1
|
Zhang M, Luo M, Chen G, Chi C, Zhao J. A novel Affi-Cova magnetic nanoparticles for one-step covalent immobilization of His-tagged enzyme directly from crude cell lysate. Int J Biol Macromol 2024; 280:135811. [PMID: 39322145 DOI: 10.1016/j.ijbiomac.2024.135811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
Owing to the rapid advancement of in vitro synthetic biology, functional carriers capable of covalently binding target proteins from crude lysates under mild conditions have garnered escalating attention. Herein, a magnetic nanoparticle with affinity/covalent bifunction (MNP@Affi-Cova) was developed for the direct covalent immobilization of the recombinant enzyme of His-tagged birA (r-birA) from crude cell lysates in a single step. This innovative approach is attributed to the presence of chelated Ni2+ ions and epoxy groups on the surface of the beads. The fabricated magnetic nanoparticles were characterized by SEM, FT-IR spectrum, and zeta potential. The application conditions and stability of the MNP@Affi-Cova beads were systematically evaluated. Notably, the MNP@Affi-Cova beads exhibited a covalent capture efficiency of 91.25 μg r-birA/mg beads from a cell lysate supernatant containing 2.62 mg/mL crude protein. The immobilized r-birA exhibited significantly enhanced pH and thermal stability compared to the free counterpart. Additionally, the reusability of the immobilized r-birA on MNP@Affi-Cova demonstrated the retention of 76.1 % of its initial activity over ten cycles. These results suggest that the MNP@Affi-Cova presents considerable potential as a support for the covalent immobilization of recombinant His-tagged enzymes directly from crude lysates, thereby circumventing the labor-intensive purification process typically required before enzyme immobilization.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Bioengineering and Biotechnology, Huaqiao University, Jimei Ave. 668, Xiamen 361021, China
| | - Mianxing Luo
- Department of Bioengineering and Biotechnology, Huaqiao University, Jimei Ave. 668, Xiamen 361021, China
| | - Guo Chen
- Department of Bioengineering and Biotechnology, Huaqiao University, Jimei Ave. 668, Xiamen 361021, China.
| | - Changbiao Chi
- Department of Bioengineering and Biotechnology, Huaqiao University, Jimei Ave. 668, Xiamen 361021, China
| | - Jun Zhao
- Department of Bioengineering and Biotechnology, Huaqiao University, Jimei Ave. 668, Xiamen 361021, China
| |
Collapse
|
2
|
Kirichuk O, Srimasorn S, Zhang X, Roberts ARE, Coche-Guerente L, Kwok JCF, Bureau L, Débarre D, Richter RP. Competitive Specific Anchorage of Molecules onto Surfaces: Quantitative Control of Grafting Densities and Contamination by Free Anchors. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:18410-18423. [PMID: 38049433 PMCID: PMC10734310 DOI: 10.1021/acs.langmuir.3c02567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/30/2023] [Accepted: 11/20/2023] [Indexed: 12/06/2023]
Abstract
The formation of surfaces decorated with biomacromolecules such as proteins, glycans, or nucleic acids with well-controlled orientations and densities is of critical importance for the design of in vitro models, e.g., synthetic cell membranes and interaction assays. To this effect, ligand molecules are often functionalized with an anchor that specifically binds to a surface with a high density of binding sites, providing control over the presentation of the molecules. Here, we present a method to robustly and quantitatively control the surface density of one or several types of anchor-bearing molecules by tuning the relative concentrations of target molecules and free anchors in the incubation solution. We provide a theoretical background that relates incubation concentrations to the final surface density of the molecules of interest and present effective guidelines toward optimizing incubation conditions for the quantitative control of surface densities. Focusing on the biotin anchor, a commonly used anchor for interaction studies, as a salient example, we experimentally demonstrate surface density control over a wide range of densities and target molecule sizes. Conversely, we show how the method can be adapted to quality control the purity of end-grafted biopolymers such as biotinylated glycosaminoglycans by quantifying the amount of residual free biotin reactant in the sample solution.
Collapse
Affiliation(s)
- Oksana Kirichuk
- School
of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K.
- School
of Physics and Astronomy, Faculty of Engineering and Physical Sciences,
Astbury Centre for Structural Molecular Biology, and Bragg Centre
for Materials Research, University of Leeds, Leeds LS2 9JT, U.K.
- Université
Grenoble-Alpes, CNRS, LIPhy, 38000 Grenoble, France
| | - Sumitra Srimasorn
- School
of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K.
- School
of Physics and Astronomy, Faculty of Engineering and Physical Sciences,
Astbury Centre for Structural Molecular Biology, and Bragg Centre
for Materials Research, University of Leeds, Leeds LS2 9JT, U.K.
| | - Xiaoli Zhang
- School
of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K.
- School
of Physics and Astronomy, Faculty of Engineering and Physical Sciences,
Astbury Centre for Structural Molecular Biology, and Bragg Centre
for Materials Research, University of Leeds, Leeds LS2 9JT, U.K.
| | - Abigail R. E. Roberts
- School
of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K.
- School
of Physics and Astronomy, Faculty of Engineering and Physical Sciences,
Astbury Centre for Structural Molecular Biology, and Bragg Centre
for Materials Research, University of Leeds, Leeds LS2 9JT, U.K.
| | - Liliane Coche-Guerente
- Département
de Chimie Moléculaire, Université
Grenoble-Alpes, CNRS, 38000 Grenoble, France
| | - Jessica C. F. Kwok
- School
of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K.
