1
|
Niitsu A, Thomson AR, Scott AJ, Sengel JT, Jung J, Mahendran KR, Sodeoka M, Bayley H, Sugita Y, Woolfson DN, Wallace MI. Rational Design Principles for De Novo α-Helical Peptide Barrels with Dynamic Conductive Channels. J Am Chem Soc 2025; 147:11741-11753. [PMID: 40152328 DOI: 10.1021/jacs.4c13933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Despite advances in peptide and protein design, the rational design of membrane-spanning peptides that form conducting channels remains challenging due to our imperfect understanding of the sequence-to-structure relationships that drive membrane insertion, assembly, and conductance. Here, we describe the design and computational and experimental characterization of a series of coiled coil-based peptides that form transmembrane α-helical barrels with conductive channels. Through a combination of rational and computational design, we obtain barrels with 5 to 7 helices, as characterized in detergent micelles. In lipid bilayers, these peptide assemblies exhibit two conductance states with relative populations dependent on the applied potential: (i) low-conductance states that correlate with variations in the designed amino-acid sequences and modeled coiled-coil barrel geometries, indicating stable transmembrane α-helical barrels; and (ii) high-conductance states in which single channels change size in discrete steps. Notably, the high-conductance states are similar for all peptides in contrast to the low-conductance states. This indicates the formation of large, dynamic channels, as observed in natural barrel-stave peptide channels. These findings establish rational routes to design and tune functional membrane-spanning peptide channels with specific conductance and geometry.
Collapse
Affiliation(s)
- Ai Niitsu
- Laboratory for Dynamic Biomolecule Design, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Andrew R Thomson
- School of Chemistry, University of Glasgow, Joseph Black Building, University Avenue, Glasgow G12 8QQ, U.K
| | - Alistair J Scott
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K
| | - Jason T Sengel
- Department of Chemistry, King's College London, Britannia House, Trinity Street, SE1 1DB London, U.K
| | - Jaewoon Jung
- Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Computational Biophysics Research Team, RIKEN Center for Computational Science, 7-1-26 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Kozhinjampara R Mahendran
- Transdisciplinary Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, India
| | - Mikiko Sodeoka
- Catalysis and Integrated Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Hagan Bayley
- Department of Chemistry, University of Oxford, Mansfield Road, OX1 3TA Oxford, U.K
| | - Yuji Sugita
- Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Computational Biophysics Research Team, RIKEN Center for Computational Science, 7-1-26 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
- Laboratory for Biomolecular Function Simulation, RIKEN Center for Biosystems Dynamics Research, 1-6-5 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Derek N Woolfson
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K
- School of Biochemistry, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, U.K
- Bristol BioDesign Institute, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, U.K
| | - Mark I Wallace
- Department of Chemistry, King's College London, Britannia House, Trinity Street, SE1 1DB London, U.K
| |
Collapse
|
2
|
Pizarro AD, Berli CLA, Soler-Illia GJAA, Bellino MG. Autonomous Noncoalescence among Water Drops through Nanopore-Induced Self-Warping. NANO LETTERS 2025; 25:5193-5199. [PMID: 40119806 DOI: 10.1021/acs.nanolett.4c06359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2025]
Abstract
A pervasive phenomenon in nature and technology events is that the interaction among water-based volumes leads to coalescence and thus losing their individuality. Herein, we report a framework in which the opposite can be true: the interaction between adjacent water droplets on a nanoporous thin-film surface spontaneously manifests an autonomous noncoalescing action to drive the topographic emergence of macrostructural organization, based in the hydraulic control exerted by water self-confined in nanopores (avoiding the need to resort to chemical approaches for aqueous partitions). Accordingly, we also introduce strategies to perform the shaping of water through water to tailor droplet contact area shapes and local interdroplet dosing of regents. The observation of crowded water drops warping rather than coalescing reveals novel fluid manipulation with high spatial resolution and offers new possibilities of broad applicability ranging from artificial cell compartmentalization, biochemical analysis, and thermal management to hydro-smart surfaces innovation.
Collapse
Affiliation(s)
- Agustin D Pizarro
- Instituto de Nanosistemas, Escuela de Bio y Nanotecnologías, INS-EByN-UNSAM-CONICET, Av. 25 de Mayo 1169, 1650 San Martín, Argentina
| | - Claudio Luis Alberto Berli
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC-UNL-CONICET) Predio CCT CONICET, RN 168, 3000 Santa Fe, Argentina
| | - Galo J A A Soler-Illia
- Instituto de Nanosistemas, Escuela de Bio y Nanotecnologías, INS-EByN-UNSAM-CONICET, Av. 25 de Mayo 1169, 1650 San Martín, Argentina
| | - Martín Gonzalo Bellino
- Instituto de Nanociencia y Nanotecnología (CNEA-CONICET), Av. Gral. Paz 1499, B1650 San Martín, Buenos Aires, Argentina
| |
Collapse
|
3
|
Paul R, Dutta D, Wallace MI, Dash J. Ion transport and membrane channel formation using a peptidomimetic in droplet interface bilayers. Chem Commun (Camb) 2025; 61:3876-3879. [PMID: 39931809 DOI: 10.1039/d4cc05926c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Herein, we present a synthetic peptidomimetic, TBP2, which forms artificial membrane channels within droplet interface bilayers (DIBs). Real-time electrophysiology via TIRF microscopy, and single-channel recordings, we demonstrate the ability of TBP2 to mediate high-conductance transport of Na+ and K+ across the DIBs, highlighting its potential for nanobiotechnology applications in cell-free systems.
Collapse
Affiliation(s)
- Raj Paul
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India.
