1
|
Sridhara Setty PB, SM G. Tumor regression efficacy of Punica granatum L leaf extract against K562 leukemia cancer cells. Bioinformation 2023; 19:536-539. [PMID: 37886154 PMCID: PMC10599682 DOI: 10.6026/97320630019536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/31/2023] [Accepted: 05/31/2023] [Indexed: 10/28/2023] Open
Abstract
It is of interest to describe the extraction and isolation of ethyl heneicosanoate (EHO) from Punica granatum. L plant leaves. Further, the structure of isolated molecule, EHO was confirmed through various spectroscopic tools viz., infrared (FT-IR), proton NMR and mass spectroscopy. The tumor regression potential of EHO was evaluated against K562 leukemia cancer cells. A significant reduction in the viability and metabolic activity was obtained in vitro for K562 cell lines when treated with EHO molecule. Further, the results depicted that the activities of EHO is directly related to the alkyl chain length. The xenograft model of mice illustrated a lower propensity of tumor growth in the group receiving EHO molecule, compared with the group receiving Bortezomib (positive control). The obtained results suggest that the animals treated with Bortezomib showed a tumor growth inhibition up to 77.51 ± 3.74 whereas, the EHO showed the inhibition up to 23.37 ± 25.44 and 40.64 ± 16.45 % at 200 mg/kg and 400 mg/kg respectively. Moreover, the results indicate that the activity of EHO in the induction of apoptosis in induced leukemia cancer.
Collapse
Affiliation(s)
| | - Gopinath SM
- Department of Studies in Biotechnology, Davangere University, Davangere - 577 007, Karnataka, India
| |
Collapse
|
2
|
Yuan H, Yuan W, Duan S, Jiao K, Zhang Q, Lim EG, Chen M, Zhao C, Pan P, Liu X, Song P. Microfluidic-Assisted Caenorhabditis elegans Sorting: Current Status and Future Prospects. CYBORG AND BIONIC SYSTEMS 2023; 4:0011. [PMID: 37287459 PMCID: PMC10243201 DOI: 10.34133/cbsystems.0011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/15/2023] [Indexed: 07/30/2023] Open
Abstract
Caenorhabditis elegans (C. elegans) has been a popular model organism for several decades since its first discovery of the huge research potential for modeling human diseases and genetics. Sorting is an important means of providing stage- or age-synchronized worm populations for many worm-based bioassays. However, conventional manual techniques for C. elegans sorting are tedious and inefficient, and commercial complex object parametric analyzer and sorter is too expensive and bulky for most laboratories. Recently, the development of lab-on-a-chip (microfluidics) technology has greatly facilitated C. elegans studies where large numbers of synchronized worm populations are required and advances of new designs, mechanisms, and automation algorithms. Most previous reviews have focused on the development of microfluidic devices but lacked the summaries and discussion of the biological research demands of C. elegans, and are hard to read for worm researchers. We aim to comprehensively review the up-to-date microfluidic-assisted C. elegans sorting developments from several angles to suit different background researchers, i.e., biologists and engineers. First, we highlighted the microfluidic C. elegans sorting devices' advantages and limitations compared to the conventional commercialized worm sorting tools. Second, to benefit the engineers, we reviewed the current devices from the perspectives of active or passive sorting, sorting strategies, target populations, and sorting criteria. Third, to benefit the biologists, we reviewed the contributions of sorting to biological research. We expect, by providing this comprehensive review, that each researcher from this multidisciplinary community can effectively find the needed information and, in turn, facilitate future research.
