1
|
Laing PAF, Vervliet B, Dunsmoor JE, Harrison BJ. Pavlovian safety learning: An integrative theoretical review. Psychon Bull Rev 2025; 32:176-202. [PMID: 39167292 DOI: 10.3758/s13423-024-02559-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2024] [Indexed: 08/23/2024]
Abstract
Safety learning involves associating stimuli with the absence of threats, enabling the inhibition of fear and anxiety. Despite growing interest in psychology, psychiatry, and neuroscience, safety learning lacks a formal consensus definition, leading to inconsistent methodologies and varied results. Conceptualized as a form of inhibitory learning (conditioned inhibition), safety learning can be understood through formal learning theories, such as the Rescorla-Wagner and Pearce-Hall models. This review aims to establish a principled conceptualization of 'Pavlovian safety learning', identifying cognitive mechanisms that generate safety and the boundary conditions that constrain it. Based on these observations, we define Pavlovian safety learning as an active associative process, where surprising threat-omission (safety prediction error) acts as a salient reinforcing event. Instead of producing merely neutral or nonaversive states, safety learning endows stimuli with active positive associations to 'safety'. The resulting stimulus-safety memories counteract the influence of fear memories, promoting fear regulation, positive affect, and relief. We critically analyze traditional criteria of conditioned inhibition for their relevance to safety and propose areas for future innovation. A principled concept of Pavlovian safety learning may reduce methodological inconsistencies, stimulate translational research, and facilitate a comprehensive understanding of an indispensable psychological construct.
Collapse
Affiliation(s)
- Patrick A F Laing
- Department of Psychiatry and Behavioral Sciences, Dell Medical School, The University of Texas at Austin, Austin, TX, 78712, USA.
- Institute for Neuroscience, The University of Texas at Austin, Austin, TX, 78712, USA.
| | - Bram Vervliet
- Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Joseph E Dunsmoor
- Department of Psychiatry and Behavioral Sciences, Dell Medical School, The University of Texas at Austin, Austin, TX, 78712, USA
- Institute for Neuroscience, The University of Texas at Austin, Austin, TX, 78712, USA
- Department of Neuroscience, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Ben J Harrison
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Parkville, Australia
| |
Collapse
|
2
|
Heesbeen EJ, Bijlsma EY, Risseeuw TA, Hessel EVS, Groenink L. A systematic approach to identify gaps in neuroimmunology: TNF-α and fear learning deficits, a worked example. Brain Behav Immun 2025; 123:752-764. [PMID: 39442635 DOI: 10.1016/j.bbi.2024.10.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 10/15/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND The pathophysiology of several neurodegenerative and neuropsychiatric disorders is linked to an altered immune system. However, it is often unclear how the immune system specifically affects these disorders since neuroimmune interactions are very complex. In this paper, we introduce an adjusted version of the adverse outcome pathway (AOP) approach from toxicology to the field of neuroimmunology. A review of the effect of TNF-α on fear learning deficits is used as a worked example to demonstrate how an AOP approach can help identify gaps of knowledge and crucial steps in the pathophysiology of neuroimmunological disorders. METHODS The AOP was constructed in five steps. First, the adverse outcome was formulated clearly and specifically. Second, the link between the molecular initiating event and the adverse outcome was established with a preliminary literature search in the Medline database. Third, a systematic literature search was performed in which we identified 95 relevant articles. Fourth, the main biological processes and relevant key events were identified. Fifth, the links between key events were determined and an AOP network was constructed. RESULTS We identified three pathways through which TNF-α may affect fear learning. First, TNF-α receptor activation increases NF-κB levels which increases oxidative stress levels and reduces the activity of glutamate transporters. This alters the synaptic plasticity which is associated with impaired fear acquisition, consolidation, and fear extinction. Second, activation of TNF-α receptors increases the expression and capacity of the serotonin transporter which is linked to impaired fear acquisition, expression, and extinction. Third, TNF-α receptor 1 activation can induce necroptosis, leading to neuroinflammation which is linked to fear learning deficits. CONCLUSION To successfully apply the AOP approach in neuroimmunology we recommend defining adverse outcomes more precisely, establishing stronger connections between key events from various biological processes, incorporating feedforward and feedback loops, and identifying more mechanistic knowledge in later key events. These adjustments are needed to map the complex processes within the field of neuroimmunology and to identify gaps of knowledge.
Collapse
Affiliation(s)
- Elise J Heesbeen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands (the).
| | - Elisabeth Y Bijlsma
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands (the)
| | - Tristan A Risseeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands (the)
| | - Ellen V S Hessel
- Public Health and Health Services, RIVM National Institute for Public Health and the Environment, Bilthoven, Netherlands (the)
| | - Lucianne Groenink
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands (the)
| |
Collapse
|
3
|
Lanters LR, Öhlmann H, Langhorst J, Theysohn N, Engler H, Icenhour A, Elsenbruch S. Disease-specific alterations in central fear network engagement during acquisition and extinction of conditioned interoceptive fear in inflammatory bowel disease. Mol Psychiatry 2024; 29:3527-3536. [PMID: 38802508 PMCID: PMC11541002 DOI: 10.1038/s41380-024-02612-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024]
Abstract
Interoceptive fear, which is shaped by associative threat learning and memory processes, plays a central role in abnormal interoception and psychiatric comorbidity in conditions of the gut-brain axis. Although animal and human studies support that acute inflammation induces brain alterations in the central fear network, mechanistic knowledge in patients with chronic inflammatory conditions remains sparse. We implemented a translational fear conditioning paradigm to elucidate central fear network reactivity in patients with quiescent inflammatory bowel disease (IBD), compared to patients with irritable bowel syndrome (IBS) and healthy controls (HC). Using functional magnetic resonance imaging, conditioned differential neural responses within regions of the fear network were analyzed during acquisition and extinction learning. In contrast to HC and IBS, IBD patients demonstrated distinctly altered engagement of key regions of the central fear network, including amygdala and hippocampus, during differential interoceptive fear learning, with more pronounced responses to conditioned safety relative to pain-predictive cues. Aberrant hippocampal responses correlated with chronic stress exclusively in IBD. During extinction, differential engagement was observed in IBD compared to IBS patients within amygdala, ventral anterior insula, and thalamus. No group differences were found in changes of cue valence as a behavioral measure of fear acquisition and extinction. Together, the disease-specific alterations in neural responses during interoceptive fear conditioning in quiescent IBD suggest persisting effects of recurring intestinal inflammation on central fear network reactivity. Given the crucial role of interoceptive fear in abnormal interoception, these findings point towards inflammation-related brain alterations as one trajectory to bodily symptom chronicity and psychiatric comorbidity. Patients with inflammatory conditions of the gut-brain axis may benefit from tailored treatment approaches targeting maladaptive interoceptive fear.
Collapse
Affiliation(s)
- Laura R Lanters
- Department of Neurology, Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Hanna Öhlmann
- Department of Medical Psychology and Medical Sociology, Ruhr University Bochum, Bochum, Germany
| | - Jost Langhorst
- Department for Internal and Integrative Medicine, Sozialstiftung Bamberg, Bamberg, Germany
- Department for Integrative Medicine, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Nina Theysohn
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Harald Engler
- Institute of Medical Psychology and Behavioral Immunobiology, Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Adriane Icenhour
- Department of Medical Psychology and Medical Sociology, Ruhr University Bochum, Bochum, Germany
| | - Sigrid Elsenbruch
- Department of Neurology, Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
- Department of Medical Psychology and Medical Sociology, Ruhr University Bochum, Bochum, Germany.
| |
Collapse
|
4
|
Fleury J, Komnenich P, Coon DW, Pituch K. Feasibility of the Remembering Warmth and Safeness Intervention in older ADRD caregivers. Geriatr Nurs 2024; 59:40-47. [PMID: 38986428 DOI: 10.1016/j.gerinurse.2024.06.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/19/2024] [Accepted: 06/27/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND The number of older adults in the U.S. living with ADRD is projected to increase dramatically by 2060. As older adults increasingly assume informal caregiving responsibilities, community-based intervention to sustain caregiver well-being is a dementia research priority. OBJECTIVE To evaluate the feasibility of the RWSI among older ADRD caregivers. The RWSI is informed by the Neurovisceral Integration Model, in which memories that engage safety signals cultivate feelings of safety and well-being. METHODS A within-subjects pre/post-intervention design with older ADRD caregivers to evaluate feasibility (acceptability, demand, fidelity) and empirical promise (well-being). RESULTS The feasibility of the RWSI, implemented with fidelity, was strongly endorsed, as participants attended each intervention session, after which reported experiencing feelings of warmth and safeness, and provided the highest possible acceptability ratings. Participant narratives provided corroboration. DISCUSSION Findings support the feasibility of the RWSI in older ADRD caregivers, providing the basis for continued research.
Collapse
Affiliation(s)
- Julie Fleury
- Hanner Memorial Endowed Professor, Edson College of Nursing and Health Innovation, Center for Innovation in Healthy and Resilient Aging, Arizona State University, United States.
| | - Pauline Komnenich
- Professor, Edson College of Nursing and Health Innovation, Center for Innovation in Healthy and Resilient Aging, Arizona State University, United States
| | - David W Coon
- Professor, Edson College of Nursing and Health Innovation, Center for Innovation in Healthy and Resilient Aging, Arizona State University, United States
| | - Keenan Pituch
- Professor, Edson College of Nursing and Health Innovation, Center for Innovation in Healthy and Resilient Aging, Arizona State University, United States
| |
Collapse
|
5
|
Wang Z, Wang Z, Zhou Q. Modulation of learning safety signals by acute stress: paraventricular thalamus and prefrontal inhibition. Neuropsychopharmacology 2024; 49:961-973. [PMID: 38182776 PMCID: PMC11039638 DOI: 10.1038/s41386-023-01790-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 12/07/2023] [Accepted: 12/18/2023] [Indexed: 01/07/2024]
Abstract
Distinguishing between cues predicting safety and danger is crucial for survival. Impaired learning of safety cues is a central characteristic of anxiety-related disorders. Despite recent advances in dissecting the neural circuitry underlying the formation and extinction of conditioned fear, the neuronal basis mediating safety learning remains elusive. Here, we showed that safety learning reduces the responses of paraventricular thalamus (PVT) neurons to safety cues, while activation of these neurons controls both the formation and expression of safety memory. Additionally, the PVT preferentially activates prefrontal cortex somatostatin interneurons (SOM-INs), which subsequently inhibit parvalbumin interneurons (PV-INs) to modulate safety memory. Importantly, we demonstrate that acute stress impairs the expression of safety learning, and this impairment can be mitigated when the PVT is inhibited, indicating PVT mediates the stress effect. Altogether, our findings provide insights into the mechanism by which acute stress modulates safety learning.
Collapse
Affiliation(s)
- Zongliang Wang
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Zeyi Wang
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Qiang Zhou
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| |
Collapse
|
6
|
Schmidt K, Schlitt F, Wiech K, Merz CJ, Kleine-Borgmann J, Wolf OT, Engler H, Forkmann K, Elsenbruch S, Bingel U. Hydrocortisone Differentially Affects Reinstatement of Pain-related Responses in Patients With Chronic Back Pain and Healthy Volunteers. THE JOURNAL OF PAIN 2024; 25:1082-1093. [PMID: 37956744 DOI: 10.1016/j.jpain.2023.10.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/11/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023]
Abstract
Despite the crucial role of effective and sustained extinction of conditioned pain-related fear in cognitive-behavioral treatment approaches for chronic pain, experimental research on extinction memory retrieval in chronic pain remains scarce. In healthy populations, extinction efficacy of fear memory is affected by stress. Therefore, we investigated the effects of oral hydrocortisone administration on the reinstatement of pain-related associations in 57 patients with non-specific chronic back pain (CBP) and 59 healthy control (HC) participants in a differential pain-related conditioning paradigm within a placebo-controlled, randomized, and double-blind design. Participants' skin conductance responses indicate hydrocortisone-induced reinstatement effects in HCs but no observable reinstatement in HCs receiving placebo treatment. Interestingly, these effects were reversed in patients with CBP, that is, reinstatement responses were only observed in the placebo and not in the hydrocortisone group. Our findings corroborate previous evidence of stress-induced effects on extinction efficacy and reinstatement of fear memory in HCs, extending them into the pain context, and call for more research to clarify the role of stress in fear extinction and return of fear phenomena possibly contributing to treatment failure in chronic pain treatment. PERSPECTIVE: Opposing effects in HCs and patients with non-specific CBP may be associated with changes in the patients' stress systems. These findings could be of relevance to optimizing psychological, extinction-based treatment approaches.