- Department of Chemistry, King's College London, London, UK.
| | - Debasish Dutta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India.
| | - Mark I Wallace
- Department of Chemistry, King's College London, London, UK.
| | - Jyotirmayee Dash
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India.
| |
Collapse
|
4
|
Li Y, Harris BS, Li Z, Shi C, Abdullah J, Majumder S, Berhanu S, Vorobieva AA, Myers SK, Hettige J, Baer MD, De Yoreo JJ, Baker D, Noy A. Water, Solute, and Ion Transport in De Novo-Designed Membrane Protein Channels. ACS NANO 2025; 19:2185-2195. [PMID: 39714958 DOI: 10.1021/acsnano.4c11317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Biological organisms engineer peptide sequences to fold into membrane pore proteins capable of performing a wide variety of transport functions. Synthetic de novo-designed membrane pores can mimic this approach to achieve a potentially even larger set of functions. Here we explore water, solute, and ion transport in three de novo designed β-barrel membrane channels in the 5-10 Å pore size range. We show that these proteins form passive membrane pores with high water transport efficiencies and size rejection characteristics consistent with the pore size encoded in the protein structure. Ion conductance and ion selectivity measurements also show trends consistent with the pore size, with the two larger pores showing weak cation selectivity. MD simulations of water and ion transport and solute size exclusion are consistent with the experimental trends and provide further insights into structure-function correlations in these membrane pores.
Collapse
Affiliation(s)
- Yuhao Li
- Materials Science Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Bradley S Harris
- Physical Science Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Zhongwu Li
- Materials Science Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Chenyang Shi
- Physical Science Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Jobaer Abdullah
- Materials Science Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
- School of Natural Sciences, University of California Merced, Merced, California 95343, United States
| | - Sagardip Majumder
- Institute for Protein Design, University of Washington, Seattle, Washington 98195, United States
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, United States
| | - Samuel Berhanu
- Institute for Protein Design, University of Washington, Seattle, Washington 98195, United States
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, United States
| | - Anastassia A Vorobieva
- Structural Biology Brussel, Vrije Universiteit Brussel, Brussels 1050, Belgium
- VUB-VIB Center for Structural Biology, Brussels 1050, Belgium
| | - Sydney K Myers
- Materials Science Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Jeevapani Hettige
- Physical Science Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Marcel D Baer
- Physical Science Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - James J De Yoreo
- Physical Science Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - David Baker
- Institute for Protein Design, University of Washington, Seattle, Washington 98195, United States
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, United States
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195, United States
| | - Aleksandr Noy
- Materials Science Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
- School of Natural Sciences, University of California Merced, Merced, California 95343, United States
| |
Collapse
|
5
|
Ridone P, Baker MAB. Hybrid Exb/Mot stators require substitutions distant from the chimeric pore to power flagellar rotation. J Bacteriol 2024; 206:e0014024. [PMID: 39283106 PMCID: PMC11500575 DOI: 10.1128/jb.00140-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/09/2024] [Indexed: 10/01/2024] Open
Abstract
Powered by ion transport across the cell membrane, conserved ion-powered rotary motors (IRMs) drive bacterial motility by generating torque on the rotor of the bacterial flagellar motor. Homologous heteroheptameric IRMs have been structurally characterized in ion channels such as Tol/Ton/Exb/Gld, and most recently in phage defense systems such as Zor. Functional stator complexes synthesized from chimeras of PomB/MotB (PotB) have been used to study flagellar rotation at low ion-motive force achieved via reduced external sodium concentration. The function of such chimeras is highly sensitive to the location of the fusion site, and these hybrid proteins have thus far been arbitrarily designed. To date, no chimeras have been constructed using interchange of components from Tol/Ton/Exb/Gld and other ion-powered motors with more distant homology. Here, we synthesized chimeras of MotAB, PomAPotB, and ExbBD to assess their capacity for cross-compatibility. We generated motile strains powered by stator complexes with B-subunit chimeras. This motility was further optimized by directed evolution. Whole-genome sequencing of these strains revealed that motility-enhancing residue changes occurred in the A-subunit and at the peptidoglycan binding domain of the B-unit, which could improve motility. Overall, our work highlights the complexity of stator architecture and identifies the challenges associated with the rational design of chimeric IRMs. IMPORTANCE Ion-powered rotary motors (IRMs) underpin the rotation of one of nature's oldest wheels, the flagellar motor. Recent structures show that this complex appears to be a fundamental molecular module with diverse biological utility where electrical energy is coupled to torque. Here, we attempted to rationally design chimeric IRMs to explore the cross-compatibility of these ancient motors. We succeeded in making one working chimera of a flagellar motor and a non-flagellar transport system protein. This had only a short hybrid stretch in the ion-conducting channel, and function was subsequently improved through additional substitutions at sites distant from this hybrid pore region. Our goal was to test the cross-compatibility of these homologous systems and highlight challenges arising when engineering new rotary motors.
Collapse
Affiliation(s)
- Pietro Ridone
- School of Biotechnology and Biomolecular Sciences, UNSW, Kensington, Australia
| | - Matthew A. B. Baker
- School of Biotechnology and Biomolecular Sciences, UNSW, Kensington, Australia
| |
Collapse
|
6
|
Li Z, Hall AT, Wang Y, Li Y, Byrne DO, Scammell LR, Whitney RR, Allen FI, Cumings J, Noy A. Ion transport and ultra-efficient osmotic power generation in boron nitride nanotube porins. SCIENCE ADVANCES 2024; 10:eado8081. [PMID: 39241077 PMCID: PMC11378945 DOI: 10.1126/sciadv.ado8081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 08/01/2024] [Indexed: 09/08/2024]
Abstract
Nanotube porins form transmembrane nanomaterial-derived scaffolds that mimic the geometry and functionality of biological membrane channels. We report synthesis, transport properties, and osmotic energy harvesting performance of another member of the nanotube porin family: boron nitride nanotube porins (BNNTPs). Cryo-transmission electron microscopy imaging, liposome transport assays, and DNA translocation experiments show that BNNTPs reconstitute into lipid membranes to form functional channels of ~2-nm diameter. Ion transport studies reveal ion conductance characteristics of individual BNNTPs, which show an unusual C1/4 scaling with ion concentration and pronounced pH sensitivity. Reversal potential measurements indicate that BNNTPs have strong cation selectivity at neutral pH, attributable to the high negative charge on the channel. BNNTPs also deliver very large power density up to 12 kW/m2 in the osmotic gradient transport experiments at neutral pH, surpassing that of other BNNT-based devices by two orders of magnitude under similar conditions. Our results suggest that BNNTPs are a promising platform for mass transport and osmotic power generation.
