1
|
Cole L, Kurscheid S, Nekrasov M, Domaschenz R, Vera DL, Dennis JH, Tremethick DJ. Multiple roles of H2A.Z in regulating promoter chromatin architecture in human cells. Nat Commun 2021; 12:2524. [PMID: 33953180 PMCID: PMC8100287 DOI: 10.1038/s41467-021-22688-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 03/25/2021] [Indexed: 01/02/2023] Open
Abstract
Chromatin accessibility of a promoter is fundamental in regulating transcriptional activity. The histone variant H2A.Z has been shown to contribute to this regulation, but its role has remained poorly understood. Here, we prepare high-depth maps of the position and accessibility of H2A.Z-containing nucleosomes for all human Pol II promoters in epithelial, mesenchymal and isogenic cancer cell lines. We find that, in contrast to the prevailing model, many different types of active and inactive promoter structures are observed that differ in their nucleosome organization and sensitivity to MNase digestion. Key aspects of an active chromatin structure include positioned H2A.Z MNase resistant nucleosomes upstream or downstream of the TSS, and a MNase sensitive nucleosome at the TSS. Furthermore, the loss of H2A.Z leads to a dramatic increase in the accessibility of transcription factor binding sites. Collectively, these results suggest that H2A.Z has multiple and distinct roles in regulating gene expression dependent upon its location in a promoter.
Collapse
Affiliation(s)
- Lauren Cole
- College of Arts and Sciences, Department of Biological Sciences, Florida State University, Tallahassee, FL, USA
| | - Sebastian Kurscheid
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Maxim Nekrasov
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Renae Domaschenz
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Daniel L Vera
- College of Arts and Sciences, Department of Biological Sciences, Florida State University, Tallahassee, FL, USA
- Department of Genetics, Blavatnik Institute, Paul F. Glenn Center for Biology of Aging Research, Harvard Medical School, Boston, MA, USA
| | - Jonathan H Dennis
- College of Arts and Sciences, Department of Biological Sciences, Florida State University, Tallahassee, FL, USA.
| | - David J Tremethick
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australia.
| |
Collapse
|
2
|
Park SK, Hwang BJ, Kee Y. Promoter cross-talk affects the inducible expression of intronic shRNAs from the tetracycline response element. Genes Genomics 2019; 41:483-490. [PMID: 30656518 DOI: 10.1007/s13258-019-00784-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 01/03/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND RNA interference (RNAi), defined as double-stranded, RNA-mediated gene silencing, is a useful tool for functional genomic studies. Along with increasing information about genomic sequences due to the innovative development of genome-sequencing technologies, functional genomic technologies are needed to annotate the genome and determine the processes by which each gene is regulated. Lentiviral vectors have been used to efficiently deliver reagents, such as small interfering RNAs (siRNAs) and short hairpin RNAs (shRNAs), into cells and tissues for functional genomic analyses. OBJECTIVE We developed a lentiviral vector that efficiently expresses intronic shRNA from the tetracycline regulatory element (TRE) promoter in a doxycycline-dependent manner. METHODS We developed a lentiviral vector system that contains reverse tetracycline-controlled transactivator 3 (rtTA3) and the TRE promoter, which are necessary for the doxycycline-inducible expression of shRNAs that are expressed as intronic miR-30a precursors. We then measured the cross-talk between the cytomegalovirus (CMV) and TRE promoters in the vector. RESULTS We found that nearby promoters influence each other and that the TRE promoter should be located far from other promoters, such as the CMV promoter, in a vector. The orientation of a promoter with respect to other promoters also influences its transcriptional activity. A head-to-head orientation of the CMV and TRE promoters maintains the lowest level of transcription from TRE in the absence of doxycycline, compared to the tail-to-tail and head-to-tail orientations. CONCLUSION Based on these findings, we were able to construct a lentiviral vector that faithfully expresses intronic miR-30a shRNA precursors in a doxycycline-inducible manner.