Collapse
Affiliation(s)
- Katharina Schmidt
- Department of Neurology, Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Frederik Schlitt
- Department of Neurology, Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Katja Wiech
- Department of Neurology, Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, University of Duisburg-Essen, Essen, Germany; Wellcome Centre for Integrative Neuroimaging (WIN), Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Christian J Merz
- Department of Cognitive Psychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
| | - Julian Kleine-Borgmann
- Department of Neurology, Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Oliver T Wolf
- Department of Cognitive Psychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
| | - Harald Engler
- Institute of Medical Psychology and Behavioral Immunobiology, Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Katarina Forkmann
- Department of Neurology, Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Sigrid Elsenbruch
- Department of Neurology, Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, University of Duisburg-Essen, Essen, Germany; Department of Medical Psychology and Medical Sociology, Ruhr University Bochum, Bochum, Germany
| | - Ulrike Bingel
- Department of Neurology, Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
7
|
Zillig AL, Pauli P, Wieser M, Reicherts P. Better safe than sorry?-On the influence of learned safety on pain perception. PLoS One 2023; 18:e0289047. [PMID: 37934741 PMCID: PMC10629634 DOI: 10.1371/journal.pone.0289047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 07/10/2023] [Indexed: 11/09/2023] Open
Abstract
The experience of threat was found to result-mostly-in increased pain, however it is still unclear whether the exact opposite, namely the feeling of safety may lead to a reduction of pain. To test this hypothesis, we conducted two between-subject experiments (N = 94; N = 87), investigating whether learned safety relative to a neutral control condition can reduce pain, while threat should lead to increased pain compared to a neutral condition. Therefore, participants first underwent either threat or safety conditioning, before entering an identical test phase, where the previously conditioned threat or safety cue and a newly introduced visual cue were presented simultaneously with heat pain stimuli. Methodological changes were performed in experiment 2 to prevent safety extinction and to facilitate conditioning in the first place: We included additional verbal instructions, increased the maximum length of the ISI and raised CS-US contingency in the threat group from 50% to 75%. In addition to pain ratings and ratings of the visual cues (threat, safety, arousal, valence, and contingency), in both experiments, we collected heart rate and skin conductance. Analysis of the cue ratings during acquisition indicate successful threat and safety induction, however results of the test phase, when also heat pain was administered, demonstrate rapid safety extinction in both experiments. Results suggest rather small modulation of subjective and physiological pain responses following threat or safety cues relative to the neutral condition. However, exploratory analysis revealed reduced pain ratings in later trials of the experiment in the safety group compared to the threat group in both studies, suggesting different temporal dynamics for threat and safety learning and extinction, respectively. Perspective: The present results demonstrate the challenge to maintain safety in the presence of acute pain and suggest more research on the interaction of affective learning mechanism and pain processing.
Collapse
Affiliation(s)
- Anna-Lena Zillig
- Department of Psychology, University of Würzburg, Würzburg, Germany
| | - Paul Pauli
- Department of Psychology, University of Würzburg, Würzburg, Germany
| | - Matthias Wieser
- Department of Clinical Psychology, Erasmus University of Rotterdam, Rotterdam, Netherlands
| | - Philipp Reicherts
- Department of Medical Psychology and Sociology, University of Augsburg, Augsburg, Germany
| |
Collapse
|
8
|
Heesbeen EJ, Bijlsma EY, Verdouw PM, van Lissa C, Hooijmans C, Groenink L. The effect of SSRIs on fear learning: a systematic review and meta-analysis. Psychopharmacology (Berl) 2023; 240:2335-2359. [PMID: 36847831 PMCID: PMC10593621 DOI: 10.1007/s00213-023-06333-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 01/31/2023] [Indexed: 03/01/2023]
Abstract
RATIONALE Selective serotonin reuptake inhibitors (SSRIs) are considered first-line medication for anxiety-like disorders such as panic disorder, generalized anxiety disorder, and post-traumatic stress disorder. Fear learning plays an important role in the development and treatment of these disorders. Yet, the effect of SSRIs on fear learning are not well known. OBJECTIVE We aimed to systematically review the effect of six clinically effective SSRIs on acquisition, expression, and extinction of cued and contextual conditioned fear. METHODS We searched the Medline and Embase databases, which yielded 128 articles that met the inclusion criteria and reported on 9 human and 275 animal experiments. RESULTS Meta-analysis showed that SSRIs significantly reduced contextual fear expression and facilitated extinction learning to cue. Bayesian-regularized meta-regression further suggested that chronic treatment exerts a stronger anxiolytic effect on cued fear expression than acute treatment. Type of SSRI, species, disease-induction model, and type of anxiety test used did not seem to moderate the effect of SSRIs. The number of studies was relatively small, the level of heterogeneity was high, and publication bias has likely occurred which may have resulted in an overestimation of the overall effect sizes. CONCLUSIONS This review suggests that the efficacy of SSRIs may be related to their effects on contextual fear expression and extinction to cue, rather than fear acquisition. However, these effects of SSRIs may be due to a more general inhibition of fear-related emotions. Therefore, additional meta-analyses on the effects of SSRIs on unconditioned fear responses may provide further insight into the actions of SSRIs.
Collapse
Affiliation(s)
- Elise J Heesbeen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Elisabeth Y Bijlsma
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - P Monika Verdouw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Caspar van Lissa
- Department of Methodology, Tilburg University, Tilburg, Netherlands
| | - Carlijn Hooijmans
- Department of Anaesthesiology, Pain and Palliative Care, Radboud University Medical Center, Nijmegen, Netherlands
| | - Lucianne Groenink
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands.
| |
Collapse
|
9
|
Fitzgerald JM, Webb EK, Sangha S. Psychological and physiological correlates of stimulus discrimination in adults. Psychophysiology 2023; 60:e14327. [PMID: 37170664 PMCID: PMC10527767 DOI: 10.1111/psyp.14327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 03/20/2023] [Accepted: 04/12/2023] [Indexed: 05/13/2023]
Abstract
The discrimination of cues in the environment that signal danger ("fear cue") is important for survival but depends critically on the discernment of such cues from ones that pose no threat ("safety cues"). In rodents, we previously demonstrated the underlying neurobiological mechanisms that support fear versus safety discrimination and documented that these mechanisms extend to the discrimination of reward as well. While learning about reward is equally important for survival, it remains an under-studied area of research, particularly in human studies of conditional discrimination. In the present study, we translated our rodent task of fear reward and neutral discrimination (fear, reward, and neutral discrimination [FRND]) for use in humans. Undergraduate students (N = 53) completed the FRND while electrodermal activity was recorded. Skin conductance response (SCR) amplitude, a marker of arousal response, was derived for fear, reward, and neutral cues that signaled no outcome; critical trials assessed conditional discrimination using combined fear + neutral and reward + neutral cues. Participants provided likeability ratings for each cue type. Results demonstrated that participants rated reward cues the best, fear cues the worst, and neutral cues in between, while SCR amplitude was largest for fear and reward cues and lowest for neutral cues. SCR amplitudes were reduced for fear + neutral (compared to fear) and reward + neutral cues (compared to reward). Results demonstrate that the FRND is a useful paradigm for the assessment of psychological and physiological discrimination of fear and reward. Implications and directions for future work are discussed.
Collapse
Affiliation(s)
| | - E. Kate Webb
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
- Division of Depression and Anxiety, McLean Hospital, Belmont, Massachusetts, USA
| | - Susan Sangha
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
10
|
El Matine R, Kreutzmann JC, Fendt M. Chronic unilateral inhibition of GABA synthesis in the amygdala increases specificity of conditioned fear in a discriminative fear conditioning paradigm in rats. Prog Neuropsychopharmacol Biol Psychiatry 2023; 124:110732. [PMID: 36792003 DOI: 10.1016/j.pnpbp.2023.110732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/31/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023]
Abstract
Neural activity in the amygdala is critical for fear learning. In anxiety disorder patients, bilateral hyperactivity of the amygdala can be observed. This hyperactivation is often associated with the facilitation of fear learning and/or over-generalization of conditioned fear. In contrast, hypoactivity of the amygdala, e.g. by pharmacological interventions, attenuates or blocks fear learning. To date, little is known about how neural excitability of the amygdala affects specificity or generalization of fear. Therefore, the present study utilized chronic inhibition of GABA synthesis in the amygdala to increase excitability and investigated the effect on the specificity of fear learning. In rats, unilateral cannulas aiming at the amygdala were implanted. The cannulas were connected to subcutaneously implanted osmotic mini pumps that delivered either the GABA synthesis inhibitor L-allylglycine or its inactive enantiomer D-allylglycine. Following one week of chronic GABA synthesis manipulation, the rats were submitted to a discriminative fear conditioning protocol. In addition, anxiety-like behavior in the light-dark box was measured. Our data show that chronic unilateral L-AG infusions into the amygdala improve the specificity of learned fear, support safety learning, and reduce fear generalization and anxiety. This data demonstrates that moderately increased amygdala excitability can be beneficial for the specificity of fear learning and highlights the potential application for therapeutic interventions.
Collapse
Affiliation(s)
- Rami El Matine
- Institute for Pharmacology and Toxicology, Otto-von-Guericke University, Magdeburg, Germany
| | - Judith C Kreutzmann
- Institute for Pharmacology and Toxicology, Otto-von-Guericke University, Magdeburg, Germany
| | - Markus Fendt
- Institute for Pharmacology and Toxicology, Otto-von-Guericke University, Magdeburg, Germany; Center for Behavioral Brain Sciences, Otto-von-Guericke University, Magdeburg, Germany.
| |
Collapse
|
11
|
Owen C, Crane J. Trauma-Informed Design of Supported Housing: A Scoping Review through the Lens of Neuroscience. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14279. [PMID: 36361166 PMCID: PMC9658651 DOI: 10.3390/ijerph192114279] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/17/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
There is growing recognition of the importance of the design of the built environment in supporting mental health. In this context, trauma-informed design has emerged as a new field of practice targeting the design of the built environment to support wellbeing and ameliorate the physical, psychological and emotional impacts of trauma and related pathologies such as Post Traumatic Stress Disorder (PTSD). With high levels of prevalence of PTSD among people escaping homelessness and domestic violence, a priority area is the identification and application of evidence-based design solutions for trauma-informed supported housing. This study sought to examine the scope of existing evidence on the relationship between trauma, housing and design and the correlation of this evidence with trauma-informed design principles, and to identify gaps and opportunities for future research. In response to the commonly articulated limitations of the evidence-base in built environment design research, we combined a scoping review of literature on trauma, housing and design with insights from neuroscience to focus and extend understanding of the opportunities of trauma-informed design. We found that while limited in scope, there is strong alignment between existing evidence and the principles of trauma-informed design. We also identify three areas of future research related to the key domains of safety and security; control; and enriched environments.
Collapse
Affiliation(s)
- Ceridwen Owen
- School of Architecture and Design, College of Sciences and Engineering, University of Tasmania, Launceston, TAS 7250, Australia
| | - James Crane
- Tasmanian School of Medicine, University of Tasmania, Hobart, TAS 7000, Australia
| |
Collapse
|
12
|
Schlitt F, Schmidt K, Merz CJ, Wolf OT, Kleine-Borgmann J, Elsenbruch S, Wiech K, Forkmann K, Bingel U. Impaired pain-related threat and safety learning in patients with chronic back pain. Pain 2022; 163:1560-1570. [PMID: 35135995 PMCID: PMC9341232 DOI: 10.1097/j.pain.0000000000002544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/28/2021] [Accepted: 11/16/2021] [Indexed: 11/29/2022]
Abstract
ABSTRACT Pain-related learning mechanisms likely play a key role in the development and maintenance of chronic pain. Previous smaller-scale studies have suggested impaired pain-related learning in patients with chronic pain, but results are mixed, and chronic back pain (CBP) particularly has been poorly studied. In a differential conditioning paradigm with painful heat as unconditioned stimuli, we examined pain-related acquisition and extinction learning in 62 patients with CBP and 61 pain-free healthy male and female volunteers using valence and contingency ratings and skin conductance responses. Valence ratings indicate significantly reduced threat and safety learning in patients with CBP, whereas no significant differences were observed in contingency awareness and physiological responding. Moreover, threat learning in this group was more impaired the longer patients had been in pain. State anxiety was linked to increased safety learning in healthy volunteers but enhanced threat learning in the patient group. Our findings corroborate previous evidence of altered pain-related threat and safety learning in patients with chronic pain. Longitudinal studies exploring pain-related learning in (sub)acute and chronic pain are needed to further unravel the role of aberrant pain-related learning in the development and maintenance of chronic pain.
