1
|
Carvalho BFDC, Faria NDC, Silva KCS, Greenfield E, Alves MGO, Dias M, Mendes MA, Pérez-Sayáns M, Almeida JD. Salivary Metabolic Pathway Alterations in Brazilian E-Cigarette Users. Int J Mol Sci 2024; 25:11750. [PMID: 39519301 PMCID: PMC11546306 DOI: 10.3390/ijms252111750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/22/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
In recent years, the use of electronic cigarettes (e-cigs) has increased. However, their long-term effects on oral health and saliva remain poorly understood. Therefore, this study aimed to evaluate the saliva of e-cig users and investigate possible biomarkers. Participants were divided into two groups: the Electronic Cigarette Group (EG)-25 regular and exclusive e-cig users-and Control Group (CG)-25 non-smokers and non-e-cig users, matched in sex and age to the EG. The clinical analysis included the following parameters: age, sex, heart rate, oximetry, capillary blood glucose, carbon monoxide (CO) concentration in exhaled air, and alcohol use disorder identification test (AUDIT). Qualitative and quantitative analyses of saliva included sialometry, viscosity, pH, and cotinine concentrations. Furthermore, the EG and CG salivary metabolomes were compared using gas chromatography coupled with mass spectrometry (GC-MS). Data were analyzed using the Mann-Whitney test. The MetaboAnalyst 6.0 software was used for statistical analysis and biomarker evaluation. The EG showed high means for exhaled CO concentration and AUDIT but lower means for oximetry and salivary viscosity. Furthermore, 10 metabolites (isoleucine, 2-hydroxyglutaric acid, 3-phenyl-lactic acid, linoleic acid, 3-hydroxybutyric acid, 1,6-anhydroglucose, glucuronic acid, valine, stearic acid, and elaidic acid) were abundant in EG but absent in CG. It was concluded that e-cig users had high rates of alcohol consumption and experienced significant impacts on their general health, including increased cotinine and CO concentration in exhaled air, decreased oximetry, and low salivary viscosity. Furthermore, they showed a notable increase in salivary metabolites, especially those related to inflammation, xenobiotic metabolism, and biomass-burning pathways.
Collapse
Affiliation(s)
- Bruna Fernandes do Carmo Carvalho
- Instituto de Ciência e Tecnologia, Universidade Estadual Paulista (UNESP), Câmpus São José dos Campos, Av. Eng. Francisco José Longo, 777, São Dimas, São José dos Campos 12245-000, São Paulo, Brazil; (B.F.d.C.C.)
| | - Natalia de Carvalho Faria
- Instituto de Ciência e Tecnologia, Universidade Estadual Paulista (UNESP), Câmpus São José dos Campos, Av. Eng. Francisco José Longo, 777, São Dimas, São José dos Campos 12245-000, São Paulo, Brazil; (B.F.d.C.C.)
| | - Kethilyn Chris Sousa Silva
- Instituto de Ciência e Tecnologia, Universidade Estadual Paulista (UNESP), Câmpus São José dos Campos, Av. Eng. Francisco José Longo, 777, São Dimas, São José dos Campos 12245-000, São Paulo, Brazil; (B.F.d.C.C.)
| | - Ellen Greenfield
- Technology Research Center (NPT), Universidade Mogi das Cruzes, Mogi das Cruzes 08780-911, São Paulo, Brazil
| | - Mônica Ghislaine Oliveira Alves
- Instituto de Ciência e Tecnologia, Universidade Estadual Paulista (UNESP), Câmpus São José dos Campos, Av. Eng. Francisco José Longo, 777, São Dimas, São José dos Campos 12245-000, São Paulo, Brazil; (B.F.d.C.C.)
| | - Meriellen Dias
- Dempster MS Lab, Department of Chemical Engineering, Polytechnic School, University of São Paulo, São Paulo 05508-040, São Paulo, Brazil
| | - Maria Anita Mendes
- Dempster MS Lab, Department of Chemical Engineering, Polytechnic School, University of São Paulo, São Paulo 05508-040, São Paulo, Brazil
| | - Mario Pérez-Sayáns
- Oral Medicine, Oral Surgery and Implantology Unit (MedOralRes), Faculty of Medicine and Dentistry, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
- ORALRES Group, Instituto de Investigación Sanitaria de Santiago (IDIS), 15782 Santiago de Compostela, Spain
- Instituto de los Materiales de Santiago de Compostela (iMATUS), 15782 Santiago de Compostela, Spain
| | - Janete Dias Almeida
- Instituto de Ciência e Tecnologia, Universidade Estadual Paulista (UNESP), Câmpus São José dos Campos, Av. Eng. Francisco José Longo, 777, São Dimas, São José dos Campos 12245-000, São Paulo, Brazil; (B.F.d.C.C.)
| |
Collapse
|
2
|
Pearson AC, Ostroumov A. Midbrain KCC2 downregulation: Implications for stress-related and substance use behaviors. Curr Opin Neurobiol 2024; 88:102901. [PMID: 39142020 PMCID: PMC11392611 DOI: 10.1016/j.conb.2024.102901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/16/2024]
Abstract
Stress-related and substance use disorders are both characterized by disruptions in reward-related behaviors, and these disorders are often comorbid with one another. Recent investigations have identified a novel mechanism of inhibitory plasticity induced by both stress and substance use within the ventral tegmental area (VTA), a key region in reward processing. This mechanism involves the neuron-specific potassium chloride cotransporter isoform 2 (KCC2), which is essential in modulating inhibitory signaling through the regulation of intracellular chloride (Cl-) in VTA GABA neurons. Experiences, such as exposure to stress or substance use, diminish KCC2 expression in VTA GABA neurons, leading to abnormal reward-related behaviors. Here, we review literature suggesting that KCC2 downregulation contributes to irregular dopamine (DA) transmission, impacting multiple reward circuits and promoting maladaptive behaviors. Activating KCC2 restores canonical GABA functioning and reduces behavioral deficits in preclinical models, leading us to advocate for KCC2 as a target for therapies aimed at alleviating and mitigating various stress-related and substance use disorders.
Collapse
Affiliation(s)
- Anna C Pearson
- Department of Pharmacology & Physiology, Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC 20057, USA. https://twitter.com/AnnaCPearson
| | - Alexey Ostroumov
- Department of Pharmacology & Physiology, Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC 20057, USA.
| |
Collapse
|
3
|
Pochapski JA, Gómez-A A, Stringfield SJ, Jaggers H, Boettiger CA, Da Cunha C, Robinson DL. Adolescent alcohol exposure persistently alters orbitofrontal cortical encoding of Pavlovian conditional stimulus components in female rats. Sci Rep 2024; 14:13775. [PMID: 38877100 PMCID: PMC11178901 DOI: 10.1038/s41598-024-64036-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 06/04/2024] [Indexed: 06/16/2024] Open
Abstract
Exposure to alcohol during adolescence impacts cortical and limbic brain regions undergoing maturation. In rodent models, long-term effects on behavior and neurophysiology have been described after adolescent intermittent ethanol (AIE), especially in males. We hypothesized that AIE in female rats increases conditional approach to a reward-predictive cue and corresponding neuronal activity in the orbitofrontal cortex (OFC) and nucleus accumbens (NAc). We evaluated behavior and neuronal firing after AIE (5 g/kg intragastric) or water (CON) in adult female rats. Both AIE and CON groups expressed a ST phenotype, and AIE marginally increased sign-tracking (ST) and decreased goal-tracking (GT) metrics. NAc neurons exhibited phasic firing patterns to the conditional stimulus (CS), with no differences between groups. In contrast, neuronal firing in the OFC of AIE animals was greater at CS onset and offset than in CON animals. During reward omission, OFC responses to CS offset normalized to CON levels, but enhanced OFC firing to CS onset persisted in AIE. We suggest that the enhanced OFC neural activity observed in AIE rats to the CS could contribute to behavioral inflexibility. Ultimately, AIE persistently impacts the neurocircuitry of reward-motivated behavior in female rats.
Collapse
Affiliation(s)
- Jose A Pochapski
- Laboratorio de Fisiologia e Farmacologia do Sistema Nervoso Central, Department of Pharmacology, Universidade Federal do Parana, Curitiba, PR, Brazil
| | - Alexander Gómez-A
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Hannah Jaggers
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Charlotte A Boettiger
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Claudio Da Cunha
- Laboratorio de Fisiologia e Farmacologia do Sistema Nervoso Central, Department of Pharmacology, Universidade Federal do Parana, Curitiba, PR, Brazil
- Department of Biochemistry, Universidade Federal do Parana, Curitiba, PR, Brazil
| | - Donita L Robinson
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
4
|
Crews FT, Macht V, Vetreno RP. Epigenetic regulation of microglia and neurons by proinflammatory signaling following adolescent intermittent ethanol (AIE) exposure and in human AUD. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2024; 4:12094. [PMID: 38524847 PMCID: PMC10957664 DOI: 10.3389/adar.2024.12094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/05/2024] [Indexed: 03/26/2024]
Abstract
Adolescent alcohol drinking is linked to high rates of adult alcohol problems and alcohol use disorder (AUD). The Neurobiology of Alcohol Drinking in Adulthood (NADIA) consortium adolescent intermittent ethanol (AIE) models adolescent binge drinking, followed by abstinent maturation to adulthood to determine the persistent AIE changes in neurobiology and behavior. AIE increases adult alcohol drinking and preference, increases anxiety and reward seeking, and disrupts sleep and cognition, all risks for AUD. In addition, AIE induces changes in neuroimmune gene expression in neurons and glia that alter neurocircuitry and behavior. HMGB1 is a unique neuroimmune signal released from neurons and glia by ethanol that activates multiple proinflammatory receptors, including Toll-like receptors (TLRs), that spread proinflammatory gene induction. HMGB1 expression is increased by AIE in rat brain and in post-mortem human AUD brain, where it correlates with lifetime alcohol consumption. HMGB1 activation of TLR increase TLR expression. Human AUD brain and rat brain following AIE show increases in multiple TLRs. Brain regional differences in neurotransmitters and cell types impact ethanol responses and neuroimmune gene induction. Microglia are monocyte-like cells that provide trophic and synaptic functions, that ethanol proinflammatory signals sensitize or "prime" during repeated drinking cycles, impacting neurocircuitry. Neurocircuits are differently impacted dependent upon neuronal-glial signaling. Acetylcholine is an anti-inflammatory neurotransmitter. AIE increases HMGB1-TLR4 signaling in forebrain, reducing cholinergic neurons by silencing multiple cholinergic defining genes through upregulation of RE-1 silencing factor (REST), a transcription inhibitor known to regulate neuronal differentiation. HMGB1 REST induction reduces cholinergic neurons in basal forebrain and cholinergic innervation of hippocampus. Adult brain hippocampal neurogenesis is regulated by a neurogenic niche formed from multiple cells. In vivo AIE and in vitro studies find ethanol increases HMGB1-TLR4 signaling and other proinflammatory signaling as well as reducing trophic factors, NGF, and BDNF, coincident with loss of the cholinergic synapse marker vChAT. These changes in gene expression-transcriptomes result in reduced adult neurogenesis. Excitingly, HMGB1 antagonists, anti-inflammatories, and epigenetic modifiers like histone deacetylase inhibitors restore trophic the neurogenesis. These findings suggest anti-inflammatory and epigenetic drugs should be considered for AUD therapy and may provide long-lasting reversal of psychopathology.
Collapse
Affiliation(s)
- Fulton T. Crews
- Departments of Pharmacology and Psychiatry, Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | | | | |
Collapse
|
5
|
Grizzell JA, Vanbaelinghem M, Westerman J, Saddoris MP. Voluntary alcohol consumption during distinct phases of adolescence differentially alters adult fear acquisition, extinction and renewal in male and female rats. Stress 2023; 26:2278315. [PMID: 37916300 PMCID: PMC11042498 DOI: 10.1080/10253890.2023.2278315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/25/2023] [Indexed: 11/03/2023] Open
Abstract
Alcohol use during adolescence coincides with elevated risks of stress-related impairment in adults, particularly via disrupted developmental trajectories of vulnerable corticolimbic and mesolimbic systems involved in fear processing. Prior work has investigated the impact of binge-like alcohol consumption on adult fear and stress, but less is known about whether voluntarily consumed alcohol imparts differential effects based on adolescence phases and biological sex. Here, adolescent male and female Long Evans rats were granted daily access to alcohol (15%) during either early (Early-EtOH; P25-45) or late adolescence (Late-EtOH; P45-55) using a modified drinking-in-the-dark design. Upon adulthood (P75-80), rats were exposed to a three-context (ABC) fear renewal procedure. We found that male and female Early-EtOH rats showed faster acquisition of fear but less freezing during early phases of extinction and throughout fear renewal. In the extinction period specifically, Early-EtOH rats showed normal levels of freezing in the presence of fear-associated cues, but abnormally low freezing immediately after cue offset, suggesting a key disruption in contextual processing and/or novelty seeking brought by early adolescent binge consumption. While the effects of alcohol were most pronounced in the Early-EtOH rats (particularly in females), Late-EtOH rats displayed some changes in fear behavior including slower fear acquisition, faster extinction, and reduced renewal compared with controls, but primarily in males. Our results suggest that early adolescence in males and females and, to a lesser extent, late adolescence in males is a particularly vulnerable period wherein alcohol use can promote stress-related dysfunction in adulthood. Furthermore, our results provide multiple bases for future research focused on developmental correlates of alcohol mediated disruption in the brain.
