1
|
Ren X, Shi Y, Xiao B, Su X, Shi H, He G, Chen P, Wu D, Shi Y. Gene Doping Detection From the Perspective of 3D Genome. Drug Test Anal 2025. [PMID: 39757126 DOI: 10.1002/dta.3850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 01/07/2025]
Abstract
Since the early 20th century, the concept of doping was first introduced. To achieve better athletic performance, chemical substances were used. By the mid-20th century, it became gradually recognized that the illegal use of doping substances can seriously endangered athletes' health and compromised the fairness of sports competitions. Over the past 30 years, the World Anti-Doping Agency (WADA) has established corresponding rules and regulations to prohibit athletes from using doping substances or restrict the use of certain drugs, and isotope, chromatography, and mass spectrometry techniques were accredited to detect doping substances. With the development of gene editing technology, many genetic diseases have been effectively treated, but enabled by the same technology, doping has also the potential to pose a threat to sports in the form of gene doping. WADA has explicitly indicated gene doping in the Prohibited List as a prohibited method (M3) and approved qPCR detection. However, gene doping can easily evade detection, if the target genes' upstream regulatory elements are considered, the task became more challenging. Hi-C experiment driven 3D genome technology, through perspectives such as topologically associating domain (TAD) and chromatin loop, provides a more comprehensive and in-depth understanding of gene regulation and expression, thereby better preventing the potential use of 3D genome level gene doping. In this work, we will explore gene doping from a different perspective by analyzing recent studies on gene doping and explore related genes under 3D genome.
Collapse
Affiliation(s)
- Xinyuan Ren
- Research Institute for Doping Control, Shanghai University of Sport, Shanghai, China
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China
| | - Yue Shi
- Research Institute for Doping Control, Shanghai University of Sport, Shanghai, China
| | - Bo Xiao
- Faculty of Physical Education, Shanghai Jiao Tong University, Shanghai, China
| | - Xianbin Su
- Research Institute for Doping Control, Shanghai University of Sport, Shanghai, China
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hui Shi
- Research Institute for Doping Control, Shanghai University of Sport, Shanghai, China
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guang He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China
| | - Peijie Chen
- Research Institute for Doping Control, Shanghai University of Sport, Shanghai, China
| | - Die Wu
- Research Institute for Doping Control, Shanghai University of Sport, Shanghai, China
| | - Yi Shi
- Research Institute for Doping Control, Shanghai University of Sport, Shanghai, China
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
2
|
Qi X, Zhang L, Zhao Q, Zhou P, Zhang S, Li J, Zheng Z, Xiang Y, Dai X, Jin Z, Jian Y, Li X, Fu L, Zhao S. Hi-Tag: a simple and efficient method for identifying protein-mediated long-range chromatin interactions with low cell numbers. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1027-1034. [PMID: 38280143 DOI: 10.1007/s11427-023-2441-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/12/2023] [Indexed: 01/29/2024]
Abstract
Protein-mediated chromatin interactions can be revealed by coupling proximity-based ligation with chromatin immunoprecipitation. However, these techniques require complex experimental procedures and millions of cells per experiment, which limits their widespread application in life science research. Here, we develop a novel method, Hi-Tag, that identifies high-resolution, long-range chromatin interactions through transposase tagmentation and chromatin proximity ligation (with a phosphorothioate-modified linker). Hi-Tag can be implemented using as few as 100,000 cells, involving simple experimental procedures that can be completed within 1.5 days. Meanwhile, Hi-Tag is capable of using its own data to identify the binding sites of specific proteins, based on which, it can acquire accurate interaction information. Our results suggest that Hi-Tag has great potential for advancing chromatin interaction studies, particularly in the context of limited cell availability.
Collapse
Affiliation(s)
- Xiaolong Qi
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lu Zhang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiulin Zhao
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Peng Zhou
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - SaiXian Zhang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jingjin Li
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhuqing Zheng
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yue Xiang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xueting Dai
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhe Jin
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yaobang Jian
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xinyun Li
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China.
- Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China.
| | - Liangliang Fu
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China.
| | - Shuhong Zhao
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China.
- Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China.
| |
Collapse
|
3
|
Tourdot E, Grob S. Three-dimensional chromatin architecture in plants - General features and novelties. Eur J Cell Biol 2023; 102:151344. [PMID: 37562220 DOI: 10.1016/j.ejcb.2023.151344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 07/21/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023] Open
Abstract
Research on the three-dimensional (3D) structure of the genome and its distribution within the nuclear space has made a big leap in the last two decades. Work in the animal field has led to significant advances in our general understanding on eukaryotic genome organization. This did not only bring along insights into how the 3D genome interacts with the epigenetic landscape and the transcriptional machinery but also how 3D genome architecture is relevant for fundamental developmental processes, such as cell differentiation. In parallel, the 3D organization of plant genomes have been extensively studied, which resulted in both congruent and novel findings, contributing to a more complete view on how eukaryotic genomes are organized in multiple dimensions. Plant genomes are remarkably diverse in size, composition, and ploidy. Furthermore, as intrinsically sessile organisms without the possibility to relocate to more favorable environments, plants have evolved an elaborate epigenetic repertoire to rapidly respond to environmental challenges. The diversity in genome organization and the complex epigenetic programs make plants ideal study subjects to acquire a better understanding on universal features and inherent constraints of genome organization. Furthermore, considering a wide range of species allows us to study the evolutionary crosstalk between the various levels of genome architecture. In this article, we aim at summarizing important findings on 3D genome architecture obtained in various plant species. These findings cover many aspects of 3D genome organization on a wide range of levels, from gene loops to topologically associated domains and to global 3D chromosome configurations. We present an overview on plant 3D genome organizational features that resemble those in animals and highlight facets that have only been observed in plants to date.
Collapse
Affiliation(s)
- Edouard Tourdot
- Department of Plant and Microbial Biology, University of Zurich, Switzerland.
| | - Stefan Grob
- Department of Plant and Microbial Biology, University of Zurich, Switzerland.
| |
Collapse
|
4
|
Agarwal A, Korsak S, Choudhury A, Plewczynski D. The dynamic role of cohesin in maintaining human genome architecture. Bioessays 2023; 45:e2200240. [PMID: 37603403 DOI: 10.1002/bies.202200240] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 08/22/2023]
Abstract
Recent advances in genomic and imaging techniques have revealed the complex manner of organizing billions of base pairs of DNA necessary for maintaining their functionality and ensuring the proper expression of genetic information. The SMC proteins and cohesin complex primarily contribute to forming higher-order chromatin structures, such as chromosomal territories, compartments, topologically associating domains (TADs) and chromatin loops anchored by CCCTC-binding factor (CTCF) protein or other genome organizers. Cohesin plays a fundamental role in chromatin organization, gene expression and regulation. This review aims to describe the current understanding of the dynamic nature of the cohesin-DNA complex and its dependence on cohesin for genome maintenance. We discuss the current 3C technique and numerous bioinformatics pipelines used to comprehend structural genomics and epigenetics focusing on the analysis of Cohesin-centred interactions. We also incorporate our present comprehension of Loop Extrusion (LE) and insights from stochastic modelling.
Collapse
Affiliation(s)
- Abhishek Agarwal
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Sevastianos Korsak
- Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
| | | | - Dariusz Plewczynski
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
- Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
| |
Collapse
|
5
|
Pandupuspitasari NS, Khan FA, Huang C, Ali A, Yousaf MR, Shakeel F, Putri EM, Negara W, Muktiani A, Prasetiyono BWHE, Kustiawan L, Wahyuni DS. Recent advances in chromosome capture techniques unraveling 3D genome architecture in germ cells, health, and disease. Funct Integr Genomics 2023; 23:214. [PMID: 37386239 DOI: 10.1007/s10142-023-01146-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/01/2023]
Abstract
In eukaryotes, the genome does not emerge in a specific shape but rather as a hierarchial bundle within the nucleus. This multifaceted genome organization consists of multiresolution cellular structures, such as chromosome territories, compartments, and topologically associating domains, which are frequently defined by architecture, design proteins including CTCF and cohesin, and chromatin loops. This review briefly discusses the advances in understanding the basic rules of control, chromatin folding, and functional areas in early embryogenesis. With the use of chromosome capture techniques, the latest advancements in technologies for visualizing chromatin interactions come close to revealing 3D genome formation frameworks with incredible detail throughout all genomic levels, including at single-cell resolution. The possibility of detecting variations in chromatin architecture might open up new opportunities for disease diagnosis and prevention, infertility treatments, therapeutic approaches, desired exploration, and many other application scenarios.
Collapse
Affiliation(s)
- Nuruliarizki Shinta Pandupuspitasari
- Laboratory of Animal Nutrition and Feed Science, Animal Science Department, Faculty of Animal and Agricultural Sciences, Universitas Diponegoro, Semarang, Indonesia.
| | - Faheem Ahmed Khan
- Research Center for Animal Husbandry, National Research and Innovation Agency, Bogor, Indonesia
| | - Chunjie Huang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Azhar Ali
- Laboratory of Molecular Biology and Genomics, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan
| | - Muhammad Rizwan Yousaf
- Laboratory of Molecular Biology and Genomics, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan
| | - Farwa Shakeel
- Laboratory of Molecular Biology and Genomics, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan
| | - Ezi Masdia Putri
- Research Center for Animal Husbandry, National Research and Innovation Agency, Bogor, Indonesia
| | - Windu Negara
- Research Center for Animal Husbandry, National Research and Innovation Agency, Bogor, Indonesia
| | - Anis Muktiani
- Laboratory of Animal Nutrition and Feed Science, Animal Science Department, Faculty of Animal and Agricultural Sciences, Universitas Diponegoro, Semarang, Indonesia
| | - Bambang Waluyo Hadi Eko Prasetiyono
- Laboratory of Feed Technology, Animal Science Department, Faculty of Animal and Agricultural Sciences Universitas Diponegoro, Semarang, Indonesia
| | - Limbang Kustiawan
- Laboratory of Animal Nutrition and Feed Science, Animal Science Department, Faculty of Animal and Agricultural Sciences, Universitas Diponegoro, Semarang, Indonesia
| | - Dimar Sari Wahyuni
- Research Center for Animal Husbandry, National Research and Innovation Agency, Bogor, Indonesia
| |
Collapse
|
6
|
Epimutations and Their Effect on Chromatin Organization: Exciting Avenues for Cancer Treatment. Cancers (Basel) 2022; 15:cancers15010215. [PMID: 36612210 PMCID: PMC9818548 DOI: 10.3390/cancers15010215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/14/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
The three-dimensional architecture of genomes is complex. It is organized as fibers, loops, and domains that form high-order structures. By using different chromosome conformation techniques, the complex relationship between transcription and genome organization in the three-dimensional organization of genomes has been deciphered. Epigenetic changes, such as DNA methylation and histone modification, are the hallmark of cancers. Tumor initiation, progression, and metastasis are linked to these epigenetic modifications. Epigenetic inhibitors can reverse these altered modifications. A number of epigenetic inhibitors have been approved by FDA that target DNA methylation and histone modification. This review discusses the techniques involved in studying the three-dimensional organization of genomes, DNA methylation and histone modification, epigenetic deregulation in cancer, and epigenetic therapies targeting the tumor.
