1
|
Miller A, Chia S, Toprakcioglu Z, Hakala T, Schmid R, Feng Y, Kartanas T, Kamada A, Vendruscolo M, Ruggeri FS, Knowles TP. Enhanced surface nanoanalytics of transient biomolecular processes. SCIENCE ADVANCES 2023; 9:eabq3151. [PMID: 36638180 PMCID: PMC9839325 DOI: 10.1126/sciadv.abq3151] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Fundamental knowledge of the physical and chemical properties of biomolecules is key to understanding molecular processes in health and disease. Bulk and single-molecule analytical methods provide rich information about biomolecules but often require high concentrations and sample preparation away from physiologically relevant conditions. Here, we present the development and application of a lab-on-a-chip spray approach that combines rapid sample preparation, mixing, and deposition to integrate with a range of nanoanalytical methods in chemistry and biology, providing enhanced spectroscopic sensitivity and single-molecule spatial resolution. We demonstrate that this method enables multidimensional study of heterogeneous biomolecular systems over multiple length scales by nanoscopy and vibrational spectroscopy. We then illustrate the capabilities of this platform by capturing and analyzing the structural conformations of transient oligomeric species formed at the early stages of the self-assembly of α-synuclein, which are associated with the onset of Parkinson's disease.
Collapse
Affiliation(s)
- Alyssa Miller
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Sean Chia
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Zenon Toprakcioglu
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Tuuli Hakala
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Roman Schmid
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Yaduo Feng
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Tadas Kartanas
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Ayaka Kamada
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Michele Vendruscolo
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Francesco Simone Ruggeri
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
- Laboratory of Organic Chemistry, Wageningen University and Research, Stippeneng 4, Wageningen, 6703 WE, Netherlands
- Physical Chemistry and Soft Matter, Wageningen University and Research, Stippeneng 4, Wageningen, 6703 WE, Netherlands
| | - Tuomas P. J. Knowles
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK
| |
Collapse
|
2
|
Bao HL, Ishizuka T, Sakamoto T, Fujimoto K, Uechi T, Kenmochi N, Xu Y. Characterization of human telomere RNA G-quadruplex structures in vitro and in living cells using 19F NMR spectroscopy. Nucleic Acids Res 2017; 45:5501-5511. [PMID: 28180296 PMCID: PMC5435947 DOI: 10.1093/nar/gkx109] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 02/06/2017] [Indexed: 11/12/2022] Open
Abstract
Human telomeric RNA has been identified as a key component of the telomere machinery. Recently, the growing evidence suggests that the telomeric RNA forms G-quadruplex structures to play an important role in telomere protection and regulation. In the present studies, we developed a 19F NMR spectroscopy method to investigate the telomeric RNA G-quadruplex structures in vitro and in living cells. We demonstrated that the simplicity and sensitivity of 19F NMR approach can be used to directly observe the dimeric and two-subunits stacked G-quadruplexes in vitro and in living cells and quantitatively characterize the thermodynamic properties of the G-quadruplexes. By employing the 19F NMR in living cell experiment, we confirmed for the first time that the higher-order G-quadruplex exists in cells. We further demonstrated that telomere RNA G-quadruplexes are converted to the higher-order G-quadruplex under molecular crowding condition, a cell-like environment. We also show that the higher-order G-quadruplex has high thermal stability in crowded solutions. The finding provides new insight into the structural behavior of telomere RNA G-quadruplex in living cells. These results open new avenues for the investigation of G-quadruplex structures in vitro and in living cells.
