1
|
Adamczyk PM, Shaw A, Morella IM, More L. Neurobiology, molecular pathways, and environmental influences in antisocial traits and personality disorders. Neuropharmacology 2025; 269:110322. [PMID: 39864585 DOI: 10.1016/j.neuropharm.2025.110322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 12/17/2024] [Accepted: 01/20/2025] [Indexed: 01/28/2025]
Abstract
Personality disorders (PDs) are psychiatric conditions characterized by enduring patterns of cognition, emotion, and behaviour that deviate significantly from cultural norms, causing distress or impairment. The aetiology of PDs is complex, involving both genetic and environmental factors. Genetic studies estimate the heritability of PDs at 30%-60%, implicating genes involved in neurotransmitter regulation, such as those for serotonin transporters and dopamine receptors. Environmental factors, including childhood trauma and chronic stress, interact with genetic predispositions to induce epigenetic modifications like DNA methylation and histone modifications, contributing to PD development. Neurobiological research has identified structural and functional abnormalities in brain regions related to emotional regulation and social cognition, such as the amygdala, prefrontal cortex, and limbic system. These abnormalities are linked to impaired emotion processing and interpersonal functioning in PDs. This review focuses on how environmental factors shape maladaptive behaviours and endophenotypes central to many PDs. It explores the interaction between the Ras-ERK, p38, and mTOR molecular pathways in response to environmental stimuli, and examines the role of oxidative stress and mitochondrial metabolism in these processes. Also reviewed are various types of PDs and existing animal models that replicate key endophenotypes, highlighting changes in neurotransmitters and neurohormones. Identifying molecular biomarkers can lead to the development of "enviromimetic" drugs, which mimic environmental influences to activate molecular pathways, facilitating targeted, personalized treatments based on the molecular profiles of individuals with PDs. Ultimately, understanding the molecular mechanisms of PDs promises to enhance diagnostic accuracy, prognosis, and therapeutic outcomes for affected individuals.
Collapse
Affiliation(s)
- Patryk M Adamczyk
- School of Pharmacy and Biomedical Sciences, The University of Central Lancashire, Preston, UK
| | - Andrew Shaw
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK.
| | - Ilaria M Morella
- University of Pavia, Department of Biology and Biotechnology "Lazzaro Spallanzani", Pavia, Italy; Cardiff University, School of Medicine, Division of Psychological Medicine and Clinical Neurosciences, Cardiff, UK.
| | - Lorenzo More
- School of Pharmacy and Biomedical Sciences, The University of Central Lancashire, Preston, UK.
| |
Collapse
|
2
|
Raffensperger KV, Harvey PD. An overview of the challenges with the differential diagnosis of schizotypal personality disorder. Expert Rev Neurother 2025:1-10. [PMID: 40230104 DOI: 10.1080/14737175.2025.2492379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 04/03/2025] [Accepted: 04/08/2025] [Indexed: 04/16/2025]
Abstract
INTRODUCTION Schizotypal personality disorder (SPD) has a long history, and there is still considerable ongoing research. Although there are overlapping features of SPD and other personality disorders, the full constellation of schizotypal features is broader. The longitudinal course of SPD is variable, with differences in trajectory manifesting lifelong clinical significance. Particularly important is the relationship between SPD and prodromal states that may result in an eventual diagnosis of psychosis. AREAS COVERED This review covers the history and differential diagnosis of SPD, including the older conceptualization of 'borderline schizophrenia.' Clinical, cognitive, functional, brain imaging, and genetic features of SPD, and the implications of age at onset and method of ascertainment of the condition are reviewed. Differences between psychometrically identified schizotypy, clinically diagnosed SPD, and other psychiatric conditions are described. A comprehensive literature search using MEDLINE (via PubMed) did not specify a date range, to capture the full scope of research. EXPERT OPINION SPD is unique in that the age at ascertainment is critical for the persistence of the diagnosis. When diagnosed with SPD in late adolescence, some individuals develop psychosis, some remit, and others have persistent, lifelong symptoms. Predictors of conversion to psychosis have been identified but are no proven treatments.
Collapse
Affiliation(s)
- Katherine V Raffensperger
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Philip D Harvey
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
3
|
Harvey PD. Negative Schizotypy: Now That We Know What It Is, Should We Do Something About It? BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:100354. [PMID: 39713124 PMCID: PMC11662269 DOI: 10.1016/j.bpsgos.2024.100354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 12/24/2024] Open
|
4
|
Bransom L, Bassett AP, Zhou M, Cimino JX, Mailman RB, Yang Y. Dopamine D 1 Receptor Agonists Rescue Age-related Decline in Temporal Order Memory. Neuroscience 2024; 551:177-184. [PMID: 38823551 PMCID: PMC11246218 DOI: 10.1016/j.neuroscience.2024.05.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/08/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
Dopamine D1 receptor agonists improve spatial working memory, but their effects on temporal order memory, particularly prone to the effects of aging, have not been studied. Two D1 agonists, PF6256142 (PF) and 2-methyldihydrexidine (2MDHX), were examined for their effects in a rodent temporal order recognition task. Our results are consistent with the hypothesis that there is an age-related decline in rodent temporal order memory. The data also show that either agonist rescues the poor memory performance with a large effective size. Interestingly, the optimal effective dose varied among individual rats of different age groups. PF showed greater potency for older rats, whereas 2MDHX showed better overall population effectiveness. Both PF and 2MDHX have high intrinsic activity at rodent D1-mediated cAMP synthesis. Conversely, at D1-mediated β-arrestin recruitment, PF has essentially no intrinsic activity, whereas 2MDHX is a super-agonist. These findings suggest that D1 agonists have potential to treat age-related cognitive decline, and the pattern of functional selectivity may be useful for developing drugs with an improved therapeutic index.
Collapse
Affiliation(s)
- Luke Bransom
- Department of Pharmacology, Penn State University College of Medicine, Hershey PA 17033, United States
| | - Ava P Bassett
- Department of Pharmacology, Penn State University College of Medicine, Hershey PA 17033, United States
| | - Mi Zhou
- Department of Pharmacology, Penn State University College of Medicine, Hershey PA 17033, United States; Department of Neurology, Penn State University College of Medicine, Hershey, PA 17033, United States
| | - Jack X Cimino
- Department of Pharmacology, Penn State University College of Medicine, Hershey PA 17033, United States
| | - Richard B Mailman
- Department of Pharmacology, Penn State University College of Medicine, Hershey PA 17033, United States; Department of Neurology, Penn State University College of Medicine, Hershey, PA 17033, United States
| | - Yang Yang
- Department of Pharmacology, Penn State University College of Medicine, Hershey PA 17033, United States.
| |
Collapse
|
5
|
Girmaw F. Review on allosteric modulators of dopamine receptors so far. Health Sci Rep 2024; 7:e1984. [PMID: 38505681 PMCID: PMC10948587 DOI: 10.1002/hsr2.1984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 02/29/2024] [Accepted: 03/03/2024] [Indexed: 03/21/2024] Open
Abstract
Background Contemporary research is predominantly directed towards allosteric modulators, a class of compounds designed to interact with specific sites distinct from the orthosteric site on G protein-coupled receptors. These allosteric modulators play a pivotal role in influencing diverse pharmacological effects, such as agonism/inverse agonism, efficacy modulation, and affinity modulation. One particularly intriguing aspect is the demonstrated capacity of allosteric modulation to enhance drug selectivity for therapeutic purposes, potentially leading to a reduction in serious side effects associated with traditional approaches. Allosteric ligands, a majority of which fall into the categories of negative allosteric modulators or positive allosteric modulators, exhibit the unique ability to either diminish or enhance the effects of endogenous ligands. Negative allosteric modulators weaken the response, while positive allosteric modulators intensify it. Additionally, silent allosteric modulators represent a distinct class that neither activates nor blocks the effects of endogenous ligands, adding complexity to the spectrum of allosteric modulation. In the broader context of central nervous system disorders, allosteric modulation takes center stage, particularly in the realm of dopamine receptors specifically, D1, D2, and D3 receptors. These receptors hold immense therapeutic potential for a range of conditions spanning neurodegenerative disorders to neurobehavioral and psychiatric disorders. The intricate modulation of dopamine receptors through allosteric mechanisms offers a nuanced and versatile approach to drug development. As research endeavors continue to unfold, the exploration of allosteric modulation stands as a promising frontier, holding the potential to reshape the landscape of drug discovery and therapeutic interventions in the field of neurology and psychiatry.
Collapse
Affiliation(s)
- Fentaw Girmaw
- Department of Pharmacy, College of Health ScienceWoldia UniversityWoldiaEthiopia
| |
Collapse
|
6
|
Cimino JX, Zhou M, Waxmonsky J, Mailman RB, Yang Y. Characterization of behavioral changes in T-maze alternation from dopamine D 1 agonists with different receptor coupling mechanisms. Psychopharmacology (Berl) 2023; 240:2187-2199. [PMID: 37578525 PMCID: PMC10693963 DOI: 10.1007/s00213-023-06440-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/26/2023] [Indexed: 08/15/2023]
Abstract
RATIONALE Dopamine D1 receptor agonists have been shown to improve working memory, but often have a non-monotonic (inverted-U) dose-response curve. One hypothesis is that this may reflect dose-dependent differential engagement of D1 signaling pathways, a mechanism termed functional selectivity or signaling bias. OBJECTIVES AND METHODS To test this hypothesis, we compared two D1 ligands with different signaling biases in a rodent T-maze alternation task. Both tested ligands (2-methyldihydrexidine and CY208243) have high intrinsic activity at cAMP signaling, but the former also has markedly higher intrinsic activity at D1-mediated recruitment of β-arrestin. The spatial working memory was assessed via the alternation behavior in the T-maze where the alternate choice rate quantified the quality of the memory and the duration prior to making a choice represented the decision latency. RESULTS Both D1 drugs changed the alternate rate and the choice latency in a dose-dependent manner, albeit with important differences. 2-Methyldihydrexidine was somewhat less potent but caused a more homogeneous improvement than CY208243 in spatial working memory. The maximum changes in the alternate rate and the choice latency tended to occur at different doses for both drugs. CONCLUSIONS These data suggest that D1 signaling bias in these two pathways (cAMP vs β-arrestin) has complex effects on cognitive processes as assessed by T-maze alternation. Understanding these mechanisms should allow the identification or discovery of D1 agonists that can provide superior cognitive enhancement.
Collapse
Affiliation(s)
- Jack X Cimino
- Neuroscience Program, Penn State University College of Medicine, Hershey, PA, 17033, USA
| | - Mi Zhou
- Department of Pharmacology, Penn State University College of Medicine, Hershey, PA, 17033, USA
- Department of Neurology, Penn State University College of Medicine, Hershey, PA, 17033, USA
| | - James Waxmonsky
- Department of Psychiatry and Behavioral Health, Penn State University College of Medicine, Hershey, PA, 17033, USA
| | - Richard B Mailman
- Department of Pharmacology, Penn State University College of Medicine, Hershey, PA, 17033, USA
- Department of Neurology, Penn State University College of Medicine, Hershey, PA, 17033, USA
| | - Yang Yang
- Department of Pharmacology, Penn State University College of Medicine, Hershey, PA, 17033, USA.
| |
Collapse
|
7
|
Larrauri CA, Harvey PD, Kane JM. A Patient-Clinician Discussion of Current Challenges in Schizophrenia Part 1: Addressing Daily Functioning and Cognitive Impairments Associated with Schizophrenia [Podcast]. Neuropsychiatr Dis Treat 2023; 19:1331-1338. [PMID: 37292181 PMCID: PMC10244615 DOI: 10.2147/ndt.s419177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 04/28/2023] [Indexed: 06/10/2023] Open
Abstract
Dr John M. Kane discusses cognitive impairments in schizophrenia with fellow expert Dr Philip D. Harvey and patient advocate and mental health clinician, Mr Carlos A. Larrauri, who was diagnosed with schizophrenia. The podcast aims to raise awareness of the unmet need to address cognitive impairments associated with schizophrenia (CIAS) as well as the challenges/opportunities faced by patients and clinicians regarding assessments and treatments. The authors emphasize the importance of a treatment focus on daily functioning, in parallel with cognitive symptoms, to mitigate impairments and improve overall outcomes. Mr Larrauri presents the patient perspective and shares his experiences of how psychosocial support and cognitive training can benefit recovery and help patients achieve their goals.
Collapse
Affiliation(s)
| | | | - John M Kane
- Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| |
Collapse
|
8
|
Zell L, Bretl A, Temml V, Schuster D. Dopamine Receptor Ligand Selectivity-An In Silico/In Vitro Insight. Biomedicines 2023; 11:1468. [PMID: 37239139 PMCID: PMC10216180 DOI: 10.3390/biomedicines11051468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/03/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Different dopamine receptor (DR) subtypes are involved in pathophysiological conditions such as Parkinson's Disease (PD), schizophrenia and depression. While many DR-targeting drugs have been approved by the U.S. Food and Drug Administration (FDA), only a very small number are truly selective for one of the DR subtypes. Additionally, most of them show promiscuous activity at related G-protein coupled receptors, thus suffering from diverse side-effect profiles. Multiple studies have shown that combined in silico/in vitro approaches are a valuable contribution to drug discovery processes. They can also be applied to divulge the mechanisms behind ligand selectivity. In this study, novel DR ligands were investigated in vitro to assess binding affinities at different DR subtypes. Thus, nine D2R/D3R-selective ligands (micro- to nanomolar binding affinities, D3R-selective profile) were successfully identified. The most promising ligand exerted nanomolar D3R activity (Ki = 2.3 nM) with 263.7-fold D2R/D3R selectivity. Subsequently, ligand selectivity was rationalized in silico based on ligand interaction with a secondary binding pocket, supporting the selectivity data determined in vitro. The developed workflow and identified ligands could aid in the further understanding of the structural motifs responsible for DR subtype selectivity, thus benefitting drug development in D2R/D3R-associated pathologies such as PD.
Collapse
Affiliation(s)
| | | | | | - Daniela Schuster
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Paracelsus Medical University, 5020 Salzburg, Austria; (L.Z.); (A.B.); (V.T.)
| |
Collapse
|
9
|
Juza R, Musilek K, Mezeiova E, Soukup O, Korabecny J. Recent advances in dopamine D 2 receptor ligands in the treatment of neuropsychiatric disorders. Med Res Rev 2023; 43:55-211. [PMID: 36111795 DOI: 10.1002/med.21923] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 07/29/2022] [Accepted: 08/09/2022] [Indexed: 02/04/2023]
Abstract
Dopamine is a biologically active amine synthesized in the central and peripheral nervous system. This biogenic monoamine acts by activating five types of dopamine receptors (D1-5 Rs), which belong to the G protein-coupled receptor family. Antagonists and partial agonists of D2 Rs are used to treat schizophrenia, Parkinson's disease, depression, and anxiety. The typical pharmacophore with high D2 R affinity comprises four main areas, namely aromatic moiety, cyclic amine, central linker and aromatic/heteroaromatic lipophilic fragment. From the literature reviewed herein, we can conclude that 4-(2,3-dichlorophenyl), 4-(2-methoxyphenyl)-, 4-(benzo[b]thiophen-4-yl)-1-substituted piperazine, and 4-(6-fluorobenzo[d]isoxazol-3-yl)piperidine moieties are critical for high D2 R affinity. Four to six atoms chains are optimal for D2 R affinity with 4-butoxyl as the most pronounced one. The bicyclic aromatic/heteroaromatic systems are most frequently occurring as lipophilic appendages to retain high D2 R affinity. In this review, we provide a thorough overview of the therapeutic potential of D2 R modulators in the treatment of the aforementioned disorders. In addition, this review summarizes current knowledge about these diseases, with a focus on the dopaminergic pathway underlying these pathologies. Major attention is paid to the structure, function, and pharmacology of novel D2 R ligands, which have been developed in the last decade (2010-2021), and belong to the 1,4-disubstituted aromatic cyclic amine group. Due to the abundance of data, allosteric D2 R ligands and D2 R modulators from patents are not discussed in this review.