Collapse
Affiliation(s)
- Frederik Schlitt
- Department of Neurology, Center for Translational Neuro- and Behavioral Sciences, University Medicine Essen, Essen, Germany
| | - Katharina Schmidt
- Department of Neurology, Center for Translational Neuro- and Behavioral Sciences, University Medicine Essen, Essen, Germany
| | - Christian J. Merz
- Department of Cognitive Psychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
| | - Oliver T. Wolf
- Department of Cognitive Psychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
| | - Julian Kleine-Borgmann
- Department of Neurology, Center for Translational Neuro- and Behavioral Sciences, University Medicine Essen, Essen, Germany
| | - Sigrid Elsenbruch
- Department of Neurology, Center for Translational Neuro- and Behavioral Sciences, University Medicine Essen, Essen, Germany
- Department of Medical Psychology and Medical Sociology, Ruhr University Bochum, Bochum, Germany
| | - Katja Wiech
- Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative Neuroimaging (WIN), University of Oxford, John Radcliffe Hospital, Headley Way, Oxford, United Kingdom
| | - Katarina Forkmann
- Department of Neurology, Center for Translational Neuro- and Behavioral Sciences, University Medicine Essen, Essen, Germany
| | - Ulrike Bingel
- Department of Neurology, Center for Translational Neuro- and Behavioral Sciences, University Medicine Essen, Essen, Germany
| |
Collapse
|
13
|
Labrenz F, Spisák T, Ernst TM, Gomes CA, Quick HH, Axmacher N, Elsenbruch S, Timmann D. Temporal dynamics of fMRI signal changes during conditioned interoceptive pain-related fear and safety acquisition and extinction. Behav Brain Res 2022; 427:113868. [PMID: 35364111 DOI: 10.1016/j.bbr.2022.113868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 03/14/2022] [Accepted: 03/28/2022] [Indexed: 12/18/2022]
Abstract
Associative learning and memory mechanisms drive interoceptive signaling along the gut-brain axis, thus shaping affective-emotional reactions and behavior. Specifically, learning to predict potentially harmful, visceral pain is assumed to succeed within very few trials. However, the temporal dynamics of cerebellar and cerebral fMRI signal changes underlying early acquisition and extinction of learned fear signals and the concomitant evolvement of safety learning remain incompletely understood. 3T fMRI data of healthy individuals from three studies were uniformly processed across the whole brain and the cerebellum including an advanced normalizing method of the cerebellum. All studies employed differential delay conditioning (N=94) with one visual cue (CS+) being repeatedly paired with visceral pain as unconditioned stimulus (US) while a second cue remained unpaired (CS-). During subsequent extinction (N=51), all CS were presented without US. Behavioral results revealed increased CS+-aversiveness and CS--pleasantness after conditioning and diminished valence ratings for both CS following extinction. During early acquisition, the CS- induced linearly increasing neural activation in the insula, midcingulate cortex, hippocampus, precuneus as well as cerebral and cerebellar somatomotor regions. The comparison between acquisition and extinction phases yielded a CS--induced linear increase in the posterior cingulate cortex and precuneus during early acquisition, while there was no evidence for linear fMRI signal changes for the CS+ during acquisition and for both CS during extinction. Based on theoretical accounts of discrimination and temporal difference learning, these results suggest a gradual evolvement of learned safety cues that engage emotional arousal, memory, and cortical modulatory networks. As safety signals are presumably more difficult to learn and to discriminate from learned threat cues, the underlying temporal dynamics may reflect enhanced salience and prediction processing as well as increasing demands for attentional resources and the integration of multisensory information. Maladaptive responses to learned safety signals are a clinically relevant phenotype in multiple conditions, including chronic visceral pain, and can be exceptionally resistant to modification or extinction. Through sustained hypervigilance, safety seeking constitutes one key component in pain and stress-related avoidance behavior, calling for future studies targeting the mechanisms of safety learning and extinction to advance current cognitive-behavioral treatment approaches.
Collapse
Affiliation(s)
- Franziska Labrenz
- Department of Medical Psychology and Medical Sociology, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany; Department of Neurology, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| | - Tamás Spisák
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Thomas M Ernst
- Department of Neurology, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Carlos A Gomes
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
| | - Harald H Quick
- High-Field and Hybrid Magnetic Resonance Imaging, University Hospital Essen, Essen, Germany; Erwin L. Hahn Institute for MR Imaging, University of Duisburg-Essen, Essen, Germany
| | - Nikolai Axmacher
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
| | - Sigrid Elsenbruch
- Department of Medical Psychology and Medical Sociology, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany; Department of Neurology, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Dagmar Timmann
- Department of Neurology, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
14
|
Meyer HC, Sangha S, Radley JJ, LaLumiere RT, Baratta MV. Environmental certainty influences the neural systems regulating responses to threat and stress. Neurosci Biobehav Rev 2021; 131:1037-1055. [PMID: 34673111 PMCID: PMC8642312 DOI: 10.1016/j.neubiorev.2021.10.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 10/20/2022]
Abstract
Flexible calibration of threat responding in accordance with the environment is an adaptive process that allows an animal to avoid harm while also maintaining engagement of other goal-directed actions. This calibration process, referred to as threat response regulation, requires an animal to calculate the probability that a given encounter will result in a threat so they can respond accordingly. Here we review the neural correlates of two highly studied forms of threat response suppression: extinction and safety conditioning. We focus on how relative levels of certainty or uncertainty in the surrounding environment alter the acquisition and application of these processes. We also discuss evidence indicating altered threat response regulation following stress exposure, including enhanced fear conditioning, and disrupted extinction and safety conditioning. To conclude, we discuss research using an animal model of coping that examines the impact of stressor controllability on threat responding, highlighting the potential for previous experiences with control, or other forms of coping, to protect against the effects of future adversity.
Collapse
Affiliation(s)
- Heidi C Meyer
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, 02215, USA.
| | - Susan Sangha
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, 47907, USA.
| | - Jason J Radley
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, 52242, USA.
| | - Ryan T LaLumiere
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, 52242, USA.
| | - Michael V Baratta
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, 80301, USA.
| |
Collapse
|
15
|
Pizzoli SFM, Monzani D, Mazzocco K, Maggioni E, Pravettoni G. The Power of Odor Persuasion: The Incorporation of Olfactory Cues in Virtual Environments for Personalized Relaxation. PERSPECTIVES ON PSYCHOLOGICAL SCIENCE 2021; 17:652-661. [PMID: 34752166 PMCID: PMC9069654 DOI: 10.1177/17456916211014196] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Olfaction is the most ancient sense and is directly connected with emotional areas in the brain. It gives rise to perception linked to emotion both in everyday life and in memory-recall activities. Despite its emotional primacy in perception and its role in sampling the real physical world, olfaction is rarely used in clinical psychological settings because it relies on stimuli that are difficult to deliver. However, recent developments in virtual-reality tools are creating novel possibilities for the engagement of the sense of smell in this field. In this article, we present the relevant features of olfaction for relaxation purposes and then discuss possible future applications of involving olfaction in virtual-reality interventions for relaxation. We also discuss clinical applications, the potential of new tools, and current obstacles and limitations.
Collapse
Affiliation(s)
- Silvia Francesca Maria Pizzoli
- Department of Oncology and Hemato-Oncology, University of Milan.,Applied Research Division for Cognitive and Psychological Science, European Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)
| | - Dario Monzani
- Department of Oncology and Hemato-Oncology, University of Milan.,Applied Research Division for Cognitive and Psychological Science, European Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)
| | - Ketti Mazzocco
- Department of Oncology and Hemato-Oncology, University of Milan.,Applied Research Division for Cognitive and Psychological Science, European Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)
| | - Emanuela Maggioni
- Sussex Computer Human Interaction (SCHI) Lab, Creative Technology Research Group, School of Engineering and Informatics, University of Sussex
| | - Gabriella Pravettoni
- Department of Oncology and Hemato-Oncology, University of Milan.,Applied Research Division for Cognitive and Psychological Science, European Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)
| |
Collapse
|
16
|
Race NS, Andrews KD, Lungwitz EA, Vega Alvarez SM, Warner TR, Acosta G, Cao J, Lu KH, Liu Z, Dietrich AD, Majumdar S, Shekhar A, Truitt WA, Shi R. Psychosocial impairment following mild blast-induced traumatic brain injury in rats. Behav Brain Res 2021; 412:113405. [PMID: 34097900 PMCID: PMC9284795 DOI: 10.1016/j.bbr.2021.113405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 06/02/2021] [Accepted: 06/02/2021] [Indexed: 01/30/2023]
Abstract
Traumatic brain injury (TBI) is associated with increased risk for mental health disorders, impacting post-injury quality of life and societal reintegration. TBI is also associated with deficits in psychosocial processing, defined as the cognitive integration of social and emotional behaviors, however little is known about how these deficits manifest and their contributions to post-TBI mental health. In this pre-clinical investigation using rats, a single mild blast TBI (mbTBI) induced impairment of psychosocial processing in the absence of confounding physical polytrauma, post-injury motor deficits, affective abnormalities, or deficits in non-social behavior. Impairment severity correlated with acute upregulations of a known oxidative stress metabolite, 3-hydroxypropylmercapturic acid (3-HPMA), in urine. Resting state fMRI alterations in the acute post-injury period implicated key brain regions known to regulate psychosocial behavior, including orbitofrontal cortex (OFC), which is congruent with our previous report of elevated acrolein, a marker of neurotrauma and 3-HPMA precursor, in this region following mbTBI. OFC of mbTBI-exposed rats demonstrated elevated mRNA expression of metabotropic glutamate receptors 1 and 5 (mGluR1/5) and injection of mGluR1/5-selective agonist in OFC of uninjured rats approximated mbTBI-induced psychosocial processing impairment, demonstrating a novel role for OFC in this psychosocial behavior. Furthermore, OFC may serve as a hotspot for TBI-induced disruption of psychosocial processing and subsequent mental health disorders.
Collapse
Affiliation(s)
- Nicholas S Race
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA; Medical Scientist Training Program, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Katharine D Andrews
- Medical Scientist Training Program, Indiana University School of Medicine, Indianapolis, IN, USA; Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA; Program in Medical Neuroscience, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Elizabeth A Lungwitz
- Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA; Program in Medical Neuroscience, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sasha M Vega Alvarez
- PULSe Interdisciplinary Life Science Program, Purdue University, West Lafayette, IN, USA
| | - Timothy R Warner
- Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Anatomy, Cellular Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Glen Acosta
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
| | - Jiayue Cao
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA
| | - Kun-Han Lu
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA; School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA
| | - Zhongming Liu
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA; School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA
| | - Amy D Dietrich
- Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Anatomy, Cellular Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sreeparna Majumdar
- Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA; Program in Medical Neuroscience, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Anantha Shekhar
- Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana Clinical and Translational Sciences Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - William A Truitt
- Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Anatomy, Cellular Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Riyi Shi
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA; PULSe Interdisciplinary Life Science Program, Purdue University, West Lafayette, IN, USA; Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA; Center for Paralysis Research, West Lafayette, IN, USA.
| |
Collapse
|
17
|
Baumgartner JN, Quintana D, Leija L, Schuster NM, Bruno KA, Castellanos JP, Case LK. Widespread Pressure Delivered by a Weighted Blanket Reduces Chronic Pain: A Randomized Controlled Trial. THE JOURNAL OF PAIN 2021; 23:156-174. [PMID: 34425251 DOI: 10.1016/j.jpain.2021.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/08/2021] [Accepted: 07/22/2021] [Indexed: 11/30/2022]
Abstract
Pleasant sensation is an underexplored avenue for modulation of chronic pain. Deeper pressure is perceived as pleasant and calming, and can improve sleep. Although pressure can reduce acute pain, its effect on chronic pain is poorly characterized. The current remote, double-blind, randomized controlled trial tested the hypothesis that wearing a heavy weighted blanket - providing widespread pressure to the body - relative to a light weighted blanket would reduce ratings of chronic pain, mediated by improvements in anxiety and sleep. Ninety-four adults with chronic pain were randomized to wear a 15-lb. (heavy) or 5-lb. (light) weighted blanket during a brief trial and overnight for one week. Measures of anxiety and chronic pain were collected pre- and post-intervention, and ratings of pain intensity, anxiety, and sleep were collected daily. After controlling for expectations and trait anxiety, the heavy weighted blanket produced significantly greater reductions in broad perceptions of chronic pain than the light weighted blanket (Cohen's f = .19, CI [-1.97, -.91]). This effect was stronger in individuals with high trait anxiety (P = .02). However, weighted blankets did not alter pain intensity ratings. Pain reductions were not mediated by anxiety or sleep. Given that the heavy weighted blanket was associated with greater modulation of affective versus sensory aspects of chronic pain, we propose that the observed reductions are due to interoceptive and social/affective effects of deeper pressure. Overall, we demonstrate that widespread pressure from a weighted blanket can reduce the severity of chronic pain, offering an accessible, home-based tool for chronic pain. The study purpose, targeted condition, study design, and primary and secondary outcomes were pre-registered in ClinicalTrials.gov (NCT04447885: "Weighted Blankets and Chronic Pain"). Perspective: This randomized-controlled trial showed that a 15-lb weighted blanket produced significantly greater reductions in broad perceptions of chronic pain relative to a 5-lb weighted blanket, particularly in highly anxious individuals. These findings are relevant to patients and providers seeking home-based, nondrug therapies for chronic pain relief.