Collapse
|
7
|
Yang JY, Chang JM. Pattern recognition of topologically associating domains using deep learning. BMC Bioinformatics 2022; 22:634. [PMID: 36482308 PMCID: PMC9732975 DOI: 10.1186/s12859-022-05075-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Recent increasing evidence indicates that three-dimensional chromosome structure plays an important role in genomic function. Topologically associating domains (TADs) are self-interacting regions that have been shown to be a chromosomal structural unit. During evolution, these are conserved based on checking synteny block cross species. Are there common TAD patterns across species or cell lines? RESULTS To address the above question, we propose a novel task-TAD recognition-as opposed to traditional TAD identification. Specifically, we treat Hi-C maps as images, thus re-casting TAD recognition as image pattern recognition, for which we use a convolutional neural network and a residual neural network. In addition, we propose an elegant way to generate non-TAD data for binary classification. We demonstrate deep learning performance which is quite promising, AUC > 0.80, through cross-species and cell-type validation. CONCLUSIONS TADs have been shown to be conserved during evolution. Interestingly, our results confirm that the TAD recognition model is practical across species, which indicates that TADs between human and mouse show common patterns from an image classification point of view. Our approach could be a new way to identify TAD variations or patterns among Hi-C maps. For example, TADs of two Hi-C maps are conserved if the two classification models are exchangeable.
Collapse
Affiliation(s)
- Jhen Yuan Yang
- Department of Computer Science, National Chengchi University, 11605 Taipei City, Taiwan
| | - Jia-Ming Chang
- Department of Computer Science, National Chengchi University, 11605 Taipei City, Taiwan
| |
Collapse
|
8
|
Akhoundova D, Rubin MA. Clinical application of advanced multi-omics tumor profiling: Shaping precision oncology of the future. Cancer Cell 2022; 40:920-938. [PMID: 36055231 DOI: 10.1016/j.ccell.2022.08.011] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/22/2022] [Accepted: 08/11/2022] [Indexed: 12/17/2022]
Abstract
Next-generation DNA sequencing technology has dramatically advanced clinical oncology through the identification of therapeutic targets and molecular biomarkers, leading to the personalization of cancer treatment with significantly improved outcomes for many common and rare tumor entities. More recent developments in advanced tumor profiling now enable dissection of tumor molecular architecture and the functional phenotype at cellular and subcellular resolution. Clinical translation of high-resolution tumor profiling and integration of multi-omics data into precision treatment, however, pose significant challenges at the level of prospective validation and clinical implementation. In this review, we summarize the latest advances in multi-omics tumor profiling, focusing on spatial genomics and chromatin organization, spatial transcriptomics and proteomics, liquid biopsy, and ex vivo modeling of drug response. We analyze the current stages of translational validation of these technologies and discuss future perspectives for their integration into precision treatment.
Collapse
Affiliation(s)
- Dilara Akhoundova
- Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland; Department of Medical Oncology, Inselspital, University Hospital of Bern, 3010 Bern, Switzerland
| | - Mark A Rubin
- Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland; Bern Center for Precision Medicine, Inselspital, University Hospital of Bern, 3008 Bern, Switzerland.
| |
Collapse
|
9
|
Domb K, Wang N, Hummel G, Liu C. Spatial Features and Functional Implications of Plant 3D Genome Organization. ANNUAL REVIEW OF PLANT BIOLOGY 2022; 73:173-200. [PMID: 35130445 DOI: 10.1146/annurev-arplant-102720-022810] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The advent of high-throughput sequencing-based methods for chromatin conformation, accessibility, and immunoprecipitation assays has been a turning point in 3D genomics. Altogether, these new tools have been pushing upward the interpretation of pioneer cytogenetic evidence for a higher order in chromatin packing. Here, we review the latest development in our understanding of plant spatial genome structures and different levels of organization and discuss their functional implications. Then, we spotlight the complexity of organellar (i.e., mitochondria and plastids) genomes and discuss their 3D packing into nucleoids. Finally, we propose unaddressed research axes to investigate functional links between chromatin-like dynamics and transcriptional regulation within organellar nucleoids.
Collapse
Affiliation(s)
- Katherine Domb
- Institute of Biology, University of Hohenheim, Stuttgart, Germany;
| | - Nan Wang
- Institute of Biology, University of Hohenheim, Stuttgart, Germany;
| | - Guillaume Hummel
- Institute of Biology, University of Hohenheim, Stuttgart, Germany;
| | - Chang Liu
- Institute of Biology, University of Hohenheim, Stuttgart, Germany;
| |
Collapse
|
10
|
Knoch TA. How Genomes Emerge, Function, and Evolve: Living Systems Emergence-Genotype-Phenotype-Multilism-Genome/Systems Ecology. Results Probl Cell Differ 2022; 70:103-156. [PMID: 36348106 DOI: 10.1007/978-3-031-06573-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
What holds together the world in its innermost, what life is, how it emerges, functions, and evolves, has not only been an epic matter of endless romantic sunset poetry and philosophy, but also manifests explicitly in its perhaps most central organization unit-genomes. Their 3D architecture and dynamics, including the interaction networks of regulatory elements, obviously co-evolved as inseparable systems allowing the physical storage, expression, and replication of genetic information. Since we were able to fill finally the much-debated centennial gaps in their 3D architecture and dynamics, now entire new perspectives open beyond epigenetics reaching as far as a general understanding of living systems: besides the previously known DNA double helix and nucleosome structure, the latter compact into a chromatin quasi-fibre folded into stable loops forming stable multi-loop aggregates/rosettes connected by linkers, creating hence the again already known chromosome arms and entire chromosomes forming the cell nucleus. Instantly and for the first time this leads now to a consistent and cross-proven systems statistical mechanics genomics framework elucidating genome intrinsic function and regulation including various components. It balances stability/flexibility ensuring genome integrity, enabling expression/regulation of genetic information, as well as genome replication/spread. Furthermore, genotype and phenotype are multiplisticly entangled being evolutionarily the outcome of both Darwinian natural selection and Lamarckian self-referenced manipulation-all embedded in even broader genome ecology (autopoietic) i(!)n- and environmental scopes. This allows formulating new meta-level functional semantics of genomics, i.e. notions as communication of genes, genomes, and information networks, architectural and dynamic spaces for creativity and innovation, or genomes as central geno-/phenotype entanglements. Beyond and most fundamentally, the paradoxical-seeming local equilibrium substance stability in its entity though far from a universal heat-death-like equilibrium is solved, and system irreversibility, time directionality, and thus the emergence of existence are clarified. Consequently, real deep understandings of genomes, life, and complex systems in general appear in evolutionary perspectives as well as from systems analyses, via system damage/disease (its repair/cure and manipulation) as far as the understanding of extraterrestrial life, the de novo creation and thus artificial life, and even the raison d'etre.
Collapse
Affiliation(s)
- Tobias A Knoch
- Biophysical Genomics, TAKnoch Joined Operations Administrative Office, Mannheim, Germany.
- Human Ecology and Complex Systems, German Society for Human Ecology (DGH), TAKnoch Joined Operations Administrative Office, Mannheim, Germany.
- TAK Renewable Energy UG, TAKnoch Joined Operations Administrative Office, Mannheim, Germany.
| |
Collapse
|
11
|
Knoch TA. Simulation of Different Three-Dimensional Models of Whole Interphase Nuclei Compared to Experiments - A Consistent Scale-Bridging Simulation Framework for Genome Organization. Results Probl Cell Differ 2022; 70:495-549. [PMID: 36348120 DOI: 10.1007/978-3-031-06573-6_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The three-dimensional architecture of chromosomes, their arrangement, and dynamics within cell nuclei are still subject of debate. Obviously, the function of genomes-the storage, replication, and transcription of genetic information-has closely coevolved with this architecture and its dynamics, and hence are closely connected. In this work a scale-bridging framework investigates how of the 30 nm chromatin fibre organizes into chromosomes including their arrangement and morphology in the simulation of whole nuclei. Therefore, mainly two different topologies were simulated with corresponding parameter variations and comparing them to experiments: The Multi-Loop-Subcompartment (MLS) model, in which (stable) small loops form (stable) rosettes, connected by chromatin linkers, and the Random-Walk/Giant-Loop (RW/GL) model, in which large loops are attached to a flexible non-protein backbone, were simulated for various loop and linker sizes. The 30 nm chromatin fibre was modelled as a polymer chain with stretching, bending and excluded volume interactions. A spherical boundary potential simulated the confinement to nuclei with different radii. Simulated annealing and Brownian Dynamics methods were applied in a four-step decondensation procedure to generate from metaphase decondensated interphase configurations at thermodynamical equilibrium. Both the MLS and the RW/GL models form chromosome territories, with different morphologies: The MLS rosettes result in distinct subchromosomal domains visible in electron and confocal laser scanning microscopic images. In contrast, the big RW/GL loops lead to a mostly homogeneous chromatin distribution. Even small changes of the model parameters induced significant rearrangements of the chromatin morphology. The low overlap of chromosomes, arms, and subchromosomal domains observed in experiments agrees only with the MLS model. The chromatin density distribution in CLSM image stacks reveals a bimodal behaviour in agreement with recent experiments. Combination of these results with a variety of (spatial distance) measurements favour an MLS like model with loops and linkers of 63 to 126 kbp. The predicted large spaces between the chromatin fibres allow typically sized biological molecules to reach nearly every location in the nucleus by moderately obstructed diffusion and is in disagreement with the much simplified assumption that defined channels between territories for molecular transport as in the Interchromosomal Domain (ICD) hypothesis exist and are necessary for transport. All this is also in agreement with recent selective high-resolution chromosome interaction capture (T2C) experiments, the scaling behaviour of the DNA sequence, the dynamics of the chromatin fibre, the diffusion of molecules, and other measurements. Also all other chromosome topologies can in principle be excluded. In summary, polymer simulations of whole nuclei compared to experimental data not only clearly favour only a stable loop aggregate/rosette like genome architecture whose local topology is tightly connected to the global morphology and dynamics of the cell nucleus and hence can be used for understanding genome organization also in respect to diagnosis and treatment. This is in agreement with and also leads to a general novel framework of genome emergence, function, and evolution.
Collapse
Affiliation(s)
- Tobias A Knoch
- Biophysical Genomics, TAKnoch Joined Operations Administrative Office, Mannheim, Germany.
- Human Ecology and Complex Systems, German Society for Human Ecology (DGH), TAKnoch Joined Operations Administrative Office, Mannheim, Germany.
- TAK Renewable Energy UG, TAKnoch Joined Operations Administrative Office, Mannheim, Germany.
| |
Collapse
|
12
|
Mohanta TK, Mishra AK, Al-Harrasi A. The 3D Genome: From Structure to Function. Int J Mol Sci 2021; 22:11585. [PMID: 34769016 PMCID: PMC8584255 DOI: 10.3390/ijms222111585] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 01/09/2023] Open
Abstract
The genome is the most functional part of a cell, and genomic contents are organized in a compact three-dimensional (3D) structure. The genome contains millions of nucleotide bases organized in its proper frame. Rapid development in genome sequencing and advanced microscopy techniques have enabled us to understand the 3D spatial organization of the genome. Chromosome capture methods using a ligation approach and the visualization tool of a 3D genome browser have facilitated detailed exploration of the genome. Topologically associated domains (TADs), lamin-associated domains, CCCTC-binding factor domains, cohesin, and chromatin structures are the prominent identified components that encode the 3D structure of the genome. Although TADs are the major contributors to 3D genome organization, they are absent in Arabidopsis. However, a few research groups have reported the presence of TAD-like structures in the plant kingdom.