Collapse
Affiliation(s)
- J Alex Grizzell
- Dept Psychology & Neuroscience, University of Colorado Boulder, Boulder CO, 80301
- Dept of Neuroscience and Behavioral Biology, Emory University, Atlanta GA 30322
| | - Maryam Vanbaelinghem
- Dept Psychology & Neuroscience, University of Colorado Boulder, Boulder CO, 80301
| | - Jessica Westerman
- Dept Psychology & Neuroscience, University of Colorado Boulder, Boulder CO, 80301
| | - Michael P Saddoris
- Dept Psychology & Neuroscience, University of Colorado Boulder, Boulder CO, 80301
| |
Collapse
|
6
|
Alex Grizzell J, Vanbaelinghem M, Westerman J, Saddoris MP. Voluntary alcohol consumption during distinct phases of adolescence differentially alters adult fear acquisition, extinction and renewal in male and female rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.03.560757. [PMID: 37873067 PMCID: PMC10592894 DOI: 10.1101/2023.10.03.560757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Alcohol use during adolescence coincides with elevated risks of stress-related impairment in adults, particularly via disrupted developmental trajectories of vulnerable corticolimbic and mesolimbic systems involved in fear processing. Prior work has investigated the impact of binge-like alcohol consumption on adult fear and stress, but less is known about whether voluntarily consumed alcohol imparts differential effects based on adolescence phases and biological sex. Here, adolescent male and female Long Evans rats were granted daily access to alcohol (15%) during either early (Early-EtOH; P25-45) or late adolescence (Late-EtOH; P45-55) using a modified drinking-in-the-dark design. Upon adulthood (P75-80), rats were exposed to a three-context (ABC) fear renewal procedure. We found that male and female Early-EtOH rats showed faster acquisition of fear but less freezing during early phases of extinction and throughout fear renewal. In the extinction period specifically, Early-EtOH rats showed normal levels of freezing in the presence of fear-associated cues, but abnormally low freezing immediately after cue offset, suggesting a key disruption in contextual processing and/or novelty seeking brought by early adolescent binge consumption. While the effects of alcohol were most pronounced in the Early-EtOH rats (particularly in females), Late-EtOH rats displayed some changes in fear behavior including slower fear acquisition, faster extinction, and reduced renewal compared with controls, but primarily in males. Our results suggest that early adolescence in males and females and, to a lesser extent, late adolescence in males is a particularly vulnerable period wherein alcohol use can promote stress-related dysfunction in adulthood. Furthermore, our results provide multiple bases for future research focused on developmental correlates of alcohol mediated disruption in the brain.
Collapse
Affiliation(s)
- J Alex Grizzell
- Dept Psychology & Neuroscience, University of Colorado Boulder, Boulder CO, 80301
- Dept of Neuroscience and Behavioral Biology, Emory University, Atlanta GA 30322
| | - Maryam Vanbaelinghem
- Dept Psychology & Neuroscience, University of Colorado Boulder, Boulder CO, 80301
| | - Jessica Westerman
- Dept Psychology & Neuroscience, University of Colorado Boulder, Boulder CO, 80301
| | - Michael P Saddoris
- Dept Psychology & Neuroscience, University of Colorado Boulder, Boulder CO, 80301
| |
Collapse
|
7
|
Crews FT, Coleman LG, Macht VA, Vetreno RP. Targeting Persistent Changes in Neuroimmune and Epigenetic Signaling in Adolescent Drinking to Treat Alcohol Use Disorder in Adulthood. Pharmacol Rev 2023; 75:380-396. [PMID: 36781218 PMCID: PMC9969522 DOI: 10.1124/pharmrev.122.000710] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/24/2022] [Accepted: 10/28/2022] [Indexed: 12/15/2022] Open
Abstract
Studies universally find early age of drinking onset is linked to lifelong risks of alcohol problems and alcohol use disorder (AUD). Assessment of the lasting effect of drinking during adolescent development in humans is confounded by the diversity of environmental and genetic factors that affect adolescent development, including emerging personality disorders and progressive increases in drinking trajectories into adulthood. Preclinical studies using an adolescent intermittent ethanol (AIE) exposure rat model of underage binge drinking avoid the human confounds and support lifelong changes that increase risks. AIE increases adult alcohol drinking, risky decision-making, reward-seeking, and anxiety as well as reductions in executive function that all increase risks for the development of an AUD. AIE causes persistent increases in brain neuroimmune signaling high-mobility group box 1 (HMGB1), Toll-like receptor, receptor for advanced glycation end products, and innate immune genes that are also found to be increased in human AUD brain. HMGB1 is released from cells by ethanol, both free and within extracellular vesicles, that act on neurons and glia, shifting transcription and cellular phenotype. AIE-induced decreases in adult hippocampal neurogenesis and loss of basal forebrain cholinergic neurons are reviewed as examples of persistent AIE-induced pathology. Both are prevented and reversed by anti-inflammatory and epigenetic drugs. Findings suggest AIE-increased HMGB1 signaling induces the RE-1 silencing transcript blunting cholinergic gene expression, shifting neuronal phenotype. Inhibition of HMGB1 neuroimmune signaling, histone methylation enzymes, and galantamine, the cholinesterase inhibitor, both prevent and reverse AIE pathology. These findings provide new targets that may reverse AUD neuropathology as well as other brain diseases linked to neuroimmune signaling. SIGNIFICANCE STATEMENT: Adolescent underage binge drinking studies find that earlier adolescent drinking is associated with lifelong alcohol problems including high levels of lifetime alcohol use disorder (AUD). Preclinical studies find the underage binge drinking adolescent intermittent ethanol (AIE) model causes lasting changes in adults that increase risks of developing adult alcohol problems. Loss of hippocampal neurogenesis and loss of basal forebrain cholinergic neurons provide examples of how AIE-induced epigenetic and neuroimmune signaling provide novel therapeutic targets for adult AUD.
Collapse
Affiliation(s)
- Fulton T Crews
- Bowles Center for Alcohol Studies and Departments of Pharmacology and Psychiatry, School of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Leon G Coleman
- Bowles Center for Alcohol Studies and Departments of Pharmacology and Psychiatry, School of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Victoria A Macht
- Bowles Center for Alcohol Studies and Departments of Pharmacology and Psychiatry, School of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Ryan P Vetreno
- Bowles Center for Alcohol Studies and Departments of Pharmacology and Psychiatry, School of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| |
Collapse
|
8
|
Asarch AM, Kruse LC, Schindler AG, Phillips PEM, Clark JJ. Sexually dimorphic development of the mesolimbic dopamine system is associated with nuanced sensitivity to adolescent alcohol use. Front Behav Neurosci 2023; 17:1124979. [PMID: 36910128 PMCID: PMC9992416 DOI: 10.3389/fnbeh.2023.1124979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/30/2023] [Indexed: 02/24/2023] Open
Abstract
Alcohol use remains a major public health concern and is especially prevalent during adolescence. Adolescent alcohol use has been linked to several behavioral abnormalities in later life, including increased risk taking and impulsivity. Accordingly, when modeled in animals, male rats that had moderate alcohol consumption during adolescence exhibit multiple effects in adulthood, including increased risk taking, altered incentive learning, and greater release of dopamine in the mesolimbic pathway. It has been proposed that alcohol arrests neural development, "locking in" adolescent physiological, and consequent behavioral, phenotypes. Here we examined the feasibility that the elevated dopamine levels following adolescent alcohol exposure are a "locked in" phenotype by testing mesolimbic dopamine release across adolescent development. We found that in male rats, dopamine release peaks in late adolescence, returning to lower levels in adulthood, consistent with the notion that high dopamine levels in adolescence-alcohol-exposed adults were due to arrested development. Surprisingly, dopamine release in females was stable across the tested developmental window. This result raised a quandary that arrested dopamine levels would not differ from normal development in females and, therefore, may not contribute to pathological behavior. However, the aforementioned findings related to risk-based decision-making have only been performed in male subjects. When we tested females that had undergone adolescent alcohol use, we found that neither risk attitude during probabilistic decision-making nor mesolimbic dopamine release was altered. These findings suggest that different developmental profiles of the mesolimbic dopamine system across sexes result in dimorphic susceptibility to alcohol-induced cognitive and motivational anomalies exposure.
Collapse
Affiliation(s)
- Ari M Asarch
- Center for Neurobiology of Addiction, Pain & Emotion, University of Washington, Seattle, WA, United States.,Department of Psychiatry & Behavioral Sciences, University of Washington, Seattle, WA, United States.,Graduate Program in Neuroscience, University of Washington, Seattle, WA, United States
| | - Lauren C Kruse
- Center for Neurobiology of Addiction, Pain & Emotion, University of Washington, Seattle, WA, United States.,Department of Psychiatry & Behavioral Sciences, University of Washington, Seattle, WA, United States
| | - Abigail G Schindler
- Center for Neurobiology of Addiction, Pain & Emotion, University of Washington, Seattle, WA, United States.,Department of Psychiatry & Behavioral Sciences, University of Washington, Seattle, WA, United States.,Graduate Program in Neuroscience, University of Washington, Seattle, WA, United States.,VA Puget Sound Health Care System, Seattle, WA, United States
| | - Paul E M Phillips
- Center for Neurobiology of Addiction, Pain & Emotion, University of Washington, Seattle, WA, United States.,Department of Psychiatry & Behavioral Sciences, University of Washington, Seattle, WA, United States.,Graduate Program in Neuroscience, University of Washington, Seattle, WA, United States.,Department of Pharmacology, University of Washington, Seattle, WA, United States
| | - Jeremy J Clark
- Center for Neurobiology of Addiction, Pain & Emotion, University of Washington, Seattle, WA, United States.,Department of Psychiatry & Behavioral Sciences, University of Washington, Seattle, WA, United States.,Graduate Program in Neuroscience, University of Washington, Seattle, WA, United States
| |
Collapse
|
9
|
Goutaudier R, Joly F, Mallet D, Bartolomucci M, Guicherd D, Carcenac C, Vossier F, Dufourd T, Boulet S, Deransart C, Chovelon B, Carnicella S. Hypodopaminergic state of the nigrostriatal pathway drives compulsive alcohol use. Mol Psychiatry 2023; 28:463-474. [PMID: 36376463 PMCID: PMC9812783 DOI: 10.1038/s41380-022-01848-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022]
Abstract
The neurobiological mechanisms underlying compulsive alcohol use, a cardinal feature of alcohol use disorder, remain elusive. The key modulator of motivational processes, dopamine (DA), is suspected to play an important role in this pathology, but its exact role remains to be determined. Here, we found that rats expressing compulsive-like alcohol use, operationalized as punishment-resistant self-administration, showed a decrease in DA levels restricted to the dorsolateral territories of the striatum, the main output structure of the nigrostriatal DA pathway. We then causally demonstrated that chemogenetic-induced selective hypodopaminergia of this pathway resulted in compulsive-like alcohol self-administration in otherwise resilient rats, accompanied by the emergence of alcohol withdrawal-like motivational impairments (i.e., impaired motivation for a natural reinforcer). Finally, the use of the monoamine stabilizer OSU6162, previously reported to correct hypodopaminergic states, transiently decreased compulsive-like alcohol self-administration in vulnerable rats. These results suggest a potential critical role of tonic nigrostriatal hypodopaminergic states in alcohol addiction and provide new insights into our understanding of the neurobiological mechanisms underlying compulsive alcohol use.
Collapse
Affiliation(s)
- Raphaël Goutaudier
- grid.462307.40000 0004 0429 3736Inserm, U1216, Univ. Grenoble Alpes, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Fanny Joly
- grid.462307.40000 0004 0429 3736Inserm, U1216, Univ. Grenoble Alpes, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - David Mallet
- grid.462307.40000 0004 0429 3736Inserm, U1216, Univ. Grenoble Alpes, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Magali Bartolomucci
- grid.462307.40000 0004 0429 3736Inserm, U1216, Univ. Grenoble Alpes, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Denis Guicherd
- grid.410529.b0000 0001 0792 4829Service de Biochimie, Biologie Moléculaire, Toxicologie Environnementale, CHU de Grenoble-Alpes Site Nord − Institut de Biologie et de Pathologie, F-38041 Grenoble, France
| | - Carole Carcenac
- grid.462307.40000 0004 0429 3736Inserm, U1216, Univ. Grenoble Alpes, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Frédérique Vossier
- grid.462307.40000 0004 0429 3736Inserm, U1216, Univ. Grenoble Alpes, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Thibault Dufourd
- grid.462307.40000 0004 0429 3736Inserm, U1216, Univ. Grenoble Alpes, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Sabrina Boulet
- grid.462307.40000 0004 0429 3736Inserm, U1216, Univ. Grenoble Alpes, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Colin Deransart
- grid.462307.40000 0004 0429 3736Inserm, U1216, Univ. Grenoble Alpes, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Benoit Chovelon
- grid.410529.b0000 0001 0792 4829Service de Biochimie, Biologie Moléculaire, Toxicologie Environnementale, CHU de Grenoble-Alpes Site Nord − Institut de Biologie et de Pathologie, F-38041 Grenoble, France ,grid.4444.00000 0001 2112 9282Univ. Grenoble Alpes, CNRS, DPM, 38000 Grenoble, France
| | - Sebastien Carnicella
- Inserm, U1216, Univ. Grenoble Alpes, Grenoble Institut Neurosciences, 38000, Grenoble, France.
| |
Collapse
|
10
|
Ruffolo J, Frie JA, Thorpe HHA, Talhat MA, Khokhar JY. Alcohol and Vaporized Nicotine Co-Exposure During Adolescence Contribute Differentially to Sex-Specific Behavioral Effects in Adulthood. Nicotine Tob Res 2021; 24:1177-1185. [PMID: 34865152 DOI: 10.1093/ntr/ntab250] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/25/2021] [Accepted: 11/30/2021] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Co-occurrence of e-cigarette use and alcohol consumption during adolescence is frequent. Here, we examined whether adolescent co-exposure to alcohol drinking and vaporized nicotine would impact reward- and cognition-related behaviors in adult male and female rats during adulthood. METHODS Four groups of male and female Sprague Dawley rats (n=8-11/group/sex) received either nicotine (JUUL 5% nicotine pods) or vehicle vapor for 10 minutes daily between postnatal days 30-46, while having continuous voluntary access to ethanol and water during this time in a two-bottle preference design. Upon reaching adulthood, all rats underwent behavioral testing (i.e., Pavlovian conditioned approach testing, fear conditioning and a two-bottle alcohol preference). RESULTS A sex-dependent effect, not related to adolescent nicotine or alcohol exposure, on alcohol drinking in adulthood was found, such that females had a higher intake and preference for alcohol compared to males; both male and female adult rats also had greater alcohol preference compared to their alcohol preference as adolescents. Male rats exposed to vaporized nicotine with or without alcohol drinking during adolescence exhibited altered reward-related learning in adulthood, evidenced by enhanced levels of sign-tracking behavior. Male rats that drank alcohol with or without nicotine vapor in adolescence showed deficits in associative fear learning and memory as adults. In contrast, these effects were not seen in female rats exposed to alcohol and nicotine vapor during adolescence. CONCLUSIONS The present study provides evidence that co-exposure to alcohol and vaporized nicotine during adolescence in male, but not female, rats produces long-term changes in reward- and cognition-related behaviors. IMPLICATIONS These findings enhance our understanding of the effects of alcohol drinking and nicotine vapor exposure in adolescence. Moreover, they highlight potential sex differences that exist in the response to alcohol and nicotine vapor, underscoring the need for follow-up studies elucidating the neurobiological mechanisms that drive these sex differences, as well as the long-term effects of alcohol and nicotine vapor use.