Collapse
Affiliation(s)
- Seong Kyun Park
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon, Kangwon-do, Republic of Korea
| | - Byung Joon Hwang
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon, Kangwon-do, Republic of Korea
| | - Yun Kee
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, Kangwon-do, Republic of Korea.
| |
Collapse
|
3
|
Lo CA, Greben AW, Chen BE. Generating stable cell lines with quantifiable protein production using CRISPR/Cas9-mediated knock-in. Biotechniques 2017; 62:165-174. [DOI: 10.2144/000114534] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 02/17/2017] [Indexed: 11/23/2022] Open
Abstract
Cell lines expressing foreign genes have been widely used to produce a variety of recombinant proteins. However, generating recombinant protein–expressing cell lines is usually a lengthy process and the resulting protein expression levels are often inconsistent. Here, we describe an efficient method for making stable cell lines expressing any recombinant protein of interest in a controllable and quantifiable manner. We integrate transgenes into specific genomic loci using CRISPR/Cas9 such that transgene expression is driven by endogenous promoters to ensure consistent and predictable expression of the recombinant protein. Expression levels can be predetermined by selecting promoters from genes with the desired level of expression. To quantify recombinant protein expression, a protein quantitation reporter (PQR) is incorporated between the endogenous and foreign genes. The PQR allows equimolar production of the endogenous protein, the recombinant protein, and a fluorescent reporter. As a result, expression levels of both the endogenous and recombinant proteins can be continuously monitored using fluorescence.
Collapse
Affiliation(s)
- Chiu-An Lo
- Centre for Research in Neuroscience, Research Institute of the McGill University Health Centre
- Departments of Medicine and Neurology and Neurosurgery, McGill University, Montréal, Quebec, Canada
| | - Alexander W. Greben
- Centre for Research in Neuroscience, Research Institute of the McGill University Health Centre
- Departments of Medicine and Neurology and Neurosurgery, McGill University, Montréal, Quebec, Canada
| | - Brian Edwin Chen
- Centre for Research in Neuroscience, Research Institute of the McGill University Health Centre
- Departments of Medicine and Neurology and Neurosurgery, McGill University, Montréal, Quebec, Canada
| |
Collapse
|
4
|
Chen L, Dahlstrom JE, Lee SH, Rangasamy D. Naturally occurring endo-siRNA silences LINE-1 retrotransposons in human cells through DNA methylation. Epigenetics 2014; 7:758-71. [DOI: 10.4161/epi.20706] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
5
|
Wall BA, Wangari-Talbot J, Shin SS, Schiff D, Sierra J, Yu LJ, Khan A, Haffty B, Goydos JS, Chen S. Disruption of GRM1-mediated signalling using riluzole results in DNA damage in melanoma cells. Pigment Cell Melanoma Res 2014; 27:263-74. [PMID: 24330389 DOI: 10.1111/pcmr.12207] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 11/26/2013] [Indexed: 12/17/2022]
Abstract
Gain of function of the neuronal receptor, metabotropic glutamate receptor 1 (Grm1), was sufficient to induce melanocytic transformation in vitro and spontaneous melanoma development in vivo when ectopically expressed in melanocytes. The human form of this receptor, GRM1, has been shown to be ectopically expressed in a subset of human melanomas but not benign nevi or normal melanocytes, suggesting that misregulation of GRM1 is involved in the pathogenesis of certain human melanomas. Sustained stimulation of Grm1 by the ligand, glutamate, is required for the maintenance of transformed phenotypes in vitro and tumorigenicity in vivo. In this study, we investigate the mechanism of an inhibitor of glutamate release, riluzole, on human melanoma cells that express metabotropic glutamate receptor 1 (GRM1). Various in vitro assays conducted show that inhibition of glutamate release in several human melanoma cell lines resulted in an increase of oxidative stress and DNA damage response markers.