Collapse
Affiliation(s)
- Radomir Juza
- Experimental Neurobiology, National Institute of Mental Health, Klecany, Czech Republic.,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Kamil Musilek
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic.,Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Eva Mezeiova
- Experimental Neurobiology, National Institute of Mental Health, Klecany, Czech Republic.,Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Ondrej Soukup
- Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Jan Korabecny
- Experimental Neurobiology, National Institute of Mental Health, Klecany, Czech Republic.,Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
10
|
Khan SS, Khatik GL, Datusalia AK. Strategies for Treatment of Disease-Associated Dementia Beyond Alzheimer's Disease: An Update. Curr Neuropharmacol 2023; 21:309-339. [PMID: 35410602 PMCID: PMC10190146 DOI: 10.2174/1570159x20666220411083922] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/27/2022] [Accepted: 04/03/2022] [Indexed: 11/22/2022] Open
Abstract
Memory, cognition, dementia, and neurodegeneration are complexly interlinked processes with various mechanistic pathways, leading to a range of clinical outcomes. They are strongly associated with pathological conditions like Alzheimer's disease, Parkinson's disease, schizophrenia, and stroke and are a growing concern for their timely diagnosis and management. Several cognitionenhancing interventions for management include non-pharmacological interventions like diet, exercise, and physical activity, while pharmacological interventions include medicinal agents, herbal agents, and nutritional supplements. This review critically analyzed and discussed the currently available agents under different drug development phases designed to target the molecular targets, including cholinergic receptor, glutamatergic system, GABAergic targets, glycine site, serotonergic targets, histamine receptors, etc. Understanding memory formation and pathways involved therein aids in opening the new gateways to treating cognitive disorders. However, clinical studies suggest that there is still a dearth of knowledge about the pathological mechanism involved in neurological conditions, making the dropouts of agents from the initial phases of the clinical trial. Hence, a better understanding of the disease biology, mode of drug action, and interlinked mechanistic pathways at a molecular level is required.
Collapse
Affiliation(s)
- Sabiya Samim Khan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Raebareli, Lucknow (UP) India
| | - Gopal L. Khatik
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Raebareli, Lucknow (UP) India
| | - Ashok K. Datusalia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Raebareli, Lucknow (UP) India
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Raebareli, Lucknow (UP) India
| |
Collapse
|
11
|
Yang Y, Lewis MM, Kong L, Mailman RB. A Dopamine D 1 Agonist Versus Methylphenidate in Modulating Prefrontal Cortical Working Memory. J Pharmacol Exp Ther 2022; 382:88-99. [PMID: 35661631 PMCID: PMC9341252 DOI: 10.1124/jpet.122.001215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/17/2022] [Indexed: 11/22/2022] Open
Abstract
Methylphenidate is used widely to treat symptoms of attention-deficit/hyperactivity disorder (ADHD), but like other stimulants has significant side effects. This study used a rodent model (spontaneously hypertensive rat) of spatial working memory (sWM) to compare the effects of methylphenidate with the novel dopamine D1-like receptor agonist 2-methyldihydrexidine. Acute oral administration of methylphenidate (1.5 mg/kg) caused sWM improvement in half of the tested rats, but impairment in the others. Both improvement or impairment were eliminated by administration of the D1 antagonist SCH39266 directly into the prefrontal cortex (PFC). Conversely, 2-methyldihydrexidine showed greater sWM improvement compared with methylphenidate without significant impairment in any subject. Its effects correlated negatively with vehicle-treated baseline performance (i.e., rats with lower baseline performance improved more than rats with higher baseline performance). These behavioral effects were associated with neural activities in the PFC. Single neuron firing rate was changed, leading to the alteration in neuronal preference to correct or error behavioral responses. Overall, 2-methyldihydrexidine was superior to methylphenidate in decreasing the neuronal preference, prospectively, in the animals whose behavior was improved. In contrast, methylphenidate, but not 2-methyldihydrexidine, significantly decreased neuronal preference, retrospectively, in those animals who had impaired performance. These results suggest that a D1 agonist may be more effective than methylphenidate in regulating sWM-related behavior through neural modulation of the PFC, and thus may be superior to methylphenidate or other stimulants as ADHD pharmacotherapy. SIGNIFICANCE STATEMENT: Methylphenidate is effective in ADHD by its indirect agonist stimulation of dopamine and/or adrenergic receptors, but the precise effects on specific targets are unclear. This study compared methylphenidate to a dopamine D1 receptor-selective agonist by investigating effects on working memory occurring via neural modulation in the prefrontal cortex. The data suggest that pharmacological treatment selectively targeting the dopamine D1 may offer a superior approach to ADHD pharmacotherapy.
Collapse
Affiliation(s)
- Yang Yang
- Department of Pharmacology (Y.Y., M.M.L., R.B.M.), Department of Neurology (M.M.L., R.B.M.), and Department of Public Health Sciences (L.K.), Penn State University College of Medicine, Hershey, Pennsylvania
| | - Mechelle M Lewis
- Department of Pharmacology (Y.Y., M.M.L., R.B.M.), Department of Neurology (M.M.L., R.B.M.), and Department of Public Health Sciences (L.K.), Penn State University College of Medicine, Hershey, Pennsylvania
| | - Lan Kong
- Department of Pharmacology (Y.Y., M.M.L., R.B.M.), Department of Neurology (M.M.L., R.B.M.), and Department of Public Health Sciences (L.K.), Penn State University College of Medicine, Hershey, Pennsylvania
| | - Richard B Mailman
- Department of Pharmacology (Y.Y., M.M.L., R.B.M.), Department of Neurology (M.M.L., R.B.M.), and Department of Public Health Sciences (L.K.), Penn State University College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
12
|
Yang Y, Kocher SD, Lewis MM, Mailman RB. Dose-Dependent Regulation on Prefrontal Neuronal Working Memory by Dopamine D1 Agonists: Evidence of Receptor Functional Selectivity-Related Mechanisms. Front Neurosci 2022; 16:898051. [PMID: 35784852 PMCID: PMC9244699 DOI: 10.3389/fnins.2022.898051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Low doses of dopamine D1 agonists improve working memory-related behavior, but high doses eliminate the improvement, thus yielding an ‘inverted-U’ dose-response curve. This dose-dependency also occurs at the single neuron level in the prefrontal cortex where the cellular basis of working memory is represented. Because signaling mechanisms are unclear, we examined this process at the neuron population level. Two D1 agonists (2-methyldihydrexidine and CY208,243) having different signaling bias were tested in rats performing a spatial working memory-related T-maze task. 2-Methyldihydrexidine is slightly bias toward D1-mediated β-arrestin-related signaling as it is a full agonist at adenylate cyclase and a super-agonist at β-arrestin recruitment, whereas CY208,243 is slightly bias toward D1-mediated cAMP signaling as it has relatively high intrinsic activity at adenylate cyclase, but is a partial agonist at β-arrestin recruitment. Both compounds had the expected inverted U dose-dependency in modulating prefrontal neuronal activities, albeit with important differences. Although CY208,243 was superior in improving the strength of neuronal outcome sensitivity to the working memory-related choice behavior in the T-maze, 2-methyldihydrexidine better reduced neuron-to-neuron variation. Interestingly, at the neuron population level, both drugs affected the percentage, uniformity, and ensemble strength of neuronal sensitivity in a complicated dose-dependent fashion, but the overall effect suggested higher efficiency and potency of 2-methyldihydrexidine compared to CY208,243. The differences between 2-methyldihydrexidine and CY208,243 may be related to their specific D1 signaling. These results suggest that D1-related dose-dependent regulation of working memory can be modified differentially by functionally selective ligands, theoretically increasing the balance between desired and undesired effects.
Collapse
Affiliation(s)
- Yang Yang
- Department of Pharmacology, Penn State Milton S. Hershey Medical Center, Penn State College of Medicine, Hershey, PA, United States
- Translational Brain Research Center, Penn State Milton S. Hershey Medical Center, Penn State College of Medicine, Hershey, PA, United States
- *Correspondence: Yang Yang,
| | - Susan D. Kocher
- Department of Pharmacology, Penn State Milton S. Hershey Medical Center, Penn State College of Medicine, Hershey, PA, United States
| | - Mechelle M. Lewis
- Department of Pharmacology, Penn State Milton S. Hershey Medical Center, Penn State College of Medicine, Hershey, PA, United States
- Translational Brain Research Center, Penn State Milton S. Hershey Medical Center, Penn State College of Medicine, Hershey, PA, United States
- Department of Neurology, Penn State Milton S. Hershey Medical Center, Penn State College of Medicine, Hershey, PA, United States
| | - Richard B. Mailman
- Department of Pharmacology, Penn State Milton S. Hershey Medical Center, Penn State College of Medicine, Hershey, PA, United States
- Translational Brain Research Center, Penn State Milton S. Hershey Medical Center, Penn State College of Medicine, Hershey, PA, United States
- Department of Neurology, Penn State Milton S. Hershey Medical Center, Penn State College of Medicine, Hershey, PA, United States
- Richard B. Mailman,
| |
Collapse
|
13
|
Hao J, Beck J, Zhou X, Lackner GL, Johnston R, Reinhard M, Goldsmith P, Hollinshead S, Dehlinger V, Filla SA, Wang XS, Richardson J, Posada M, Mohutsky M, Schober D, Katner JS, Chen Q, Hu B, Remick DM, Coates DA, Mathes BM, Hawk MK, Svensson KA, Hembre E. Synthesis and Preclinical Characterization of LY3154885, a Human Dopamine D1 Receptor Positive Allosteric Modulator with an Improved Nonclinical Drug-Drug Interaction Risk Profile. J Med Chem 2022; 65:3786-3797. [PMID: 35175768 DOI: 10.1021/acs.jmedchem.1c01887] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Results from recently completed clinical studies suggest the dopamine D1 receptor positive allosteric modulator (PAM) mevidalen (1) could offer unique value for lewy body dementia (LBD) patients. In nonclinical assessments, 1 was mainly eliminated by CYP3A4-mediated metabolism, therefore at the risk of being a victim of drug-drug interactions (DDI) with CYP3A4 inhibitors and inducers. An effort was initiated to identify a new D1 PAM with an improved DDI risk profile. While attempts to introduce additional metabolic pathways mediated by other CYP isoforms failed to provide molecules with an acceptable profile, we discovered that the relative contribution of CYP-mediated oxidation and UGT-mediated conjugation could be tuned to reduce the CYP3A4-mediated victim DDI risk. We have identified LY3154885 (5), a D1 PAM that possesses similar in vitro and in vivo pharmacologic properties as 1, but is metabolized mainly by UGT, predicting it could potentially offer lower victim DDI risk in clinic.
Collapse
|
14
|
Jones-Tabah J, Mohammad H, Paulus EG, Clarke PBS, Hébert TE. The Signaling and Pharmacology of the Dopamine D1 Receptor. Front Cell Neurosci 2022; 15:806618. [PMID: 35110997 PMCID: PMC8801442 DOI: 10.3389/fncel.2021.806618] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/23/2021] [Indexed: 12/30/2022] Open
Abstract
The dopamine D1 receptor (D1R) is a Gαs/olf-coupled GPCR that is expressed in the midbrain and forebrain, regulating motor behavior, reward, motivational states, and cognitive processes. Although the D1R was initially identified as a promising drug target almost 40 years ago, the development of clinically useful ligands has until recently been hampered by a lack of suitable candidate molecules. The emergence of new non-catechol D1R agonists, biased agonists, and allosteric modulators has renewed clinical interest in drugs targeting this receptor, specifically for the treatment of motor impairment in Parkinson's Disease, and cognitive impairment in neuropsychiatric disorders. To develop better therapeutics, advances in ligand chemistry must be matched by an expanded understanding of D1R signaling across cell populations in the brain, and in disease states. Depending on the brain region, the D1R couples primarily to either Gαs or Gαolf through which it activates a cAMP/PKA-dependent signaling cascade that can regulate neuronal excitability, stimulate gene expression, and facilitate synaptic plasticity. However, like many GPCRs, the D1R can signal through multiple downstream pathways, and specific signaling signatures may differ between cell types or be altered in disease. To guide development of improved D1R ligands, it is important to understand how signaling unfolds in specific target cells, and how this signaling affects circuit function and behavior. In this review, we provide a summary of D1R-directed signaling in various neuronal populations and describe how specific pathways have been linked to physiological and behavioral outcomes. In addition, we address the current state of D1R drug development, including the pharmacology of newly developed non-catecholamine ligands, and discuss the potential utility of D1R-agonists in Parkinson's Disease and cognitive impairment.
Collapse
|
15
|
Cools R, Arnsten AFT. Neuromodulation of prefrontal cortex cognitive function in primates: the powerful roles of monoamines and acetylcholine. Neuropsychopharmacology 2022; 47:309-328. [PMID: 34312496 PMCID: PMC8617291 DOI: 10.1038/s41386-021-01100-8] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/06/2021] [Accepted: 07/06/2021] [Indexed: 02/07/2023]
Abstract
The primate prefrontal cortex (PFC) subserves our highest order cognitive operations, and yet is tremendously dependent on a precise neurochemical environment for proper functioning. Depletion of noradrenaline and dopamine, or of acetylcholine from the dorsolateral PFC (dlPFC), is as devastating as removing the cortex itself, and serotonergic influences are also critical to proper functioning of the orbital and medial PFC. Most neuromodulators have a narrow inverted U dose response, which coordinates arousal state with cognitive state, and contributes to cognitive deficits with fatigue or uncontrollable stress. Studies in monkeys have revealed the molecular signaling mechanisms that govern the generation and modulation of mental representations by the dlPFC, allowing dynamic regulation of network strength, a process that requires tight regulation to prevent toxic actions, e.g., as occurs with advanced age. Brain imaging studies in humans have observed drug and genotype influences on a range of cognitive tasks and on PFC circuit functional connectivity, e.g., showing that catecholamines stabilize representations in a baseline-dependent manner. Research in monkeys has already led to new treatments for cognitive disorders in humans, encouraging future research in this important field.