Collapse
Affiliation(s)
- Jennifer N Baumgartner
- Department of Anesthesiology, University of California San Diego Health, La Jolla, California
| | - Desiree Quintana
- Department of Anesthesiology, University of California San Diego Health, La Jolla, California
| | - Linda Leija
- Department of Anesthesiology, University of California San Diego Health, La Jolla, California
| | - Nathaniel M Schuster
- Department of Anesthesiology, University of California San Diego Health, La Jolla, California
| | - Kelly A Bruno
- Department of Anesthesiology, University of California San Diego Health, La Jolla, California
| | - Joel P Castellanos
- Department of Anesthesiology, University of California San Diego Health, La Jolla, California
| | - Laura K Case
- Department of Anesthesiology, University of California San Diego Health, La Jolla, California.
| |
Collapse
|
18
|
Laing PAF, Harrison BJ. Safety learning and the Pavlovian conditioned inhibition of fear in humans: Current state and future directions. Neurosci Biobehav Rev 2021; 127:659-674. [PMID: 34023357 DOI: 10.1016/j.neubiorev.2021.05.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 05/07/2021] [Accepted: 05/17/2021] [Indexed: 01/02/2023]
Abstract
Safety learning occurs when an otherwise neutral stimulus comes to signal the absence of threat, allowing organisms to use safety information to inhibit fear and anxiety in nonthreatening environments. Although it continues to emerge as a topic of relevance in biological and clinical psychology, safety learning remains inconsistently defined and under-researched. Here, we analyse the Pavlovian conditioned inhibition paradigm and its application to the study of safety learning in humans. We discuss existing studies; address outstanding theoretical considerations; and identify prospects for its further application. Though Pavlovian conditioned inhibition presents a theoretically sound model of safety learning, it has been investigated infrequently, with decade-long interims between some studies, and notable methodological variability. Consequently, we argue that the full potential of conditioned inhibition as a model for human safety learning remains untapped, and propose that it could be revisited as a framework for addressing timely questions in the behavioural and clinical sciences.
Collapse
Affiliation(s)
- Patrick A F Laing
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Victoria, Australia.
| | - Ben J Harrison
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Victoria, Australia.
| |
Collapse
|
19
|
Zelenka O, Novak O, Brunova A, Syka J. Heterogeneous associative plasticity in the auditory cortex induced by fear learning - novel insight into the classical conditioning paradigm. Physiol Res 2021; 70:447-460. [PMID: 33982575 DOI: 10.33549/physiolres.934559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
We used two-photon calcium imaging with single-cell and cell-type resolution. Fear conditioning induced heterogeneous tuning shifts at single-cell level in the auditory cortex, with shifts both to CS+ frequency and to the control CS- stimulus frequency. We thus extend the view of simple expansion of CS+ tuned regions. Instead of conventional freezing reactions only, we observe selective orienting responses towards the conditioned stimuli. The orienting responses were often followed by escape behavior.
Collapse
Affiliation(s)
- O Zelenka
- Department of Physiology, Second Faculty of Medicine, Charles University in Prague, Prague, Czech Republic.
| | | | | | | |
Collapse
|
20
|
Kreutzmann JC, Fendt M. Intranasal oxytocin compensates for estrus cycle-specific reduction of conditioned safety memory in rats: Implications for psychiatric disorders. Neurobiol Stress 2021; 14:100313. [PMID: 33778132 PMCID: PMC7985696 DOI: 10.1016/j.ynstr.2021.100313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/06/2021] [Accepted: 02/25/2021] [Indexed: 01/12/2023] Open
Abstract
Stress and anxiety disorder patients frequently fail to benefit from psychotherapies which often consist of inhibitory fear learning paradigms. One option to improve the therapy outcome is medication-enhanced psychotherapy. Research in humans and laboratory rodents has demonstrated that oxytocin (OT) reduces fear and facilitates fear extinction. However, the role of OT in conditioned safety learning, an understudied but highly suitable type of inhibitory fear learning, remains to be investigated. The present study aimed at investigating the effect of intranasal OT on conditioned safety. To test this, Sprague Dawley rats (♂n = 57; ♀n = 72) were safety conditioned. The effects of pre-training or pre-testing intranasal OT on conditioned safety and contextual fear, both measured by the acoustic startle response, and on corticosterone plasma levels were assessed. Furthermore, the involvement of the estrous cycle was analyzed. The present data show that intranasal OT administration before the acquisition or recall sessions enhanced conditioned safety memory in female rats while OT had no effects in male rats. Further analysis of the estrus cycle revealed that vehicle-treated female rats in the metestrus showed reduced safety memory which was compensated by OT-treatment. Moreover, all vehicle-treated rats, regardless of sex, expressed robust contextual fear following conditioning. Intranasal OT-treated rats showed a decrease in contextual fear, along with reduced plasma corticosterone levels. The present data demonstrate that intranasal OT has the capacity to compensate deficits in safety learning, along with a reduction in contextual fear and corticosterone levels. Therefore, add-on treatment with intranasal OT could optimize the therapy of anxiety disorders.
Collapse
Affiliation(s)
- Judith C Kreutzmann
- Institute for Pharmacology & Toxicology, Otto-von-Guericke University Magdeburg, Germany.,Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Markus Fendt
- Institute for Pharmacology & Toxicology, Otto-von-Guericke University Magdeburg, Germany.,Center of Behavioral Brain Sciences, Otto-von-Guericke University Magdeburg, Germany
| |
Collapse
|
21
|
Tsan L, Décarie-Spain L, Noble EE, Kanoski SE. Western Diet Consumption During Development: Setting the Stage for Neurocognitive Dysfunction. Front Neurosci 2021; 15:632312. [PMID: 33642988 PMCID: PMC7902933 DOI: 10.3389/fnins.2021.632312] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/19/2021] [Indexed: 01/18/2023] Open
Abstract
The dietary pattern in industrialized countries has changed substantially over the past century due to technological advances in agriculture, food processing, storage, marketing, and distribution practices. The availability of highly palatable, calorically dense foods that are shelf-stable has facilitated a food environment where overconsumption of foods that have a high percentage of calories derived from fat (particularly saturated fat) and sugar is extremely common in modern Westernized societies. In addition to being a predictor of obesity and metabolic dysfunction, consumption of a Western diet (WD) is related to poorer cognitive performance across the lifespan. In particular, WD consumption during critical early life stages of development has negative consequences on various cognitive abilities later in adulthood. This review highlights rodent model research identifying dietary, metabolic, and neurobiological mechanisms linking consumption of a WD during early life periods of development (gestation, lactation, juvenile and adolescence) with behavioral impairments in multiple cognitive domains, including anxiety-like behavior, learning and memory function, reward-motivated behavior, and social behavior. The literature supports a model in which early life WD consumption leads to long-lasting neurocognitive impairments that are largely dissociable from WD effects on obesity and metabolic dysfunction.
Collapse
Affiliation(s)
- Linda Tsan
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, United States.,Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, Los Angeles, CA, United States
| | - Léa Décarie-Spain
- Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, Los Angeles, CA, United States
| | - Emily E Noble
- Department of Foods and Nutrition, University of Georgia, Athens, GA, United States
| | - Scott E Kanoski
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, United States.,Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
22
|
Strickland JA, Dileo AD, Moaddab M, Ray MH, Walker RA, Wright KM, McDannald MA. Foot shock facilitates reward seeking in an experience-dependent manner. Behav Brain Res 2021; 399:112974. [PMID: 33144178 PMCID: PMC7855116 DOI: 10.1016/j.bbr.2020.112974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 10/01/2020] [Accepted: 10/19/2020] [Indexed: 02/06/2023]
Abstract
Animals organize reward seeking around aversive events. An abundance of research shows that foot shock, as well as a shock-associated cue, can elicit freezing and suppress reward seeking. Yet, there is evidence that experience can flip the effect of foot shock to facilitate reward seeking. Here we examined cue suppression, foot shock suppression and foot shock facilitation of reward seeking in a single behavioural setting. Male Long Evans rats received fear discrimination consisting of danger, uncertainty, and safety cues. Discrimination took place over a baseline of rewarded nose poking. With limited experience (1-2 sessions), all cues and foot shock suppressed reward seeking. With continued experience (10-16 sessions), suppression became specific to shock-associated cues, foot shock briefly suppressed, then facilitated reward seeking. Our results provide a means of assessing positive properties of foot shock, and may provide insight into maladaptive behaviour around aversive events.
Collapse
Affiliation(s)
- J A Strickland
- Boston College, Department of Psychology & Neuroscience, Chestnut Hill, MA, USA.
| | - A D Dileo
- Tufts University School of Medicine, School of Graduate Biomedical Sciences, Boston, MA, USA
| | - M Moaddab
- Boston College, Department of Psychology & Neuroscience, Chestnut Hill, MA, USA
| | - M H Ray
- Boston College, Department of Psychology & Neuroscience, Chestnut Hill, MA, USA
| | - R A Walker
- Boston College, Department of Psychology & Neuroscience, Chestnut Hill, MA, USA
| | - K M Wright
- Boston College, Department of Psychology & Neuroscience, Chestnut Hill, MA, USA
| | - M A McDannald
- Boston College, Department of Psychology & Neuroscience, Chestnut Hill, MA, USA.
| |
Collapse
|
23
|
Laing PA, Vervliet B, Fullana MA, Savage HS, Davey CG, Felmingham KL, Harrison BJ. Characterizing human safety learning via Pavlovian conditioned inhibition. Behav Res Ther 2021; 137:103800. [DOI: 10.1016/j.brat.2020.103800] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 12/09/2020] [Accepted: 12/28/2020] [Indexed: 02/08/2023]
|
24
|
Odriozola P, Gee DG. Learning About Safety: Conditioned Inhibition as a Novel Approach to Fear Reduction Targeting the Developing Brain. Am J Psychiatry 2021; 178:136-155. [PMID: 33167673 PMCID: PMC7951569 DOI: 10.1176/appi.ajp.2020.20020232] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Adolescence is a peak time for the onset of psychiatric disorders, with anxiety disorders being the most common and affecting as many as 30% of youths. A core feature of anxiety disorders is difficulty regulating fear, with evidence suggesting deficits in extinction learning and corresponding alterations in frontolimbic circuitry. Despite marked changes in this neural circuitry and extinction learning throughout development, interventions for anxious youths are largely based on principles of extinction learning studied in adulthood. Safety signal learning, based on conditioned inhibition of fear in the presence of a cue that indicates safety, has been shown to effectively reduce anxiety-like behavior in animal models and attenuate fear responses in healthy adults. Cross-species evidence suggests that safety signal learning involves connections between the ventral hippocampus and the prelimbic cortex in rodents or the dorsal anterior cingulate cortex in humans. Particularly because this pathway follows a different developmental trajectory than fronto-amygdala circuitry involved in traditional extinction learning, safety cues may provide a novel approach to reducing fear in youths. In this review, the authors leverage a translational framework to bring together findings from studies in animal models and humans and to bridge the gap between research on basic neuroscience and clinical treatment. The authors consider the potential application of safety signal learning for optimizing interventions for anxious youths by targeting the biological state of the developing brain. Based on the existing cross-species literature on safety signal learning, they propose that the judicious use of safety cues may be an effective and neurodevelopmentally optimized approach to enhancing treatment outcomes for youths with anxiety disorders.