Collapse
Affiliation(s)
- Brian A Wall
- Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA; Joint Graduate Program of Toxicology, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
Since the first application of RNA interference (RNAi) in mammalian cells, the expression of short hairpin RNAs (shRNAs) for targeted gene silencing has become a benchmark technology. Using plasmid and viral vectoring systems, the transcription of shRNA precursors that are effectively processed by the RNAi pathway can lead to potent gene knockdown. The past decade has seen continual advancement and improvement to the various strategies that can be used for shRNA delivery, and the use of shRNAs for clinical applications is well underway. Driving these developments has been the many benefits afforded by shRNA technologies, including the stable integration of expression constructs for long-term expression, infection of difficult-to-target cell lines and tissues using viral vectors, and the temporal control of shRNA transcription by inducible promoters. The use of different effector molecule formats, promoters, and vector types, has meant that experiments can be tailored to target specific cell types and minimize cellular toxicities. Through the application of combinatorial RNAi (co-RNAi), multiple shRNA delivery strategies can improve gene knockdown, permit multiple transcripts to be targeted simultaneously, and curtail the emergence of viral escape mutants. This chapter reviews the history, cellular processing, and various applications of shRNAs in mammalian systems, including options for effector molecule design, vector and promoter types, and methods for multiple shRNA delivery.
Collapse
Affiliation(s)
- Luke S Lambeth
- Murdoch Childrens Research Institute, Royal Childrens Hospital, Melbourne, VIC, Australia.
| | | |
Collapse
|
7
|
Embedding siRNA sequences targeting apolipoprotein B100 in shRNA and miRNA scaffolds results in differential processing and in vivo efficacy. Mol Ther 2012; 21:217-27. [PMID: 23089734 PMCID: PMC3538299 DOI: 10.1038/mt.2012.160] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Overexpression of short hairpin RNA (shRNA) often causes cytotoxicity and using microRNA (miRNA) scaffolds can circumvent this problem. In this study, identically predicted small interfering RNA (siRNA) sequences targeting apolipoprotein B100 (siApoB) were embedded in shRNA (shApoB) or miRNA (miApoB) scaffolds and a direct comparison of the processing and long-term in vivo efficacy was performed. Next generation sequencing of small RNAs originating from shApoB- or miApoB-transfected cells revealed substantial differences in processing, resulting in different siApoB length, 5' and 3' cleavage sites and abundance of the guide or passenger strands. Murine liver transduction with adeno-associated virus (AAV) vectors expressing shApoB or miApoB resulted in high levels of siApoB expression associated with strong decrease of plasma ApoB protein and cholesterol. Expression of miApoB from the liver-specific LP1 promoter was restricted to the liver, while the H1 promoter-expressed shApoB was ectopically present. Delivery of 1 × 10(11) genome copies AAV-shApoB or AAV-miApoB led to a gradual loss of ApoB and plasma cholesterol inhibition, which was circumvented by delivering a 20-fold lower vector dose. In conclusion, incorporating identical siRNA sequences in shRNA or miRNA scaffolds results in differential processing patterns and in vivo efficacy that may have serious consequences for future RNAi-based therapeutics.
Collapse
|
8
|
Wangari-Talbot J, Wall BA, Goydos JS, Chen S. Functional effects of GRM1 suppression in human melanoma cells. Mol Cancer Res 2012; 10:1440-50. [PMID: 22798429 DOI: 10.1158/1541-7786.mcr-12-0158] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ectopic expression of a neuronal receptor, metabotropic glutamate receptor 1 (Grm1), in melanocytes has been implicated in melanoma development in mouse models. The human relevance of this receptor's involvement in melanoma pathogenesis was shown by detecting GRM1 expression in subsets of human melanomas, an observation lacking in benign nevi or normal melanocytes. Grm1-transformed mouse melanocytes and a conditional Grm1 transgenic mouse model confirmed a requirement for sustained expression of Grm1 for the maintenance of transformed phenotypes in vitro and tumorigenicity in vivo. Here, we investigate if continued GRM1 expression is also required in human melanoma cell lines by using two inducible, silencing RNA systems: the ecdysone/Ponasterone A and tetracycline on/off approaches to regulate GRM1 expression in the presence of each inducer. Various in vitro assays were conducted to assess the consequences of a reduction in GRM1 expression on cell proliferation, apoptosis, downstream targeted signaling pathways, and in vivo tumorigenesis. We showed that suppression of GRM1 expression in several human melanoma cell lines resulted in a reduction in the number of viable cells and a decrease in stimulated mitogen-activated protein kinase (MAPK) and PI3K/AKT and suppressed tumor progression in vivo. These results reinforce earlier observations where a reduction in cell growth in vitro and tumorigenesis in vivo were correlated with decreased GRM1 activities by pharmacologic inhibitors of the receptor, supporting the notion that GRM1 plays a role in the maintenance of transformed phenotypes in human melanoma cells in vitro and in vivo and could be a potential therapeutic target for the treatment of melanoma.