Collapse
Affiliation(s)
- Roshan Cools
- Department of Psychiatry, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Amy F T Arnsten
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
16
|
da Silva SR, Kalaba P, Fabišiková A, Zehl M, Dragačević V, Dos Anjos LR, Neill PJ, Wieder M, Prado-Roller A, Gajic N, Palaretti V, da Silva GVJ, Pifl C, Lubec G, Gonzalez ERP. Synthesis and dopamine receptor binding of dihydrexidine and SKF 38393 catecholamine-based analogues. Amino Acids 2021; 54:85-98. [PMID: 34842969 DOI: 10.1007/s00726-021-03106-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/17/2021] [Indexed: 10/19/2022]
Abstract
Dopamine is an important neurotransmitter that regulates numerous essential functions, including cognition and voluntary movement. As such, it serves as an important scaffold for synthesis of novel analogues as part of drug development effort to obtain drugs for treatment of neurodegenerative diseases, such as Parkinson's disease. To that end, similarity search of the ZINC database based on two known dopamine-1 receptor (D1R) agonists, dihydrexidine (DHX) and SKF 38393, respectively, was used to predict novel chemical entities with potential binding to D1R. Three compounds that showed the highest similarity index were selected for synthesis and bioactivity profiling. All main synthesis products as well as the isolated intermediates, were properly characterized. The physico-chemical analyses were performed using HRESIMS, GC/MS, LC/MS with UV-Vis detection, and FTIR, 1H NMR and 13C NMR spectroscopy. Binding to D1 and D2 receptors and inhibition of dopamine reuptake via dopamine transporter were measured for the synthesized analogues of DHX and SKF 38393.
Collapse
Affiliation(s)
- Suzane Rosa da Silva
- Laboratory of Fine Organic Chemistry, Department of Chemistry and Biochemistry, Faculty of Sciences and Technology of São Paulo State University, Presidente Prudente, São Paulo, 19060-900, Brazil
| | - Predrag Kalaba
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Althanstraße 14, 1090, Vienna, Austria
| | - Anna Fabišiková
- Mass Spectrometry Centre, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090, Vienna, Austria
| | - Martin Zehl
- Mass Spectrometry Centre, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090, Vienna, Austria.,Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090, Vienna, Austria
| | - Vladimir Dragačević
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Althanstraße 14, 1090, Vienna, Austria
| | - Luana Ribeiro Dos Anjos
- Laboratory of Fine Organic Chemistry, Department of Chemistry and Biochemistry, Faculty of Sciences and Technology of São Paulo State University, Presidente Prudente, São Paulo, 19060-900, Brazil
| | - Philip John Neill
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Althanstraße 14, 1090, Vienna, Austria
| | - Marcus Wieder
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Althanstraße 14, 1090, Vienna, Austria
| | - Alexander Prado-Roller
- Centre for X-Ray Structure Analysis at Faculty of Chemistry, University of Vienna, Währinger Straße 40-42, 1090, Vienna, Austria
| | - Natalie Gajic
- Centre for X-Ray Structure Analysis at Faculty of Chemistry, University of Vienna, Währinger Straße 40-42, 1090, Vienna, Austria
| | - Vinicius Palaretti
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Avenida dos Bandeirantes, 3900, Ribeirão Preto, SP, 14040-901, Brazil
| | - Gil Valdo Jose da Silva
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Avenida dos Bandeirantes, 3900, Ribeirão Preto, SP, 14040-901, Brazil
| | - Christian Pifl
- Department of Molecular Neurosciences, Centre for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090, Vienna, Austria
| | - Gert Lubec
- Department of Neuroproteomics, Paracelsus Medical University, 5020, Salzburg, Austria.
| | - Eduardo R Perez Gonzalez
- Laboratory of Fine Organic Chemistry, Department of Chemistry and Biochemistry, Faculty of Sciences and Technology of São Paulo State University, Presidente Prudente, São Paulo, 19060-900, Brazil.
| |
Collapse
|
17
|
Barret O, Zhang L, Alagille D, Constantinescu CC, Sandiego C, Papin C, Sullivan JM, Morley T, Carroll VM, Seibyl J, Chen J, Lee C, Villalobos A, Gray D, McCarthy TJ, Tamagnan G. Dopamine D 1 Receptor Agonist PET Tracer Development: Assessment in Nonhuman Primates. J Nucl Med 2021; 62:1307-1313. [PMID: 33579806 PMCID: PMC8882897 DOI: 10.2967/jnumed.120.256008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/22/2020] [Indexed: 11/16/2022] Open
Abstract
Non-catechol-based high-affinity selective dopamine D1 receptor (D1R) agonists were recently described, and candidate PET ligands were selected on the basis of favorable properties. The objective of this study was to characterize in vivo in nonhuman primates 2 novel D1R agonist PET radiotracers, racemic 18F-MNI-800 and its more active atropisomeric (-)-enantiomer, 18F-MNI-968. Methods: Ten brain PET experiments were conducted with 18F-MNI-800 on 2 adult rhesus macaques and 2 adult cynomolgus macaques, and 8 brain PET experiments were conducted with 18F-MNI-968 on 2 adult rhesus macaques and 2 adult cynomolgus macaques. PET data were analyzed with both plasma-input-based methods and reference-region-based methods. Whole-body PET images were acquired with 18F-MNI-800 from 2 adult rhesus macaques for radiation dosimetry estimates. Results:18F-MNI-800 and 18F-MNI-968 exhibited regional uptake consistent with D1R distribution. Specificity and selectivity were demonstrated by dose-dependent blocking with the D1 antagonist SCH-23390. 18F-MNI-968 showed a 30% higher specific signal than 18F-MNI-800, with a nondisplaceable binding potential of approximately 0.3 in the cortex and approximately 1.1 in the striatum. Dosimetry radiation exposure was favorable, with an effective dose of about 0.023 mSv/MBq. Conclusion:18F-MNI-968 has significant potential as a D1R agonist PET radiotracer, and further characterization in human subjects is warranted.
Collapse
Affiliation(s)
- Olivier Barret
- Invicro, LLC, New Haven, Connecticut;
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, Fontenay-aux-Roses, France
| | - Lei Zhang
- Medicine Design, Medicinal Chemistry, Pfizer Inc., Cambridge, Massachusetts
| | - David Alagille
- Invicro, LLC, New Haven, Connecticut
- Xing Imaging, New Haven, Connecticut
| | | | | | | | | | | | | | | | - Jianqing Chen
- Digital Medicine and Imaging, Early Clinical Development, Pfizer Inc., Cambridge, Massachusetts; and
| | - Chewah Lee
- Medicine Design, Medicinal Chemistry, Pfizer Inc., Cambridge, Massachusetts
| | | | - David Gray
- Medicine Design, Medicinal Chemistry, Pfizer Inc., Cambridge, Massachusetts
- Cerevel Therapeutics, Boston, Massachusetts
| | - Timothy J McCarthy
- Digital Medicine and Imaging, Early Clinical Development, Pfizer Inc., Cambridge, Massachusetts; and
| | - Gilles Tamagnan
- Invicro, LLC, New Haven, Connecticut
- Xing Imaging, New Haven, Connecticut
| |
Collapse
|
18
|
Synthesis and In Vitro Evaluation of Novel Dopamine Receptor D 2 3,4-dihydroquinolin-2(1 H)-one Derivatives Related to Aripiprazole. Biomolecules 2021; 11:biom11091262. [PMID: 34572475 PMCID: PMC8464836 DOI: 10.3390/biom11091262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 12/28/2022] Open
Abstract
In this pilot study, a series of new 3,4-dihydroquinolin-2(1H)-one derivatives as potential dopamine receptor D2 (D2R) modulators were synthesized and evaluated in vitro. The preliminary structure-activity relationship disclosed that compound 5e exhibited the highest D2R affinity among the newly synthesized compounds. In addition, 5e showed a very low cytotoxic profile and a high probability to cross the blood-brain barrier, which is important considering the observed affinity. However, molecular modelling simulation revealed completely different binding mode of 5e compared to USC-D301, which might be the culprit of the reduced affinity of 5e toward D2R in comparison with USC-D301.
Collapse
|
19
|
Abi-Dargham A, Javitch JA, Slifstein M, Anticevic A, Calkins ME, Cho YT, Fonteneau C, Gil R, Girgis R, Gur RE, Gur RC, Grinband J, Kantrowitz J, Kohler C, Krystal J, Murray J, Ranganathan M, Santamauro N, Van Snellenberg J, Tamayo Z, Wolf D, Gray D, Lieberman J. Dopamine D1R Receptor Stimulation as a Mechanistic Pro-cognitive Target for Schizophrenia. Schizophr Bull 2021; 48:199-210. [PMID: 34423843 PMCID: PMC8781338 DOI: 10.1093/schbul/sbab095] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Decades of research have highlighted the importance of optimal stimulation of cortical dopaminergic receptors, particularly the D1R receptor (D1R), for prefrontal-mediated cognition. This mechanism is particularly relevant to the cognitive deficits in schizophrenia, given the abnormalities in cortical dopamine (DA) neurotransmission and in the expression of D1R. Despite the critical need for D1R-based therapeutics, many factors have complicated their development and prevented this important therapeutic target from being adequately interrogated. Challenges include determination of the optimal level of D1R stimulation needed to improve cognitive performance, especially when D1R expression levels, affinity states, DA levels, and the resulting D1R occupancy by DA, are not clearly known in schizophrenia, and may display great interindividual and intraindividual variability related to cognitive states and other physiological variables. These directly affect the selection of the level of stimulation necessary to correct the underlying neurobiology. The optimal mechanism for stimulation is also unknown and could include partial or full agonism, biased agonism, or positive allosteric modulation. Furthermore, the development of D1R targeting drugs has been complicated by complexities in extrapolating from in vitro affinity determinations to in vivo use. Prior D1R-targeted drugs have been unsuccessful due to poor bioavailability, pharmacokinetics, and insufficient target engagement at tolerable doses. Newer drugs have recently become available, and these must be tested in the context of carefully designed paradigms that address methodological challenges. In this paper, we discuss how a better understanding of these challenges has shaped our proposed experimental design for testing a new D1R/D5R partial agonist, PF-06412562, renamed CVL-562.
Collapse
Affiliation(s)
- Anissa Abi-Dargham
- Department of Psychiatry, Stony Brook Renaissance School of Medicine, Stony Brook, NY, USA,Department of Psychiatry, New York State Psychaitric Institute, Columbia University, New York, NY, USA,Department of Psychiatry, Yale University, New Haven, CT, USA,Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA,Cerevel Therapeutics Research and Development, Boston, MA, USA,To whom correspondence should be addressed; Tel: +(631) 885-0814; e-mail:
| | - Jonathan A Javitch
- Department of Psychiatry, New York State Psychaitric Institute, Columbia University, New York, NY, USA
| | - Mark Slifstein
- Department of Psychiatry, Stony Brook Renaissance School of Medicine, Stony Brook, NY, USA
| | - Alan Anticevic
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Monica E Calkins
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Youngsun T Cho
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Clara Fonteneau
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Roberto Gil
- Department of Psychiatry, Stony Brook Renaissance School of Medicine, Stony Brook, NY, USA
| | - Ragy Girgis
- Department of Psychiatry, New York State Psychaitric Institute, Columbia University, New York, NY, USA
| | - Raquel E Gur
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ruben C Gur
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jack Grinband
- Department of Psychiatry, New York State Psychaitric Institute, Columbia University, New York, NY, USA
| | - Joshua Kantrowitz
- Department of Psychiatry, New York State Psychaitric Institute, Columbia University, New York, NY, USA
| | - Christian Kohler
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John Krystal
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - John Murray
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | | | | | - Jared Van Snellenberg
- Department of Psychiatry, Stony Brook Renaissance School of Medicine, Stony Brook, NY, USA
| | - Zailyn Tamayo
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Daniel Wolf
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - David Gray
- Cerevel Therapeutics Research and Development, Boston, MA, USA
| | - Jeffrey Lieberman
- Department of Psychiatry, New York State Psychaitric Institute, Columbia University, New York, NY, USA
| |
Collapse
|
20
|
Li H, Yang W, Xi J, Wang Z, Lu H, Du Z, Li W, Wu B, Jiang S, Peng Y, liu J, liu L, Zhang X, Feng J. Computational study on new natural compound agonists of dopamine receptor. Aging (Albany NY) 2021; 13:16620-16636. [PMID: 34170848 PMCID: PMC8266345 DOI: 10.18632/aging.203180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 04/29/2021] [Indexed: 04/20/2023]
Abstract
Dopamine receptor, a polypeptide chain composed of 7 hydrophobic transmembrane regions, is a new and vital drug target, especially Dopamine receptor 2(D2). Targeting dopamine receptors, Dopamine receptor agonists are a class of drugs similar in function and structure to dopamine and can directly act on dopamine receptors and activate it. Clinically, Dopamine receptor agonist drugs have achieved significant therapeutic effects on prolactinoma and Parkinson's Disease. In the study, we virtually screened a series of potential effective agonists of Dopamine receptor by computer techniques. Firstly, we used the Molecular Docking (LibDock) step to screen out some molecules that can dock well with the protein. Then, analysis of toxicity prediction and ADME (adsorption, distribution, metabolism and excretion) were carried out. More precise molecular docking (CDOCKER) and 3-Dimensional Quantitative Structure-Activity Relationship Modeling Study(3D-QSAR) pharmacophore generation were implemented to research and explore these compounds' binding mechanism with Dopamine receptor. Last but not least, to assess compound's binding stabilities, we carried out a molecular dynamic analysis. As the results show, two compounds (ZINC000008860530 and ZINC000004096987) from the small molecule database (ZINC database) were potential effective agonists of Dopamine receptor. These two compounds can combine with Dopamine receptor with higher affinity and proved to be no toxic. The cell experiment showed that two compounds could inhibit the proliferation and PRL secretion of MMQ cells (pituitary tumor cells). Thus, this study provided valuable information about Dopamine receptor agonist-based drug discovery. So, this study will benefit patients with prolactinoma and Parkinson's disease a lot.