Collapse
Affiliation(s)
- Tapan Kumar Mohanta
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Awdhesh Kumar Mishra
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongsangbuk-do, Korea; or
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| |
Collapse
|
13
|
Chawla A, Nagy C, Turecki G. Chromatin Profiling Techniques: Exploring the Chromatin Environment and Its Contributions to Complex Traits. Int J Mol Sci 2021; 22:7612. [PMID: 34299232 PMCID: PMC8305586 DOI: 10.3390/ijms22147612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 01/04/2023] Open
Abstract
The genetic architecture of complex traits is multifactorial. Genome-wide association studies (GWASs) have identified risk loci for complex traits and diseases that are disproportionately located at the non-coding regions of the genome. On the other hand, we have just begun to understand the regulatory roles of the non-coding genome, making it challenging to precisely interpret the functions of non-coding variants associated with complex diseases. Additionally, the epigenome plays an active role in mediating cellular responses to fluctuations of sensory or environmental stimuli. However, it remains unclear how exactly non-coding elements associate with epigenetic modifications to regulate gene expression changes and mediate phenotypic outcomes. Therefore, finer interrogations of the human epigenomic landscape in associating with non-coding variants are warranted. Recently, chromatin-profiling techniques have vastly improved our understanding of the numerous functions mediated by the epigenome and DNA structure. Here, we review various chromatin-profiling techniques, such as assays of chromatin accessibility, nucleosome distribution, histone modifications, and chromatin topology, and discuss their applications in unraveling the brain epigenome and etiology of complex traits at tissue homogenate and single-cell resolution. These techniques have elucidated compositional and structural organizing principles of the chromatin environment. Taken together, we believe that high-resolution epigenomic and DNA structure profiling will be one of the best ways to elucidate how non-coding genetic variations impact complex diseases, ultimately allowing us to pinpoint cell-type targets with therapeutic potential.
Collapse
Affiliation(s)
- Anjali Chawla
- Integrated Program in Neuroscience, McGill University, 845 Sherbrooke St W, Montreal, QC H3A 0G4, Canada;
- McGill Group for Suicide Studies, Department of Psychiatry, Douglas Mental Health University Institute, McGill University, 6875 LaSalle Blvd, Verdun, QC H4H 1R3, Canada;
| | - Corina Nagy
- McGill Group for Suicide Studies, Department of Psychiatry, Douglas Mental Health University Institute, McGill University, 6875 LaSalle Blvd, Verdun, QC H4H 1R3, Canada;
- Genome Quebec Innovation Centre, Department of Human Genetics, McGill University, 845 Sherbrooke St W, Montreal, QC H3A 0G4, Canada
| | - Gustavo Turecki
- Integrated Program in Neuroscience, McGill University, 845 Sherbrooke St W, Montreal, QC H3A 0G4, Canada;
- McGill Group for Suicide Studies, Department of Psychiatry, Douglas Mental Health University Institute, McGill University, 6875 LaSalle Blvd, Verdun, QC H4H 1R3, Canada;
- Genome Quebec Innovation Centre, Department of Human Genetics, McGill University, 845 Sherbrooke St W, Montreal, QC H3A 0G4, Canada
| |
Collapse
|
14
|
Zha M, Wang N, Zhang C, Wang Z. Inferring Single-Cell 3D Chromosomal Structures Based on the Lennard-Jones Potential. Int J Mol Sci 2021; 22:ijms22115914. [PMID: 34072879 PMCID: PMC8199262 DOI: 10.3390/ijms22115914] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/23/2021] [Accepted: 05/28/2021] [Indexed: 11/16/2022] Open
Abstract
Reconstructing three-dimensional (3D) chromosomal structures based on single-cell Hi-C data is a challenging scientific problem due to the extreme sparseness of the single-cell Hi-C data. In this research, we used the Lennard-Jones potential to reconstruct both 500 kb and high-resolution 50 kb chromosomal structures based on single-cell Hi-C data. A chromosome was represented by a string of 500 kb or 50 kb DNA beads and put into a 3D cubic lattice for simulations. A 2D Gaussian function was used to impute the sparse single-cell Hi-C contact matrices. We designed a novel loss function based on the Lennard-Jones potential, in which the ε value, i.e., the well depth, was used to indicate how stable the binding of every pair of beads is. For the bead pairs that have single-cell Hi-C contacts and their neighboring bead pairs, the loss function assigns them stronger binding stability. The Metropolis-Hastings algorithm was used to try different locations for the DNA beads, and simulated annealing was used to optimize the loss function. We proved the correctness and validness of the reconstructed 3D structures by evaluating the models according to multiple criteria and comparing the models with 3D-FISH data.
Collapse
Affiliation(s)
- Mengsheng Zha
- School of Computing Sciences and Computer Engineering, University of Southern Mississippi, 118 College Dr, Hattiesburg, MS 39406, USA; (M.Z.); (C.Z.)
| | - Nan Wang
- Department of Computer Science, New Jersey City University, 2039 Kennedy Blvd, Jersey City, NJ 07305, USA;
| | - Chaoyang Zhang
- School of Computing Sciences and Computer Engineering, University of Southern Mississippi, 118 College Dr, Hattiesburg, MS 39406, USA; (M.Z.); (C.Z.)
| | - Zheng Wang
- Department of Computer Science, University of Miami, 1364 Memorial Drive, Coral Gables, FL 33124, USA
- Correspondence:
| |
Collapse
|
15
|
Priya P, Aneesh B, Harikrishnan K. Genomics as a potential tool to unravel the rhizosphere microbiome interactions on plant health. J Microbiol Methods 2021; 185:106215. [PMID: 33839214 DOI: 10.1016/j.mimet.2021.106215] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/05/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022]
Abstract
Intense agricultural practices to meet rising food demands have caused ecosystem perturbations. For sustainable crop production, biological agents are gaining attention, but exploring their functional potential on a multi-layered complex ecosystem like the rhizosphere is challenging. This review explains the significance of genomics as a culture-independent molecular tool to understand the diversity and functional significance of the rhizosphere microbiome for sustainable agriculture. It discusses the recent significant studies in the rhizosphere environment carried out using evolving techniques like metagenomics, metatranscriptomics, and metaproteomics, their challenges, constraints infield application, and prospective solutions. The recent advances in techniques such as nanotechnology for the development of bioformulations and visualization techniques contemplating environmental safety were also discussed. The need for development of metagenomic data sets of regionally important crops, their plant microbial interactions and agricultural practices for narrowing down significant data from huge databases have been suggested. The role of taxonomical and functional diversity of soil microbiota in understanding soil suppression and part played by the microbial metabolites in the process have been analyzed and discussed in the context of 'omics' approach. 'Omics' studies have revealed important information about microbial diversity, their responses to various biotic and abiotic stimuli, and the physiology of disease suppression. This can be translated to crop sustainability and combinational approaches with advancing visualization and analysis methodologies fix the existing knowledge gap to a huge extend. With improved data processing and standardization of the methods, details of plant-microbe interactions can be successfully decoded to develop sustainable agricultural practices.
Collapse
Affiliation(s)
- P Priya
- Environmental Biology Lab, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India.
| | - B Aneesh
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences Cochin University of Science and Technology, Cochin, Kerala, India.
| | - K Harikrishnan
- Environmental Biology Lab, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India.
| |
Collapse
|
16
|
Interplay of pericentromeric genome organization and chromatin landscape regulates the expression of Drosophila melanogaster heterochromatic genes. Epigenetics Chromatin 2020; 13:41. [PMID: 33028366 PMCID: PMC7541242 DOI: 10.1186/s13072-020-00358-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 09/15/2020] [Indexed: 01/04/2023] Open
Abstract
Background Transcription of genes residing within constitutive heterochromatin is paradoxical to the tenets of epigenetic code. The regulatory mechanisms of Drosophila melanogaster heterochromatic gene transcription remain largely unknown. Emerging evidence suggests that genome organization and transcriptional regulation are inter-linked. However, the pericentromeric genome organization is relatively less studied. Therefore, we sought to characterize the pericentromeric genome organization and understand how this organization along with the pericentromeric factors influences heterochromatic gene expression. Results Here, we characterized the pericentromeric genome organization in Drosophila melanogaster using 5C sequencing. Heterochromatic topologically associating domains (Het TADs) correlate with distinct epigenomic domains of active and repressed heterochromatic genes at the pericentromeres. These genes are known to depend on the heterochromatic landscape for their expression. However, HP1a or Su(var)3-9 RNAi has minimal effects on heterochromatic gene expression, despite causing significant changes in the global Het TAD organization. Probing further into this observation, we report the role of two other chromatin proteins enriched at the pericentromeres-dMES-4 and dADD1 in regulating the expression of a subset of heterochromatic genes. Conclusions Distinct pericentromeric genome organization and chromatin landscapes maintained by the interplay of heterochromatic factors (HP1a, H3K9me3, dMES-4 and dADD1) are sufficient to support heterochromatic gene expression despite the loss of global Het TAD structure. These findings open new avenues for future investigations into the mechanisms of heterochromatic gene expression.
Collapse
|
17
|
Correction to: Epigenetic and Transcriptional Networks Underlying Atrial Fibrillation. Circ Res 2020; 127:e143-e146. [DOI: 10.1161/res.0000000000000429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
van Ouwerkerk AF, Hall AW, Kadow ZA, Lazarevic S, Reyat JS, Tucker NR, Nadadur RD, Bosada FM, Bianchi V, Ellinor PT, Fabritz L, Martin J, de Laat W, Kirchhof P, Moskowitz I, Christoffels VM. Epigenetic and Transcriptional Networks Underlying Atrial Fibrillation. Circ Res 2020; 127:34-50. [PMID: 32717170 PMCID: PMC8315291 DOI: 10.1161/circresaha.120.316574] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Genome-wide association studies have uncovered over a 100 genetic loci associated with atrial fibrillation (AF), the most common arrhythmia. Many of the top AF-associated loci harbor key cardiac transcription factors, including PITX2, TBX5, PRRX1, and ZFHX3. Moreover, the vast majority of the AF-associated variants lie within noncoding regions of the genome where causal variants affect gene expression by altering the activity of transcription factors and the epigenetic state of chromatin. In this review, we discuss a transcriptional regulatory network model for AF defined by effector genes in Genome-wide association studies loci. We describe the current state of the field regarding the identification and function of AF-relevant gene regulatory networks, including variant regulatory elements, dose-sensitive transcription factor functionality, target genes, and epigenetic states. We illustrate how altered transcriptional networks may impact cardiomyocyte function and ionic currents that impact AF risk. Last, we identify the need for improved tools to identify and functionally test transcriptional components to define the links between genetic variation, epigenetic gene regulation, and atrial function.