Collapse
Affiliation(s)
- Jessica Ruffolo
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada.,Collaborative Neurosciences Graduate Program, University of Guelph, Guelph, ON, Canada
| | - Jude A Frie
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada.,Collaborative Neurosciences Graduate Program, University of Guelph, Guelph, ON, Canada
| | - Hayley H A Thorpe
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada.,Collaborative Neurosciences Graduate Program, University of Guelph, Guelph, ON, Canada
| | | | - Jibran Y Khokhar
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada.,Collaborative Neurosciences Graduate Program, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
11
|
Gómez-A A, Dannenhoffer CA, Elton A, Lee SH, Ban W, Shih YYI, Boettiger CA, Robinson DL. Altered Cortico-Subcortical Network After Adolescent Alcohol Exposure Mediates Behavioral Deficits in Flexible Decision-Making. Front Pharmacol 2021; 12:778884. [PMID: 34912227 PMCID: PMC8666507 DOI: 10.3389/fphar.2021.778884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/03/2021] [Indexed: 12/24/2022] Open
Abstract
Behavioral flexibility, the ability to modify behavior according to changing conditions, is essential to optimize decision-making. Deficits in behavioral flexibility that persist into adulthood are one consequence of adolescent alcohol exposure, and another is decreased functional connectivity in brain structures involved in decision-making; however, a link between these two outcomes has not been established. We assessed effects of adolescent alcohol and sex on both Pavlovian and instrumental behaviors and resting-state functional connectivity MRI in adult animals to determine associations between behavioral flexibility and resting-state functional connectivity. Alcohol exposure impaired attentional set reversals and decreased functional connectivity among cortical and subcortical regions-of-interest that underlie flexible behavior. Moreover, mediation analyses indicated that adolescent alcohol-induced reductions in functional connectivity within a subnetwork of affected brain regions statistically mediated errors committed during reversal learning. These results provide a novel link between persistent reductions in brain functional connectivity and deficits in behavioral flexibility resulting from adolescent alcohol exposure.
Collapse
Affiliation(s)
- Alexander Gómez-A
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, United States
| | - Carol A. Dannenhoffer
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, United States
| | - Amanda Elton
- Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, NC, United States
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, United States
| | - Sung-Ho Lee
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, United States
- Department of Neurology, University of North Carolina, Chapel Hill, NC, United States
| | - Woomi Ban
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, United States
| | - Yen-Yu Ian Shih
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, United States
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, United States
- Department of Neurology, University of North Carolina, Chapel Hill, NC, United States
- Neuroscience Curriculum, University of North Carolina, Chapel Hill, NC, United States
| | - Charlotte A. Boettiger
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, United States
- Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, NC, United States
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, United States
- Neuroscience Curriculum, University of North Carolina, Chapel Hill, NC, United States
| | - Donita L. Robinson
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, United States
- Neuroscience Curriculum, University of North Carolina, Chapel Hill, NC, United States
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, United States
| |
Collapse
|
12
|
Melbourne JK, Chandler CM, Van Doorn CE, Bardo MT, Pauly JR, Peng H, Nixon K. Primed for addiction: A critical review of the role of microglia in the neurodevelopmental consequences of adolescent alcohol drinking. Alcohol Clin Exp Res 2021; 45:1908-1926. [PMID: 34486128 PMCID: PMC8793635 DOI: 10.1111/acer.14694] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/22/2021] [Accepted: 08/03/2021] [Indexed: 12/15/2022]
Abstract
Alcohol is one of the most widely used recreational substances worldwide, with drinking frequently initiated during adolescence. The developmental state of the adolescent brain makes it vulnerable to initiating alcohol use, often in high doses, and particularly susceptible to alcohol-induced brain changes. Microglia, the brain parenchymal macrophages, have been implicated in mediating some of these effects, though the role that these cells play in the progression from alcohol drinking to dependence remains unclear. Microglia are uniquely positioned to sense and respond to central nervous system insult, and are now understood to exhibit innate immune memory, or "priming," altering their future functional responses based on prior exposures. In alcohol use disorders (AUDs), the role of microglia is debated. Whereas microglial activation can be pathogenic, contributing to neuroinflammation, tissue damage, and behavioral changes, or protective, it can also engage protective functions, providing support and mediating the resolution of damage. Understanding the role of microglia in adolescent AUDs is complicated by the fact that microglia are thought to be involved in developmental processes such as synaptic refinement and myelination, which underlie the functional maturation of multiple brain systems in adolescence. Thus, the role microglia play in the impact of alcohol use in adolescence is likely multifaceted. Long-term sequelae may be due to a failure to recover from EtOH-induced tissue damage, altered neurodevelopmental trajectories, and/or persistent changes to microglial responsivity and function. Here, we review critically the literature surrounding the effects of alcohol on microglia in models of adolescent alcohol misuse. We attempt to disentangle what is known about microglia from other neuroimmune effectors, to which we apply recent discoveries on the role of microglia in development and plasticity. Considered altogether, these studies challenge assumptions that proinflammatory microglia drive addiction. Alcohol priming microglia and thereby perturbing their homeostatic roles in neurodevelopment, especially during critical periods of plasticity such as adolescence, may have more serious implications for the neuropathogenesis of AUDs in adolescents.
Collapse
Affiliation(s)
- Jennifer K. Melbourne
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas, USA
| | - Cassie M. Chandler
- Department of Psychology, University of Kentucky, Lexington, Kentucky, USA
| | | | - Michael T. Bardo
- Department of Psychology, University of Kentucky, Lexington, Kentucky, USA
| | - James R. Pauly
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Hui Peng
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Kimberly Nixon
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
13
|
Robinson DL, Amodeo LR, Chandler LJ, Crews FT, Ehlers CL, Gómez-A A, Healey KL, Kuhn CM, Macht VA, Marshall SA, Swartzwelder HS, Varlinskaya EI, Werner DF. The role of sex in the persistent effects of adolescent alcohol exposure on behavior and neurobiology in rodents. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 160:305-340. [PMID: 34696877 DOI: 10.1016/bs.irn.2021.07.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Alcohol drinking is often initiated during adolescence, and this frequently escalates to binge drinking. As adolescence is also a period of dynamic neurodevelopment, preclinical evidence has highlighted that some of the consequences of binge drinking can be long lasting with deficits persisting into adulthood in a variety of cognitive-behavioral tasks. However, while the majority of preclinical work to date has been performed in male rodents, the rapid increase in binge drinking in adolescent female humans has re-emphasized the importance of addressing alcohol effects in the context of sex as a biological variable. Here we review several of the consequences of adolescent ethanol exposure in light of sex as a critical biological variable. While some alcohol-induced outcomes, such as non-social approach/avoidance behavior and sleep disruption, are generally consistent across sex, others are variable across sex, such as alcohol drinking, sensitivity to ethanol, social anxiety-like behavior, and induction of proinflammatory markers.
Collapse
Affiliation(s)
- Donita L Robinson
- Neurobiology of Adolescent Drinking in Adulthood Consortium (NADIA), United States; Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
| | - Leslie R Amodeo
- Neurobiology of Adolescent Drinking in Adulthood Consortium (NADIA), United States; Department of Psychology, California State University, San Bernardino, CA, United States
| | - L Judson Chandler
- Neurobiology of Adolescent Drinking in Adulthood Consortium (NADIA), United States; Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| | - Fulton T Crews
- Neurobiology of Adolescent Drinking in Adulthood Consortium (NADIA), United States; Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Cindy L Ehlers
- Neurobiology of Adolescent Drinking in Adulthood Consortium (NADIA), United States; Department of Neuroscience, Scripps Research, La Jolla, CA, United States
| | - Alexander Gómez-A
- Neurobiology of Adolescent Drinking in Adulthood Consortium (NADIA), United States; Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Kati L Healey
- Neurobiology of Adolescent Drinking in Adulthood Consortium (NADIA), United States; Department of Psychiatry and Behavioral Sciences, School of Medicine, Duke University, Durham, NC, United States
| | - Cynthia M Kuhn
- Neurobiology of Adolescent Drinking in Adulthood Consortium (NADIA), United States; Department of Pharmacology and Cancer Biology, School of Medicine, Duke University, Durham, NC, United States
| | - Victoria A Macht
- Neurobiology of Adolescent Drinking in Adulthood Consortium (NADIA), United States; Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - S Alexander Marshall
- Neurobiology of Adolescent Drinking in Adulthood Consortium (NADIA), United States; Biological and Biomedical Sciences Department, North Carolina Central University, Durham, NC, United States
| | - H Scott Swartzwelder
- Neurobiology of Adolescent Drinking in Adulthood Consortium (NADIA), United States; Department of Psychiatry and Behavioral Sciences, School of Medicine, Duke University, Durham, NC, United States
| | - Elena I Varlinskaya
- Neurobiology of Adolescent Drinking in Adulthood Consortium (NADIA), United States; Center for Development and Behavioral Neuroscience, Department of Psychology, Binghamton University, Binghamton, NY, United States
| | - David F Werner
- Neurobiology of Adolescent Drinking in Adulthood Consortium (NADIA), United States; Center for Development and Behavioral Neuroscience, Department of Psychology, Binghamton University, Binghamton, NY, United States
| |
Collapse
|
14
|
Elton A, Faulkner ML, Robinson DL, Boettiger CA. Acute depletion of dopamine precursors in the human brain: effects on functional connectivity and alcohol attentional bias. Neuropsychopharmacology 2021; 46:1421-1431. [PMID: 33727642 PMCID: PMC8209208 DOI: 10.1038/s41386-021-00993-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 02/20/2021] [Accepted: 02/23/2021] [Indexed: 02/07/2023]
Abstract
Individuals who abuse alcohol often show exaggerated attentional bias (AB) towards alcohol-related cues, which is thought to reflect reward conditioning processes. Rodent studies indicate that dopaminergic pathways play a key role in conditioned responses to reward- and alcohol-associated cues. However, investigation of the dopaminergic circuitry mediating this process in humans remains limited. We hypothesized that depletion of central dopamine levels in adult alcohol drinkers would attenuate AB and that these effects would be mediated by altered function in frontolimbic circuitry. Thirty-four male participants (22-38 years, including both social and heavy drinkers) underwent a two-session, placebo-controlled, double-blind dopamine precursor depletion procedure. At each visit, participants consumed either a balanced amino acid (control) beverage or an amino acid beverage lacking dopamine precursors (order counterbalanced), underwent resting-state fMRI, and completed behavioral testing on three AB tasks: an alcohol dot-probe task, an alcohol attentional blink task, and a task measuring AB to a reward-conditioned cue. Dopamine depletion significantly diminished AB in each behavioral task, with larger effects among subjects reporting higher levels of binge drinking. The depletion procedure significantly decreased resting-state functional connectivity among ventral tegmental area, striatum, amygdala, and prefrontal regions. Beverage-related AB decreases were mediated by decreases in functional connectivity between the fronto-insular cortex and striatum and, for alcohol AB only, between anterior cingulate cortex and amygdala. The results support a substantial role for dopamine in AB, and suggest specific dopamine-modulated functional connections between frontal, limbic, striatal, and brainstem regions mediate general reward AB versus alcohol AB.
Collapse
Affiliation(s)
- Amanda Elton
- Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, NC, USA
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
| | - Monica L Faulkner
- Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, NC, USA
| | - Donita L Robinson
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, USA
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - Charlotte A Boettiger
- Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, NC, USA.
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, USA.
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
15
|
Effects of vapourized THC and voluntary alcohol drinking during adolescence on cognition, reward, and anxiety-like behaviours in rats. Prog Neuropsychopharmacol Biol Psychiatry 2021; 106:110141. [PMID: 33069816 DOI: 10.1016/j.pnpbp.2020.110141] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/22/2020] [Accepted: 10/10/2020] [Indexed: 12/20/2022]
Abstract
Cannabis and alcohol co-use is prevalent in adolescence, but the long-term behavioural effects of this co-use remain largely unexplored. The aim of this study is to investigate the effects of adolescent alcohol and Δ9-tetrahydracannabinol (THC) vapour co-exposure on cognitive- and reward-related behaviours. Male Sprague-Dawley rats received vapourized THC (10 mg vapourized THC/four adolescent rats) or vehicle every other day (from post-natal day (PND) 28-42) and had continuous voluntary access to ethanol (10% volume/volume) in adolescence. Alcohol intake was measured during the exposure period to assess the acute effects of THC on alcohol consumption. In adulthood (PND 56+), rats underwent behavioural testing. Adolescent rats showed higher alcohol preference, assessed using the two-bottle choice test, on days on which they were not exposed to THC vapour. In adulthood, rats that drank alcohol as adolescents exhibited short-term memory deficits and showed decreased alcohol preference; on the other hand, rats exposed to THC vapour showed learning impairments in the delay-discounting task. Vapourized THC, alcohol or their combination had no effect on anxiety-like behaviours in adulthood. Our results show that although adolescent THC exposure acutely affects alcohol drinking, adolescent alcohol and cannabis co-use may not produce long-term additive effects.
Collapse
|
16
|
Lozano A, Liu F, Lee TK, Prado G, Schwartz SJ, Leventhal AM, Kelleghan AR, Unger JB, Barrington-Trimis JL. Bidirectional associations between e-cigarette use and alcohol use across adolescence. Drug Alcohol Depend 2021; 220:108496. [PMID: 33461153 PMCID: PMC8320369 DOI: 10.1016/j.drugalcdep.2020.108496] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Evidence on prospective bidirectional associations between e-cigarette and alcohol use among adolescents can inform prevention and policy but is largely absent from the literature. METHODS Data were drawn from a prospective cohort of students attending 10 Los Angeles high schools (N = 3396; baseline mean age = 14.1, SD = 0.4). Students completed surveys every 6-months from 2013 to 2017; 8 total waves. Analyses were restricted to (a) individuals who were never users of alcohol (N = 2394) or (b) individuals who were never users of e-cigarettes (N = 2704) at baseline. Repeated-measures, generalized linear mixed models were used to estimate the adjusted odds of past 6-month alcohol and e-cigarette initiation, in separate models. RESULTS Among alcohol never-users at baseline, 15.7 % (N = 375) initiated alcohol use over the study period. Compared to never-users of e-cigarettes, those who reported use of e-cigarettes had 3.5 times the odds of subsequently initiating alcohol use in the following wave (OR = 3.54; 95 % CI: 2.81, 4.47). Stronger associations were observed for males (OR = 4.94; 95 % CI: 3.78, 6.45) than for females (OR = 3.21; 95 % CI: 2.33, 4.41; pinteraction = 0.04). Among e-cigarette never-users at baseline, 26.3 % (N = 709) initiated e-cigarette use over the study period. Compared to never-users of alcohol, those who reported use of alcohol had 3.2 times the odds of subsequently initiating e-cigarette use in the following wave (OR = 3.23; 95 % CI: 2.68, 3.89). This association did not differ by gender. CONCLUSIONS E-cigarette and alcohol use can be markers to identify youth at risk for future alcohol and e-cigarette use, respectively. Research examining mechanisms underlying these associations is needed to infer causality.
