1
|
Zheng XX, Wang F, Ding H, Li HT, Yang XJ, Li XC, Dou ZW, Hu WC, Han WJ, Li ZZ, Li YC, Chu WG, Yuan H, Wu SX, Xie RG, Luo C. cGMP-dependent protein kinase I in the dorsal hippocampus protects against synaptic plasticity and cognitive deficit induced by chronic pain. Pain 2025:00006396-990000000-00888. [PMID: 40310865 DOI: 10.1097/j.pain.0000000000003624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 03/07/2025] [Indexed: 05/03/2025]
Abstract
ABSTRACT Patients with chronic pain often experience an exacerbated pain response and complain of memory deficits. However, the mechanistic link between pain and cognitive function remains unclear. The dorsal hippocampus (dHPC), a well-defined region responsible for learning and memory, displays maladaptive plasticity upon injury, which involves the activation of N-methyl-d-aspartic acid receptors. Mounting evidence has shown that cyclic guanosine cGMP-dependent protein kinase I (PKG-I) serves as a key downstream target of the N-methyl-d-aspartic acid receptors-NO-cGMP signaling pathway, regulating neuronal plasticity, pain hypersensitivity, and pain-related affective disorders. Despite these advances, it has remained elusive whether and how PKG-I in the dHPC contributes to hippocampal plasticity, as well as to chronic pain and pain-related cognitive deficits. In this study, we disclosed the crucial role of PKG-I in the dHPC in chronic pain and pain-related cognitive deficits. Following nerve injury, mice exhibited mechanical allodynia and thermal hyperalgesia, along with pain-related cognitive impairments; these changes were accompanied by the downregulation of PKG-I at both mRNA and protein levels in the dHPC. Overexpression of PKG-I in the dHPC alleviated pain hypersensitivity and associated cognitive deficits. Further mechanistic analysis revealed that PKG-I contributes to modulating Ca2+ mobilization in hippocampal pyramidal neurons, which brings about the production and secretion of a brain-derived neurotrophic factor in the dHPC. The resultant increase of the brain-derived neurotrophic factor in turn enhanced hippocampal neuronal excitability and synaptic plasticity and thus relieved pain hypersensitivity and pain-related cognitive impairment. Our findings extended the functional capability of hippocampal PKG-I on chronic pain and pain-related cognitive impairment. Hippocampal PKG-I may represent a novel therapeutic target for the treatment of chronic pain and pain-related memory deficits.
Collapse
Affiliation(s)
- Xing-Xing Zheng
- College of Life Sciences, Northwest University, Xi'an, China
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Fei Wang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
- Medical Experiment Center, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Hui Ding
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Hai-Tao Li
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
- The Fourteenth Squadron of the Fourth Regiment, School of Basal Medicine, Fourth Military Medical University, Xi'an, China
| | - Xin-Jiang Yang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
- Department of Rehabilitation Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiang-Chen Li
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
- The Third Squadron of the First Regiment, School of Basal Medicine, Fourth Military Medical University, Xi'an, China
| | - Zhi-Wei Dou
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
- Class 2018, The Twenty-fourth Squadron of the Sixth Brigade, School of Basal Medicine, Fourth Military Medical University, Xi'an, China
| | - Wen-Chao Hu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
- Class 2018, The Twenty-fourth Squadron of the Sixth Brigade, School of Basal Medicine, Fourth Military Medical University, Xi'an, China
| | - Wen-Juan Han
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Zhen-Zhen Li
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Ying-Chun Li
- College of Life Sciences, Northwest University, Xi'an, China
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Wen-Guang Chu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Hua Yuan
- Department of Rehabilitation Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Sheng-Xi Wu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Rou-Gang Xie
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Ceng Luo
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
- Innovation Research Institute, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
2
|
Baumgärtel K, Broadbent NJ, Su H, Masatsugu B, Maruyama KP, Johnson RW, Green AL, Hornberger DK, Petroski R, Scott R, Peters M. Longevity, enhanced memory, and altered density of dendritic spines in hippocampal CA3 and dentate gyrus after hemizygous deletion of Pde2a in mice. Neuropsychopharmacology 2025; 50:808-817. [PMID: 39604498 PMCID: PMC11914214 DOI: 10.1038/s41386-024-02031-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024]
Abstract
Studies using acute or subchronic pharmacological inhibition of phosphodiesterase 2 A (PDE2A) have led to its proposal as a target for treatment of cognitive deficits associated with neuropsychiatric and neurodegenerative disease. However, the impact of continuous inhibition of PDE2A on memory is unknown. Moreover, the neuroanatomical regions mediating memory enhancement have not been categorically identified. To address these open questions, we studied knockout mice and hippocampus restricted manipulations. Pde2a heterozygous knockout mice are viable with no gross histological abnormalities. The mice exhibit enhanced spatial and object recognition memory that is independent of anxiolytic effects and is paralleled by increased density of dendritic mushroom and thin spines in hippocampal CA3 and dentate gyrus in adult mice. In CA1, subtle alterations in spine density were seen, while theta-burst LTP and paired-pulse facilitation were normal. Spatial memory enhancement persists in aged Pde2a heterozygous knockout mice, and to our surprise these mice live significantly longer than wild-type littermate controls. In summary, we provide evidence that life-long reduction of PDE2A expression promotes spine formation and maturation, exerts beneficial effects on memory, and increases lifespan.
Collapse
Affiliation(s)
- Karsten Baumgärtel
- Target Discovery & Behavioral Pharmacology, Dart Neuroscience, LLC, 12278 Scripps Summit Drive, San Diego, CA, 92131, USA
- Amplio Consulting LLC5284 Dawes St, San Diego, CA, 92109, USA
| | - Nicola J Broadbent
- Target Discovery & Behavioral Pharmacology, Dart Neuroscience, LLC, 12278 Scripps Summit Drive, San Diego, CA, 92131, USA
| | - Hailing Su
- Neurophysiology, Dart Neuroscience, LLC, 12278 Scripps Summit Drive, San Diego, CA, 92131, USA
| | - Brittany Masatsugu
- Target Discovery & Behavioral Pharmacology, Dart Neuroscience, LLC, 12278 Scripps Summit Drive, San Diego, CA, 92131, USA
| | - Karly P Maruyama
- Target Discovery & Behavioral Pharmacology, Dart Neuroscience, LLC, 12278 Scripps Summit Drive, San Diego, CA, 92131, USA
| | - Robert W Johnson
- Target Discovery & Behavioral Pharmacology, Dart Neuroscience, LLC, 12278 Scripps Summit Drive, San Diego, CA, 92131, USA
| | - Andrea L Green
- Target Discovery & Behavioral Pharmacology, Dart Neuroscience, LLC, 12278 Scripps Summit Drive, San Diego, CA, 92131, USA
| | - Diana K Hornberger
- Target Discovery & Behavioral Pharmacology, Dart Neuroscience, LLC, 12278 Scripps Summit Drive, San Diego, CA, 92131, USA
| | - Robert Petroski
- Neurophysiology, Dart Neuroscience, LLC, 12278 Scripps Summit Drive, San Diego, CA, 92131, USA
| | - Roderick Scott
- Target Discovery & Behavioral Pharmacology, Dart Neuroscience, LLC, 12278 Scripps Summit Drive, San Diego, CA, 92131, USA
| | - Marco Peters
- Target Discovery & Behavioral Pharmacology, Dart Neuroscience, LLC, 12278 Scripps Summit Drive, San Diego, CA, 92131, USA.
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Qureshey Research Laboratory, Irvine, CA, 92697, USA.
| |
Collapse
|
3
|
Eskander G, Abdelhamid SG, Wahdan SA, Radwan SM. Roflumilast attenuates doxorubicin and cyclophosphamide combination-induced chemobrain in rats through modulation of NLRP3/ASC/caspase-1/GSDMD axis. Life Sci 2025; 362:123378. [PMID: 39788415 DOI: 10.1016/j.lfs.2025.123378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 01/06/2025] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
AIM The aim of this study is to investigate the neuroprotective effect of roflumilast, a phosphodiesterase-4 (PDE-4) inhibitor on cognitive impairment induced by doxorubicin (DOX)/cyclophosphamide (CP) combination therapy and to elucidate its modulatory effect on the pyroptosis pathway. MATERIALS AND METHODS Rats were allocated into five groups: a control group, a DOX/CP-intoxicated group, two groups receiving DOX/CP plus low-dose (0.5 mg/kg/day) or high-dose (1 mg/kg/day) roflumilast, and a roflumilast-only group. Behavioral assessments and brain tissue analyses were conducted, including histopathological staining and the measurement of inflammatory and oxidative stress markers. FINDINGS DOX/CP treatment resulted in cognitive impairment, abnormal brain histology. It significantly elevated the levels of tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), and malondialdehyde (MDA). Concurrently, superoxide dismutase (SOD) activity was reduced. Pyroptosis-associated markers, including nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3), apoptosis-associated speck-like protein (ASC), caspase-1, gasdermin-D (GSDMD), and interleukin-18 (IL-18) were upregulated. Apoptotic marker caspase-3 also exhibited increased expression. Conversely, administration of roflumilast (1 mg/kg/day) for four weeks ameliorated these pathological changes. Roflumilast improved cognitive function, reduced oxidative stress, and modulated inflammatory signaling. Additionally, it suppressed pyroptotic and apoptotic pathways within hippocampal tissue. SIGNIFICANCE These results suggest that roflumilast exerts neuroprotective effects against chemotherapy-induced cognitive dysfunction and neurodegeneration through inhibition of the NLRP3/ASC/caspase-1/GSDMD pyroptosis pathway.
Collapse
Affiliation(s)
- Georgette Eskander
- Postgraduate program, Faculty of Pharmacy, Ain Shams University, 11566 Cairo, Egypt.
| | - Sherihan G Abdelhamid
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, 11566 Cairo, Egypt.
| | - Sara A Wahdan
- Pharmacology and toxicology Department, Faculty of Pharmacy, Ain Shams University, 11566 Cairo, Egypt.
| | - Sara M Radwan
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, 11566 Cairo, Egypt.
| |
Collapse
|
4
|
Park MK, Yang HW, Woo SY, Kim DY, Son DS, Choi BY, Suh SW. Modulation of Second Messenger Signaling in the Brain Through PDE4 and PDE5 Inhibition: Therapeutic Implications for Neurological Disorders. Cells 2025; 14:86. [PMID: 39851514 PMCID: PMC11763391 DOI: 10.3390/cells14020086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/07/2025] [Accepted: 01/07/2025] [Indexed: 01/26/2025] Open
Abstract
Phosphodiesterase (PDE) enzymes regulate intracellular signaling pathways crucial for brain development and the pathophysiology of neurological disorders. Among the 11 PDE subtypes, PDE4 and PDE5 are particularly significant due to their regulation of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) signaling, respectively, which are vital for learning, memory, and neuroprotection. This review synthesizes current evidence on the roles of PDE4 and PDE5 in neurological health and disease, focusing on their regulation of second messenger pathways and their implications for brain function. Elevated PDE4 activity impairs synaptic plasticity by reducing cAMP levels and protein kinase A (PKA) activity, contributing to cognitive decline, acute brain injuries, and neuropsychiatric conditions such as bipolar disorder and schizophrenia. Similarly, PDE5 dysregulation disrupts nitric oxide (NO) signaling and protein kinase G (PKG) pathways, which are involved in cerebrovascular homeostasis, recovery after ischemic events, and neurodegenerative processes in Alzheimer's, Parkinson's, and Huntington's diseases. PDE4 and PDE5 are promising therapeutic targets for neurological disorders. Pharmacological modulation of these enzymes offers potential to enhance cognitive function and mitigate pathological mechanisms underlying brain injuries, neurodegenerative diseases, and psychiatric disorders. Further research into the regulation of PDE4 and PDE5 will advance therapeutic strategies for these conditions.
Collapse
Affiliation(s)
- Min Kyu Park
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea; (M.K.P.); (H.W.Y.); (S.Y.W.); (D.Y.K.)
| | - Hyun Wook Yang
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea; (M.K.P.); (H.W.Y.); (S.Y.W.); (D.Y.K.)
| | - Seo Young Woo
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea; (M.K.P.); (H.W.Y.); (S.Y.W.); (D.Y.K.)
| | - Dong Yeon Kim
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea; (M.K.P.); (H.W.Y.); (S.Y.W.); (D.Y.K.)
| | - Dae-Soon Son
- Division of Data Science, Data Science Convergence Research Center, Hallym University, Chuncheon 24252, Republic of Korea;
| | - Bo Young Choi
- Institute of Sport Science, Hallym University, Chuncheon 24252, Republic of Korea;
- Department of Physical Education, Hallym University, Chuncheon 24252, Republic of Korea
| | - Sang Won Suh
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea; (M.K.P.); (H.W.Y.); (S.Y.W.); (D.Y.K.)
| |
Collapse
|
5
|
Sen P, Ortiz O, Brivio E, Menegaz D, Sotillos Elliott L, Du Y, Ries C, Chen A, Wurst W, Lopez JP, Eder M, Deussing JM. A bipolar disorder-associated missense variant alters adenylyl cyclase 2 activity and promotes mania-like behavior. Mol Psychiatry 2025; 30:97-110. [PMID: 39003412 PMCID: PMC11649569 DOI: 10.1038/s41380-024-02663-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 06/21/2024] [Accepted: 07/04/2024] [Indexed: 07/15/2024]
Abstract
The single nucleotide polymorphism rs13166360, causing a substitution of valine (Val) 147 to leucine (Leu) in the adenylyl cyclase 2 (ADCY2), has previously been associated with bipolar disorder (BD). Here we show that the disease-associated ADCY2 missense mutation diminishes the enzyme´s capacity to generate the second messenger 3',5'-cylic adenosine monophosphate (cAMP) by altering its subcellular localization. We established mice specifically carrying the Val to Leu substitution using CRISPR/Cas9-based gene editing. Mice homozygous for the Leu variant display symptoms of a mania-like state accompanied by cognitive impairments. Mutant animals show additional characteristic signs of rodent mania models, i.e., they are hypersensitive to amphetamine, the observed mania-like behaviors are responsive to lithium treatment and the Val to Leu substitution results in a shifted excitatory/inhibitory synaptic balance towards more excitation. Exposure to chronic social defeat stress switches homozygous Leu variant carriers from a mania- to a depressive-like state, a transition which is reminiscent of the alternations characterizing the symptomatology in BD patients. Single-cell RNA-seq (scRNA-seq) revealed widespread Adcy2 mRNA expression in numerous hippocampal cell types. Differentially expressed genes particularly identified from glutamatergic CA1 neurons point towards ADCY2 variant-dependent alterations in multiple biological processes including cAMP-related signaling pathways. These results validate ADCY2 as a BD risk gene, provide insights into underlying disease mechanisms, and potentially open novel avenues for therapeutic intervention strategies.