Collapse
Affiliation(s)
- Antoinette F. van Ouwerkerk
- Department of Medical Biology, Amsterdam University Medical Centers, Academic Medical Center, 1105 AZ Amsterdam, The Netherlands
| | - Amelia W. Hall
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Zachary A. Kadow
- Program in Developmental Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
- Medical Scientist Training Program, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Sonja Lazarevic
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Jasmeet S. Reyat
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Nathan R. Tucker
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Masonic Medical Research Institute, Utica, NY, USA
| | - Rangarajan D. Nadadur
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Fernanda M. Bosada
- Department of Medical Biology, Amsterdam University Medical Centers, Academic Medical Center, 1105 AZ Amsterdam, The Netherlands
| | - Valerio Bianchi
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Patrick T. Ellinor
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Larissa Fabritz
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
- SWBH and UHB NHS Trusts, Birmingham, UK
| | - Jim Martin
- Program in Developmental Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, 77030
- Texas Heart Institute, Houston, Texas, 77030
| | - Wouter de Laat
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Paulus Kirchhof
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
- SWBH and UHB NHS Trusts, Birmingham, UK
- University Heart and Vascular Center Hamburg, Hamburg, Germany
| | - Ivan Moskowitz
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Vincent M. Christoffels
- Department of Medical Biology, Amsterdam University Medical Centers, Academic Medical Center, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
19
|
Jia Z, Li J, Ge X, Wu Y, Guo Y, Wu Q. Tandem CTCF sites function as insulators to balance spatial chromatin contacts and topological enhancer-promoter selection. Genome Biol 2020; 21:75. [PMID: 32293525 PMCID: PMC7087399 DOI: 10.1186/s13059-020-01984-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 03/04/2020] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND CTCF is a key insulator-binding protein, and mammalian genomes contain numerous CTCF sites, many of which are organized in tandem. RESULTS Using CRISPR DNA-fragment editing, in conjunction with chromosome conformation capture, we find that CTCF sites, if located between enhancers and promoters in the protocadherin (Pcdh) and β-globin clusters, function as an enhancer-blocking insulator by forming distinct directional chromatin loops, regardless whether enhancers contain CTCF sites or not. Moreover, computational simulation in silico and genetic deletions in vivo as well as dCas9 blocking in vitro revealed balanced promoter usage in cell populations and stochastic monoallelic expression in single cells by large arrays of tandem CTCF sites in the Pcdh and immunoglobulin heavy chain (Igh) clusters. Furthermore, CTCF insulators promote, counter-intuitively, long-range chromatin interactions with distal directional CTCF sites, consistent with the cohesin "loop extrusion" model. Finally, gene expression levels are negatively correlated with CTCF insulators located between enhancers and promoters on a genome-wide scale. Thus, single CTCF insulators ensure proper enhancer insulation and promoter activation while tandem CTCF topological insulators determine balanced spatial contacts and promoter choice. CONCLUSIONS These findings have interesting implications on the role of topological chromatin insulators in 3D genome folding and developmental gene regulation.
Collapse
Affiliation(s)
- Zhilian Jia
- MOE Key Lab of Systems Biomedicine, Center for Comparative Biomedicine, State Key Lab of Oncogenes and Related Genes, Shanghai Cancer Institute, Joint International Research Laboratory of Metabolic & Developmental Sciences, Institute of Systems Biomedicine, Xin Hua Hospital, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jingwei Li
- MOE Key Lab of Systems Biomedicine, Center for Comparative Biomedicine, State Key Lab of Oncogenes and Related Genes, Shanghai Cancer Institute, Joint International Research Laboratory of Metabolic & Developmental Sciences, Institute of Systems Biomedicine, Xin Hua Hospital, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiao Ge
- MOE Key Lab of Systems Biomedicine, Center for Comparative Biomedicine, State Key Lab of Oncogenes and Related Genes, Shanghai Cancer Institute, Joint International Research Laboratory of Metabolic & Developmental Sciences, Institute of Systems Biomedicine, Xin Hua Hospital, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yonghu Wu
- MOE Key Lab of Systems Biomedicine, Center for Comparative Biomedicine, State Key Lab of Oncogenes and Related Genes, Shanghai Cancer Institute, Joint International Research Laboratory of Metabolic & Developmental Sciences, Institute of Systems Biomedicine, Xin Hua Hospital, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ya Guo
- MOE Key Lab of Systems Biomedicine, Center for Comparative Biomedicine, State Key Lab of Oncogenes and Related Genes, Shanghai Cancer Institute, Joint International Research Laboratory of Metabolic & Developmental Sciences, Institute of Systems Biomedicine, Xin Hua Hospital, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qiang Wu
- MOE Key Lab of Systems Biomedicine, Center for Comparative Biomedicine, State Key Lab of Oncogenes and Related Genes, Shanghai Cancer Institute, Joint International Research Laboratory of Metabolic & Developmental Sciences, Institute of Systems Biomedicine, Xin Hua Hospital, Shanghai Jiao Tong University, Shanghai, 200240, China.
- The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
| |
Collapse
|
20
|
Kempfer R, Pombo A. Methods for mapping 3D chromosome architecture. Nat Rev Genet 2019; 21:207-226. [PMID: 31848476 DOI: 10.1038/s41576-019-0195-2] [Citation(s) in RCA: 324] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2019] [Indexed: 12/12/2022]
Abstract
Determining how chromosomes are positioned and folded within the nucleus is critical to understanding the role of chromatin topology in gene regulation. Several methods are available for studying chromosome architecture, each with different strengths and limitations. Established imaging approaches and proximity ligation-based chromosome conformation capture (3C) techniques (such as DNA-FISH and Hi-C, respectively) have revealed the existence of chromosome territories, functional nuclear landmarks (such as splicing speckles and the nuclear lamina) and topologically associating domains. Improvements to these methods and the recent development of ligation-free approaches, including GAM, SPRITE and ChIA-Drop, are now helping to uncover new aspects of 3D genome topology that confirm the nucleus to be a complex, highly organized organelle.
Collapse
Affiliation(s)
- Rieke Kempfer
- Epigenetic Regulation and Chromatin Architecture Group, Berlin Institute for Medical Systems Biology, Max-Delbrück Centre for Molecular Medicine, Berlin, Germany. .,Institute for Biology, Humboldt University of Berlin, Berlin, Germany.
| | - Ana Pombo
- Epigenetic Regulation and Chromatin Architecture Group, Berlin Institute for Medical Systems Biology, Max-Delbrück Centre for Molecular Medicine, Berlin, Germany. .,Institute for Biology, Humboldt University of Berlin, Berlin, Germany.
| |
Collapse
|
21
|
Sun B, Liu C, Li H, Zhang L, Luo G, Liang S, Lü M. Research progress on the interactions between long non-coding RNAs and microRNAs in human cancer. Oncol Lett 2019; 19:595-605. [PMID: 31897175 PMCID: PMC6923957 DOI: 10.3892/ol.2019.11182] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 11/12/2019] [Indexed: 12/17/2022] Open
Abstract
Numerous types of molecular mechanisms mediate the development of cancer. Non-coding RNAs (ncRNAs) are being increasingly recognized to play important role in mediating the development of diseases, including cancer. Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) are the two most widely studied ncRNAs. Thus far, lncRNAs are known to have biological roles through a variety of mechanisms, including genetic imprinting, chromatin remodeling, cell cycle control, splicing regulation, mRNA decay and translational regulation, and miRNAs regulate gene expression through the degradation of mRNAs and lncRNAs. Although ncRNAs account for a major proportion of the total RNA, the mechanisms underlying the physiological or pathological processes mediated by various types of ncRNAs, and the specific interaction mechanisms between miRNAs and lncRNAs in various physiological and pathological processes, remain largely unknown. Thus, further research in this field is required. In general, the interaction mechanisms between miRNAs and lncRNAs in human cancer have become important research topics, and the study thereof has led to the recent development of related technologies. By providing examples and descriptions, and performing chart analysis, the present study aimed to review the interaction mechanisms and research approaches for these two types of ncRNAs, as well as their roles in the occurrence and development of cancer. These details have far-reaching significance for the utilization of these molecules in the diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Binyu Sun
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Chunxia Liu
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Hao Li
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Lu Zhang
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Gang Luo
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Sicheng Liang
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Muhan Lü
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
22
|
Moisan S, Le Nabec A, Quillévéré A, Le Maréchal C, Férec C. Characterization of GJB2 cis-regulatory elements in the DFNB1 locus. Hum Genet 2019; 138:1275-1286. [PMID: 31586237 DOI: 10.1007/s00439-019-02068-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 09/29/2019] [Indexed: 11/28/2022]
Abstract
Although most disease-causing variants are within coding region of genes, it is now well established that cis-acting regulatory sequences, depending on 3D-chromatin organization, are required for temporal and spatial control of gene expression. Disruptions of such regulatory elements and/or chromatin conformation are likely to play a critical role in human genetic disease. Hence, recurrent monoallelic cases, who present the most common hereditary type of nonsyndromic hearing loss (i.e., DFNB1), carry only one identified pathogenic allele. This strongly suggests the presence of uncharacterized distal cis-acting elements in the missing allele. Here within, we study the spatial organization of a large DFNB1 locus encompassing the gap junction protein beta 2 (GJB2) gene, the most frequently mutated gene in this inherited hearing loss phenotype, with the chromosome conformation capture carbon copy technology (5C). By combining this approach with functional activity reporter assays and mapping of CCCTC-binding factor (CTCF) along the DFNB1 locus, we identify a novel set of cooperating GJB2 cis-acting elements and suggest a DFNB1 three-dimensional looping regulation model.
Collapse
Affiliation(s)
- Stéphanie Moisan
- Laboratoire de Génétique Moléculaire et d'Histocompatibilité, CHRU de Brest, Bretagne, Brest, France. .,Univ Brest, Inserm, EFS UMR 1078, GGB, 29200, Brest, France.
| | - Anaïs Le Nabec
- Univ Brest, Inserm, EFS UMR 1078, GGB, 29200, Brest, France
| | | | - Cédric Le Maréchal
- Laboratoire de Génétique Moléculaire et d'Histocompatibilité, CHRU de Brest, Bretagne, Brest, France.,Univ Brest, Inserm, EFS UMR 1078, GGB, 29200, Brest, France
| | - Claude Férec
- Laboratoire de Génétique Moléculaire et d'Histocompatibilité, CHRU de Brest, Bretagne, Brest, France. .,Univ Brest, Inserm, EFS UMR 1078, GGB, 29200, Brest, France.
| |
Collapse
|
23
|
Williamson I, Kane L, Devenney PS, Flyamer IM, Anderson E, Kilanowski F, Hill RE, Bickmore WA, Lettice LA. Developmentally regulated Shh expression is robust to TAD perturbations. Development 2019; 146:dev179523. [PMID: 31511252 PMCID: PMC7212092 DOI: 10.1242/dev.179523] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 09/02/2019] [Indexed: 12/26/2022]
Abstract
Topologically associating domains (TADs) have been proposed to both guide and constrain enhancer activity. Shh is located within a TAD known to contain all its enhancers. To investigate the importance of chromatin conformation and TAD integrity on developmental gene regulation, we have manipulated the Shh TAD - creating internal deletions, deleting CTCF sites, and deleting and inverting sequences at TAD boundaries. Chromosome conformation capture and fluorescence in situ hybridisation assays were used to investigate the changes in chromatin conformation that result from these manipulations. Our data suggest that these substantial alterations in TAD structure have no readily detectable effect on Shh expression patterns or levels of Shh expression during development - except where enhancers are deleted - and result in no detectable phenotypes. Only in the case of a larger deletion at one TAD boundary could ectopic influence of the Shh limb enhancer be detected on a gene (Mnx1) in the neighbouring TAD. Our data suggests that, contrary to expectations, the developmental regulation of Shh expression is remarkably robust to TAD perturbations.
