1
|
Wei B, Huang P, Wang X, Liu Z, Tang F, Huang W, Liu B, Ye F, Wang P. Site-Selective Construction of N-Linked Glycopeptides through Photoredox Catalysis. Angew Chem Int Ed Engl 2025; 64:e202415565. [PMID: 39420756 DOI: 10.1002/anie.202415565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/07/2024] [Accepted: 10/17/2024] [Indexed: 10/19/2024]
Abstract
The glycosylation of peptides and proteins can significantly impact their intrinsic properties, such as conformation, stability, antigenicity, and immunogenicity. Current methods for preparing N-linked glycopeptides typically rely on amide bond formation, which can be limited by the presence of reactive functional groups like acids and amines. Late-stage functionalization of peptides offers a promising approach to obtaining N-linked glycopeptides. In this study, we demonstrate the preparation of N-linked glycopeptides through a photoredox-catalyzed site-selective Giese addition between N-glycosyl oxamic acid and peptides containing dehydroalanine (Dha) under visible light conditions. Unlike traditional methods that rely on the coupling of aspartic acid and glycosylamine, this approach utilizes the conjugation of N-glycosylated carbamoyl radicals with Dha, facilitating the straightforward modification of complex peptides.
Collapse
Affiliation(s)
- Bingcheng Wei
- Center for Chemical Glycobiology, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Zhang jiang Institute for Advanced Study, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ping Huang
- Center for Chemical Glycobiology, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Zhang jiang Institute for Advanced Study, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- National Key Laboratory of Innovative Immunotherapy, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
- Shanghai Jiao Tong University Sichuan Research Institute, Chengdu, 610213, China
| | - Xinyao Wang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Zhi Liu
- State Key Laboratory of Drug Research, Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Feng Tang
- State Key Laboratory of Drug Research, Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Wei Huang
- State Key Laboratory of Drug Research, Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Bing Liu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Farong Ye
- Center for Chemical Glycobiology, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Zhang jiang Institute for Advanced Study, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ping Wang
- Center for Chemical Glycobiology, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Zhang jiang Institute for Advanced Study, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- National Key Laboratory of Innovative Immunotherapy, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
- Shanghai Jiao Tong University Sichuan Research Institute, Chengdu, 610213, China
| |
Collapse
|
2
|
Wei H, Zhang B, Shi S, Wang Z, Zhang F, Fang J. Selenol Switch Assay for Selenoprotein Derivatization. Chembiochem 2024; 25:e202400594. [PMID: 39227314 DOI: 10.1002/cbic.202400594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/25/2024] [Accepted: 09/03/2024] [Indexed: 09/05/2024]
Abstract
Selenoproteins are a class of protein that have selenocysteine (Sec) residues, and essential for diverse cellular functions. Although the human genome encodes 25 selenoproteins, nearly half of these selenoproteins' function is not clear. This is largely due to the lack of convenient methods to study selenoproteins. We report in this work a novel Selenol Switch assay to exclusively derivatize selenoproteins. The Selenol Switch assay relies on the selective conversion of the Sec residue to the electrophilic dehydroalanine (DHA) residue, which is then labeled by nucleophiles. The multiple reactions of the Selenol Switch assay are readily performed in a single test tube, and the conversion yield is nearly quantitative. The abundance of selenoproteins in mouse tissues determined by the Selenol Switch assay is consistent with that from the classical ICP-MS assay, validating the reliability of the Selenol Switch assay in studying selenoproteins.
Collapse
Affiliation(s)
- Haopai Wei
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Baoxin Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Suntao Shi
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Zhiyuan Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Fang Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing, Jiangsu, 210094, China
| |
Collapse
|
3
|
Zhao Z, Laps S, Gichtin JS, Metanis N. Selenium chemistry for spatio-selective peptide and protein functionalization. Nat Rev Chem 2024; 8:211-229. [PMID: 38388838 DOI: 10.1038/s41570-024-00579-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2024] [Indexed: 02/24/2024]
Abstract
The ability to construct a peptide or protein in a spatio-specific manner is of great interest for therapeutic and biochemical research. However, the various functional groups present in peptide sequences and the need to perform chemistry under mild and aqueous conditions make selective protein functionalization one of the greatest synthetic challenges. The fascinating paradox of selenium (Se) - being found in both toxic compounds and also harnessed by nature for essential biochemical processes - has inspired the recent exploration of selenium chemistry for site-selective functionalization of peptides and proteins. In this Review, we discuss such approaches, including metal-free and metal-catalysed transformations, as well as traceless chemical modifications. We report their advantages, limitations and applications, as well as future research avenues.
Collapse
Affiliation(s)
- Zhenguang Zhao
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Shay Laps
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Jacob S Gichtin
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Norman Metanis
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel.
- Casali Center for Applied Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel.
- The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
4
|
Dowman LJ, Kulkarni SS, Alegre-Requena JV, Giltrap AM, Norman AR, Sharma A, Gallegos LC, Mackay AS, Welegedara AP, Watson EE, van Raad D, Niederacher G, Huhmann S, Proschogo N, Patel K, Larance M, Becker CFW, Mackay JP, Lakhwani G, Huber T, Paton RS, Payne RJ. Site-selective photocatalytic functionalization of peptides and proteins at selenocysteine. Nat Commun 2022; 13:6885. [PMID: 36371402 PMCID: PMC9653470 DOI: 10.1038/s41467-022-34530-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/27/2022] [Indexed: 11/15/2022] Open
Abstract
The importance of modified peptides and proteins for applications in drug discovery, and for illuminating biological processes at the molecular level, is fueling a demand for efficient methods that facilitate the precise modification of these biomolecules. Herein, we describe the development of a photocatalytic method for the rapid and efficient dimerization and site-specific functionalization of peptide and protein diselenides. This methodology, dubbed the photocatalytic diselenide contraction, involves irradiation at 450 nm in the presence of an iridium photocatalyst and a phosphine and results in rapid and clean conversion of diselenides to reductively stable selenoethers. A mechanism for this photocatalytic transformation is proposed, which is supported by photoluminescence spectroscopy and density functional theory calculations. The utility of the photocatalytic diselenide contraction transformation is highlighted through the dimerization of selenopeptides, and by the generation of two families of protein conjugates via the site-selective modification of calmodulin containing the 21st amino acid selenocysteine, and the C-terminal modification of a ubiquitin diselenide.