Collapse
Affiliation(s)
- Zhongwu Li
- Materials Science Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550, USA
| | - Alex T Hall
- Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA
| | - Yaqing Wang
- Materials Science Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550, USA
| | - Yuhao Li
- Materials Science Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550, USA
| | - Dana O Byrne
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | | | - Frances I Allen
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA 94720, USA
| | - John Cumings
- Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA
| | - Aleksandr Noy
- Materials Science Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550, USA
- School of Natural Sciences, University of California, Merced, Merced, CA 93434, USA
| |
Collapse
|
7
|
Li Y, Li Z, Misra RP, Liang C, Gillen AJ, Zhao S, Abdullah J, Laurence T, Fagan JA, Aluru N, Blankschtein D, Noy A. Molecular transport enhancement in pure metallic carbon nanotube porins. NATURE MATERIALS 2024; 23:1123-1130. [PMID: 38937586 DOI: 10.1038/s41563-024-01925-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 05/16/2024] [Indexed: 06/29/2024]
Abstract
Nanofluidic channels impose extreme confinement on water and ions, giving rise to unusual transport phenomena strongly dependent on the interactions at the channel-wall interface. Yet how the electronic properties of the nanofluidic channels influence transport efficiency remains largely unexplored. Here we measure transport through the inner pores of sub-1 nm metallic and semiconducting carbon nanotube porins. We find that water and proton transport are enhanced in metallic nanotubes over semiconducting nanotubes, whereas ion transport is largely insensitive to the nanotube bandgap value. Molecular simulations using polarizable force fields highlight the contributions of the anisotropic polarizability tensor of the carbon nanotubes to the ion-nanotube interactions and the water friction coefficient. We also describe the origin of the proton transport enhancement in metallic nanotubes using deep neural network molecular dynamics simulations. These results emphasize the complex role of the electronic properties of nanofluidic channels in modulating transport under extreme nanoscale confinement.
Collapse
Affiliation(s)
- Yuhao Li
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Zhongwu Li
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Rahul Prasanna Misra
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Chenxing Liang
- Walker Department of Mechanical Engineering, Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, USA
| | - Alice J Gillen
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
- Vivani Medical Inc., Emeryville, CA, USA
| | - Sidi Zhao
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
- School of Engineering, University of California Merced, Merced, CA, USA
| | - Jobaer Abdullah
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
- School of Natural Sciences, University of California Merced, Merced, CA, USA
| | - Ted Laurence
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Jeffrey A Fagan
- Materials Science and Engineering Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD, USA
| | - Narayana Aluru
- Walker Department of Mechanical Engineering, Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, USA.
| | - Daniel Blankschtein
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Aleksandr Noy
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA.
- School of Natural Sciences, University of California Merced, Merced, CA, USA.
| |
Collapse
|
8
|
Zhang LL, Zhong CB, Huang TJ, Zhang LM, Yan F, Ying YL. High-throughput single biomarker identification using droplet nanopore. Chem Sci 2024; 15:8355-8362. [PMID: 38846401 PMCID: PMC11151865 DOI: 10.1039/d3sc06795e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/28/2024] [Indexed: 06/09/2024] Open
Abstract
Biomarkers are present in various metabolism processes, demanding precise and meticulous analysis at the single-molecule level for accurate clinical diagnosis. Given the need for high sensitivity, biological nanopore have been applied for single biomarker sensing. However, the detection of low-volume biomarkers poses challenges due to their low concentrations in dilute buffer solutions, as well as difficulty in parallel detection. Here, a droplet nanopore technique is developed for low-volume and high-throughput single biomarker detection at the sub-microliter scale, which shows a 2000-fold volume reduction compared to conventional setups. To prove the concept, this nanopore sensing platform not only enables multichannel recording but also significantly lowers the detection limit for various types of biomarkers such as angiotensin II, to 42 pg. This advancement enables direct biomarker detection at the picogram level. Such a leap forward in detection capability positions this nanopore sensing platform as a promising candidate for point-of-care testing of biomarker at single-molecule level, while substantially minimizing the need for sample dilution.
Collapse
Affiliation(s)
- Lin-Lin Zhang
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Cheng-Bing Zhong
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Ting-Jing Huang
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Li-Min Zhang
- School of Electronic Science and Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Feng Yan
- School of Electronic Science and Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Yi-Lun Ying
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University Nanjing 210023 P. R. China
- Chemistry and Biomedicine Innovation Center, Nanjing University Nanjing 210023 P. R. China
| |
Collapse
|
9
|
Dimitriou P, Li J, Jamieson WD, Schneider JJ, Castell OK, Barrow DA. Manipulation of encapsulated artificial phospholipid membranes using sub-micellar lysolipid concentrations. Commun Chem 2024; 7:120. [PMID: 38824266 PMCID: PMC11144220 DOI: 10.1038/s42004-024-01209-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/24/2024] [Indexed: 06/03/2024] Open
Abstract
Droplet Interface Bilayers (DIBs) constitute a commonly used model of artificial membranes for synthetic biology research applications. However, their practical use is often limited by their requirement to be surrounded by oil. Here we demonstrate in-situ bilayer manipulation of submillimeter, hydrogel-encapsulated droplet interface bilayers (eDIBs). Monolithic, Cyclic Olefin Copolymer/Nylon 3D-printed microfluidic devices facilitated the eDIB formation through high-order emulsification. By exposing the eDIB capsules to varying lysophosphatidylcholine (LPC) concentrations, we investigated the interaction of lysolipids with three-dimensional DIB networks. Micellar LPC concentrations triggered the bursting of encapsulated droplet networks, while at lower concentrations the droplet network endured structural changes, precisely affecting the membrane dimensions. This chemically-mediated manipulation of enclosed, 3D-orchestrated membrane mimics, facilitates the exploration of readily accessible compartmentalized artificial cellular machinery. Collectively, the droplet-based construct can pose as a chemically responsive soft material for studying membrane mechanics, and drug delivery, by controlling the cargo release from artificial cell chassis.