Collapse
Affiliation(s)
- Iain Williamson
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Lauren Kane
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Paul S Devenney
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Ilya M Flyamer
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Eve Anderson
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Fiona Kilanowski
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Robert E Hill
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Wendy A Bickmore
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Laura A Lettice
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK
| |
Collapse
|
24
|
Qian M, Cheng Y, Wang X. The methodology study of three-dimensional (3D) genome research. Semin Cell Dev Biol 2019; 90:12-18. [DOI: 10.1016/j.semcdb.2018.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 07/03/2018] [Indexed: 12/12/2022]
|
25
|
Lazniewski M, Dawson WK, Rusek AM, Plewczynski D. One protein to rule them all: The role of CCCTC-binding factor in shaping human genome in health and disease. Semin Cell Dev Biol 2019; 90:114-127. [PMID: 30096365 PMCID: PMC6642822 DOI: 10.1016/j.semcdb.2018.08.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 08/06/2018] [Indexed: 12/12/2022]
Abstract
The eukaryotic genome, constituting several billion base pairs, must be contracted to fit within the volume of a nucleus where the diameter is on the scale of μm. The 3D structure and packing of such a long sequence cannot be left to pure chance, as DNA must be efficiently used for its primary roles as a matrix for transcription and replication. In recent years, methods like chromatin conformation capture (including 3C, 4C, Hi-C, ChIA-PET and Multi-ChIA) and optical microscopy have advanced substantially and have shed new light on how eukaryotic genomes are hierarchically organized; first into 10-nm fiber, next into DNA loops, topologically associated domains and finally into interphase or mitotic chromosomes. This knowledge has allowed us to revise our understanding regarding the mechanisms governing the process of DNA organization. Mounting experimental evidence suggests that the key element in the formation of loops is the binding of the CCCTC-binding factor (CTCF) to DNA; a protein that can be referred to as the chief organizer of the genome. However, CTCF does not work alone but in cooperation with other proteins, such as cohesin or Yin Yang 1 (YY1). In this short review, we briefly describe our current understanding of the structure of eukaryotic genomes, how they are established and how the formation of DNA loops can influence gene expression. We discuss the recent discoveries describing the 3D structure of the CTCF-DNA complex and the role of CTCF in establishing genome structure. Finally, we briefly explain how various genetic disorders might arise as a consequence of mutations in the CTCF target sequence or alteration of genomic imprinting.
Collapse
Affiliation(s)
- Michal Lazniewski
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland; Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Wayne K Dawson
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland; Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 103-8657, Japan
| | - Anna Maria Rusek
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland; Clinical Molecular Biology Department, Medical University of Bialystok, Bialystok, Poland
| | - Dariusz Plewczynski
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland; Centre for Innovative Research, Medical University of Bialystok, Bialystok, Poland; Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland.
| |
Collapse
|
26
|
Caudai C, Salerno E, Zoppe M, Tonazzini A. Estimation of the Spatial Chromatin Structure Based on a Multiresolution Bead-Chain Model. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2019; 16:550-559. [PMID: 29994172 DOI: 10.1109/tcbb.2018.2791439] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We present a method to infer 3D chromatin configurations from Chromosome Conformation Capture data. Quite a few methods have been proposed to estimate the structure of the nuclear dna in homogeneous populations of cells from this kind of data. Many of them transform contact frequencies into euclidean distances between pairs of chromatin fragments, and then reconstruct the structure by solving a distance-to-geometry problem. To avoid inconsistencies, our method is based on a score function that does not require any frequency-to-distance translation. We propose a multiscale chromatin model where the chromatin fiber is suitably partitioned at each scale. The partial structures are estimated independently, and connected to rebuild the whole fiber. Our score function consists of a data-fit part and a penalty part, balanced automatically at each scale and each subchain. The penalty part enforces soft geometric constraints. As many different structures can fit the data, our sampling strategy produces a set of solutions with similar scores. The procedure contains a few parameters, independent of both the scale and the genomic segment treated. The partition of the fiber, along with intrinsically parallel parts, make this method computationally efficient. Results from human genome data support the biological plausibility of our solutions.
Collapse
|
27
|
The structural and functional roles of CTCF in the regulation of cell type-specific and human disease-associated super-enhancers. Genes Genomics 2018; 41:257-265. [PMID: 30456521 DOI: 10.1007/s13258-018-0768-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 11/13/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND Super-enhancers play critical roles in cell-type specific gene controls and human disease progression. CCCTC-binding factor (CTCF), a transcriptional repressor that insulates the expression of neighboring genes and is involved in chromatin interactions, is frequently present in the boundary regions of or within super-enhancers. However, the structural and functional roles of CTCF in regulating super-enhancers remain elusive. OBJECTIVE To provide a comprehensive review describing the distinct chromatin features and functional roles of CTCF within super-enhancers. METHODS This review compares the various tools used to study the three-dimensional (3D) chromatin architecture of super-enhancers; summarizes the chromatin features of CTCF within cell-type specific super-enhancers and their in vivo biological activities, as determined by CRISPR/Cas9 genome editing; and describes the structural and functional activities of CTCF within human disease-associated super-enhancers. CONCLUSION This review provides fundamental insights into the regulatory mechanisms of super-enhancers and facilitates studies of tissue-specific developmental processes and human disease progression.
Collapse
|
28
|
Szalaj P, Plewczynski D. Three-dimensional organization and dynamics of the genome. Cell Biol Toxicol 2018; 34:381-404. [PMID: 29568981 PMCID: PMC6133016 DOI: 10.1007/s10565-018-9428-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 03/11/2018] [Indexed: 12/30/2022]
Abstract
Genome is a complex hierarchical structure, and its spatial organization plays an important role in its function. Chromatin loops and topological domains form the basic structural units of this multiscale organization and are essential to orchestrate complex regulatory networks and transcription mechanisms. They also form higher-order structures such as chromosomal compartments and chromosome territories. Each level of this intrinsic architecture is governed by principles and mechanisms that we only start to understand. In this review, we summarize the current view of the genome architecture on the scales ranging from chromatin loops to the whole genome. We describe cell-to-cell variability, links between genome reorganization and various genomic processes, such as chromosome X inactivation and cell differentiation, and the interplay between different experimental techniques.
Collapse
Affiliation(s)
- Przemyslaw Szalaj
- Centre for Innovative Research, Medical University of Bialystok, Białystok, Poland.
- I-BioStat, Hasselt University, Hasselt, Belgium.
- Centre of New Technologies, University of Warsaw, Warsaw, Poland.
| | - Dariusz Plewczynski
- Centre for Innovative Research, Medical University of Bialystok, Białystok, Poland
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
- Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
| |
Collapse
|
29
|
Knoch TA. A Guided Protocol for Array Based T2C: A High-Quality Selective High-Resolution High-Throughput Chromosome Interaction Capture. ACTA ACUST UNITED AC 2018; 99:e55. [PMID: 30199150 DOI: 10.1002/cphg.55] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
After now more than 170 years of research the dynamic three-dimensional chromatin architecture of genomes and the co-evolved interaction networks of regulatory elements which create genome function - i.e. the storage, expression, and finally replication of genetic information - involves ever more investigative efforts in respect to not only the pure understanding of living organisms, but also diagnosis, treatment, and even future genome engineering. To study genomic interactions, we developed a novel and superior high-quality selective high-resolution, high-throughput chromosome interaction capture method - T2C (targeted chromatin capture) - which allows to arbitrarily balance resolution, frequency range of interactions, and the investigated general genetic region or single interactions in a highly cost-effective manner in respect to the obtainable result and compared to other techniques. Beyond, T2C has such a high signal-to-noise ratio at high resolution that the "genomic" statistical mechanics level can be reached. With the guided T2C protocol described here, we were already able to finally determine the chromatin quasi-fiber conformation and its folding into stable multi-loop aggregates/rosettes connected by a linker. Actually, this guided T2C protocol provides the means for architectural genome sequencing from the level of the single base pair to the entire cell nucleus and thus to analyze genetic interactions in respect to genome function in a systems biological manner in general as well as in settings ranging from basic research, via diagnostics and treatment, to genome engineering. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Tobias A Knoch
- Biophysical Genomics, Department of Cell Biology & Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
30
|
Abstract
This introduction presents a molecular approach that uses formaldehyde cross-linking to investigate genome structure and function-chromosome conformation capture (3C). This approach allows us to determine the spatial proximity of distant functional genomic sites (by looping). 3C-based techniques to interrogate chromosome folding and long-range interactions between genomic sequences in vivo are detailed.
Collapse
|
31
|
Sun JH, Zhou L, Emerson DJ, Phyo SA, Titus KR, Gong W, Gilgenast TG, Beagan JA, Davidson BL, Tassone F, Phillips-Cremins JE. Disease-Associated Short Tandem Repeats Co-localize with Chromatin Domain Boundaries. Cell 2018; 175:224-238.e15. [PMID: 30173918 DOI: 10.1016/j.cell.2018.08.005] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 06/11/2018] [Accepted: 08/02/2018] [Indexed: 01/15/2023]
Abstract
More than 25 inherited human disorders are caused by the unstable expansion of repetitive DNA sequences termed short tandem repeats (STRs). A fundamental unresolved question is why some STRs are susceptible to pathologic expansion, whereas thousands of repeat tracts across the human genome are relatively stable. Here, we discover that nearly all disease-associated STRs (daSTRs) are located at boundaries demarcating 3D chromatin domains. We identify a subset of boundaries with markedly higher CpG island density compared to the rest of the genome. daSTRs specifically localize to ultra-high-density CpG island boundaries, suggesting they might be hotspots for epigenetic misregulation or topological disruption linked to STR expansion. Fragile X syndrome patients exhibit severe boundary disruption in a manner that correlates with local loss of CTCF occupancy and the degree of FMR1 silencing. Our data uncover higher-order chromatin architecture as a new dimension in understanding repeat expansion disorders.
Collapse
Affiliation(s)
- James H Sun
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Linda Zhou
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Genomics and Computational Biology Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel J Emerson
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sai A Phyo
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Katelyn R Titus
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wanfeng Gong
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Thomas G Gilgenast
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jonathan A Beagan
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Beverly L Davidson
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, The University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Flora Tassone
- Biochemistry and Molecular Medicine, University of California-Davis, Sacramento, CA 95616, USA; MIND Institute, UC Davis, Sacramento, CA 95616, USA
| | - Jennifer E Phillips-Cremins
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
32
|
Huang Z, Liang N, Damdimopoulos A, Fan R, Treuter E. G protein pathway suppressor 2 (GPS2) links inflammation and cholesterol efflux by controlling lipopolysaccharide‐induced ATP‐binding cassette transporter A1 expression in macrophages. FASEB J 2018; 33:1631-1643. [DOI: 10.1096/fj.201801123r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zhiqiang Huang
- Department of Biosciences and NutritionCenter for Innovative Medicine (CIMED)Karolinska InstitutetHuddingeSweden
| | - Ning Liang
- Department of Biosciences and NutritionCenter for Innovative Medicine (CIMED)Karolinska InstitutetHuddingeSweden
| | - Anastasius Damdimopoulos
- Department of Biosciences and NutritionCenter for Innovative Medicine (CIMED)Karolinska InstitutetHuddingeSweden
| | - Rongrong Fan
- Department of Biosciences and NutritionCenter for Innovative Medicine (CIMED)Karolinska InstitutetHuddingeSweden
| | - Eckardt Treuter
- Department of Biosciences and NutritionCenter for Innovative Medicine (CIMED)Karolinska InstitutetHuddingeSweden
| |
Collapse
|
33
|
Knoch TA. Simulation of different three-dimensional polymer models of interphase chromosomes compared to experiments-an evaluation and review framework of the 3D genome organization. Semin Cell Dev Biol 2018; 90:19-42. [PMID: 30125668 DOI: 10.1016/j.semcdb.2018.07.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/10/2018] [Indexed: 01/28/2023]
Abstract
Despite all the efforts the three-dimensional higher-order architecture and dynamics in the cell nucleus are still debated. The regulation of genes, their transcription, replication, as well as differentiation in Eukarya is, however, closely connected to this architecture and dynamics. Here, an evaluation and review framework is setup to investigate the folding of a 30 nm chromatin fibre into chromosome territories by comparing computer simulations of two different chromatin topologies to experiments: The Multi-Loop-Subcompartment (MLS) model, in which small loops form rosettes connected by chromatin linkers, and the Random-Walk/Giant-Loop (RW/GL) model, in which large loops are attached to a flexible non-protein backbone, were simulated for various loop, rosette, and linker sizes. The 30 nm chromatin fibre was modelled as a polymer chain with stretching, bending, and excluded volume interactions. A spherical boundary potential simulated the confinement by other chromosomes and the nuclear envelope. Monte Carlo and Brownian Dynamics methods were applied to generate chain configurations at thermodynamic equilibrium. Both the MLS and the RW/GL models form chromosome territories, with different morphologies: The MLS rosettes form distinct subchromosomal domains, compatible in size as those from light microscopic observations. In contrast, the big RW/GL loops lead to a more homogeneous chromatin distribution. Only the MLS model agrees with the low overlap of chromosomes, their arms, and subchromosomal domains found experimentally. A review of experimental spatial distance measurements between genomic markers labelled by FISH as a function of their genomic separation from different publications and comparison to simulated spatial distances also favours an MLS-like model with loops and linkers of 63 to 126 kbp. The chromatin folding topology also reduces the apparent persistence length of the chromatin fibre to a value significantly lower than the free solution persistence length, explaining the low persistence lengths found various experiments. The predicted large spaces between the chromatin fibres allow typically sized biological molecules to reach nearly every location in the nucleus by moderately obstructed diffusion and disagrees with the much simplified assumption that defined channels between territories for molecular transport as in the Interchromosomal Domain (ICD) hypothesis exist. All this is also in agreement with recent selective high-resolution chromosome interaction capture (T2C) experiments, the scaling behaviour of the DNA sequence, the dynamics of the chromatin fibre, the nuclear diffusion of molecules, as well as other experiments. In summary, this polymer simulation framework compared to experimental data clearly favours only a quasi-chromatin fibre forming a stable multi-loop aggregate/rosette like genome organization and dynamics whose local topology is tightly connected to the global morphology and dynamics of the cell nucleus.