Collapse
Affiliation(s)
- Luke J Dowman
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Sameer S Kulkarni
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Juan V Alegre-Requena
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523-1872, USA
| | - Andrew M Giltrap
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Alexander R Norman
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Ashish Sharma
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
- Australian Research Council Centre of Excellence in Exciton Science, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Liliana C Gallegos
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523-1872, USA
| | - Angus S Mackay
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Adarshi P Welegedara
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| | - Emma E Watson
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Damian van Raad
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| | - Gerhard Niederacher
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Susanne Huhmann
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Nicholas Proschogo
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Karishma Patel
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Mark Larance
- Charles Perkins Centre and School of Medical Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Christian F W Becker
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Joel P Mackay
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Girish Lakhwani
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
- Australian Research Council Centre of Excellence in Exciton Science, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Thomas Huber
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| | - Robert S Paton
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523-1872, USA
| | - Richard J Payne
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia.
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
5
|
Wheadon MJ, Townsend CA. Accurate Substrate-Like Probes for Trapping Late-Stage Intermediates in Nonribosomal Peptide Synthetase Condensation Domains. ACS Chem Biol 2022; 17:2046-2053. [PMID: 35914245 PMCID: PMC10029145 DOI: 10.1021/acschembio.2c00474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nonribosomal peptide synthetases (NRPSs) are a family of multidomain enzymes dedicated to the production of peptide natural products. Central to NRPS function are condensation (C) domains, which catalyze peptide bond formation and a number of specialized transformations including dehydroamino acid and β-lactam synthesis. Structures of C domains in catalytically informative states are limited due to a lack of clear strategies for stabilizing C domain interactions with their substrates and client domains. Inspired by a β-lactam forming C domain, we report herein the synthesis and application of 1, which forms irreversible cross-links with engineered thiol nucleophiles in a C domain active site. Deployment of 1 demonstrates the synthetic tractability of trapping late-stage nascent peptides in C domains and provides a readily adaptable tactic for stabilizing C domain interactions in multidomain NRPS fragments.
Collapse
Affiliation(s)
- Michael J Wheadon
- Johns Hopkins University, 3400 N Charles St., Baltimore, Maryland 21218, United States
| | - Craig A Townsend
- Johns Hopkins University, 3400 N Charles St., Baltimore, Maryland 21218, United States
| |
Collapse
|
6
|
Apostolos AJ, Ocius KL, Koyasseril-Yehiya TM, Santamaria C, Silva JRA, Lameira J, Alves CN, Siegrist MS, Pires MM. Metabolic Processing of Selenium-Based Bioisosteres of meso-Diaminopimelic Acid in Live Bacteria. Biochemistry 2022; 61:1404-1414. [PMID: 35687722 DOI: 10.1021/acs.biochem.2c00120] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A primary component of all known bacterial cell walls is the peptidoglycan (PG) layer, which is composed of repeating units of sugars connected to short and unusual peptides. The various steps within PG biosynthesis are targets of potent antibiotics as proper assembly of the PG is essential for cellular growth and survival. Synthetic mimics of PG have proven to be indispensable tools to study the bacterial cell structure, growth, and remodeling. Yet, a common component of PG, meso-diaminopimelic acid (m-DAP) at the third position of the stem peptide, remains challenging to access synthetically and is not commercially available. Here, we describe the synthesis and metabolic processing of a selenium-based bioisostere of m-DAP (selenolanthionine) and show that it is installed within the PG of live bacteria by the native cell wall crosslinking machinery in mycobacterial species. This PG probe has an orthogonal release mechanism that could be important for downstream proteomics studies. Finally, we describe a bead-based assay that is compatible with high-throughput screening of cell wall enzymes. We envision that this probe will supplement the current methods available for investigating PG crosslinking in m-DAP-containing organisms.
Collapse
Affiliation(s)
- Alexis J Apostolos
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Karl L Ocius
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | | | - Carolina Santamaria
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts 01003-9298, United States.,Department of Microbiology, University of Massachusetts, Amherst, Massachusetts 01003-9298, United States
| | - José Rogério A Silva
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, Pará 66075-110, Brazil
| | - Jerônimo Lameira
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, Pará 66075-110, Brazil
| | - Cláudio N Alves
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, Pará 66075-110, Brazil
| | - M Sloan Siegrist
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts 01003-9298, United States.,Department of Microbiology, University of Massachusetts, Amherst, Massachusetts 01003-9298, United States
| | - Marcos M Pires
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
7
|
Synthesis of Tetrapeptides Containing Dehydroalanine, Dehydrophenylalanine and Oxazole as Building Blocks for Construction of Foldamers and Bioinspired Catalysts. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092611. [PMID: 35565962 PMCID: PMC9102237 DOI: 10.3390/molecules27092611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 11/17/2022]
Abstract
The incorporation of dehydroamino acid or fragments of oxazole into peptide chain is accompanied by a distorted three-dimensional structure and additionally enables the introduction of non-typical side-chain substituents. Thus, such compounds could be building blocks for obtaining novel foldamers and/or artificial enzymes (artzymes). In this paper, effective synthetic procedures leading to such building blocks-tetrapeptides containing glycyldehydroalanine, glycyldehydrophenylalanine, and glycyloxazole subunits-are described. Peptides containing serine were used as substrates for their conversion into peptides containing dehydroalanine and aminomethyloxazole-4-carboxylic acid while considering possible requirements for the introduction of these fragments into long-chain peptides at the last steps of synthesis.