Collapse
Affiliation(s)
- Janet Wangari-Talbot
- Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, USA
| | | | | | | |
Collapse
|
9
|
Bao B, Rodriguez-Melendez R, Zempleni J. Cytosine methylation in miR-153 gene promoters increases the expression of holocarboxylase synthetase, thereby increasing the abundance of histone H4 biotinylation marks in HEK-293 human kidney cells. J Nutr Biochem 2011; 23:635-9. [PMID: 21764280 DOI: 10.1016/j.jnutbio.2011.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 02/27/2011] [Accepted: 03/08/2011] [Indexed: 12/11/2022]
Abstract
Holocarboxylase synthetase (HCS) plays an essential role in catalyzing the biotinylation of carboxylases and histones. Biotinylated carboxylases are important for the metabolism of glucose, lipids and leucine; biotinylation of histones plays important roles in gene regulation and genome stability. Recently, we reported that HCS activity is partly regulated by subcellular translocation events and by miR-539. Here we tested the hypothesis that the HCS 3'-untranslated region (3'-UTR) contains binding sites for miR other than miR-539. A binding site for miR-153 was predicted to reside in the HCS 3'-UTR by using in silico analyses. When miR-153 site was overexpressed in transgenic HEK-293 human embryonic kidney cells, the abundance of HCS mRNA decreased by 77% compared with controls. In silico analyses also predicted three putative cytosine methylation sites in two miR-153 genes; the existence of these sites was confirmed by methylation-sensitive polymerase chain reaction. When cytosines were demethylated by treatment with 5-aza-2'-deoxycytidine, the abundance of miR-153 increased by more than 25 times compared with untreated controls, and this increase coincided with low levels of HCS and histone biotinylation. Together, this study provides novel insights into the mechanisms of novel epigenetic synergies among folate-dependent methylation events, miR and histone biotinylation.
Collapse
Affiliation(s)
- Baolong Bao
- Department of Nutrition and Health Sciences, University of Nebraska at Lincoln, Lincoln, NE 68583, USA
| | | | | |
Collapse
|
10
|
Zhong XY, Yoshioka A, Mashio Y, Ikeda T, Jiang H, Touma M, Wu Q, Wang C, Sugimoto K. Effect of vegf gene knockdown on growth of the murine sarcoma cell line MS-K. Genes Cells 2011; 16:625-38. [PMID: 21501344 DOI: 10.1111/j.1365-2443.2011.01513.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The murine sarcoma cell line MS-K was previously established as a Ki-ras-positive cell line. Inoculation of this cell line under the flank of C3H/HeN mice results in the growth of large tumors with well-developed blood vessels within day 30 of transplantation without any metastasis because MS-K cells produce vascular endothelial growth factor (VEGF). To elucidate the role of VEGF in tumor formation in vivo, stable vegf-knockdown-MS-K clones were obtained using plasmid-based knockdown vectors. Interestingly, tumorigenesis was completely suppressed in a vegf-A-knockdown-MS-K clone [designated MS-K (A-KD)]. Proliferation and colony formation capacity of the MS-K (A-KD) cells in a semi-solid medium under low serum conditions was significantly lower than that of control MS-K (SCR) cells; however, the expression of vegf-receptor 1 (vegf-r-1) was not changed. Addition of the recombinant VEGF-A(165) partially restored the colony formation capacity of MS-K (A-KD) cells and caused the phosphorylation of VEGF-r-1 (Flt-1) in MS-K (Normal) cells. Furthermore, tumorigenicity of the vegf-r-1-knockdown-MS-K clone [designated MS-K (R1-KD)] had obviously delayed or strongly suppressed compared with the MS-K (Normal). These results indicate that Vascular endothelial growth factor-A, produced from MS-K, acts as a growth factor for MS-K cells itself and supports tumor formation in vivo by inducing the blood vessel formation.