Collapse
Affiliation(s)
- Alyssa Lozano
- Department of Public Health Sciences, University of Miami Miller School of Medicine, 1120 NW 14th Street, Miami, FL, 33136, USA
| | - Feifei Liu
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, 2001 N. Soto Street, Los Angeles, CA, 90089, USA
| | - Tae Kyoung Lee
- Department of Public Health Sciences, University of Miami Miller School of Medicine, 1120 NW 14th Street, Miami, FL, 33136, USA
| | - Guillermo Prado
- School of Nursing and Health Studies, University of Miami, Coral Gables, FL, 33143, USA
| | - Seth J Schwartz
- Department of Public Health Sciences, University of Miami Miller School of Medicine, 1120 NW 14th Street, Miami, FL, 33136, USA; Departments of Kinesiology, Health Education, and Counseling Psychology, College of Education, University of Texas at Austin, 1912 Speedway, Stop D5000, Austin, TX, 78712, USA
| | - Adam M Leventhal
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, 2001 N. Soto Street, Los Angeles, CA, 90089, USA
| | - Annemarie R Kelleghan
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, 2001 N. Soto Street, Los Angeles, CA, 90089, USA; Department of Psychology, University of Southern California, 3620 S. McClintock Ave. SGM 501, Los Angeles, CA, 90089, USA
| | - Jennifer B Unger
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, 2001 N. Soto Street, Los Angeles, CA, 90089, USA
| | - Jessica L Barrington-Trimis
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, 2001 N. Soto Street, Los Angeles, CA, 90089, USA.
| |
Collapse
|
17
|
Abstract
Abstract
Purpose of Review
Current theories of alcohol use disorders (AUD) highlight the importance of Pavlovian and instrumental learning processes mainly based on preclinical animal studies. Here, we summarize available evidence for alterations of those processes in human participants with AUD with a focus on habitual versus goal-directed instrumental learning, Pavlovian conditioning, and Pavlovian-to-instrumental transfer (PIT) paradigms.
Recent Findings
The balance between habitual and goal-directed control in AUD participants has been studied using outcome devaluation or sequential decision-making procedures, which have found some evidence of reduced goal-directed/model-based control, but little evidence for stronger habitual responding. The employed Pavlovian learning and PIT paradigms have shown considerable differences regarding experimental procedures, e.g., alcohol-related or conventional reinforcers or stimuli.
Summary
While studies of basic learning processes in human participants with AUD support a role of Pavlovian and instrumental learning mechanisms in the development and maintenance of drug addiction, current studies are characterized by large variability regarding methodology, sample characteristics, and results, and translation from animal paradigms to human research remains challenging. Longitudinal approaches with reliable and ecologically valid paradigms of Pavlovian and instrumental processes, including alcohol-related cues and outcomes, are warranted and should be combined with state-of-the-art imaging techniques, computational approaches, and ecological momentary assessment methods.
Collapse
|
18
|
Blum K, Bowirrat A, Gondre Lewis MC, Simpatico TA, Ceccanti M, Steinberg B, Modestino EJ, Thanos PK, Baron D, McLaughlin T, Brewer R, Badgaiyan RD, Ponce JV, Lott L, Gold MS. Exploration of Epigenetic State Hyperdopaminergia (Surfeit) and Genetic Trait Hypodopaminergia (Deficit) During Adolescent Brain Development. ACTA ACUST UNITED AC 2021; 10. [PMID: 34707969 DOI: 10.2174/2211556010666210215155509] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background The risk for all addictive drug and non-drug behaviors, especially, in the unmyelinated Prefrontal Cortex (PFC) of adolescents, is important and complex. Many animal and human studies show the epigenetic impact on the developing brain in adolescents, compared to adults. Some reveal an underlying hyperdopaminergia that seems to set our youth up for risky behaviors by inducing high quanta pre-synaptic dopamine release at reward site neurons. In addition, altered reward gene expression in adolescents caused epigenetically by social defeat, like bullying, can continue into adulthood. In contrast, there is also evidence that epigenetic events can elicit adolescent hypodopaminergia. This complexity suggests that neuroscience cannot make a definitive claim that all adolescents carry a hyperdopaminergia trait. Objective The primary issue involves the question of whether there exists a mixed hypo or hyper-dopaminergia in this population. Method Genetic Addiction Risk Score (GARS®) testing was carried out of 24 Caucasians of ages 12-19, derived from families with RDS. Results We have found that adolescents from this cohort, derived from RDS parents, displayed a high risk for any addictive behavior (a hypodopaminergia), especially, drug-seeking (95%) and alcohol-seeking (64%). Conclusion The adolescents in our study, although more work is required, show a hypodopaminergic trait, derived from a family with Reward Deficiency Syndrome (RDS). Certainly, in future studies, we will analyze GARS in non-RDS Caucasians between the ages of 12-19. The suggestion is first to identify risk alleles with the GARS test and, then, use well-researched precision, pro-dopamine neutraceutical regulation. This "two-hit" approach might prevent tragic fatalities among adolescents, in the face of the American opioid/psychostimulant epidemic.
Collapse
Affiliation(s)
- Kenneth Blum
- Western University Health Sciences, Graduate School of Biomedical Sciences, Pomona, CA.,Eotvos Loránd University, Institute of Psychology, Budapest, Hungary.,Department of Psychiatry, Wright State University Boonshoft School of Medicine and Dayton VA Medical Centre, Dayton, OH., USA.,Department of Psychiatry, University of Vermont School of Medicine, Burlington, VA., USA.,Division of Precision Addiction Management, Geneus Health, LLC., San Antonio, TX.,Center for Genomics and Applied Gene Technology, Institute of Integrative Omics and applied Biotechnology (IIOAB), Nonakuri, Purbe Medinpur, West Bengal, India
| | - Abdalla Bowirrat
- Department of Neuroscience, Interdisciplinary Center (IDC) Herzliya, Israel
| | - Marjorie C Gondre Lewis
- Departments of Anatomy & Psychiatry & Behavioural Sciences, Howard University School of Medicine, Washington, DC,USA
| | - Thomas A Simpatico
- Department of Psychiatry, University of Vermont School of Medicine, Burlington, VA., USA
| | - Mauro Ceccanti
- Department of Translational and Precision Medicine, Sapienza University, Rome - Italy
| | | | | | - Panayotis K Thanos
- Behavior Neuropharmacology and Neuroimaging Lab, Department of Psychology, University of Buffalo Institute of Addiction Research, NY, USA
| | - David Baron
- Western University Health Sciences, Graduate School of Biomedical Sciences, Pomona, CA
| | | | - Raymond Brewer
- Division of Precision Addiction Management, Geneus Health, LLC., San Antonio, TX
| | - Rajendra D Badgaiyan
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY and Department of Psychiatry, South Texas Veteran Health Care System, Audie L. Murphy Memorial VA Hospital, San Antonio, TX, Long School of Medicine, University of Texas Medical Center, San Antonio, TX, USA
| | - Jessica Valdez Ponce
- Division of Precision Addiction Management, Geneus Health, LLC., San Antonio, TX
| | - Lisa Lott
- Division of Precision Addiction Management, Geneus Health, LLC., San Antonio, TX
| | - Mark S Gold
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO., USA
| |
Collapse
|
19
|
Vargas-Martínez AM, Trapero-Bertran M, Lima-Serrano M, Anokye N, Pokhrel S, Mora T. Measuring the effects on quality of life and alcohol consumption of a program to reduce binge drinking in Spanish adolescents. Drug Alcohol Depend 2019; 205:107597. [PMID: 31590139 DOI: 10.1016/j.drugalcdep.2019.107597] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/06/2019] [Accepted: 07/22/2019] [Indexed: 10/25/2022]
Abstract
AIM To present a comparison between the effects on health due to a reduction in binge drinking (BD) and health-related quality of life (HRQoL), as a result of ALERTA ALCOHOL, an intervention aimed at reducing BD in Spanish adolescents. METHODS A two-arm cluster randomized controlled trial was conducted with an intervention and a control group, randomized at the school level, following individuals over four months. The study population consisted of Andalusian adolescents aged 15 to 19 years who were enrolled in urban public high schools (n = 1247). Participants were assigned randomly to receive the intervention. The main outcomes studied were the number of occasions of BD in the last 30 days, which was directly obtained from the answers given by the adolescents, and HRQoL measured with the EQ-5D-5 L questionnaire. The model of estimation was the generalized estimating equations (GEE) approach. RESULTS The program showed a BD reduction at the 4-month follow-up, although it was not shown to significantly increase the HRQoL in adolescents who reduced the number of occasions of BD and had received the intervention. However, it was shown that those who would predictably reduce the number of occasions of BD controlled by several sociodemographic variables perceived a higher HRQoL, as did those who had a greater adherence to the program. CONCLUSIONS Higher adherence to a web-based computer-tailored intervention to prevent BD in adolescents has a positive effect on decreasing the number of occasions of BD in adolescents as well as on increasing participants' HRQoL, although this second effect is very small, which could be due to the short follow-up time. This fact is quite important and should be assessed extensively to corroborate the results and translate into health policy.
Collapse
Affiliation(s)
- Ana Magdalena Vargas-Martínez
- Department of Nursing, Faculty of Nursing, Physiotherapy and Podiatry, University of Seville, Seville, Spain; Research Institute for Evaluation and Public Policies (IRAPP), Universitat Internacional de Catalunya, Barcelona, Spain.
| | - Marta Trapero-Bertran
- Research Institute for Evaluation and Public Policies (IRAPP), Universitat Internacional de Catalunya, Barcelona, Spain.
| | - Marta Lima-Serrano
- Department of Nursing, Faculty of Nursing, Physiotherapy and Podiatry, University of Seville, Seville, Spain.
| | - Nana Anokye
- Health Economics Research Group (HERG), Brunel University, Uxbridge, London, UK.
| | - Subhash Pokhrel
- Health Economics Research Group (HERG), Brunel University, Uxbridge, London, UK.
| | - Toni Mora
- Research Institute for Evaluation and Public Policies (IRAPP), Universitat Internacional de Catalunya, Barcelona, Spain.
| |
Collapse
|
20
|
Thorpe HHA, Hamidullah S, Jenkins BW, Khokhar JY. Adolescent neurodevelopment and substance use: Receptor expression and behavioral consequences. Pharmacol Ther 2019; 206:107431. [PMID: 31706976 DOI: 10.1016/j.pharmthera.2019.107431] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2019] [Indexed: 12/18/2022]
Abstract
Adolescence is the transitional period between childhood and adulthood, during which extensive brain development occurs. Since this period also overlaps with the initiation of drug use, it is important to consider how substance use during this time might produce long-term neurobiological alterations, especially against the backdrop of developmental changes in neurotransmission. Alcohol, cannabis, nicotine, and opioids all produce marked changes in the expression and function of the neurotransmitter and receptor systems with which they interact. These acute and chronic alterations also contribute to behavioral consequences ranging from increased addiction risk to cognitive or neuropsychiatric behavioral dysfunctions. The current review provides an in-depth overview and update of the developmental changes in neurotransmission during adolescence, as well as the impact of drug exposure during this neurodevelopmental window. While most of these factors have been studied in animal models, which are the focus of this review, future longitudinal studies in humans that assess neural function and behavior will help to confirm pre-clinical findings. Furthermore, the neural changes induced by each drug should also be considered in the context of other contributing factors, such as sex. Further understanding of these consequences can help in the identification of novel approaches for preventing and reversing the neurobiological effects of adolescent substance use.
Collapse
Affiliation(s)
- Hayley H A Thorpe
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Ontario, Canada
| | - Shahnaza Hamidullah
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Ontario, Canada
| | - Bryan W Jenkins
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Ontario, Canada
| | - Jibran Y Khokhar
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Ontario, Canada.
| |
Collapse
|
21
|
Struik RF, Marchant NJ, de Haan R, Terra H, van Mourik Y, Schetters D, Carr MR, van der Roest M, Heistek TS, De Vries TJ. Dorsomedial prefrontal cortex neurons encode nicotine-cue associations. Neuropsychopharmacology 2019; 44:2011-2021. [PMID: 31242502 PMCID: PMC6898138 DOI: 10.1038/s41386-019-0449-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/29/2019] [Accepted: 06/17/2019] [Indexed: 11/08/2022]
Abstract
The role of medial prefrontal cortex (mPFC) in regulating nicotine taking and seeking remains largely unexplored. In this study we took advantage of the high time-resolution of optogenetic intervention by decreasing (Arch3.0) or increasing (ChR2) the activity of neurons in the dorsal and ventral mPFC during 5-s nicotine cue presentations in order to evaluate their contribution to cued nicotine seeking and taking. Wistar rats were trained to self-administer intravenous nicotine in 1 h self-administration sessions twice a day for a minimum of 10 days. Subsequently, dmPFC or vmPFC neuronal activity was modulated during or following presentation of the 5-s nicotine cue, both under extinction and self-administration conditions. We also used in vivo electrophysiology to record the activity of dmPFC neurons during nicotine self-administration and extinction tests. We show that optogenetic inhibition of dmPFC neurons during, but not following, response-contingent presentations of the nicotine cue increased nicotine seeking. We found no effect on nicotine self-administration or on food seeking in an extinction test. We also show that this effect is specific to dmPFC, because optogenetic inhibition of vmPFC had no effect on nicotine seeking and taking. In vivo recordings revealed that dmPFC network neuronal activity was modulated more strongly following nicotine cue presentation in extinction, compared to following nicotine self-administration. Our results strongly suggest that a population of neurons within the dmPFC is involved in encoding the incentive value of nicotine-associated cues.