Collapse
|
8
|
Concepción O, Peñaloza FJ, López JJ, Cabrera-Barjas G, Jiménez CA, Paixão MW, de la Torre AF. Ugi and Passerini reactions enable the incorporation of ΔAA into N-alkylated peptides and depsipeptides. NEW J CHEM 2022. [DOI: 10.1039/d2nj01545e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Isocyanide-based multicomponent reactions enable the incorporation of different dehydroamino acids under mild conditions.
Collapse
Affiliation(s)
- Odette Concepción
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile
| | - Francisco J. Peñaloza
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile
| | - Jhon Jairo López
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile
| | | | - Claudio A. Jiménez
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile
| | - Márcio W. Paixão
- Center of Excellence for Research in Sustainable Chemistry (CERSusChem), Department of Chemistry, Federal University of São Carlos – UFSCar, Rodovia Washington Luís, km 235-SP-310, São Carlos, São Paulo, Brazil, 13565-905
| | - Alexander F. de la Torre
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
9
|
Common modifications of selenocysteine in selenoproteins. Essays Biochem 2020; 64:45-53. [PMID: 31867620 DOI: 10.1042/ebc20190051] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 12/09/2019] [Accepted: 12/12/2019] [Indexed: 01/03/2023]
Abstract
Selenocysteine (Sec), the sulfur-to-selenium substituted variant of cysteine (Cys), is the defining entity of selenoproteins. These are naturally expressed in many diverse organisms and constitute a unique class of proteins. As a result of the physicochemical characteristics of selenium when compared with sulfur, Sec is typically more reactive than Cys while participating in similar reactions, and there are also some qualitative differences in the reactivities between the two amino acids. This minireview discusses the types of modifications of Sec in selenoproteins that have thus far been experimentally validated. These modifications include direct covalent binding through the Se atom of Sec to other chalcogen atoms (S, O and Se) as present in redox active molecular motifs, derivatization of Sec via the direct covalent binding to non-chalcogen elements (Ni, Mb, N, Au and C), and the loss of Se from Sec resulting in formation of dehydroalanine. To understand the nature of these Sec modifications is crucial for an understanding of selenoprotein reactivities in biological, physiological and pathophysiological contexts.
Collapse
|
10
|
Dickman R, Mitchell SA, Figueiredo AM, Hansen DF, Tabor AB. Molecular Recognition of Lipid II by Lantibiotics: Synthesis and Conformational Studies of Analogues of Nisin and Mutacin Rings A and B. J Org Chem 2019; 84:11493-11512. [PMID: 31464129 PMCID: PMC6759747 DOI: 10.1021/acs.joc.9b01253] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Indexed: 12/12/2022]
Abstract
In response to the growing threat posed by antibiotic-resistant bacterial strains, extensive research is currently focused on developing antimicrobial agents that target lipid II, a vital precursor in the biosynthesis of bacterial cell walls. The lantibiotic nisin and related peptides display unique and highly selective binding to lipid II. A key feature of the nisin-lipid II interaction is the formation of a cage-like complex between the pyrophosphate moiety of lipid II and the two thioether-bridged rings, rings A and B, at the N-terminus of nisin. To understand the important structural factors underlying this highly selective molecular recognition, we have used solid-phase peptide synthesis to prepare individual ring A and B structures from nisin, the related lantibiotic mutacin, and synthetic analogues. Through NMR studies of these rings, we have demonstrated that ring A is preorganized to adopt the correct conformation for binding lipid II in solution and that individual amino acid substitutions in ring A have little effect on the conformation. We have also analyzed the turn structures adopted by these thioether-bridged peptides and show that they do not adopt the tight α-turn or β-turn structures typically found in proteins.
Collapse
Affiliation(s)
- Rachael Dickman
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
| | - Serena A. Mitchell
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
| | - Angelo M. Figueiredo
- Institute
of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, U.K.
| | - D. Flemming Hansen
- Institute
of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, U.K.
| | - Alethea B. Tabor
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
| |
Collapse
|
11
|
Bogart JW, Bowers AA. Dehydroamino acids: chemical multi-tools for late-stage diversification. Org Biomol Chem 2019; 17:3653-3669. [PMID: 30849157 PMCID: PMC6637761 DOI: 10.1039/c8ob03155j] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
α,β-Dehydroamino acids (dhAAs) are noncanonical amino acids that are found in a wide array of natural products and can be easily installed into peptides and proteins. dhAAs exhibit remarkable synthetic flexibility, readily undergoing a number of reactions, such as polar and single-electron additions, transition metal catalyzed cross-couplings, and cycloadditions. Because of the relatively mild conditions required for many of these reactions, dhAAs are increasingly being used as orthogonal chemical handles for late-stage modification of biomolecules. Still, only a fraction of the chemical reactivity of dhAAs has been exploited in such biorthogonal applications. Herein, we provide an overview of the broad spectrum of chemical reactivity of dhAAs, with special emphasis on recent efforts to adapt such transformations for biomolecules such as natural products, peptides, and proteins. We also discuss examples of enzymes from natural product biosynthetic pathways that have been found to catalyze many similar reactions; these enzymes provide mild, regio- and stereoselective, biocatalytic alternatives for future development. We anticipate that the continued investigation of the innate reactivity of dhAAs will furnish a diverse portfolio dhAA-based chemistries for use in chemical biology and drug discovery.