Collapse
Affiliation(s)
- Hong-Liang Bao
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Takumi Ishizuka
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Takashi Sakamoto
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahi-dai, Nomi, Ishikawa 923-1292, Japan
| | - Kenzo Fujimoto
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahi-dai, Nomi, Ishikawa 923-1292, Japan
| | - Tamayo Uechi
- Frontier Science Research Center, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Naoya Kenmochi
- Frontier Science Research Center, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Yan Xu
- Division of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| |
Collapse
|
3
|
Choi S, Yu E, Kim DS, Sugimori M, Llinás RR. RNS60, a charge-stabilized nanostructure saline alters Xenopus Laevis oocyte biophysical membrane properties by enhancing mitochondrial ATP production. Physiol Rep 2015; 3:3/3/e12261. [PMID: 25742953 PMCID: PMC4393147 DOI: 10.14814/phy2.12261] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We have examined the effects of RNS60, a 0.9% saline containing charge-stabilized oxygen nanobubble-based structures. RNS60 is generated by subjecting normal saline to Taylor–Couette–Poiseuille (TCP) flow under elevated oxygen pressure. This study, implemented in Xenopus laevis oocytes, addresses both the electrophysiological membrane properties and parallel biological processes in the cytoplasm. Intracellular recordings from defolliculated X. laevis oocytes were implemented in: (1) air oxygenated standard Ringer's solution, (2) RNS60-based Ringer's solution, (3) RNS10.3 (TCP-modified saline without excess oxygen)-based Ringer's, and (4) ONS60 (saline containing high pressure oxygen without TCP modification)-based Ringer's. RNS60-based Ringer's solution induced membrane hyperpolarization from the resting membrane potential. This effect was prevented by: (1) ouabain (a blocker of the sodium/potassium ATPase), (2) rotenone (a mitochondrial electron transfer chain inhibitor preventing usable ATP synthesis), and (3) oligomycin A (an inhibitor of ATP synthase) indicating that RNS60 effects intracellular ATP levels. Increased intracellular ATP levels following RNS60 treatment were directly demonstrated using luciferin/luciferase photon emission. These results indicate that RNS60 alters intrinsic the electrophysiological properties of the X. laevis oocyte membrane by increasing mitochondrial-based ATP synthesis. Ultrastructural analysis of the oocyte cytoplasm demonstrated increased mitochondrial length in the presence of RNS60-based Ringer's solution. It is concluded that the biological properties of RNS60 relate to its ability to optimize ATP synthesis.
Collapse
Affiliation(s)
- Soonwook Choi
- Marine Biological Laboratory, Woods Hole, Massachusetts, USA Department of Neuroscience and Physiology, New York University School of Medicine, New York, New York, USA
| | - Eunah Yu
- Marine Biological Laboratory, Woods Hole, Massachusetts, USA Department of Neuroscience and Physiology, New York University School of Medicine, New York, New York, USA
| | - Duk-Soo Kim
- Marine Biological Laboratory, Woods Hole, Massachusetts, USA Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan-Si, Korea
| | - Mutsuyuki Sugimori
- Marine Biological Laboratory, Woods Hole, Massachusetts, USA Department of Neuroscience and Physiology, New York University School of Medicine, New York, New York, USA
| | - Rodolfo R Llinás
- Marine Biological Laboratory, Woods Hole, Massachusetts, USA Department of Neuroscience and Physiology, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
4
|
Shaulov L, Fichtman B, Harel A. High-resolution scanning electron microscopy for the imaging of nuclear pore complexes and Ran-mediated transport. Methods Mol Biol 2014; 1120:253-261. [PMID: 24470031 DOI: 10.1007/978-1-62703-791-4_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
High-resolution scanning electron microscopy provides three-dimensional surface images of nuclear pore complexes (NPCs) embedded in the nuclear envelope. Here, we describe a method for exposing the nuclear surface in mammalian tissue culture cells for imaging by scanning electron microscopy. Hypotonic treatment is followed by low-speed centrifugation onto polylysine-coated silicon chips, without the use of detergents. This helps to preserve NPCs close to their native morphology, embedded in undamaged nuclear membranes. This method is particularly advantageous for combining high-resolution imaging of NPCs with mammalian genetic systems.
Collapse
Affiliation(s)
- Lihi Shaulov
- Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel
| | | | | |
Collapse
|
5
|
Embryonic and adult isoforms of XLAP2 form microdomains associated with chromatin and the nuclear envelope. Cell Tissue Res 2011; 344:97-110. [PMID: 21347574 PMCID: PMC3112025 DOI: 10.1007/s00441-011-1129-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Accepted: 01/12/2011] [Indexed: 11/10/2022]
Abstract
Laminin-associated polypeptide 2 (LAP2) proteins are alternatively spliced products of a single gene; they belong to the LEM domain family and, in mammals, locate to the nuclear envelope (NE) and nuclear lamina. Isoforms lacking the transmembrane domain also locate to the nucleoplasm. We used new specific antibodies against the N-terminal domain of Xenopus LAP2 to perform immunoprecipitation, identification and localization studies during Xenopus development. By immunoprecipitation and mass spectrometry (LC/MS/MS), we identified the embryonic isoform XLAP2γ, which was downregulated during development similarly to XLAP2ω. Embryonic isoforms XLAP2ω and XLAP2γ were located in close association with chromatin up to the blastula stage. Later in development, both embryonic isoforms and the adult isoform XLAP2β were localized in a similar way at the NE. All isoforms colocalized with lamin B2/B3 during development, whereas XLAP2β was colocalized with lamin B2 and apparently with the F/G repeat nucleoporins throughout the cell cycle in adult tissues and culture cells. XLAP2β was localized in clusters on chromatin, both at the NE and inside the nucleus. Embryonic isoforms were also localized in clusters at the NE of oocytes. Our results suggest that XLAP2 isoforms participate in the maintenance and anchoring of chromatin domains to the NE and in the formation of lamin B microdomains.