Collapse
Affiliation(s)
- Paromita Sen
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, 80804, Munich, Germany
| | - Oskar Ortiz
- Institute of Developmental Genetics, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Elena Brivio
- Department Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804, Munich, Germany
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Danusa Menegaz
- Scientific Core Unit Electrophysiology, Max Planck Institute of Psychiatry, 80804, Munich, Germany
| | | | - Ying Du
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, 80804, Munich, Germany
| | - Clemens Ries
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, 80804, Munich, Germany
| | - Alon Chen
- Department Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804, Munich, Germany
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, 85764, Neuherberg, Germany
- Chair of Developmental Genetics, Munich School of Life Sciences Weihenstephan, Technical University of Munich, 85354, Freising, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE) site Munich, 81377, Munich, Germany
| | - Juan Pablo Lopez
- Department Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804, Munich, Germany
- Department of Neuroscience, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Matthias Eder
- Scientific Core Unit Electrophysiology, Max Planck Institute of Psychiatry, 80804, Munich, Germany
| | - Jan M Deussing
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, 80804, Munich, Germany.
| |
Collapse
|
6
|
Prickaerts J, Kerckhoffs J, Possemis N, van Overveld W, Verbeek F, Grooters T, Sambeth A, Blokland A. Roflumilast and cognition enhancement: A translational perspective. Biomed Pharmacother 2024; 181:117707. [PMID: 39591666 DOI: 10.1016/j.biopha.2024.117707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/19/2024] [Accepted: 11/19/2024] [Indexed: 11/28/2024] Open
Abstract
Cognitive impairment affiliated with neurological disorders has a severe impact on daily life functioning and the quality of life of patients. This is associated with a significant and long-lasting health, social and financial burden, not only for the patients, but also for families and the wider society. However, treatment for cognitive impairment is only available for the indication Alzheimer's disease (AD) and its prodromal stage Mild Cognitive Impairment (MCI), although with major adverse effects, i.e. gastrointestinal effects (drugs) or hemorrhages (antibodies). Roflumilast (selective phosphodiesterase type 4 (PDE4) inhibitor) has been approved as an anti-inflammatory drug for the treatment of chronic obstructive pulmonary disease (COPD), although still 5 % of the patients experience nausea or even vomiting at the approved dose of 500 μg. Nonclinical studies demonstrated that roflumilast appears a promising drug the treat cognitive impairment in healthy rodents and a wide variety of animal models of CNS disorders. These effects are attributed to pro-neuroplasticity and anti-inflammatory effects, which appeared dose dependent. Roflumilast has also been tested in clinical studies and showed cognition enhancement at low dosing (100-250 µg) in healthy adults, healthy elderly, MCI and schizophrenia. Currently, clinical trials are underway for testing the pro-cognitive effects in early AD, post stroke cognitive impairment and Fragile X. Overall, the data showed that roflumilast has beneficial effects on cognitive performance. These cognition-enhancing effects are found at doses that were well-tolerated. Based on this favorable therapeutic window, the repurposing of roflumilast for treating cognitive impairments in CNS diseases may offer an affordable treatment option for patients.
Collapse
Affiliation(s)
| | - Jill Kerckhoffs
- Department of Neuropsychology and Psychopharmacology, Maastricht University, Netherlands; Limburg Brain Injury Centre, Maastricht University, Maastricht, Netherlands
| | - Nina Possemis
- Department of Psychiatry and Neuropsychology, Maastricht University, Netherlands
| | | | | | | | - Anke Sambeth
- Department of Neuropsychology and Psychopharmacology, Maastricht University, Netherlands
| | - Arjan Blokland
- Department of Neuropsychology and Psychopharmacology, Maastricht University, Netherlands.
| |
Collapse
|
7
|
Borovac J, Rai J, Valencia M, Li H, Georgiou J, Collingridge GL, Takao K, Okamoto K. Optogenetic elevation of postsynaptic cGMP in the hippocampal dentate gyrus enhances LTP and modifies mouse behaviors. Front Mol Neurosci 2024; 17:1479360. [PMID: 39660172 PMCID: PMC11629205 DOI: 10.3389/fnmol.2024.1479360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/18/2024] [Indexed: 12/12/2024] Open
Abstract
A major intracellular messenger implicated in synaptic plasticity and cognitive functions both in health and disease is cyclic GMP (cGMP). Utilizing a photoactivatable guanylyl cyclase (BlgC) actuator to increase cGMP in dentate granule neurons of the hippocampus by light, we studied the effects of spatiotemporal cGMP elevations in synaptic and cognitive functions. At medial perforant path to dentate gyrus (MPP-DG) synapses, we found enhanced long-term potentiation (LTP) of synaptic responses when postsynaptic cGMP was elevated during the induction period. Basal synaptic transmission and the paired-pulse ratio were unaffected, suggesting the cGMP effect on LTP was postsynaptic in origin. In behaving mice implanted with a fiber optic and wireless LED device, their performance following DG photoactivation (5-10 min) was studied in a variety of behavioral tasks. There were enhancements in reference memory and social behavior within tens of minutes following DG BlgC photoactivation, and with time (hours), an anxiogenic effect developed. Thus, postsynaptic cGMP elevations, specifically in the DG and specifically during conditions that evoke synaptic plasticity or during experience, are able to rapidly modify synaptic strength and behavioral responses, respectively. The optogenetics technology and new roles for cGMP in the DG may have applications in brain disorders that are impacted by dysregulated cGMP signaling, such as Alzheimer's disease.
Collapse
Affiliation(s)
- Jelena Borovac
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
- Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Behavioral Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Jayant Rai
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
- Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Megan Valencia
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
- Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Hang Li
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - John Georgiou
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Graham L. Collingridge
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- TANZ Centre for Research in Neurodegenerative Diseases (CRND), University of Toronto, Toronto, ON, Canada
| | - Keizo Takao
- Department of Behavioral Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
- Department of Behavioral Physiology, Faculty of Medicine, University of Toyama, Toyama, Japan
- Research Centre for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Kenichi Okamoto
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
- Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
8
|
Tropea MR, Melone M, Li Puma DD, Vacanti V, Aceto G, Bandiera B, Trovato RC, Torrisi SA, Leggio GM, Palmeri A, D'Ascenzo M, Conti F, Grassi C, Puzzo D. Blockade of dopamine D3 receptors improves hippocampal synaptic function and rescues age-related cognitive phenotype. Aging Cell 2024; 23:e14291. [PMID: 39236310 PMCID: PMC11561665 DOI: 10.1111/acel.14291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/22/2024] [Accepted: 07/16/2024] [Indexed: 09/07/2024] Open
Abstract
Dopamine D3 receptors (D3Rs) modulate neuronal activity in several brain regions including the hippocampus. Although previous studies reported that blocking D3Rs exerts pro-cognitive effects, their involvement in hippocampal synaptic function and memory in the healthy and aged brain has not been thoroughly investigated. We demonstrated that in adult wild type (WT) mice, D3R pharmacological blockade or genetic deletion as in D3 knock out (KO) mice, converted the weak form of long-term potentiation (LTP1) into the stronger long-lasting LTP (LTP2) via the cAMP/PKA pathway, and allowed the formation of long-term memory. D3R effects were mainly mediated by post-synaptic mechanisms as their blockade enhanced basal synaptic transmission (BST), AMPAR-mediated currents, mEPSC amplitude, and the expression of the post-synaptic proteins PSD-95, phospho(p)GluA1 and p-CREB. Consistently, electron microscopy revealed a prevalent expression of D3Rs in post-synaptic dendrites. Interestingly, with age, D3Rs decreased in axon terminals while maintaining their levels in post-synaptic dendrites. Indeed, in aged WT mice, blocking D3Rs reversed the impairment of LTP, BST, memory, post-synaptic protein expression, and PSD length. Notably, aged D3-KO mice did not exhibit synaptic and memory deficits. In conclusion, we demonstrated the fundamental role of D3Rs in hippocampal synaptic function and memory, and their potential as a therapeutic target to counteract the age-related hippocampal cognitive decline.
Collapse
Affiliation(s)
- Maria Rosaria Tropea
- Department of Biomedical and Biotechnological SciencesUniversity of CataniaCataniaItaly
| | - Marcello Melone
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical MedicineUniversità Politecnica Delle MarcheAnconaItaly
- Center for Neurobiology of Aging, IRCCS INRCAAnconaItaly
| | - Domenica Donatella Li Puma
- Department of NeuroscienceUniversità Cattolica del Sacro CuoreRomeItaly
- Fondazione Policlinico Universitario A. Gemelli IRCCSRomeItaly
| | - Valeria Vacanti
- Department of Biomedical and Biotechnological SciencesUniversity of CataniaCataniaItaly
| | - Giuseppe Aceto
- Department of NeuroscienceUniversità Cattolica del Sacro CuoreRomeItaly
- Fondazione Policlinico Universitario A. Gemelli IRCCSRomeItaly
| | - Bruno Bandiera
- Department of NeuroscienceUniversità Cattolica del Sacro CuoreRomeItaly
| | | | | | - Gian Marco Leggio
- Department of Biomedical and Biotechnological SciencesUniversity of CataniaCataniaItaly
| | - Agostino Palmeri
- Department of Biomedical and Biotechnological SciencesUniversity of CataniaCataniaItaly
| | - Marcello D'Ascenzo
- Department of NeuroscienceUniversità Cattolica del Sacro CuoreRomeItaly
- Fondazione Policlinico Universitario A. Gemelli IRCCSRomeItaly
| | - Fiorenzo Conti
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical MedicineUniversità Politecnica Delle MarcheAnconaItaly
- Center for Neurobiology of Aging, IRCCS INRCAAnconaItaly
| | - Claudio Grassi
- Department of NeuroscienceUniversità Cattolica del Sacro CuoreRomeItaly
- Fondazione Policlinico Universitario A. Gemelli IRCCSRomeItaly
| | - Daniela Puzzo
- Department of Biomedical and Biotechnological SciencesUniversity of CataniaCataniaItaly
- Oasi Research Institute‐IRCCSTroinaItaly
| |
Collapse
|
9
|
Kumar A, Kim F, Song DK, Choung JJ. Polypharmacological Potential of Phosphodiesterase 5 Inhibitors for the Treatment of Neurocognitive Disorders. Aging Dis 2024; 15:2008-2014. [PMID: 38270120 PMCID: PMC11346399 DOI: 10.14336/ad.2023.1129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/29/2023] [Indexed: 01/26/2024] Open
Abstract
The prevalence of neurocognitive disorders (NCD) increases every year as the population continues to age, leading to significant global health concerns. Overcoming this challenge requires identifying biomarkers, risk factors, and effective therapeutic interventions that might provide meaningful clinical benefits. For Alzheimer's disease (AD), one of the most studied NCD, approved drugs include acetylcholinesterase inhibitors (rivastigmine, donepezil, and galantamine), an NMDA receptor antagonist (memantine), and anti-amyloid monoclonal antibodies (aducanumab and lecanemab). These drugs offer limited relief, targeting singular pathological processes of the AD. Given the multifactorial nature of the NCDs, a poly-pharmacological strategy may lead to improved outcomes compared to the current standard of care. In this regard, phosphodiesterase 5 (PDE5) inhibitors emerged as promising drug candidates for the treatment of neurocognitive disorders. These inhibitors increase cGMP levels and CREB signaling, thus enhancing learning, memory and neuroprotection, while reducing Aβ deposition, tau phosphorylation, oxidative stress, and neuroinflammation. In the present article, we evaluate the therapeutic potential of different PDE5 inhibitors to outline their multifaceted impact in the NCDs.
Collapse
|
10
|
Donders Z, Skorupska IJ, Willems E, Mussen F, Broeckhoven JV, Carlier A, Schepers M, Vanmierlo T. Beyond PDE4 inhibition: A comprehensive review on downstream cAMP signaling in the central nervous system. Biomed Pharmacother 2024; 177:117009. [PMID: 38908196 DOI: 10.1016/j.biopha.2024.117009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/27/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024] Open
Abstract
Cyclic adenosine monophosphate (cAMP) is a key second messenger that regulates signal transduction pathways pivotal for numerous biological functions. Intracellular cAMP levels are spatiotemporally regulated by their hydrolyzing enzymes called phosphodiesterases (PDEs). It has been shown that increased cAMP levels in the central nervous system (CNS) promote neuroplasticity, neurotransmission, neuronal survival, and myelination while suppressing neuroinflammation. Thus, elevating cAMP levels through PDE inhibition provides a therapeutic approach for multiple CNS disorders, including multiple sclerosis, stroke, spinal cord injury, amyotrophic lateral sclerosis, traumatic brain injury, and Alzheimer's disease. In particular, inhibition of the cAMP-specific PDE4 subfamily is widely studied because of its high expression in the CNS. So far, the clinical translation of full PDE4 inhibitors has been hampered because of dose-limiting side effects. Hence, focusing on signaling cascades downstream activated upon PDE4 inhibition presents a promising strategy, offering novel and pharmacologically safe targets for treating CNS disorders. Yet, the underlying downstream signaling pathways activated upon PDE(4) inhibition remain partially elusive. This review provides a comprehensive overview of the existing knowledge regarding downstream mediators of cAMP signaling induced by PDE4 inhibition or cAMP stimulators. Furthermore, we highlight existing gaps and future perspectives that may incentivize additional downstream research concerning PDE(4) inhibition, thereby providing novel therapeutic approaches for CNS disorders.