Collapse
Affiliation(s)
- Pantelitsa Dimitriou
- School of Engineering, Cardiff University, Queen's Buildings, Cardiff, CF24 3AA, UK.
| | - Jin Li
- School of Engineering, Cardiff University, Queen's Buildings, Cardiff, CF24 3AA, UK.
| | - William David Jamieson
- School of Pharmacy and Pharmaceutical Sciences, College of Biomedical and Life Sciences, Cardiff University, Redwood Building, Kind Edward VII Avenue, Cardiff, CF10 3NB, UK
| | - Johannes Josef Schneider
- Institute of Applied Mathematics and Physics, School of Engineering, Zurich University of Applied Sciences, Technikumstr. 9, 8401, Winterthur, Switzerland
| | - Oliver Kieran Castell
- School of Pharmacy and Pharmaceutical Sciences, College of Biomedical and Life Sciences, Cardiff University, Redwood Building, Kind Edward VII Avenue, Cardiff, CF10 3NB, UK
| | - David Anthony Barrow
- School of Engineering, Cardiff University, Queen's Buildings, Cardiff, CF24 3AA, UK
| |
Collapse
|
10
|
Schafer EA, Maraj JJ, Kenney C, Sarles SA, Rivnay J. Droplet Polymer Bilayers for Bioelectronic Membrane Interfacing. J Am Chem Soc 2024; 146:14391-14396. [PMID: 38748513 DOI: 10.1021/jacs.4c01591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Model membranes interfaced with bioelectronics allow for the exploration of fundamental cell processes and the design of biomimetic sensors. Organic conducting polymers are an attractive surface on which to study the electrical properties of membranes because of their low impedance, high biocompatibility, and hygroscopic nature. However, establishing supported lipid bilayers (SLBs) on conducting polymers has lagged significantly behind other substrate materials, namely, for challenges in membrane electrical sealing and stability. Unlike SLBs that are highly dependent on surface interactions, droplet interface bilayers (DIBs) and droplet hydrogel bilayers (DHBs) leverage the energetically favorable organization of phospholipids at atomically smooth liquid interfaces to build high-integrity membranes. For the first time, we report the formation of droplet polymer bilayers (DPBs) between a lipid-coated aqueous droplet and the high-performing conducting polymer poly(3,4-ethylenedioxythiophene) polystyrenesulfonate (PEDOT:PSS). The resulting bilayers can be produced from a range of lipid compositions and demonstrate strong electrical sealing that outcompetes SLBs. DPBs are subsequently translated to patterned and planar microelectrode arrays to ease barriers to implementation and improve the reliability of membrane formation. This platform enables more reproducible and robust membranes on conducting polymers to further the mission of merging bioelectronics and synthetic, natural, or hybrid bilayer membranes.
Collapse
Affiliation(s)
- Emily A Schafer
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Joshua J Maraj
- Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Knoxville, Tennessee 37916, United States
| | - Camryn Kenney
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Stephen A Sarles
- Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Knoxville, Tennessee 37916, United States
| | - Jonathan Rivnay
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
11
|
Nussberger S, Ghosh R, Wang S. New insights into the structure and dynamics of the TOM complex in mitochondria. Biochem Soc Trans 2024; 52:911-922. [PMID: 38629718 PMCID: PMC11088910 DOI: 10.1042/bst20231236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/21/2024] [Accepted: 04/03/2024] [Indexed: 04/25/2024]
Abstract
To date, there is no general physical model of the mechanism by which unfolded polypeptide chains with different properties are imported into the mitochondria. At the molecular level, it is still unclear how transit polypeptides approach, are captured by the protein translocation machinery in the outer mitochondrial membrane, and how they subsequently cross the entropic barrier of a protein translocation pore to enter the intermembrane space. This deficiency has been due to the lack of detailed structural and dynamic information about the membrane pores. In this review, we focus on the recently determined sub-nanometer cryo-EM structures and our current knowledge of the dynamics of the mitochondrial two-pore outer membrane protein translocation machinery (TOM core complex), which provide a starting point for addressing the above questions. Of particular interest are recent discoveries showing that the TOM core complex can act as a mechanosensor, where the pores close as a result of interaction with membrane-proximal structures. We highlight unusual and new correlations between the structural elements of the TOM complexes and their dynamic behavior in the membrane environment.
Collapse
Affiliation(s)
- Stephan Nussberger
- Department of Biophysics, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany
| | - Robin Ghosh
- Department of Bioenergetics, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany
| | - Shuo Wang
- Department of Biophysics, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
12
|
Huang Y, Chandran Suja V, Yang M, Malkovskiy AV, Tandon A, Colom A, Qin J, Fuller GG. Interfacial stresses on droplet interface bilayers using two photon fluorescence lifetime imaging microscopy. J Colloid Interface Sci 2024; 653:1196-1204. [PMID: 37793246 DOI: 10.1016/j.jcis.2023.09.092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/06/2023] [Accepted: 09/14/2023] [Indexed: 10/06/2023]
Abstract
HYPOTHESIS Response of lipid bilayers to external mechanical stimuli is an active area of research with implications for fundamental and synthetic cell biology. Developing novel tools for systematically imposing mechanical strains and non-invasively mapping out interfacial (membrane) stress distributions on lipid bilayers can accelerate research in this field. EXPERIMENTS We report a miniature platform to manipulate model cell membranes in the form of droplet interface bilayers (DIBs), and non-invasively measure spatio-temporally resolved interfacial stresses using two photon fluorescence lifetime imaging of an interfacially active molecular flipper (Flipper-TR). We established the effectiveness of the developed framework by investigating interfacial stresses accompanying three key processes associated with DIBs: thin film drainage between lipid monolayer coated droplets, bilayer formation, and bilayer separation. FINDINGS The measurements revealed fundamental aspects of DIBs including the existence of a radially decaying interfacial stress distribution post bilayer formation, and the simultaneous build up and decay of stress respectively at the bilayer corner and center during bilayer separation. Finally, utilizing interfacial rheology measurements and MD simulations, we also reveal that the tested molecular flipper is sensitive to membrane fluidity that changes with interfacial stress - expanding the scientific understanding of how molecular flippers sense stress.