Collapse
|
6
|
Schrand AM, Schlager JJ, Dai L, Hussain SM. Preparation of cells for assessing ultrastructural localization of nanoparticles with transmission electron microscopy. Nat Protoc 2010; 5:744-57. [PMID: 20360769 DOI: 10.1038/nprot.2010.2] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We describe the use of transmission electron microscopy (TEM) for cellular ultrastructural examination of nanoparticle (NP)-exposed biomaterials. Preparation and imaging of electron-transparent thin cell sections with TEM provides excellent spatial resolution (approximately 1 nm), which is required to track these elusive materials. This protocol provides a step-by-step method for the mass-basis dosing of cultured cells with NPs, and the process of fixing, dehydrating, staining, resin embedding, ultramicrotome sectioning and subsequently visualizing NP uptake and translocation to specific intracellular locations with TEM. In order to avoid potential artifacts, some technical challenges are addressed. Based on our results, this procedure can be used to elucidate the intracellular fate of NPs, facilitating the development of biosensors and therapeutics, and provide a critical component for understanding NP toxicity. This protocol takes approximately 1 week.
Collapse
Affiliation(s)
- Amanda M Schrand
- AFRL/711 HPW/RHPB, Wright-Patterson Air Force Base, Dayton, Ohio, USA
| | | | | | | |
Collapse
|
7
|
Kurth T, Berger J, Wilsch-Bräuninger M, Kretschmar S, Cerny R, Schwarz H, Löfberg J, Piendl T, Epperlein HH. Electron Microscopy of the Amphibian Model Systems Xenopus laevis and Ambystoma mexicanum. Methods Cell Biol 2010; 96:395-423. [DOI: 10.1016/s0091-679x(10)96017-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
8
|
Rotem A, Gruber R, Shorer H, Shaulov L, Klein E, Harel A. Importin beta regulates the seeding of chromatin with initiation sites for nuclear pore assembly. Mol Biol Cell 2009; 20:4031-42. [PMID: 19625448 DOI: 10.1091/mbc.e09-02-0150] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The nuclear envelope of higher eukaryotic cells reforms at the exit from mitosis, in concert with the assembly of nuclear pore complexes (NPCs). The first step in postmitotic NPC assembly involves the "seeding" of chromatin with ELYS and the Nup107-160 complex. Subsequent steps in the assembly process are poorly understood and different mechanistic models have been proposed to explain the formation of the full supramolecular structure. Here, we show that the initial step of chromatin seeding is negatively regulated by importin beta. Direct imaging of the chromatin attachment sites reveals single sites situated predominantly on the highest substructures of chromatin surface and lacking any sign of annular structures or oligomerized pre-NPCs. Surprisingly, the inhibition by importin beta is only partially reversed by RanGTP. Importin beta forms a high-molecular-weight complex with both ELYS and the Nup107-160 complex in cytosol. We suggest that initiation sites for NPC assembly contain single copies of chromatin-bound ELYS/Nup107-160 and that the lateral oligomerization of these subunits depends on the recruitment of membrane components. We predict that additional regulators, besides importin beta and Ran, may be involved in coordinating the initial seeding of chromatin with subsequent steps in the NPC assembly pathway.