Collapse
Affiliation(s)
- Zoë Donders
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6229ER, the Netherlands; Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt 3500, Belgium
| | - Iga Joanna Skorupska
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6229ER, the Netherlands; Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt 3500, Belgium; Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht 6629ER, the Netherlands
| | - Emily Willems
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6229ER, the Netherlands; Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt 3500, Belgium
| | - Femke Mussen
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6229ER, the Netherlands; Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt 3500, Belgium; Department of Immunology and Infection, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt 3500, Belgium
| | - Jana Van Broeckhoven
- Department of Immunology and Infection, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt 3500, Belgium; University MS Centre (UMSC) Hasselt - Pelt, Belgium
| | - Aurélie Carlier
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht 6629ER, the Netherlands
| | - Melissa Schepers
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6229ER, the Netherlands; Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt 3500, Belgium; University MS Centre (UMSC) Hasselt - Pelt, Belgium
| | - Tim Vanmierlo
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6229ER, the Netherlands; Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt 3500, Belgium; University MS Centre (UMSC) Hasselt - Pelt, Belgium.
| |
Collapse
|
11
|
Xiang Y, Naik S, Zhao L, Shi J, Ke H. Emerging phosphodiesterase inhibitors for treatment of neurodegenerative diseases. Med Res Rev 2024; 44:1404-1445. [PMID: 38279990 DOI: 10.1002/med.22017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/13/2023] [Accepted: 01/09/2024] [Indexed: 01/29/2024]
Abstract
Neurodegenerative diseases (NDs) cause progressive loss of neuron structure and ultimately lead to neuronal cell death. Since the available drugs show only limited symptomatic relief, NDs are currently considered as incurable. This review will illustrate the principal roles of the signaling systems of cyclic adenosine and guanosine 3',5'-monophosphates (cAMP and cGMP) in the neuronal functions, and summarize expression/activity changes of the associated enzymes in the ND patients, including cyclases, protein kinases, and phosphodiesterases (PDEs). As the sole enzymes hydrolyzing cAMP and cGMP, PDEs are logical targets for modification of neurodegeneration. We will focus on PDE inhibitors and their potentials as disease-modifying therapeutics for the treatment of Alzheimer's disease, Parkinson's disease, and Huntington's disease. For the overlapped but distinct contributions of cAMP and cGMP to NDs, we hypothesize that dual PDE inhibitors, which simultaneously regulate both cAMP and cGMP signaling pathways, may have complementary and synergistic effects on modifying neurodegeneration and thus represent a new direction on the discovery of ND drugs.
Collapse
Affiliation(s)
- Yu Xiang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Swapna Naik
- Department of Pharmacology, Yale Cancer Biology Institute, Yale University, West Haven, Connecticut, USA
| | - Liyun Zhao
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hengming Ke
- Department of Biochemistry and Biophysics, The University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
12
|
Possemis N, Caldenhove S, Sambeth A, Blokland A. Acute Treatment with the Nootropic CILTEP® Does Not Improve Cognitive Performance in Healthy Middle-Aged Participants. JOURNAL OF COGNITIVE ENHANCEMENT 2024; 8:95-106. [DOI: 10.1007/s41465-024-00288-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/22/2024] [Indexed: 01/03/2025]
Abstract
AbstractThis study investigated the acute effects of the dietary nootropic stack CILTEP®. It contains a combination of ingredients that have been individually reported to improve cognitive performance. Especially, the ingredients luteolin, which is considered a phosphodiesterase type 4 (PDE4) inhibitor, and forskolin, an adenylate cyclase stimulator, were of interest since they can increase the second messenger cAMP and thus also intracellular signaling. Numerous studies have shown that inhibition of PDE4 can improve memory in animals and humans. We examined whether acute dosing of 3 capsules of CILTEP® would improve cognitive function in healthy participants aged 30 to 40 (n = 33). We used a randomized, double-blind, placebo-controlled, two-way cross-over design. Our test battery was aimed at measuring memory performance, attention, and sensorimotor speed. The primary outcome measures were the performance on the verbal learning task and the spatial pattern separation task. Secondary outcomes included other cognitive tests, event-related potentials (ERPs), and assessment of the activity of the enzyme beta-glucuronidase and its effect on the bioavailability of luteolin, heart rate, and blood pressure. No relevant effects of acute CILTEP® treatment were found on any measure of the test battery or ERPs. Blood plasma concentrations of luteolin increased, yet about 2000 times too low to likely exert any PDE4 inhibition. CILTEP® treatment did neither affect heart rate nor blood pressure. In summary, there is no evidence that a single standardized dose of 3 capsules of CILTEP® can improve cognitive function in healthy middle-aged participants.
Collapse
|
13
|
Li Q, Liao Q, Qi S, Huang H, He S, Lyu W, Liang J, Qin H, Cheng Z, Yu F, Dong X, Wang Z, Han L, Han Y. Opportunities and perspectives of small molecular phosphodiesterase inhibitors in neurodegenerative diseases. Eur J Med Chem 2024; 271:116386. [PMID: 38614063 DOI: 10.1016/j.ejmech.2024.116386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/19/2024] [Accepted: 04/01/2024] [Indexed: 04/15/2024]
Abstract
Phosphodiesterase (PDE) is a superfamily of enzymes that are responsible for the hydrolysis of two second messengers: cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP). PDE inhibition promotes the gene transcription by activating cAMP-response element binding protein (CREB), initiating gene transcription of brain-derived neurotrophic factor (BDNF). The procedure exerts neuroprotective profile, and motor and cognitive improving efficacy. From this point of view, PDE inhibition will provide a promising therapeutic strategy for treating neurodegenerative disorders. Herein, we summarized the PDE inhibitors that have entered the clinical trials or been discovered in recent five years. Well-designed clinical or preclinical investigations have confirmed the effectiveness of PDE inhibitors, such as decreasing Aβ oligomerization and tau phosphorylation, alleviating neuro-inflammation and oxidative stress, modulating neuronal plasticity and improving long-term cognitive impairment.
Collapse
Affiliation(s)
- Qi Li
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China.
| | - Qinghong Liao
- Shandong Kangqiao Biotechnology Co., Ltd, Qingdao, 266033, Shandong, PR China
| | - Shulei Qi
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China
| | - He Huang
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China
| | - Siyu He
- Guizhou Province Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, 550004, Guizhou, PR China
| | - Weiping Lyu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Jinxin Liang
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China
| | - Huan Qin
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China
| | - Zimeng Cheng
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China
| | - Fan Yu
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China
| | - Xue Dong
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China
| | - Ziming Wang
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China; School of Pharmacy, Binzhou Medical University, Yantai, 256699, Shandong, PR China
| | - Lingfei Han
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, PR China
| | - Yantao Han
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China.
| |
Collapse
|
14
|
He J, Li Q, Zhang Q. rvTWAS: identifying gene-trait association using sequences by utilizing transcriptome-directed feature selection. Genetics 2024; 226:iyad204. [PMID: 38001381 DOI: 10.1093/genetics/iyad204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
Toward the identification of genetic basis of complex traits, transcriptome-wide association study (TWAS) is successful in integrating transcriptome data. However, TWAS is only applicable for common variants, excluding rare variants in exome or whole-genome sequences. This is partly because of the inherent limitation of TWAS protocols that rely on predicting gene expressions. Our previous research has revealed the insight into TWAS: the 2 steps in TWAS, building and applying the expression prediction models, are essentially genetic feature selection and aggregations that do not have to involve predictions. Based on this insight disentangling TWAS, rare variants' inability of predicting expression traits is no longer an obstacle. Herein, we developed "rare variant TWAS," or rvTWAS, that first uses a Bayesian model to conduct expression-directed feature selection and then uses a kernel machine to carry out feature aggregation, forming a model leveraging expressions for association mapping including rare variants. We demonstrated the performance of rvTWAS by thorough simulations and real data analysis in 3 psychiatric disorders, namely schizophrenia, bipolar disorder, and autism spectrum disorder. We confirmed that rvTWAS outperforms existing TWAS protocols and revealed additional genes underlying psychiatric disorders. Particularly, we formed a hypothetical mechanism in which zinc finger genes impact all 3 disorders through transcriptional regulations. rvTWAS will open a door for sequence-based association mappings integrating gene expressions.
Collapse
Affiliation(s)
- Jingni He
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary T2N 1N4, Canada
| | - Qing Li
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary T2N 1N4, Canada
| | - Qingrun Zhang
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary T2N 1N4, Canada
- Department of Mathematics and Statistics, University of Calgary, Calgary T2N 1N4, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary T2N 1N4, Canada
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary T2N 1N4, Canada
| |
Collapse
|
15
|
Gupta S, Khan J, Ghosh S. Molecular mechanism of cognitive impairment associated with Parkinson's disease: A stroke perspective. Life Sci 2024; 337:122358. [PMID: 38128756 DOI: 10.1016/j.lfs.2023.122358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 12/03/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
Parkinson's disease (PD) is a common neurological illness that causes several motor and non-motor symptoms, most characteristically limb tremors and bradykinesia. PD is a slowly worsening disease that arises due to progressive neurodegeneration of specific areas of the brain, especially the substantia nigra of the midbrain. Even though PD has continuously been linked to a higher mortality risk in numerous epidemiologic studies, there have been significant discoveries regarding the connection between PD and stroke. The incidence of strokes such as cerebral infarction and hemorrhage is substantially associated with the development of PD. Moreover, cognitive impairments, primarily dementia, have been associated with stroke and PD. However, the underlying molecular mechanism of this phenomenon is still obscure. This concise review focuses on the relationship between stroke and PD, emphasizing the molecular mechanism of cognition deficit and memory loss evident in PD and stroke. Furthermore, we are also highlighting some potential drug molecules that can target both PD and stroke.
Collapse
Affiliation(s)
- Sanju Gupta
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur (IIT-Jodhpur), Rajasthan 342037, India
| | - Juhee Khan
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur (IIT-Jodhpur), Rajasthan 342037, India
| | - Surajit Ghosh
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur (IIT-Jodhpur), Rajasthan 342037, India.
| |
Collapse
|
16
|
Sadeghi MA, Hemmati S, Yousefi-Manesh H, Foroutani L, Nassireslami E, Yousefi Zoshk M, Hosseini Y, Abbasian K, Dehpour AR, Chamanara M. Cilostazol pretreatment prevents PTSD-related anxiety behavior through reduction of hippocampal neuroinflammation. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:133-144. [PMID: 37382600 DOI: 10.1007/s00210-023-02578-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 06/13/2023] [Indexed: 06/30/2023]
Abstract
Current pharmacological treatments against post-traumatic stress disorder (PTSD) lack adequate efficacy. As a result, intense research has focused on identifying other molecular pathways mediating the pathogenesis of this condition. One such pathway is neuroinflammation, which has demonstrated a role in PTSD pathogenesis by causing synaptic dysfunction, neuronal death, and functional impairment in the hippocampus. Phosphodiesterase (PDE) inhibitors (PDEIs) have emerged as promising therapeutic agents against neuroinflammation in other neurological conditions. Furthermore, PDEIs have shown some promise in animal models of PTSD. However, the current model of PTSD pathogenesis, which is based on dysregulated fear learning, implies that PDE inhibition in neurons should enhance the acquisition of fear memory from the traumatic event. As a result, we hypothesized that PDEIs may improve PTSD symptoms through inhibiting neuroinflammation rather than long-term potentiation-related mechanisms. To this end, we tested the therapeutic efficacy of cilostazol, a selective inhibitor of PDE3, on PTSD-related anxiety symptoms in the underwater trauma model of PTSD. PDE3 is expressed much more richly in microglia and astrocytes compared to neurons in the murine brain. Furthermore, we used hippocampal indolamine 2,3-dioxygenase 1 (IDO) expression and interleukin 1 beta (IL-1β) concentration as indicators of neuroinflammation. We observed that cilostazol pretreatment prevented the development of anxiety symptoms and the increase in hippocampal IDO and IL-1β following PTSD induction. As a result, PDE3 inhibition ameliorated the neuroinflammatory processes involved in the development of PTSD symptoms. Therefore, cilostazol and other PDEIs may be promising candidates for further investigation as pharmacological therapies against PTSD.
Collapse
Affiliation(s)
- Mohammad Amin Sadeghi
- Toxicology Research Center, AJA University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Sara Hemmati
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hasan Yousefi-Manesh
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Laleh Foroutani
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ehsan Nassireslami
- Toxicology Research Center, AJA University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Mojtaba Yousefi Zoshk
- Trauma Research Center, AJA University of Medical Sciences, Tehran, Iran
- Department of Pediatrics, AJA University of Medical Sciences, Tehran, Iran
| | - Yasaman Hosseini
- Cognitive Neuroscience Center, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Kourosh Abbasian
- Management and Health Economics Department, AJA University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Chamanara
- Toxicology Research Center, AJA University of Medical Sciences, Tehran, Iran.