Collapse
Affiliation(s)
- Xiu Y Zhong
- Department of Cell Science, Faculty of Graduate School of Science and Technology, Niigata University, Nishi-ku, Niigata 950-2181, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Ouyang X, Chen JK. Synthetic strategies for studying embryonic development. ACTA ACUST UNITED AC 2010; 17:590-606. [PMID: 20609409 DOI: 10.1016/j.chembiol.2010.04.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 04/12/2010] [Accepted: 04/15/2010] [Indexed: 02/08/2023]
Abstract
Developmental biology has evolved from a descriptive science to one based on genetic principles and molecular mechanisms. Although molecular biology and genetic technologies have been the primary drivers of this transformation, synthetic strategies have been increasingly utilized to interrogate the mechanisms of embryonic patterning with spatial and temporal precision. In this review, we survey how chemical tools and engineered proteins have been used to perturb developmental processes at the DNA, RNA, protein, and cellular levels. We discuss the design principles, experimental capabilities, and limitations of each method, as well as future challenges for the chemical and developmental biology communities.
Collapse
Affiliation(s)
- Xiaohu Ouyang
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | |
Collapse
|
12
|
Bao B, Rodriguez-Melendez R, Wijeratne SSK, Zempleni J. Biotin regulates the expression of holocarboxylase synthetase in the miR-539 pathway in HEK-293 cells. J Nutr 2010; 140:1546-51. [PMID: 20592104 PMCID: PMC2924595 DOI: 10.3945/jn.110.126359] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Holocarboxylase synthetase (HCS) catalyzes the covalent binding of biotin to carboxylases and histones. In mammals, the expression of HCS depends on biotin, but the mechanism of regulation is unknown. Here we tested the hypothesis that microRNA (miR) plays a role in the regulation of the HCS gene. Human embryonic kidney cells were used as the primary model, but cell lines from other tissues and primary human cells were also tested. In silico searches revealed an evolutionary conserved binding site for miR-539 in the 3 prime -untranslated region (3 prime -UTR) of HCS mRNA. Transgenic cells and reporter gene constructs were used to demonstrate that miR-539 decreases the expression of HCS at the level of transcription rather than translation; these findings were corroborated in nontransgenic cells. When miR-539 was overexpressed in transgenic cells, the abundance of both HCS and biotinylated histones decreased. The abundance of miR-539 was tissue dependent: fibroblasts gt kidney cells gt intestinal cells gt lymphoid cells. Dose-response studies revealed that the abundance of miR-539 was significantly higher at physiological concentrations of biotin than both biotin-deficient and biotin-supplemented media in all cell lines tested. In kidney cells, the expression of HCS was lower in cells in physiological medium than in deficient and supplemented medium. In contrast, in fibroblasts, lymphoid cells, and intestinal cells, there was no apparent link between miR-539 abundance and HCS expression, suggesting that factors other than miR-539 also contribute to the regulation of HCS expression in some tissues. Collectively, the results of this study suggest that miR-539 is among the factors sensing biotin and regulating HCS.
Collapse
|
13
|
Spindler KD, Hönl C, Tremmel C, Braun S, Ruff H, Spindler-Barth M. Ecdysteroid hormone action. Cell Mol Life Sci 2009; 66:3837-50. [PMID: 19669094 PMCID: PMC11115491 DOI: 10.1007/s00018-009-0112-5] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 07/16/2009] [Accepted: 07/16/2009] [Indexed: 01/05/2023]
Abstract
Several reviews devoted to various aspects of ecdysone research have been published during the last few years. Therefore, this article concentrates mainly on the considerable progress in ecdysone research observed recently, and will cover the results obtained during the last 2 years. The main emphasis is put on the molecular mode of ecdysteroid receptor-mediated hormone action. Two examples of interaction with other hormonal signalling pathways are described, namely crosstalk with juvenile hormone and insulin. Some selected, recently investigated examples of the multitude of hormonal responses are described. Finally, ecological aspects and some practical applications are discussed.