Collapse
Affiliation(s)
- Asaf Rotem
- Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | | | | | | | | | | |
Collapse
|
9
|
Suh WH, Suslick KS, Stucky GD, Suh YH. Nanotechnology, nanotoxicology, and neuroscience. Prog Neurobiol 2009; 87:133-70. [PMID: 18926873 PMCID: PMC2728462 DOI: 10.1016/j.pneurobio.2008.09.009] [Citation(s) in RCA: 203] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Revised: 07/02/2008] [Accepted: 09/18/2008] [Indexed: 12/19/2022]
Abstract
Nanotechnology, which deals with features as small as a 1 billionth of a meter, began to enter into mainstream physical sciences and engineering some 20 years ago. Recent applications of nanoscience include the use of nanoscale materials in electronics, catalysis, and biomedical research. Among these applications, strong interest has been shown to biological processes such as blood coagulation control and multimodal bioimaging, which has brought about a new and exciting research field called nanobiotechnology. Biotechnology, which itself also dates back approximately 30 years, involves the manipulation of macroscopic biological systems such as cells and mice in order to understand why and how molecular level mechanisms affect specific biological functions, e.g., the role of APP (amyloid precursor protein) in Alzheimer's disease (AD). This review aims (1) to introduce key concepts and materials from nanotechnology to a non-physical sciences community; (2) to introduce several state-of-the-art examples of current nanotechnology that were either constructed for use in biological systems or that can, in time, be utilized for biomedical research; (3) to provide recent excerpts in nanotoxicology and multifunctional nanoparticle systems (MFNPSs); and (4) to propose areas in neuroscience that may benefit from research at the interface of neurobiologically important systems and nanostructured materials.
Collapse
Affiliation(s)
- Won Hyuk Suh
- Department of Chemistry and Biochemistry, Materials Department, University of California, Santa Barbara, CA 93106, USA
| | - Kenneth S. Suslick
- Department of Chemistry, School of Chemical Sciences, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL 61801, USA
| | - Galen D. Stucky
- Department of Chemistry and Biochemistry, Materials Department, University of California, Santa Barbara, CA 93106, USA
| | - Yoo-Hun Suh
- National Creative Research Initiative Center for Alzheimer’s Dementia, and Neuroscience Research Institute, Medical Research Center, Department of Pharmacology, College of Medicine, Seoul National University, 28 Yeongeon-dong, Jongno-gu 110-799,South Korea
| |
Collapse
|
10
|
Allen TD, Rutherford SA, Murray S, Gardiner F, Kiseleva E, Goldberg MW, Drummond SP. Visualization of the nucleus and nuclear envelope in situ by SEM in tissue culture cells. Nat Protoc 2008; 2:1180-4. [PMID: 17546013 DOI: 10.1038/nprot.2007.139] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Our previous work characterizing the biogenesis and structural integrity of the nuclear envelope and nuclear pore complexes (NPCs) has been based on amphibian material but has recently progressed into the analysis of tissue-culture cells. This protocol describes methods for the high resolution visualization, by field-emission scanning electron microscopy (FESEM), of the nucleus and associated structures in tissue culture cells. Imaging by fluorescence light microscopy shows general nuclear and NPC information at a resolution of approximately 200 nm, in contrast to the 3-5 nm resolution provided by FESEM or transmission electron microscopy (TEM), which generates detail at the macromolecular level. The protocols described here are applicable to all tissue culture cell lines tested to date (HeLa, A6, DLD, XTC and NIH 3T3). The processed cells can be stored long term under vacuum. The protocol can be completed in 5 d, including 3 d for cell growth, 1 d for processing and 1 d for imaging.
Collapse
Affiliation(s)
- T D Allen
- Paterson Institute for Cancer Research, University of Manchester, Wilmslow Road, Withington, Manchester M20 4BX, UK.
| | | | | | | | | | | | | |
Collapse
|
11
|
Allen TD, Rutherford SA, Murray S, Sanderson HS, Gardiner F, Kiseleva E, Goldberg MW, Drummond SP. Generation of cell-free extracts of Xenopus eggs and demembranated sperm chromatin for the assembly and isolation of in vitro-formed nuclei for Western blotting and scanning electron microscopy (SEM). Nat Protoc 2008; 2:1173-9. [PMID: 17546012 DOI: 10.1038/nprot.2007.138] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This protocol details methods for the generation of cell-free extracts and DNA templates from the eggs and sperm chromatin, respectively, of the clawed toad Xenopus laevis. We have used this system with scanning electron microscopy (SEM), as detailed herein, to analyze the biochemical requirements and structural pathways for the biogenesis of eukaryotic nuclear envelopes (NEs) and nuclear pore complexes (NPCs). This protocol requires access to female frogs, which are induced to lay eggs, and a male frog, which is killed for preparation of the sperm chromatin. Egg extracts should be prepared in 1 d and can be stored for many months at -80 degrees C. Demembranated sperm chromatin should take only approximately 2-3 h to prepare and can be stored at -80 degrees C almost indefinitely. The time required for assembly of structurally and functionally competent nuclei in vitro depends largely on the quality of the cell-free extracts and, therefore, must be determined for each extract preparation.