Collapse
Affiliation(s)
- Yaoqi Huang
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Vineeth Chandran Suja
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA; School of Engineering and Applied Sciences, Harvard University, MA - 02138, USA.
| | - Menghao Yang
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Andrey V Malkovskiy
- Carnegie Institute for Science, Department of Plant Biology, Stanford CA 94305, USA
| | - Arnuv Tandon
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Adai Colom
- Biofisika Institute (CSIC, UPV/EHU), 48940 Leioa, Spain; Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, Campus Universitario, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Jian Qin
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Gerald G Fuller
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
13
|
Lee Y, Park S, Yuan F, Hayden CC, Wang L, Lafer EM, Choi SQ, Stachowiak JC. Transmembrane coupling of liquid-like protein condensates. Nat Commun 2023; 14:8015. [PMID: 38049424 PMCID: PMC10696066 DOI: 10.1038/s41467-023-43332-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 11/06/2023] [Indexed: 12/06/2023] Open
Abstract
Liquid-liquid phase separation of proteins occurs on both surfaces of cellular membranes during diverse physiological processes. In vitro reconstitution could provide insight into the mechanisms underlying these events. However, most existing reconstitution techniques provide access to only one membrane surface, making it difficult to probe transmembrane phenomena. To study protein phase separation simultaneously on both membrane surfaces, we developed an array of freestanding planar lipid membranes. Interestingly, we observed that liquid-like protein condensates on one side of the membrane colocalized with those on the other side, resulting in transmembrane coupling. Our results, based on lipid probe partitioning and mobility of lipids, suggest that protein condensates locally reorganize membrane lipids, a process which could be explained by multiple effects. These findings suggest a mechanism by which signals originating on one side of a biological membrane, triggered by protein phase separation, can be transferred to the opposite side.
Collapse
Affiliation(s)
- Yohan Lee
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Sujin Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Feng Yuan
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Carl C Hayden
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Liping Wang
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Eileen M Lafer
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Siyoung Q Choi
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jeanne C Stachowiak
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA.
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
14
|
Gao R, Yu X, Kumar BVVSP, Tian L. Hierarchical Structuration in Protocellular System. SMALL METHODS 2023; 7:e2300422. [PMID: 37438327 DOI: 10.1002/smtd.202300422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/12/2023] [Indexed: 07/14/2023]
Abstract
Spatial control is one of the ubiquitous features in biological systems and the key to the functional complexity of living cells. The strategies to achieve such precise spatial control in protocellular systems are crucial to constructing complex artificial living systems with functional collective behavior. Herein, the authors review recent advances in the spatial control within a single protocell or between different protocells and discuss how such hierarchical structured protocellular system can be used to understand complex living systems or to advance the development of functional microreactors with the programmable release of various biomacromolecular payloads, or smart protocell-biological cell hybrid system.
Collapse
Affiliation(s)
- Rui Gao
- Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xinran Yu
- Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | | | - Liangfei Tian
- Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
- Department of Ultrasound, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310027, China
- Innovation Center for Smart Medical Technologies & Devices, Binjiang Institute of Zhejiang University, Hangzhou, 310053, China
| |
Collapse
|
15
|
Senior MJT, Monico C, Weatherill EE, Gilbert RJ, Heuck AP, Wallace MI. Single-molecule tracking of perfringolysin O assembly and membrane insertion uncoupling. FEBS J 2023; 290:428-441. [PMID: 35989549 PMCID: PMC10086847 DOI: 10.1111/febs.16596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/22/2022] [Accepted: 08/15/2022] [Indexed: 02/05/2023]
Abstract
We exploit single-molecule tracking and optical single channel recording in droplet interface bilayers to resolve the assembly pathway and pore formation of the archetypical cholesterol-dependent cytolysin nanopore, Perfringolysin O. We follow the stoichiometry and diffusion of Perfringolysin O complexes during assembly with 60 ms temporal resolution and 20 nm spatial precision. Our results suggest individual nascent complexes can insert into the lipid membrane where they continue active assembly. Overall, these data support a model of stepwise irreversible assembly dominated by monomer addition, but with infrequent assembly from larger partial complexes.
Collapse
Affiliation(s)
| | - Carina Monico
- Chemistry Research Laboratory, Department of ChemistryUniversity of OxfordUK
- Department of ChemistryKing's College LondonUK
| | - Eve E. Weatherill
- Chemistry Research Laboratory, Department of ChemistryUniversity of OxfordUK
- Department of ChemistryKing's College LondonUK
| | - Robert J. Gilbert
- Division of Structural Biology, Wellcome Centre for Human GeneticsUniversity of OxfordUK
| | - Alejandro P. Heuck
- Departments of Biochemistry and Molecular BiologyUniversity of MassachusettsAmherstMAUSA
| | | |
Collapse
|
16
|
Kalyana Sundaram RV, Bera M, Coleman J, Weerakkody JS, Krishnakumar SS, Ramakrishnan S. Native Planar Asymmetric Suspended Membrane for Single-Molecule Investigations: Plasma Membrane on a Chip. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2205567. [PMID: 36328714 DOI: 10.1002/smll.202205567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Indexed: 06/16/2023]
Abstract
Cellular plasma membranes, in their role as gatekeepers to the external environment, host numerous protein assemblies and lipid domains that manage the movement of molecules into and out of cells, regulate electric potential, and direct cell signaling. The ability to investigate these roles on the bilayer at a single-molecule level in a controlled, in vitro environment while preserving lipid and protein architectures will provide deeper insights into how the plasma membrane works. A tunable silicon microarray platform that supports stable, planar, and asymmetric suspended lipid membranes (SLIM) using synthetic and native plasma membrane vesicles for single-molecule fluorescence investigations is developed. Essentially, a "plasma membrane-on-a-chip" system that preserves lipid asymmetry and protein orientation is created. By harnessing the combined potential of this platform with total internal reflection fluorescence (TIRF) microscopy, the authors are able to visualize protein complexes with single-molecule precision. This technology has widespread applications in biological processes that happen at the cellular membranes and will further the knowledge of lipid and protein assemblies.