Collapse
Affiliation(s)
- Hui Li
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Wenzhuo Yang
- Clinical College, Jilin University, Changchun, China
| | - Jianxin Xi
- Clinical College, Jilin University, Changchun, China
| | - Zhenhua Wang
- Clinical College, Jilin University, Changchun, China
| | - Han Lu
- Clinical College, Jilin University, Changchun, China
| | - Zhishan Du
- Clinical College, Jilin University, Changchun, China
| | - Weihang Li
- Department of Orthopaedic Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Bo Wu
- Department of Orthopaedic Surgery, The First Hospital of Jilin University, Changchun, China
| | - Shanshan Jiang
- Chinese Academy of Sciences, Research Group of Evolution and Population Genomics, Institute of Zoology, Beijing, China
| | - Yida Peng
- College of Computer Science and Technology, Jilin University, Changchun, China
| | - Jingyi liu
- Department of Biomedical Informatics, Harvard Medical School, Cambridge, MA 02115, USA
| | - Luwei liu
- Department of Biomedical Informatics, Harvard Medical School, Cambridge, MA 02115, USA
| | - Xiangheng Zhang
- Department of Neurosurgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Jiachun Feng
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
21
|
Desai A, Benner L, Wu R, Gertsik L, Maruff P, Light GA, Uz T, Marek GJ, Zhu T. Phase 1 randomized study on the safety, tolerability, and pharmacodynamic cognitive and electrophysiological effects of a dopamine D 1 receptor positive allosteric modulator in patients with schizophrenia. Neuropsychopharmacology 2021; 46:1145-1151. [PMID: 33203954 PMCID: PMC8182805 DOI: 10.1038/s41386-020-00908-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 01/29/2023]
Abstract
ASP4345, a novel dopamine D1 receptor positive allosteric modulator, is being evaluated for the treatment of cognitive impairment associated with schizophrenia (CIAS). This phase 1 multiple ascending-dose study (NCT02720263) assessed the safety, tolerability, and pharmacodynamics of ASP4345 in patients with schizophrenia/schizoaffective disorder. Pharmacodynamic assessments were Cogstate cognitive tests and electrophysiological biomarkers, including gamma-band power and phase synchronization in response to 40-Hz auditory steady-state stimulation, as well as mismatch negativity (MMN) and P3a event-related potentials. The sample size determination was based on standard practice in assessing safety and tolerability of a new chemical entity. Data were summarized by conversion of this data into effect sizes using descriptive and inferential statistics. A total of 36 randomized patients received ASP4345 (3, 15, 50, and 150 mg; n = 9 each dose) and 12 patients received placebo. Patients in the ASP4345 group experienced 73 treatment-emergent adverse events (TEAEs) and 34 TEAEs were reported for the placebo group. The most common TEAEs were headache and somnolence and nearly all TEAEs were mild in severity. No changes in mood or self-reports of suicidal ideation/behavior were observed. Improvements in performance on cognitive tests were noted, which suggests a potential improvement in psychomotor function and visual attention. Furthermore, positive changes in neurophysiological biomarkers (auditory steady-state response [ASSR] and MMN) suggest improvement in information processing. The findings need to be confirmed in studies with a larger patient population. Nonetheless, the trends in safety and pharmacodynamic data support further clinical development of ASP4345 for the treatment of CIAS.
Collapse
Affiliation(s)
- Amit Desai
- Astellas Pharma Global Development, Inc., Northbrook, IL, USA.
| | - Lauren Benner
- grid.423286.90000 0004 0507 1326Astellas Pharma Global Development, Inc., Northbrook, IL USA
| | - Ruishan Wu
- grid.423286.90000 0004 0507 1326Astellas Pharma Global Development, Inc., Northbrook, IL USA
| | - Lev Gertsik
- grid.490279.1California Clinical Trials Medical Group, Inc., Glendale, CA USA
| | | | - Gregory A. Light
- grid.266100.30000 0001 2107 4242University of California, San Diego, San Diego, CA USA
| | - Tolga Uz
- grid.423286.90000 0004 0507 1326Astellas Pharma Global Development, Inc., Northbrook, IL USA
| | - Gerard J. Marek
- grid.423286.90000 0004 0507 1326Astellas Pharma Global Development, Inc., Northbrook, IL USA
| | - Tong Zhu
- grid.423286.90000 0004 0507 1326Astellas Pharma Global Development, Inc., Northbrook, IL USA
| |
Collapse
|
22
|
Yang Y, Lee SM, Imamura F, Gowda K, Amin S, Mailman RB. D1 dopamine receptors intrinsic activity and functional selectivity affect working memory in prefrontal cortex. Mol Psychiatry 2021; 26:645-655. [PMID: 30532019 PMCID: PMC9710464 DOI: 10.1038/s41380-018-0312-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/14/2018] [Accepted: 11/15/2018] [Indexed: 01/29/2023]
Abstract
Dopamine D1 agonists enhance cognition, but the role of different signaling pathways (e.g., cAMP or β-arrestin) is unclear. The current study compared 2-methyldihydrexidine and CY208,243, drugs with different degrees of both D1 intrinsic activity and functional selectivity. 2-Methyldihydrexidine is a full agonist at adenylate cyclase and a super-agonist at β-arrestin recruitment, whereas CY208,243 has relatively high intrinsic activity at adenylate cyclase, but much lower at β-arrestin recruitment. Both drugs decreased, albeit in dissimilar ways, the firing rate of neurons in prefrontal cortex sensitive to outcome-related aspects of a working memory task. 2-Methyldihydrexidine was superior to CY208,243 in prospectively enhancing similarity and retrospectively distinguishing differences between correct and error outcomes based on firing rates, enhancing the micro-network measured by oscillations of spikes and local field potentials, and improving behavioral performance. This study is the first to examine how ligand signaling bias affects both behavioral and neurophysiological endpoints in the intact animal. The data show that maximal enhancement of cognition via D1 activation occurred with a pattern of signaling that involved full unbiased intrinsic activity, or agonists with high β-arrestin activity.
Collapse
Affiliation(s)
- Yang Yang
- Department of Pharmacology, Penn State University College of Medicine, Hershey, PA, 17033, USA.
| | - Sang-Min Lee
- Department of Pharmacology, Penn State University College of Medicine, Hershey PA 17033
| | - Fumiaki Imamura
- Department of Pharmacology, Penn State University College of Medicine, Hershey PA 17033
| | - Krishne Gowda
- Department of Pharmacology, Penn State University College of Medicine, Hershey PA 17033
| | - Shantu Amin
- Department of Pharmacology, Penn State University College of Medicine, Hershey PA 17033
| | - Richard B. Mailman
- Department of Neurology, Penn State University College of Medicine, Hershey PA 17033.,Department of Pharmacology, Penn State University College of Medicine, Hershey PA 17033.,Correspondence to: ,
| |
Collapse
|
23
|
Hatzipantelis C, Langiu M, Vandekolk TH, Pierce TL, Nithianantharajah J, Stewart GD, Langmead CJ. Translation-Focused Approaches to GPCR Drug Discovery for Cognitive Impairments Associated with Schizophrenia. ACS Pharmacol Transl Sci 2020; 3:1042-1062. [PMID: 33344888 PMCID: PMC7737210 DOI: 10.1021/acsptsci.0c00117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Indexed: 01/07/2023]
Abstract
There are no effective therapeutics for cognitive impairments associated with schizophrenia (CIAS), which includes deficits in executive functions (working memory and cognitive flexibility) and episodic memory. Compounds that have entered clinical trials are inadequate in terms of efficacy and/or tolerability, highlighting a clear translational bottleneck and a need for a cohesive preclinical drug development strategy. In this review we propose hippocampal-prefrontal-cortical (HPC-PFC) circuitry underlying CIAS-relevant cognitive processes across mammalian species as a target source to guide the translation-focused discovery and development of novel, procognitive agents. We highlight several G protein-coupled receptors (GPCRs) enriched within HPC-PFC circuitry as therapeutic targets of interest, including noncanonical approaches (biased agonism and allosteric modulation) to conventional clinical targets, such as dopamine and muscarinic acetylcholine receptors, along with prospective novel targets, including the orphan receptors GPR52 and GPR139. We also describe the translational limitations of popular preclinical cognition tests and suggest touchscreen-based assays that probe cognitive functions reliant on HPC-PFC circuitry and reflect tests used in the clinic, as tests of greater translational relevance. Combining pharmacological and behavioral testing strategies based in HPC-PFC circuit function creates a cohesive, translation-focused approach to preclinical drug development that may improve the translational bottleneck currently hindering the development of treatments for CIAS.
Collapse
Affiliation(s)
- Cassandra
J. Hatzipantelis
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Monica Langiu
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Teresa H. Vandekolk
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Tracie L. Pierce
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Jess Nithianantharajah
- Florey
Institute of Neuroscience
and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Gregory D. Stewart
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Christopher J. Langmead
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| |
Collapse
|
24
|
Dopamine, Cognitive Impairments and Second-Generation Antipsychotics: From Mechanistic Advances to More Personalized Treatments. Pharmaceuticals (Basel) 2020; 13:ph13110365. [PMID: 33167370 PMCID: PMC7694365 DOI: 10.3390/ph13110365] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 10/31/2020] [Accepted: 11/03/2020] [Indexed: 12/17/2022] Open
Abstract
The pharmacological treatment of cognitive impairments associated with schizophrenia is still a major unmet clinical need. Indeed, treatments with available antipsychotics generate highly variable cognitive responses among patients with schizophrenia. This has led to the general assumption that antipsychotics are ineffective on cognitive impairment, although personalized medicine and drug repurposing approaches might scale down this clinical issue. In this scenario, evidence suggests that cognitive improvement exerted by old and new atypical antipsychotics depends on dopaminergic mechanisms. Moreover, the newer antipsychotics brexpiprazole and cariprazine, which might have superior clinical efficacy on cognitive deficits over older antipsychotics, mainly target dopamine receptors. It is thus reasonable to assume that despite more than 50 years of elusive efforts to develop novel non-dopaminergic antipsychotics, dopamine receptors remain the most attractive and promising pharmacological targets in this field. In the present review, we discuss preclinical and clinical findings showing dopaminergic mechanisms as key players in the cognitive improvement induced by both atypical antipsychotics and potential antipsychotics. We also emphasize the concept that these mechanistic advances, which help to understand the heterogeneity of cognitive responses to antipsychotics, may properly guide treatment decisions and address the unmet medical need for the management of cognitive impairment associated with schizophrenia.
Collapse
|
25
|
Haak AJ, Kostallari E, Sicard D, Ligresti G, Choi KM, Caporarello N, Jones DL, Tan Q, Meridew J, Diaz Espinosa AM, Aravamudhan A, Maiers JL, Britt RD, Roden AC, Pabelick CM, Prakash YS, Nouraie SM, Li X, Zhang Y, Kass DJ, Lagares D, Tager AM, Varelas X, Shah VH, Tschumperlin DJ. Selective YAP/TAZ inhibition in fibroblasts via dopamine receptor D1 agonism reverses fibrosis. Sci Transl Med 2020; 11:11/516/eaau6296. [PMID: 31666402 DOI: 10.1126/scitranslmed.aau6296] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 03/01/2019] [Accepted: 09/04/2019] [Indexed: 01/18/2023]
Abstract
Tissue fibrosis is characterized by uncontrolled deposition and diminished clearance of fibrous connective tissue proteins, ultimately leading to organ scarring. Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) have recently emerged as pivotal drivers of mesenchymal cell activation in human fibrosis. Therapeutic strategies inhibiting YAP and TAZ have been hindered by the critical role that these proteins play in regeneration and homeostasis in different cell types. Here, we find that the Gαs-coupled dopamine receptor D1 (DRD1) is preferentially expressed in lung and liver mesenchymal cells relative to other resident cells of these organs. Agonism of DRD1 selectively inhibits YAP/TAZ function in mesenchymal cells and shifts their phenotype from profibrotic to fibrosis resolving, reversing in vitro extracellular matrix stiffening and in vivo tissue fibrosis in mouse models. Aromatic l-amino acid decarboxylase [DOPA decarboxylase (DDC)], the enzyme responsible for the final step in biosynthesis of dopamine, is decreased in the lungs of subjects with idiopathic pulmonary fibrosis, and its expression inversely correlates with disease severity, consistent with an endogenous protective role for dopamine signaling that is lost in pulmonary fibrosis. Together, these findings establish a pharmacologically tractable and cell-selective approach to targeting YAP/TAZ via DRD1 that reverses fibrosis in mice.
Collapse
Affiliation(s)
- Andrew J Haak
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Enis Kostallari
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Delphine Sicard
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Giovanni Ligresti
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Kyoung Moo Choi
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Nunzia Caporarello
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Dakota L Jones
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Qi Tan
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Jeffrey Meridew
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Ana M Diaz Espinosa
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Aja Aravamudhan
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Jessica L Maiers
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Rodney D Britt
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA.,Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester MN 55905, USA.,Abigail Wexner Research Institute at Nationwide Children's Hospital and Department of Pediatrics, Ohio State University, Columbus, OH 43215, USA
| | - Anja C Roden
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester MN 55905, USA
| | - Christina M Pabelick
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA.,Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester MN 55905, USA
| | - Y S Prakash
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA.,Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester MN 55905, USA
| | - Seyed Mehdi Nouraie
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease and Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Xiaoyun Li
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease and Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Yingze Zhang
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease and Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Daniel J Kass
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease and Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - David Lagares
- Division of Pulmonary and Critical Care Medicine, Fibrosis Research Center, and Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Andrew M Tager
- Division of Pulmonary and Critical Care Medicine, Fibrosis Research Center, and Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Xaralabos Varelas
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Vijay H Shah
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Daniel J Tschumperlin
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
26
|
Hatzipantelis CJ, Lu Y, Spark DL, Langmead CJ, Stewart GD. β-Arrestin-2-Dependent Mechanism of GPR52 Signaling in Frontal Cortical Neurons. ACS Chem Neurosci 2020; 11:2077-2084. [PMID: 32519845 DOI: 10.1021/acschemneuro.0c00199] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The orphan Gαs-coupled receptor GPR52 is expressed exclusively in the brain, predominantly in circuitry relating to symptoms of neuropsychiatric and cognitive disorders such as schizophrenia. While GPR52 agonists have displayed antipsychotic and procognitive efficacy in murine models, there remains limited evidence delineating the molecular mechanisms of these effects. Indeed, previous studies have solely reported canonical cAMP signaling and CREB phosphorylation downstream of GPR52 activation. In the present study, we demonstrated that the synthetic GPR52 agonist, 3-BTBZ, equipotently induces cAMP accumulation, ERK1/2 phosphorylation, and β-arrestin-1 and -2 recruitment in transfected HEK293T cells. In cultured frontal cortical neurons, however, 3-BTBZ-induced ERK1/2 phosphorylation was significantly more potent than cAMP signaling, with a more prolonged signaling profile than that in HEK293T cells. Furthermore, knock down of β-arrestin-2 in frontal cortical neurons abolished 3-BTBZ-induced ERK1/2 phosphorylation, but not cAMP accumulation. These results suggest a β-arrestin-2-dependent mechanism for GPR52-mediated ERK1/2 signaling, which may link to cognitive function in vivo. Finally, these findings highlight the context-dependence of GPCR signaling in recombinant cells and neurons, offering new insights into translationally relevant GPR52 signaling mechanisms.
Collapse
Affiliation(s)
- Cassandra J. Hatzipantelis
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Yao Lu
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Daisy L. Spark
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Christopher J. Langmead
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Gregory D. Stewart
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| |
Collapse
|
27
|
Kozak R, Kiss T, Dlugolenski K, Johnson DE, Gorczyca RR, Kuszpit K, Harvey BD, Stolyar P, Sukoff Rizzo SJ, Hoffmann WE, Volfson D, Hajós M, Davoren JE, Abbott AL, Williams GV, Castner SA, Gray DL. Characterization of PF-6142, a Novel, Non-Catecholamine Dopamine Receptor D1 Agonist, in Murine and Nonhuman Primate Models of Dopaminergic Activation. Front Pharmacol 2020; 11:1005. [PMID: 32733245 PMCID: PMC7358525 DOI: 10.3389/fphar.2020.01005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/22/2020] [Indexed: 12/16/2022] Open
Abstract
Selective activation of dopamine D1 receptors remains a promising pro-cognitive therapeutic strategy awaiting robust clinical investigation. PF-6142 is a key example from a recently disclosed novel series of non-catechol agonists and partial agonists of the dopamine D1/5 receptors (D1R) that exhibit pharmacokinetic (PK) properties suitable for oral delivery. Given their reported potential for functionally biased signaling compared to known catechol-based selective agonists, and the promising rodent PK profile of PF-6142, we utilized relevant in vivo assays in male rodents and male and female non-human primates (NHP) to evaluate the pharmacology of this new series. Studies in rodents showed that PF-6142 increased locomotor activity and prefrontal cortex acetylcholine release, increased time spent in wakefulness, and desynchronized the EEG, like known D1R agonists. D1R selectivity of PF-6142 was supported by lack of effect in D1R knock-out mice and blocked response in the presence of the D1R antagonist SCH-23390. Further, PF-6142 improved performance in rodent models of NMDA receptor antagonist-induced cognitive dysfunction, such as MK-801-disrupted paired-pulse facilitation, and ketamine-disrupted working memory performance in the radial arm maze. Similarly, PF-6142 reversed ketamine-induced deficits in NHP performing the spatial delayed recognition task. Of importance, PF-6142 did not alter the efficacy of risperidone in assays predictive of antipsychotic-like effect in rodents including pre-pulse inhibition and conditioned avoidance responding. These data support the continued development of non-catechol based D1R agonists for the treatment of cognitive impairment associated with brain disorders including schizophrenia.