- Institute
of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 142 00 Prague, Czech Republic
| | - Lionel Bureau
- Université
Grenoble-Alpes, CNRS, LIPhy, 38000 Grenoble, France
| | | | - Ralf P. Richter
- School
of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K.
- School
of Physics and Astronomy, Faculty of Engineering and Physical Sciences,
Astbury Centre for Structural Molecular Biology, and Bragg Centre
for Materials Research, University of Leeds, Leeds LS2 9JT, U.K.
| |
Collapse
|
3
|
Porębska N, Ciura K, Chorążewska A, Zakrzewska M, Otlewski J, Opaliński Ł. Multivalent protein-drug conjugates - An emerging strategy for the upgraded precision and efficiency of drug delivery to cancer cells. Biotechnol Adv 2023; 67:108213. [PMID: 37453463 DOI: 10.1016/j.biotechadv.2023.108213] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/20/2023] [Accepted: 07/09/2023] [Indexed: 07/18/2023]
Abstract
With almost 20 million new cases per year, cancer constitutes one of the most important challenges for public health systems. Unlike traditional chemotherapy, targeted anti-cancer strategies employ sophisticated therapeutics to precisely identify and attack cancer cells, limiting the impact of drugs on healthy cells and thereby minimizing the unwanted side effects of therapy. Protein drug conjugates (PDCs) are a rapidly growing group of targeted therapeutics, composed of a cancer-recognition factor covalently coupled to a cytotoxic drug. Several PDCs, mainly in the form of antibody-drug conjugates (ADCs) that employ monoclonal antibodies as cancer-recognition molecules, are used in the clinic and many PDCs are currently in clinical trials. Highly selective, strong and stable interaction of the PDC with the tumor marker, combined with efficient, rapid endocytosis of the receptor/PDC complex and its subsequent effective delivery to lysosomes, is critical for the efficacy of targeted cancer therapy with PDCs. However, the bivalent architecture of contemporary clinical PDCs is not optimal for tumor receptor recognition or PDCs internalization. In this review, we focus on multivalent PDCs, which represent a rapidly evolving and highly promising therapeutics that overcome most of the limitations of current bivalent PDCs, enhancing the precision and efficiency of drug delivery to cancer cells. We present an expanding set of protein scaffolds used to generate multivalent PDCs that, in addition to folding into well-defined multivalent molecular structures, enable site-specific conjugation of the cytotoxic drug to ensure PDC homogeneity. We provide an overview of the architectures of multivalent PDCs developed to date, emphasizing their efficacy in the targeted treatment of various cancers.
Collapse
Affiliation(s)
- Natalia Porębska
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Krzysztof Ciura
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Aleksandra Chorążewska
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Małgorzata Zakrzewska
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Jacek Otlewski
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Łukasz Opaliński
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland.
| |
Collapse
|
4
|
Abstract
Pestiviruses are members of the family Flaviviridae, a group of enveloped viruses that bud at intracellular membranes. Pestivirus particles contain three glycosylated envelope proteins, Erns, E1, and E2. Among them, E1 is the least characterized concerning both biochemical features and function. E1 from bovine viral diarrhea virus (BVDV) strain CP7 was analyzed with regard to its intracellular localization and membrane topology. Here, it is shown that even in the absence of other viral proteins, E1 is not secreted or expressed at the cell surface but localizes predominantly in the endoplasmic reticulum (ER). Using engineered chimeric transmembrane domains with sequences from E1 and vesicular stomatitis virus G protein, the E1 ER-retention signal could be narrowed down to six fully conserved polar residues in the middle part of the transmembrane domain of E1. Retention was observed even when several of these polar residues were exchanged for alanine. Mutations with a strong impact on E1 retention prevented recovery of infectious viruses when tested in the viral context. Analysis of the membrane topology of E1 before and after the signal peptide cleavage via a selective permeabilization and an in vivo labeling approach revealed that mature E1 is a typical type I transmembrane protein with a single span transmembrane anchor at its C terminus, whereas it adopts a hairpin-like structure with the C terminus located in the ER lumen when the precleavage situation is mimicked by blocking the cleavage site between E1 and E2. IMPORTANCE The shortage of specific antibodies against E1, making detection and further analysis of E1 difficult, resulted in a lack of knowledge on E1 compared to Erns and E2 with regard to biosynthesis, structure, and function. It is known that pestiviruses bud intracellularly. Here, we show that E1 contains its own ER retention signal: six fully conserved polar residues in the middle part of the transmembrane domain are shown to be the determinants for ER retention of E1. Moreover, those six polar residues could serve as a functional group that intensely affect the generation of infectious viral particles. In addition, the membrane topology of E1 has been determined. In this context, we also identified dynamic changes in membrane topology of E1 with the carboxy terminus located on the luminal side of the ER in the precleavage state and relocation of this sequence upon signal peptidase cleavage. Our work provides the first systematic analysis of the pestiviral E1 protein with regard to its biochemical and functional characteristics.