Collapse
Affiliation(s)
- Ramalingam Venkat Kalyana Sundaram
- Nanobiology Institute, Yale University School of Medicine, West Haven, CT, 06516, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Manindra Bera
- Nanobiology Institute, Yale University School of Medicine, West Haven, CT, 06516, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Jeff Coleman
- Nanobiology Institute, Yale University School of Medicine, West Haven, CT, 06516, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Jonathan S Weerakkody
- Nanobiology Institute, Yale University School of Medicine, West Haven, CT, 06516, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Shyam S Krishnakumar
- Nanobiology Institute, Yale University School of Medicine, West Haven, CT, 06516, USA
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Sathish Ramakrishnan
- Nanobiology Institute, Yale University School of Medicine, West Haven, CT, 06516, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT, 06520, USA
| |
Collapse
|
17
|
Scheidegger L, Stricker L, Beltramo PJ, Vermant J. Domain Size Regulation in Phospholipid Model Membranes Using Oil Molecules and Hybrid Lipids. J Phys Chem B 2022; 126:5842-5854. [PMID: 35895895 PMCID: PMC9377339 DOI: 10.1021/acs.jpcb.2c02862] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/06/2022] [Indexed: 11/29/2022]
Abstract
The formation of domains in multicomponent lipid mixtures has been suggested to play a role in moderating signal transduction in cells. Understanding how domain size may be regulated by both hybrid lipid molecules and impurities is important for understanding real biological processes; at the same time, developing model systems where domain size can be regulated is crucial to enable systematic studies of domain formation kinetics and thermodynamics. Here, we perform a model study of the effects of oil molecules, which swell the bilayer, and line-active hybrid phospholipids using a thermally induced liquid-solid phase separation in planar, free-standing lipid bilayers consisting of DOPC and DPPC (1,2-dioleoyl-sn-glycero-3-phosphocholine and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine, respectively). The experiments show that the kinetics of domain growth are significantly affected by the type and molecular structure of the oil (squalene, hexadecane, or decane), with the main contributing factors being the degree of swelling of the bilayer and the changes in line tension induced by the different oils, with smaller domains resulting from systems with smaller values of the line tension. POPC (1-palmitoyl-sn-2-oleoyl-glycero-3-phosphocholine), on the other hand, acts as a line-active hybrid lipid, reducing the domain size when added in small amounts and slowing down domain coarsening. Finally, we show that despite the regulation of domain size by both methods, the phase transition temperature is influenced by the presence of oil molecules but not significantly by the presence of hybrid lipids. Overall, our results show how to regulate domain size in binary membrane model systems, over a wide range of length scales, by incorporating oil molecules and hybrid lipids.
Collapse
Affiliation(s)
- Laura Scheidegger
- Department
of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Laura Stricker
- Department
of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Peter J. Beltramo
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| | - Jan Vermant
- Department
of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| |
Collapse
|
18
|
Ensslen T, Behrends JC. A chip-based array for high-resolution fluorescence characterization of free-standing horizontal lipid membranes under voltage clamp. LAB ON A CHIP 2022; 22:2902-2910. [PMID: 35839072 DOI: 10.1039/d2lc00357k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Optical techniques, such as fluorescence microscopy, are of great value in characterizing the structural dynamics of membranes and membrane proteins. A particular challenge is to combine high-resolution optical measurements with high-resolution voltage clamp electrical recordings providing direct information on e.g. single ion channel gating and/or membrane capacitance. Here, we report on a novel chip-based array device which facilitates optical access with water or oil-immersion objectives of high numerical aperture to horizontal free-standing lipid membranes while controlling membrane voltage and recording currents using individual micropatterned Ag/AgCl-electrodes. Wide-field and confocal imaging, as well as time-resolved single photon counting on free-standing membranes spanning sub-nanoliter cavities are demonstrated while electrical signals, including single channel activity, are simultaneously acquired. This optically addressable microelectrode cavity array will allow combined electrical-optical studies of membranes and membrane proteins to be performed as a routine experiment.
Collapse
Affiliation(s)
- Tobias Ensslen
- Laboratory for Membrane Physiology and Technology, Department of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany.
| | - Jan C Behrends
- Laboratory for Membrane Physiology and Technology, Department of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany.
| |
Collapse
|
19
|
Li J, Jamieson WD, Dimitriou P, Xu W, Rohde P, Martinac B, Baker M, Drinkwater BW, Castell OK, Barrow DA. Building programmable multicompartment artificial cells incorporating remotely activated protein channels using microfluidics and acoustic levitation. Nat Commun 2022; 13:4125. [PMID: 35840619 PMCID: PMC9287423 DOI: 10.1038/s41467-022-31898-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 07/06/2022] [Indexed: 01/25/2023] Open
Abstract
Intracellular compartments are functional units that support the metabolism within living cells, through spatiotemporal regulation of chemical reactions and biological processes. Consequently, as a step forward in the bottom-up creation of artificial cells, building analogous intracellular architectures is essential for the expansion of cell-mimicking functionality. Herein, we report the development of a droplet laboratory platform to engineer complex emulsion-based, multicompartment artificial cells, using microfluidics and acoustic levitation. Such levitated models provide free-standing, dynamic, definable droplet networks for the compartmentalisation of chemical species. Equally, they can be remotely operated with pneumatic, heating, and magnetic elements for post-processing, including the incorporation of membrane proteins; alpha-hemolysin; and mechanosensitive channel of large-conductance. The assembly of droplet networks is three-dimensionally patterned with fluidic input configurations determining droplet contents and connectivity, whilst acoustic manipulation can be harnessed to reconfigure the droplet network in situ. The mechanosensitive channel can be repeatedly activated and deactivated in the levitated artificial cell by the application of acoustic and magnetic fields to modulate membrane tension on demand. This offers possibilities beyond one-time chemically mediated activation to provide repeated, non-contact, control of membrane protein function. Collectively, this expands our growing capability to program and operate increasingly sophisticated artificial cells as life-like materials.