Collapse
Affiliation(s)
- Rouba Kozak
- Global Research and Development, Pfizer Inc., Groton, CT, United States
| | - Tamás Kiss
- Global Research and Development, Pfizer Inc., Groton, CT, United States
| | - Keith Dlugolenski
- Global Research and Development, Pfizer Inc., Groton, CT, United States
| | - David E Johnson
- Global Research and Development, Pfizer Inc., Groton, CT, United States
| | | | - Kyle Kuszpit
- Global Research and Development, Pfizer Inc., Groton, CT, United States
| | - Brian D Harvey
- Global Research and Development, Pfizer Inc., Groton, CT, United States
| | - Polina Stolyar
- Global Research and Development, Pfizer Inc., Groton, CT, United States
| | | | | | - Dmitri Volfson
- Global Research and Development, Pfizer Inc., Groton, CT, United States
| | - Mihaly Hajós
- Global Research and Development, Pfizer Inc., Groton, CT, United States.,Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, United States
| | | | - Amanda L Abbott
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, United States
| | - Graham V Williams
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, United States
| | - Stacy A Castner
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, United States
| | - David L Gray
- Global Research and Development, Pfizer Inc., Groton, CT, United States
| |
Collapse
|
28
|
Desai A, Benner L, Wu R, Gertsik L, Uz T, Marek GJ, Zhu T. Pharmacokinetics of ASP4345 from Single Ascending-Dose and Multiple Ascending-Dose Phase I Studies. Clin Pharmacokinet 2020; 60:79-88. [PMID: 32533536 PMCID: PMC7808976 DOI: 10.1007/s40262-020-00911-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Background Cognitive impairment is a core feature of schizophrenia. While first- and second-generation antipsychotic drugs treat psychotic exacerbations, no treatment is approved for the cognitive dysfunction. We have identified ASP4345, a positive allosteric modulator of the dopamine type 1 (D1) receptor that selectively binds to, and enhances the activity of, D1 receptors. ASP4345 has the potential to be an effective and well-tolerated treatment option for cognitive impairment associated with schizophrenia. Objective The objective of this study was to determine the pharmacokinetics of ASP4345 in two phase I single ascending-dose and multiple ascending-dose studies. Methods Both phase I studies were randomized, double blind, and placebo controlled. The single dose-ascending study assessed pharmacokinetics of single oral doses of 3–900 mg of ASP4345 or placebo in the fasted state in healthy adult volunteers. This study also assessed cerebrospinal fluid pharmacokinetics, as well as the effects of food on pharmacokinetic parameters. The multiple ascending-dose study (NCT02720263) assessed the pharmacokinetics of multiple oral doses of 3–150 mg of ASP4345 in patients with schizophrenia or schizoaffective disorder receiving stable antipsychotic drug treatment. The pharmacokinetic data from both studies were summarized using descriptive statistics. Results The plasma concentration–time profile in both studies showed a rapid increase in concentrations of ASP4345. The median time to maximum concentration range was 1.00–2.26 h in the single ascending-dose study in the fasted state and 1.25–3.02 h in the multiple ascending-dose study at steady state. There were less than dose-proportional increases in maximum concentration and area under the curve in the single ascending-dose study, where doses had a range from 3 to 900 mg, and in the multiple ascending-dose study in patients with stabilized schizophrenia or schizoaffective disorder, where doses had a range from 3 to 150 mg. The mean terminal elimination half-life was dose independent and had a range from 9.12 to 14.3 h in the single ascending-dose study and from 11.1 to 26.8 h in the multiple ascending-dose study. Additionally, in the single ascending-dose study, absorption of 300 mg of ASP4345 was slightly delayed when administered in the fed state compared with the fasted state; median time to maximum concentration was 1.5 h under the fasting state and 4.0 h under fed states. All other pharmacokinetic parameters were comparable for both conditions. ASP4345 appeared in the cerebrospinal fluid with some delay; time to maximum concentration range was from 2.48 to 7.98 h in cerebrospinal fluid compared with 0.75 to 1.03 h in plasma (median cerebrospinal fluid/plasma = 0.188). The ratio of cerebrospinal fluid to total plasma for area under the curve from 0 to 24 h (0.157–0.573%) and maximum concentration (0.0899–0.311%) and the ratio of cerebrospinal fluid to unbound plasma for maximum concentration (25.0–86.4%) confirm the distribution of ASP4345 into the brain. Conclusions The pharmacokinetics of ASP4345 suggest that single daily dosing is appropriate for ASP4345. Furthermore, the concentration of ASP4345 in cerebrospinal fluid compared to free drug concentrations in plasma provides evidence of penetration of ASP4345 into the brain.
Collapse
Affiliation(s)
- Amit Desai
- Astellas Pharma Global Development, Inc., 1 Astellas Way, Northbrook, IL, 60062, USA.
| | - Lauren Benner
- Astellas Pharma Global Development, Inc., 1 Astellas Way, Northbrook, IL, 60062, USA
| | - Ruishan Wu
- Astellas Pharma Global Development, Inc., 1 Astellas Way, Northbrook, IL, 60062, USA
| | - Lev Gertsik
- California Clinical Trials Medical Group, Inc., Glendale, CA, USA
| | - Tolga Uz
- Astellas Pharma Global Development, Inc., 1 Astellas Way, Northbrook, IL, 60062, USA
| | - Gerard J Marek
- Astellas Pharma Global Development, Inc., 1 Astellas Way, Northbrook, IL, 60062, USA
| | - Tong Zhu
- Astellas Pharma Global Development, Inc., 1 Astellas Way, Northbrook, IL, 60062, USA
| |
Collapse
|
29
|
Jones MT, Strassnig MT, Harvey PD. Emerging 5-HT receptor antagonists for the treatment of Schizophrenia. Expert Opin Emerg Drugs 2020; 25:189-200. [PMID: 32449404 DOI: 10.1080/14728214.2020.1773792] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION While antipsychotics have been generally successful in treating psychosis in schizophrenia, there is a major treatment gap for negative symptoms and cognitive deficits. Given that these aspects of the disease contribute to poor functional outcomes independently of positive symptoms, treatments would have profound implications for quality of life. The 5-HT2A- receptor has been considered a potential target for interventions aimed at negative and cognitive symptoms and multiple antagonists and inverse agonists of this receptor have been tested. AREAS COVERED Ritanserin and volinanserin, are historically important compounds in this area, while pimavanserin, roluperidone, and lumateperone are either newly approved, in late stages of development, or currently being tested for efficacy in schizophrenia-related features. The focus will be on their efficacy in the treatment of negative symptoms, with a limited secondary discussion of cognition. EXPERT OPINION In addition to their efficacy in treating negative symptoms and cognition, these compounds may also have a role in modulating antipsychotic-induced dopamine super-sensitivity and preventing relapse. They may also show efficacy in treating patients with milder symptoms such as patients with schizotypal personality disorder and attenuated psychosis syndrome. Their utility may also expand outside the spectrum of schizophrenia to encompass Parkinson's Disease psychosis, major depression, bipolar depression, and dementia-associated apathy.
Collapse
Affiliation(s)
| | | | - Philip D Harvey
- Miller School of Medicine, University of Miami , Miami, FL, USA
| |
Collapse
|
30
|
Dopaminergic D 1 Receptor Stimulation Affects Effort and Risk Preferences. Biol Psychiatry 2020; 87:678-685. [PMID: 31668477 DOI: 10.1016/j.biopsych.2019.09.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 09/02/2019] [Accepted: 09/03/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Activation of D1 receptors has been related to successful goal-directed behavior, but it remains unclear whether D1 receptor activation causally tips the balance of weighing costs and benefits in humans. Here, we tested the impact of pharmacologically stimulated D1 receptors on sensitivity to risk, delay, and effort costs in economic choice and investigated whether D1 receptor stimulation would bias preferences toward options with increased costs in a cost-specific manner. METHODS In a randomized, double-blind, placebo-controlled, parallel-group phase 1 study, 120 healthy young volunteers received either placebo or 1 of 3 doses (6 mg, 15 mg, or 30 mg) of a novel, selective D1 agonist (PF-06412562). After drug administration, participants performed decision tasks measuring their preferences for risky, delayed, and effortful outcomes. RESULTS Higher doses of the D1 agonist increased the willingness to exert physical effort for reward as well as reduced the preference for risky outcomes. We observed no effects on preferences for delayed rewards. CONCLUSIONS The current results provide evidence that D1 receptor stimulation causally affects core aspects of cost-benefit decision making in humans.
Collapse
|
31
|
Amelioration of cognitive impairments induced by GABA hypofunction in the male rat prefrontal cortex by direct and indirect dopamine D1 agonists SKF-81297 and d-Govadine. Neuropharmacology 2020; 162:107844. [DOI: 10.1016/j.neuropharm.2019.107844] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/02/2019] [Accepted: 11/04/2019] [Indexed: 11/21/2022]
|
32
|
Shuto T, Kuroiwa M, Sotogaku N, Kawahara Y, Oh YS, Jang JH, Shin CH, Ohnishi YN, Hanada Y, Miyakawa T, Kim Y, Greengard P, Nishi A. Obligatory roles of dopamine D1 receptors in the dentate gyrus in antidepressant actions of a selective serotonin reuptake inhibitor, fluoxetine. Mol Psychiatry 2020; 25:1229-1244. [PMID: 30531938 PMCID: PMC7244404 DOI: 10.1038/s41380-018-0316-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 10/10/2018] [Accepted: 11/12/2018] [Indexed: 12/28/2022]
Abstract
Depression is a leading cause of disability. Current pharmacological treatment of depression is insufficient, and development of improved treatments especially for treatment-resistant depression is desired. Understanding the neurobiology of antidepressant actions may lead to development of improved therapeutic approaches. Here, we demonstrate that dopamine D1 receptors in the dentate gyrus act as a pivotal mediator of antidepressant actions in mice. Chronic administration of a selective serotonin reuptake inhibitor (SSRI), fluoxetine, increases D1 receptor expression in mature granule cells in the dentate gyrus. The increased D1 receptor signaling, in turn, contributes to the actions of chronic fluoxetine treatment, such as suppression of acute stress-evoked serotonin release, stimulation of adult neurogenesis and behavioral improvement. Importantly, under severely stressed conditions, chronic administration of a D1 receptor agonist in conjunction with fluoxetine restores the efficacy of fluoxetine actions on D1 receptor expression and behavioral responses. Thus, our results suggest that stimulation of D1 receptors in the dentate gyrus is a potential adjunctive approach to improve therapeutic efficacy of SSRI antidepressants.
Collapse
Affiliation(s)
- Takahide Shuto
- 0000 0001 0706 0776grid.410781.bDepartment of Pharmacology, Kurume University School of Medicine, Kurume, Fukuoka 830-0011 Japan
| | - Mahomi Kuroiwa
- 0000 0001 0706 0776grid.410781.bDepartment of Pharmacology, Kurume University School of Medicine, Kurume, Fukuoka 830-0011 Japan
| | - Naoki Sotogaku
- 0000 0001 0706 0776grid.410781.bDepartment of Pharmacology, Kurume University School of Medicine, Kurume, Fukuoka 830-0011 Japan
| | - Yukie Kawahara
- 0000 0001 0706 0776grid.410781.bDepartment of Pharmacology, Kurume University School of Medicine, Kurume, Fukuoka 830-0011 Japan
| | - Yong-Seok Oh
- 0000 0001 2166 1519grid.134907.8Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY 10065 USA ,0000 0004 0438 6721grid.417736.0Department of Brain-Cognitive Sciences, Daegu-Gyeongbuk Institute of Science and Technology (DGIST), Hyeonpung-myeon, Dalseong-gun, Daegu 42988, Republic of Korea
| | - Jin-Hyeok Jang
- 0000 0004 0438 6721grid.417736.0Department of Brain-Cognitive Sciences, Daegu-Gyeongbuk Institute of Science and Technology (DGIST), Hyeonpung-myeon, Dalseong-gun, Daegu 42988, Republic of Korea
| | - Chang-Hoon Shin
- 0000 0004 0438 6721grid.417736.0Department of Brain-Cognitive Sciences, Daegu-Gyeongbuk Institute of Science and Technology (DGIST), Hyeonpung-myeon, Dalseong-gun, Daegu 42988, Republic of Korea
| | - Yoshinori N. Ohnishi
- 0000 0001 0706 0776grid.410781.bDepartment of Pharmacology, Kurume University School of Medicine, Kurume, Fukuoka 830-0011 Japan
| | - Yuuki Hanada
- 0000 0001 0706 0776grid.410781.bDepartment of Pharmacology, Kurume University School of Medicine, Kurume, Fukuoka 830-0011 Japan
| | - Tsuyoshi Miyakawa
- 0000 0004 1761 798Xgrid.256115.4Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192 Japan
| | - Yong Kim
- 0000 0001 2166 1519grid.134907.8Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY 10065 USA
| | - Paul Greengard
- 0000 0001 2166 1519grid.134907.8Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY 10065 USA
| | - Akinori Nishi
- Department of Pharmacology, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan. .,Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY, 10065, USA.
| |
Collapse
|
33
|
Beauséjour P, Auclair F, Daghfous G, Ngovandan C, Veilleux D, Zielinski B, Dubuc R. Dopaminergic modulation of olfactory-evoked motor output in sea lampreys (Petromyzon marinus L.). J Comp Neurol 2020; 528:114-134. [PMID: 31286519 PMCID: PMC6899967 DOI: 10.1002/cne.24743] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/25/2019] [Accepted: 07/01/2019] [Indexed: 12/15/2022]
Abstract
Detection of chemical cues is important to guide locomotion in association with feeding and sexual behavior. Two neural pathways responsible for odor-evoked locomotion have been characterized in the sea lamprey (Petromyzon marinus L.), a basal vertebrate. There is a medial pathway originating in the medial olfactory bulb (OB) and a lateral pathway originating from the rest of the OB. These olfactomotor pathways are present throughout the life cycle of lampreys, but olfactory-driven behaviors differ according to the developmental stage. Among possible mechanisms, dopaminergic (DA) modulation in the OB might explain the behavioral changes. Here, we examined DA modulation of olfactory transmission in lampreys. Immunofluorescence against DA revealed immunoreactivity in the OB that was denser in the medial part (medOB), where processes were observed close to primary olfactory afferents and projection neurons. Dopaminergic neurons labeled by tracer injections in the medOB were located in the OB, the posterior tuberculum, and the dorsal hypothalamic nucleus, suggesting the presence of both intrinsic and extrinsic DA innervation. Electrical stimulation of the olfactory nerve in an in vitro whole-brain preparation elicited synaptic responses in reticulospinal cells that were modulated by DA. Local injection of DA agonists in the medOB decreased the reticulospinal cell responses whereas the D2 receptor antagonist raclopride increased the response amplitude. These observations suggest that DA in the medOB could modulate odor-evoked locomotion. Altogether, these results show the presence of a DA innervation within the medOB that may play a role in modulating olfactory inputs to the motor command system of lampreys.