Collapse
Affiliation(s)
- Roeland F Struik
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, VU University Medical Centre, Amsterdam, the Netherlands
- Center for Neurogenomics and Cognitive Research, Department of Molecular and Cellular Neurobiology, Amsterdam Neuroscience, VU University, Amsterdam, the Netherlands
| | - Nathan J Marchant
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, VU University Medical Centre, Amsterdam, the Netherlands
| | - Roel de Haan
- Center for Neurogenomics and Cognitive Research, Department of Integrative Neurophysiology, Amsterdam Neuroscience, VU University, Amsterdam, the Netherlands
| | - Huub Terra
- Center for Neurogenomics and Cognitive Research, Department of Integrative Neurophysiology, Amsterdam Neuroscience, VU University, Amsterdam, the Netherlands
| | - Yvar van Mourik
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, VU University Medical Centre, Amsterdam, the Netherlands
| | - Dustin Schetters
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, VU University Medical Centre, Amsterdam, the Netherlands
| | - Madison R Carr
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, VU University Medical Centre, Amsterdam, the Netherlands
| | - Marcel van der Roest
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, VU University Medical Centre, Amsterdam, the Netherlands
| | - Tim S Heistek
- Center for Neurogenomics and Cognitive Research, Department of Integrative Neurophysiology, Amsterdam Neuroscience, VU University, Amsterdam, the Netherlands
| | - Taco J De Vries
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, VU University Medical Centre, Amsterdam, the Netherlands.
- Center for Neurogenomics and Cognitive Research, Department of Molecular and Cellular Neurobiology, Amsterdam Neuroscience, VU University, Amsterdam, the Netherlands.
| |
Collapse
|
22
|
Ottenheimer DJ, Wang K, Haimbaugh A, Janak PH, Richard JM. Recruitment and disruption of ventral pallidal cue encoding during alcohol seeking. Eur J Neurosci 2019; 50:3428-3444. [PMID: 31338915 DOI: 10.1111/ejn.14527] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/14/2019] [Accepted: 07/15/2019] [Indexed: 01/18/2023]
Abstract
A critical area of inquiry in the neurobiology of alcohol abuse is the mechanism by which cues gain the ability to elicit alcohol use. Previously, we found that cue-evoked activity in rat ventral pallidum robustly encodes the value of sucrose cues trained under both Pavlovian and instrumental contingencies, despite a stronger relationship between cue-evoked activity and behavioral latency after instrumental training (Richard et al., 2018, Elife, 7, e33107). Here, we assessed: (a) ventral pallidal representations of Pavlovian versus instrumental cues trained with alcohol reward, and (b) the impact of non-associative alcohol exposure on ventral pallidal representations of sucrose cues. Decoding of cue identity based on ventral pallidum firing was blunted for the Pavlovian alcohol cue in comparison to both the instrumental cue trained with alcohol and either cue type trained with sucrose. Further, non-associative alcohol exposure had opposing effects on ventral pallidal encoding of sucrose cues trained on instrumental versus Pavlovian associations, enhancing decoding accuracy for an instrumental discriminative stimulus and reducing decoding accuracy for a Pavlovian conditioned stimulus. These findings suggest that alcohol exposure can drive biased engagement of specific reward-related signals in the ventral pallidum.
Collapse
Affiliation(s)
- David J Ottenheimer
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Karen Wang
- Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Alexandria Haimbaugh
- Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Patricia H Janak
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD, USA.,Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD, USA.,Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Jocelyn M Richard
- Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD, USA.,Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
23
|
Crews FT, Robinson DL, Chandler LJ, Ehlers CL, Mulholland PJ, Pandey SC, Rodd ZA, Spear LP, Swartzwelder HS, Vetreno RP. Mechanisms of Persistent Neurobiological Changes Following Adolescent Alcohol Exposure: NADIA Consortium Findings. Alcohol Clin Exp Res 2019; 43:1806-1822. [PMID: 31335972 PMCID: PMC6758927 DOI: 10.1111/acer.14154] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 07/12/2019] [Indexed: 12/13/2022]
Abstract
The Neurobiology of Adolescent Drinking in Adulthood (NADIA) Consortium has focused on the impact of adolescent binge drinking on brain development, particularly on effects that persist into adulthood. Adolescent binge drinking is common, and while many factors contribute to human brain development and alcohol use during adolescence, animal models are critical for understanding the specific consequences of alcohol exposure during this developmental period and the underlying mechanisms. Using adolescent intermittent ethanol (AIE) exposure models, NADIA investigators identified long-lasting AIE-induced changes in adult behavior that are consistent with observations in humans, such as increased alcohol drinking, increased anxiety (particularly social anxiety), increased impulsivity, reduced behavioral flexibility, impaired memory, disrupted sleep, and altered responses to alcohol. These behavioral changes are associated with multiple molecular, cellular, and physiological alterations in the brain that persist long after AIE exposure. At the molecular level, AIE results in long-lasting changes in neuroimmune/trophic factor balance and epigenetic-microRNA (miRNA) signaling across glia and neurons. At the cellular level, AIE history is associated in adulthood with reduced expression of cholinergic, serotonergic, and dopaminergic neuron markers, attenuated cortical thickness, decreased neurogenesis, and altered dendritic spine and glial morphology. This constellation of molecular and cellular adaptations to AIE likely contributes to observed alterations in neurophysiology, measured by synaptic physiology, EEG patterns, and functional connectivity. Many of these AIE-induced brain changes replicate findings seen in postmortem brains of humans with alcohol use disorder (AUD). NADIA researchers are now elucidating mechanisms of these adaptations. Emerging data demonstrate that exercise, antiinflammatory drugs, anticholinesterases, histone deacetylase inhibitors, and other pharmacological compounds are able to prevent (administered during AIE) and/or reverse (given after AIE) AIE-induced pathology in adulthood. These studies support hypotheses that adolescent binge drinking increases risk of adult hazardous drinking and influences brain development, and may provide insight into novel therapeutic targets for AIE-induced neuropathology and AUDs.
Collapse
Affiliation(s)
- Fulton T Crews
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Donita L Robinson
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - L Judson Chandler
- Department of Neuroscience, Charleston Alcohol Research Center, Charleston, South Carolina
| | - Cindy L Ehlers
- Department of Neurosciences, The Scripps Research Institute, La Jolla, California
| | - Patrick J Mulholland
- Department of Neuroscience, Charleston Alcohol Research Center, Charleston, South Carolina
| | - Subhash C Pandey
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago and Jesse Brown VA Medical Center, Chicago, Illinois
| | - Zachary A Rodd
- Department of Psychiatry and Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, Indiana
| | - Linda P Spear
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, New York
| | - H Scott Swartzwelder
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina
| | - Ryan P Vetreno
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
24
|
Kruse LC, Cao JK, Viray K, Stella N, Clark JJ. Voluntary oral consumption of Δ 9-tetrahydrocannabinol by adolescent rats impairs reward-predictive cue behaviors in adulthood. Neuropsychopharmacology 2019; 44:1406-1414. [PMID: 30965351 PMCID: PMC6785709 DOI: 10.1038/s41386-019-0387-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/13/2019] [Accepted: 04/03/2019] [Indexed: 12/21/2022]
Abstract
Few preclinical approaches are available to study the health impact of voluntary consumption of edibles containing the psychoactive drug Δ9-tetrahydrocannabinol (THC). We developed and validated such approach by measuring voluntary oral consumption of THC-containing gelatin by rats and used it to study if and how THC consumption during adolescence impacts adult behavior. We found that adolescent rats of both sexes consumed enough THC to trigger acute hypothermia, analgesic, and locomotor responses, and that 15 days of access to THC-gelatin in adolescence resulted in the down-regulation of cannabinoid 1 receptors (CB1Rs) in adulthood in a sex and brain area specific manner. Remarkably, THC consumption by adolescent male rats and not female rats led to impaired Pavlovian reward-predictive cue behaviors in adulthood consistent with a male-specific loss of CB1R-expressing vGlut-1 synaptic terminals in the ventral tegmental area (VTA). Thus, voluntary oral consumption of THC during adolescence is associated with sex-dependent behavioral impairment in adulthood.
Collapse
Affiliation(s)
- Lauren C. Kruse
- 0000000122986657grid.34477.33Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA USA
| | - Jessica K. Cao
- 0000000122986657grid.34477.33Department of Pharmacology, University of Washington, Seattle, WA USA
| | - Katie Viray
- 0000000122986657grid.34477.33Department of Pharmacology, University of Washington, Seattle, WA USA
| | - Nephi Stella
- 0000000122986657grid.34477.33Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA USA ,0000000122986657grid.34477.33Department of Pharmacology, University of Washington, Seattle, WA USA
| | - Jeremy J. Clark
- 0000000122986657grid.34477.33Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA USA
| |
Collapse
|
25
|
Voluntary ethanol consumption during early social isolation and responding for ethanol in adulthood. Alcohol 2019; 77:1-10. [PMID: 30240808 DOI: 10.1016/j.alcohol.2018.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 09/06/2018] [Accepted: 09/12/2018] [Indexed: 11/23/2022]
Abstract
Little is known about the influence of rearing environments concurrent with voluntary intermittent access to ethanol on subsequent adult ethanol-related behaviors. Previous research has shown that adult rats reared in post-weaning, social isolation conditions (IC) respond more for operant ethanol compared to laboratory standard conditions (SC). Ethanol-exposed adolescents tend to consume more ethanol in adulthood than rats exposed as adults. The current study examined voluntary ethanol consumption during adolescence between IC and SC rats, subsequent operant responding for ethanol, and extinction of responding in the same rats as adults. Differences in ethanol metabolism may alter the amount of reward value per unit of ethanol consumed. Therefore, the current study also examined blood ethanol concentrations (BEC) between IC rats and SC rats. Ethanol-naïve Long-Evans rats arrived in the lab at postnatal day (PND) 21 and were separated into either IC or SC where they remained for the duration of the experiments. On PND 27, rats received intermittent access to 20% ethanol (3 days/week) for 4 or 6 weeks. Rats in the 6-week cohort were then trained to lever press for 20% ethanol in 30-min sessions followed by extinction. A separate cohort was reared in IC or SC, injected with 1.5 or 3.0 g/kg of ethanol (intraperitoneally [i.p.]), followed by BEC measurement. Overall, IC rats had higher ethanol preference and consumption during adolescence/early adulthood. IC and SC rats did not differ in their rates of operant responding for ethanol, and SC rats responded more than IC rats during extinction. There were no differences in BEC between IC and SC rats. These findings highlight the importance of the environment during rat adolescent development with isolation conditions increasing binge-like drinking and ethanol preference after 3-4 weeks without differences in metabolism as a potential factor. Additionally, the findings indicate that intermittent adolescent access to ethanol may change typical differences in operant responding patterns between IC and SC rats in adulthood.
Collapse
|
26
|
Hellberg SN, Russell TI, Robinson MJF. Cued for risk: Evidence for an incentive sensitization framework to explain the interplay between stress and anxiety, substance abuse, and reward uncertainty in disordered gambling behavior. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2019; 19:737-758. [PMID: 30357661 PMCID: PMC6482104 DOI: 10.3758/s13415-018-00662-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Gambling disorder is an impairing condition confounded by psychiatric co-morbidity, particularly with substance use and anxiety disorders. Yet, our knowledge of the mechanisms that cause these disorders to coalesce remains limited. The Incentive Sensitization Theory suggests that sensitization of neural "wanting" pathways, which attribute incentive salience to rewards and their cues, is responsible for the excessive desire for drugs and cue-triggered craving. The resulting hyper-reactivity of the "wanting' system is believed to heavily influence compulsive drug use and relapse. Notably, evidence for sensitization of the mesolimbic dopamine pathway has been seen across gambling and substance use, as well as anxiety and stress-related pathology, with stress playing a major role in relapse. Together, this evidence highlights a phenomenon known as cross-sensitization, whereby sensitization to stress, drugs, or gambling behaviors enhance the sensitivity and dopaminergic response to any of those stimuli. Here, we review the literature on how cue attraction and reward uncertainty may underlie gambling pathology, and examine how this framework may advance our understanding of co-mordidity with substance-use disorders (e.g., alcohol, nicotine) and anxiety disorders. We argue that reward uncertainty, as seen in slot machines and games of chance, increases dopaminergic activity in the mesolimbic pathway and enhances the incentive value of reward cues. We propose that incentive sensitization by reward uncertainty may interact with and predispose individuals to drug abuse and stress, creating a mechanism through which co-mordidity of these disorders may emerge.
Collapse
Affiliation(s)
- Samantha N Hellberg
- Psychology Department and the Neuroscience and Behavior Program, Wesleyan University, 207 High Street, Middletown, CT, 06457, USA
- University of North Carolina Chapel Hill, Chapel Hill, NC, USA
| | - Trinity I Russell
- Psychology Department and the Neuroscience and Behavior Program, Wesleyan University, 207 High Street, Middletown, CT, 06457, USA
- National Institutes on Drug Abuse, Baltimore, MD, USA
| | - Mike J F Robinson
- Psychology Department and the Neuroscience and Behavior Program, Wesleyan University, 207 High Street, Middletown, CT, 06457, USA.
| |
Collapse
|
27
|
Heterogeneous dopamine signals support distinct features of motivated actions: implications for learning and addiction. ACTA ACUST UNITED AC 2018; 25:416-424. [PMID: 30115763 PMCID: PMC6097772 DOI: 10.1101/lm.047019.117] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 06/15/2018] [Indexed: 01/05/2023]
Abstract
Despite decades of research, investigations into effective neural and pharmacological therapies for many drugs of abuse, such as cocaine, have produced no FDA-approved approaches. This difficulty derives from the complexity of substance use disorders, which encompass a variety of behavioral, psychological, and neural circuit-based changes that occur as a result of repeated experience with the drug. Dopamine signaling has been demonstrated to play a key role in several aspects of drug abuse—from mediating its reinforcing properties and drug-seeking to triggering relapse—while also mediating a number of important aspects of normal (nondrug related) motivated behaviors and actions. Real-time recording methods such as in vivo voltammetry, electrophysiology, and calcium imaging demonstrate that the signaling properties of dopamine for motivationally relevant stimuli are highly dynamic and spatiotemporally circumscribed within afferent target regions. In this review, we identify the origins and functional consequences of heterogeneous dopamine release in the limbic system, and how these properties are persistently altered in the drug-experienced brain. We propose that these spatiotemporally parallel dopaminergic signals are simultaneously available to the animal, but that these circuits are impaired following prolonged drug experience by disrupting the location and content of dopamine signals in afferent target regions. These findings are discussed in the context of relapse and pathways to discovering new treatments for addiction disorders.