Collapse
Affiliation(s)
- Jonathan W Bogart
- Division of Chemical Biology and Medicinal Chemistry Eshelman School of Pharmacy, and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
| | | |
Collapse
|
12
|
Synthesis of selenopeptides: an alternative way of incorporating selenocystine. Amino Acids 2019; 51:661-667. [DOI: 10.1007/s00726-019-02698-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 01/11/2019] [Indexed: 12/19/2022]
|
13
|
Montoir D, Amoura M, Ababsa ZEA, Vishwanatha TM, Yen-Pon E, Robert V, Beltramo M, Piller V, Alami M, Aucagne V, Messaoudi S. Synthesis of aryl-thioglycopeptides through chemoselective Pd-mediated conjugation. Chem Sci 2018; 9:8753-8759. [PMID: 30627396 PMCID: PMC6295873 DOI: 10.1039/c8sc02370k] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 09/18/2018] [Indexed: 12/17/2022] Open
Abstract
We describe herein a Pd-catalyzed methodology for the thioglycoconjugation of iodoaryl peptides and aminoacids. This operationally simple process occurs under semi-aqueous conditions and displays wide substrate scope. The strategy has been successfully applied to both the thioglycosylation of unprotected peptides and the generation of thioglyco-aminoacid building blocks, including those suitable for solid phase peptide synthesis. To demonstrate the broad potential of this technique for late stage functionalization, we successfully incorporated challenging unprotected β-S-GlcNAc- and α-S-GalNAc-derivatives into very long unprotected peptides. This study opens the way to new applications in chemical biology, considering the well-recognized advantages of S-glycosides over O-glycosides in terms of resistance towards both enzymatic and chemical degradation.
Collapse
Affiliation(s)
- David Montoir
- BioCIS , Univ. Paris-Sud , CNRS , Univ. Paris-Saclay , Châtenay-Malabry , France . ; Tel: +33 0146835887
| | - Mehdi Amoura
- Centre de Biophysique Moléculaire , CNRS , Orléans , France . ; Tel: +33 0238255577
| | - Zine El Abidine Ababsa
- BioCIS , Univ. Paris-Sud , CNRS , Univ. Paris-Saclay , Châtenay-Malabry , France . ; Tel: +33 0146835887
| | - T M Vishwanatha
- Centre de Biophysique Moléculaire , CNRS , Orléans , France . ; Tel: +33 0238255577
| | - Expédite Yen-Pon
- BioCIS , Univ. Paris-Sud , CNRS , Univ. Paris-Saclay , Châtenay-Malabry , France . ; Tel: +33 0146835887
| | - Vincent Robert
- UMR Physiologie de la Reproduction et des Comportements , INRA , CNRS , Univ. Tours , IFCE , Nouzilly , France
| | - Massimiliano Beltramo
- UMR Physiologie de la Reproduction et des Comportements , INRA , CNRS , Univ. Tours , IFCE , Nouzilly , France
| | - Véronique Piller
- Centre de Biophysique Moléculaire , CNRS , Orléans , France . ; Tel: +33 0238255577
| | - Mouad Alami
- BioCIS , Univ. Paris-Sud , CNRS , Univ. Paris-Saclay , Châtenay-Malabry , France . ; Tel: +33 0146835887
| | - Vincent Aucagne
- Centre de Biophysique Moléculaire , CNRS , Orléans , France . ; Tel: +33 0238255577
| | - Samir Messaoudi
- BioCIS , Univ. Paris-Sud , CNRS , Univ. Paris-Saclay , Châtenay-Malabry , France . ; Tel: +33 0146835887
| |
Collapse
|
14
|
Ding W, Yuan N, Mandalapu D, Mo T, Dong S, Zhang Q. Cypemycin Decarboxylase CypD Is Not Responsible for Aminovinyl–Cysteine (AviCys) Ring Formation. Org Lett 2018; 20:7670-7673. [DOI: 10.1021/acs.orglett.8b03380] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wei Ding
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Ning Yuan
- State Key Laboratory of Natural and Biomimetic Drugs, and Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | | | - Tianlu Mo
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Suwei Dong
- State Key Laboratory of Natural and Biomimetic Drugs, and Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Qi Zhang
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| |
Collapse
|
15
|
Navo CD, Asín A, Gómez-Orte E, Gutiérrez-Jiménez MI, Compañón I, Ezcurra B, Avenoza A, Busto JH, Corzana F, Zurbano MM, Jiménez-Osés G, Cabello J, Peregrina JM. Cell-Penetrating Peptides Containing Fluorescent d
-Cysteines. Chemistry 2018; 24:7991-8000. [DOI: 10.1002/chem.201800603] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Indexed: 01/20/2023]
Affiliation(s)
- Claudio D. Navo
- Dpto. de Química, Centro de Investigación en Síntesis Química; Universidad de La Rioja; C/ Madre de Dios, 53 26006 Logroño La Rioja Spain
| | - Alicia Asín
- Dpto. de Química, Centro de Investigación en Síntesis Química; Universidad de La Rioja; C/ Madre de Dios, 53 26006 Logroño La Rioja Spain
| | - Eva Gómez-Orte
- Center for Biomedical Research of La Rioja (CIBIR); C/ Piqueras, 98 26006 Logroño La Rioja Spain
| | - Marta I. Gutiérrez-Jiménez
- Dpto. de Química, Centro de Investigación en Síntesis Química; Universidad de La Rioja; C/ Madre de Dios, 53 26006 Logroño La Rioja Spain
| | - Ismael Compañón
- Dpto. de Química, Centro de Investigación en Síntesis Química; Universidad de La Rioja; C/ Madre de Dios, 53 26006 Logroño La Rioja Spain