Collapse
Affiliation(s)
| | - François Auclair
- Département de neurosciencesUniversité de MontréalMontréalQuébecCanada
| | - Gheylen Daghfous
- Département de neurosciencesUniversité de MontréalMontréalQuébecCanada
- Département des sciences de l'activité physiqueUniversité du Québec à MontréalMontréalQuébecCanada
| | | | - Danielle Veilleux
- Département de neurosciencesUniversité de MontréalMontréalQuébecCanada
| | - Barbara Zielinski
- Department of Biological SciencesUniversity of WindsorWindsorOntarioCanada
| | - Réjean Dubuc
- Département de neurosciencesUniversité de MontréalMontréalQuébecCanada
- Département des sciences de l'activité physiqueUniversité du Québec à MontréalMontréalQuébecCanada
| |
Collapse
|
34
|
Huang X, Lewis MM, Van Scoy LJ, De Jesus S, Eslinger PJ, Arnold AC, Miller AJ, Fernandez-Mendoza J, Snyder B, Harrington W, Kong L, Wang X, Sun D, Delnomdedieu M, Duvvuri S, Mahoney SE, Gray D, Mailman R. The D1/D5 Dopamine Partial Agonist PF-06412562 in Advanced-Stage Parkinson's Disease: A Feasibility Study. JOURNAL OF PARKINSON'S DISEASE 2020; 10:1515-1527. [PMID: 32986682 PMCID: PMC8640973 DOI: 10.3233/jpd-202188] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Current drug treatments have little efficacy in advanced-to-end-stage Parkinson's disease (advPD), yet there are no reports of interventional trials in advPD. D1 dopamine agonists have the potential to provide benefit. OBJECTIVE To determine the feasibility and safety of the selective D1/D5 dopamine partial agonist PF 06412562 in advPD. METHODS A two-week, randomized, double blind, crossover phase Ib study in advPD patients compared standard-of-care (SoC) carbidopa/levodopa with PF 06412562. Each week, there was a Day 1 baseline evaluation with overnight levodopa washout, then treatment on Days 2 and 3 with either SoC or PF-06412562 (split dose 25 + 20 mg), followed by discharge on Day 4. Primary endpoints were safety and tolerability. Secondary endpoints were global clinical impression of change (GCI-C) rated by clinicians and caregivers. RESULTS Eight advPD patients and their caregivers consented to participate and six were randomized (average disease duration: 22 y). None withdrew voluntarily. One participant with baseline Day 1 dehydration, pre-renal kidney injury, and autonomic dysfunction experienced symptomatic and serious hypotension after receiving PF-06412562 in Week 1 and was discontinued from the study. All other adverse events were rated mild (PF-06412562: n = 1, SoC: n = 0), moderate (PF-06412562: n = 1, SoC: n = 1), or severe but non-serious (PF-06412562: n = 3, SoC: n = 2). No clinically meaningful laboratory changes were observed. Among the five participants who completed the study, GCI-C favored PF-06412562 in two per clinicians' and four participants per caregivers' rating. CONCLUSION PF-06412562 was tolerated in advPD patients. This study provides the feasibility for future safety and efficacy studies in this population with unmet needs.
Collapse
Affiliation(s)
- Xuemei Huang
- Department of Neurology, Penn State Hershey Medical Center, Hershey, PA, USA Penn State College of Medicine, Hershey, PA 17033 USA
- Department of Pharmacology, Penn State Hershey Medical Center, Hershey, PA, USA Penn State College of Medicine, Hershey, PA 17033 USA
- Department of Radiology, Penn State Hershey Medical Center, Hershey, PA, USA Penn State College of Medicine, Hershey, PA 17033 USA
- Department of Neurosurgery, Penn State Hershey Medical Center, Hershey, PA, USA Penn State College of Medicine, Hershey, PA 17033 USA
- Department of Kinesiology, Penn State Hershey Medical Center, Hershey, PA, USA Penn State College of Medicine, Hershey, PA 17033 USA
- Translational Brain Research Center, Penn State Hershey Medical Center, Hershey, PA, USA Penn State College of Medicine, Hershey, PA 17033 USA
| | - Mechelle M. Lewis
- Department of Neurology, Penn State Hershey Medical Center, Hershey, PA, USA Penn State College of Medicine, Hershey, PA 17033 USA
- Department of Pharmacology, Penn State Hershey Medical Center, Hershey, PA, USA Penn State College of Medicine, Hershey, PA 17033 USA
- Translational Brain Research Center, Penn State Hershey Medical Center, Hershey, PA, USA Penn State College of Medicine, Hershey, PA 17033 USA
| | - Lauren Jodi Van Scoy
- Department of Medicine, Penn State Hershey Medical Center, Hershey, PA, USA Penn State College of Medicine, Hershey, PA 17033 USA
- Department of Humanities, Penn State Hershey Medical Center, Hershey, PA, USA Penn State College of Medicine, Hershey, PA 17033 USA
- Department of Psychiatry, Penn State Hershey Medical Center, Hershey, PA, USA Penn State College of Medicine, Hershey, PA 17033 USA
| | - Sol De Jesus
- Department of Neurology, Penn State Hershey Medical Center, Hershey, PA, USA Penn State College of Medicine, Hershey, PA 17033 USA
- Translational Brain Research Center, Penn State Hershey Medical Center, Hershey, PA, USA Penn State College of Medicine, Hershey, PA 17033 USA
| | - Paul J. Eslinger
- Department of Neurology, Penn State Hershey Medical Center, Hershey, PA, USA Penn State College of Medicine, Hershey, PA 17033 USA
- Department of Radiology, Penn State Hershey Medical Center, Hershey, PA, USA Penn State College of Medicine, Hershey, PA 17033 USA
- Department of Medicine, Penn State Hershey Medical Center, Hershey, PA, USA Penn State College of Medicine, Hershey, PA 17033 USA
- Department of Neural and Behavioral Sciences, Penn State Hershey Medical Center, Hershey, PA, USA Penn State College of Medicine, Hershey, PA 17033 USA
- Department of Public Health Sciences, Penn State Hershey Medical Center, Hershey, PA, USA Penn State College of Medicine, Hershey, PA 17033 USA
- Translational Brain Research Center, Penn State Hershey Medical Center, Hershey, PA, USA Penn State College of Medicine, Hershey, PA 17033 USA
| | - Amy C. Arnold
- Department of Neural and Behavioral Sciences, Penn State Hershey Medical Center, Hershey, PA, USA Penn State College of Medicine, Hershey, PA 17033 USA
| | - Amanda J. Miller
- Department of Neural and Behavioral Sciences, Penn State Hershey Medical Center, Hershey, PA, USA Penn State College of Medicine, Hershey, PA 17033 USA
| | - Julio Fernandez-Mendoza
- Department of Neural and Behavioral Sciences, Penn State Hershey Medical Center, Hershey, PA, USA Penn State College of Medicine, Hershey, PA 17033 USA
| | - Bethany Snyder
- Department of Neurology, Penn State Hershey Medical Center, Hershey, PA, USA Penn State College of Medicine, Hershey, PA 17033 USA
| | - William Harrington
- Department of Neurology, Penn State Hershey Medical Center, Hershey, PA, USA Penn State College of Medicine, Hershey, PA 17033 USA
| | - Lan Kong
- Department of Public Health Sciences, Penn State Hershey Medical Center, Hershey, PA, USA Penn State College of Medicine, Hershey, PA 17033 USA
| | - Xi Wang
- Department of Public Health Sciences, Penn State Hershey Medical Center, Hershey, PA, USA Penn State College of Medicine, Hershey, PA 17033 USA
| | - Dongxiao Sun
- Department of Pharmacology, Penn State Hershey Medical Center, Hershey, PA, USA Penn State College of Medicine, Hershey, PA 17033 USA
| | | | | | | | - David Gray
- Cerevel Neurosciences LLC., Boston, MA, 02116 USA
| | - Richard Mailman
- Department of Neurology, Penn State Hershey Medical Center, Hershey, PA, USA Penn State College of Medicine, Hershey, PA 17033 USA
- Department of Pharmacology, Penn State Hershey Medical Center, Hershey, PA, USA Penn State College of Medicine, Hershey, PA 17033 USA
- Translational Brain Research Center, Penn State Hershey Medical Center, Hershey, PA, USA Penn State College of Medicine, Hershey, PA 17033 USA
| |
Collapse
|
35
|
Felsing DE, Jain MK, Allen JA. Advances in Dopamine D1 Receptor Ligands for Neurotherapeutics. Curr Top Med Chem 2019; 19:1365-1380. [PMID: 31553283 DOI: 10.2174/1568026619666190712210903] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 04/04/2019] [Accepted: 04/07/2019] [Indexed: 12/15/2022]
Abstract
The dopamine D1 receptor (D1R) is essential for neurotransmission in various brain pathways where it modulates key functions including voluntary movement, memory, attention and reward. Not surprisingly, the D1R has been validated as a promising drug target for over 40 years and selective activation of this receptor may provide novel neurotherapeutics for neurodegenerative and neuropsychiatric disorders. Several pharmacokinetic challenges with previously identified small molecule D1R agonists have been recently overcome with the discovery and advancement of new ligands, including drug-like non-catechol D1R agonists and positive allosteric modulators. From this, several novel molecules and mechanisms have recently entered clinical studies. Here we review the major classes of D1R selective ligands including antagonists, orthosteric agonists, non-catechol biased agonists and positive allosteric modulators, highlighting their structure-activity relationships and medicinal chemistry. Recent chemistry breakthroughs and innovative approaches to selectively target and activate the D1R also hold promise for creating pharmacotherapy for several neurological diseases.
Collapse
Affiliation(s)
- Daniel E Felsing
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, 77555-0615, United States.,Center for Addiction Research, University of Texas Medical Branch, Galveston, Texas, 77555-0615, United States
| | - Manish K Jain
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, 77555-0615, United States.,Center for Addiction Research, University of Texas Medical Branch, Galveston, Texas, 77555-0615, United States
| | - John A Allen
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, 77555-0615, United States.,Center for Addiction Research, University of Texas Medical Branch, Galveston, Texas, 77555-0615, United States
| |
Collapse
|
36
|
Hao J, Beck JP, Schaus JM, Krushinski JH, Chen Q, Beadle CD, Vidal P, Reinhard MR, Dressman BA, Massey SM, Boulet SL, Cohen MP, Watson BM, Tupper D, Gardinier KM, Myers J, Johansson AM, Richardson J, Richards DS, Hembre EJ, Remick DM, Coates DA, Bhardwaj RM, Diseroad BA, Bender D, Stephenson G, Wolfangel CD, Diaz N, Getman BG, Wang XS, Heinz BA, Cramer JW, Zhou X, Maren DL, Falcone JF, Wright RA, Mitchell SN, Carter G, Yang CR, Bruns RF, Svensson KA. Synthesis and Pharmacological Characterization of 2-(2,6-Dichlorophenyl)-1-((1 S,3 R)-5-(3-hydroxy-3-methylbutyl)-3-(hydroxymethyl)-1-methyl-3,4-dihydroisoquinolin-2(1 H)-yl)ethan-1-one (LY3154207), a Potent, Subtype Selective, and Orally Available Positive Allosteric Modulator of the Human Dopamine D1 Receptor. J Med Chem 2019; 62:8711-8732. [PMID: 31532644 DOI: 10.1021/acs.jmedchem.9b01234] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Clinical development of catechol-based orthosteric agonists of the dopamine D1 receptor has thus far been unsuccessful due to multiple challenges. To address these issues, we identified LY3154207 (3) as a novel, potent, and subtype selective human D1 positive allosteric modulator (PAM) with minimal allosteric agonist activity. Conformational studies showed LY3154207 adopts an unusual boat conformation, and a binding pose with the human D1 receptor was proposed based on this observation. In contrast to orthosteric agonists, LY3154207 showed a distinct pharmacological profile without a bell-shaped dose-response relationship or tachyphylaxis in preclinical models. Identification of a crystalline form of free LY3154207 from the discovery lots was not successful. Instead, a novel cocrystal form with superior solubility was discovered and determined to be suitable for development. This cocrystal form was advanced to clinical development as a potential first-in-class D1 PAM and is now in phase 2 studies for Lewy body dementia.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Daniel S Richards
- AMRI UK Ltd , Erl Wood Manor, Sunninghill Road , Windlesham , Surrey , GU20 6PH , United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Svensson KA, Hao J, Bruns RF. Positive allosteric modulators of the dopamine D1 receptor: A new mechanism for the treatment of neuropsychiatric disorders. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2019; 86:273-305. [PMID: 31378255 DOI: 10.1016/bs.apha.2019.06.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The dopamine D1 receptor plays an important role in motor activity, reward, and cognition. Efforts to develop D1 agonists have been mixed due to poor drug-like properties, tachyphylaxis, and inverted U-shaped dose-response curves. Recently, positive allosteric modulators (PAMs) for the dopamine D1 receptor were discovered and initial pharmacological profiling has suggested that several of the above issues could be addressed with this mechanism. This paper presents an overview of key findings for DETQ (2-(2,6-dichlorophenyl)-1-((1S,3R)-3-(hydroxymethyl)-5-(2-hydroxypropan-2-yl)-1-methyl-3,4-dihydroisoquinolin-2(1H)-yl)ethan-1-one), which is currently the only D1 PAM for which published in vivo data is available. In vitro studies showed selective potentiation of the human D1 receptor without significant allosteric agonist effects. Due to a species difference in affinity for DETQ, transgenic mice expressing the human D1 receptor (hD1 mice) were used in vivo. In contrast to D1 agonists, DETQ increased locomotor activity over a wide dose-range without inverted U-shaped dose response or tachyphylaxis. DETQ also reversed hypo-activity in mice with dopamine depletion due to reserpine pretreatment, suggesting potential for treatment of motor symptoms in Parkinson's disease. Potential pro-cognitive effects were supported by improved performance in the novel object recognition task, enhanced release of cortical acetylcholine and histamine, and increased phosphorylation of the AMPA receptor (GluR1) and the transcription factor CREB. In addition, DETQ enhanced wakefulness in EEG studies and decreased immobility in the forced-swim test. Together, these results provide support for potential utility of D1 PAMs in the treatment of several neuropsychiatric disorders. LY3154207, a close analog of DETQ, is currently in phase 2 clinical trials.