Collapse
Affiliation(s)
| | - Dylan G. Gee
- Department of Psychology, Yale University, New Haven, Conn
| |
Collapse
|
25
|
Absence Makes the Mind Grow Fonder: Reconceptualizing Studies of Safety Learning in Translational Research on Anxiety. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2021; 21:1-13. [PMID: 33420710 DOI: 10.3758/s13415-020-00855-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/19/2020] [Indexed: 01/04/2023]
Abstract
Overgeneralized fear (OGF), or indiscriminate fear responses to signals of threat and nonthreat, is a well-studied cognitive mechanism in human anxiety. Anxiety-related OGF has been studied primarily through fear-learning paradigms and conceptualized as overly exaggerated learning of cues signaling imminent threat. However, the role of safety learning in OGF has not only received much less empirical attention but has been fundamentally conceptualized as learning about the absence of threat rather than the presence of safety. As a result, the relative contributions of exaggerated fear learning and weakened safety learning to anxiety-related OGF remain poorly understood, as do the potentially unique biological and behavioral underpinnings of safety learning. The present review outlines these gaps by, first, summarizing animal and human research on safety learning related to anxiety and OGF. Second, we outline innovations in methods to tease apart unique biological and behavioral contributions of safety learning to OGF. Lastly, we describe clinical and treatment implications of this framework for translational research relevant to human anxiety.
Collapse
|
26
|
Matheson K, Asokumar A, Anisman H. Resilience: Safety in the Aftermath of Traumatic Stressor Experiences. Front Behav Neurosci 2020; 14:596919. [PMID: 33408619 PMCID: PMC7779406 DOI: 10.3389/fnbeh.2020.596919] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/30/2020] [Indexed: 12/14/2022] Open
Abstract
The relationship between adverse experiences and the emergence of pathology has often focused on characteristics of the stressor or of the individual (stressor appraisals, coping strategies). These features are thought to influence multiple biological processes that favor the development of mental and physical illnesses. Less often has attention focused on the aftermath of traumatic experiences, and the importance of safety and reassurance that is necessary for longer-term well-being. In some cases (e.g., post-traumatic stress disorder) this may be reflected by a failure of fear extinction, whereas in other instances (e.g., historical trauma), the uncertainty about the future might foster continued anxiety. In essence, the question becomes one of how individuals attain feelings of safety when it is fully understood that the world is not necessarily a safe place, uncertainties abound, and feelings of agency are often illusory. We consider how individuals acquire resilience in the aftermath of traumatic and chronic stressors. In this respect, we review characteristics of stressors that may trigger particular biological and behavioral coping responses, as well as factors that undermine their efficacy. To this end, we explore stressor dynamics and social processes that foster resilience in response to specific traumatic, chronic, and uncontrollable stressor contexts (intimate partner abuse; refugee migration; collective historical trauma). We point to resilience factors that may comprise neurobiological changes, such as those related to various stressor-provoked hormones, neurotrophins, inflammatory immune, microbial, and epigenetic processes. These behavioral and biological stress responses may influence, and be influenced by, feelings of safety that come about through relationships with others, spiritual and place-based connections.
Collapse
Affiliation(s)
- Kimberly Matheson
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada.,The Royal Ottawa's Institute of Mental Health Research, Ottawa, ON, Canada
| | - Ajani Asokumar
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - Hymie Anisman
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada.,The Royal Ottawa's Institute of Mental Health Research, Ottawa, ON, Canada
| |
Collapse
|
27
|
Eckstein M, Mamaev I, Ditzen B, Sailer U. Calming Effects of Touch in Human, Animal, and Robotic Interaction-Scientific State-of-the-Art and Technical Advances. Front Psychiatry 2020; 11:555058. [PMID: 33329093 PMCID: PMC7672023 DOI: 10.3389/fpsyt.2020.555058] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 10/02/2020] [Indexed: 12/16/2022] Open
Abstract
Small everyday gestures such as a tap on the shoulder can affect the way humans feel and act. Touch can have a calming effect and alter the way stress is handled, thereby promoting mental and physical health. Due to current technical advances and the growing role of intelligent robots in households and healthcare, recent research also addressed the potential of robotic touch for stress reduction. In addition, touch by non-human agents such as animals or inanimate objects may have a calming effect. This conceptual article will review a selection of the most relevant studies reporting the physiological, hormonal, neural, and subjective effects of touch on stress, arousal, and negative affect. Robotic systems capable of non-social touch will be assessed together with control strategies and sensor technologies. Parallels and differences of human-to-human touch and human-to-non-human touch will be discussed. We propose that, under appropriate conditions, touch can act as (social) signal for safety, even when the interaction partner is an animal or a machine. We will also outline potential directions for future research and clinical relevance. Thereby, this review can provide a foundation for further investigations into the beneficial contribution of touch by different agents to regulate negative affect and arousal in humans.
Collapse
Affiliation(s)
- Monika Eckstein
- Institute of Medical Psychology, University Hospital Heidelberg, and Ruprecht-Karls University Heidelberg, Heidelberg, Germany
| | - Ilshat Mamaev
- Institute for Anthropomatics and Robotics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Beate Ditzen
- Institute of Medical Psychology, University Hospital Heidelberg, and Ruprecht-Karls University Heidelberg, Heidelberg, Germany
| | - Uta Sailer
- Department of Behavioural Medicine, Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
28
|
deRoon-Cassini TA, Stollenwerk TM, Beatka M, Hillard CJ. Meet Your Stress Management Professionals: The Endocannabinoids. Trends Mol Med 2020; 26:953-968. [PMID: 32868170 PMCID: PMC7530069 DOI: 10.1016/j.molmed.2020.07.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/24/2020] [Accepted: 07/10/2020] [Indexed: 12/14/2022]
Abstract
The endocannabinoid signaling system (ECSS) is altered by exposure to stress and mediates and modulates the effects of stress on the brain. Considerable preclinical data support critical roles for the endocannabinoids and their target, the CB1 cannabinoid receptor, in the adaptation of the brain to repeated stress exposure. Chronic stress exposure increases vulnerability to mental illness, so the ECSS has attracted attention as a potential therapeutic target for the prevention and treatment of stress-related psychopathology. We discuss human genetic studies indicating that the ECSS contributes to risk for mental illness in those exposed to severe stress and trauma early in life, and we explore the potential difficulties in pharmacological manipulation of the ECSS.
Collapse
Affiliation(s)
- Terri A deRoon-Cassini
- Neuroscience Research Center, USA; Department of Surgery, Division of Trauma and Acute Care Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Todd M Stollenwerk
- Neuroscience Research Center, USA; Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Margaret Beatka
- Neuroscience Research Center, USA; Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Cecilia J Hillard
- Neuroscience Research Center, USA; Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
29
|
Individual expression of conditioned safety but not of conditioned relief is correlated with contextual fear. Behav Brain Res 2020; 393:112799. [DOI: 10.1016/j.bbr.2020.112799] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/19/2020] [Accepted: 07/05/2020] [Indexed: 11/20/2022]
|
30
|
Dagan Y, Yager J. Cannabis and Complex Posttraumatic Stress Disorder: A Narrative Review With Considerations of Benefits and Harms. J Nerv Ment Dis 2020; 208:619-627. [PMID: 32433200 DOI: 10.1097/nmd.0000000000001172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Despite substantial controversies concerning patients' reports of benefits from cannabis for posttraumatic stress disorder (PTSD) and inconsistent research findings regarding its efficacy and adverse risks, some states have already recognized PTSD as a qualifying condition for medical cannabis. Consequently, medical cannabis can also be provided for patients with complex PTSD who experience additional posttraumatic symptoms of affective dysregulation, negative perception of the self, and difficulties in relationships due to a history of repetitive trauma. In this article, we explore cannabis use in relation to benefits versus harms that might occur relative to specific complex PTSD symptoms and comorbidities. Whereas some symptoms related to PTSD per se (e.g., anxiety, insomnia, nightmares) may be benefited, others that are more characteristic of complex PTSD (e.g., dissociation, reckless behavior, and substance abuse associated with dysregulated affect) may be aggravated. Therefore, clinicians treating patients with complex PTSD who use or seek cannabis should carefully assess patients' motivations and the impacts of particular use patterns on specific symptoms. Clinicians and patients should be aware of and fully discuss the significant number of potential adverse effects of cannabis use, several of which might impede patients' participation in beneficial psychotherapeutic, social, and medical interventions.
Collapse
Affiliation(s)
- Yael Dagan
- Jerusalem Mental Health Center, Kfar Shaul Psychiatric Hospital affiliated with The Hebrew University-Hadassah School of Medicine, Jerusalem, Israel
| | - Joel Yager
- Department of Psychiatry, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
31
|
Kreutzmann JC, Fendt M. Chronic inhibition of GABA synthesis in the infralimbic cortex facilitates conditioned safety memory and reduces contextual fear. Transl Psychiatry 2020; 10:120. [PMID: 32332716 PMCID: PMC7182568 DOI: 10.1038/s41398-020-0788-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/12/2020] [Accepted: 03/25/2020] [Indexed: 12/20/2022] Open
Abstract
Accurate discrimination between danger and safety cues is essential for survival. Recent findings in humans indicate that patients suffering from anxiety disorders cannot reliably use safety cues in order to inhibit fear responses. However, the neuroanatomical pathways of conditioned safety are still unclear. Aim of the present study was to investigate whether chronic inhibition of GABA synthesis in the infralimbic (IL) cortex, a critical region for fear inhibition, would lead to enhanced conditioned safety memory. Male Sprague Dawley rats were equipped with osmotic mini-pumps attached to an infusion cannula aimed at the IL. Mini-pumps were either filled with the glutamate decarboxylase (GAD) inhibitor L-allylglycine (L-AG) or the inactive enantiomer D-allylglycine (D-AG). Previous studies demonstrated that chronic infusions of L-AG lead to lower GABA levels and overall enhanced neural activity. The effect of IL disinhibition on conditioned safety was investigated utilizing the acoustic startle response. Chronic disinhibition of the IL facilitated conditioned safety memory, along with reduced contextual fear and lower corticosterone levels. The present findings suggest that the IL is a key brain region for conditioned safety memory. Because anxiety disorder patients are often not capable to use safety cues to inhibit unnecessary fear responses, the present findings are of clinical relevance and could potentially contribute to therapy optimization.
Collapse
Affiliation(s)
- Judith C. Kreutzmann
- grid.5807.a0000 0001 1018 4307Institute for Pharmacology & Toxicology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany ,grid.418723.b0000 0001 2109 6265Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Markus Fendt
- grid.5807.a0000 0001 1018 4307Institute for Pharmacology & Toxicology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany ,grid.5807.a0000 0001 1018 4307Center of Behavioral Brain Sciences, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
32
|
Kolodziejczyk MH, Fendt M. Corticosterone Treatment and Incubation Time After Contextual Fear Conditioning Synergistically Induce Fear Memory Generalization in Neuropeptide S Receptor-Deficient Mice. Front Neurosci 2020; 14:128. [PMID: 32231512 PMCID: PMC7081924 DOI: 10.3389/fnins.2020.00128] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/31/2020] [Indexed: 12/18/2022] Open
Abstract
Fear memory generalization is a learning mechanism that promotes flexible fear responses to novel situations. While fear generalization has adaptive value, overgeneralization of fear memory is a characteristic feature of the pathology of anxiety disorders. The neuropeptide S (NPS) receptor (NPSR) has been shown to be associated with anxiety disorders and has recently been identified as a promising target for treating anxiety disorders. Moreover, stress hormones play a role in regulating both physiological and pathological fear memories and might therefore also be involved in anxiety disorders. However, little is known about the interplay between stress hormone and the NPS system in the development of overgeneralized fear. Here, we hypothesize that NPSR-deficient mice with high corticosterone (CORT) levels during the fear memories consolidation are more prone to develop generalized fear. To address this hypothesis, NPSR-deficient mice were submitted to a contextual fear conditioning procedure. Immediately after conditioning, mice received CORT injections (2.5 or 5 mg/kg). One day and 1 month later, the mice were tested for the specificity and strength of their fear memory, their anxiety level, and their startle response. Moreover, CORT blood levels were monitored throughout the experiment. Using this protocol, a specific contextual fear memory was observed in all experimental groups, despite the 5-mg/kg CORT-treated NPSR-deficient mice. This group of mice showed a generalization of contextual fear memory and a decreased startle response, and the females of this group had significantly less body weight gain. These findings indicate that interplay between CORT and the NPS system during the consolidation of fear memories is critical for the generalization of contextual fear.