Collapse
Affiliation(s)
- Hang Yuan
- School of Advanced Technology,
Xi'an Jiaotong - Liverpool University, Suzhou, China
| | - Wenwen Yuan
- School of Advanced Technology,
Xi'an Jiaotong - Liverpool University, Suzhou, China
- Department of Electrical and Electronic Engineering,
University of Liverpool, Liverpool, UK
| | - Sixuan Duan
- School of Advanced Technology,
Xi'an Jiaotong - Liverpool University, Suzhou, China
- Department of Electrical and Electronic Engineering,
University of Liverpool, Liverpool, UK
| | - Keran Jiao
- School of Advanced Technology,
Xi'an Jiaotong - Liverpool University, Suzhou, China
- Department of Chemistry,
Xi’an Jiaotong-Liverpool University, Suzhou, China
| | - Quan Zhang
- School of Advanced Technology,
Xi'an Jiaotong - Liverpool University, Suzhou, China
| | - Eng Gee Lim
- School of Advanced Technology,
Xi'an Jiaotong - Liverpool University, Suzhou, China
- Department of Electrical and Electronic Engineering,
University of Liverpool, Liverpool, UK
| | - Min Chen
- School of Advanced Technology,
Xi'an Jiaotong - Liverpool University, Suzhou, China
- Department of Electrical and Electronic Engineering,
University of Liverpool, Liverpool, UK
| | - Chun Zhao
- School of Advanced Technology,
Xi'an Jiaotong - Liverpool University, Suzhou, China
- Department of Electrical and Electronic Engineering,
University of Liverpool, Liverpool, UK
| | - Peng Pan
- Department of Mechanical & Industrial Engineering,
University of Toronto, Toronto, Canada
| | - Xinyu Liu
- Department of Mechanical & Industrial Engineering,
University of Toronto, Toronto, Canada
| | - Pengfei Song
- School of Advanced Technology,
Xi'an Jiaotong - Liverpool University, Suzhou, China
- Department of Electrical and Electronic Engineering,
University of Liverpool, Liverpool, UK
| |
Collapse
|
3
|
Lange KI, Best S, Tsiropoulou S, Berry I, Johnson CA, Blacque OE. Interpreting ciliopathy-associated missense variants of uncertain significance (VUS) in Caenorhabditis elegans. Hum Mol Genet 2022; 31:1574-1587. [PMID: 34964473 PMCID: PMC9122650 DOI: 10.1093/hmg/ddab344] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 12/26/2022] Open
Abstract
Better methods are required to interpret the pathogenicity of disease-associated variants of uncertain significance (VUS), which cannot be actioned clinically. In this study, we explore the use of an animal model (Caenorhabditis elegans) for in vivo interpretation of missense VUS alleles of TMEM67, a cilia gene associated with ciliopathies. CRISPR/Cas9 gene editing was used to generate homozygous knock-in C. elegans worm strains carrying TMEM67 patient variants engineered into the orthologous gene (mks-3). Quantitative phenotypic assays of sensory cilia structure and function (neuronal dye filling, roaming and chemotaxis assays) measured how the variants impacted mks-3 gene function. Effects of the variants on mks-3 function were further investigated by looking at MKS-3::GFP localization and cilia ultrastructure. The quantitative assays in C. elegans accurately distinguished between known benign (Asp359Glu, Thr360Ala) and known pathogenic (Glu361Ter, Gln376Pro) variants. Analysis of eight missense VUS generated evidence that three are benign (Cys173Arg, Thr176Ile and Gly979Arg) and five are pathogenic (Cys170Tyr, His782Arg, Gly786Glu, His790Arg and Ser961Tyr). Results from worms were validated by a genetic complementation assay in a human TMEM67 knock-out hTERT-RPE1 cell line that tests a TMEM67 signalling function. We conclude that efficient genome editing and quantitative functional assays in C. elegans make it a tractable in vivo animal model for rapid, cost-effective interpretation of ciliopathy-associated missense VUS alleles.