Collapse
|
5
|
Biotin Functionalized Self‐Assembled Peptide Nanofiber as an Adjuvant for Immunomodulatory Response. Biotechnol J 2020; 15:e2000100. [DOI: 10.1002/biot.202000100] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/15/2020] [Indexed: 12/20/2022]
|
6
|
Xu L, Wang R, Cao H, Xu T, Han L, Huang C, Jia L. A facile method to oriented immobilization of His-tagged BirA on Co3+-NTA agarose beads. Enzyme Microb Technol 2019; 120:36-42. [DOI: 10.1016/j.enzmictec.2018.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 09/10/2018] [Accepted: 09/17/2018] [Indexed: 12/11/2022]
|
7
|
Xu XR, Wang Y, Adili R, Ju L, Spring CM, Jin JW, Yang H, Neves MAD, Chen P, Yang Y, Lei X, Chen Y, Gallant RC, Xu M, Zhang H, Song J, Ke P, Zhang D, Carrim N, Yu SY, Zhu G, She YM, Cyr T, Fu W, Liu G, Connelly PW, Rand ML, Adeli K, Freedman J, Lee JE, Tso P, Marchese P, Davidson WS, Jackson SP, Zhu C, Ruggeri ZM, Ni H. Apolipoprotein A-IV binds αIIbβ3 integrin and inhibits thrombosis. Nat Commun 2018; 9:3608. [PMID: 30190457 PMCID: PMC6127106 DOI: 10.1038/s41467-018-05806-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 07/19/2018] [Indexed: 12/29/2022] Open
Abstract
Platelet αIIbβ3 integrin and its ligands are essential for thrombosis and hemostasis, and play key roles in myocardial infarction and stroke. Here we show that apolipoprotein A-IV (apoA-IV) can be isolated from human blood plasma using platelet β3 integrin-coated beads. Binding of apoA-IV to platelets requires activation of αIIbβ3 integrin, and the direct apoA-IV-αIIbβ3 interaction can be detected using a single-molecule Biomembrane Force Probe. We identify that aspartic acids 5 and 13 at the N-terminus of apoA-IV are required for binding to αIIbβ3 integrin, which is additionally modulated by apoA-IV C-terminus via intra-molecular interactions. ApoA-IV inhibits platelet aggregation and postprandial platelet hyperactivity. Human apoA-IV plasma levels show a circadian rhythm that negatively correlates with platelet aggregation and cardiovascular events. Thus, we identify apoA-IV as a novel ligand of αIIbβ3 integrin and an endogenous inhibitor of thrombosis, establishing a link between lipoprotein metabolism and cardiovascular diseases. Activation of integrin αIIbβ3 at the surface of platelets is required for their aggregation and for thrombus formation. Here Xu et al. identify apolipoprotein A-IV as a novel ligand for platelet αIIbβ3 integrin, and find it inhibits platelet aggregation and thrombosis.
Collapse
Affiliation(s)
- Xiaohong Ruby Xu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada, M5S 1A1.,Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Toronto, ON, Canada, M5B 1W8.,Department of Acupuncture and Moxibustion, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, P.R. China, 510120.,Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P.R. China, 510000
| | - Yiming Wang
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada, M5S 1A1.,Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Toronto, ON, Canada, M5B 1W8.,Canadian Blood Services Centre for Innovation, Toronto, ON, Canada, M5G 2M1
| | - Reheman Adili
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Toronto, ON, Canada, M5B 1W8
| | - Lining Ju
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA, 30332.,Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA, 30332.,Heart Research Institute, and Charles Perkins Centre, The University of Sydney, Camperdown, Australia, 2006
| | - Christopher M Spring
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Toronto, ON, Canada, M5B 1W8
| | - Joseph Wuxun Jin
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Toronto, ON, Canada, M5B 1W8.,Canadian Blood Services Centre for Innovation, Toronto, ON, Canada, M5G 2M1
| | - Hong Yang
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Toronto, ON, Canada, M5B 1W8.,Canadian Blood Services Centre for Innovation, Toronto, ON, Canada, M5G 2M1
| | - Miguel A D Neves
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Toronto, ON, Canada, M5B 1W8
| | - Pingguo Chen
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Toronto, ON, Canada, M5B 1W8.,Canadian Blood Services Centre for Innovation, Toronto, ON, Canada, M5G 2M1
| | - Yan Yang
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Toronto, ON, Canada, M5B 1W8.,Canadian Blood Services Centre for Innovation, Toronto, ON, Canada, M5G 2M1
| | - Xi Lei
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Toronto, ON, Canada, M5B 1W8
| | - Yunfeng Chen
- Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA, 30332.,Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA, 30332
| | - Reid C Gallant
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada, M5S 1A1.,Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Toronto, ON, Canada, M5B 1W8
| | - Miao Xu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada, M5S 1A1.,Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Toronto, ON, Canada, M5B 1W8
| | - Hailong Zhang
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Toronto, ON, Canada, M5B 1W8
| | - Jina Song
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Toronto, ON, Canada, M5B 1W8.,Canadian Blood Services Centre for Innovation, Toronto, ON, Canada, M5G 2M1
| | - Peifeng Ke
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P.R. China, 510000.,Department of Laboratory Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, P.R. China, 510120
| | - Dan Zhang
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Toronto, ON, Canada, M5B 1W8.,Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P.R. China, 510000
| | - Naadiya Carrim
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Toronto, ON, Canada, M5B 1W8.,Canadian Blood Services Centre for Innovation, Toronto, ON, Canada, M5G 2M1
| | - Si-Yang Yu
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Toronto, ON, Canada, M5B 1W8.,Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, P.R. China, 410011
| | - Guangheng Zhu
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Toronto, ON, Canada, M5B 1W8
| | - Yi-Min She
- Centre for Biologics Research, Biologics and Genetic Therapies Directorate, HPFB, Health Canada, Ottawa, ON, Canada, K1A 0M2
| | - Terry Cyr
- Centre for Biologics Research, Biologics and Genetic Therapies Directorate, HPFB, Health Canada, Ottawa, ON, Canada, K1A 0M2
| | - Wenbin Fu
- Department of Acupuncture and Moxibustion, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, P.R. China, 510120.,Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, P.R. China, 510000
| | - Guoqing Liu
- Institute of Cardiovascular Science, Peking University Health Science Center, Beijing, P.R. China, 100083
| | - Philip W Connelly
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada, M5S 1A1.,Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Toronto, ON, Canada, M5B 1W8
| | - Margaret L Rand
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada, M5S 1A1.,Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada, M5G 1X8
| | - Khosrow Adeli
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada, M5S 1A1.,Program in Molecular Structure & Function, The Hospital for Sick Children, Toronto, ON, Canada, M5G 1X8
| | - John Freedman
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada, M5S 1A1.,Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Toronto, ON, Canada, M5B 1W8.,Department of Medicine, University of Toronto, Toronto, ON, Canada, M5S 1A1
| | - Jeffrey E Lee
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada, M5S 1A1
| | - Patrick Tso
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH, USA, 45219
| | - Patrizia Marchese
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA, 92037
| | - W Sean Davidson
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH, USA, 45219
| | - Shaun P Jackson
- Heart Research Institute, and Charles Perkins Centre, The University of Sydney, Camperdown, Australia, 2006.,Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA, 92037
| | - Cheng Zhu
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA, 30332.,Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA, 30332.,Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA, 30332
| | - Zaverio M Ruggeri
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA, 92037
| | - Heyu Ni
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada, M5S 1A1. .,Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Toronto, ON, Canada, M5B 1W8. .,Canadian Blood Services Centre for Innovation, Toronto, ON, Canada, M5G 2M1. .,Department of Medicine, University of Toronto, Toronto, ON, Canada, M5S 1A1. .,Department of Physiology, University of Toronto, Toronto, ON, Canada, M5S 1A1.