Collapse
Affiliation(s)
- Malgorzata H Kolodziejczyk
- Neuropharmaclogy of Emotional Systems, Institute for Pharmacology and Toxicology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Markus Fendt
- Neuropharmaclogy of Emotional Systems, Institute for Pharmacology and Toxicology, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Otto von Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
33
|
Kreutzmann JC, Khalil R, Köhler JC, Mayer D, Florido A, Nadal R, Andero R, Fendt M. Neuropeptide‐S‐receptor deficiency affects sex‐specific modulation of safety learning by pre‐exposure to electric stimuli. GENES BRAIN AND BEHAVIOR 2020; 19:e12621. [DOI: 10.1111/gbb.12621] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/28/2019] [Accepted: 10/22/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Judith C. Kreutzmann
- Institute for Pharmacology & ToxicologyOtto‐von‐Guericke University Magdeburg Magdeburg Germany
- Department of Systems Physiology of LearningLeibniz Institute for Neurobiology Magdeburg Germany
| | - Radwa Khalil
- Institute for Pharmacology & ToxicologyOtto‐von‐Guericke University Magdeburg Magdeburg Germany
| | - Jana C. Köhler
- Institute of PhysiologyOtto‐von‐Guericke University Magdeburg Magdeburg Germany
- Center of Behavioral Brain SciencesOtto‐von‐Guericke University Magdeburg Magdeburg Germany
| | - Dana Mayer
- Institute for Pharmacology & ToxicologyOtto‐von‐Guericke University Magdeburg Magdeburg Germany
| | - Antonio Florido
- Institut de NeurocièncesUniversitat Autònoma de Barcelona Bellaterra Spain
| | - Roser Nadal
- Institut de NeurocièncesUniversitat Autònoma de Barcelona Bellaterra Spain
- CIBERSAMInstituto de Salud Carlos III, Universitat Autònoma de Barcelona Bellaterra Spain
- Department of Psychobiology and Methodology in Health SciencesUniversitat Autònoma de Barcelona Bellaterra Spain
| | - Raül Andero
- Institut de NeurocièncesUniversitat Autònoma de Barcelona Bellaterra Spain
- CIBERSAMInstituto de Salud Carlos III, Universitat Autònoma de Barcelona Bellaterra Spain
- Department of Psychobiology and Methodology in Health SciencesUniversitat Autònoma de Barcelona Bellaterra Spain
| | - Markus Fendt
- Institute for Pharmacology & ToxicologyOtto‐von‐Guericke University Magdeburg Magdeburg Germany
- Center of Behavioral Brain SciencesOtto‐von‐Guericke University Magdeburg Magdeburg Germany
| |
Collapse
|
34
|
Kreutzmann JC, Jovanovic T, Fendt M. Infralimbic cortex activity is required for the expression but not the acquisition of conditioned safety. Psychopharmacology (Berl) 2020; 237:2161-2172. [PMID: 32363439 PMCID: PMC7306044 DOI: 10.1007/s00213-020-05527-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 04/13/2020] [Indexed: 02/06/2023]
Abstract
The ability to discriminate between danger and safety is crucial for survival across species. Whereas danger signals predict the onset of a potentially threatening event, safety signals indicate the non-occurrence of an aversive event, thereby reducing fear and stress responses. While the neural basis of conditioned safety remains to be elucidated, fear extinction studies provide evidence that the infralimbic cortex (IL) modulates fear inhibition. In the current study, the IL was temporarily inactivated with local muscimol injections in male and female rats. The effect of IL inactivation on the acquisition and expression of conditioned safety was investigated utilizing the startle response. Temporary inactivation of the IL prior to conditioning did not affect the acquisition of conditioned safety, whereas IL inactivation during the expression test completely blocked the expression of conditioned safety in male and female rats. Inactivation of the neighboring prelimbic (PL) cortex during the expression test did not affect the expression of safety memory. Our findings suggest that the IL is a critical brain region for the expression of safety memory. Because patients suffering from anxiety disorders are often unable to make use of safety cues to inhibit fear, the present findings are of clinical relevance and could potentially contribute to therapy optimization of anxiety-related psychiatric disorders.
Collapse
Affiliation(s)
- Judith C Kreutzmann
- Medical Faculty, Institute for Pharmacology & Toxicology, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany.
- Leibniz Institute for Neurobiology, Magdeburg, Germany.
| | - Tanja Jovanovic
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University Detroit, Detroit, MI, USA
| | - Markus Fendt
- Medical Faculty, Institute for Pharmacology & Toxicology, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
35
|
Meyer HC, Odriozola P, Cohodes EM, Mandell JD, Li A, Yang R, Hall BS, Haberman JT, Zacharek SJ, Liston C, Lee FS, Gee DG. Ventral hippocampus interacts with prelimbic cortex during inhibition of threat response via learned safety in both mice and humans. Proc Natl Acad Sci U S A 2019; 116:26970-26979. [PMID: 31822612 PMCID: PMC6936350 DOI: 10.1073/pnas.1910481116] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Heightened fear and inefficient safety learning are key features of fear and anxiety disorders. Evidence-based interventions for anxiety disorders, such as cognitive behavioral therapy, primarily rely on mechanisms of fear extinction. However, up to 50% of clinically anxious individuals do not respond to current evidence-based treatment, suggesting a critical need for new interventions based on alternative neurobiological pathways. Using parallel human and rodent conditioned inhibition paradigms alongside brain imaging methodologies, we investigated neural activity patterns in the ventral hippocampus in response to stimuli predictive of threat or safety and compound cues to test inhibition via safety in the presence of threat. Distinct hippocampal responses to threat, safety, and compound cues suggest that the ventral hippocampus is involved in conditioned inhibition in both mice and humans. Moreover, unique response patterns within target-differentiated subpopulations of ventral hippocampal neurons identify a circuit by which fear may be inhibited via safety. Specifically, ventral hippocampal neurons projecting to the prelimbic cortex, but not to the infralimbic cortex or basolateral amygdala, were more active to safety and compound cues than threat cues, and activity correlated with freezing behavior in rodents. A corresponding distinction was observed in humans: hippocampal-dorsal anterior cingulate cortex functional connectivity-but not hippocampal-anterior ventromedial prefrontal cortex or hippocampal-basolateral amygdala connectivity-differentiated between threat, safety, and compound conditions. These findings highlight the potential to enhance treatment for anxiety disorders by targeting an alternative neural mechanism through safety signal learning.
Collapse
Affiliation(s)
- Heidi C. Meyer
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065
| | - Paola Odriozola
- Department of Psychology, Yale University, New Haven, CT 06511
| | | | - Jeffrey D. Mandell
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06511
| | - Anfei Li
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065
| | - Ruirong Yang
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065
| | - Baila S. Hall
- Department of Psychology, Brain Research Institute, University of California, Los Angeles, CA 90095
| | | | | | - Conor Liston
- Sackler Institute for Developmental Psychobiology, Weill Cornell Medicine, New York, NY 10065
- Feil Family Brain & Mind Research Institute, Weill Cornell Medicine, New York, NY 10065
| | - Francis S. Lee
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065
- Sackler Institute for Developmental Psychobiology, Weill Cornell Medicine, New York, NY 10065
| | - Dylan G. Gee
- Department of Psychology, Yale University, New Haven, CT 06511
| |
Collapse
|
36
|
Haaker J, Maren S, Andreatta M, Merz CJ, Richter J, Richter SH, Meir Drexler S, Lange MD, Jüngling K, Nees F, Seidenbecher T, Fullana MA, Wotjak CT, Lonsdorf TB. Making translation work: Harmonizing cross-species methodology in the behavioural neuroscience of Pavlovian fear conditioning. Neurosci Biobehav Rev 2019; 107:329-345. [PMID: 31521698 PMCID: PMC7822629 DOI: 10.1016/j.neubiorev.2019.09.020] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/08/2019] [Accepted: 09/11/2019] [Indexed: 12/22/2022]
Abstract
Translational neuroscience bridges insights from specific mechanisms in rodents to complex functions in humans and is key to advance our general understanding of central nervous function. A prime example of translational research is the study of cross-species mechanisms that underlie responding to learned threats, by employing Pavlovian fear conditioning protocols in rodents and humans. Hitherto, evidence for (and critique of) these cross-species comparisons in fear conditioning research was based on theoretical viewpoints. Here, we provide a perspective to substantiate these theoretical concepts with empirical considerations of cross-species methodology. This meta-research perspective is expected to foster cross-species comparability and reproducibility to ultimately facilitate successful transfer of results from basic science into clinical applications.
Collapse
Affiliation(s)
- Jan Haaker
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Stephen Maren
- Department of Psychological and Brain Sciences and Institute for Neuroscience, Texas A&M University, College Station, TX, 77843, USA
| | - Marta Andreatta
- Department of Psychology, University of Würzburg, Würzburg, Germany; Department of Psychology, Education & Child Studies, Erasmus University Rotterdam, Netherlands
| | - Christian J Merz
- Ruhr University Bochum, Faculty of Psychology, Institute of Cognitive Neuroscience, Department of Cognitive Psychology, Germany
| | - Jan Richter
- Department of Biological and Clinical Psychology/Psychotherapy, University of Greifswald, Greifswald, Germany
| | - S Helene Richter
- Department of Behavioural Biology, University of Münster, Münster, Germany
| | - Shira Meir Drexler
- Ruhr University Bochum, Faculty of Psychology, Institute of Cognitive Neuroscience, Department of Cognitive Psychology, Germany
| | - Maren D Lange
- Institute of Physiology I, University of Münster, Münster, Germany
| | - Kay Jüngling
- Institute of Physiology I, University of Münster, Münster, Germany
| | - Frauke Nees
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | - Miquel A Fullana
- Institute of Neurosciences, Hospital Clinic, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain
| | - Carsten T Wotjak
- Neuronal Plasticity Research Group, Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804, Munich, Germany
| | - Tina B Lonsdorf
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
37
|
Jones RM, Pattwell SS. Future considerations for pediatric cancer survivorship: Translational perspectives from developmental neuroscience. Dev Cogn Neurosci 2019; 38:100657. [PMID: 31158802 PMCID: PMC6697051 DOI: 10.1016/j.dcn.2019.100657] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 04/26/2019] [Accepted: 05/06/2019] [Indexed: 02/06/2023] Open
Abstract
Breakthroughs in modern medicine have increased pediatric cancer survival rates throughout the last several decades. Despite enhanced cure rates, a subset of pediatric cancer survivors exhibit life-long psychological side effects. A large body of work has addressed potential mechanisms for secondary symptoms of anxiety, post-traumatic stress, impaired emotion regulation and cognitive deficits in adults. Yet, absent from many studies are the ways in which cancer treatment can impact the developing brain. Additionally, it remains less known whether typical neurobiological changes during adolescence and early adulthood may potentially buffer or exacerbate some of the known negative cancer survivorship outcomes. This review highlights genetic, animal, and human neuroimaging research across development. We focus on the neural circuitry associated with aversive learning, which matures throughout childhood, adolescence and early adulthood. We argue that along with other individual differences, the precise timing of oncological treatment insults on such neural circuitry may expose particular vulnerabilities for pediatric cancer patients. We also explore other moderators of treatment outcomes, including genetic polymorphisms and neural mechanisms underlying memory and cognitive control. We discuss how neural maturation extending into young adulthood may also provide a sensitive period for intervention to improve psychological and cognitive outcomes in pediatric cancer survivors.
Collapse
Affiliation(s)
- Rebecca M Jones
- The Sackler Institute for Developmental Psychobiology, Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, United States
| | - Siobhan S Pattwell
- Human Biology Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Mailstop C3-168, Seattle, WA 98109, United States.
| |
Collapse
|
38
|
Takemoto M, Song WJ. Cue-dependent safety and fear learning in a discriminative auditory fear conditioning paradigm in the mouse. ACTA ACUST UNITED AC 2019; 26:284-290. [PMID: 31308247 PMCID: PMC6636544 DOI: 10.1101/lm.049577.119] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 05/25/2019] [Indexed: 12/28/2022]
Abstract
Discrimination between sensory stimuli associated with safety and threat is crucial for behavioral decisions. Discriminative conditioning paradigms with two acoustic conditioned stimuli (one paired with shock [CS+], the other unpaired with shock [CS−]) have been widely used as an experimental model for fear learning. However, no attention has been paid to the effect of the CS− on safety in the paradigms, because the CS− served as a neutral cue or elevated the freezing level due to fear generalization although less effectively than the CS+. By using a noise and a tone as two acoustic CSs in a discriminative auditory fear conditioning (AFC) paradigm, here we demonstrate that mice learn safety for the CS− while showing fear for the CS+ with opposing emotional behaviors. We found that after learning mice exhibited a significant suppression of context-dependent freezing during the CS−, but not during the CS+, indicating learned safety without fear generalization for the CS−. In contrast, the mice showed an enhanced level of freezing during the CS+ even in a novel spatial context, indicating cued fear for the CS+. Moreover, the CS+ also induced rapid defensive behaviors, whereas the CS− disinhibited normal exploratory behaviors. On the other hand, mice showed no significant suppression of contextual fear during the CS− in a paradigm with a pair of tone CSs at different frequencies, although they clearly discriminated the two tones. These results suggest our AFC paradigm with the noise and tone CSs as a useful experimental model for cue-dependent discriminative learning of safety and threat.