Collapse
Affiliation(s)
- Tobias A Knoch
- Biophysical Genomics, Dept. Cell Biology & Genetics, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands.
| |
Collapse
|
34
|
Blighe K, DeDionisio L, Christie KA, Chawes B, Shareef S, Kakouli-Duarte T, Chao-Shern C, Harding V, Kelly RS, Castellano L, Stebbing J, Lasky-Su JA, Nesbit MA, Moore CBT. Gene editing in the context of an increasingly complex genome. BMC Genomics 2018; 19:595. [PMID: 30086710 PMCID: PMC6081867 DOI: 10.1186/s12864-018-4963-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 07/26/2018] [Indexed: 12/15/2022] Open
Abstract
The reporting of the first draft of the human genome in 2000 brought with it much hope for the future in what was felt as a paradigm shift toward improved health outcomes. Indeed, we have now mapped the majority of variation across human populations with landmark projects such as 1000 Genomes; in cancer, we have catalogued mutations across the primary carcinomas; whilst, for other diseases, we have identified the genetic variants with strongest association. Despite this, we are still awaiting the genetic revolution in healthcare to materialise and translate itself into the health benefits for which we had hoped. A major problem we face relates to our underestimation of the complexity of the genome, and that of biological mechanisms, generally. Fixation on DNA sequence alone and a 'rigid' mode of thinking about the genome has meant that the folding and structure of the DNA molecule -and how these relate to regulation- have been underappreciated. Projects like ENCODE have additionally taught us that regulation at the level of RNA is just as important as that at the spatiotemporal level of chromatin.In this review, we chart the course of the major advances in the biomedical sciences in the era pre- and post the release of the first draft sequence of the human genome, taking a focus on technology and how its development has influenced these. We additionally focus on gene editing via CRISPR/Cas9 as a key technique, in particular its use in the context of complex biological mechanisms. Our aim is to shift the mode of thinking about the genome to that which encompasses a greater appreciation of the folding of the DNA molecule, DNA- RNA/protein interactions, and how these regulate expression and elaborate disease mechanisms.Through the composition of our work, we recognise that technological improvement is conducive to a greater understanding of biological processes and life within the cell. We believe we now have the technology at our disposal that permits a better understanding of disease mechanisms, achievable through integrative data analyses. Finally, only with greater understanding of disease mechanisms can techniques such as gene editing be faithfully conducted.
Collapse
Affiliation(s)
- K Blighe
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, 181 Longwood Avenue, Boston, MA, USA.
- Department of Cancer Studies and Molecular Medicine, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, LE2 7LX, UK.
- Bill Lyons Informatics Centre, UCL Cancer Institute, University College London, WC1E 6DD, London, UK.
| | - L DeDionisio
- Avellino Laboratories, Menlo Park, CA, 94025, USA
| | - K A Christie
- Biomedical Sciences Research Institute, University of Ulster, Coleraine, Northern Ireland, BT52 1SA, UK
| | - B Chawes
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - S Shareef
- University of Raparin, Ranya, Kurdistan Region, Iraq
| | - T Kakouli-Duarte
- Institute of Technology Carlow, Department of Science and Health, Kilkenny Road, Carlow, Ireland
| | - C Chao-Shern
- Biomedical Sciences Research Institute, University of Ulster, Coleraine, Northern Ireland, BT52 1SA, UK
- Avellino Laboratories, Menlo Park, CA, 94025, USA
| | - V Harding
- Imperial College London, Division of Cancer, Department of Surgery and Cancer, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - R S Kelly
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, 181 Longwood Avenue, Boston, MA, USA
| | - L Castellano
- Imperial College London, Division of Cancer, Department of Surgery and Cancer, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
- JMS Building, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK
| | - J Stebbing
- Imperial College London, Division of Cancer, Department of Surgery and Cancer, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - J A Lasky-Su
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, 181 Longwood Avenue, Boston, MA, USA
| | - M A Nesbit
- Biomedical Sciences Research Institute, University of Ulster, Coleraine, Northern Ireland, BT52 1SA, UK
| | - C B T Moore
- Biomedical Sciences Research Institute, University of Ulster, Coleraine, Northern Ireland, BT52 1SA, UK.
- Avellino Laboratories, Menlo Park, CA, 94025, USA.
| |
Collapse
|
35
|
Moisan S, Levon S, Cornec-Le Gall E, Le Meur Y, Audrézet MP, Dostie J, Férec C. Novel long-range regulatory mechanisms controlling PKD2 gene expression. BMC Genomics 2018; 19:515. [PMID: 29986647 PMCID: PMC6038307 DOI: 10.1186/s12864-018-4892-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 06/20/2018] [Indexed: 02/01/2023] Open
Abstract
Background Cis-regulatory elements control gene expression over large distances through the formation of chromatin loops, which allow contact between enhancers and gene promoters. Alterations in cis-acting regulatory systems could be linked to human genetic diseases. Here, we analyse the spatial organization of a large region spanning the polycystic kidney disease 2 (PKD2) gene, one of the genes responsible of autosomal dominant polycystic kidney disease (ADPKD). Results By using chromosome conformation capture carbon copy (5C) technology in primary human renal cyst epithelial cells, we identify novel contacts of the PKD2 promoter with chromatin regions, which display characteristics of regulatory elements. In parallel, by using functional analysis with a reporter assay, we demonstrate that three DNAse I hypersensitive sites regions are involved in the regulation of PKD2 gene expression. Conclusions Finally, through alignment of CCCTC-binding factor (CTCF) sites, we suggest that these novel enhancer elements are brought to the PKD2 promoter by chromatin looping via the recruitment of CTCF. Electronic supplementary material The online version of this article (10.1186/s12864-018-4892-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stéphanie Moisan
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1078, Brest, Bretagne, France. .,Faculté de Médecine et des Sciences de la Santé, Université de Bretagne Occidentale (UBO), Brest, Bretagne, France. .,Laboratoire de Génétique Moléculaire et d'Histocompatibilité, Centre Hospitalier Régional Universitaire (CHRU), Hôpital Morvan, Brest, Bretagne, France.
| | - Stéphanie Levon
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1078, Brest, Bretagne, France.,Faculté de Médecine et des Sciences de la Santé, Université de Bretagne Occidentale (UBO), Brest, Bretagne, France
| | - Emilie Cornec-Le Gall
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1078, Brest, Bretagne, France.,Laboratoire de Génétique Moléculaire et d'Histocompatibilité, Centre Hospitalier Régional Universitaire (CHRU), Hôpital Morvan, Brest, Bretagne, France
| | - Yannick Le Meur
- Service de néphrologie, Centre Hospitalier Régional Universitaire (CHRU), Brest, Bretagne, France
| | - Marie-Pierre Audrézet
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1078, Brest, Bretagne, France.,Laboratoire de Génétique Moléculaire et d'Histocompatibilité, Centre Hospitalier Régional Universitaire (CHRU), Hôpital Morvan, Brest, Bretagne, France
| | - Josée Dostie
- Department of Biochemistry and Goodman Cancer Research Center, McGill University, Montréal, Québec, Canada
| | - Claude Férec
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1078, Brest, Bretagne, France. .,Faculté de Médecine et des Sciences de la Santé, Université de Bretagne Occidentale (UBO), Brest, Bretagne, France. .,Laboratoire de Génétique Moléculaire et d'Histocompatibilité, Centre Hospitalier Régional Universitaire (CHRU), Hôpital Morvan, Brest, Bretagne, France. .,Etablissement Français du sang (EFS), Brest, Bretagne, France.
| |
Collapse
|
36
|
Sotelo-Silveira M, Chávez Montes RA, Sotelo-Silveira JR, Marsch-Martínez N, de Folter S. Entering the Next Dimension: Plant Genomes in 3D. TRENDS IN PLANT SCIENCE 2018; 23:598-612. [PMID: 29703667 DOI: 10.1016/j.tplants.2018.03.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 03/19/2018] [Accepted: 03/26/2018] [Indexed: 05/07/2023]
Abstract
After linear sequences of genomes and epigenomic landscape data, the 3D organization of chromatin in the nucleus is the next level to be explored. Different organisms present a general hierarchical organization, with chromosome territories at the top. Chromatin interaction maps, obtained by chromosome conformation capture (3C)-based methodologies, for eight plant species reveal commonalities, but also differences, among them and with animals. The smallest structures, found in high-resolution maps of the Arabidopsis genome, are single genes. Epigenetic marks (histone modification and DNA methylation), transcriptional activity, and chromatin interaction appear to be correlated, and whether structure is the cause or consequence of the function of interacting regions is being actively investigated.