Collapse
Affiliation(s)
- Karen I Lange
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Sunayna Best
- Division of Molecular Medicine, Leeds Institute of Medical Research, University of Leeds, Leeds, West Yorkshire, UK
| | - Sofia Tsiropoulou
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Ian Berry
- Bristol Genetics Laboratory, Pathology Sciences, Southmead Hospital, Bristol BS10 5NB, UK
| | - Colin A Johnson
- Division of Molecular Medicine, Leeds Institute of Medical Research, University of Leeds, Leeds, West Yorkshire, UK
| | - Oliver E Blacque
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
4
|
Russell JC, Postupna N, Golubeva A, Keene CD, Kaeberlein M. Purification and Analysis of Caenorhabditis elegans Extracellular Vesicles. J Vis Exp 2020:10.3791/60596. [PMID: 32310227 PMCID: PMC7476359 DOI: 10.3791/60596] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The secretion of small membrane-bound vesicles into the external environment is a fundamental physiological process of all cells. These extracellular vesicles (EVs) function outside the cell to regulate global physiological processes by transferring proteins, nucleic acids, metabolites, and lipids between tissues. EVs reflect the physiological state of their cells of origin. EVs are implicated to have fundamental roles in virtually every aspect of human health. Thus, EV protein and genetic cargos are being increasingly analyzed for biomarkers of health and disease. However, the EV field still lacks a tractable invertebrate model system that permits the study of EV cargo composition. C. elegans is well suited for EV research because it actively secretes EVs outside of its body into its external environment, permitting facile isolation. This article provides all the necessary information for generating, purifying, and quantifying these environmentally secreted C. elegans EVs including how to work quantitatively with very large populations of age-synchronized worms, purifying EVs, and a flow cytometry protocol that directly measures the number of intact EVs in the purified sample. Thus, the large library of genetic reagents available for C. elegans research can be tapped into for investigating the impacts of genetic pathways and physiological processes on EV cargo composition.
Collapse
Affiliation(s)
| | | | | | - C Dirk Keene
- Department of Pathology, University of Washington
| | | |
Collapse
|
5
|
Kim M, Jeong J, Kim H, Choi J. High-throughput COPAS assay for screening of developmental and reproductive toxicity of nanoparticles using the nematode Caenorhabditis elegans. J Appl Toxicol 2019; 39:1470-1479. [PMID: 31287177 DOI: 10.1002/jat.3833] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 12/25/2022]
Abstract
With the rapid advancement and numerous applications of engineered nanomaterials (ENMs) in science and technology, their effects on animal health, environment and safety should be considered carefully. However, quick assessment of their effects on developmental and reproductive health and an understanding of how they cause such adverse toxic effects remain challenging, because of the fast-growing number of ENMs and the limitations of the different toxicity assays currently in use as well as lack of suitable animal model systems. In this study, we performed a high-throughput complex object parametric analyzer and sorter (COPAS) assay for assessing the developmental and reproductive toxicity of ENMs using Caenorhabditis elegans and provide descriptions of the data and their subsequent analysis. The results showed significant reproductive and developmental toxicity potential of different ENMs. We assessed the usefulness of this method in terms of error-free data, user-friendliness and results being consistent with those of visual, molecular and cellular studies. Moreover, the COPAS Biosort system could be used on a larger scale to screen thousands of chemicals, drugs, pharmaceuticals and ENMs. This study also indicates that the COPAS-based high-throughput screening system is highly reliable for the assessment of toxicity and health risks of NMs.