| |
Collapse
|
8
|
Jiao J, Rebane AA, Ma L, Zhang Y. Single-Molecule Protein Folding Experiments Using High-Precision Optical Tweezers. Methods Mol Biol 2017; 1486:357-390. [PMID: 27844436 DOI: 10.1007/978-1-4939-6421-5_14] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
How proteins fold from linear chains of amino acids to delicate three-dimensional structures remains a fundamental biological problem. Single-molecule manipulation based on high-resolution optical tweezers (OT) provides a powerful approach to study protein folding with unprecedented spatiotemporal resolution. In this method, a single protein or protein complex is tethered between two beads confined in optical traps and pulled. Protein unfolding induced by the mechanical force is counteracted by the spontaneous folding of the protein, reaching a dynamic equilibrium at a characteristic force and rate. The transition is monitored by the accompanying extension change of the protein and used to derive conformations and energies of folding intermediates and their associated transition kinetics. Here, we provide general strategies and detailed protocols to study folding of proteins and protein complexes using optical tweezers, including sample preparation, DNA-protein conjugation and methods of data analysis to extract folding energies and rates from the single-molecule measurements.
Collapse
Affiliation(s)
- Junyi Jiao
- Department of Cell Biology, School of Medicine and Integrated Graduate Program in Physical and Engineering Biology, Yale University, 333 Cedar Street, New Haven, CT, 06520, USA
| | - Aleksander A Rebane
- Department of Cell Biology, School of Medicine and Integrated Graduate Program in Physical and Engineering Biology, Yale University, 333 Cedar Street, New Haven, CT, 06520, USA
| | - Lu Ma
- Department of Cell Biology, School of Medicine, Yale University, 333 Cedar Street, New Haven, CT, 06520, USA
| | - Yongli Zhang
- Department of Cell Biology, School of Medicine, Yale University, 333 Cedar Street, New Haven, CT, 06520, USA.
| |
Collapse
|
9
|
Wang Z, Ding X, Li S, Shi J, Li Y. Engineered fluorescence tags for in vivo protein labelling. RSC Adv 2014. [DOI: 10.1039/c3ra46991c] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In vivoprotein labelling with a peptide tag–fluorescent probe system is an important chemical biology strategy for studying protein distribution, interaction and function.
Collapse
Affiliation(s)
- Zhipeng Wang
- School of Medical Engineering
- Hefei University of Technology
- Hefei, China
- Department of Chemistry
- School of Life Sciences
| | - Xiaozhe Ding
- Department of Chemistry
- School of Life Sciences
- Tsinghua University
- Beijing 100084, China
| | - Sijian Li
- School of Medical Engineering
- Hefei University of Technology
- Hefei, China
| | - Jing Shi
- Department of Chemistry
- University of Science and Technology of China
- Hefei, China
| | - Yiming Li
- School of Medical Engineering
- Hefei University of Technology
- Hefei, China
- Department of Chemistry
- School of Life Sciences
| |
Collapse
|
10
|
Gao L, Sun H, Uttamchandani M, Yao SQ. Phosphopeptide microarrays for comparative proteomic profiling of cellular lysates. Methods Mol Biol 2013; 1002:233-251. [PMID: 23625408 DOI: 10.1007/978-1-62703-360-2_19] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Protein phosphorylation is one of the most important and well-studied posttranslational modifications. Aberrant phosphorylation causes a wide spectrum of diseases, including cancers. As a result, many of the proteins involved in these pathways are seen as vital drug targets and biomarkers in treatment and diagnosis. The availability of broad-based platforms that identify changes across cellular states is critical in understanding unique disease characteristics and changes at the proteomic level. To highlight how microarrays can be applied in this regard, we describe here a comparative proteomic profiling method using two-color sample labeling and application on phosphopeptide microarrays, followed by a pull-down strategy and MS-based protein identification. This strategy has been applied to uncover candidate biomarkers in breast cancer and colon cancer cell lines. Apart from the synthesis of the phosphopeptide libraries and growth/isolation of cellular lysates, the protocol takes approximately 15 days to complete, once key steps have been optimized, and can be readily extended to other similarly complex biological specimens/samples.