Collapse
Affiliation(s)
- T D Allen
- Paterson Institute for Cancer Research, University of Manchester, Wilmslow Road, Withington, Manchester M20 4BX, UK.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Murray S, Kiseleva E. A protocol for isolation and visualization of yeast nuclei by scanning electron microscopy. Methods Cell Biol 2008; 88:367-87. [PMID: 18617043 DOI: 10.1016/s0091-679x(08)00419-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
This article describes a protocol that details methods for the isolation of yeast nuclei from budding yeast (Saccharomyces cerevisiae) and fission yeast (Schizosaccharomyces pombe), immunogold labelling of proteins, and visualization by Field Emission Scanning Electron Microscopy (FESEM). This involves the removal of the yeast cell wall and isolation of the nucleus from within, followed by subsequent processing for high resolution microscopy. The nuclear isolation step is performed by enzymatic treatment of yeast cells to rupture the cell wall and generate spheroplasts (cells that have partially lost their cell wall and their characteristic shape), followed by isolation of nuclei by centrifugation. This protocol has been optimized for the visualization of the yeast nuclear envelope (NE), nuclear pore complexes (NPCs), and associated cytoskeletal structures. Samples, once processed for FESEM, can be stored under vacuum for weeks, allowing considerable time for image acquisition.
Collapse
Affiliation(s)
- Stephen Murray
- TEM Service Facility, Paterson Institute for Cancer Research, University of Manchester, Manchester M20 4BX, United Kingdom
| | | |
Collapse
|
13
|
Allen TD, Rutherford SA, Murray S, Drummond SP, Goldberg MW, Kiseleva E. Scanning electron microscopy of nuclear structure. Methods Cell Biol 2008; 88:389-409. [PMID: 18617044 DOI: 10.1016/s0091-679x(08)00420-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Accessing internal structure and retaining relative three dimensional (3D) organization within the nucleus has always proved difficult in the electron microscope. This is due to the overall size and largely fibrous nature of the contents, making large scale 3D reconstructions difficult from thin sections using transmission electron microscopy. This chapter brings together a number of methods developed for visualization of nuclear structure by scanning electron microscopy (SEM). These methods utilize the easily accessed high resolution available in field emission instruments. Surface imaging has proved particularly useful to date in studies of the nuclear envelope and pore complexes, and has also shown promise for internal nuclear organization, including the dynamic and radical reorganization of structure during cell division. Consequently, surface imaging in the SEM has the potential to make a significant contribution to our understanding of nuclear structure.
Collapse
Affiliation(s)
- Terence D Allen
- Department of Structural Cell Biology, Paterson Institute for Cancer Research, University of Manchester, Manchester M20 4BX, United Kingdom
| | | | | | | | | | | |
Collapse
|
14
|
Kiseleva E, Allen TD, Rutherford SA, Murray S, Morozova K, Gardiner F, Goldberg MW, Drummond SP. A protocol for isolation and visualization of yeast nuclei by scanning electron microscopy (SEM). Nat Protoc 2007; 2:1943-53. [PMID: 17703206 DOI: 10.1038/nprot.2007.251] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This protocol details methods for the isolation of yeast nuclei from budding yeast (Saccharomyces cerevisiae) and fission yeast (Schizosaccharomyces pombe), immuno-gold labeling of proteins and visualization by field emission scanning electron microscopy (FESEM). This involves the removal of the yeast cell wall and isolation of the nucleus from within, followed by subsequent processing for high-resolution microscopy. The nuclear isolation step can be performed in two ways: enzymatic treatment of yeast cells to rupture the cell wall and generate spheroplasts (cells that have partially lost their cell wall and their characteristic shape), followed by isolation of the nuclei by centrifugation or homogenization; and whole cell freezing followed by manual cell rupture and centrifugation. This protocol has been optimized for the visualization of the yeast nuclear envelope (NE), nuclear pore complexes (NPCs) and associated cyto-skeletal structures. Samples once processed for FESEM can be stored under vacuum for weeks, allowing considerable time for image acquisition.
Collapse
Affiliation(s)
- Elena Kiseleva
- Institute of Cytology and Genetics, Russian Academy of Science, Novosibirsk, Russia.
| | | | | | | | | | | | | | | |
Collapse
|