Collapse
Affiliation(s)
- MinA Kim
- School of Environmental Engineering, University of Seoul, Dongdaemun-gu, Seoul, South Korea
| | - Jaeseong Jeong
- School of Environmental Engineering, University of Seoul, Dongdaemun-gu, Seoul, South Korea
| | - Heejin Kim
- School of Environmental Engineering, University of Seoul, Dongdaemun-gu, Seoul, South Korea
| | - Jinhee Choi
- School of Environmental Engineering, University of Seoul, Dongdaemun-gu, Seoul, South Korea
| |
Collapse
|
6
|
Josende ME, Nunes SM, Müller L, Ferreira-Cravo M, Monserrat JM, Ventura-Lima J. Circular Estimate Method (CEM) - a Simple Method to Estimate Caenorhabditis elegans Culture Densities in Liquid Medium. Biol Proced Online 2019; 21:1. [PMID: 30675134 PMCID: PMC6334471 DOI: 10.1186/s12575-018-0089-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 12/28/2018] [Indexed: 11/10/2022] Open
Abstract
Background Nematodes are used in many different fields of science, including environmental and biomedical research. Counting and/or estimating nematode numbers is required during research. Although being one of the most common procedures, this apparently simple task is a time-consuming process, prone to errors and concerns regarding procedure, reliability, and accuracy. When an estimate is necessary, there is a traditional manual counting procedure that in this study it will be called as "drop method" (DM). This popular method that extrapolates an animal count from a small drop of fluid shows a high coefficient of variation. To solve this problem, the present study used the free-living nematode Caenorhabditis elegans to develop a new estimation procedure that was based on a relationship between area and volume of a larger sample. Results The new method showed a low coefficient of variation and a close relationship between estimated and real counts of the total number of nematodes in large C. elegans suspensions. Reactive oxygen concentration was measured as an example of method application and to allow comparison between methods. Conclusion The proposed method is accurate, facile and reproducible, requiring simple, inexpensive materials that make it an excellent alternative to the DM manual counting procedure. Although the DM is faster, its estimates are not as accurate or as precise as those of the new proposed method.
Collapse
Affiliation(s)
- Marcelo Estrella Josende
- 1Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande - FURG, Av. Itália km 8, Rio Grande, RS 96203-900 Brazil.,Programa de Pós-Graduação em Ciências Fisiológicas (PPGCF) - FURG, Rio Grande, Brazil
| | - Silvana Manske Nunes
- 1Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande - FURG, Av. Itália km 8, Rio Grande, RS 96203-900 Brazil.,Programa de Pós-Graduação em Ciências Fisiológicas (PPGCF) - FURG, Rio Grande, Brazil
| | - Larissa Müller
- 1Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande - FURG, Av. Itália km 8, Rio Grande, RS 96203-900 Brazil.,Programa de Pós-Graduação em Ciências Fisiológicas (PPGCF) - FURG, Rio Grande, Brazil
| | - Marlize Ferreira-Cravo
- 1Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande - FURG, Av. Itália km 8, Rio Grande, RS 96203-900 Brazil
| | - José Marìa Monserrat
- 1Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande - FURG, Av. Itália km 8, Rio Grande, RS 96203-900 Brazil.,Programa de Pós-Graduação em Ciências Fisiológicas (PPGCF) - FURG, Rio Grande, Brazil
| | - Juliane Ventura-Lima
- 1Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande - FURG, Av. Itália km 8, Rio Grande, RS 96203-900 Brazil.,Programa de Pós-Graduação em Ciências Fisiológicas (PPGCF) - FURG, Rio Grande, Brazil
| |
Collapse
|
7
|
Hajihassani A, Dandurand LM. An Improved Technique for Sorting Developmental Stages and Assessing Egg Viability of Globodera pallida using High-Throughput Complex Object Parametric Analyzer and Sorter. PLANT DISEASE 2018; 102:2001-2008. [PMID: 30133359 DOI: 10.1094/pdis-09-17-1428-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The Complex Object Parametric Analyzer and Sorter (COPAS) is a large particle flow cytometer designed for analyzing, sorting, and dispensing objects of varying sizes. We explored the potential of using this instrument to analyze and sort various developmental stages and egg viability of Globodera pallida. Cysts were successfully examined and sorted from debris by optimizing side-scatter and red-fluorescence parameters on the COPAS. We were able to separate eggs and second-stage juveniles from samples of mixed population using extinction and time of flight. Separation of live and dead eggs was examined following staining eggs with SYTOX Green and application of time of flight and green peak height. Data were compared with a commonly used viability assay by which eggs were stained with Meldola's Blue and examined by a microscope. COPAS proved to be effective in assessing viability by detecting two separate gates: live eggs having green fluorescence peaks <190 and dead eggs with the peaks >190. The application of COPAS in combination with SYTOX Green detected a greater number of live eggs than the Meldola's assay, suggesting that SYTOX Green provided an overestimate of live eggs. COPAS noticeably increased the accuracy and reduced the time required for screening and analyzing nematode populations.