Collapse
Affiliation(s)
- Liqian Gao
- National University of Singapore, Singapore, Republic of Singapore
| | | | | | | |
Collapse
|
11
|
Ha EJ, Kim BS, Park EK, Song KW, Lee SG, An SSA, Paik HJ. Site-specific reversible immobilization and purification of His-tagged protein on poly(2-acetamidoacrylic acid) hydrogel beads. POLYM ADVAN TECHNOL 2012. [DOI: 10.1002/pat.3052] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Eun-Ju Ha
- Department of Polymer Science and Engineering; Pusan National University; Busan; 609-735; Korea
| | - Bong-Soo Kim
- Department of Polymer Science and Engineering; Pusan National University; Busan; 609-735; Korea
| | - Eun-Kyoung Park
- Department of Organic Material Science and Engineering; Pusan National University; Busan; 609-735; Korea
| | - Ki-Won Song
- Department of Organic Material Science and Engineering; Pusan National University; Busan; 609-735; Korea
| | - Sun-Gu Lee
- Department of Chemical Engineering; Pusan National University; Busan; 609-735; Korea
| | - Seong Soo A. An
- Department of BioNano Technology; Kyungwon University; Sungnam; 461-701; Korea
| | - Hyun-jong Paik
- Department of Polymer Science and Engineering; Pusan National University; Busan; 609-735; Korea
| |
Collapse
|
12
|
Rödiger S, Schierack P, Böhm A, Nitschke J, Berger I, Frömmel U, Schmidt C, Ruhland M, Schimke I, Roggenbuck D, Lehmann W, Schröder C. A highly versatile microscope imaging technology platform for the multiplex real-time detection of biomolecules and autoimmune antibodies. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2012; 133:35-74. [PMID: 22437246 DOI: 10.1007/10_2011_132] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The analysis of different biomolecules is of prime importance for life science research and medical diagnostics. Due to the discovery of new molecules and new emerging bioanalytical problems, there is an ongoing demand for a technology platform that provides a broad range of assays with a user-friendly flexibility and rapid adaptability to new applications. Here we describe a highly versatile microscopy platform, VideoScan, for the rapid and simultaneous analysis of various assay formats based on fluorescence microscopic detection. The technological design is equally suitable for assays in solution, microbead-based assays and cell pattern recognition. The multiplex real-time capability for tracking of changes under dynamic heating conditions makes it a useful tool for PCR applications and nucleic acid hybridization, enabling kinetic data acquisition impossible to obtain by other technologies using endpoint detection. The paper discusses the technological principle of the platform regarding data acquisition and processing. Microbead-based and solution applications for the detection of diverse biomolecules, including antigens, antibodies, peptides, oligonucleotides and amplicons in small reaction volumes, are presented together with a high-content detection of autoimmune antibodies using a HEp-2 cell assay. Its adaptiveness and versatility gives VideoScan a competitive edge over other bioanalytical technologies.
Collapse
Affiliation(s)
- Stefan Rödiger
- Lausitz University of Applied Sciences, Senftenberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Ge X, Xu J. Cell-free protein synthesis as a promising expression system for recombinant proteins. Methods Mol Biol 2012; 824:565-578. [PMID: 22160920 DOI: 10.1007/978-1-61779-433-9_30] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Cell-free protein synthesis (CFPS) has major advantages over traditional cell-based methods in the capability of high-throughput protein synthesis and special protein production. During recent decades, CFPS has become an alternative protein production platform for both fundamental and applied purposes. Using Renilla luciferase as model protein, we describe a typical process of CFPS in wheat germ extract system, including wheat germ extract preparation, expression vector construction, in vitro protein synthesis (transcription/translation), and target protein assay.
Collapse
Affiliation(s)
- Xumeng Ge
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR, USA
| | | |
Collapse
|
14
|
Ge X, Luo D, Xu J. Cell-free protein expression under macromolecular crowding conditions. PLoS One 2011; 6:e28707. [PMID: 22174874 PMCID: PMC3234285 DOI: 10.1371/journal.pone.0028707] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 11/14/2011] [Indexed: 01/29/2023] Open
Abstract
Background Cell-free protein expression (CFPE) comprised of in vitro transcription and translation is currently manipulated in relatively dilute solutions, in which the macromolecular crowding effects present in living cells are largely ignored. This may not only affect the efficiency of protein synthesis in vitro, but also limit our understanding of the functions and interactions of biomolecules involved in this fundamental biological process. Methodology/Principal Findings Using cell-free synthesis of Renilla luciferase in wheat germ extract as a model system, we investigated the CFPE under macromolecular crowding environments emulated with three different crowding agents: PEG-8000, Ficoll-70 and Ficoll-400, which vary in chemical properties and molecular size. We found that transcription was substantially enhanced in the macromolecular crowding solutions; up to 4-fold increase in the mRNA production was detected in the presence of 20% (w/v) of Ficoll-70. In contrast, translation was generally inhibited by the addition of each of the three crowding agents. This might be due to PEG-induced protein precipitation and non-specific binding of translation factors to Ficoll molecules. We further explored a two-stage CFPE in which transcription and translation was carried out under high then low macromolecular crowding conditions, respectively. It produced 2.2-fold higher protein yield than the coupled CFPE control. The macromolecular crowding effects on CFPE were subsequently confirmed by cell-free synthesis of an approximately two-fold larger protein, Firefly luciferase, under macromolecular crowding environments. Conclusions/Significance Three macromolecular crowding agents used in this research had opposite effects on transcription and translation. The results of this study should aid researchers in their choice of macromolecular crowding agents and shows that two-stage CFPE is more efficient than coupled CFPE.