Collapse
|
28
|
Marshall AT, Ostlund SB. Repeated cocaine exposure dysregulates cognitive control over cue-evoked reward-seeking behavior during Pavlovian-to-instrumental transfer. ACTA ACUST UNITED AC 2018; 25:399-409. [PMID: 30115761 PMCID: PMC6097769 DOI: 10.1101/lm.047621.118] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 05/16/2018] [Indexed: 11/25/2022]
Abstract
Drug-paired cues acquire powerful motivational properties, but only lead to active drug-seeking behavior if they are potent enough to overwhelm the cognitive control processes that serve to suppress such urges. Studies using the Pavlovian-to-instrumental transfer (PIT) task have shown that rats pretreated with cocaine or amphetamine exhibit heightened levels of cue-motivated food-seeking behavior, suggesting that exposure to these drugs sensitizes the incentive motivational system. However, the PIT testing protocol can also create conflict between two competing behavioral responses to the reward-paired cue: active reward seeking (e.g., lever pressing) and passive conditioned food-cup approach behavior. We therefore investigated whether repeated cocaine exposure alters the way in which rats use cue-based reward expectations to resolve such conflict. In-depth analysis of previously published and new research confirmed that when drug-naïve rats are given a cue that signals the timing of a delayed noncontingent reward, they adaptively transition from reward seeking to conditioned approach behavior, facilitating efficient collection of the predicted reward. In contrast, cocaine-exposed rats exhibit pronounced behavioral dysregulation, increasing, rather than suppressing, their reward-seeking behavior over time, disrupting their ability to passively collect reward. Such findings speak to the important and sometimes overlooked role that cognitive control plays in determining the motivational impact of cues associated with drug and nondrug rewards.
Collapse
Affiliation(s)
- Andrew T Marshall
- Department of Anesthesiology and Perioperative Care, Irvine Center for Addiction Neuroscience, University of California, Irvine, Irvine, California 92697, USA
| | - Sean B Ostlund
- Department of Anesthesiology and Perioperative Care, Irvine Center for Addiction Neuroscience, University of California, Irvine, Irvine, California 92697, USA
| |
Collapse
|
29
|
El Hamrani D, Gin H, Gallis JL, Bouzier-Sore AK, Beauvieux MC. Consumption of Alcopops During Brain Maturation Period: Higher Impact of Fructose Than Ethanol on Brain Metabolism. Front Nutr 2018; 5:33. [PMID: 29868598 PMCID: PMC5952002 DOI: 10.3389/fnut.2018.00033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/18/2018] [Indexed: 12/26/2022] Open
Abstract
Alcopops are flavored alcoholic beverages sweetened by sodas, known to contain fructose. These drinks have the goal of democratizing alcohol among young consumers (12-17 years old) and in the past few years have been considered as fashionable amongst teenagers. Adolescence, however, is a key period for brain maturation, occurring in the prefrontal cortex and limbic system until 21 years old. Therefore, this drinking behavior has become a public health concern. Despite the extensive literature concerning the respective impacts of either fructose or ethanol on brain, the effects following joint consumption of these substrates remains unknown. Our objective was to study the early brain modifications induced by a combined diet of high fructose (20%) and moderate amount of alcohol in young rats by 13C Nuclear Magnetic Resonance (NMR) spectroscopy. Wistar rats had isocaloric pair-fed diets containing fructose (HF, 20%), ethanol (Et, 0.5 g/day/kg) or both substrates at the same time (HFEt). After 6 weeks of diet, the rats were infused with 13C-glucose and brain perchloric acid extracts were analyzed by NMR spectroscopy (1H and 13C). Surprisingly, the most important modifications of brain metabolism were observed under fructose diet. Alterations, observed after only 6 weeks of diet, show that the brain is vulnerable at the metabolic level to fructose consumption during late-adolescence throughout adulthood in rats. The main result was an increase in oxidative metabolism compared to glycolysis, which may impact lactate levels in the brain and may, at least partially, explain memory impairment in teenagers consuming alcopops.
Collapse
Affiliation(s)
- Dounia El Hamrani
- UMR5536 Centre de Resonance Magnetique des Systemes Biologiques (CRMSB), Centre National de la Recherche Scientifique (CNRS), Université de Bordeaux, LabEx TRAIL, Bordeaux, France
| | - Henri Gin
- UMR5536 Centre de Resonance Magnetique des Systemes Biologiques (CRMSB), Centre National de la Recherche Scientifique (CNRS), Université de Bordeaux, LabEx TRAIL, Bordeaux, France.,Service de Nutrition et Diabétologie, Hôpital Haut-Lévêque, Pessac, France
| | - Jean-Louis Gallis
- UMR5536 Centre de Resonance Magnetique des Systemes Biologiques (CRMSB), Centre National de la Recherche Scientifique (CNRS), Université de Bordeaux, LabEx TRAIL, Bordeaux, France
| | - Anne-Karine Bouzier-Sore
- UMR5536 Centre de Resonance Magnetique des Systemes Biologiques (CRMSB), Centre National de la Recherche Scientifique (CNRS), Université de Bordeaux, LabEx TRAIL, Bordeaux, France
| | - Marie-Christine Beauvieux
- UMR5536 Centre de Resonance Magnetique des Systemes Biologiques (CRMSB), Centre National de la Recherche Scientifique (CNRS), Université de Bordeaux, LabEx TRAIL, Bordeaux, France
| |
Collapse
|
30
|
Fiorenza AM, Shnitko TA, Sullivan KM, Vemuru SR, Gomez-A A, Esaki JY, Boettiger CA, Da Cunha C, Robinson DL. Ethanol Exposure History and Alcoholic Reward Differentially Alter Dopamine Release in the Nucleus Accumbens to a Reward-Predictive Cue. Alcohol Clin Exp Res 2018; 42:1051-1061. [PMID: 29602178 DOI: 10.1111/acer.13636] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 03/18/2018] [Indexed: 11/27/2022]
Abstract
BACKGROUND Conditioned stimuli (CS) that predict reward delivery acquire the ability to induce phasic dopamine release in the nucleus accumbens (NAc). This dopamine release may facilitate conditioned approach behavior, which often manifests as approach to the site of reward delivery (called "goal-tracking") or to the CS itself (called "sign-tracking"). Previous research has linked sign-tracking in particular to impulsivity and drug self-administration, and addictive drugs may promote the expression of sign-tracking. Ethanol (EtOH) acutely promotes phasic release of dopamine in the accumbens, but it is unknown whether an alcoholic reward alters dopamine release to a CS. We hypothesized that Pavlovian conditioning with an alcoholic reward would increase dopamine release triggered by the CS and subsequent sign-tracking behavior. Moreover, we predicted that chronic intermittent EtOH (CIE) exposure would promote sign-tracking while acute administration of naltrexone (NTX) would reduce it. METHODS Rats received 14 doses of EtOH (3 to 5 g/kg, intragastric) or water followed by 6 days of Pavlovian conditioning training. Rewards were a chocolate solution with or without 10% (w/v) alcohol. We used fast-scan cyclic voltammetry to measure phasic dopamine release in the NAc core in response to the CS and the rewards. We also determined the effect of NTX (1 mg/kg, subcutaneous) on conditioned approach. RESULTS Both CIE and alcoholic reward, individually but not together, associated with greater dopamine to the CS than control conditions. However, this increase in dopamine release was not linked to greater sign-tracking, as both CIE and alcoholic reward shifted conditioned approach from sign-tracking behavior to goal-tracking behavior. However, they both also increased sensitivity to NTX, which reduced goal-tracking behavior. CONCLUSIONS While a history of EtOH exposure or alcoholic reward enhanced dopamine release to a CS, they did not promote sign-tracking under the current conditions. These findings are consistent with the interpretation that EtOH can stimulate conditioned approach, but indicate that the conditioned response may manifest as goal-tracking.
Collapse
Affiliation(s)
- Amanda M Fiorenza
- Departamento de Bioquímica, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Tatiana A Shnitko
- Department of Psychiatry and Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, North Carolina
| | - Kaitlin M Sullivan
- Department of Psychiatry and Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, North Carolina
| | - Sudheer R Vemuru
- Department of Psychiatry and Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, North Carolina
| | - Alexander Gomez-A
- Departamento de Farmacologia, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Julie Y Esaki
- Departamento de Farmacologia, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Charlotte A Boettiger
- Department of Psychology & Neuroscience, Bowles Center for Alcohol Studies and Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, North Carolina
| | - Claudio Da Cunha
- Departamento de Bioquímica, Universidade Federal do Paraná, Curitiba, Paraná, Brazil.,Departamento de Farmacologia, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Donita L Robinson
- Department of Psychiatry and Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
31
|
Khokhar JY, Dwiel L, Henricks A, Doucette WT, Green AI. The link between schizophrenia and substance use disorder: A unifying hypothesis. Schizophr Res 2018; 194:78-85. [PMID: 28416205 PMCID: PMC6094954 DOI: 10.1016/j.schres.2017.04.016] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 04/05/2017] [Accepted: 04/07/2017] [Indexed: 11/29/2022]
Abstract
Substance use disorders occur commonly in patients with schizophrenia and dramatically worsen their overall clinical course. While the exact mechanisms contributing to substance use in schizophrenia are not known, a number of theories have been put forward to explain the basis of the co-occurrence of these disorders. We propose here a unifying hypothesis that combines recent evidence from epidemiological and genetic association studies with brain imaging and pre-clinical studies to provide an updated formulation regarding the basis of substance use in patients with schizophrenia. We suggest that the genetic determinants of risk for schizophrenia (especially within neural systems that contribute to the risk for both psychosis and addiction) make patients vulnerable to substance use. Since this vulnerability may arise prior to the appearance of psychotic symptoms, an increased use of substances in adolescence may both enhance the risk for developing a later substance use disorder, and also serve as an additional risk factor for the appearance of psychotic symptoms. Future studies that assess brain circuitry in a prospective longitudinal manner during adolescence prior to the appearance of psychotic symptoms could shed further light on the mechanistic underpinnings of these co-occurring disorders while identifying potential points of intervention for these difficult-to-treat co-occurring disorders.
Collapse
Affiliation(s)
| | - Lucas Dwiel
- Department of Psychiatry, Geisel School of Medicine at Dartmouth
| | - Angela Henricks
- Department of Psychiatry, Geisel School of Medicine at Dartmouth
| | | | - Alan I. Green
- Department of Psychiatry, Geisel School of Medicine at Dartmouth,Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth,Dartmouth Clinical and Translational Science Institute, Dartmouth College
| |
Collapse
|
32
|
Spear LP. Effects of adolescent alcohol consumption on the brain and behaviour. Nat Rev Neurosci 2018; 19:197-214. [PMID: 29467469 DOI: 10.1038/nrn.2018.10] [Citation(s) in RCA: 323] [Impact Index Per Article: 46.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Per occasion, alcohol consumption is higher in adolescents than in adults in both humans and laboratory animals, with changes in the adolescent brain probably contributing to this elevated drinking. This Review examines the contributors to and consequences of the use of alcohol in adolescents. Human adolescents with a history of alcohol use differ neurally and cognitively from other adolescents; some of these differences predate the commencement of alcohol consumption and serve as potential risk factors for later alcohol use, whereas others emerge from its use. The consequences of alcohol use in human adolescents include alterations in attention, verbal learning, visuospatial processing and memory, along with altered development of grey and white matter volumes and disrupted white matter integrity. The functional consequences of adolescent alcohol use emerging from studies of rodent models of adolescence include decreased cognitive flexibility, behavioural inefficiencies and elevations in anxiety, disinhibition, impulsivity and risk-taking. Rodent studies have also showed that adolescent alcohol use can impair neurogenesis, induce neuroinflammation and epigenetic alterations, and lead to the persistence of adolescent-like neurobehavioural phenotypes into adulthood. Although only a limited number of studies have examined comparable measures in humans and laboratory animals, the available data provide evidence for notable across-species similarities in the neural consequences of adolescent alcohol exposure, providing support for further translational efforts in this context.
Collapse
Affiliation(s)
- Linda P Spear
- Developmental Exposure Alcohol Research Center (DEARC) and Behavioural Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY, USA
| |
Collapse
|
33
|
Hellberg SN, Levit JD, Robinson MJ. Under the influence: Effects of adolescent ethanol exposure and anxiety on motivation for uncertain gambling-like cues in male and female rats. Behav Brain Res 2018; 337:17-33. [DOI: 10.1016/j.bbr.2017.09.036] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 09/22/2017] [Accepted: 09/23/2017] [Indexed: 12/26/2022]
|
34
|
Labots M, Cousijn J, Jolink LA, Kenemans JL, Vanderschuren LJMJ, Lesscher HMB. Age-Related Differences in Alcohol Intake and Control Over Alcohol Seeking in Rats. Front Psychiatry 2018; 9:419. [PMID: 30233434 PMCID: PMC6129585 DOI: 10.3389/fpsyt.2018.00419] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/15/2018] [Indexed: 11/22/2022] Open
Abstract
Alcohol use disorder (AUD) is characterized by excessive and persistent alcohol use, despite adverse consequences. AUD often originates during adolescence, as do other substance use disorders. However, despite periods of excessive alcohol intake, many adolescents reduce their alcohol use by early adulthood. Brain development, social context, personality traits, and genetic makeup are thought to play an important role in these age-dependent fluctuations in alcohol use. However, studies that directly investigate age-related differences in the effects of alcohol exposure on brain and behavior are sparse. Therefore, to better understand the relationship between adolescent alcohol consumption and AUD-like behavior, this study compared the degree of control over alcohol seeking in rats that differed in terms of age of onset of alcohol drinking and in their level of alcohol consumption. We hypothesized that control over alcohol seeking is more prominent in adolescent-onset rats than in adult-onset rats, and that control over alcohol seeking is related to the consumed amount of alcohol. To test this hypothesis, alcohol seeking in the presence of a conditioned aversive stimulus was assessed after 2 months of intermittent alcohol access (IAA) in rats that consumed alcohol from postnatal day 42 (adolescence) or day 77 (adulthood). The rats were subdivided into low (LD), medium (MD), or high (HD) alcohol drinking rats, in order to assess the impact of the extent of alcohol intake on control over alcohol seeking. The adolescent-onset animals consumed slightly, but significantly less alcohol compared to the adult-onset rats. In adult-onset rats, we found that conditioned suppression of alcohol seeking, i.e., reduction of alcohol seeking by presentation of a conditioned aversive stimulus, was most pronounced in LD. By contrast, in the adolescent-onset rats, MD and HD showed increased alcohol seeking compared to LD, which was suppressed by conditioned aversive stimuli. Taken together, these findings reveal a complex relationship between the age of onset and level of alcohol intake with control over alcohol seeking, whereby adolescent rats consume less alcohol than adults. In adult rats, control over alcohol seeking is negatively related to preceding levels of alcohol intake. By contrast, adolescent rats appear to retain control over alcohol seeking, even after a history of high levels of alcohol intake.