Collapse
Affiliation(s)
- Abolfazl Hajihassani
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow 83844
| | - Louise-Marie Dandurand
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow 83844
| |
Collapse
|
8
|
Rajasekharan SK, Raorane CJ, Lee J. LED based real-time survival bioassays for nematode research. Sci Rep 2018; 8:11531. [PMID: 30069029 PMCID: PMC6070477 DOI: 10.1038/s41598-018-30016-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 07/18/2018] [Indexed: 11/18/2022] Open
Abstract
Nematode bioassays are extensively conducted worldwide, either for screening anthelmintic drugs or for assessing the toxicity of drug candidates. Recently, the US Environmental Protection Agency mandated the use of invertebrate models including nematodes especially Caenorhabditis elegans, for toxicity testing as an alternative to rodent models. The significance of nematode bioassays in the biological sciences is escalating, but no standardized protocol is available to assess nematode mortality in a liquid medium. Manual counting under white light is the only approach currently practiced, which exhibit large variabilities and false positive results. Here, we describe an innovative counting strategy that employs light-emitting diode (LED) technology. We found that the nematodes stopped moving under white light (360–760 nm) when administered with sub-lethal dosage (LC50) of a toxic drug, whereas they responded rapidly to blue (450–490 nm) and ultraviolet (UV) (100–400 nm) LED lights. Furthermore, paralyzed nematodes responded in less than 5 seconds to a LED pulse. The response to the LED stimulus was distinctively noted in C. elegans dauers, which squirmed away from illuminated sites within seconds. LED produced an incoherent beam, and uniformly distributed light across the sampling area. In conclusion, this method is more accurate than the conventional counting techniques, and enables us to differentiate paralyzed and dead nematodes virtually in real-time. Furthermore, this technique would appear to be suitable for incorporating a motion-sensor based automated system.
Collapse
Affiliation(s)
| | | | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| |
Collapse
|
9
|
Liu C, Mhashilkar AS, Chabanon J, Xu S, Lustigman S, Adams JH, Unnasch TR. Development of a toolkit for piggyBac-mediated integrative transfection of the human filarial parasite Brugia malayi. PLoS Negl Trop Dis 2018; 12:e0006509. [PMID: 29782496 PMCID: PMC5983866 DOI: 10.1371/journal.pntd.0006509] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/01/2018] [Accepted: 05/08/2018] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND The human filarial parasites cause diseases that are among the most important causes of morbidity in the developing world. The elimination programs targeting these infections rely on a limited number of drugs, making the identification of new chemotherapeutic agents a high priority. The study of these parasites has lagged due to the lack of reverse genetic methods. METHODOLOGY/PRINCIPAL FINDINGS We report a novel co-culture method that results in developmentally competent infective larvae of one of the human filarial parasites (Brugia malayi) and describe a method to efficiently transfect the larval stages of this parasite. We describe the production of constructs that result in integrative transfection using the piggyBac transposon system, and a selectable marker that can be used to identify transgenic parasites. We describe the production and use of dual reporter plasmids containing both a secreted luciferase selectable marker and fluorescent protein reporters that will be useful to study temporal and spatial patterns of gene expression. CONCLUSIONS/SIGNIFICANCE The methods and constructs reported here will permit the efficient production of integrated transgenic filarial parasite lines, allowing reverse genetic technologies to be applied to all life cycle stages of the parasite.