Collapse
Affiliation(s)
- Jin Li
- School of Engineering, Cardiff University, The Parade, Cardiff, CF24 3AA, UK.
| | - William D Jamieson
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Ave, Cardiff, CF10 3NB, UK
| | | | - Wen Xu
- Cardiff Business School, Cardiff University, Aberconway Building, Colum Dr, Cardiff, CF10 3EU, UK
| | - Paul Rohde
- Victor Chang Cardiac Research Institute, Lowy Packer Building, 405 Liverpool St, Darlinhurst, NSW, 2010, Australia
| | - Boris Martinac
- Victor Chang Cardiac Research Institute, Lowy Packer Building, 405 Liverpool St, Darlinhurst, NSW, 2010, Australia.,School of Clinical Medicine, UNSW, Sydney, NSW, 2052, Australia
| | - Matthew Baker
- School of Biotechnology and Biomolecular Science, UNSW, Sydney, NSW, 2052, Australia
| | - Bruce W Drinkwater
- Department of Mechanical Engineering, University of Bristol, University Walk, Bristol, BS8 1TR, UK.
| | - Oliver K Castell
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Ave, Cardiff, CF10 3NB, UK.
| | - David A Barrow
- School of Engineering, Cardiff University, The Parade, Cardiff, CF24 3AA, UK.
| |
Collapse
|
20
|
Baxani DK, Jamieson WD, Barrow DA, Castell OK. Encapsulated droplet interface bilayers as a platform for high-throughput membrane studies. SOFT MATTER 2022; 18:5089-5096. [PMID: 35766018 PMCID: PMC9277618 DOI: 10.1039/d1sm01111a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Whilst it is highly desirable to produce artificial lipid bilayer arrays allowing for systematic high-content screening of membrane conditions, it remains a challenge due to the combined requirements of scaled membrane production, simple measurement access, and independent control over individual bilayer experimental conditions. Here, droplet bilayers encapsulated within a hydrogel shell are output individually into multi-well plates for simple, arrayed quantitative measurements. The afforded experimental throughput is used to conduct a 2D concentration screen characterising the synergistic pore-forming peptides Magainin2 and PGLa. Maximal enhanced activity is revealed at equimolar peptide concentrations via a membrane dye leakage assay, a finding consistent with models proposed from NMR data. The versatility of the platform is demonstrated by performing in situ electrophysiology, revealing low conductance pore activity (∼15 to 20 pA with 4.5 pA sub-states). In conclusion, this array platform addresses the aforementioned challenges and provides new and flexible opportunities for high-throughput membrane studies. Furthermore, the ability to engineer droplet networks within each construct paves the way for "lab-in-a-capsule" approaches accommodating multiple assays per construct and allowing for communicative reaction pathways.
Collapse
Affiliation(s)
- D K Baxani
- College of Biomedical and Life Sciences, School of Pharmacy and Pharmaceutical Sciences, Cardiff University Redwood Building, King Edward VII Avenue, CF10 3NB Cardiff, UK.
| | - W D Jamieson
- College of Biomedical and Life Sciences, School of Pharmacy and Pharmaceutical Sciences, Cardiff University Redwood Building, King Edward VII Avenue, CF10 3NB Cardiff, UK.
| | - D A Barrow
- School of Engineering, Cardiff University, 14-17 The Parade, CF4 3AA Cardiff, UK
| | - O K Castell
- College of Biomedical and Life Sciences, School of Pharmacy and Pharmaceutical Sciences, Cardiff University Redwood Building, King Edward VII Avenue, CF10 3NB Cardiff, UK.
| |
Collapse
|
21
|
Huang Y, Fuller G, Chandran Suja V. Physicochemical characteristics of droplet interface bilayers. Adv Colloid Interface Sci 2022; 304:102666. [PMID: 35429720 DOI: 10.1016/j.cis.2022.102666] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 11/01/2022]
Abstract
Droplet interface bilayer (DIB) is a lipid bilayer formed when two lipid monolayer-coated aqueous droplets are brought in contact within an oil phase. DIBs, especially post functionalization, are a facile model system to study the biophysics of the cell membrane. Continued advances in enhancing and functionalizing DIBs to be a faithful cell membrane mimetic requires a deep understanding of the physicochemical characteristics of droplet interface bilayers. In this review, we provide a comprehensive overview of the current scientific understanding of DIB characteristics starting with the key experimental frameworks for DIB generation, visualization and functionalization. Subsequently we report experimentally measured physical, electrical and transport characteristics of DIBs across physiologically relevant lipids. Advances in simulations and mathematical modelling of DIBs are also discussed, with an emphasis on revealing principles governing the key physicochemical characteristics. Finally, we conclude the review with important outstanding questions in the field.