- Department of Pharmacology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Ehlinger JV, Goodrich JM, Dolinoy DC, Watkins DJ, Cantoral A, Mercado-García A, Téllez-Rojo MM, Peterson KE. Associations between blood leukocyte DNA methylation and sustained attention in mid-to-late childhood. Epigenomics 2023; 15:965-981. [PMID: 37942546 PMCID: PMC10718163 DOI: 10.2217/epi-2023-0169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/20/2023] [Indexed: 11/10/2023] Open
Abstract
Aims: To identify associations between DNA methylation (DNAm) across the epigenome and symptoms related to attention-deficit/hyperactivity disorder in a population of Hispanic children. Materials & methods: Among 517 participants in the ELEMENT study aged 9-18 years, we conducted an epigenome-wide association study examining associations between blood leukocyte DNAm and performance on the Conners' continuous performance test (CPT3). Results: DNAm at loci in or near ZNF814, ELF4 and OR6K6 and functional enrichment for gene pathways pertaining to ferroptosis, inflammation, immune response and neurotransmission were significantly related to CPT3 scores. Conclusion: DNAm was associated with CPT3 performance. Further analysis is warranted to understand how these genes and enriched pathways contribute to attention-deficit/hyperactivity disorder.
Collapse
Affiliation(s)
- Jessa V Ehlinger
- Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jaclyn M Goodrich
- Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| | - Dana C Dolinoy
- Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Nutritional Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| | - Deborah J Watkins
- Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | - Karen E Peterson
- Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Nutritional Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
18
|
Sadeghi MA, Nassireslami E, Yousefi Zoshk M, Hosseini Y, Abbasian K, Chamanara M. Phosphodiesterase inhibitors in psychiatric disorders. Psychopharmacology (Berl) 2023; 240:1201-1219. [PMID: 37060470 DOI: 10.1007/s00213-023-06361-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 03/27/2023] [Indexed: 04/16/2023]
Abstract
RATIONALE Challenges in drug development for psychiatric disorders have left much room for the introduction of novel treatments with better therapeutic efficacies and indices. As a result, intense research has focused on identifying new targets for developing such pharmacotherapies. One of these targets may be the phosphodiesterase (PDE) class of enzymes, which play important roles in intracellular signaling. Due to their critical roles in cellular pathways, these enzymes affect diverse neurobiological functions from learning and memory formation to neuroinflammation. OBJECTIVES In this paper, we reviewed studies on the use of PDE inhibitors (PDEIs) in preclinical models and clinical trials of psychiatric disorders including depression, anxiety, schizophrenia, post-traumatic stress disorder (PTSD), bipolar disorder (BP), sexual dysfunction, and feeding disorders. RESULTS PDEIs are able to improve symptoms of psychiatric disorders in preclinical models through activating the cAMP-PKA-CREB and cGMP-PKG pathways, attenuating neuroinflammation and oxidative stress, and stimulating neural plasticity. The most promising therapeutic candidates to emerge from these preclinical studies are PDE2 and PDE4 inhibitors for depression and anxiety and PDE1 and PDE10 inhibitors for schizophrenia. Furthermore, PDE3 and 4 inhibitors have shown promising results in clinical trials in patients with depression and schizophrenia. CONCLUSIONS Larger and better designed clinical studies of PDEIs in schizophrenia, depression, and anxiety are warranted to facilitate their translation into the clinic. Regarding the other conditions discussed in this review (most notably PTSD and BP), better characterization of the effects of PDEIs in preclinical models is required before clinical studies.
Collapse
Affiliation(s)
- Mohammad Amin Sadeghi
- Toxicology Research Center, AJA University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Ehsan Nassireslami
- Toxicology Research Center, AJA University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Mojtaba Yousefi Zoshk
- Trauma Research Center, AJA University of Medical Sciences, Tehran, Iran
- Department of Pediatrics, AJA University of Medical Sciences, Tehran, Iran
| | - Yasaman Hosseini
- Cognitive Neuroscience Center, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Kourosh Abbasian
- Management and Health Economics Department, AJA University of Medical Sciences, Tehran, Iran
| | - Mohsen Chamanara
- Toxicology Research Center, AJA University of Medical Sciences, Tehran, Iran.
- Department of Pharmacology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
19
|
Bolsius YG, Heckman PRA, Paraciani C, Wilhelm S, Raven F, Meijer EL, Kas MJH, Ramirez S, Meerlo P, Havekes R. Recovering object-location memories after sleep deprivation-induced amnesia. Curr Biol 2023; 33:298-308.e5. [PMID: 36577400 DOI: 10.1016/j.cub.2022.12.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 10/19/2022] [Accepted: 12/02/2022] [Indexed: 12/29/2022]
Abstract
It is well established that sleep deprivation after learning impairs hippocampal memory processes and can cause amnesia. It is unknown, however, whether sleep deprivation leads to the loss of information or merely the suboptimal storage of information that is difficult to retrieve. Here, we show that hippocampal object-location memories formed under sleep deprivation conditions can be successfully retrieved multiple days following training, using optogenetic dentate gyrus (DG) memory engram activation or treatment with the clinically approved phosphodiesterase 4 (PDE4) inhibitor roflumilast. Moreover, the combination of optogenetic DG memory engram activation and roflumilast treatment, 2 days following training and sleep deprivation, made the memory more persistently accessible for retrieval even several days later (i.e., without further optogenetic or pharmacological manipulation). Altogether, our studies in mice demonstrate that sleep deprivation does not necessarily cause memory loss but instead leads to the suboptimal storage of information that cannot be retrieved without drug treatment or optogenetic stimulation. Furthermore, our findings suggest that object-location memories, consolidated under sleep deprivation conditions and thought to be lost, can be made accessible again several days after the learning and sleep deprivation episode, using the clinically approved PDE4 inhibitor roflumilast.
Collapse
Affiliation(s)
- Youri G Bolsius
- Neurobiology Expertise Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands
| | - Pim R A Heckman
- Neurobiology Expertise Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands; Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, the Netherlands
| | - Camilla Paraciani
- Neurobiology Expertise Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands
| | - Sophia Wilhelm
- Neurobiology Expertise Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands
| | - Frank Raven
- Neurobiology Expertise Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands
| | - Elroy L Meijer
- Neurobiology Expertise Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands
| | - Martien J H Kas
- Neurobiology Expertise Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands
| | - Steve Ramirez
- Department of Psychological and Brain Sciences, The Center for Systems Neuroscience, Boston University, Boston, MA 02215, USA
| | - Peter Meerlo
- Neurobiology Expertise Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands
| | - Robbert Havekes
- Neurobiology Expertise Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands.
| |
Collapse
|
20
|
Genes and pathways associated with fear discrimination identified by genome-wide DNA methylation and RNA-seq analyses in nucleus accumbens in mice. Prog Neuropsychopharmacol Biol Psychiatry 2023; 120:110643. [PMID: 36152737 DOI: 10.1016/j.pnpbp.2022.110643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/21/2022]
Abstract
Fear memory is critical for individual survival. However, the maladaptive fear response is one of the hallmarks of fear-related disorders, which is characterized by the failure to discriminate threatening signals from neutral or safe cues. The biological mechanisms of fear discrimination remain to be clarified. In this study, we found that the nucleus accumbens (NAc) was indispensable for the formation of cued fear memory in mice, during which the expression of DNA methyltransferase 3a gene (DNMT3a) increased. Injection of Zebularine, a nonspecific DNMT inhibitor, into NAc immediately after conditioning induced a maladaptive fear response to neutral cue (CS-). Using whole-genome bisulfite sequencing (WGBS), differentially methylated sites and methylated regions (DMRs) were investigated. 16,226 DMRs in the genenome were identified, in which, 214 genes with significant differences in their methylation levels and mRNA expression profiles were identified through correlation analysis. Notably, 15 genes were synaptic function-related and 8 genes were enriched in the cGMP-PKG signaling pathway. Moreover, inhibition of PKG impaired fear discrimination. Together, our results revealed the profile and role of genome-wide DNA methylation in NAc in the regulation of fear discrimination.
Collapse
|
21
|
Emerging Potential of the Phosphodiesterase (PDE) Inhibitor Ibudilast for Neurodegenerative Diseases: An Update on Preclinical and Clinical Evidence. Molecules 2022; 27:molecules27238448. [PMID: 36500540 PMCID: PMC9737612 DOI: 10.3390/molecules27238448] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative diseases constitute a broad range of central nervous system disorders, characterized by neuronal degeneration. Alzheimer's disease, Parkinson's disease, amyolotrophic lateral sclerosis (ALS), and progressive forms of multiple sclerosis (MS) are some of the most frequent neurodegenerative diseases. Despite their diversity, these diseases share some common pathophysiological mechanisms: the abnormal aggregation of disease-related misfolded proteins, autophagosome-lysosome pathway dysregulation, impaired ubiquitin-proteasome system, oxidative damage, mitochondrial dysfunction and excessive neuroinflammation. There is still no effective drug that could halt the progression of neurodegenerative diseases, and the current treatments are mainly symptomatic. In this regard, the development of novel multi-target pharmaceutical approaches presents an attractive therapeutic strategy. Ibudilast, an anti-inflammatory drug firstly developed as an asthma treatment, is a cyclic nucleotide phosphodiesterases (PDEs) inhibitor, which mainly acts by increasing the amount of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), while downregulating the pro-inflammatory factors, such as tumor necrosis factor-α (TNF-α), macrophage migration inhibitory factor (MIF) and Toll-like receptor 4 (TLR-4). The preclinical evidence shows that ibudilast may act neuroprotectively in neurodegenerative diseases, by suppressing neuroinflammation, inhibiting apoptosis, regulating the mitochondrial function and by affecting the ubiquitin-proteasome and autophagosome-lysosome pathways, as well as by attenuating oxidative stress. The clinical trials in ALS and progressive MS also show some promising results. Herein, we aim to provide an update on the emerging preclinical and clinical evidence on the therapeutic potential of ibudilast in these disorders, discuss the potential challenges and suggest the future directions.
Collapse
|
22
|
Al-Nema M, Gaurav A, Lee MT, Okechukwu P, Nimmanpipug P, Lee VS. Evaluation of the acute oral toxicity and antipsychotic activity of a dual inhibitor of PDE1B and PDE10A in rat model of schizophrenia. PLoS One 2022; 17:e0278216. [PMID: 36454774 PMCID: PMC9714703 DOI: 10.1371/journal.pone.0278216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 11/11/2022] [Indexed: 12/03/2022] Open
Abstract
Phosphodiesterase 1B (PDE1B) and PDE10A are dual-specificity PDEs that hydrolyse both cyclic adenosine monophosphate and cyclic guanosine monophosphate, and are highly expressed in the striatum. Several reports have suggested that PDE10A inhibitors may present a promising approach for the treatment of positive symptoms of schizophrenia, whereas PDE1B inhibitors may present a novel mechanism to modulate cognitive deficits. Previously, we have reported a novel dual inhibitor of PDE1B and PDE10A, compound 2 [(3-fluorophenyl)(2-methyl-2,3-dihydro-4H-benzo[b][1,4]oxazin-4-yl)methanone] which has shown inhibitory activity for human recombinant PDE1B and PDE10A in vitro. In the present study, the safety profile of compound 2 has been evaluated in rats in the acute oral toxicity study, as well as; the antipsychotic-like effects in the rat model of schizophrenia. Compound 2 was tolerated up to 1 g/kg when administered at a single oral dose. Additionally, compound 2 has strongly suppressed ketamine-induced hyperlocomotion, which presented a model for the positive symptoms of schizophrenia. It has also shown an ability to attenuate social isolation induced by chronic administration of ketamine and enhanced recognition memory of rats in the novel object recognition test. Altogether, our results suggest that compound 2 represents a promising therapy for the treatment of the three symptomatic domains of schizophrenia.
Collapse
Affiliation(s)
- Mayasah Al-Nema
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Anand Gaurav
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia
- * E-mail: (AG); (VSL)
| | - Ming Tatt Lee
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia
- Office of Postgraduate Studies, UCSI University, Kuala Lumpur, Malaysia
- Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Patrick Okechukwu
- Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Piyarat Nimmanpipug
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence for Innovation in Analytical Science and Technology for Biodiversity-based Economic and Society (I-ANALY-S-T), Chiang Mai University, Chiang Mai, Thailand
| | - Vannajan Sanghiran Lee
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
- * E-mail: (AG); (VSL)
| |
Collapse
|
23
|
Tropea MR, Gulisano W, Vacanti V, Arancio O, Puzzo D, Palmeri A. Nitric oxide/cGMP/CREB pathway and amyloid-beta crosstalk: From physiology to Alzheimer's disease. Free Radic Biol Med 2022; 193:657-668. [PMID: 36400326 DOI: 10.1016/j.freeradbiomed.2022.11.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/30/2022] [Accepted: 11/12/2022] [Indexed: 11/17/2022]
Abstract
The nitric oxide (NO)/cGMP pathway has been extensively studied for its pivotal role in synaptic plasticity and memory processes, resulting in an increase of cAMP response element-binding (CREB) phosphorylation, and consequent synthesis of plasticity-related proteins. The NO/cGMP/CREB signaling is downregulated during aging and neurodegenerative disorders and is affected by Amyloid-β peptide (Aβ) and tau protein, whose increase and deposition is considered the key pathogenic event of Alzheimer's disease (AD). On the other hand, in physiological conditions, the crosstalk between the NO/cGMP/PKG/CREB pathway and Aβ ensures long-term potentiation and memory formation. This review summarizes the current knowledge on the interaction between the NO/cGMP/PKG/CREB pathway and Aβ in the healthy and diseased brain, offering a new perspective to shed light on AD pathophysiology. We will focus on the synaptic mechanisms underlying Aβ physiological interplay with cGMP pathway and how this balance is corrupted in AD, as high levels of Aβ interfere with NO production and cGMP molecular signaling leading to cognitive impairment. Finally, we will discuss results from preclinical and clinical studies proposing the increase of cGMP signaling as a therapeutic strategy in the treatment of AD.