Collapse
Affiliation(s)
- Canhui Liu
- Center for Global Health Infectious Disease Research, Department of Global Health, University of South Florida, Tampa, FL, United States of America
| | - Amruta S. Mhashilkar
- Center for Global Health Infectious Disease Research, Department of Global Health, University of South Florida, Tampa, FL, United States of America
| | - Johan Chabanon
- Center for Global Health Infectious Disease Research, Department of Global Health, University of South Florida, Tampa, FL, United States of America
| | - Shulin Xu
- Center for Global Health Infectious Disease Research, Department of Global Health, University of South Florida, Tampa, FL, United States of America
| | - Sara Lustigman
- Molecular Parasitology, New York Blood Center, New York, NY, United States of America
| | - John H. Adams
- Center for Global Health Infectious Disease Research, Department of Global Health, University of South Florida, Tampa, FL, United States of America
| | - Thomas R. Unnasch
- Center for Global Health Infectious Disease Research, Department of Global Health, University of South Florida, Tampa, FL, United States of America
- * E-mail:
| |
Collapse
|
10
|
Sofela S, Sahloul S, Rafeie M, Kwon T, Han J, Warkiani ME, Song YA. High-throughput sorting of eggs for synchronization of C. elegans in a microfluidic spiral chip. LAB ON A CHIP 2018; 18:679-687. [PMID: 29372209 DOI: 10.1039/c7lc00998d] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
In this study, we report the use of a high-throughput microfluidic spiral chip to screen out eggs from a mixed age nematode population, which can subsequently be cultured to a desired developmental stage. For the sorting of a mixture containing three different developmental stages, eggs, L1 and L4, we utilized a microfluidic spiral chip with a trapezoidal channel to obtain a sorting efficiency of above 97% and a sample purity (SP) of above 80% for eggs at different flow rates up to 10 mL min-1. The result demonstrated a cost-effective, simple, and highly efficient method for synchronizing C. elegans at a high throughput (∼4200 organisms per min at 6 mL min-1), while eliminating challenges such as clogging and non-reusability of membrane-based filtration. Due to its simplicity, our method can be easily adopted in the C. elegans research community.
Collapse
Affiliation(s)
- Samuel Sofela
- Division of Engineering, New York University Abu Dhabi, United Arab Emirates
| | | | | | | | | | | | | |
Collapse
|
11
|
Counting Caenorhabditis elegans: Protocol Optimization and Applications for Population Growth and Toxicity Studies in Liquid Medium. Sci Rep 2018; 8:904. [PMID: 29343752 PMCID: PMC5772475 DOI: 10.1038/s41598-018-19187-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 12/21/2017] [Indexed: 11/25/2022] Open
Abstract
The nematode Caenorhabditis elegans is used extensively in molecular, toxicological and genetics research. However, standardized methods for counting nematodes in liquid culture do not exist despite the wide use of nematodes and need for accurate measurements. Herein, we provide a simple and affordable counting protocol developed to maximize count accuracy and minimize variability in liquid nematode culture. Sources of variability in the counting process were identified and tested in 14 separate experiments. Three variables resulted in significant effects on nematode count: shaking of the culture, priming of pipette tips, and sampling location within a microcentrifuge tube. Between-operator variability did not have a statistically significant effect on counts, even among differently-skilled operators. The protocol was used to assess population growth rates of nematodes in two different but common liquid growth media: axenic modified Caenorhabditis elegans Habitation and Reproduction medium (mCeHR) and S-basal complete. In mCeHR, nematode populations doubled daily for 10 d. S-basal complete populations initially doubled every 12 h, but slowed within 7 d. We also detected a statistically significant difference between embryo-to-hatchling incubation period of 5 d in mCeHR compared to 4 d in S-basal complete. The developed counting method for Caenorhabditis elegans reduces variability and allows for rigorous and reliable experimentation.