Collapse
Affiliation(s)
- Klaus-Dieter Spindler
- Institute of General Zoology and Endocrinology, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| | | | | | | | | | | |
Collapse
|
14
|
Abstract
RNA interference (RNAi) is an ancient defensive mechanism in eukaryotes to control gene expressing and defend their genomes from foreign invaders. It refers to the phenomenon that double-stranded RNA results in the sequence-specific silencing of target gene expression. Although it was documented in a relatively short time ago, intensive research has facilitated making its mechanism clear. Researchers have found that it was a powerful tool for analyzing the functions of genes and treating tumors, infectious diseases and genetic abnormalities that are associated with a dominant gene defect. However, delivery in vivo, low blood stability and poor intracellular uptake present significant challenges for the development of RNAi reagents in clinical use. Thus, long-term inducible RNAi was designed. There are hundreds of millions of hepatitis B virus (HBV) carriers in the world at present, a portion of whom will lose their lives after several years due to chronic complications such as cirrhosis, hepatocellular carcinomas or both. Although a preventive vaccine is now available, the present therapeutic options for chronically infected patients are limited and of low efficiency. Admittedly, to date most RNAi experiments have been done in vitro, but it is hoped that they may be developed into a therapeutic strategy for HBV in the near future. In this article the principles and construction of long-term RNA are discussed. Its therapeutic potentiality and attention to the potential hazards will also outlined. We conclude that this ancient defensive mechanism can be recruited as a powerful weapon in the fight against HBV.
Collapse
Affiliation(s)
- Jin Shui Pan
- Department of Gastroenterology, Zhongshan Hospital Xiamen University, Xiamen, China
| | | | | |
Collapse
|
15
|
Lee SK, Kumar P. Conditional RNAi: towards a silent gene therapy. Adv Drug Deliv Rev 2009; 61:650-64. [PMID: 19394374 DOI: 10.1016/j.addr.2009.03.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Accepted: 03/19/2009] [Indexed: 11/28/2022]
Abstract
RNA interference (RNAi) has the potential to permit the downregulation of virtually any gene. While transgenic RNAi enables stable propagation of the resulting phenotype to progeny, the dominant nature of RNAi limits its use to applications where the continued suppression of gene expression does not disturb normal cell functioning. This is of particular importance when the target gene product is essential for cell survival, development or differentiation. It is therefore desirable that knockdown be externally regulatable. This review is aimed at providing an overview of the approaches for conditional RNAi in mammalian systems, with a special mention of studies employing these approaches to target therapeutically/biologically relevant molecules, their advantages and disadvantages, and a pointer towards approaches best suited for RNAi-based gene therapy.
Collapse
Affiliation(s)
- Sang-Kyung Lee
- Department of Bioengineering, Hanyang University, Seoul 133-797, South Korea
| | | |
Collapse
|
16
|
A novel short hairpin RNA (shRNA) expression system promotes Sox9-dependent gene silencing. Plasmid 2009; 62:50-5. [PMID: 19389425 DOI: 10.1016/j.plasmid.2009.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Revised: 04/06/2009] [Accepted: 04/08/2009] [Indexed: 11/23/2022]
Abstract
Cartilage development and function are dependent on a temporally integrated program of gene expression. With the advent of RNA interference (RNAi), artificial control of these complex programs becomes a possibility, limited only by the ability to regulate and express the RNAi. Using existing methods for production of RNAi's, we have constructed a plasmid-based short hairpin RNA (shRNA) expression system under control of the human pol III H1 promoter and supplemented this promoter with DNA binding sites for the cartilage-specific transcription factor Sox9. The resulting shRNA expression system displays robust, Sox9-dependent gene silencing. Dependence on Sox9 expression was confirmed by electrophoretic mobility shift assays. The ability of the system to regulate heterologously expressed Sox9 was demonstrated by Western blot, as a function of both Sox9 to shRNA ratio, as well as time from transfection. This novel expression system supports auto-regulatory gene silencing, providing a tissue-specific feedback mechanism for temporal control of gene expression. Its applications for both basic mechanistic studies and therapeutic purposes should facilitate the design and implementation of innovative tissue engineering strategies.
Collapse
|