Collapse
Affiliation(s)
- Maria Rosaria Tropea
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, 95123, Italy
| | - Walter Gulisano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, 95123, Italy
| | - Valeria Vacanti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, 95123, Italy
| | - Ottavio Arancio
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, USA; Department of Pathology & Cell Biology and Department of Medicine, Columbia University, New York, NY, 10032, USA
| | - Daniela Puzzo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, 95123, Italy; Oasi Research Institute-IRCCS, Troina (EN), 94018, Italy.
| | - Agostino Palmeri
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, 95123, Italy
| |
Collapse
|
24
|
Sheng J, Zhang S, Wu L, Kumar G, Liao Y, GK P, Fan H. Inhibition of phosphodiesterase: A novel therapeutic target for the treatment of mild cognitive impairment and Alzheimer's disease. Front Aging Neurosci 2022; 14:1019187. [PMID: 36268188 PMCID: PMC9577554 DOI: 10.3389/fnagi.2022.1019187] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia and is ranked as the 6th leading cause of death in the US. The prevalence of AD and dementia is steadily increasing and expected cases in USA is 14.8 million by 2050. Neuroinflammation and gradual neurodegeneration occurs in Alzheimer's disease. However, existing medications has limitation to completely abolish, delay, or prevent disease progression. Phosphodiesterases (PDEs) are large family of enzymes to hydrolyze the 3'-phosphodiester links in cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) in signal-transduction pathways for generation of 5'-cyclic nucleotides. It plays vital role to orchestrate several pharmacological activities for proper cell functioning and regulating the levels of cAMP and cGMP. Several evidence has suggested that abnormal cAMP signaling is linked to cognitive problems in neurodegenerative disorders like AD. Therefore, the PDE family has become a widely accepted and multipotential therapeutic target for neurodegenerative diseases. Notably, modulation of cAMP/cGMP by phytonutrients has a huge potential for the management of AD. Natural compounds have been known to inhibit phosphodiesterase by targeting key enzymes of cGMP synthesis pathway, however, the mechanism of action and their therapeutic efficacy has not been explored extensively. Currently, few PDE inhibitors such as Vinpocetine and Nicergoline have been used for treatment of central nervous system (CNS) disorders. Considering the role of flavonoids to inhibit PDE, this review discussed the therapeutic potential of natural compounds with PDE inhibitory activity for the treatment of AD and related dementia.
Collapse
Affiliation(s)
- Jianwen Sheng
- Department of Gastroenterology, The People’s Hospital of Yichun City, Yichun, China
| | - Shanjin Zhang
- Department of Gastroenterology, The People’s Hospital of Yichun City, Yichun, China
| | - Lule Wu
- Department of Gastroenterology, The People’s Hospital of Yichun City, Yichun, China
| | - Gajendra Kumar
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Yuanhang Liao
- Department of Gastroenterology, The People’s Hospital of Yichun City, Yichun, China
| | - Pratap GK
- Department of Biochemistry, Davangere University, Davangere, India
| | - Huizhen Fan
- Department of Gastroenterology, The People’s Hospital of Yichun City, Yichun, China
| |
Collapse
|
25
|
Morè L, Privitera L, Perrett P, Cooper DD, Bonnello MVG, Arthur JSC, Frenguelli BG. CREB serine 133 is necessary for spatial cognitive flexibility and long-term potentiation. Neuropharmacology 2022; 219:109237. [PMID: 36049536 DOI: 10.1016/j.neuropharm.2022.109237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/18/2022] [Accepted: 08/23/2022] [Indexed: 10/31/2022]
Abstract
The transcription factor cAMP response element binding protein (CREB) is widely regarded as orchestrating the genomic response that underpins a range of physiological functions in the central nervous system, including learning and memory. Of the means by which CREB can be regulated, emphasis has been placed on the phosphorylation of a key serine residue, S133, in the CREB protein, which is required for CREB-mediated transcriptional activation in response to a variety of activity-dependent stimuli. Understanding the role of CREB S133 has been complicated by molecular genetic techniques relying on over-expression of either dominant negative or activating transgenes that may distort the physiological role of endogenous CREB. A more elegant recent approach targeting S133 in the endogenous CREB gene has yielded a mouse with constitutive replacement of this residue with alanine (S133A), but has generated results (no behavioural phenotype and no effect on gene transcription) at odds with contemporary views as to the role of CREB S133, and which may reflect compensatory changes associated with the constitutive mutation. To avoid this potential complication, we generated a post-natal and forebrain-specific CREB S133A mutant in which the expression of the mutation was under the control of CaMKIIα promoter. Using male and female mice we show that CREB S133 is necessary for spatial cognitive flexibility, the regulation of basal synaptic transmission, and for the expression of long-term potentiation (LTP) in hippocampal area CA1. These data point to the importance of CREB S133 in neuronal function, synaptic plasticity and cognition in the mammalian brain.
Collapse
Affiliation(s)
- Lorenzo Morè
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Lucia Privitera
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Philippa Perrett
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Daniel D Cooper
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Manuel Van Gijsel Bonnello
- Division of Cell Signalling and Immunology, Wellcome Trust Building, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - J Simon C Arthur
- Division of Cell Signalling and Immunology, Wellcome Trust Building, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | | |
Collapse
|
26
|
Roflumilast, a Phosphodiesterase-4 Inhibitor, Ameliorates Sleep Deprivation-Induced Cognitive Dysfunction in C57BL/6J Mice. ACS Chem Neurosci 2022; 13:1938-1947. [PMID: 35736514 DOI: 10.1021/acschemneuro.2c00127] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Sleep deprivation (SD) interferes with long-term memory and cognitive functions by overactivation of phosphodiesterase (PDEs) enzymes. PDE4, a nonredundant regulator of the cyclic nucleotides (cAMP), is densely expressed in the hippocampus and is involved in learning and memory processes. In the present study, we investigated the effects of Roflumilast (ROF), a PDE4B inhibitor, on sleep deprivation-induced cognitive dysfunction in a mouse model. Memory assessment was performed using a novel object recognition task, and the hippocampal cAMP level was estimated by the ELISA method. The alterations in the expressions of PDE4B, amyloid-β (Aβ), CREB, BDNF, and synaptic proteins (Synapsin I, SAP 97, PSD 95) were assessed to gain insights into the possible mechanisms of action of ROF using the Western blot technique. Results show that ROF reversed SD-induced cognitive decline in mice. ROF downregulated PDE4B and Aβ expressions in the brain. Additionally, ROF improved the cAMP level and the protein expressions of synapsin I, SAP 97, and PSD 95 in the hippocampal region of SD mice. Taken together, these results suggest that ROF can suppress the deleterious effects of SD-induced cognitive dysfunction via the PDE4B-mediated cAMP/CREB/BDNF signaling cascade.
Collapse
|
27
|
Nelissen E, Argyrousi EK, Van Goethem NP, Zhao F, Hines CDG, Swaminath G, Gerisch M, Hueser J, Sandner P, Prickaerts J. Soluble Guanylate Cyclase Stimulator Vericiguat Enhances Long-Term Memory in Rats without Altering Cerebral Blood Volume. Biomedicines 2021; 9:1047. [PMID: 34440254 PMCID: PMC8393324 DOI: 10.3390/biomedicines9081047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/12/2021] [Accepted: 08/15/2021] [Indexed: 01/14/2023] Open
Abstract
Vascular cognitive impairment (VCI) is characterized by impairments in cerebral blood flow (CBF), endothelial function and blood-brain barrier (BBB) integrity. These processes are all physiologically regulated by the nitric oxide (NO)-soluble guanylate cyclase (sGC)-cGMP signaling pathway. Additionally, cGMP signaling plays an important role in long-term potentiation (LTP) underlying memory formation. Therefore, targeting the NO-sGC-cGMP pathway may be a therapeutic strategy for treating VCI. Hence, in this study we investigated whether sGC stimulator vericiguat has potential as a cognitive enhancer. The effects of vericiguat on long-term memory were measured in rats using an object location task. Due to the low brain-penetrance of vericiguat found in this study, it was investigated whether in the absence of BBB limitations, vericiguat enhanced hippocampal plasticity using an ex vivo memory acquisition-like chemical LTP model. Finally, peripheral effects were measured by means of blood pressure and cerebral blood volume. Vericiguat successfully enhanced long-term memory and increased hippocampal plasticity via enhanced translocation of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors to the cell membrane, while blood pressure and cerebral blood volume were unaltered. Although the memory enhancing effects in this study are likely due to peripheral effects on the cerebral microvasculature, sGC stimulation may provide a new therapeutic strategy for treating VCI, especially when BBB integrity is reduced.
Collapse
Affiliation(s)
- Ellis Nelissen
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands; (E.N.); (E.K.A.); (N.P.V.G.)
| | - Elentina K. Argyrousi
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands; (E.N.); (E.K.A.); (N.P.V.G.)
| | - Nick P. Van Goethem
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands; (E.N.); (E.K.A.); (N.P.V.G.)
| | - Fuqiang Zhao
- Merck & Co., Inc., Kenilworth, NJ 07033, USA; (F.Z.); (C.D.G.H.)
| | | | | | - Michael Gerisch
- Bayer AG, Pharmaceuticals R&D, Pharma Research Center, 42113 Wuppertal, Germany; (M.G.); (J.H.); (P.S.)
| | - Joerg Hueser
- Bayer AG, Pharmaceuticals R&D, Pharma Research Center, 42113 Wuppertal, Germany; (M.G.); (J.H.); (P.S.)
| | - Peter Sandner
- Bayer AG, Pharmaceuticals R&D, Pharma Research Center, 42113 Wuppertal, Germany; (M.G.); (J.H.); (P.S.)
- Hannover Medical School, Institute for Pharmacology, 30625 Hannover, Germany
| | - Jos Prickaerts
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands; (E.N.); (E.K.A.); (N.P.V.G.)
| |
Collapse
|
28
|
Lucas C, Ben-Shahar Y. The foraging gene as a modulator of division of labour in social insects. J Neurogenet 2021; 35:168-178. [PMID: 34151702 DOI: 10.1080/01677063.2021.1940173] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The social ants, bees, wasps, and termites include some of the most ecologically-successful groups of animal species. Their dominance in most terrestrial environments is attributed to their social lifestyle, which enable their colonies to exploit environmental resources with remarkable efficiency. One key attribute of social insect colonies is the division of labour that emerges among the sterile workers, which represent the majority of colony members. Studies of the mechanisms that drive division of labour systems across diverse social species have provided fundamental insights into the developmental, physiological, molecular, and genomic processes that regulate sociality, and the possible genetic routes that may have led to its evolution from a solitary ancestor. Here we specifically discuss the conserved role of the foraging gene, which encodes a cGMP-dependent protein kinase (PKG). Originally identified as a behaviourally polymorphic gene that drives alternative foraging strategies in the fruit fly Drosophila melanogaster, changes in foraging expression and kinase activity were later shown to play a key role in the division of labour in diverse social insect species as well. In particular, foraging appears to regulate worker transitions between behavioural tasks and specific behavioural traits associated with morphological castes. Although the specific neuroethological role of foraging in the insect brain remains mostly unknown, studies in genetically tractable insect species indicate that PKG signalling plays a conserved role in the neuronal plasticity of sensory, cognitive and motor functions, which underlie behaviours relevant to division of labour, including appetitive learning, aggression, stress response, phototaxis, and the response to pheromones.
Collapse
Affiliation(s)
- Christophe Lucas
- Institut de Recherche sur la Biologie de l'Insecte (UMR7261), CNRS - University of Tours, Tours, France
| | - Yehuda Ben-Shahar
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
29
|
Sandner P, Zimmer DP, Milne GT, Follmann M, Hobbs A, Stasch JP. Soluble Guanylate Cyclase Stimulators and Activators. Handb Exp Pharmacol 2021; 264:355-394. [PMID: 30689085 DOI: 10.1007/164_2018_197] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
When Furchgott, Murad, and Ignarro were honored with the Nobel prize for the identification of nitric oxide (NO) in 1998, the therapeutic implications of this discovery could not be fully anticipated. This was due to the fact that available therapeutics like NO donors did not allow a constant and long-lasting cyclic guanylyl monophosphate (cGMP) stimulation and had a narrow therapeutic window. Now, 20 years later, the stimulator of soluble guanylate cyclase (sGC), riociguat, is on the market and is the only drug approved for the treatment of two forms of pulmonary hypertension (PAH/CTEPH), and a variety of other sGC stimulators and sGC activators are in preclinical and clinical development for additional indications. The discovery of sGC stimulators and sGC activators is a milestone in the field of NO/sGC/cGMP pharmacology. The sGC stimulators and sGC activators bind directly to reduced, heme-containing and oxidized, heme-free sGC, respectively, which results in an increase in cGMP production. The action of sGC stimulators at the heme-containing enzyme is independent of NO but is enhanced in the presence of NO whereas the sGC activators interact with the heme-free form of sGC. These highly innovative pharmacological principles of sGC stimulation and activation seem to have a very broad therapeutic potential. Therefore, in both academia and industry, intensive research and development efforts have been undertaken to fully exploit the therapeutic benefit of these new compound classes. Here we summarize the discovery of sGC stimulators and sGC activators and the current developments in both compound classes, including the mode of action, the chemical structures, and the genesis of the terminology and nomenclature. In addition, preclinical studies exploring multiple aspects of their in vitro, ex vivo, and in vivo pharmacology are reviewed, providing an overview of multiple potential applications. Finally, the clinical developments, investigating the treatment potential of these compounds in various diseases like heart failure, diabetic kidney disease, fibrotic diseases, and hypertension, are reported. In summary, sGC stimulators and sGC activators have a unique mode of action with a broad treatment potential in cardiovascular diseases and beyond.