Collapse
|
12
|
Cho Y, Zhao CL, Lu H. Trends in high-throughput and functional neuroimaging in Caenorhabditis elegans. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2017; 9. [PMID: 28221003 DOI: 10.1002/wsbm.1376] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 11/20/2016] [Accepted: 11/23/2016] [Indexed: 02/03/2023]
Abstract
The nervous system of Caenorhabditis elegans is an important model system for understanding the development and function of larger, more complex nervous systems. It is prized for its ease of handling, rapid life cycle, and stereotyped, well-cataloged development, with the development of all 302 neurons mapped all the way from zygote to adult. The combination of easy genetic manipulation and optical transparency of the worm allows for the direct imaging of its interior with fluorescent microscopy, without physically compromising the normal physiology of the animal itself. By expressing fluorescent markers, biologists study many developmental and cell biology questions in vivo; by expressing genetically encoded fluorescent calcium indicators within neurons, it is also possible to monitor their dynamic activity, answering questions about the structure and function of neural microcircuitry in the worm. However, to successfully image the worm it is necessary to overcome a number of experimental challenges. It is necessary to hold worms within the field of view, collect images efficiently and rapidly, and robustly analyze the data obtained. In recent years, a trend has developed toward imaging a large number of worms or neurons simultaneously, directly exploiting the unique properties of C. elegans to acquire data on a scale, which is not possible in other organisms. Doing this has required the development of new experimental tools, techniques, and data analytic approaches, all of which come together to open new perspectives on the field of neurobiology in C. elegans, and neuroscience in general. WIREs Syst Biol Med 2017, 9:e1376. doi: 10.1002/wsbm.1376 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Yongmin Cho
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Charles L Zhao
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, and Emory University, Atlanta, GA, USA
| | - Hang Lu
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
13
|
Liao X, Makris M, Luo XM. Fluorescence-activated Cell Sorting for Purification of Plasmacytoid Dendritic Cells from the Mouse Bone Marrow. J Vis Exp 2016. [PMID: 27842369 DOI: 10.3791/54641] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Fluorescence-activated cell sorting (FACS) is a technique to purify specific cell populations based on phenotypes detected by flow cytometry. This method enables researchers to better understand the characteristics of a single cell population without the influence of other cells. Compared to other methods of cell enrichment, such as magnetic-activated cell sorting (MCS), FACS is more flexible and accurate for cell separation due to the ability of phenotype detection by flow cytometry. In addition, FACS is usually capable of separating multiple cell populations simultaneously, which improves the efficiency and diversity of experiments. Although FACS has some limitations, it has been broadly used to purify cells for functional studies in both in vitro and in vivo settings. Here we report a protocol using fluorescence-activated cell sorting to isolate a very rare population of immune cells, plasmacytoid dendritic cells (pDC), with high purity from the bone marrow of lupus-prone mice for in vitro functional studies of pDC.
Collapse
Affiliation(s)
- Xiaofeng Liao
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University
| | - Melissa Makris
- Flow Cytometry Laboratory, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University
| | - Xin M Luo
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University;
| |
Collapse
|
14
|
McClure CD, Southall TD. Getting Down to Specifics: Profiling Gene Expression and Protein-DNA Interactions in a Cell Type-Specific Manner. ADVANCES IN GENETICS 2015; 91:103-151. [PMID: 26410031 PMCID: PMC4604662 DOI: 10.1016/bs.adgen.2015.06.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The majority of multicellular organisms are comprised of an extraordinary range of cell types, with different properties and gene expression profiles. Understanding what makes each cell type unique and how their individual characteristics are attributed are key questions for both developmental and neurobiologists alike. The brain is an excellent example of the cellular diversity expressed in the majority of eukaryotes. The mouse brain comprises of approximately 75 million neurons varying in morphology, electrophysiology, and preferences for synaptic partners. A powerful process in beginning to pick apart the mechanisms that specify individual characteristics of the cell, as well as their fate, is to profile gene expression patterns, chromatin states, and transcriptional networks in a cell type-specific manner, i.e., only profiling the cells of interest in a particular tissue. Depending on the organism, the questions being investigated, and the material available, certain cell type-specific profiling methods are more suitable than others. This chapter reviews the approaches presently available for selecting and isolating specific cell types and evaluates their key features.