Collapse
Affiliation(s)
- Mariana Sotelo-Silveira
- Departamento de Biología Vegetal, Laboratorio de Bioquímica, Facultad de Agronomía, Garzón 809, 12900 Montevideo, Uruguay
| | - Ricardo A Chávez Montes
- Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad (LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Km. 9.6 Libramiento Norte, Carretera Irapuato-León, 36824 Irapuato, Guanajuato, Mexico
| | - Jose R Sotelo-Silveira
- Department of Genomics, Instituto de Investigaciones Biológicas Clemente Estable, Av. Italia 3318, 11600 Montevideo, Uruguay; Sección Biología Celular, Dept. Cell and Molecular Biology, Facultad de Ciencias, Universidad de la Republica, Igua 4225, Montevideo, Uruguay
| | - Nayelli Marsch-Martínez
- Departamento de Biotecnología y Bioquímica, Unidad Irapuato, CINVESTAV-IPN, Km. 9.6 Libramiento Norte, Carretera Irapuato-León, 36824 Irapuato, Guanajuato, Mexico
| | - Stefan de Folter
- Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad (LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Km. 9.6 Libramiento Norte, Carretera Irapuato-León, 36824 Irapuato, Guanajuato, Mexico.
| |
Collapse
|
37
|
Kim JH, Titus KR, Gong W, Beagan JA, Cao Z, Phillips-Cremins JE. 5C-ID: Increased resolution Chromosome-Conformation-Capture-Carbon-Copy with in situ 3C and double alternating primer design. Methods 2018; 142:39-46. [PMID: 29772275 PMCID: PMC5993643 DOI: 10.1016/j.ymeth.2018.05.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 03/01/2018] [Accepted: 05/08/2018] [Indexed: 01/13/2023] Open
Abstract
Mammalian genomes are folded in a hierarchy of compartments, topologically associating domains (TADs), subTADs, and looping interactions. Currently, there is a great need to evaluate the link between chromatin topology and genome function across many biological conditions and genetic perturbations. Hi-C can generate genome-wide maps of looping interactions but is intractable for high-throughput comparison of loops across multiple conditions due to the enormous number of reads (>6 Billion) required per library. Here, we describe 5C-ID, a new version of Chromosome-Conformation-Capture-Carbon-Copy (5C) with restriction digest and ligation performed in the nucleus (in situ Chromosome-Conformation-Capture (3C)) and ligation-mediated amplification performed with a double alternating primer design. We demonstrate that 5C-ID produces higher-resolution 3D genome folding maps with reduced spatial noise using markedly lower cell numbers than canonical 5C. 5C-ID enables the creation of high-resolution, high-coverage maps of chromatin loops in up to a 30 Megabase subset of the genome at a fraction of the cost of Hi-C.
Collapse
Affiliation(s)
- Ji Hun Kim
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Katelyn R Titus
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wanfeng Gong
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jonathan A Beagan
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zhendong Cao
- Epigenetics Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jennifer E Phillips-Cremins
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
38
|
Caudai C, Salerno E, Zoppe M, Merelli I, Tonazzini A. ChromStruct 4: A Python Code to Estimate the Chromatin Structure from Hi-C Data. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2018:1-1. [PMID: 29993555 DOI: 10.1109/tcbb.2018.2838669] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A method and a stand-alone Python(TM) code to estimate the 3D chromatin structure from chromosome conformation capture data are presented. The method is based on a multiresolution, modified-bead-chain chromatin model, evolved through quaternion operators in a Monte Carlo sampling. The solution space to be sampled is generated by a score function with a data-fit part and a constraint part where the available prior knowledge is implicitly coded. The final solution is a set of 3D configurations that are compatible with both the data and the prior knowledge. The iterative code, provided here as additional material, is equipped with a graphical user interface and stores its results in standard-format files for 3D visualization. We describe the mathematical-computational aspects of the method and explain the details of the code. Some experimental results are reported, with a demonstration of their fit to the data.
Collapse
|
39
|
Sun C, Lu C. Microfluidics-Based Chromosome Conformation Capture (3C) Technology for Examining Chromatin Organization with a Low Quantity of Cells. Anal Chem 2018; 90:3714-3719. [PMID: 29498513 PMCID: PMC5861017 DOI: 10.1021/acs.analchem.8b00310] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Detecting three-dimensional (3D) genome organization in the form of physical interactions between various genomic loci is of great importance for understanding transcriptional regulations and cellular fate. Chromosome Conformation Capture (3C) method is the gold standard for examining chromatin organization, but usually requires a large number of cells (>107). This hinders studies of scarce tissue samples from animals and patients using the method. Here we developed a microfluidics-based approach for examining chromosome conformation by 3C technology. Critical 3C steps, such as digestion and religation of BAC DNA and cross-linked chromatin, were implemented on a microfluidic chip using a low quantity of cells (<104). Using this technology, we analyzed the chromatin looping interactions in the human β-globin. We envision that our method will provide a powerful tool for low-input analysis of chromosome conformation and epigenetic regulations.
Collapse
Affiliation(s)
- Chen Sun
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, Virginia, 24061, USA
| | - Chang Lu
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia, 24061, USA
| |
Collapse
|
40
|
Abstract
It is well known that the chromosomes are organized in the nucleus and this spatial arrangement of genome play a crucial role in gene regulation and genome stability. Different techniques have been developed and applied to uncover the intrinsic mechanism of genome architecture, especially the chromosome conformation capture (3C) and 3C-derived methods. 3C and 3C-derived techniques provide us approaches to perform high-throughput chromatin architecture assays at the genome scale. However, the advantage and disadvantage of current methodologies of C-technologies have not been discussed extensively. In this review, we described and compared the methodologies of C-technologies used in genome organization studies with an emphasis on Hi-C method. We also discussed the crucial challenges facing current genome architecture studies based on 3C and 3C-derived technologies and the direction of future technologies to address currently outstanding questions in the field. These latest news contribute to our current understanding of genome structure, and provide a comprehensive reference for researchers to choose the appropriate method in future application. We consider that these constantly improving technologies will offer a finer and more accurate contact profiles of entire genome and ultimately reveal specific molecular machines govern its shape and function.
Collapse
|
41
|
Oluwadare O, Zhang Y, Cheng J. A maximum likelihood algorithm for reconstructing 3D structures of human chromosomes from chromosomal contact data. BMC Genomics 2018; 19:161. [PMID: 29471801 PMCID: PMC5824572 DOI: 10.1186/s12864-018-4546-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 02/13/2018] [Indexed: 01/07/2023] Open
Abstract
Background The development of chromosomal conformation capture techniques, particularly, the Hi-C technique, has made the analysis and study of the spatial conformation of a genome an important topic in bioinformatics and computational biology. Aided by high-throughput next generation sequencing techniques, the Hi-C technique can generate genome-wide, large-scale intra- and inter-chromosomal interaction data capable of describing in details the spatial interactions within a genome. These data can be used to reconstruct 3D structures of chromosomes that can be used to study DNA replication, gene regulation, genome interaction, genome folding, and genome function. Results Here, we introduce a maximum likelihood algorithm called 3DMax to construct the 3D structure of a chromosome from Hi-C data. 3DMax employs a maximum likelihood approach to infer the 3D structures of a chromosome, while automatically re-estimating the conversion factor (α) for converting Interaction Frequency (IF) to distance. Our results show that the models generated by 3DMax from a simulated Hi-C dataset match the true models better than most of the existing methods. 3DMax is more robust to structural variability and noise. Compared on a real Hi-C dataset, 3DMax constructs chromosomal models that fit the data better than most methods, and it is faster than all other methods. The models reconstructed by 3DMax were consistent with fluorescent in situ hybridization (FISH) experiments and existing knowledge about the organization of human chromosomes, such as chromosome compartmentalization. Conclusions 3DMax is an effective approach to reconstructing 3D chromosomal models. The results, and the models generated for the simulated and real Hi-C datasets are available here: http://sysbio.rnet.missouri.edu/bdm_download/3DMax/. The source code is available here: https://github.com/BDM-Lab/3DMax. A short video demonstrating how to use 3DMax can be found here: https://youtu.be/ehQUFWoHwfo.
Collapse
Affiliation(s)
- Oluwatosin Oluwadare
- Electrical Engineering & Computer Science Department, University of Missouri, Columbia, MO, 65211, USA
| | - Yuxiang Zhang
- Electrical Engineering & Computer Science Department, University of Missouri, Columbia, MO, 65211, USA
| | - Jianlin Cheng
- Electrical Engineering & Computer Science Department, University of Missouri, Columbia, MO, 65211, USA. .,Informatics Institute, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
42
|
Kolovos P, Brouwer RWW, Kockx CEM, Lesnussa M, Kepper N, Zuin J, Imam AMA, van de Werken HJG, Wendt KS, Knoch TA, van IJcken WFJ, Grosveld F. Investigation of the spatial structure and interactions of the genome at sub-kilobase-pair resolution using T2C. Nat Protoc 2018; 13:459-477. [DOI: 10.1038/nprot.2017.132] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
43
|
Grob S, Cavalli G. Technical Review: A Hitchhiker's Guide to Chromosome Conformation Capture. Methods Mol Biol 2018; 1675:233-246. [PMID: 29052195 DOI: 10.1007/978-1-4939-7318-7_14] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The introduction of chromosome conformation capture (3C) technologies boosted the field of 3D-genome research and significantly enhanced the available toolset to study chromosomal architecture. 3C technologies not only offer increased resolution compared to the previously dominant cytological approaches but also allow the simultaneous study of genome-wide 3D chromatin contacts, thereby enabling a candidate-free perspective on 3D-genome architecture. Since its introduction in 2002, 3C technologies evolved rapidly and now constitute a collection of tools, each with their strengths and pitfalls with respect to specific research questions. This chapter aims at guiding 3C novices through the labyrinth of potential applications of the various family members, hopefully providing a valuable basis for choosing the appropriate strategy for different research questions.
Collapse
Affiliation(s)
- Stefan Grob
- Institute of Human Genetics, Centre National de la Recherche UMR9002, Montpellier, France.
| | - Giacomo Cavalli
- Institute of Human Genetics, Centre National de la Recherche UMR9002, Montpellier, France
| |
Collapse
|
44
|
Jia R, Chai P, Zhang H, Fan X. Novel insights into chromosomal conformations in cancer. Mol Cancer 2017; 16:173. [PMID: 29149895 PMCID: PMC5693495 DOI: 10.1186/s12943-017-0741-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 11/06/2017] [Indexed: 12/20/2022] Open
Abstract
Exploring gene function is critical for understanding the complexity of life. DNA sequences and the three-dimensional organization of chromatin (chromosomal interactions) are considered enigmatic factors underlying gene function, and interactions between two distant fragments can regulate transactivation activity via mediator proteins. Thus, a series of chromosome conformation capture techniques have been developed, including chromosome conformation capture (3C), circular chromosome conformation capture (4C), chromosome conformation capture carbon copy (5C), and high-resolution chromosome conformation capture (Hi-C). The application of these techniques has expanded to various fields, but cancer remains one of the major topics. Interactions mediated by proteins or long noncoding RNAs (lncRNAs) are typically found using 4C-sequencing and chromatin interaction analysis by paired-end tag sequencing (ChIA-PET). Currently, Hi-C is used to identify chromatin loops between cancer risk-associated single-nucleotide polymorphisms (SNPs) found by genome-wide association studies (GWAS) and their target genes. Chromosomal conformations are responsible for altered gene regulation through several typical mechanisms and contribute to the biological behavior and malignancy of different tumors, particularly prostate cancer, breast cancer and hematologic neoplasms. Moreover, different subtypes may exhibit different 3D-chromosomal conformations. Thus, C-tech can be used to help diagnose cancer subtypes and alleviate cancer progression by destroying specific chromosomal conformations. Here, we review the fundamentals and improvements in chromosome conformation capture techniques and their clinical applications in cancer to provide insight for future research.
Collapse
Affiliation(s)
- Ruobing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, People's Republic of China
| | - Peiwei Chai
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, People's Republic of China
| | - He Zhang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China. .,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, People's Republic of China.