Collapse
Affiliation(s)
- Peter Sandner
- Bayer AG, Pharmaceuticals R&D, Pharma Research Center, Wuppertal, Germany. .,Department of Pharmacology, Hannover Medical School, Hannover, Germany.
| | | | | | - Markus Follmann
- Bayer AG, Pharmaceuticals R&D, Pharma Research Center, Wuppertal, Germany
| | - Adrian Hobbs
- Barts and the London School of Medicine and Dentistry QMUL, London, UK
| | - Johannes-Peter Stasch
- Bayer AG, Pharmaceuticals R&D, Pharma Research Center, Wuppertal, Germany.,Institute of Pharmacy, University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
30
|
Soleimanpour E, Bergado Acosta JR, Landgraf P, Mayer D, Dankert E, Dieterich DC, Fendt M. Regulation of CREB Phosphorylation in Nucleus Accumbens after Relief Conditioning. Cells 2021; 10:238. [PMID: 33530478 PMCID: PMC7912172 DOI: 10.3390/cells10020238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/15/2021] [Accepted: 01/22/2021] [Indexed: 11/16/2022] Open
Abstract
Relief learning is the association of environmental cues with the cessation of aversive events. While there is increasing knowledge about the neural circuitry mediating relief learning, the respective molecular pathways are not known. Therefore, the aim of the present study was to examine different putative molecular pathways underlying relief learning. To this purpose, male rats were subjected either to relief conditioning or to a pseudo conditioning procedure. Forty-five minutes or 6 h after conditioning, samples of five different brain regions, namely the prefrontal cortex, nucleus accumbens (NAC), dorsal striatum, dorsal hippocampus, and amygdala, were collected. Using quantitative Western blots, the expression level of CREB, pCREB, ERK1/2, pERK1/2, CaMKIIα, MAP2K, PKA, pPKA, Akt, pAkt, DARPP-32, pDARPP-32, 14-3-3, and neuroligin2 were studied. Our analyses revealed that relief conditioned rats had higher CREB phosphorylation in NAC 6 h after conditioning than pseudo conditioned rats. The data further revealed that this CREB phosphorylation was mainly induced by dopamine D1 receptor-mediated activation of PKA, however, other kinases, downstream of the NMDA receptor, may also contribute. Taken together, the present study suggests that CREB phosphorylation, induced by a combination of different molecular pathways downstream of dopamine D1 and NMDA receptors, is essential for the acquisition and consolidation of relief learning.
Collapse
Affiliation(s)
- Elaheh Soleimanpour
- Institute for Pharmacology and Toxicology, Medical Faculty, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany; (J.R.B.A.); (P.L.); (D.M.); (E.D.); (D.C.D.); (M.F.)
| | - Jorge R. Bergado Acosta
- Institute for Pharmacology and Toxicology, Medical Faculty, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany; (J.R.B.A.); (P.L.); (D.M.); (E.D.); (D.C.D.); (M.F.)
- Center for Behavioral Brain Sciences, Otto-von-Guericke University Magdeburg, 39106 Magdeburg, Germany
| | - Peter Landgraf
- Institute for Pharmacology and Toxicology, Medical Faculty, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany; (J.R.B.A.); (P.L.); (D.M.); (E.D.); (D.C.D.); (M.F.)
| | - Dana Mayer
- Institute for Pharmacology and Toxicology, Medical Faculty, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany; (J.R.B.A.); (P.L.); (D.M.); (E.D.); (D.C.D.); (M.F.)
| | - Evelyn Dankert
- Institute for Pharmacology and Toxicology, Medical Faculty, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany; (J.R.B.A.); (P.L.); (D.M.); (E.D.); (D.C.D.); (M.F.)
| | - Daniela C. Dieterich
- Institute for Pharmacology and Toxicology, Medical Faculty, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany; (J.R.B.A.); (P.L.); (D.M.); (E.D.); (D.C.D.); (M.F.)
- Center for Behavioral Brain Sciences, Otto-von-Guericke University Magdeburg, 39106 Magdeburg, Germany
| | - Markus Fendt
- Institute for Pharmacology and Toxicology, Medical Faculty, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany; (J.R.B.A.); (P.L.); (D.M.); (E.D.); (D.C.D.); (M.F.)
- Center for Behavioral Brain Sciences, Otto-von-Guericke University Magdeburg, 39106 Magdeburg, Germany
| |
Collapse
|
31
|
Bonato JM, Meyer E, de Mendonça PSB, Milani H, Prickaerts J, Weffort de Oliveira RM. Roflumilast protects against spatial memory impairments and exerts anti-inflammatory effects after transient global cerebral ischemia. Eur J Neurosci 2021; 53:1171-1188. [PMID: 33340424 DOI: 10.1111/ejn.15089] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022]
Abstract
Phosphodiesterase 4 (PDE4) inhibitors have been shown to present beneficial effects in cerebral ischemic injury because of their ability to improve cognition and target different phases and mechanisms of cerebral ischemia, including apoptosis, neurogenesis, angiogenesis, and inflammation. The present study investigated whether repeated treatment with the PDE4 inhibitor roflumilast rescued memory loss and attenuated neuroinflammation in rats following transient global cerebral ischemia (TGCI). TGCI caused memory impairments, neuronal loss (reflected by Neuronal nuclei (NeuN) immunoreactivity), and compensatory neurogenesis (reflected by doublecortin (DCX) immunoreactivity) in the hippocampus. Also, increases in the protein expression of the phosphorylated response element-binding protein (pCREB) and inflammatory markers such as the glial fibrillary acidic protein (GFAP) and ionized calcium-binding adaptor molecule 1 (Iba-1), were detected in the hippocampus in TGCI rats. Repeated treatment with roflumilast (0.003 and 0.01 mg/kg) prevented spatial memory deficits without promoting hippocampal protection in ischemic animals. Roflumilast increased the levels of pCREB, arginase-1, interleukin (IL) 4, and IL-10 in the hippocampus 21 days after TGCI. These data suggest a protective effect of roflumilast against functional sequelae of cerebral ischemia, which might be related to its anti-inflammatory properties.
Collapse
Affiliation(s)
- Jéssica M Bonato
- Department of Pharmacology and Therapeutics, State University of Maringá, Maringá, Brazil
| | - Erika Meyer
- Department of Pharmacology and Therapeutics, State University of Maringá, Maringá, Brazil
| | | | - Humberto Milani
- Department of Pharmacology and Therapeutics, State University of Maringá, Maringá, Brazil
| | - Jos Prickaerts
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | | |
Collapse
|
32
|
Memory Enhancers for Alzheimer's Dementia: Focus on cGMP. Pharmaceuticals (Basel) 2021; 14:ph14010061. [PMID: 33451088 PMCID: PMC7828493 DOI: 10.3390/ph14010061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/07/2021] [Accepted: 01/12/2021] [Indexed: 02/06/2023] Open
Abstract
Cyclic guanosine-3',5'-monophosphate, better known as cyclic-GMP or cGMP, is a classical second messenger involved in a variety of intracellular pathways ultimately controlling different physiological functions. The family of guanylyl cyclases that includes soluble and particulate enzymes, each of which comprises several isoforms with different mechanisms of activation, synthesizes cGMP. cGMP signaling is mainly executed by the activation of protein kinase G and cyclic nucleotide gated channels, whereas it is terminated by its hydrolysis to GMP operated by both specific and dual-substrate phosphodiesterases. In the central nervous system, cGMP has attracted the attention of neuroscientists especially for its key role in the synaptic plasticity phenomenon of long-term potentiation that is instrumental to memory formation and consolidation, thus setting off a "gold rush" for new drugs that could be effective for the treatment of cognitive deficits. In this article, we summarize the state of the art on the neurochemistry of the cGMP system and then review the pre-clinical and clinical evidence on the use of cGMP enhancers in Alzheimer's disease (AD) therapy. Although preclinical data demonstrates the beneficial effects of cGMP on cognitive deficits in AD animal models, the results of the clinical studies carried out to date are not conclusive. More trials with a dose-finding design on selected AD patient's cohorts, possibly investigating also combination therapies, are still needed to evaluate the clinical potential of cGMP enhancers.
Collapse
|
33
|
Wang X, Li Z, Zhu Y, Yan J, Liu H, Huang G, Li W. Maternal folic acid impacts DNA methylation profile in male rat offspring implicated in neurodevelopment and learning/memory abilities. GENES AND NUTRITION 2021; 16:1. [PMID: 33430764 PMCID: PMC7802276 DOI: 10.1186/s12263-020-00681-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/22/2020] [Indexed: 12/31/2022]
Abstract
Background Periconceptional folic acid (FA) supplementation not only reduces the incidence of neural tube defects, but also improves cognitive performances in offspring. However, the genes or pathways that are epigenetically regulated by FA in neurodevelopment were rarely reported. Methods To elucidate the underlying mechanism, the effect of FA on the methylation profiles in brain tissue of male rat offspring was assessed by methylated DNA immunoprecipitation chip. Differentially methylated genes (DMGs) and gene network analysis were identified using DAVID and KEGG pathway analysis. Results Compared with the folate-normal diet group, 1939 DMGs were identified in the folate-deficient diet group, and 1498 DMGs were identified in the folate-supplemented diet group, among which 298 DMGs were overlapped. The pathways associated with neurodevelopment and learning/memory abilities were differentially methylated in response to maternal FA intake during pregnancy, and there were some identical and distinctive potential mechanisms under FA deficiency or FA-supplemented conditions. Conclusions In conclusion, genes and pathways associated with neurodevelopment and learning/memory abilities were differentially methylated in male rat offspring in response to maternal FA deficiency or supplementation during pregnancy.
Collapse
Affiliation(s)
- Xinyan Wang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Zhenshu Li
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Yun Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, 300070, China.,Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, 300070, China
| | - Jing Yan
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, 300070, China.,Department of Social Medicine and Health Administration, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Huan Liu
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, 300070, China.,Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, 300070, China
| | - Guowei Huang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, 300070, China.,Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, 300070, China
| | - Wen Li
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, 300070, China. .,Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, 300070, China.
| |
Collapse
|
34
|
Abstract
With less than a million neurons, the western honeybee Apis mellifera is capable of complex olfactory behaviors and provides an ideal model for investigating the neurophysiology of the olfactory circuit and the basis of olfactory perception and learning. Here, we review the most fundamental aspects of honeybee's olfaction: first, we discuss which odorants dominate its environment, and how bees use them to communicate and regulate colony homeostasis; then, we describe the neuroanatomy and the neurophysiology of the olfactory circuit; finally, we explore the cellular and molecular mechanisms leading to olfactory memory formation. The vastity of histological, neurophysiological, and behavioral data collected during the last century, together with new technological advancements, including genetic tools, confirm the honeybee as an attractive research model for understanding olfactory coding and learning.
Collapse
Affiliation(s)
- Marco Paoli
- Research Centre on Animal Cognition, Center for Integrative Biology, CNRS, University of Toulouse, 31062, Toulouse, France.
| | - Giovanni C Galizia
- Department of Neuroscience, University of Konstanz, 78457, Konstanz, Germany.
| |
Collapse
|
35
|
Montalto G, Caudano F, Sturla L, Bruzzone S, Salis A, Damonte G, Prickaerts J, Fedele E, Ricciarelli R. Protein kinase G phosphorylates the Alzheimer's disease-associated tau protein at distinct Ser/Thr sites. Biofactors 2021; 47:126-134. [PMID: 33469985 DOI: 10.1002/biof.1705] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 11/10/2022]
Abstract
Intraneuronal accumulation of hyperphosphorylated tau is a pathological hallmark of several neurodegenerative disorders, including Alzheimer's disease. Phosphorylation plays a crucial role in modulating the tau-microtubule interaction and the ability of the protein to aggregate, but despite efforts during the past decades, the real identity of the kynases involved in vivo remains uncertain. Here, for the first time, we demonstrate that the cGMP-dependent protein kinase G (PKG) phosphorylates tau in both in vitro and in vivo models. More intriguingly, we provide evidence that PKG phosphorylates tau at Ser214 but not at Ser202, a condition that could reduce the pathological aggregation of the protein shifting tau from a pro-aggregant to a neuroprotective anti-aggregant conformation.