| | - Begoña Ezcurra
- Center for Biomedical Research of La Rioja (CIBIR); C/ Piqueras, 98 26006 Logroño La Rioja Spain
| | - Alberto Avenoza
- Dpto. de Química, Centro de Investigación en Síntesis Química; Universidad de La Rioja; C/ Madre de Dios, 53 26006 Logroño La Rioja Spain
| | - Jesús H. Busto
- Dpto. de Química, Centro de Investigación en Síntesis Química; Universidad de La Rioja; C/ Madre de Dios, 53 26006 Logroño La Rioja Spain
| | - Francisco Corzana
- Dpto. de Química, Centro de Investigación en Síntesis Química; Universidad de La Rioja; C/ Madre de Dios, 53 26006 Logroño La Rioja Spain
| | - María M. Zurbano
- Dpto. de Química, Centro de Investigación en Síntesis Química; Universidad de La Rioja; C/ Madre de Dios, 53 26006 Logroño La Rioja Spain
| | - Gonzalo Jiménez-Osés
- Dpto. de Química, Centro de Investigación en Síntesis Química; Universidad de La Rioja; C/ Madre de Dios, 53 26006 Logroño La Rioja Spain
| | - Juan Cabello
- Center for Biomedical Research of La Rioja (CIBIR); C/ Piqueras, 98 26006 Logroño La Rioja Spain
| | - Jesús M. Peregrina
- Dpto. de Química, Centro de Investigación en Síntesis Química; Universidad de La Rioja; C/ Madre de Dios, 53 26006 Logroño La Rioja Spain
| |
Collapse
|
16
|
Mousa R, Notis Dardashti R, Metanis N. Selen und Selenocystein in der Proteinchemie. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201706876] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Reem Mousa
- The Institute of Chemistry; The Hebrew University of Jerusalem; Edmond J. Safra, Givat Ram Jerusalem 91904 Israel
| | - Rebecca Notis Dardashti
- The Institute of Chemistry; The Hebrew University of Jerusalem; Edmond J. Safra, Givat Ram Jerusalem 91904 Israel
| | - Norman Metanis
- The Institute of Chemistry; The Hebrew University of Jerusalem; Edmond J. Safra, Givat Ram Jerusalem 91904 Israel
| |
Collapse
|
17
|
Mousa R, Notis Dardashti R, Metanis N. Selenium and Selenocysteine in Protein Chemistry. Angew Chem Int Ed Engl 2017; 56:15818-15827. [PMID: 28857389 DOI: 10.1002/anie.201706876] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Indexed: 01/22/2023]
Abstract
Selenocysteine, the selenium-containing analogue of cysteine, is the twenty-first proteinogenic amino acid. Since its discovery almost fifty years ago, it has been exploited in unnatural systems even more often than in natural systems. Selenocysteine chemistry has attracted the attention of many chemists in the field of chemical biology owing to its high reactivity and resulting potential for various applications such as chemical modification, chemical protein (semi)synthesis, and protein folding, to name a few. In this Minireview, we will focus on the chemistry of selenium and selenocysteine and their utility in protein chemistry.
Collapse
Affiliation(s)
- Reem Mousa
- The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra, Givat Ram, Jerusalem, 91904, Israel
| | - Rebecca Notis Dardashti
- The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra, Givat Ram, Jerusalem, 91904, Israel
| | - Norman Metanis
- The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra, Givat Ram, Jerusalem, 91904, Israel
| |
Collapse
|
18
|
Wright TH, Davis BG. Post-translational mutagenesis for installation of natural and unnatural amino acid side chains into recombinant proteins. Nat Protoc 2017. [DOI: 10.1038/nprot.2017.087] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
Total synthesis and structure-activity relationship studies of a series of selective G protein inhibitors. Nat Chem 2016; 8:1035-1041. [PMID: 27768111 DOI: 10.1038/nchem.2577] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 06/16/2016] [Indexed: 01/22/2023]
Abstract
G proteins are key mediators of G protein-coupled receptor signalling, which facilitates a plethora of important physiological processes. The cyclic depsipeptides YM-254890 and FR900359 are the only known specific inhibitors of the Gq subfamily of G proteins; however, no synthetic route has been reported previously for these complex natural products and they are not easily isolated from natural sources. Here we report the first total synthesis of YM-254890 and FR900359, as well as of two known analogues, YM-385780 and YM-385781. The versatility of the synthetic approach also enabled the design and synthesis of ten analogues, which provided the first structure-activity relationship study for this class of compounds. Pharmacological characterization of all the compounds at Gq-, Gi- and Gs-mediated signalling provided succinct information on the structural requirements for inhibition, and demonstrated that both YM-254890 and FR900359 are highly potent inhibitors of Gq signalling, with FR900359 being the most potent. These natural products and their analogues represent unique tools for explorative studies of G protein inhibition.