Collapse
Affiliation(s)
- Maaike Labots
- Department of Animals in Science and Society, Division of Behavioural Neuroscience, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Janna Cousijn
- ADAPT-Lab, Department of Psychology, University of Amsterdam, Amsterdam, Netherlands.,Amsterdam Brain and Cognition (ABC), University of Amsterdam, Amsterdam, Netherlands
| | - Linda A Jolink
- Department of Animals in Science and Society, Division of Behavioural Neuroscience, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - J Leon Kenemans
- Department of Experimental Psychology, Helmholtz Research Institute, Utrecht University, Utrecht, Netherlands
| | - Louk J M J Vanderschuren
- Department of Animals in Science and Society, Division of Behavioural Neuroscience, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Heidi M B Lesscher
- Department of Animals in Science and Society, Division of Behavioural Neuroscience, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
35
|
Kruse LC, Schindler AG, Williams RG, Weber SJ, Clark JJ. Maladaptive Decision Making in Adults with a History of Adolescent Alcohol use, in a Preclinical Model, Is Attributable to the Compromised Assignment of Incentive Value during Stimulus-Reward Learning. Front Behav Neurosci 2017; 11:134. [PMID: 28790900 PMCID: PMC5524919 DOI: 10.3389/fnbeh.2017.00134] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 07/07/2017] [Indexed: 01/22/2023] Open
Abstract
According to recent WHO reports, alcohol remains the number one substance used and abused by adolescents, despite public health efforts to curb its use. Adolescence is a critical period of biological maturation where brain development, particularly the mesocorticolimbic dopamine system, undergoes substantial remodeling. These circuits are implicated in complex decision making, incentive learning and reinforcement during substance use and abuse. An appealing theoretical approach has been to suggest that alcohol alters the normal development of these processes to promote deficits in reinforcement learning and decision making, which together make individuals vulnerable to developing substance use disorders in adulthood. Previously we have used a preclinical model of voluntary alcohol intake in rats to show that use in adolescence promotes risky decision making in adulthood that is mirrored by selective perturbations in dopamine network dynamics. Further, we have demonstrated that incentive learning processes in adulthood are also altered by adolescent alcohol use, again mirrored by changes in cue-evoked dopamine signaling. Indeed, we have proposed that these two processes, risk-based decision making and incentive learning, are fundamentally linked through dysfunction of midbrain circuitry where inputs to the dopamine system are disrupted by adolescent alcohol use. Here, we test the behavioral predictions of this model in rats and present the findings in the context of the prevailing literature with reference to the long-term consequences of early-life substance use on the vulnerability to develop substance use disorders. We utilize an impulsive choice task to assess the selectivity of alcohol’s effect on decision-making profiles and conditioned reinforcement to parse out the effect of incentive value attribution, one mechanism of incentive learning. Finally, we use the differential reinforcement of low rates of responding (DRL) task to examine the degree to which behavioral disinhibition may contribute to an overall decision-making profile. The findings presented here support the proposition that early life alcohol use selectively alters risk-based choice behavior through modulation of incentive learning processes, both of which may be inexorably linked through perturbations in mesolimbic circuitry and may serve as fundamental vulnerabilities to the development of substance use disorders.
Collapse
Affiliation(s)
- Lauren C Kruse
- Department of Psychiatry and Behavioral Sciences, University of WashingtonSeattle, WA, United States
| | - Abigail G Schindler
- Department of Psychiatry and Behavioral Sciences, University of WashingtonSeattle, WA, United States.,Geriatric Research Education and Clinical Center, VA Puget Sound Health Care SystemSeattle, WA, United States
| | - Rapheal G Williams
- Graduate Program in Neuroscience, University of WashingtonSeattle, WA, United States
| | - Sophia J Weber
- Department of Psychiatry and Behavioral Sciences, University of WashingtonSeattle, WA, United States
| | - Jeremy J Clark
- Department of Psychiatry and Behavioral Sciences, University of WashingtonSeattle, WA, United States
| |
Collapse
|
36
|
Madayag AC, Stringfield SJ, Reissner KJ, Boettiger CA, Robinson DL. Sex and Adolescent Ethanol Exposure Influence Pavlovian Conditioned Approach. Alcohol Clin Exp Res 2017; 41:846-856. [PMID: 28196273 DOI: 10.1111/acer.13354] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 02/08/2017] [Indexed: 01/03/2023]
Abstract
BACKGROUND Alcohol use among adolescents is widespread and a growing concern due to long-term behavioral deficits, including altered Pavlovian behavior, that potentially contribute to addiction vulnerability. We tested the hypothesis that adolescent intermittent ethanol (AIE) exposure alters Pavlovian behavior in males and females as measured by a shift from goal-tracking to sign-tracking. Additionally, we investigated GLT-1, an astrocytic glutamate transporter, as a potential contributor to a sign-tracking phenotype. METHODS Male and female Sprague-Dawley rats were exposed to AIE (5 g/kg, intragastric) or water intermittently 2 days on and 2 days off from postnatal day (P) 25 to 54. Around P70, animals began 20 daily sessions of Pavlovian conditioned approach (PCA), where they learned that a cue predicted noncontingent reward delivery. Lever pressing indicated interaction with the cue, or sign-tracking, and receptacle entries indicated approach to the reward delivery location, or goal-tracking. To test for effects of AIE on nucleus accumbens (NAcc) excitatory signaling, we isolated membrane subfractions and measured protein levels of the glutamate transporter GLT-1 after animals completed behavior as a measure of glutamate homeostasis. RESULTS Females exhibited elevated sign-tracking compared to males with significantly more lever presses, faster latency to first lever press, and greater probability to lever press in a trial. AIE significantly increased lever pressing while blunting goal-tracking, as indicated by fewer cue-evoked receptacle entries, slower latency to receptacle entry, and lower probability to enter the receptacle in a trial. No significant sex-by-exposure interactions were observed in sign- or goal-tracking metrics. Moreover, we found no significant effects of sex or exposure on membrane GLT-1 expression in the NAcc. CONCLUSIONS Females exhibited enhanced sign-tracking compared to males, while AIE decreased goal-tracking compared to control exposure. Our findings support the hypothesis that adolescent binge ethanol can shift conditioned behavior from goal- to cue-directed in PCA, especially in females.
Collapse
Affiliation(s)
- Aric C Madayag
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, North Carolina.,Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina
| | - Sierra J Stringfield
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, North Carolina.,Neurobiology Curriculum, University of North Carolina, Chapel Hill, North Carolina
| | - Kathryn J Reissner
- Neurobiology Curriculum, University of North Carolina, Chapel Hill, North Carolina.,Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, North Carolina
| | - Charlotte A Boettiger
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, North Carolina.,Neurobiology Curriculum, University of North Carolina, Chapel Hill, North Carolina.,Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, North Carolina
| | - Donita L Robinson
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, North Carolina.,Neurobiology Curriculum, University of North Carolina, Chapel Hill, North Carolina.,Department of Psychiatry, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
37
|
Spoelder M, Flores Dourojeanni JP, de Git KCG, Baars AM, Lesscher HMB, Vanderschuren LJMJ. Individual differences in voluntary alcohol intake in rats: relationship with impulsivity, decision making and Pavlovian conditioned approach. Psychopharmacology (Berl) 2017; 234:2177-2196. [PMID: 28417164 PMCID: PMC5486936 DOI: 10.1007/s00213-017-4617-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 03/30/2017] [Indexed: 12/23/2022]
Abstract
RATIONALE Alcohol use disorder (AUD) has been associated with suboptimal decision making, exaggerated impulsivity, and aberrant responses to reward-paired cues, but the relationship between AUD and these behaviors is incompletely understood. OBJECTIVES This study aims to assess decision making, impulsivity, and Pavlovian-conditioned approach in rats that voluntarily consume low (LD) or high (HD) amounts of alcohol. METHODS LD and HD were tested in the rat gambling task (rGT) or the delayed reward task (DRT). Next, the effect of alcohol (0-1.0 g/kg) was tested in these tasks. Pavlovian-conditioned approach (PCA) was assessed both prior to and after intermittent alcohol access (IAA). Principal component analyses were performed to identify relationships between the most important behavioral parameters. RESULTS HD showed more optimal decision making in the rGT. In the DRT, HD transiently showed reduced impulsive choice. In both LD and HD, alcohol treatment increased optimal decision making in the rGT and increased impulsive choice in the DRT. PCA prior to and after IAA was comparable for LD and HD. When PCA was tested after IAA only, HD showed a more sign-tracking behavior. The principal component analyses indicated dimensional relationships between alcohol intake, impulsivity, and sign-tracking behavior in the PCA task after IAA. CONCLUSIONS HD showed a more efficient performance in the rGT and DRT. Moreover, alcohol consumption enhanced approach behavior to reward-predictive cues, but sign-tracking did not predict the level of alcohol consumption. Taken together, these findings suggest that high levels of voluntary alcohol intake are associated with enhanced cue- and reward-driven behavior.
Collapse
Affiliation(s)
- Marcia Spoelder
- 0000000120346234grid.5477.1Division of Behavioural Neuroscience, Department of Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584CM Utrecht, The Netherlands ,0000 0004 0444 9382grid.10417.33Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Jacques P. Flores Dourojeanni
- 0000000120346234grid.5477.1Division of Behavioural Neuroscience, Department of Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584CM Utrecht, The Netherlands ,0000000090126352grid.7692.aDepartment of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Kathy C. G. de Git
- 0000000120346234grid.5477.1Division of Behavioural Neuroscience, Department of Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584CM Utrecht, The Netherlands ,0000000090126352grid.7692.aDepartment of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Annemarie M. Baars
- 0000000120346234grid.5477.1Division of Behavioural Neuroscience, Department of Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584CM Utrecht, The Netherlands
| | - Heidi M. B. Lesscher
- 0000000120346234grid.5477.1Division of Behavioural Neuroscience, Department of Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584CM Utrecht, The Netherlands
| | - Louk J. M. J. Vanderschuren
- 0000000120346234grid.5477.1Division of Behavioural Neuroscience, Department of Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584CM Utrecht, The Netherlands
| |
Collapse
|
38
|
Terminal Dopamine Release Kinetics in the Accumbens Core and Shell Are Distinctly Altered after Withdrawal from Cocaine Self-Administration. eNeuro 2016; 3:eN-NWR-0274-16. [PMID: 27752541 PMCID: PMC5052666 DOI: 10.1523/eneuro.0274-16.2016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 09/22/2016] [Accepted: 09/27/2016] [Indexed: 11/21/2022] Open
Abstract
Repeated self-administration of cocaine is associated with impairments in motivated behaviors as well as alterations in both dopamine (DA) release and neural signaling within the nucleus accumbens (NAc). These impairments are present even after several weeks of abstinence from drug taking, suggesting that the self-administration experience induces long-lasting neuroplastic alterations in the mesolimbic DA circuit. To understand these changes at the terminal level, rats were allowed to self-administer either cocaine intravenously (∼1 mg/kg per infusion) or water to a receptacle (control) in 2-h sessions over 14 days, followed by 30 days of enforced abstinence. Fast-scan cyclic voltammetry was used to record real-time DA release in either NAc core or shell after electrical stimulations of the ventral tegmental area (VTA) in freely-moving animals. In controls, the kinetics of DA release in the core and shell strikingly differed, with shell displaying slower release and reuptake rates than core. However, cocaine experience differentially altered these signaling patterns by NAc subregion. In the shell, cocaine rats showed less sensitivity to the dynamic range of applied stimulations than controls. In the core, by contrast, cocaine rats displayed robustly reduced peak DA release given the same stimulation, while also showing slower release and reuptake kinetics. The differential effects of cocaine self-administration on terminal function between core and shell is consistent with a region-specific functional reorganization of the mesolimbic DA system after repeated exposure and may provide an anatomical substrate for altered cognitive function after chronic drug-taking and addiction.
Collapse
|
39
|
Spoelder M, Hesseling P, Styles M, Baars AM, Lozeman-van 't Klooster JG, Lesscher HMB, Vanderschuren LJMJ. Dopaminergic neurotransmission in ventral and dorsal striatum differentially modulates alcohol reinforcement. Eur J Neurosci 2016; 45:147-158. [PMID: 27521051 DOI: 10.1111/ejn.13358] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 07/14/2016] [Accepted: 08/02/2016] [Indexed: 01/18/2023]
Abstract
Dopaminergic neurotransmission in the striatum has been widely implicated in the reinforcing properties of substances of abuse. However, the striatum is functionally heterogeneous, and previous work has mostly focused on psychostimulant drugs. Therefore, we investigated how dopamine within striatal subregions modulates alcohol-directed behaviour in rats. We assessed the effects of infusion of the dopamine receptor antagonist alpha-flupenthixol into the shell and core of the nucleus accumbens (NAcc) and the dorsolateral striatum (DLS) on responding for alcohol under fixed ratio 1 (FR1) and progressive ratio (PR) schedules of reinforcement. Bilateral infusion of alpha-flupenthixol into the NAcc shell reduced responding for alcohol under both the FR1 (15 μg/side) and the PR schedule (3.75-15 μg/side) of reinforcement. Infusion of alpha-flupenthixol into the NAcc core (7.5-15 μg/side) also decreased responding for alcohol under both schedules. By contrast, alpha-flupenthixol infusion into the DLS did not affect FR1 responding, but reduced responding under the PR schedule (15 μg/side). The decreases in responding were related to earlier termination of responding during the session, whereas the onset and rate of responding remained largely unaffected. Together, these data suggest that dopamine in the NAcc shell is involved in the incentive motivation for alcohol, whereas DLS dopamine comes into play when obtaining alcohol requires high levels of effort. In contrast, NAcc core dopamine appears to play a more general role in alcohol reinforcement. In conclusion, dopaminergic neurotransmission acts in concert in subregions of the striatum to modulate different aspects of alcohol-directed behaviour.