Collapse
Affiliation(s)
- Giulia Montalto
- Section of General Pathology, Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Francesca Caudano
- Section of General Pathology, Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Laura Sturla
- Section of Biochemistry, Department of Experimental Medicine, Center for Excellence in Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Santina Bruzzone
- Section of Biochemistry, Department of Experimental Medicine, Center for Excellence in Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Annalisa Salis
- Section of Biochemistry, Department of Experimental Medicine, Center for Excellence in Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Gianluca Damonte
- Section of Biochemistry, Department of Experimental Medicine, Center for Excellence in Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Jos Prickaerts
- Department of Psychiatric and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Ernesto Fedele
- Section of Pharmacology and Toxicology, Department of Pharmacy, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Roberta Ricciarelli
- Section of General Pathology, Department of Experimental Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
36
|
Tresadern G, Velter I, Trabanco AA, Van den Keybus F, Macdonald GJ, Somers MVF, Vanhoof G, Leonard PM, Lamers MBAC, Van Roosbroeck YEM, Buijnsters PJJA. [1,2,4]Triazolo[1,5- a]pyrimidine Phosphodiesterase 2A Inhibitors: Structure and Free-Energy Perturbation-Guided Exploration. J Med Chem 2020; 63:12887-12910. [PMID: 33105987 DOI: 10.1021/acs.jmedchem.0c01272] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We describe the hit-to-lead exploration of a [1,2,4]triazolo[1,5-a]pyrimidine phosphodiesterase 2A (PDE2A) inhibitor arising from high-throughput screening. X-ray crystallography enabled structure-guided design, leading to the identification of preferred substructural components. Further rounds of optimization used relative binding free-energy calculations to prioritize different substituents from the large accessible chemical space. The free-energy perturbation (FEP) calculations were performed for 265 putative PDE2A inhibitors, and 100 compounds were synthesized representing a relatively large prospective application providing unexpectedly active molecules with IC50's from 2340 to 0.89 nM. Lead compound 46 originating from the FEP calculations showed PDE2A inhibition IC50 of 1.3 ± 0.39 nM, ∼100-fold selectivity versus other PDE enzymes, clean cytochrome P450 profile, in vivo target occupancy, and promise for further lead optimization.
Collapse
Affiliation(s)
- Gary Tresadern
- Computational Chemistry, Janssen Pharmaceutica N. V., Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Ingrid Velter
- Medicinal Chemistry, Janssen Pharmaceutica N. V., Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Andrés A Trabanco
- Medicinal Chemistry, Janssen Research & Development, Janssen-Cilag S. A., Jarama 75A, 45007 Toledo, Spain
| | - Frans Van den Keybus
- Medicinal Chemistry, Janssen Pharmaceutica N. V., Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Gregor J Macdonald
- Medicinal Chemistry, Janssen Pharmaceutica N. V., Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Marijke V F Somers
- Discovery Sciences, Janssen Research & Development, Janssen Pharmaceutica N. V., Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Greet Vanhoof
- Discovery Sciences, Janssen Research & Development, Janssen Pharmaceutica N. V., Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Philip M Leonard
- Structural Biology, Charles River Discovery (Previously BioFocus), Chesterford Research Park, Saffron Walden, CB10 1XL Essex, U.K
| | - Marieke B A C Lamers
- Structural Biology, Charles River Discovery (Previously BioFocus), Chesterford Research Park, Saffron Walden, CB10 1XL Essex, U.K
| | | | - Peter J J A Buijnsters
- Medicinal Chemistry, Janssen Pharmaceutica N. V., Turnhoutseweg 30, B-2340 Beerse, Belgium
| |
Collapse
|
37
|
Heckman PR, Roig Kuhn F, Meerlo P, Havekes R. A brief period of sleep deprivation negatively impacts the acquisition, consolidation, and retrieval of object-location memories. Neurobiol Learn Mem 2020; 175:107326. [DOI: 10.1016/j.nlm.2020.107326] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 08/24/2020] [Accepted: 10/08/2020] [Indexed: 01/06/2023]
|
38
|
Jankowska A, Wesołowska A, Pawłowski M, Chłoń-Rzepa G. Multifunctional Ligands Targeting Phosphodiesterase as the Future Strategy for the Symptomatic and Disease-Modifying Treatment of Alzheimer’s Disease. Curr Med Chem 2020; 27:5351-5373. [DOI: 10.2174/0929867326666190620095623] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 04/30/2019] [Accepted: 05/06/2019] [Indexed: 02/06/2023]
Abstract
Alzheimer’s Disease (AD) is a chronic neurodegenerative disorder characterized by cognitive
impairments such as memory loss, decline in language skills, and disorientation that affects
over 46 million people worldwide. Patients with AD also suffer from behavioral and psychological
symptoms of dementia that deteriorate their quality of life and lead to premature death. Currently
available drugs provide modest symptomatic relief but do not reduce pathological hallmarks (senile
plaques and neurofibrillary tangles) and neuroinflammation, both of which are integral parts of dementia.
A large body of evidence indicates that impaired signaling pathways of cyclic-3′,5′-
Adenosine Monophosphate (cAMP) and cyclic-3′,5′-guanosine Monophosphate (cGMP) may contribute
to the development and progression of AD. In addition, Phosphodiesterase (PDE) inhibitors,
commonly known as cAMP and/or cGMP modulators, were found to be involved in the phosphorylation
of tau; aggregation of amyloid beta; neuroinflammation; and regulation of cognition, mood,
and emotion processing. The purpose of this review was to update the most recent reports on the
development of novel multifunctional ligands targeting PDE as potential drugs for both symptomatic
and disease-modifying therapy of AD. This review collected the chemical structures of representative
multifunctional ligands, results of experimental in vitro and in vivo pharmacological studies,
and current opinions regarding the potential utility of these compounds for the comprehensive
therapy of AD. Finally, the multiparameter predictions of drugability of the representative compounds
were calculated and discussed.
Collapse
Affiliation(s)
- Agnieszka Jankowska
- Department of Medicinal Chemistry, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Anna Wesołowska
- Department of Clinical Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Maciej Pawłowski
- Department of Medicinal Chemistry, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Grażyna Chłoń-Rzepa
- Department of Medicinal Chemistry, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| |
Collapse
|
39
|
Sohn JMB, de Souza STF, Raymundi AM, Bonato J, de Oliveira RMW, Prickaerts J, Stern CA. Persistence of the extinction of fear memory requires late-phase cAMP/PKA signaling in the infralimbic cortex. Neurobiol Learn Mem 2020; 172:107244. [PMID: 32376452 DOI: 10.1016/j.nlm.2020.107244] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 04/20/2020] [Accepted: 05/01/2020] [Indexed: 02/07/2023]
Abstract
Fear extinction is a form of new learning that inhibits expression of the original fear memory without erasing the conditioned stimulus-unconditioned stimulus association. Much is known about the mechanisms that underlie the acquisition of extinction, but the way in which fear extinction is maintained has been scarcely explored. Evidence suggests that protein kinase A (PKA) in the frontal cortex might be related to the persistence of extinction. Phosphodiesterase-4 (PDE4) specifically hydrolyzes cyclic adenosine monophosphate (cAMP). The present study evaluated the effect of the selective PDE4 inhibitor roflumilast (ROF; 0.01, 0.03, and 0.1 mg/kg given i.p.) on acquisition and consolidation of the extinction of fear memory in male Wistar rats in a contextual fear conditioning paradigm. When administered before acquisition, 0.1 mg/kg ROF disrupted short-term (1 day) extinction recall. In contrast, 0.03 mg/kg ROF administration in the late consolidation phase (3 h after extinction learning) but not in the early phase immediately after learning improved long-term extinction recall at 11 days, suggesting potentiation of the persistence of extinction. This effect of ROF requires the first (day 1) exposure to the context. A similar effect was observed when 9 ng ROF or 30 µM 8-bromoadenosine 3',5'-cAMP (PKA activator) was directly infused in the infralimbic cortex (IL), a brain region necessary for memory extinction. The PKA activity-dependent ROF-induced effect in the IL was correlated with an increase in its brain-derived neurotrophic factor (BDNF) protein expression, while blockade of PKA with 10 µM H89 in the IL abolished the ROF-induced increase in BDNF expression and prevented the effect of ROF on extinction recall. These effects were not associated with changes in anxiety-like behavior or general exploratory behavior. Altogether, these findings suggest that cAMP-PKA activity in the IL during the late consolidation phase after extinction learning underlies the persistence of extinction.
Collapse
Affiliation(s)
| | | | - Ana Maria Raymundi
- Department of Pharmacology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Jéssica Bonato
- Department of Pharmacology and Therapeutics, University of Maringá, Maringá, PR, Brazil
| | | | - Jos Prickaerts
- Department of Psychiatry and Neuropsychology, School of Mental Health and Neuroscience, University of Maastricht, the Netherlands
| | | |
Collapse
|
40
|
Kelly MP, Heckman PRA, Havekes R. Genetic manipulation of cyclic nucleotide signaling during hippocampal neuroplasticity and memory formation. Prog Neurobiol 2020; 190:101799. [PMID: 32360536 DOI: 10.1016/j.pneurobio.2020.101799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/14/2020] [Accepted: 03/26/2020] [Indexed: 12/12/2022]
Abstract
Decades of research have underscored the importance of cyclic nucleotide signaling in memory formation and synaptic plasticity. In recent years, several new genetic techniques have expanded the neuroscience toolbox, allowing researchers to measure and modulate cyclic nucleotide gradients with high spatiotemporal resolution. Here, we will provide an overview of studies using genetic approaches to interrogate the role cyclic nucleotide signaling plays in hippocampus-dependent memory processes and synaptic plasticity. Particular attention is given to genetic techniques that measure real-time changes in cyclic nucleotide levels as well as newly-developed genetic strategies to transiently manipulate cyclic nucleotide signaling in a subcellular compartment-specific manner with high temporal resolution.
Collapse
Affiliation(s)
- Michy P Kelly
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, 6439 Garners Ferry Rd, VA Bldg1, 3(rd) Fl, D-12, Columbia, 29209, SC, USA.
| | - Pim R A Heckman
- Neurobiology Expertise Group, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands.
| | - Robbert Havekes
- Neurobiology Expertise Group, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands.
| |
Collapse
|
41
|
Duarte-Silva E, Filho AJMC, Barichello T, Quevedo J, Macedo D, Peixoto C. Phosphodiesterase-5 inhibitors: Shedding new light on the darkness of depression? J Affect Disord 2020; 264:138-149. [PMID: 32056743 DOI: 10.1016/j.jad.2019.11.114] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 11/22/2019] [Accepted: 11/26/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Phosphodiesterase-5 inhibitors (PDE5Is) are used to treat erectile dysfunction (ED). Recently, the antidepressant-like effect of PDE5Is was demonstrated in animal models of depression. In clinical settings, PDE5Is were studied only for ED associated depression. Hence, there are no studies evaluating the effects of PDE5Is for the treatment of major depressive disorder (MDD) without ED. In this review article, we aimed to discuss the use of PDE5Is in the context of MDD, highlighting the roles of PDE genes in the development of MDD, the potential mechanisms by which PDE5Is can be beneficial for MDD and the potentials and limitations of PDE5Is repurposing to treat MDD. METHODS We used PubMed (MEDLINE) database to collect the studies cited in this review. Papers written in English language regardless the year of publication were selected. RESULTS A few preclinical studies support the antidepressant-like activity of PDE5Is. Clinical studies in men with ED and depression suggest that PDE5Is improve depressive symptoms. No clinical studies were conducted in subjects suffering from depression without ED. Antidepressant effect of PDE5Is may be explained by multiple mechanisms including inhibition of brain inflammation and modulation of neuroplasticity. LIMITATIONS The low number of preclinical and absence of clinical studies to support the antidepressant effect of PDE5Is. CONCLUSIONS No clinical trial was conducted to date evaluating PDE5Is in depressed patients without ED. PDE5Is' anti-inflammatory and neuroplasticity mechanisms may justify the potential antidepressant effect of these drugs. Despite this, clinical trials evaluating their efficacy in depressed patients need to be conducted.
Collapse
Affiliation(s)
- Eduardo Duarte-Silva
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (FIOCRUZ-PE), Recife, PE, Brazil; Graduate Program in Biosciences and Biotechnology for Health (PPGBBS), Aggeu Magalhães Institute (IAM), Recife, PE, Brazil.
| | - Adriano José Maia Chaves Filho
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Tatiana Barichello
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, 1941 East Road, Houston, TX 77054, United States; Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina-UNESC, Criciúma, SC, Brazil; Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States.
| | - João Quevedo
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, 1941 East Road, Houston, TX 77054, United States; Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina-UNESC, Criciúma, SC, Brazil; Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States.
| | - Danielle Macedo
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE, Brazil; Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE, Brazil; National Institute for Translational Medicine (INCT-TM, CNPq), Ribeirão Preto, Brazil
| | - Christina Peixoto
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (FIOCRUZ-PE), Recife, PE, Brazil; National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.
| |
Collapse
|
42
|
Argyrousi EK, Heckman PRA, Prickaerts J. Role of cyclic nucleotides and their downstream signaling cascades in memory function: Being at the right time at the right spot. Neurosci Biobehav Rev 2020; 113:12-38. [PMID: 32044374 DOI: 10.1016/j.neubiorev.2020.02.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 01/23/2020] [Accepted: 02/03/2020] [Indexed: 01/23/2023]
Abstract
A plethora of studies indicate the important role of cAMP and cGMP cascades in neuronal plasticity and memory function. As a result, altered cyclic nucleotide signaling has been implicated in the pathophysiology of mnemonic dysfunction encountered in several diseases. In the present review we provide a wide overview of studies regarding the involvement of cyclic nucleotides, as well as their upstream and downstream molecules, in physiological and pathological mnemonic processes. Next, we discuss the regulation of the intracellular concentration of cyclic nucleotides via phosphodiesterases, the enzymes that degrade cAMP and/or cGMP, and via A-kinase-anchoring proteins that refine signal compartmentalization of cAMP signaling. We also provide an overview of the available data pointing to the existence of specific time windows in cyclic nucleotide signaling during neuroplasticity and memory formation and the significance to target these specific time phases for improving memory formation. Finally, we highlight the importance of emerging imaging tools like Förster resonance energy transfer imaging and optogenetics in detecting, measuring and manipulating the action of cyclic nucleotide signaling cascades.