Collapse
|
20
|
Rojas-Ocáriz V, Compañón I, Aydillo C, Castro-Loṕez J, Jiménez-Barbero J, Hurtado-Guerrero R, Avenoza A, Zurbano MM, Peregrina JM, Busto JH, Corzana F. Design of α-S-Neoglycopeptides Derived from MUC1 with a Flexible and Solvent-Exposed Sugar Moiety. J Org Chem 2016; 81:5929-41. [PMID: 27305427 DOI: 10.1021/acs.joc.6b00833] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The use of vaccines based on MUC1 glycopeptides is a promising approach to treat cancer. We present herein several sulfa-Tn antigens incorporated in MUC1 sequences that possess a variable linker between the carbohydrate (GalNAc) and the peptide backbone. The main conformations of these molecules in solution have been evaluated by combining NMR experiments and molecular dynamics simulations. The linker plays a key role in the modulation of the conformation of these compounds at different levels, blocking a direct contact between the sugar moiety and the backbone, promoting a helix-like conformation for the glycosylated residue and favoring the proper presentation of the sugar unit for molecular recognition events. The feasibility of these novel compounds as mimics of MUC1 antigens has been validated by the X-ray diffraction structure of one of these unnatural derivatives complexed to an anti-MUC1 monoclonal antibody. These features, together with potential lack of immune suppression, render these unnatural glycopeptides promising candidates for designing alternative therapeutic vaccines against cancer.
Collapse
Affiliation(s)
- Víctor Rojas-Ocáriz
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja , Madre de Dios 53, 26006 Logroño, Spain
| | - Ismael Compañón
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja , Madre de Dios 53, 26006 Logroño, Spain
| | - Carlos Aydillo
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja , Madre de Dios 53, 26006 Logroño, Spain
| | - Jorge Castro-Loṕez
- BIFI, University of Zaragoza, BIFI-IQFR (CSIC) Joint Unit , Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, Zaragoza, Spain
| | - Jesús Jiménez-Barbero
- Structural Biology Unit, CIC bioGUNE , Parque Tecnológico de Bizkaia Building 801 A, 48160 Derio, Spain.,IKERBASQUE, Basque Foundation for Science , 48011 Bilbao, Spain.,Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas , CSIC Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Ramón Hurtado-Guerrero
- BIFI, University of Zaragoza, BIFI-IQFR (CSIC) Joint Unit , Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, Zaragoza, Spain.,Fundación ARAID , 50018 Zaragoza, Spain
| | - Alberto Avenoza
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja , Madre de Dios 53, 26006 Logroño, Spain
| | - María M Zurbano
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja , Madre de Dios 53, 26006 Logroño, Spain
| | - Jesús M Peregrina
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja , Madre de Dios 53, 26006 Logroño, Spain
| | - Jesús H Busto
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja , Madre de Dios 53, 26006 Logroño, Spain
| | - Francisco Corzana
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja , Madre de Dios 53, 26006 Logroño, Spain
| |
Collapse
|
21
|
Gutiérrez-Jiménez MI, Aydillo C, Navo CD, Avenoza A, Corzana F, Jiménez-Osés G, Zurbano MM, Busto JH, Peregrina JM. Bifunctional Chiral Dehydroalanines for Peptide Coupling and Stereoselective S-Michael Addition. Org Lett 2016; 18:2796-9. [DOI: 10.1021/acs.orglett.6b00840] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Marta I. Gutiérrez-Jiménez
- Departamento
de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, E-26006 Logroño, Spain
| | - Carlos Aydillo
- CECB,
Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Claudio D. Navo
- Departamento
de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, E-26006 Logroño, Spain
| | - Alberto Avenoza
- Departamento
de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, E-26006 Logroño, Spain
| | - Francisco Corzana
- Departamento
de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, E-26006 Logroño, Spain
| | - Gonzalo Jiménez-Osés
- Departamento
de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, E-26006 Logroño, Spain
- Institute
of Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, BIFI-IQFR (CSIC), 50018 Zaragoza, Spain
| | - María M. Zurbano
- Departamento
de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, E-26006 Logroño, Spain
| | - Jesús H. Busto
- Departamento
de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, E-26006 Logroño, Spain
| | - Jesús M. Peregrina
- Departamento
de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, E-26006 Logroño, Spain
| |
Collapse
|
22
|
Cohen DT, Zhang C, Pentelute BL, Buchwald SL. An Umpolung Approach for the Chemoselective Arylation of Selenocysteine in Unprotected Peptides. J Am Chem Soc 2015. [PMID: 26225900 PMCID: PMC4613869 DOI: 10.1021/jacs.5b05447] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
![]()
Herein
we report an umpolung strategy for the bioconjugation of
selenocysteine in unprotected peptides. This mild and operationally
simple approach takes advantage of the electrophilic character of
an oxidized selenocysteine (Se–S bond) to react with a nucleophilic
arylboronic acid to provide the arylated selenocysteine within hours.
This reaction is amenable to a wide range of boronic acids with different
biorelevant functional groups and is unique to selenocysteine. Experimental
evidence indicates that under oxidative conditions the arylated derivatives
are more stable than the corresponding alkylated selenocysteine.
Collapse
Affiliation(s)
- Daniel T Cohen
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Chi Zhang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Bradley L Pentelute
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Stephen L Buchwald
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
23
|
|
24
|
Chooi KP, Galan SRG, Raj R, McCullagh J, Mohammed S, Jones LH, Davis BG. Synthetic phosphorylation of p38α recapitulates protein kinase activity. J Am Chem Soc 2014; 136:1698-701. [PMID: 24393126 PMCID: PMC4235370 DOI: 10.1021/ja4095318] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
![]()
Through
a “tag-and-modify” protein chemical modification
strategy, we site-selectively phosphorylated the activation
loop of protein kinase p38α. Phosphorylation at natural
(180) and unnatural (172) sites created two pure phospho-forms. p38α
bearing only a single phosphocysteine (pCys) as a mimic of pThr at
180 was sufficient to switch the kinase to an active state, capable
of processing natural protein substrate ATF2; 172 site phosphorylation
did not. In this way, we chemically recapitulated triggering of a
relevant segment of the MAPK-signaling pathway in vitro. This allowed detailed kinetic analysis of global and stoichiometric
phosphorylation events catalyzed by p38α and revealed
that site 180 is a sufficient activator alone and engenders dominant
mono-phosphorylation activity. Moreover, a survey of kinase
inhibition using inhibitors with different (Type I/II) modes (including
therapeutically relevant) revealed unambiguously that Type II inhibitors
inhibit phosphorylated p38α and allowed discovery of a
predictive kinetic analysis based on cooperativity to distinguish
Type I vs II.