Collapse
Affiliation(s)
- Kjell A Svensson
- Neuroscience Discovery, Lilly Research Laboratories, Eli Lilly & Co, Lilly Corporate Center, Indianapolis, IN, United States.
| | - Junliang Hao
- Discovery Chemistry and Research Technologies, Lilly Research Laboratories, Eli Lilly & Co, Lilly Corporate Center, Indianapolis, IN, United States
| | - Robert F Bruns
- Discovery Chemistry and Research Technologies, Lilly Research Laboratories, Eli Lilly & Co, Lilly Corporate Center, Indianapolis, IN, United States
| |
Collapse
|
38
|
Kaar SJ, Natesan S, McCutcheon R, Howes OD. Antipsychotics: Mechanisms underlying clinical response and side-effects and novel treatment approaches based on pathophysiology. Neuropharmacology 2019; 172:107704. [PMID: 31299229 DOI: 10.1016/j.neuropharm.2019.107704] [Citation(s) in RCA: 209] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/13/2019] [Accepted: 07/08/2019] [Indexed: 12/17/2022]
Abstract
Antipsychotic drugs are central to the treatment of schizophrenia and other psychotic disorders but are ineffective for some patients and associated with side-effects and nonadherence in others. We review the in vitro, pre-clinical, clinical and molecular imaging evidence on the mode of action of antipsychotics and their side-effects. This identifies the key role of striatal dopamine D2 receptor blockade for clinical response, but also for endocrine and motor side-effects, indicating a therapeutic window for D2 blockade. We consider how partial D2/3 receptor agonists fit within this framework, and the role of off-target effects of antipsychotics, particularly at serotonergic, histaminergic, cholinergic, and adrenergic receptors for efficacy and side-effects such as weight gain, sedation and dysphoria. We review the neurobiology of schizophrenia relevant to the mode of action of antipsychotics, and for the identification of new treatment targets. This shows elevated striatal dopamine synthesis and release capacity in dorsal regions of the striatum underlies the positive symptoms of psychosis and suggests reduced dopamine release in cortical regions contributes to cognitive and negative symptoms. Current drugs act downstream of the major dopamine abnormalities in schizophrenia, and potentially worsen cortical dopamine function. We consider new approaches including targeting dopamine synthesis and storage, autoreceptors, and trace amine receptors, and the cannabinoid, muscarinic, GABAergic and glutamatergic regulation of dopamine neurons, as well as post-synaptic modulation through phosphodiesterase inhibitors. Finally, we consider treatments for cognitive and negative symptoms such dopamine agonists, nicotinic agents and AMPA modulators before discussing immunological approaches which may be disease modifying. This article is part of the issue entitled 'Special Issue on Antipsychotics'.
Collapse
Affiliation(s)
- Stephen J Kaar
- Department of Psychosis Studies, 5th Floor, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), King's College London, PO63 De Crespigny Park, London, SE5 8AF, United Kingdom.
| | - Sridhar Natesan
- Department of Psychosis Studies, 5th Floor, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), King's College London, PO63 De Crespigny Park, London, SE5 8AF, United Kingdom
| | - Robert McCutcheon
- Department of Psychosis Studies, 5th Floor, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), King's College London, PO63 De Crespigny Park, London, SE5 8AF, United Kingdom
| | - Oliver D Howes
- Department of Psychosis Studies, 5th Floor, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), King's College London, PO63 De Crespigny Park, London, SE5 8AF, United Kingdom.
| |
Collapse
|
39
|
Hazlett EA, Vaccaro DH, Haznedar MM, Goldstein KE. Reprint of: F-18Fluorodeoxyglucose positron emission tomography studies of the schizophrenia spectrum: The legacy of Monte S. Buchsbaum, M.D. Psychiatry Res 2019; 277:39-44. [PMID: 31229307 DOI: 10.1016/j.psychres.2019.06.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/03/2018] [Accepted: 12/03/2018] [Indexed: 12/12/2022]
Abstract
This is a selective review of the work of Buchsbaum and colleagues. It revisits and pays tribute to four decades of publications employing positron emission tomography (PET) with F-18fluorodeoxyglucose (FDG) to examine the neurobiology of schizophrenia-spectrum disorders (including schizotypal personality disorder (SPD) and schizophrenia). Beginning with a landmark FDG-PET study in 1982 reporting hypofrontality in unmedicated schizophrenia patients, Buchsbaum and colleagues published high-impact work on regional glucose metabolic rate (GMR) abnormalities in the spectrum. Several key discoveries were made, including the delineation of schizophrenia-spectrum abnormalities in frontal and temporal lobe, cingulate, thalamus, and striatal regions using three-dimensional mapping with coregistered MRI and PET. These findings indicated that SPD patients have less marked frontal lobe and striatal dysfunction compared with schizophrenia patients, possibly mitigating frank psychosis. Additionally, these investigations were among the first to conduct early seed-based functional connectivity analyses with FDG-PET, showing aberrant cortical-subcortical circuitry and, in particular, revealing a thalamocortical circuitry abnormality in schizophrenia. Finally, pioneering work employing the first double-blind randomized antipsychotic (haloperidol) vs. placebo FDG-PET study design in schizophrenia indicated that GMR in the striatum, more than in any other region, was related to clinical response.
Collapse
Affiliation(s)
- Erin A Hazlett
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Mental Illness Research, Education, and Clinical Center (VISN 2), James J. Peters VA Medical Center, 130 West Kingsbridge Road, Room 6A-44, Bronx, NY, United States.
| | - Daniel H Vaccaro
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Mental Illness Research, Education, and Clinical Center (VISN 2), James J. Peters VA Medical Center, 130 West Kingsbridge Road, Room 6A-44, Bronx, NY, United States
| | - M Mehmet Haznedar
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Mental Illness Research, Education, and Clinical Center (VISN 2), James J. Peters VA Medical Center, 130 West Kingsbridge Road, Room 6A-44, Bronx, NY, United States
| | - Kim E Goldstein
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Mental Illness Research, Education, and Clinical Center (VISN 2), James J. Peters VA Medical Center, 130 West Kingsbridge Road, Room 6A-44, Bronx, NY, United States
| |
Collapse
|
40
|
Velikonja T, Velthorst E, McClure MM, Rutter S, Calabrese WR, Rosell D, Koenigsberg HW, Goodman M, New AS, Hazlett EA, Perez-Rodriguez MM. Severe childhood trauma and clinical and neurocognitive features in schizotypal personality disorder. Acta Psychiatr Scand 2019; 140:50-64. [PMID: 30951190 DOI: 10.1111/acps.13032] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/01/2019] [Indexed: 01/17/2023]
Abstract
OBJECTIVE Literature suggests that childhood trauma increases vulnerability for schizophrenia-spectrum disorders, including schizotypal personality disorder (SPD). Yet, it remains unexplored whether childhood trauma predicts symptom load and the level of neurocognitive functioning in SPD. METHOD We included 225 individuals with SPD and 127 healthy controls. Childhood trauma was evaluated using the Childhood Trauma Questionnaire, and schizotypal traits were assessed using the Schizotypal Personality Questionnaire. Standard neurocognitive assessments covered six cognitive domains. RESULTS All types of reported childhood trauma were significantly associated with SPD, in a linear fashion. Severe sexual abuse showed the greatest magnitude of association with higher cognitive-perceptual load (e.g., ideas of reference, odd belief or magical thinking); severe emotional neglect was associated with interpersonal scores (e.g., excessive social anxiety, constricted affect) within the SPD group. SPD individuals who reported severe trauma showed worse cognitive functioning (i.e., working memory, verbal/visual learning and memory, as well as verbal fluency). CONCLUSIONS Particular severe childhood trauma types were associated with higher cognitive-perceptual and interpersonal symptoms in SPD, along with worse cognitive functioning. These findings highlight the need for clinicians to enquire about childhood trauma in SPD patients, since unaddressed early adverse experiences may carry long-term negative consequences.
Collapse
Affiliation(s)
- T Velikonja
- Department of Psychiatry, Icahn School of Medicine, Mount Sinai, NY, USA.,Seaver Center of Research and Treatment, Icahn School of Medicine, Mount Sinai, NY, USA
| | - E Velthorst
- Department of Psychiatry, Icahn School of Medicine, Mount Sinai, NY, USA.,Seaver Center of Research and Treatment, Icahn School of Medicine, Mount Sinai, NY, USA
| | - M M McClure
- Department of Psychiatry, Icahn School of Medicine, Mount Sinai, NY, USA.,Fairfield University, Fairfield, CT, USA
| | - S Rutter
- Department of Psychiatry, Icahn School of Medicine, Mount Sinai, NY, USA.,James J. Peters VA Medical Center, The Bronx, NY, USA
| | - W R Calabrese
- Department of Psychiatry, Icahn School of Medicine, Mount Sinai, NY, USA
| | - D Rosell
- Department of Psychiatry, Icahn School of Medicine, Mount Sinai, NY, USA
| | - H W Koenigsberg
- Department of Psychiatry, Icahn School of Medicine, Mount Sinai, NY, USA.,James J. Peters VA Medical Center, The Bronx, NY, USA
| | - M Goodman
- Department of Psychiatry, Icahn School of Medicine, Mount Sinai, NY, USA.,James J. Peters VA Medical Center, The Bronx, NY, USA
| | - A S New
- Department of Psychiatry, Icahn School of Medicine, Mount Sinai, NY, USA.,James J. Peters VA Medical Center, The Bronx, NY, USA
| | - E A Hazlett
- Department of Psychiatry, Icahn School of Medicine, Mount Sinai, NY, USA.,James J. Peters VA Medical Center, The Bronx, NY, USA
| | - M M Perez-Rodriguez
- Department of Psychiatry, Icahn School of Medicine, Mount Sinai, NY, USA.,James J. Peters VA Medical Center, The Bronx, NY, USA.,CIBERSAM, Madrid, Spain
| |
Collapse
|
41
|
Wang M, Datta D, Enwright J, Galvin V, Yang ST, Paspalas C, Kozak R, Gray DL, Lewis DA, Arnsten AFT. A novel dopamine D1 receptor agonist excites delay-dependent working memory-related neuronal firing in primate dorsolateral prefrontal cortex. Neuropharmacology 2019; 150:46-58. [PMID: 30858103 PMCID: PMC6475613 DOI: 10.1016/j.neuropharm.2019.03.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 01/10/2023]
Abstract
Decades of research have emphasized the importance of dopamine (DA) D1 receptor (D1R) mechanisms to dorsolateral prefrontal cortex (dlPFC) working memory function, and the hope that D1R agonists could be used to treat cognitive disorders. However, existing D1R agonists all have had high affinity for D1R, and engage β-arrestin signaling, and these agonists have suppressed task-related neuronal firing. The current study provides the first physiological characterization of a novel D1R agonist, PF-3628, with low affinity for D1R -more similar to endogenous DA actions- as well as little engagement of β-arrestin signaling. PF-3628 was applied by iontophoresis directly onto dlPFC neurons in aged rhesus monkeys performing a delay-dependent working memory task. Aged monkeys have naturally-occurring loss of DA, and naturally-occurring reductions in dlPFC neuronal firing and working memory performance. We found the first evidence of excitatory actions of a D1R agonist on dlPFC task-related firing, and this PF-3628 beneficial response was blocked by co-application of a D1R antagonist. These D1R actions likely occur on pyramidal cells, based on previous immunoelectron microscopic studies showing expression of D1R on layer III spines, and current microarray experiments showing that D1R are four times more prevalent in pyramidal cells than in parvalbumin-containing interneurons laser-captured from layer III of the human dlPFC. These results encourage the translation of D1R mechanisms from monkey to human, with the hope PF-3628 and related, novel D1R agonists will be more appropriate for enhancing dlPFC cognitive functions in patients with mental disorders.
Collapse
Affiliation(s)
- Min Wang
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, 06510, USA.
| | - Dibyadeep Datta
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, 06510, USA; Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - John Enwright
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Veronica Galvin
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Sheng-Tao Yang
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Constantinos Paspalas
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Rouba Kozak
- Pfizer Inc, Internal Medicine Unit, Pfizer Inc., 1 Portland St., Cambridge, MA, 02139, USA
| | - David L Gray
- Pfizer Inc, Internal Medicine Unit, Pfizer Inc., 1 Portland St., Cambridge, MA, 02139, USA
| | - David A Lewis
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Amy F T Arnsten
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, 06510, USA.
| |
Collapse
|
42
|
Harvey PD, Jones MT. Functional deficits in attenuated psychosis syndrome and related conditions: Current and future treatment options. SCHIZOPHRENIA RESEARCH-COGNITION 2019; 17:100152. [PMID: 31193274 PMCID: PMC6522774 DOI: 10.1016/j.scog.2019.100152] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 05/01/2019] [Accepted: 05/06/2019] [Indexed: 01/20/2023]
Affiliation(s)
- Philip D. Harvey
- University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Research Service, Miami VA Healthcare System, Miami, FL 33125, USA
- Corresponding author at: Leonard M. Miller Professor of Psychiatry and Behavioral Science, Division of Psychology, University of Miami Miller School of Medicine, 1120 NW 14th Street, Suite 1450, Miami, FL 33136, USA.
| | | |
Collapse
|
43
|
Guercio GD, Thomas ME, Cisneros-Franco JM, Voss P, Panizzutti R, de Villers-Sidani E. Improving cognitive training for schizophrenia using neuroplasticity enhancers: Lessons from decades of basic and clinical research. Schizophr Res 2019; 207:80-92. [PMID: 29730045 DOI: 10.1016/j.schres.2018.04.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 04/13/2018] [Accepted: 04/17/2018] [Indexed: 01/29/2023]
Abstract
Mounting evidence indicates that schizophrenia is a disorder that stems from maladaptive plasticity within neural circuits and produces broad cognitive deficits leading to loss of autonomy. A large number of studies have identified abnormalities spanning many neurotransmitter systems in schizophrenia, and as a result, a variety of drugs have been developed to attempt to treat these abnormalities and enhance cognition. Unfortunately, positive results have been limited so far. This may be in part because the scope of abnormalities in the schizophrenic brain requires a treatment capable of engaging many different neurotransmitter systems. One approach to achieving this kind of treatment has been to use neuroplasticity-based computerized cognitive training programs to stimulate the formation of more adaptive circuits. Although the number of studies implementing this approach has increased exponentially in recent years, effect sizes for cognitive gains have been modest and adherence to treatment remains an important challenge in many studies, as patients are often required to train for 40 h or more. In the present paper, we argue that cognitive training protocols will benefit from the addition of cognitive enhancers to produce more robust and longer lasting targeted neuroplasticity. Indeed, recent data from animal studies have provided support for combining plasticity-enhancing drugs with tailored behavioral training paradigms to restore normal function within dysfunctioning neural circuits. The advantages and challenges of applying this approach to patients with schizophrenia will be discussed.