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China. .,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, People's Republic of China.
| |
Collapse
|
45
|
Jamge S, Stam M, Angenent GC, Immink RGH. A cautionary note on the use of chromosome conformation capture in plants. PLANT METHODS 2017; 13:101. [PMID: 29177001 PMCID: PMC5691870 DOI: 10.1186/s13007-017-0251-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 11/08/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND The chromosome conformation capture (3C) technique is a method to study chromatin interactions at specific genomic loci. Initially established for yeast the 3C technique has been adapted to plants in recent years in order to study chromatin interactions and their role in transcriptional gene regulation. As the plant scientific community continues to implement this technology, a discussion on critical controls, validations steps and interpretation of 3C data is essential to fully benefit from 3C in plants. RESULTS Here we assess the reliability and robustness of the 3C technique for the detection of chromatin interactions in Arabidopsis. As a case study, we applied this methodology to the genomic locus of a floral integrator gene SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1), and demonstrate the need of several controls and standard validation steps to allow a meaningful interpretation of 3C data. The intricacies of this promising but challenging technique are discussed in depth. CONCLUSIONS The 3C technique offers an interesting opportunity to study chromatin interactions at a resolution infeasible by microscopy. However, for interpretation of 3C interaction data and identification of true interactions, 3C technology demands a stringent experimental setup and extreme caution.
Collapse
Affiliation(s)
- Suraj Jamge
- Laboratory of Molecular Biology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Maike Stam
- Swammerdam Institute for Life Sciences, Universiteit van Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Gerco C. Angenent
- Laboratory of Molecular Biology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Wageningen Plant Research, Bioscience, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Richard G. H. Immink
- Laboratory of Molecular Biology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Wageningen Plant Research, Bioscience, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
46
|
Oluwadare O, Cheng J. ClusterTAD: an unsupervised machine learning approach to detecting topologically associated domains of chromosomes from Hi-C data. BMC Bioinformatics 2017; 18:480. [PMID: 29137603 PMCID: PMC5686814 DOI: 10.1186/s12859-017-1931-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 11/06/2017] [Indexed: 11/10/2022] Open
Abstract
Background With the development of chromosomal conformation capturing techniques, particularly, the Hi-C technique, the study of the spatial conformation of a genome is becoming an important topic in bioinformatics and computational biology. The Hi-C technique can generate genome-wide chromosomal interaction (contact) data, which can be used to investigate the higher-level organization of chromosomes, such as Topologically Associated Domains (TAD), i.e., locally packed chromosome regions bounded together by intra chromosomal contacts. The identification of the TADs for a genome is useful for studying gene regulation, genomic interaction, and genome function. Results Here, we formulate the TAD identification problem as an unsupervised machine learning (clustering) problem, and develop a new TAD identification method called ClusterTAD. We introduce a novel method to represent chromosomal contacts as features to be used by the clustering algorithm. Our results show that ClusterTAD can accurately predict the TADs on a simulated Hi-C data. Our method is also largely complementary and consistent with existing methods on the real Hi-C datasets of two mouse cells. The validation with the chromatin immunoprecipitation (ChIP) sequencing (ChIP-Seq) data shows that the domain boundaries identified by ClusterTAD have a high enrichment of CTCF binding sites, promoter-related marks, and enhancer-related histone modifications. Conclusions As ClusterTAD is based on a proven clustering approach, it opens a new avenue to apply a large array of clustering methods developed in the machine learning field to the TAD identification problem. The source code, the results, and the TADs generated for the simulated and real Hi-C datasets are available here: https://github.com/BDM-Lab/ClusterTAD.
Collapse
Affiliation(s)
- Oluwatosin Oluwadare
- Electrical Engineering and Computer Science Department, University of Missouri, Columbia, MO, 65211, USA
| | - Jianlin Cheng
- Electrical Engineering and Computer Science Department, University of Missouri, Columbia, MO, 65211, USA. .,Informatics Institute, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
47
|
Andrey G, Mundlos S. The three-dimensional genome: regulating gene expression during pluripotency and development. Development 2017; 144:3646-3658. [PMID: 29042476 DOI: 10.1242/dev.148304] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The precise expression of genes in time and space during embryogenesis is largely influenced by communication between enhancers and promoters, which is propagated and governed by the physical proximity of these elements in the nucleus. Here, we review how chromatin domains organize the genome by guiding enhancers to their target genes thereby preventing non-specific interactions with other neighboring regions. We also discuss the dynamics of chromatin interactions between enhancers and promoters, as well as the consequent changes in gene expression, that occur in pluripotent cells and during development. Finally, we evaluate how genomic changes such as deletions, inversions and duplications affect 3D chromatin configuration overall and lead to ectopic enhancer-promoter contacts, and thus gene misexpression, which can contribute to abnormal development and disease.
Collapse
Affiliation(s)
- Guillaume Andrey
- Max Planck Institute for Molecular Genetics, RG Development & Disease, 14195 Berlin, Germany
| | - Stefan Mundlos
- Max Planck Institute for Molecular Genetics, RG Development & Disease, 14195 Berlin, Germany .,Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| |
Collapse
|
48
|
Abstract
Skeletal muscle regeneration is an efficient stem cell-based repair system that ensures healthy musculature. For this repair system to function continuously throughout life, muscle stem cells must contribute to the process of myofiber repair as well as repopulation of the stem cell niche. The decision made by the muscle stem cells to commit to the muscle repair or to remain a stem cell depends upon patterns of gene expression, a process regulated at the epigenetic level. Indeed, it is well accepted that dynamic changes in epigenetic landscapes to control DNA accessibility and expression is a critical component during myogenesis for the effective repair of damaged muscle. Changes in the epigenetic landscape are governed by various posttranslational histone tail modifications, nucleosome repositioning, and DNA methylation events which collectively allow the control of changes in transcription networks during transitions of satellite cells from a dormant quiescent state toward terminal differentiation. This chapter focuses upon the specific epigenetic changes that occur during muscle stem cell-mediated regeneration to ensure myofiber repair and continuity of the stem cell compartment. Furthermore, we explore open questions in the field that are expected to be important areas of exploration as we move toward a more thorough understanding of the epigenetic mechanism regulating muscle regeneration.
Collapse
Affiliation(s)
- Daniel C L Robinson
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada; University of Ottawa, Ottawa, ON, Canada
| | - Francis J Dilworth
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada; University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
49
|
Ulianov SV, Galitsyna AA, Flyamer IM, Golov AK, Khrameeva EE, Imakaev MV, Abdennur NA, Gelfand MS, Gavrilov AA, Razin SV. Activation of the alpha-globin gene expression correlates with dramatic upregulation of nearby non-globin genes and changes in local and large-scale chromatin spatial structure. Epigenetics Chromatin 2017; 10:35. [PMID: 28693562 PMCID: PMC5504709 DOI: 10.1186/s13072-017-0142-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 07/03/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In homeotherms, the alpha-globin gene clusters are located within permanently open genome regions enriched in housekeeping genes. Terminal erythroid differentiation results in dramatic upregulation of alpha-globin genes making their expression comparable to the rRNA transcriptional output. Little is known about the influence of the erythroid-specific alpha-globin gene transcription outburst on adjacent, widely expressed genes and large-scale chromatin organization. Here, we have analyzed the total transcription output, the overall chromatin contact profile, and CTCF binding within the 2.7 Mb segment of chicken chromosome 14 harboring the alpha-globin gene cluster in cultured lymphoid cells and cultured erythroid cells before and after induction of terminal erythroid differentiation. RESULTS We found that, similarly to mammalian genome, the chicken genomes is organized in TADs and compartments. Full activation of the alpha-globin gene transcription in differentiated erythroid cells is correlated with upregulation of several adjacent housekeeping genes and the emergence of abundant intergenic transcription. An extended chromosome region encompassing the alpha-globin cluster becomes significantly decompacted in differentiated erythroid cells, and depleted in CTCF binding and CTCF-anchored chromatin loops, while the sub-TAD harboring alpha-globin gene cluster and the upstream major regulatory element (MRE) becomes highly enriched with chromatin interactions as compared to lymphoid and proliferating erythroid cells. The alpha-globin gene domain and the neighboring loci reside within the A-like chromatin compartment in both lymphoid and erythroid cells and become further segregated from the upstream gene desert upon terminal erythroid differentiation. CONCLUSIONS Our findings demonstrate that the effects of tissue-specific transcription activation are not restricted to the host genomic locus but affect the overall chromatin structure and transcriptional output of the encompassing topologically associating domain.
Collapse
Affiliation(s)
- Sergey V Ulianov
- Institute of Gene Biology of the Russian Academy of Sciences, Moscow, Russia 119334.,Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia 119992
| | - Aleksandra A Galitsyna
- Institute of Gene Biology of the Russian Academy of Sciences, Moscow, Russia 119334.,Faculty of Bioengineering and Bioinformatics, M.V. Lomonosov Moscow State University, Moscow, Russia 119992.,Institute for Information Transmission Problems (the Kharkevich Institute) of the Russian Academy of Sciences, Moscow, Russia 127051
| | - Ilya M Flyamer
- Institute of Gene Biology of the Russian Academy of Sciences, Moscow, Russia 119334.,Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia 119992.,MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Arkadiy K Golov
- Institute of Gene Biology of the Russian Academy of Sciences, Moscow, Russia 119334
| | - Ekaterina E Khrameeva
- Skolkovo Institute of Science and Technology, Skolkovo, Russia 143026.,Institute for Information Transmission Problems (the Kharkevich Institute) of the Russian Academy of Sciences, Moscow, Russia 127051
| | - Maxim V Imakaev
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Nezar A Abdennur
- Computational and Systems Biology Graduate Program, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Mikhail S Gelfand
- Faculty of Bioengineering and Bioinformatics, M.V. Lomonosov Moscow State University, Moscow, Russia 119992.,Skolkovo Institute of Science and Technology, Skolkovo, Russia 143026.,Institute for Information Transmission Problems (the Kharkevich Institute) of the Russian Academy of Sciences, Moscow, Russia 127051.,Faculty of Computer Science, Higher School of Economics, Moscow, Russia 125319
| | - Alexey A Gavrilov
- Institute of Gene Biology of the Russian Academy of Sciences, Moscow, Russia 119334
| | - Sergey V Razin
- Institute of Gene Biology of the Russian Academy of Sciences, Moscow, Russia 119334.,Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia 119992
| |
Collapse
|
50
|
Narendra V, Bulajić M, Dekker J, Mazzoni EO, Reinberg D. CTCF-mediated topological boundaries during development foster appropriate gene regulation. Genes Dev 2017; 30:2657-2662. [PMID: 28087711 PMCID: PMC5238725 DOI: 10.1101/gad.288324.116] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 12/12/2016] [Indexed: 12/11/2022]
Abstract
The genome is organized into repeating topologically associated domains (TADs), each of which is spatially isolated from its neighbor by poorly understood boundary elements thought to be conserved across cell types. Here, we show that deletion of CTCF (CCCTC-binding factor)-binding sites at TAD and sub-TAD topological boundaries that form within the HoxA and HoxC clusters during differentiation not only disturbs local chromatin domain organization and regulatory interactions but also results in homeotic transformations typical of Hox gene misregulation. Moreover, our data suggest that CTCF-dependent boundary function can be modulated by competing forces, such as the self-assembly of polycomb domains within the nucleus. Therefore, CTCF boundaries are not merely static structural components of the genome but instead are locally dynamic regulatory structures that control gene expression during development.
Collapse
Affiliation(s)
- Varun Narendra
- Howard Hughes Medical Institute, New York, New York 10016, USA.,Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA
| | - Milica Bulajić
- Department of Biology, New York University, New York, New York 10003, USA
| | - Job Dekker
- Howard Hughes Medical Institute, New York, New York 10016, USA.,Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Esteban O Mazzoni
- Department of Biology, New York University, New York, New York 10003, USA
| | - Danny Reinberg
- Howard Hughes Medical Institute, New York, New York 10016, USA.,Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA
| |
Collapse
|