Collapse
Affiliation(s)
- K Phin Chooi
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford , Mansfield Road, Oxford OX1 3TA, U.K
| | | | | | | | | | | | | |
Collapse
|
25
|
Aydillo C, Compañón I, Avenoza A, Busto JH, Corzana F, Peregrina JM, Zurbano MM. S-Michael additions to chiral dehydroalanines as an entry to glycosylated cysteines and a sulfa-Tn antigen mimic. J Am Chem Soc 2014; 136:789-800. [PMID: 24372047 DOI: 10.1021/ja411522f] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Stereoselective sulfa-Michael addition of appropriately protected thiocarbohydrates to chiral dehydroalanines has been developed as a key step in the synthesis of biologically important cysteine derivatives, such as S-(β-D-glucopyranosyl)-D-cysteine, which has not been synthesized to date, and S-(2-acetamido-2-deoxy-α-D-galactopyranosyl)-L-cysteine, which could be considered as a mimic of Tn antigen. The corresponding diamide derivative was also synthesized and analyzed from a conformational viewpoint, and its bound state with a lectin was studied.
Collapse
Affiliation(s)
- Carlos Aydillo
- Departamento de Química, Universidad de La Rioja , Centro de Investigación en Síntesis Química, E-26006 Logroño, Spain
| | | | | | | | | | | | | |
Collapse
|
26
|
Lin YA, Boutureira O, Lercher L, Bhushan B, Paton RS, Davis BG. Rapid cross-metathesis for reversible protein modifications via chemical access to Se-allyl-selenocysteine in proteins. J Am Chem Soc 2013; 135:12156-9. [PMID: 23889088 PMCID: PMC3810893 DOI: 10.1021/ja403191g] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
![]()
Cross-metathesis (CM) has recently
emerged as a viable strategy for protein modification. Here, efficient
protein CM has been demonstrated through biomimetic chemical access
to Se-allyl-selenocysteine (Seac), a metathesis-reactive
amino acid substrate, via dehydroalanine. On-protein reaction kinetics
reveal a rapid reaction with rate constants of Seac-mediated-CM comparable
or superior to off-protein rates of many current bioconjugations.
This use of Se-relayed Seac CM on proteins has now
enabled reactions with substrates (allyl GlcNAc, N-allyl acetamide) that were previously not possible for the corresponding
sulfur analogue. This CM strategy was applied to histone proteins
to install a mimic of acetylated lysine (KAc, an epigenetic marker).
The resulting synthetic H3 was successfully recognized by antibody
that binds natural H3-K9Ac. Moreover, Cope-type selenoxide elimination
allowed this putative marker (and function) to be chemically expunged,
regenerating an H3 that can be rewritten to complete a chemically
enabled “write (CM)–erase (ox)–rewrite (CM)”
cycle.
Collapse
Affiliation(s)
- Yuya A Lin
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | | | | | | | | | | |
Collapse
|
27
|
Novoa A, Barluenga S, Serba C, Winssinger N. Solid phase synthesis of glycopeptides using Shoda's activation of unprotected carbohydrates. Chem Commun (Camb) 2013; 49:7608-10. [DOI: 10.1039/c3cc43458c] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
28
|
Schlippe YVG, Hartman MCT, Josephson K, Szostak JW. In vitro selection of highly modified cyclic peptides that act as tight binding inhibitors. J Am Chem Soc 2012; 134:10469-77. [PMID: 22428867 PMCID: PMC3384292 DOI: 10.1021/ja301017y] [Citation(s) in RCA: 178] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
![]()
There is a great demand for the discovery of new therapeutic
molecules
that combine the high specificity and affinity of biologic drugs with
the bioavailability and lower cost of small molecules. Small, natural-product-like
peptides hold great promise in bridging this gap; however, access
to libraries of these compounds has been a limitation. Since ribosomal
peptides may be subjected to in vitro selection techniques,
the generation of extremely large libraries (>1013)
of
highly modified macrocyclic peptides may provide a powerful alternative
for the generation and selection of new useful bioactive molecules.
Moreover, the incorporation of many non-proteinogenic amino acids
into ribosomal peptides in conjunction with macrocyclization should
enhance the drug-like features of these libraries. Here we show that
mRNA-display, a technique that allows the in vitro selection of peptides, can be applied to the evolution of macrocyclic
peptides that contain a majority of unnatural amino acids. We describe
the isolation and characterization of two such unnatural cyclic peptides
that bind the protease thrombin with low nanomolar affinity, and we
show that the unnatural residues in these peptides are essential for
the observed high-affinity binding. We demonstrate that the selected
peptides are tight-binding inhibitors of thrombin, with Kiapp values in the low nanomolar range. The
ability to evolve highly modified macrocyclic peptides in the laboratory
is the first crucial step toward the facile generation of useful molecular
reagents and therapeutic lead molecules that combine the advantageous
features of biologics with those of small-molecule drugs.