Collapse
Affiliation(s)
- Xumeng Ge
- Arkansas Biosciences Institute and College of Agriculture and Technology, Arkansas State University, Jonesboro, Arkansas, United States of America
| | - Dan Luo
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York, United States of America
| | - Jianfeng Xu
- Arkansas Biosciences Institute and College of Agriculture and Technology, Arkansas State University, Jonesboro, Arkansas, United States of America
- * E-mail:
| |
Collapse
|
15
|
Postel A, Letzel T, Müller F, Ehricht R, Pourquier P, Dauber M, Grund C, Beer M, Harder TC. In vivo biotinylated recombinant influenza A virus hemagglutinin for use in subtype-specific serodiagnostic assays. Anal Biochem 2010; 411:22-31. [PMID: 21172299 DOI: 10.1016/j.ab.2010.12.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 12/02/2010] [Accepted: 12/14/2010] [Indexed: 10/18/2022]
Abstract
There is an urgent need for robust subtype-specific serological tests to diagnose influenza A virus infections in poultry and mammals, including humans. Such assays require reliable subtype-specific sources of soluble and authentically folded seroreactive hemagglutinin (HA), one of the integral membrane proteins that determine the serological subtype of influenza viruses. To this purpose, a bigenic pFastBacDual baculovirus transfer vector allowing efficient invivo biotinylation of soluble HA homo-oligomers expressed via the secretory pathway was developed. An Avi-Tag allowed site-specific biotinylation by a coexpressed genetically modified BirA biotin ligase retained in the endoplasmic reticulum (ER). Highly seroreactive mono-biotinylated HA of recent H5 and H7 influenza A subtypes was secreted from recombinant baculovirus infected High-Five insect cells at levels sufficient to directly load streptavidin-coated enzyme-linked immunosorbent assay (ELISA) matrices, thereby avoiding any purification steps. The recombinant antigens retained authentic antigenicity, including conformation-dependent epitopes involved in hemagglutination inhibition as detected by monoclonal antibodies. This is the first bigenic invivo biotinylation system established for use in insect cells with secretable recombinant membrane proteins biotinylated by an ER-retained variant of BirA biotin ligase. The proposed technique is expected to significantly increase flexibility in the design of subtype-specific assays, thereby expanding the power of influenzaA virus serodiagnosis.
Collapse
Affiliation(s)
- Alexander Postel
- National Reference Laboratory for Avian Influenza Virus, Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, D-17493 Greifswald, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Algar WR, Tavares AJ, Krull UJ. Beyond labels: A review of the application of quantum dots as integrated components of assays, bioprobes, and biosensors utilizing optical transduction. Anal Chim Acta 2010; 673:1-25. [DOI: 10.1016/j.aca.2010.05.026] [Citation(s) in RCA: 406] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 05/17/2010] [Accepted: 05/17/2010] [Indexed: 01/08/2023]
|
17
|
Ito T, Sadamoto R, Naruchi K, Togame H, Takemoto H, Kondo H, Nishimura SI. Highly oriented recombinant glycosyltransferases: site-specific immobilization of unstable membrane proteins by using Staphylococcus aureus sortase A. Biochemistry 2010; 49:2604-14. [PMID: 20178374 DOI: 10.1021/bi100094g] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Recombinant glycosyltransferases are potential biocatalysts for the construction of a compound library of oligosaccharides, glycosphingolipids, glycopeptides, and various artificial glycoconjugates on the basis of combined chemical and enzymatic synthetic procedures. The structurally defined glycan-related compound library is a key resource both in the basic studies of their functional roles in various biological processes and in the discovery research of new diagnostic biomarkers and therapeutic reagents. Therefore, it is clear that the immobilization of extremely unstable membrane-bound glycosyltransferases on some suitable supporting materials should enhance the operational stability and activity of recombinant enzymes and makes facile separation of products and recycling use of enzymes possible. Until now, however, it seems that no standardized protocol preventing a significant loss of enzyme activity is available due to the lack of a general method of site-selective anchoring between glycosyltransferases and scaffold materials through a stable covalent bond. Here we communicate a versatile and efficient method for the immobilization of recombinant glycosyltransferases onto commercially available solid supports by means of transpeptidase reaction by Staphylococcus aureus sortase A. This protocol allowed for the first time highly specific conjugation at the designated C-terminal signal peptide moiety of recombinant human beta1,4-galactosyltransferase or recombinant Helicobacter pylori alpha1,3-fucosyltransferase with simple aliphatic amino groups displayed on the surface of solid materials. Site-specifically immobilized enzymes exhibited the desired sugar transfer activity, an improved stability, and a practical reusability required for rapid and large-scale synthesis of glycoconjugates. Considering that most mammalian enzymes responsible for the posttranslational modifications, including the protein kinase family, as well as glycosyltransferases are unstable and highly oriented membrane proteins, the merit of our strategy based on "site-specific" transpeptidation is evident because the reaction proceeds only at an engineered C-terminus without any conformational influence around the active sites of both enzymes as well as heptad repeats of rHFucT required to maintain native secondary and quaternary structures during the dimerization on cell surfaces.