Collapse
Affiliation(s)
- Elentina K Argyrousi
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, 6200 MD, the Netherlands
| | - Pim R A Heckman
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, 6200 MD, the Netherlands
| | - Jos Prickaerts
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, 6200 MD, the Netherlands.
| |
Collapse
|
43
|
Argyrousi EK, Heckman PRA, van Hagen BTJ, Muysers H, van Goethem NP, Prickaerts J. Pro-cognitive effect of upregulating cyclic guanosine monophosphate signalling during memory acquisition or early consolidation is mediated by increased AMPA receptor trafficking. J Psychopharmacol 2020; 34:103-114. [PMID: 31692397 PMCID: PMC6947811 DOI: 10.1177/0269881119885262] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Episodic memory consists of different mnemonic phases, including acquisition and early and late consolidation. Each of these phases is characterised by distinct molecular processes. Although both cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) are implicated in the acquisition phase, early consolidation only depends on cGMP, whereas late consolidation is mediated by cAMP. Accordingly, the cGMP-selective phosphodiesterase 5 (PDE5) inhibitor vardenafil or the cAMP-selective PDE4 inhibitor rolipram can improve memory acquisition or consolidation when applied during their respective time windows. AIMS Considering the important role of glutamatergic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPAR) during normal memory function, we aimed to investigate whether the differential actions of these PDE inhibitors are mediated through AMPAR dynamics. METHODS For biochemical analysis, mice were treated with either vardenafil or rolipram and sacrificed shortly after injection. For the behavioural studies, mice received either of the inhibitors during the different mnemonic phases, while their spatial memory was tested using the object location task, and they were sacrificed 24 hours later. RESULTS Administration of either vardenafil or rolipram causes rapid changes in AMPARs. Moreover, treatment with vardenafil during the acquisition or early consolidation of spatial memory resulted in increased surface levels of AMPARs which were still augmented 24 hours after learning. Membrane levels of AMPARs were not affected anymore 24 hours after learning when rolipram was administrated at either the acquisition or late consolidation phase. CONCLUSIONS These results suggest that dissociative molecular mechanisms could mediate the pro-cognitive function of different classes of PDE inhibitors, and in the case of vardenafil, this phenomenon could be explained by changes in AMPAR dynamics.
Collapse
Affiliation(s)
| | | | | | | | | | - Jos Prickaerts
- Jos Prickaerts, Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands.
| |
Collapse
|
44
|
Blokland A, Heckman P, Vanmierlo T, Schreiber R, Paes D, Prickaerts J. Phosphodiesterase Type 4 Inhibition in CNS Diseases. Trends Pharmacol Sci 2019; 40:971-985. [DOI: 10.1016/j.tips.2019.10.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/15/2019] [Accepted: 10/17/2019] [Indexed: 12/17/2022]
|
45
|
Jankowska A, Satała G, Partyka A, Wesołowska A, Bojarski AJ, Pawłowski M, Chłoń-Rzepa G. Discovery and Development of Non-Dopaminergic Agents for the Treatment of Schizophrenia: Overview of the Preclinical and Early Clinical Studies. Curr Med Chem 2019; 26:4885-4913. [PMID: 31291870 DOI: 10.2174/0929867326666190710172002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/11/2019] [Accepted: 06/14/2019] [Indexed: 02/05/2023]
Abstract
Schizophrenia is a chronic psychiatric disorder that affects about 1 in 100 people around the world and results in persistent emotional and cognitive impairments. Untreated schizophrenia leads to deterioration in quality of life and premature death. Although the clinical efficacy of dopamine D2 receptor antagonists against positive symptoms of schizophrenia supports the dopamine hypothesis of the disease, the resistance of negative and cognitive symptoms to these drugs implicates other systems in its pathophysiology. Many studies suggest that abnormalities in glutamate homeostasis may contribute to all three groups of schizophrenia symptoms. Scientific considerations also include disorders of gamma-aminobutyric acid-ergic and serotonergic neurotransmissions as well as the role of the immune system. The purpose of this review is to update the most recent reports on the discovery and development of non-dopaminergic agents that may reduce positive, negative, and cognitive symptoms of schizophrenia, and may be alternative to currently used antipsychotics. This review collects the chemical structures of representative compounds targeting metabotropic glutamate receptor, gamma-aminobutyric acid type A receptor, alpha 7 nicotinic acetylcholine receptor, glycine transporter type 1 and glycogen synthase kinase 3 as well as results of in vitro and in vivo studies indicating their efficacy in schizophrenia. Results of clinical trials assessing the safety and efficacy of the tested compounds have also been presented. Finally, attention has been paid to multifunctional ligands with serotonin receptor affinity or phosphodiesterase inhibitory activity as novel strategies in the search for dedicated medicines for patients with schizophrenia.
Collapse
Affiliation(s)
- Agnieszka Jankowska
- Department of Medicinal Chemistry, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Grzegorz Satała
- Department of Medicinal Chemistry, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Krakow, Poland
| | - Anna Partyka
- Department of Clinical Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Anna Wesołowska
- Department of Clinical Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Andrzej J Bojarski
- Department of Medicinal Chemistry, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Krakow, Poland
| | - Maciej Pawłowski
- Department of Medicinal Chemistry, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Grażyna Chłoń-Rzepa
- Department of Medicinal Chemistry, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| |
Collapse
|
46
|
Ruan L, Du K, Tao M, Shan C, Ye R, Tang Y, Pan H, Lv J, Zhang M, Pan J. Phosphodiesterase-2 Inhibitor Bay 60-7550 Ameliorates Aβ-Induced Cognitive and Memory Impairment via Regulation of the HPA Axis. Front Cell Neurosci 2019; 13:432. [PMID: 31632240 PMCID: PMC6783519 DOI: 10.3389/fncel.2019.00432] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 09/09/2019] [Indexed: 01/01/2023] Open
Abstract
The dysfunction of the hypothalamus-pituitary-adrenal (HPA) axis is often seen in Alzheimer's disease (AD) patients with cognitive deficits. Selective inhibition of phosphodiesterase (PDE) 4 and 5 has already proven to be effective in reducing beta-amyloid 1-42 (Aβ1-42)-mediated pathology by regulating corticotropin-releasing factor (CRF) and glucocorticoid receptor (GR) expression, suggesting that PDE-dependent signaling is involved in Aβ1-42-induced HPA axis dysfunction. However, nausea and vomiting are the side effects of some PDE4 inhibitors, which turn our attention to other PDEs. PDE2 are highly expressed in the hippocampus and cortex, which associate with learning and memory, but not in the area postrema that would cause vomiting. The present study suggested that microinjection of Aβ1-42 to the intracerebroventricle induced learning and memory impairments and dysregulation of the HPA axis by increased expression of CRF and GR. However, the PDE2 inhibitor Bay 60-7550 significantly ameliorated the learning and memory impairment in the Morris water maze (MWM) and step-down passive avoidance tests. The Aβ1-42-induced increased CRF and GR levels were also reversed by the treatment with Bay 60-7550. These Bay 60-7550's effects were prevented by pretreatment with the PKG inhibitor KT5823. Moreover, the Bay 60-7550-induced downstream phosphorylation of cyclic AMP response element binding (pCREB) and brain-derived neurotrophic factor (BDNF) expression was also prevented (or partially prevented) by KT5823 or the PKA inhibitor H89. These results may lead to the discovery of novel strategies for the treatment of age-related cognitive disorders, such as AD, which affects approximately 44 million people worldwide.
Collapse
Affiliation(s)
- Lina Ruan
- Brain Institute, School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Kai Du
- Brain Institute, School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Mengjia Tao
- Brain Institute, School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Chunyan Shan
- Brain Institute, School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Ruixuan Ye
- Brain Institute, School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Yali Tang
- Brain Institute, School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Hanbo Pan
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, China
| | - Jinpeng Lv
- College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China
| | - Meixi Zhang
- Brain Institute, School of Pharmacy, Wenzhou Medical University, Wenzhou, China.,Pingyang County Hospital of Traditional Chinese Medicine, Pingyang County, China
| | - Jianchun Pan
- Brain Institute, School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
47
|
Baillie GS, Tejeda GS, Kelly MP. Therapeutic targeting of 3',5'-cyclic nucleotide phosphodiesterases: inhibition and beyond. Nat Rev Drug Discov 2019; 18:770-796. [PMID: 31388135 PMCID: PMC6773486 DOI: 10.1038/s41573-019-0033-4] [Citation(s) in RCA: 227] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2019] [Indexed: 01/24/2023]
Abstract
Phosphodiesterases (PDEs), enzymes that degrade 3',5'-cyclic nucleotides, are being pursued as therapeutic targets for several diseases, including those affecting the nervous system, the cardiovascular system, fertility, immunity, cancer and metabolism. Clinical development programmes have focused exclusively on catalytic inhibition, which continues to be a strong focus of ongoing drug discovery efforts. However, emerging evidence supports novel strategies to therapeutically target PDE function, including enhancing catalytic activity, normalizing altered compartmentalization and modulating post-translational modifications, as well as the potential use of PDEs as disease biomarkers. Importantly, a more refined appreciation of the intramolecular mechanisms regulating PDE function and trafficking is emerging, making these pioneering drug discovery efforts tractable.
Collapse
Affiliation(s)
- George S Baillie
- Institute of Cardiovascular and Medical Science, University of Glasgow, Glasgow, UK
| | - Gonzalo S Tejeda
- Institute of Cardiovascular and Medical Science, University of Glasgow, Glasgow, UK
| | - Michy P Kelly
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA.
| |
Collapse
|
48
|
Nakashima M, Suzuki N, Shiraishi E, Iwashita H. TAK-915, a phosphodiesterase 2A inhibitor, ameliorates the cognitive impairment associated with aging in rodent models. Behav Brain Res 2019; 376:112192. [PMID: 31521738 DOI: 10.1016/j.bbr.2019.112192] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 08/24/2019] [Accepted: 08/28/2019] [Indexed: 10/26/2022]
Abstract
Changes in the cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) signaling are implicated in older people with dementia. Drugs that modulate the cAMP/cGMP levels in the brain might therefore provide new therapeutic options for the treatment of cognitive impairment in aging and elderly with dementia. Phosphodiesterase 2A (PDE2A), which is highly expressed in the forebrain, is one of the key phosphodiesterase enzymes that hydrolyze cAMP and cGMP. In this study, we investigated the effects of PDE2A inhibition on the cognitive functions associated with aging, such as spatial learning, episodic memory, and attention, in rats with a selective, brain penetrant PDE2A inhibitor, N-{(1S)-1-[3-fluoro-4-(trifluoromethoxy)phenyl]-2-methoxyethyl-7-methoxy-2-oxo-2,3-dihydropyrido[2,3-b]pyrazine-4(1H)-carboxamide (TAK-915). Repeated treatment with TAK-915 (3 mg/kg/day, p.o. for 4 days) significantly reduced escape latency in aged rats in the Morris water maze task compared to the vehicle treatment. In the novel object recognition task, TAK-915 (1, 3, and 10 mg/kg, p.o.) dose-dependently attenuated the non-selective muscarinic antagonist scopolamine-induced memory deficits in rats. In addition, oral administration of TAK-915 at 10 mg/kg significantly improved the attentional performance in middle-aged, poorly performing rats in the 5-choice serial reaction time task. These findings suggest that PDE2A inhibition in the brain has the potential to ameliorate the age-related cognitive decline.
Collapse
Affiliation(s)
- Masato Nakashima
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, Japan
| | - Noriko Suzuki
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, Japan
| | - Eri Shiraishi
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, Japan
| | - Hiroki Iwashita
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, Japan.
| |
Collapse
|
49
|
Effects of Specific Inhibitor of Phosphodiesterase 7 at the Late Stage of Long-Term Potentiation in Murine Hippocampal Slices. Bull Exp Biol Med 2019; 167:467-469. [PMID: 31493257 DOI: 10.1007/s10517-019-04551-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Indexed: 10/26/2022]
Abstract
Second messengers cAMP and cGMP play an important role in synaptic plasticity and memory consolidation. The inhibitors of phosphodiesterases, enzymes hydrolyzing these cyclic nucleotides, are actively studied as potential drugs for the treatment of various cognitive disorders and depression. We studied the effects of a new inhibitor of phosphodiesterase 7 AGF2.20 on the formation of long-term potentiation in hippocampal slices. Administration of AGF2.20 (10 nM) in 90 min after weak tetanization prevented a decrease in the amplitude of excitatory post-synaptic potentials and stabilized long-term potentiation. These data attest to the involvement of phosphodiesterase 7 in the development of synaptic plasticity in the hippocampus. The inhibitor AGF2.20 is considered for the further analysis as a promising substance for the treatment of cognitive impairments.
Collapse
|
50
|
Potential learning and memory disruptors and enhancers in a simple, 1-day operant task in mice. Behav Pharmacol 2019; 29:482-492. [PMID: 29570113 DOI: 10.1097/fbp.0000000000000400] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The objective of this study was to develop a rapid, 1-day learning and memory assay in mice that is sensitive to the effects of compounds that could impair or enhance acquisition and retrieval. Swiss-Webster, male mice were placed in experimental chambers for a 1-h acquisition session with an intermittent, audible tone. If a nose-poke response occurred during the tone, an Ensure water solution was presented. After 1 h, the mice returned to the chambers for 2 h. Drugs were injected before or after sessions to determine the effects on acquisition and/or retrieval. Mice injected with saline learned a nose-poke response as measured by decreased latencies to earn 10 reinforcers, increased reinforced response rates, and decreased nonreinforced response rates. Scopolamine and acetazolamide impaired retrieval of the nose-poke response, whereas ketamine only modestly impaired retrieval. Doses of 8-OH-DPAT or the novel carbonic anhydrase activator, MAI27, either had no effect or impaired some measures of responding. Neither 8-OH-DPAT nor MAI27 were able to prevent the modest impairments produced by ketamine. The simple, 1-day operant task is a rapid assay that can be used as an initial screen to test the effects of learning and memory disruptors and potentially enhancers.
Collapse
|