Collapse
Affiliation(s)
- Yollete V Guillen Schlippe
- Howard Hughes Medical Institute, Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, Massachusetts 02114, USA
| | | | | | | |
Collapse
|
29
|
Patora-Komisarska K, Jadwiga Podwysocka D, Seebach D. Preparation of the β2-Homoselenocysteine Derivatives Fmoc-(S)-β2hSec(PMB)-OH and Boc-(S)-β2hSec(PMB)-OH for Solution and Solid-Phase Peptide Synthesis. Helv Chim Acta 2011. [DOI: 10.1002/hlca.201000409] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
30
|
Chalker JM, Gunnoo SB, Boutureira O, Gerstberger SC, Fernández-González M, Bernardes GJL, Griffin L, Hailu H, Schofield CJ, Davis BG. Methods for converting cysteine to dehydroalanine on peptides and proteins. Chem Sci 2011. [DOI: 10.1039/c1sc00185j] [Citation(s) in RCA: 254] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
31
|
Metanis N, Keinan E. Traceless ligation of cysteine peptides using selective deselenization. Angew Chem Int Ed Engl 2010; 49:7049-53. [PMID: 20715234 PMCID: PMC4459706 DOI: 10.1002/anie.201001900] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Norman Metanis
- Dr. N. Metanis, Prof. E. Keinan Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Technion City, Haifa 32000, Israel, and Department of Molecular Biology, The Scripps Research Institute, 10550 N. Torrey Pines Rd, La Jolla, CA 92037 (USA)
| | - Ehud Keinan
- Dr. N. Metanis, Prof. E. Keinan Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Technion City, Haifa 32000, Israel, and Department of Molecular Biology, The Scripps Research Institute, 10550 N. Torrey Pines Rd, La Jolla, CA 92037 (USA)
| |
Collapse
|
32
|
Metanis N, Keinan E, Dawson PE. Traceless Ligation of Cysteine Peptides Using Selective Deselenization. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.201001900] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
33
|
Rhee SG, Cho CS. Blot-based detection of dehydroalanine-containing glutathione peroxidase with the use of biotin-conjugated cysteamine. Methods Enzymol 2010; 474:23-34. [PMID: 20609902 DOI: 10.1016/s0076-6879(10)74002-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Dehydroalanine (DHA), alpha,beta-unsaturated amino acid, is found in the position corresponding to the serine, cysteine, and selenocysteine (Sec) residues of various proteins. Proteinaceous Sec is readily oxidized and subsequently undergoes beta-elimination to produce DHA. Glutathione peroxidase (GPx), which contains a Sec at the active site, is irreversibly inactivated by its own substrate as the result of the oxidation of selenium atom followed by the conversion of oxidized Sec to DHA. We developed a convenient method for estimation of the amount of DHA-GPx1 in cell homogenates. This blot-based method depends on specific addition of biotin-conjugated cysteamine to the DHA residue followed by detection of biotinylated protein based on its interaction with streptavidin. The method required an immunoprecipitation of GPx1 before labeling with the cysteamine derivative because many other proteins contain DHA. With the use of this method, we found that conversion of the Sec residue at the active site of GPx1 to DHA occurred during aging of red blood cells (RBCs) in vivo as well as in RBCs exposed to H(2)O(2) generated either externally by glucose oxidase or internally as a result of aniline-induced Hb autoxidation. Accordingly, the content of DHA-GPx1 in each RBC likely reflects total oxidative stress experienced by the cell during its lifetime of 120 days. Previous studies suggested that the activity of GPx1 in RBCs is most influenced by lifestyle and environmental factors such as the use of dietary supplements and smoking habit. Therefore, DHA-GPx1 in RBCs might be a suitable surrogate marker for evaluation of oxidative stress in the body. Our blot-based method for the detection of DHA-GPx1 will be very useful for evaluation of such stress. In addition, similar blot detection method can be devised for other proteins for which immunoprecipitating antibodies are available.
Collapse
Affiliation(s)
- Sue Goo Rhee
- Division of Life and Pharmaceutical Sciences, Ewha Womans University, Seodaemun-gu, Seoul, Korea
| | | |
Collapse
|
34
|
Moll GN, Kuipers A, Rink R. Microbial engineering of dehydro-amino acids and lanthionines in non-lantibiotic peptides. Antonie van Leeuwenhoek 2010; 97:319-33. [PMID: 20140513 DOI: 10.1007/s10482-010-9418-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Accepted: 01/25/2010] [Indexed: 10/19/2022]
Abstract
This minireview focuses on the use of bacteria to introduce dehydroresidues and (methyl)lanthionines in (poly)peptides. It mainly describes the broad exploitation of bacteria containing lantibiotic enzymes for the engineering of these residues in a wide variety of peptides in particular in peptides unrelated to lantibiotics. Lantibiotic dehydratases dehydrate serines and threonines present in peptides preceded by a lantibiotic leader peptide thus forming dehydroalanine and dehydrobutyrine, respectively. These dehydroresidues can be coupled to cysteines thus forming (methyl)lanthionines. This coupling is catalysed by lantibiotic cyclases. The design, synthesis, and export of microbially engineered dehydroresidue and or lanthionine-containing peptides in non-lantibiotic peptides are reviewed, illustrated by some examples which demonstrate the high relevance of these special residues. This minireview is the first with special focus on the microbial engineering of nonlantibiotic peptides by exploiting lantibiotic enzymes.
Collapse
Affiliation(s)
- Gert N Moll
- BiOMaDe Technology Foundation, Nijenborgh 4, Groningen, The Netherlands.
| | | | | |
Collapse
|
35
|
Zhang X, van der Donk WA. Chapter 6 Using Expressed Protein Ligation to Probe the Substrate Specificity of Lantibiotic Synthetases. Methods Enzymol 2009; 462:117-34. [DOI: 10.1016/s0076-6879(09)62006-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
36
|
Muttenthaler M, Alewood PF. Selenocystine Peptides – Synthesis, Folding and Applications. OXIDATIVE FOLDING OF PEPTIDES AND PROTEINS 2008. [DOI: 10.1039/9781847559265-00396] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
37
|
|