregulatory effects of the treatment does not exclude the possibility that the wake-sleep changes are merely the consequence of the autonomic, in particular thermoregulatory, changes that may follow the inhibition of LH neurons. In the present study, the EEG and autonomic/thermoregulatory effects of a prolonged LH inhibition provoked by the repeated local delivery of the GABAA agonist muscimol were studied in rats kept at thermoneutral (24°C) and at a low (10°C) ambient temperature (Ta), a condition which is known to depress sleep occurrence. Here we show that: 1) at both Tas, LH inhibition promoted a peculiar and sustained bout of NREM sleep characterized by an enhancement of slow-wave activity with no NREM-to-REM sleep transitions; 2) LH inhibition caused a marked transitory decrease in brain temperature at Ta 10°C, but not at Ta 24°C, suggesting that sleep changes induced by LH inhibition at thermoneutrality are not caused by a thermoregulatory impairment. These changes are far different from those observed after the short-term selective inhibition of either orexin or MCH neurons, suggesting that other LH neurons are involved in sleep-wake modulation.
Collapse
Affiliation(s)
- Matteo Cerri
- Department of Biomedical and NeuroMotor Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Flavia Del Vecchio
- Department of Biomedical and NeuroMotor Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Marco Mastrotto
- Department of Biomedical and NeuroMotor Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Marco Luppi
- Department of Biomedical and NeuroMotor Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Davide Martelli
- Department of Biomedical and NeuroMotor Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Emanuele Perez
- Department of Biomedical and NeuroMotor Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Domenico Tupone
- Department of Biomedical and NeuroMotor Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Giovanni Zamboni
- Department of Biomedical and NeuroMotor Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Roberto Amici
- Department of Biomedical and NeuroMotor Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| |
Collapse
|
50
|
Ma J, Svetnik V, Snyder E, Lines C, Roth T, Herring WJ. Electroencephalographic power spectral density profile of the orexin receptor antagonist suvorexant in patients with primary insomnia and healthy subjects. Sleep 2014; 37:1609-19. [PMID: 25197807 PMCID: PMC4173918 DOI: 10.5665/sleep.4068] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 04/25/2014] [Indexed: 11/03/2022] Open
Abstract
STUDY OBJECTIVES Suvorexant, an orexin receptor antagonist, improves sleep in healthy subjects (HS) and patients with insomnia. We compared the electroencephalographic (EEG) power spectral density (PSD) profile of suvorexant with placebo using data from a phase 2 trial in patients with insomnia. We also compared suvorexant's PSD profile with the profiles of other insomnia treatments using data from 3 HS studies. DESIGN Phase 2 trial--randomized, double-blind, two-period (4 w per period) crossover. HS studies--randomized, double-blind, crossover. SETTING Sleep laboratories. PARTICIPANTS Insomnia patients (n = 229) or HS (n = 124). INTERVENTIONS Phase 2 trial--suvorexant 10 mg, 20 mg, 40 mg, 80 mg, placebo; HS study 1--suvorexant 10 mg, 50 mg, placebo; HS study 2--gaboxadol 15 mg, zolpidem 10 mg, placebo; HS study 3--trazodone 150 mg, placebo. MEASUREMENTS AND RESULTS The PSD of the EEG signal at 1-32 Hz of each PSG recording during nonrapid eye movement (NREM) and rapid eye movement (REM) sleep were calculated. The day 1 and day 28 PSD profiles of suvorexant at all four doses during NREM and REM sleep in patients with insomnia were generally flat and close to 1.0 (placebo) at all frequencies. The day 1 PSD profile of suvorexant in HS was similar to that in insomnia patients. In contrast, the other three drugs had distinct PSD profiles in HS that differed from each other. CONCLUSIONS Suvorexant at clinically effective doses had limited effects on power spectral density compared with placebo in healthy subjects and in patients with insomnia, in contrast to the three comparison insomnia treatments. These findings suggest the possibility that antagonism of the orexin pathway might lead to improvements in sleep without major changes in the patient's neurophysiology as assessed by electroencephalographic.
Collapse
Affiliation(s)
- Junshui Ma
- Merck & Co., Inc., Whitehouse Station, NJ
| | | | | | | | - Thomas Roth
- Henry Ford Hospital Sleep Center, Detroit, MI
| | | |
Collapse
|