Collapse
Affiliation(s)
- Marcia Spoelder
- Department of Animals in Science and Society, Division of Behavioural Neuroscience, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584 CM, Utrecht, The Netherlands
| | - Peter Hesseling
- Department of Animals in Science and Society, Division of Behavioural Neuroscience, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584 CM, Utrecht, The Netherlands
| | - Matthew Styles
- Department of Animals in Science and Society, Division of Behavioural Neuroscience, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584 CM, Utrecht, The Netherlands
| | - Annemarie M Baars
- Department of Animals in Science and Society, Division of Behavioural Neuroscience, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584 CM, Utrecht, The Netherlands
| | - José G Lozeman-van 't Klooster
- Department of Animals in Science and Society, Division of Behavioural Neuroscience, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584 CM, Utrecht, The Netherlands
| | - Heidi M B Lesscher
- Department of Animals in Science and Society, Division of Behavioural Neuroscience, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584 CM, Utrecht, The Netherlands
| | - Louk J M J Vanderschuren
- Department of Animals in Science and Society, Division of Behavioural Neuroscience, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584 CM, Utrecht, The Netherlands
| |
Collapse
|
40
|
Avegno EM, Salling MC, Borgkvist A, Mrejeru A, Whitebirch AC, Margolis EB, Sulzer D, Harrison NL. Voluntary adolescent drinking enhances excitation by low levels of alcohol in a subset of dopaminergic neurons in the ventral tegmental area. Neuropharmacology 2016; 110:386-395. [PMID: 27475082 DOI: 10.1016/j.neuropharm.2016.07.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 07/22/2016] [Accepted: 07/25/2016] [Indexed: 12/24/2022]
Abstract
Enhanced dopamine (DA) neurotransmission from the ventral tegmental area (VTA) to the ventral striatum is thought to drive drug self-administration and mediate positive reinforcement. We examined neuronal firing rates in slices of mouse midbrain following adolescent binge-like alcohol drinking and find that prior alcohol experience greatly enhanced the sensitivity to excitation by ethanol itself (10-50 mM) in a subset of ventral midbrain DA neurons located in the medial VTA. This enhanced response after drinking was not associated with alterations of firing rate or other measures of intrinsic excitability. In addition, the phenomenon appears to be specific to adolescent drinking, as mice that established a drinking preference only after the onset of adulthood showed no change in alcohol sensitivity. Here we demonstrate not only that drinking during adolescence induces enhanced alcohol sensitivity, but also that this DA neuronal response occurs over a range of alcohol concentrations associated with social drinking in humans.
Collapse
Affiliation(s)
- Elizabeth M Avegno
- Department of Pharmacology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, United States
| | - Michael C Salling
- Department of Anesthesiology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, United States
| | - Anders Borgkvist
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, United States
| | - Ana Mrejeru
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, United States
| | - Alexander C Whitebirch
- Department of Neurobiology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, United States
| | - Elyssa B Margolis
- Department of Neurology, The Wheeler Center for the Neurobiology of Addiction, Alcoholism and Addiction Research Group, University of California, San Francisco, CA 94143, United States
| | - David Sulzer
- Department of Pharmacology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, United States; Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, United States; Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York State Psychiatric Institute, New York, NY 10032, United States.
| | - Neil L Harrison
- Department of Pharmacology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, United States; Department of Anesthesiology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, United States.
| |
Collapse
|
41
|
Kyzar EJ, Floreani C, Teppen TL, Pandey SC. Adolescent Alcohol Exposure: Burden of Epigenetic Reprogramming, Synaptic Remodeling, and Adult Psychopathology. Front Neurosci 2016; 10:222. [PMID: 27303256 PMCID: PMC4885838 DOI: 10.3389/fnins.2016.00222] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 05/06/2016] [Indexed: 12/22/2022] Open
Abstract
Adolescence represents a crucial phase of synaptic maturation characterized by molecular changes in the developing brain that shape normal behavioral patterns. Epigenetic mechanisms play an important role in these neuromaturation processes. Perturbations of normal epigenetic programming during adolescence by ethanol can disrupt these molecular events, leading to synaptic remodeling and abnormal adult behaviors. Repeated exposure to binge levels of alcohol increases the risk for alcohol use disorder (AUD) and comorbid psychopathology including anxiety in adulthood. Recent studies in the field clearly suggest that adolescent alcohol exposure causes widespread and persistent changes in epigenetic, neurotrophic, and neuroimmune pathways in the brain. These changes are manifested by altered synaptic remodeling and neurogenesis in key brain regions leading to adult psychopathology such as anxiety and alcoholism. This review details the molecular mechanisms underlying adolescent alcohol exposure-induced changes in synaptic plasticity and the development of alcohol addiction-related phenotypes in adulthood.
Collapse
Affiliation(s)
- Evan J Kyzar
- Department of Psychiatry, Center for Alcohol Research in Epigenetics, University of Illinois at ChicagoChicago, IL, USA; Jesse Brown Veterans Affairs Medical CenterChicago, IL, USA
| | - Christina Floreani
- Department of Psychiatry, Center for Alcohol Research in Epigenetics, University of Illinois at ChicagoChicago, IL, USA; Jesse Brown Veterans Affairs Medical CenterChicago, IL, USA
| | - Tara L Teppen
- Department of Psychiatry, Center for Alcohol Research in Epigenetics, University of Illinois at ChicagoChicago, IL, USA; Jesse Brown Veterans Affairs Medical CenterChicago, IL, USA
| | - Subhash C Pandey
- Department of Psychiatry, Center for Alcohol Research in Epigenetics, University of Illinois at ChicagoChicago, IL, USA; Jesse Brown Veterans Affairs Medical CenterChicago, IL, USA; Anatomy and Cell Biology, University of Illinois at ChicagoChicago, IL, USA
| |
Collapse
|
42
|
Schindler AG, Soden ME, Zweifel LS, Clark JJ. Reversal of Alcohol-Induced Dysregulation in Dopamine Network Dynamics May Rescue Maladaptive Decision-making. J Neurosci 2016; 36:3698-708. [PMID: 27030756 PMCID: PMC4812130 DOI: 10.1523/jneurosci.4394-15.2016] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 02/23/2016] [Accepted: 02/25/2016] [Indexed: 11/21/2022] Open
Abstract
Alcohol is the most commonly abused substance among adolescents, promoting the development of substance use disorders and compromised decision-making in adulthood. We have previously demonstrated, with a preclinical model in rodents, that adolescent alcohol use results in adult risk-taking behavior that positively correlates with phasic dopamine transmission in response to risky options, but the underlying mechanisms remain unknown. Here, we show that adolescent alcohol use may produce maladaptive decision-making through a disruption in dopamine network dynamics via increased GABAergic transmission within the ventral tegmental area (VTA). Indeed, we find that increased phasic dopamine signaling after adolescent alcohol use is attributable to a midbrain circuit, including the input from the pedunculopontine tegmentum to the VTA. Moreover, we demonstrate that VTA dopamine neurons from adult rats exhibit enhanced IPSCs after adolescent alcohol exposure corresponding to decreased basal dopamine levels in adulthood that negatively correlate with risk-taking. Building on these findings, we develop a model where increased inhibitory tone on dopamine neurons leads to a persistent decrease in tonic dopamine levels and results in a potentiation of stimulus-evoked phasic dopamine release that may drive risky choice behavior. Based on this model, we take a pharmacological approach to the reversal of risk-taking behavior through normalization of this pattern in dopamine transmission. These results isolate the underlying circuitry involved in alcohol-induced maladaptive decision-making and identify a novel therapeutic target. SIGNIFICANCE STATEMENT One of the primary problems resulting from chronic alcohol use is persistent, maladaptive decision-making that is associated with ongoing addiction vulnerability and relapse. Indeed, studies with the Iowa Gambling Task, a standard measure of risk-based decision-making, have reliably shown that alcohol-dependent individuals make riskier, more maladaptive choices than nondependent individuals, even after periods of prolonged abstinence. Using a preclinical model, in the current work, we identify a selective disruption in dopamine network dynamics that may promote maladaptive decision-making after chronic adolescent alcohol use and demonstrate its pharmacological reversal in adulthood. Together, these results highlight a novel neural mechanism underlying heightened risk-taking behavior in alcohol-dependent individuals and provide a potential therapeutic target for further investigation.
Collapse
Affiliation(s)
| | - Marta E Soden
- Departments of Psychiatry and Behavioral Sciences and Pharmacology, University of Washington, Seattle, Washington 98195
| | - Larry S Zweifel
- Departments of Psychiatry and Behavioral Sciences and Pharmacology, University of Washington, Seattle, Washington 98195
| | | |
Collapse
|
43
|
Shnitko TA, Spear LP, Robinson DL. Adolescent binge-like alcohol alters sensitivity to acute alcohol effects on dopamine release in the nucleus accumbens of adult rats. Psychopharmacology (Berl) 2016; 233:361-71. [PMID: 26487039 PMCID: PMC4840100 DOI: 10.1007/s00213-015-4106-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 10/08/2015] [Indexed: 01/06/2023]
Abstract
UNLABELLED Rationale: Early onset of alcohol drinking has been associated with alcohol abuse in adulthood. The neurobiology of this phenomenon is unclear, but mesolimbic dopamine pathways, which are dynamic during adolescence, may play a role. OBJECTIVES We investigated the impact of adolescent binge-like alcohol on phasic dopaminergic neurotransmission during adulthood. METHODS Rats received intermittent intragastric ethanol, water, or nothing during adolescence. In adulthood, electrically evoked dopamine release and subsequent uptake were measured in the nucleus accumbens core at baseline and after acute challenge of ethanol or saline. RESULTS Adolescent ethanol exposure did not alter basal measures of evoked dopamine release or uptake. Ethanol challenge dose-dependently decreased the amplitude of evoked dopamine release in rats by 30–50 % in control groups, as previously reported, but did not alter evoked release in ethanol-exposed animals. To address the mechanism by which ethanol altered dopamine signaling, the evoked signals were modeled to estimate dopamine efflux per impulse and the velocity of the dopamine transporter. Dopamine uptake was slower in all exposure groups after ethanol challenge compared to saline, while dopamine efflux per pulse of electrical stimulation was reduced by ethanol only in ethanol-naive rats. CONCLUSIONS The results demonstrate that exposure to binge levels of ethanol during adolescence blunts the effect of ethanol challenge to reduce the amplitude of phasic dopamine release in adulthood. Large dopamine transients may result in more extracellular dopamine after alcohol challenge in adolescent-exposed rats and may be one mechanism by which alcohol is more reinforcing in people who initiated drinking at an early age.
Collapse
Affiliation(s)
- Tatiana A. Shnitko
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, USA
| | - Linda P. Spear
- Center for Development and Behavioral Neuroscience, Department of Psychology, Binghamton University, Binghamton, NY 13902, USA
| | - Donita L. Robinson
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, USA,Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA,Corresponding author: Donita L. Robinson, PhD, Bowles Center for Alcohol Studies, CB #7178, University of North Carolina, Chapel Hill, NC 27599–7178; ; Phone: 919–966–9178; Fax: 919–966–5679
| |
Collapse
|
44
|
Saddoris MP, Wang X, Sugam JA, Carelli RM. Cocaine Self-Administration Experience Induces Pathological Phasic Accumbens Dopamine Signals and Abnormal Incentive Behaviors in Drug-Abstinent Rats. J Neurosci 2016; 36:235-50. [PMID: 26740664 PMCID: PMC4701963 DOI: 10.1523/jneurosci.3468-15.2016] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 11/05/2015] [Accepted: 11/24/2015] [Indexed: 11/21/2022] Open
Abstract
Chronic exposure to drugs of abuse is linked to long-lasting alterations in the function of limbic system structures, including the nucleus accumbens (NAc). Although cocaine acts via dopaminergic mechanisms within the NAc, less is known about whether phasic dopamine (DA) signaling in the NAc is altered in animals with cocaine self-administration experience or if these animals learn and interact normally with stimuli in their environment. Here, separate groups of rats self-administered either intravenous cocaine or water to a receptacle (controls), followed by 30 d of enforced abstinence. Next, all rats learned an appetitive Pavlovian discrimination and voltammetric recordings of real-time DA release were taken in either the NAc core or shell of cocaine and control subjects. Cocaine experience differentially impaired DA signaling in the core and shell relative to controls. Although phasic DA signals in the shell were essentially abolished for all stimuli, in the core, DA did not distinguish between cues and was abnormally biased toward reward delivery. Further, cocaine rats were unable to learn higher-order associations and even altered simple conditioned approach behaviors, displaying enhanced preoccupation with cue-associated stimuli (sign-tracking; ST) but diminished time at the food cup awaiting reward delivery (goal-tracking). Critically, whereas control DA signaling correlated with ST behaviors, cocaine experience abolished this relationship. These findings show that cocaine has persistent, differential, and pathological effects on both DA signaling and DA-dependent behaviors and suggest that psychostimulant experience may remodel the very circuits that bias organisms toward repeated relapse. SIGNIFICANCE STATEMENT Relapsing to drug abuse despite periods of abstinence and sincere attempts to quit is one of the most pernicious facets of addiction. Unfortunately, little is known about how the dopamine (DA) system functions after periods of drug abstinence, particularly its role in behavior in nondrug situations. Here, rats learned about food-paired stimuli after prolonged abstinence from cocaine self-administration. Using voltammetry, we found that real-time DA signals in cocaine-experienced rats were strikingly altered relative to controls. Further, cocaine-experienced animals found reward-predictive stimuli abnormally salient and spent more time interacting with cues. Therefore, cocaine induces neuroplastic changes in the DA system that biases animals toward salient stimuli (including reward-associated cues), putting addicts at increasing risk to relapse as addiction increases in severity.
Collapse
Affiliation(s)
- Michael P Saddoris
- Department of Psychology and Neuroscience, University of Colorado, Boulder, Colorado 80309, and Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Xuefei Wang
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Jonathan A Sugam
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Regina M Carelli
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| |
Collapse
|