Collapse
Affiliation(s)
- Colin D. McClure
- Department of Life Sciences, Imperial College London, Sir Ernst Chain Building, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Tony D. Southall
- Department of Life Sciences, Imperial College London, Sir Ernst Chain Building, South Kensington Campus, London SW7 2AZ, United Kingdom
| |
Collapse
|
15
|
Benson JA, Cummings EE, O'Reilly LP, Lee MH, Pak SC. A high-content assay for identifying small molecules that reprogram C. elegans germ cell fate. Methods 2014; 68:529-35. [PMID: 24990146 DOI: 10.1016/j.ymeth.2014.05.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/23/2014] [Accepted: 05/24/2014] [Indexed: 10/25/2022] Open
Abstract
Recent breakthrough discoveries have shown that committed cell fates can be reprogrammed by genetic, chemical and environmental manipulations. The germline of the nematode Caenorhabditis elegans provides a tractable system for studying cell fate reprogramming within the context of a whole organism. To explore the possibility of using C. elegans in high-throughput screens (HTS), we developed a high-throughput workflow for testing compounds that modulate cell fate reprogramming. We utilized puf-8; lip-1 mutants that have enhanced MPK-1 (an ERK homolog)/MAP kinase (MAPK) signaling. Wild-type C. elegans hermaphrodites produce both sperm and oocytes, and are thus self-fertile. However, puf-8; lip-1 mutants produce only sperm and are sterile. Notably, compounds that pharmacologically down-regulate MPK-1 (an ERK homolog)/MAP kinase (MAPK) signaling are able to reprogram germ cell fate and restore fertility to these animals. puf-8; lip-1 mutants provide numerous challenges for HTS. First, they are sterile as homozygotes and must be maintained as heterozygotes using a balancer chromosome. Second, homozygous animals for experimentation must be physically separated from the rest of the population. Third, a high quality, high-content assay has not been developed to measure compound effects on germ cell fate reprogramming. Here we describe a semi-automated high-throughput workflow that enables effective sorting of homozygous puf-8; lip-1 mutants into 384-well plates using the COPAS™ BIOSORT. In addition, we have developed an image-based assay for rapidly measuring germ cell reprogramming by measuring the number of viable progeny in wells. The methods presented in this report enable the use of puf-8; lip-1 mutants in HTS campaigns for chemical modulators of germ cell reprogramming within the context of a whole organism.
Collapse
Affiliation(s)
- Joshua A Benson
- Department of Pediatrics, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of UPMC, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - Erin E Cummings
- Department of Pediatrics, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of UPMC, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - Linda P O'Reilly
- Department of Pediatrics, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of UPMC, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - Myon-Hee Lee
- Department of Oncology, Department of Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA; Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Stephen C Pak
- Department of Pediatrics, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of UPMC, 4401 Penn Avenue, Pittsburgh, PA 15224, USA.
| |
Collapse
|
16
|
Uncovering buffered pleiotropy: a genome-scale screen for mel-28 genetic interactors in Caenorhabditis elegans. G3-GENES GENOMES GENETICS 2014; 4:185-96. [PMID: 24281427 PMCID: PMC3887534 DOI: 10.1534/g3.113.008532] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
mel-28 (maternal-effect-lethal-28) encodes a conserved protein required for nuclear envelope function and chromosome segregation in Caenorhabditis elegans. Because mel-28 is a strict maternal-effect lethal gene, its function is required in the early embryo but appears to be dispensable for larval development. We wanted to test the idea that mel-28 has postembryonic roles that are buffered by the contributions of other genes. To find genes that act coordinately with mel-28, we did an RNA interference−based genetic interaction screen using mel-28 and wild-type larvae. We screened 18,364 clones and identified 65 genes that cause sterility in mel-28 but not wild-type worms. Some of these genes encode components of the nuclear pore. In addition we identified genes involved in dynein and dynactin function, vesicle transport, and cell-matrix attachments. By screening mel-28 larvae we have bypassed the requirement for mel-28 in the embryo, uncovering pleiotropic functions for mel-28 later in development that are normally provided by other genes. This work contributes toward revealing the gene networks that underlie cellular processes and reveals roles for a maternal-effect lethal gene later in development.
Collapse
|