Collapse
Affiliation(s)
- Takaomi Ito
- Graduate School of Life Science and Frontier Research Center for Post-Genomic Science and Technology, Hokkaido University, N21, W11, Kita-ku, Sapporo 001-0021, Japan
| | | | | | | | | | | | | |
Collapse
|
18
|
Chandra H, Srivastava S. Cell-free synthesis-based protein microarrays and their applications. Proteomics 2009; 10:717-30. [DOI: 10.1002/pmic.200900462] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
19
|
Chattopadhaya S, Abu Bakar FB, Yao SQ. Use of intein-mediated protein ligation strategies for the fabrication of functional protein arrays. Methods Enzymol 2009; 462:195-223. [PMID: 19632476 DOI: 10.1016/s0076-6879(09)62010-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
This section introduces a simple, rapid, high-throughput methodology for the site-specific biotinylation of proteins for the purpose of fabricating functional protein arrays. Step-by-step protocols are provided to generate biotinylated proteins using in vitro, in vivo, or cell-free systems, together with useful hints for troubleshooting. In vitro and in vivo biotinylation rely on the chemoselective native chemical ligation (NCL) reaction between the reactive alpha-thioester group at the C-terminus of target proteins, generated via intein-mediated cleavage, and the added cysteine biotin. The cell-free system uses a low concentration of biotin-conjugated puromycin. The biotinylated proteins can be either purified or directly captured from crude cellular lysates onto an avidin-functionalized slide to afford the corresponding protein array. The methods were designed to preserve the activity of the immobilized protein such that the arrays provide a highly miniaturized platform to simultaneously interrogate the functional activities of thousands of proteins. This is of paramount significance, as new applications of microarray technologies continue to emerge, fueling their growth as an essential tool for high-throughput proteomic studies.
Collapse
Affiliation(s)
- Souvik Chattopadhaya
- Department of Biological Sciences, NUS MedChem Program of the Office of Life Sciences, National University of Singapore, Singapore
| | | | | |
Collapse
|
20
|
Zhang X, Li F, Lu XW, Liu CF. Protein C-Terminal Modification through Thioacid/Azide Amidation. Bioconjug Chem 2009; 20:197-200. [DOI: 10.1021/bc800488n] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Xiaohong Zhang
- Division of Chemical Biology and Biotechnology, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Fupeng Li
- Division of Chemical Biology and Biotechnology, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Xiao-Wei Lu
- Division of Chemical Biology and Biotechnology, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Chuan-Fa Liu
- Division of Chemical Biology and Biotechnology, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| |
Collapse
|
21
|
Sunbul M, Yin J. Site specific protein labeling by enzymatic posttranslational modification. Org Biomol Chem 2009; 7:3361-71. [DOI: 10.1039/b908687k] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
22
|
Abstract
One of the more useful tags for a protein in biochemical experiments is biotin, because of its femtomolar dissociation constant with streptavidin or avidin. Robust methodologies have been developed for other the in vivo addition of a single biotin to recombinant protein or the in vitro enzymatic or chemical addition of biotin to a protein. Such modified proteins can be used in a variety of experiments, such as affinity selection of phage-displayed peptides or antibodies, pull-down of interacting proteins from cell lysates, or displaying proteins on arrays. We present three complementary approaches for biotinylating proteins in vivo in Escherichia coli or in vitro using chemical or enzymatical reactions all of which can be scaled up to tag large numbers of proteins in parallel.
Collapse
Affiliation(s)
- Brian K. Kay
- To whom correspondence should be addressed: Brian K. Kay, Department of Biological Sciences, University of Illinois at Chicago, 845 W. Taylor St., 3240 SES - MC 066, Chicago, IL 60607-7060, USA, Phone: 01-312-996-4249, Fax: 01-312-264-0547,
| | | | | |
Collapse
|
23
|
Jonkheijm P, Weinrich D, Schröder H, Niemeyer CM, Waldmann H. Chemical strategies for generating protein biochips. Angew Chem Int Ed Engl 2008; 47:9618-47. [PMID: 19025742 DOI: 10.1002/anie.200801711] [Citation(s) in RCA: 431] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Protein biochips are at the heart of many medical and bioanalytical applications. Increasing interest has been focused on surface activation and subsequent functionalization strategies for immobilizing these biomolecules. Different approaches using covalent and noncovalent chemistry are reviewed; particular emphasis is placed on the chemical specificity of protein attachment and on retention of protein function. Strategies for creating protein patterns (as opposed to protein arrays) are also outlined. An outlook on promising and challenging future directions for protein biochip research and applications is also offered.
Collapse
Affiliation(s)
- Pascal Jonkheijm
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology and Faculty of Chemistry, Chemical Biology, Technical University of Dortmund, Otto Hahn Strasse 11, 44227 Dortmund, Germany
| | | | | | | | | |
Collapse
|
24
|
Sun H, Lu CHS, Shi H, Gao L, Yao SQ. Peptide microarrays for high-throughput studies of Ser/Thr phosphatases. Nat Protoc 2008; 3:1485-93. [PMID: 18772876 DOI: 10.1038/nprot.2008.139] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Protein phosphorylation and dephosphorylation play an important role in regulation of intracellular signal transduction pathways in the biological system. A key step in the biological characterization of phosphatases and their use as drug targets is the identification of their cellular partners and suitable substrates for potential inhibitor development. Herein we describe a microarray-based protocol to map the substrate specificity of protein Ser/Thr phosphatases. This protocol uses Pro-Q dye to sensitively and quantitatively detect the amount of dephosphorylation that occurs from many putative peptide substrates in parallel, and therefore could be used to generate the so-called peptide substrate fingerprints as well as detailed kinetic information of a target phosphatase. Excluding the synthesis of the peptide substrates, the whole protocol takes a total of 11 h to complete and in future can be readily extended to the study of other classes of phosphatases, i.e., protein tyrosine phosphatases.