Collapse
Affiliation(s)
- Makoto Takemoto
- Department of Sensory and Cognitive Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Wen-Jie Song
- Department of Sensory and Cognitive Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan.,Program for Leading Graduate Schools HIGO Program, Kumamoto University, Kumamoto 860-8556, Japan
| |
Collapse
|
39
|
Elevated dopamine signaling from ventral tegmental area to prefrontal cortical parvalbumin neurons drives conditioned inhibition. Proc Natl Acad Sci U S A 2019; 116:13077-13086. [PMID: 31182594 DOI: 10.1073/pnas.1901902116] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Conditioned inhibition is an important process to suppress learned responses for optimal adaptation, but its underlying biological mechanism is poorly understood. Here we used safety learning (SL)/fear discrimination after fear conditioning as a conditioned inhibition model because it demonstrates the essential properties of summation and retardation. Activity of the dorsomedial prefrontal cortex (dmPFC) parvalbumin (PV) neurons bidirectionally regulates spiking levels of dmPFC excitatory neurons and fear states. Responses to safety cues are increased in dopaminergic (DA) neurons in the ventral tegmental area (VTA) and in PV neurons in dmPFC after SL. Plasticity in the VTA is implicated, since SL requires activation of N-methyl-d-aspartate receptors. Furthermore, in a posttraumatic stress disorder model, impaired SL is associated with impaired potentiation of VTA DA neuron activity. Our results demonstrate a DA-dependent learning process that targets prefrontal inhibitory neurons for suppression of learned responses, and have implications for the pathogenesis and treatment of various psychiatric diseases.
Collapse
|
40
|
Koek RJ, Roach J, Athanasiou N, van 't Wout-Frank M, Philip NS. Neuromodulatory treatments for post-traumatic stress disorder (PTSD). Prog Neuropsychopharmacol Biol Psychiatry 2019; 92:148-160. [PMID: 30641094 DOI: 10.1016/j.pnpbp.2019.01.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 12/19/2018] [Accepted: 01/10/2019] [Indexed: 12/12/2022]
Abstract
Electroconvulsive therapy has been used successfully in some individuals with posttraumatic stress disorder (PTSD) whose symptoms have not improved with other treatments. But there are only a few reports. Meanwhile, an array of new neuromodulation strategies, including repetitive transcranial magnetic stimulation, transcranial direct current stimulation, vagus nerve stimulation, trigeminal nerve stimulation, and deep brain stimulation have been developed and applied experimentally in the treatment of other psychiatric disorders. This article will review the clinical evidence and mechanistic basis for their use in PTSD.
Collapse
Affiliation(s)
- Ralph J Koek
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at Los Angeles, CA, USA; Sepulveda Ambulatory Care Center, Veterans Administration Greater Los Angeles Healthcare System, North Hills, CA, USA.
| | - Janine Roach
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at Los Angeles, CA, USA; Oliveview Medical Center, Sylmar, CA, USA
| | - Nicholas Athanasiou
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at Los Angeles, CA, USA; San Fernando Mental Health Center, Granada Hills, CA, USA
| | - Mascha van 't Wout-Frank
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
| | - Noah S Philip
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA; VA RR&D Center for Neurorestoration and Neurotechnology, Providence VA Medical Center, Providence, RI, USA
| |
Collapse
|
41
|
Dennis-Tiwary TA, Roy AK, Denefrio S, Myruski S. Heterogeneity of the Anxiety-Related Attention Bias: A Review and Working Model for Future Research. Clin Psychol Sci 2019; 7:879-899. [PMID: 33758680 DOI: 10.1177/2167702619838474] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The anxiety-related attention bias (AB) has been studied for several decades as a clinically-relevant output of the dynamic and complex threat detection-response system. Despite research enthusiasm for the construct of AB, current theories and measurement approaches cannot adequately account for the growing body of mixed, contradictory, and null findings. Drawing on clinical, neuroscience, and animal models, we argue that the apparent complexity and contradictions in the empirical literature can be attributed to the field's failure to clearly conceptualize AB heterogeneity and the dearth of studies in AB that consider additional cognitive mechanisms in anxiety, particularly disruptions in threat-safety discrimination and cognitive control. We review existing research and propose a working model of AB heterogeneity positing that AB may be best conceptualized as multiple subtypes of dysregulated processing of and attention to threat anchored in individual differences in threat-safety discrimination and cognitive control. We review evidence for this working model and discuss how it can be used to advance knowledge of AB mechanisms and inform personalized prevention and intervention approaches.
Collapse
Affiliation(s)
- Tracy A Dennis-Tiwary
- Hunter College, The City University of New York, Department of Psychology, New York, NY.,The Graduate Center, The City University of New York, Department of Psychology, New York, NY
| | - Amy Krain Roy
- Fordham University, Department of Psychology, Bronx, NY.,New York University Langone School of Medicine, Department of Child and Adolescent Psychiatry, New York, NY
| | - Samantha Denefrio
- The Graduate Center, The City University of New York, Department of Psychology, New York, NY.,Hunter College, The City University of New York, Department of Psychology, New York, NY
| | - Sarah Myruski
- Hunter College, The City University of New York, Department of Psychology, New York, NY
| |
Collapse
|
42
|
Raber J, Arzy S, Bertolus JB, Depue B, Haas HE, Hofmann SG, Kangas M, Kensinger E, Lowry CA, Marusak HA, Minnier J, Mouly AM, Mühlberger A, Norrholm SD, Peltonen K, Pinna G, Rabinak C, Shiban Y, Soreq H, van der Kooij MA, Lowe L, Weingast LT, Yamashita P, Boutros SW. Current understanding of fear learning and memory in humans and animal models and the value of a linguistic approach for analyzing fear learning and memory in humans. Neurosci Biobehav Rev 2019; 105:136-177. [PMID: 30970272 DOI: 10.1016/j.neubiorev.2019.03.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 01/30/2019] [Accepted: 03/18/2019] [Indexed: 01/04/2023]
Abstract
Fear is an emotion that serves as a driving factor in how organisms move through the world. In this review, we discuss the current understandings of the subjective experience of fear and the related biological processes involved in fear learning and memory. We first provide an overview of fear learning and memory in humans and animal models, encompassing the neurocircuitry and molecular mechanisms, the influence of genetic and environmental factors, and how fear learning paradigms have contributed to treatments for fear-related disorders, such as posttraumatic stress disorder. Current treatments as well as novel strategies, such as targeting the perisynaptic environment and use of virtual reality, are addressed. We review research on the subjective experience of fear and the role of autobiographical memory in fear-related disorders. We also discuss the gaps in our understanding of fear learning and memory, and the degree of consensus in the field. Lastly, the development of linguistic tools for assessments and treatment of fear learning and memory disorders is discussed.
Collapse
Affiliation(s)
- Jacob Raber
- Department of Behavioral Neuroscience, ONPRC, Oregon Health & Science University, Portland, OR, USA; Departments of Neurology and Radiation Medicine, and Division of Neuroscience, ONPRC, Oregon Health & Science University, Portland, OR, USA.
| | - Shahar Arzy
- Department of Medical Neurobiology, Hebrew University, Jerusalem 91904, Israel
| | | | - Brendan Depue
- Departments of Psychological and Brain Sciences and Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY, USA
| | - Haley E Haas
- Department of Psychiatry and Behavioral Science, Emory University School of Medicine, Atlanta, GA, USA
| | - Stefan G Hofmann
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA
| | - Maria Kangas
- Department of Psychology, Macquarie University, Sydney, Australia
| | | | - Christopher A Lowry
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Hilary A Marusak
- Department of Pharmacy Practice, Wayne State University, Detroit, MI, USA
| | - Jessica Minnier
- School of Public Health, Oregon Health & Science University, Portland, OR, USA
| | - Anne-Marie Mouly
- Lyon Neuroscience Research Center, CNRS-UMR 5292, INSERM U1028, Université Lyon, Lyon, France
| | - Andreas Mühlberger
- Department of Psychology (Clinical Psychology and Psychotherapy), University of Regensburg, Regensburg, Germany; PFH - Private University of Applied Sciences, Department of Psychology (Clinical Psychology and Psychotherapy Research), Göttingen, Germany
| | - Seth Davin Norrholm
- Department of Psychiatry and Behavioral Science, Emory University School of Medicine, Atlanta, GA, USA
| | - Kirsi Peltonen
- Faculty of Social Sciences/Psychology, Tampere University, Tampere, Finland
| | - Graziano Pinna
- The Psychiatric Institute, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Christine Rabinak
- Department of Pharmacy Practice, Wayne State University, Detroit, MI, USA
| | - Youssef Shiban
- Department of Psychology (Clinical Psychology and Psychotherapy), University of Regensburg, Regensburg, Germany; PFH - Private University of Applied Sciences, Department of Psychology (Clinical Psychology and Psychotherapy Research), Göttingen, Germany
| | - Hermona Soreq
- Department of Biological Chemistry, Edmond and Lily Safra Center of Brain Science and The Institute of Life Sciences, Hebrew University, Jerusalem 91904, Israel
| | - Michael A van der Kooij
- Translational Psychiatry, Department of Psychiatry and Psychotherapy, Universitatsmedizin der Johannes Guttenberg University Medical Center, Mainz, Germany
| | | | - Leah T Weingast
- Department of Psychiatry and Behavioral Science, Emory University School of Medicine, Atlanta, GA, USA
| | - Paula Yamashita
- School of Public Health, Oregon Health & Science University, Portland, OR, USA
| | - Sydney Weber Boutros
- Department of Behavioral Neuroscience, ONPRC, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
43
|
Individual differences in anxiety and fear learning: The role of working memory capacity. Acta Psychol (Amst) 2019; 193:42-54. [PMID: 30590285 DOI: 10.1016/j.actpsy.2018.12.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/05/2018] [Accepted: 12/14/2018] [Indexed: 01/01/2023] Open
Abstract
Anxiety disorders are characterised by the perception of fear and threat in the presence of stimuli that are neutral or ambiguous. Attempts in previous research to explain the relationship between anxiety and fear learning have been inconsistent, possibly due to the influence of an unmeasured mechanism that mediates the relationship between them. Working memory capacity has been suggested as one such mechanism. The current study investigated the influence of anxiety-based individual differences upon associative fear learning, while accounting for individual differences in working memory. We hypothesised that individuals high in both anxiety and working memory would show unimpaired fear learning whereas individuals high in anxiety and low in working memory would exhibit dysfunctional fear learning. Sixty participants completed a battery of anxiety and working memory tests, as well as a fear conditioning experiment that tested for blocking, conditioned inhibition and fear discrimination. We found that anxious individuals were more likely to show impaired fear discrimination only if they also had a low working memory capacity. Furthermore, anxiety was particularly associated with poorer learning about safety cues. Such relationships were not observed for blocking and conditioned inhibition. These results suggest that the relationship between anxiety and fear learning is complex and warrants further investigation of the potential mediating role of higher-order cognitive faculties.
Collapse
|
44
|
Oxytocin for learning calm and safety. Int J Psychophysiol 2019; 136:5-14. [DOI: 10.1016/j.ijpsycho.2018.06.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 06/21/2018] [Accepted: 06/26/2018] [Indexed: 12/22/2022]
|
45
|
van Well S, O’Doherty JP, van Winden F. Relief from incidental fear evokes exuberant risk taking. PLoS One 2019; 14:e0211018. [PMID: 30677100 PMCID: PMC6345498 DOI: 10.1371/journal.pone.0211018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 01/07/2019] [Indexed: 01/11/2023] Open
Abstract
Incidental emotions are defined as feelings that are unrelated to a decision task at hand and thereby not normatively relevant for making choices. The precise influence and formal theoretical implications of incidental emotions regarding financial risk taking are still largely unclear. An effect of incidental emotion on decision-making would challenge the main extant formal theoretical economic models because such models do not allow for an effect of incidental emotions. As financial risk taking is pervasive in modern economies, the role of incidental emotions is an important issue. The goal of this experimental study is threefold. First, we examine the impact of incidental fear on the choice between a sure and a risky monetary option. A well-validated method of fear induction, using electric shocks, is employed for that purpose. Based on emotion studies we hypothesize less risk taking under fear and more risk taking when relieved of fear. Our second goal is to investigate the relative performance of the main existing formal theoretical economic models (based on Expected Utility Theory, Prospect Theory, or the Mean-Variance model) in explaining the behavioral data. We also investigate how these models can be adjusted to accommodate any observed influence of incidental emotion. For that reason, we first theoretically model the potential pathways of incidental fear (and the relief thereof) via the valuation of the choice option rewards or risk-assessment. We then estimate the relevant parameters allowing for both additive as well as interactive effects. Our third and final goal is to explore the neural basis of any observed influence of incidental emotions on decision-making by means of a model-based fMRI analysis, using the findings of existing neuroeconomic studies as the basis for our hypotheses. Our results indicate that the relief of fear can give a substantial boost to financial risk taking (suggestive of exuberance). This impact is best captured by Prospect Theory if we allow for an increase in participants’ valuation of option outcomes when relieved of fear. Moreover, this impact is manifested at the neural level by the activity of the ventromedial prefrontal cortex (vmPFC), a brain area widely regarded as being central for valuation.