Collapse
Affiliation(s)
- G D Guercio
- Biomedical Sciences Institute, Federal University of Rio de Janeiro, RJ, Brazil; Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada.
| | - M E Thomas
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - J M Cisneros-Franco
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - P Voss
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - R Panizzutti
- Biomedical Sciences Institute, Federal University of Rio de Janeiro, RJ, Brazil
| | - E de Villers-Sidani
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada.
| |
Collapse
|
44
|
McQuown S, Xia S, Baumgärtel K, Barido R, Anderson G, Dyck B, Scott R, Peters M. Phosphodiesterase 1b (PDE1B) Regulates Spatial and Contextual Memory in Hippocampus. Front Mol Neurosci 2019; 12:21. [PMID: 30792627 PMCID: PMC6374598 DOI: 10.3389/fnmol.2019.00021] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 01/21/2019] [Indexed: 12/28/2022] Open
Abstract
Augmentation of cyclic nucleotide signaling through inhibition of phosphodiesterase (PDE) activity has long been understood to enhance memory. Efforts in this domain have focused predominantly on PDE4, a cAMP-specific phosphodiesterase implicated in consolidation. But less is known about the function of other PDEs expressed in neuroanatomical regions critical to memory. The PDE1 isoforms are the only PDEs to regulate neuronal cAMP and cGMP levels in a Ca2+/Calmodulin (CaM) dependent manner. Here, we show that knock-down of PDE1B in hippocampus of adult mice enhances contextual and spatial memory without effect on non-cognitive behaviors. Pharmacological augmentation of memory in rats was observed with a selective inhibitor of PDE1 dosed before and immediately after training, but not with drug dosed either 1 h after training or before recall. Our data clearly demonstrate a role for the PDE1B isoforms as negative regulators of memory, and they implicate PDE1 in an early phase of consolidation, but not retrieval. Inhibition of PDE1B is a promising therapeutic mechanism for treating memory impairment.
Collapse
Affiliation(s)
- Susan McQuown
- Dart NeuroScience, LLC, San Diego, CA, United States
| | - Shouzhen Xia
- Dart NeuroScience, LLC, San Diego, CA, United States
| | | | | | - Gary Anderson
- Dart NeuroScience, LLC, San Diego, CA, United States
| | - Brian Dyck
- Dart NeuroScience, LLC, San Diego, CA, United States
| | | | - Marco Peters
- Dart NeuroScience, LLC, San Diego, CA, United States
| |
Collapse
|
45
|
Abstract
Cognitive impairments in substance use disorders have been extensively researched, especially since the advent of cognitive and computational neuroscience and neuroimaging methods in the last 20 years. Conceptually, altered cognitive function can be viewed as a hallmark feature of substance use disorders, with documented alterations in the well-known "executive" domains of attention, inhibition/regulation, working memory, and decision-making. Poor cognitive (sometimes referred to as "top-down") regulation of downstream motivational processes-whether appetitive (reward, incentive salience) or aversive (stress, negative affect)-is recognized as a fundamental impairment in addiction and a potentially important target for intervention. As addressed in this special issue, cognitive impairment is a transdiagnostic domain; thus, advances in the characterization and treatment of cognitive dysfunction in substance use disorders could have benefit across multiple psychiatric disorders. Toward this general goal, we summarize current findings in the abovementioned cognitive domains of substance use disorders, while suggesting a potentially useful expansion to include processes that both precede (precognition) and supersede (social cognition) what is usually thought of as strictly cognition. These additional two areas have received relatively less attention but phenomenologically and otherwise are important features of substance use disorders. The review concludes with suggestions for research and potential therapeutic targeting of both the familiar and this more comprehensive version of cognitive domains related to substance use disorders.
Collapse
|
46
|
Hazlett EA, Vaccaro DH, Haznedar MM, Goldstein KE. F-18Fluorodeoxyglucose positron emission tomography studies of the schizophrenia spectrum: The legacy of Monte S. Buchsbaum, M.D. Psychiatry Res 2019; 271:535-540. [PMID: 30553101 DOI: 10.1016/j.psychres.2018.12.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/03/2018] [Accepted: 12/03/2018] [Indexed: 10/27/2022]
Abstract
This is a selective review of the work of Buchsbaum and colleagues. It revisits and pays tribute to four decades of publications employing positron emission tomography (PET) with F-18fluorodeoxyglucose (FDG) to examine the neurobiology of schizophrenia-spectrum disorders (including schizotypal personality disorder (SPD) and schizophrenia). Beginning with a landmark FDG-PET study in 1982 reporting hypofrontality in unmedicated schizophrenia patients, Buchsbaum and colleagues published high-impact work on regional glucose metabolic rate (GMR) abnormalities in the spectrum. Several key discoveries were made, including the delineation of schizophrenia-spectrum abnormalities in frontal and temporal lobe, cingulate, thalamus, and striatal regions using three-dimensional mapping with coregistered MRI and PET. These findings indicated that SPD patients have less marked frontal lobe and striatal dysfunction compared with schizophrenia patients, possibly mitigating frank psychosis. Additionally, these investigations were among the first to conduct early seed-based functional connectivity analyses with FDG-PET, showing aberrant cortical-subcortical circuitry and, in particular, revealing a thalamocortical circuitry abnormality in schizophrenia. Finally, pioneering work employing the first double-blind randomized antipsychotic (haloperidol) vs. placebo FDG-PET study design in schizophrenia indicated that GMR in the striatum, more than in any other region, was related to clinical response.
Collapse
Affiliation(s)
- Erin A Hazlett
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Mental Illness Research, Education, and Clinical Center (VISN 2), James J. Peters VA Medical Center, 130 West Kingsbridge Road, Room 6A-44, Bronx, NY, United States.
| | - Daniel H Vaccaro
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Mental Illness Research, Education, and Clinical Center (VISN 2), James J. Peters VA Medical Center, 130 West Kingsbridge Road, Room 6A-44, Bronx, NY, United States
| | - M Mehmet Haznedar
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Mental Illness Research, Education, and Clinical Center (VISN 2), James J. Peters VA Medical Center, 130 West Kingsbridge Road, Room 6A-44, Bronx, NY, United States
| | - Kim E Goldstein
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Mental Illness Research, Education, and Clinical Center (VISN 2), James J. Peters VA Medical Center, 130 West Kingsbridge Road, Room 6A-44, Bronx, NY, United States
| |
Collapse
|
47
|
Milienne-Petiot M, Higa KK, Grim A, Deben D, Groenink L, Twamley EW, Geyer MA, Young JW. Nicotine improves probabilistic reward learning in wildtype but not alpha7 nAChR null mutants, yet alpha7 nAChR agonists do not improve probabilistic learning. Eur Neuropsychopharmacol 2018; 28:1217-1231. [PMID: 30213668 PMCID: PMC6344043 DOI: 10.1016/j.euroneuro.2018.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 06/25/2018] [Accepted: 08/07/2018] [Indexed: 11/27/2022]
Abstract
Cognitive impairments, e.g., reward learning, are present in various psychiatric disorders and warrant treatment. Improving reward-related learning could synergistically enhance psychosocial treatments and cognition generally. A critical first step is to understand the mechanisms underlying reward learning. The dopamine system has been implicated in such learning, but less known is how indirect activation of this system may affect reward learning. We determined the role of alpha7 nicotinic acetylcholine receptors (nAChR) on a probabilistic reversal learning task (PRLT) in mice that includes reward and punishment. Male alpha7 knockout (KO), heterozygous (HT), and wildtype (WT) littermate mice (n = 84) were treated with vehicle, 0.03, or 0.3 mg/kg nicotine. Two cohorts of C57BL/6NJ male mice were treated with various alpha7 nAChR ligands, including the full agonists PNU282877 and AR-R-17779, the positive allosteric modulator CCMI, the partial agonist SSR180711, and the antagonist methyllycaconitine. All mice were then tested in the PRLT. Nicotine (0.3 mg/kg) significantly improved initial reward learning in alpha7 WT and HT mice but did not improve learning in KO mice, suggesting an involvement of the alpha7 nAChR in the pro-learning effects of nicotine. Neither alpha7 nAChR treatments (PNU282987, AR-R-17779, CCMI, SSR180711, nor methyllycaconitine) affected mouse PRLT performance however. Nicotine improved reward learning via a mechanism that may include alpha7 nAChRs. This improvement unlikely relied solely on alpha7 nAChRs however, since no alpha7 nAChR ligand improved reward learning in normal mice. Future assessments of the effects of other nAChR subtypes on reward learning are needed.
Collapse
Affiliation(s)
- Morgane Milienne-Petiot
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, MC 0804, La Jolla, CA 92093-0804, United States; Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, the Netherlands
| | - Kerin K Higa
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, MC 0804, La Jolla, CA 92093-0804, United States
| | - Andrea Grim
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, MC 0804, La Jolla, CA 92093-0804, United States
| | - Debbie Deben
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, MC 0804, La Jolla, CA 92093-0804, United States; Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, the Netherlands
| | - Lucianne Groenink
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, MC 0804, La Jolla, CA 92093-0804, United States
| | - Elizabeth W Twamley
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, MC 0804, La Jolla, CA 92093-0804, United States; Center of Excellence for Stress and Mental Health and Research Service, VA San Diego Healthcare System, United States
| | - Mark A Geyer
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, MC 0804, La Jolla, CA 92093-0804, United States; Research Service, VA San Diego Healthcare System, San Diego, CA, United States
| | - Jared W Young
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, MC 0804, La Jolla, CA 92093-0804, United States; Research Service, VA San Diego Healthcare System, San Diego, CA, United States.
| |
Collapse
|
48
|
Efficacy of different types of cognitive enhancers for patients with schizophrenia: a meta-analysis. NPJ SCHIZOPHRENIA 2018; 4:22. [PMID: 30361502 PMCID: PMC6202388 DOI: 10.1038/s41537-018-0064-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 09/13/2018] [Accepted: 09/24/2018] [Indexed: 12/12/2022]
Abstract
Cognitive impairment is a core feature of schizophrenia, which is predictive for functional outcomes and is, therefore, a treatment target in itself. Yet, literature on efficacy of different pharmaco-therapeutic options is inconsistent. This quantitative review provides an overview of studies that investigated potential cognitive enhancers in schizophrenia. We included pharmacological agents, which target different neurotransmitter systems and evaluated their efficacy on overall cognitive functioning and seven separate cognitive domains. In total, 93 studies with 5630 patients were included. Cognitive enhancers, when combined across all different neurotransmitter systems, which act on a large number of different mechanisms, showed a significant (yet small) positive effect size of 0.10 (k = 51, p = 0.023; 95% CI = 0.01 to 0.18) on overall cognition. Cognitive enhancers were not superior to placebo for separate cognitive domains. When analyzing each neurotransmitter system separately, agents acting predominantly on the glutamatergic system showed a small significant effect on overall cognition (k = 29, Hedges’ g = 0.19, p = 0.01), as well as on working memory (k = 20, Hedges’ g = 0.13, p = 0.04). A sub-analysis of cholinesterase inhibitors (ChEI) showed a small effect on working memory (k = 6, Hedges’ g = 0.26, p = 0.03). Other sub-analyses were positively nonsignificant, which may partly be due to the low number of studies we could include per neurotransmitter system. Overall, this meta-analysis showed few favorable effects of cognitive enhancers for patients with schizophrenia, partly due to lack of power. There is a lack of studies involving agents acting on other than glutamatergic and cholinergic systems, especially of those targeting the dopaminergic system.
Collapse
|
49
|
Kirchner SK, Roeh A, Nolden J, Hasan A. Diagnosis and treatment of schizotypal personality disorder: evidence from a systematic review. NPJ SCHIZOPHRENIA 2018; 4:20. [PMID: 30282970 PMCID: PMC6170383 DOI: 10.1038/s41537-018-0062-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 08/15/2018] [Accepted: 08/21/2018] [Indexed: 02/08/2023]
Abstract
The main objective of this review was to evaluate studies on the diagnosis, treatment, and course of schizotypal personality disorder and to provide a clinical guidance on the basis of that evaluation. A systematic search in the PubMed/MEDLINE databases was conducted. Two independent reviewers extracted and assessed the quality of the data. A total of 54 studies were eligible for inclusion: 18 were on diagnostic instruments; 22, on pharmacological treatment; 3, on psychotherapy; and 13, on the longitudinal course of the disease. We identified several suitable and reliable questionnaires for screening (PDQ-4+ and SPQ) and diagnosing (SIDP, SIDP-R, and SCID-II) schizotypal personality disorder. Second-generation antipsychotics (mainly risperidone) were the most often studied drug class and were described as beneficial. Studies on the longitudinal course described a moderate remission rate and possible conversion rates to other schizophrenia spectrum disorders. Because of the heterogeneity of the studies and the small sample sizes, it is not yet possible to make evidence-based recommendations for treatment. This is a systematic evaluation of diagnostic instruments and treatment studies in schizotypal personality disorder. We conclude that there is currently only limited evidence on which to base treatment decisions in this disorder. Larger interventional trials are needed to provide the data for evidence-based recommendations.
Collapse
Affiliation(s)
- Sophie K Kirchner
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University, Munich, Germany.
| | - Astrid Roeh
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University, Munich, Germany
| | - Jana Nolden
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University, Munich, Germany
| | - Alkomiet Hasan
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
50
|
Strassnig M, Bowie C, Pinkham AE, Penn D, Twamley EW, Patterson TL, Harvey PD. Which levels of cognitive impairments and negative symptoms are related to functional deficits in schizophrenia? J Psychiatr Res 2018; 104:124-129. [PMID: 30029051 DOI: 10.1016/j.jpsychires.2018.06.018] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/17/2018] [Accepted: 06/28/2018] [Indexed: 11/30/2022]
Abstract
BACKGROUND Negative symptoms and cognitive impairments predict difficulties in aspects of everyday functioning in schizophrenia, with little research to date attempting to determine if there are threshold levels of impairment required to predict the severity of functional deficits. METHODS People diagnosed with chronic schizophrenia (n = 821) were assessed with the MCCB and PANSS, and rated by high contact informants with SLOF. Negative symptoms of reduced emotional experience were specifically targeted for analysis because of their previously identified relationships with social outcomes. We identified patients with moderate negative symptoms (at least one PANSS item ≥4) versus less severe symptoms (PANSS items ≤3) and divided patients on the basis of a single latent-trait global cognition score (neuropsychologically normal vs neuropsychologically impaired; performance at or below 1.0 SD from the normative population mean, T = 40), then examined correlations between cognition, negative symptoms and everyday functioning in the groups with lower and higher negative symptoms and those with/without cognitive impairment. RESULTS Even low levels of negative symptoms were correlated with ratings of social functioning. Cognitive performance in the neuropsychologically normal range, in contrast, was not correlated with any aspects of everyday functioning while more impaired performance predicted greater functional impairments. CONCLUSIONS Even minimal symptoms may be a target for clinical attention in the domains of negative symptoms, consistent with previous findings regarding social deficits in populations with modest negative symptoms (e.g., schizotypal personality disorder). Cognitive rehabilitation treatments might not improve social functioning if even low levels of negative symptoms (social amotivation) are present.
Collapse
Affiliation(s)
- M Strassnig
- Department of Integrated Medical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, 777 Glades Road Boca Raton, FL, 33431, USA.
| | - C Bowie
- Department of Psychology, Queen's University, Kingston, ON, USA
| | - A E Pinkham
- School of Behavior and Brain Science, University of Texas at Dallas, Dallas, TX, USA
| | - D Penn
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - Elizabeth W Twamley
- Department of Psychiatry, University of California at San Diego, San Diego, CA, USA
| | - Thomas L Patterson
- Department of Psychiatry, University of California at San Diego, San Diego, CA, USA
| | - P D Harvey
- Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, USA; Research Services, Bruce V. Carter VA, Miami, FL, USA
| |
Collapse
|