Collapse
Affiliation(s)
- Hongyan Sun
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Republic of Singapore
| | | | | | | | | |
Collapse
|
25
|
Jonkheijm P, Weinrich D, Schröder H, Niemeyer C, Waldmann H. Chemische Verfahren zur Herstellung von Proteinbiochips. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200801711] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
26
|
Bolivar JG, Soper SA, McCarley RL. Nitroavidin as a Ligand for the Surface Capture and Release of Biotinylated Proteins. Anal Chem 2008; 80:9336-42. [DOI: 10.1021/ac801750d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Jowell G. Bolivar
- Department of Chemistry and Center for Biomodular Multi-scale Systems, Louisiana State University, 232 Choppin Hall, Baton Rouge, Louisiana 70803-1804
| | - Steven A. Soper
- Department of Chemistry and Center for Biomodular Multi-scale Systems, Louisiana State University, 232 Choppin Hall, Baton Rouge, Louisiana 70803-1804
| | - Robin L. McCarley
- Department of Chemistry and Center for Biomodular Multi-scale Systems, Louisiana State University, 232 Choppin Hall, Baton Rouge, Louisiana 70803-1804
| |
Collapse
|
27
|
Nath N, Hurst R, Hook B, Meisenheimer P, Zhao KQ, Nassif N, Bulleit RF, Storts DR. Improving Protein Array Performance: Focus on Washing and Storage Conditions. J Proteome Res 2008; 7:4475-82. [DOI: 10.1021/pr800323j] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nidhi Nath
- Research and Development, Promega Corporation, Madison, Wisconsin 53711 and Promega Biosciences Incorporated, 277 Granada Drive, San Luis Obispo, California 93401
| | - Robin Hurst
- Research and Development, Promega Corporation, Madison, Wisconsin 53711 and Promega Biosciences Incorporated, 277 Granada Drive, San Luis Obispo, California 93401
| | - Brad Hook
- Research and Development, Promega Corporation, Madison, Wisconsin 53711 and Promega Biosciences Incorporated, 277 Granada Drive, San Luis Obispo, California 93401
| | - Poncho Meisenheimer
- Research and Development, Promega Corporation, Madison, Wisconsin 53711 and Promega Biosciences Incorporated, 277 Granada Drive, San Luis Obispo, California 93401
| | - Kate Q. Zhao
- Research and Development, Promega Corporation, Madison, Wisconsin 53711 and Promega Biosciences Incorporated, 277 Granada Drive, San Luis Obispo, California 93401
| | - Nadine Nassif
- Research and Development, Promega Corporation, Madison, Wisconsin 53711 and Promega Biosciences Incorporated, 277 Granada Drive, San Luis Obispo, California 93401
| | - Robert F. Bulleit
- Research and Development, Promega Corporation, Madison, Wisconsin 53711 and Promega Biosciences Incorporated, 277 Granada Drive, San Luis Obispo, California 93401
| | - Douglas R. Storts
- Research and Development, Promega Corporation, Madison, Wisconsin 53711 and Promega Biosciences Incorporated, 277 Granada Drive, San Luis Obispo, California 93401
| |
Collapse
|
28
|
Abstract
This protocol describes a simple and efficient way to label specific cell surface proteins with biophysical probes on mammalian cells. Cell surface proteins tagged with a 15-amino acid peptide are biotinylated by Escherichia coli biotin ligase (BirA), whereas endogenous proteins are not modified. The biotin group then allows sensitive and stable binding by streptavidin conjugates. This protocol describes the optimal use of BirA and streptavidin for site-specific labeling and also how to produce BirA and monovalent streptavidin. Streptavidin is tetravalent and the cross-linking of biotinylated targets disrupts many of streptavidin's applications. Monovalent streptavidin has only a single functional biotin-binding site, but retains the femtomolar affinity, low off-rate and high thermostability of wild-type streptavidin. Site-specific biotinylation and streptavidin staining take only a few minutes, while expression of BirA takes 4 d and expression of monovalent streptavidin takes 8 d.
Collapse
Affiliation(s)
- Mark Howarth
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA.
| | | |
Collapse
|
29
|
Lee WL, Li J, Uttamchandani M, Sun H, Yao SQ. Inhibitor fingerprinting of metalloproteases using microplate and microarray platforms: an enabling technology in Catalomics. Nat Protoc 2007; 2:2126-38. [PMID: 17853868 DOI: 10.1038/nprot.2007.305] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
One of the most fundamental properties of an enzyme is its selectivity, a property that has proved highly challenging to understand. Recent developments offer methodologies to rapidly establish activity-dependent profiles of enzymes. In this protocol, we describe methods to elucidate inhibitor fingerprints of enzymes. By taking advantage of well-defined small-molecule inhibitor libraries and the screening throughput offered from microplate and microarray platforms, we provide step-by-step application of the methodology toward the global characterization of metalloproteases, an important class of enzymes involved in numerous diseases and cellular processes. The same strategy is nonetheless applicable to virtually any given enzyme class, provided suitable experimental design and chemical inhibitor libraries are carefully implemented. We are able to routinely fingerprint as many as 2,000 independent enzyme interactions on the microplate platform within a span of approximately 7 h; however, the same throughput is attained within 5 h on the microarray platform.
Collapse
Affiliation(s)
- Wei L Lee
- Department of Biological Science, National University of Singapore, Singapore, Republic of Singapore
| | | | | | | | | |
Collapse
|