Collapse
Affiliation(s)
- Sonja van Well
- CREED – Amsterdam School of Economics, and Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, The Netherlands
| | - John P. O’Doherty
- Division of the Humanities and Social Sciences, and Computation and Neural Systems Program, California Institute of Technology, Pasadena, California, United States of America
| | - Frans van Winden
- CREED – Amsterdam School of Economics, and Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
46
|
Abstract
Learned safety is a fear inhibitory mechanism, which regulates fear responses, promotes episodes of safety and generates positive affective states. Despite its potential as experimental model for several psychiatric illnesses, including post-traumatic stress disorder and depression, the molecular mechanisms of learned safety remain poorly understood, We here investigated the molecular mediators of learned safety, focusing on the characterization of miRNA expression in the basolateral amygdala (BLA). Comparing levels of 22 miRNAs in learned safety and learned fear trained mice, six safety-related miRNAs, including three members of the miR-132/-212 family, were identified. A gain-of-function approach based upon in-vivo transfection of a specific miRNA mimic, and miR-132/212 knock-out mice as loss-of-function tool were used in order to determine the relevance of miR-132 for learned safety at the behavioral and the neuronal functional levels. Using a designated bioinformatic approach, PTEN and GAT1 were identified as potential novel miR-132 target genes and further experimentally validated. We here firstly provide evidence for a regulation of amygdala miRNA expression in learned safety and propose miR-132 as signature molecule to be considered in future preclinical and translational approaches testing the transdiagnostic relevance of learned safety as intermediate phenotype in fear and stress-related disorders.
Collapse
|
47
|
Lisboa SF, Vila-Verde C, Rosa J, Uliana DL, Stern CAJ, Bertoglio LJ, Resstel LB, Guimaraes FS. Tempering aversive/traumatic memories with cannabinoids: a review of evidence from animal and human studies. Psychopharmacology (Berl) 2019; 236:201-226. [PMID: 30604182 DOI: 10.1007/s00213-018-5127-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 11/14/2018] [Indexed: 01/08/2023]
Abstract
RATIONALE Aversive learning and memory are essential to cope with dangerous and stressful stimuli present in an ever-changing environment. When this process is dysfunctional, however, it is associated with posttraumatic stress disorder (PTSD). The endocannabinoid (eCB) system has been implicated in synaptic plasticity associated with physiological and pathological aversive learning and memory. OBJECTIVE AND METHODS The objective of this study was to review and discuss evidence on how and where in the brain genetic or pharmacological interventions targeting the eCB system would attenuate aversive/traumatic memories through extinction facilitation in laboratory animals and humans. The effect size of the experimental intervention under investigation was also calculated. RESULTS Currently available data indicate that direct or indirect activation of cannabinoid type-1 (CB1) receptor facilitates the extinction of aversive/traumatic memories. Activating CB1 receptors around the formation of aversive/traumatic memories or their reminders can potentiate their subsequent extinction. In most cases, the effect size has been large (Cohen's d ≥ 1.0). The brain areas responsible for the abovementioned effects include the medial prefrontal cortex, amygdala, and/or hippocampus. The potential role of cannabinoid type-2 (CB2) receptors in extinction learning is now under investigation. CONCLUSION Drugs augmenting the brain eCB activity can temper the impact of aversive/traumatic experiences by diverse mechanisms depending on the moment of their administration. Considering the pivotal role the extinction process plays in PTSD, the therapeutic potential of these drugs is evident. The sparse number of clinical trials testing these compounds in stress-related disorders is a gap in the literature that needs to be addressed.
Collapse
Affiliation(s)
- Sabrina F Lisboa
- Department of Pharmacology, Medical School of Ribeirão Preto, University of São Paulo (FMRP/USP), Av Bandeirantes 3900, Monte Alegre, 14049900, Ribeirão Preto, São Paulo, Brazil. .,Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), Medical School of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil.
| | - C Vila-Verde
- Department of Pharmacology, Medical School of Ribeirão Preto, University of São Paulo (FMRP/USP), Av Bandeirantes 3900, Monte Alegre, 14049900, Ribeirão Preto, São Paulo, Brazil.,Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), Medical School of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - J Rosa
- Department of Pharmacology, Medical School of Ribeirão Preto, University of São Paulo (FMRP/USP), Av Bandeirantes 3900, Monte Alegre, 14049900, Ribeirão Preto, São Paulo, Brazil.,Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), Medical School of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - D L Uliana
- Department of Pharmacology, Medical School of Ribeirão Preto, University of São Paulo (FMRP/USP), Av Bandeirantes 3900, Monte Alegre, 14049900, Ribeirão Preto, São Paulo, Brazil.,Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), Medical School of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - C A J Stern
- Department of Pharmacology, Federal University of Parana, Curitiba, PR, Brazil
| | - L J Bertoglio
- Department of Pharmacology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - L B Resstel
- Department of Pharmacology, Medical School of Ribeirão Preto, University of São Paulo (FMRP/USP), Av Bandeirantes 3900, Monte Alegre, 14049900, Ribeirão Preto, São Paulo, Brazil.,Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), Medical School of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - F S Guimaraes
- Department of Pharmacology, Medical School of Ribeirão Preto, University of São Paulo (FMRP/USP), Av Bandeirantes 3900, Monte Alegre, 14049900, Ribeirão Preto, São Paulo, Brazil.,Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), Medical School of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| |
Collapse
|
48
|
Wotjak CT. Sound check, stage design and screen plot - how to increase the comparability of fear conditioning and fear extinction experiments. Psychopharmacology (Berl) 2019; 236:33-48. [PMID: 30470861 PMCID: PMC6373201 DOI: 10.1007/s00213-018-5111-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 11/05/2018] [Indexed: 11/16/2022]
Abstract
In the recent decade, fear conditioning has evolved as a standard procedure for testing cognitive abilities such as memory acquisition, consolidation, recall, reconsolidation, and extinction, preferentially in genetically modified mice. The reasons for the popularity of this powerful approach are its ease to perform, the short duration of training and testing, and its well-described neural basis. So why to bother about flaws in standardization of test procedures and analytical routines? Simplicity does not preclude the existence of fallacies. A short survey of the literature revealed an indifferent use of acoustic stimuli in terms of quality (i.e., white noise vs. sine wave), duration, and intensity. The same applies to the shock procedures. In the present article, I will provide evidence for the importance of qualitative and quantitative parameters of conditioned and unconditioned stimuli for the experimental outcome. Moreover, I will challenge frequently applied interpretations of short-term vs. long-term extinction and spontaneous recovery. On the basis of these concerns, I suggest a guideline for standardization of fear conditioning experiments in mice to improve the comparability of the experimental data.
Collapse
Affiliation(s)
- Carsten T. Wotjak
- 0000 0000 9497 5095grid.419548.5Max Planck Institute of Psychiatry, RG “Neuronal Plasticity”, Kraepelinstr. 2-10, 80804 Munich, Germany
| |
Collapse
|
49
|
Yao S, Qi S, Kendrick KM, Mobbs D. Attentional set to safety recruits the ventral medial prefrontal cortex. Sci Rep 2018; 8:15395. [PMID: 30337608 PMCID: PMC6193957 DOI: 10.1038/s41598-018-33953-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 10/04/2018] [Indexed: 11/09/2022] Open
Abstract
Early detection of danger is highly adaptive, yet fast orientation towards safety is also key to survival. This study aimed to explore how human brain searches for safety by manipulating subjects' attentional set. Subjects were asked to judge random dots motion (RDM) direction and could be shocked for incorrect responses (RDM trials) while keeping alert in detecting shock probability cues (cue detection trials). Relative to safe condition, where attention was set to search cues associated with no shock, incorrect responses to 'dangerous+' cues would increase and correct responses to 'dangerous-' cues would decrease shock probability. In RDM trials, relative to the 'dangerous+', the safe and 'dangerous-' attentional set induced stronger activation in the ventral medial prefrontal cortex (vmPFC), a core region involved in flexible threat assessment and safety signalling. In cue detection trials, shorter response times and greater accuracy were observed for 'dangerous+' than 'dangerous-' and safe cues. At neural level 'dangerous+' cues induced stronger activity in the frontoparietal attention network than safe cues. Overall, our findings demonstrate that attentional set for searching safety recruits the vmPFC, while detection of threat-related cues elicits activity in the frontoparietal attention network, suggesting new roles for these regions in human defensive survival circuitry.
Collapse
Affiliation(s)
- Shuxia Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, China
| | - Song Qi
- California Institute of Technology, Pasadena, California, 91125, USA
- Columbia University in the City of New York, New York, NY, 10027, USA
| | - Keith M Kendrick
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, China.
| | - Dean Mobbs
- California Institute of Technology, Pasadena, California, 91125, USA.
- Columbia University in the City of New York, New York, NY, 10027, USA.
| |
Collapse
|
50
|
Kreuder AK, Wassermann L, Wollseifer M, Ditzen B, Eckstein M, Stoffel-Wagner B, Hennig J, Hurlemann R, Scheele D. Oxytocin enhances the pain-relieving effects of social support in romantic couples. Hum Brain Mapp 2018; 40:242-251. [PMID: 30152573 DOI: 10.1002/hbm.24368] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/19/2018] [Accepted: 08/10/2018] [Indexed: 01/23/2023] Open
Abstract
Social support plays a vital role in physical and mental well-being. The neuropeptide hormone oxytocin (OXT) has been implicated in modulating pair-bonding and affiliative behaviors, but whether OXT contributes to the analgesic effects of a romantic partner's touch remains elusive. In the present randomized placebo-controlled, between-group, functional magnetic resonance imaging study involving 194 healthy volunteers (97 heterosexual couples), we tested the effects of intranasal OXT (24 IU) on handholding as a common mode of expressing emotional support in romantic couples. We scanned the subjects while brief electric shocks were administered. The subjects assumed that they received social support from either their romantic partner or an unfamiliar person. Unbeknown to the subject, in the partner and stranger support conditions, the same male experimenter always held the subject's left hand. Partner support was most effective in reducing the unpleasantness of electric shocks, and OXT further attenuated the unpleasantness across conditions. On the neural level, OXT significantly augmented the beneficial effects of partner support, as evidenced by a stronger decrease of neural responses to shocks in the anterior insula (AI), a stronger activity increase in the middle frontal gyrus (MFG), and a strengthened functional coupling between the AI and MFG. Our results support the notion that OXT specifically modulates the beneficial effects of social support in romantic couples by concomitantly reducing pain-associated activity and increasing activity linked to cognitive control and pain inhibition. We hypothesize that impaired OXT signaling may contribute to the experience of a lack of partner support.
Collapse
Affiliation(s)
| | - Lea Wassermann
- Division of Medical Psychology, University of Bonn, Bonn, Germany
| | | | - Beate Ditzen
- Center for Psychosocial Medicine, Institute of Medical Psychology, Heidelberg University, Heidelberg, Germany
| | - Monika Eckstein
- Center for Psychosocial Medicine, Institute of Medical Psychology, Heidelberg University, Heidelberg, Germany
| | - Birgit Stoffel-Wagner
- Department of Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn, Germany
| | - Juergen Hennig
- Division of Personality Psychology and Individual Differences, University of Giessen, Giessen, Germany
| | - René Hurlemann
- Division of Medical Psychology, University of Bonn, Bonn, Germany.,Department of Psychiatry, University of Bonn, Bonn, Germany
| | - Dirk Scheele
- Division of Medical Psychology, University of Bonn, Bonn, Germany
| |
Collapse
|