Collapse
|
22
|
Murata M, Matsumori N, Kinoshita M, London E. Molecular substructure of the liquid-ordered phase formed by sphingomyelin and cholesterol: sphingomyelin clusters forming nano-subdomains are a characteristic feature. Biophys Rev 2022; 14:655-678. [PMID: 35791389 DOI: 10.1007/s12551-022-00967-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 05/26/2022] [Indexed: 11/29/2022] Open
Abstract
As a model of lipid rafts, the liquid-ordered (Lo) phase formed by sphingomyelin (SM) and cholesterol (Cho) in bilayer membranes has long attracted the attention of biophysics researchers. New approaches and methodologies have led to a better understanding of the molecular basis of the Lo domain structure. This review summarizes studies on model membrane systems consisting of SM/unsaturated phospholipid/Cho implying that the Lo phase contains SM-based nanodomains (or nano-subdomains). Some of the Lo phase properties may be attributed to these nanodomains. Several studies suggest that the nanodomains contain clustered SM molecules packed densely to form gel-phase-like subdomains of single-digit nanometer size at physiological temperatures. Cho and unsaturated lipids located in the Lo phase are likely to be concentrated at the boundaries between the subdomains. These subdomains are not readily detected in the Lo phase formed by saturated phosphatidylcholine (PC) molecules, suggesting that they are strongly stabilized by homophilic interactions specific to SM, e.g., between SM amide groups. This model for the Lo phase is supported by experiments using dihydro-SM, which is thought to have stronger homophilic interactions than SM, as well as by studies using the enantiomer of SM having opposite stereochemistry to SM at the 2 and 3 positions and by some molecular dynamics (MD) simulations of lipid bilayers containing Lo-lipids. Nanosized gel subdomains seem to play an important role in controlling membrane organization and function in biological membranes.
Collapse
Affiliation(s)
- Michio Murata
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka, 560-0043 Japan.,ERATO, Lipid Active Structure Project, Japan Science and Technology Agency, Graduate School of Science, Osaka University, Osaka, 560-0043 Japan
| | - Nobuaki Matsumori
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395 Japan
| | - Masanao Kinoshita
- ERATO, Lipid Active Structure Project, Japan Science and Technology Agency, Graduate School of Science, Osaka University, Osaka, 560-0043 Japan.,Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395 Japan
| | - Erwin London
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215 USA
| |
Collapse
|
23
|
Abstract
SignificanceOuter membrane porins play a crucial role in processes as varied as energy production, photosynthesis, and nutrient transport. They act as the gatekeepers between a gram-negative bacterium and its environment. Understanding how these proteins fold and function is important in improving our understanding and control of these processes. Here we use single-molecule methods to help resolve the apparent differences between the fast folding expected on a molecular scale and the slow kinetics observed in ensemble measurements in the laboratory.
Collapse
|
24
|
Spatiotemporal stop-and-go dynamics of the mitochondrial TOM core complex correlates with channel activity. Commun Biol 2022; 5:471. [PMID: 35581327 PMCID: PMC9114391 DOI: 10.1038/s42003-022-03419-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/26/2022] [Indexed: 11/08/2022] Open
Abstract
Single-molecule studies can reveal phenomena that remain hidden in ensemble measurements. Here we show the correlation between lateral protein diffusion and channel activity of the general protein import pore of mitochondria (TOM-CC) in membranes resting on ultrathin hydrogel films. Using electrode-free optical recordings of ion flux, we find that TOM-CC switches reversibly between three states of ion permeability associated with protein diffusion. While freely diffusing TOM-CC molecules are predominantly in a high permeability state, non-mobile molecules are mostly in an intermediate or low permeability state. We explain this behavior by the mechanical binding of the two protruding Tom22 subunits to the hydrogel and a concomitant combinatorial opening and closing of the two β-barrel pores of TOM-CC. TOM-CC could thus represent a β-barrel membrane protein complex to exhibit membrane state-dependent mechanosensitive properties, mediated by its two Tom22 subunits.
Collapse
|
25
|
Strutt R, Sheffield F, Barlow NE, Flemming AJ, Harling JD, Law RV, Brooks NJ, Barter LMC, Ces O. UV-DIB: label-free permeability determination using droplet interface bilayers. LAB ON A CHIP 2022; 22:972-985. [PMID: 35107110 DOI: 10.1039/d1lc01155c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Simple diffusion of molecular entities through a phospholipid bilayer, is a phenomenon of great importance to the pharmaceutical and agricultural industries. Current model lipid systems to probe this typically only employ fluorescence as a readout, thus limiting the range of assessable chemical matter that can be studied. We report a new technology platform, the UV-DIB, which facilitates label free measurement of small molecule translocation rates. This is based upon the coupling of droplet interface bilayer technology with implemented fiber optics to facilitate analysis via ultraviolet spectroscopy, in custom designed PMMA wells. To improve on current DIB technology, the platform was designed to be reusable, with a high sampling rate and a limit of UV detection in the low μM regime. We demonstrate the use of our system to quantify passive diffusion in a reproducible and rapid manner where the system was validated by investigating multiple permeants of varying physicochemical properties across a range of lipid interfaces, each demonstrating differing kinetics. Our system permits the interrogation of structural dependence on the permeation rate of a given compound. We present this ability from two structural perspectives, that of the membrane, and the permeant. We observed a reduction in permeability between pure DOPC and DPhPC interfaces, concurring with literature and demonstrating our ability to study the effects of lipid composition on permeability. In relation to the effects of permeant structure, our device facilitated the rank ordering of various compounds from the xanthine class of compounds, where the structure of each permeant differed by a single group alteration. We found that DIBs were stable up to 5% DMSO, a molecule often used to aid solubilisation of pharmaceutical and agrochemical compounds. The ability of our device to rank-order compounds with such minor structural differences provides a level of precision that is rarely seen in current, industrially applied technologies.
Collapse
Affiliation(s)
- Robert Strutt
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, Shepherd's Bush, London, W12 0BZ, UK.
- Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, Shepherd's Bush, London, W12 0BZ, UK
| | - Felix Sheffield
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, Shepherd's Bush, London, W12 0BZ, UK.
- Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, Shepherd's Bush, London, W12 0BZ, UK
| | - Nathan E Barlow
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, Shepherd's Bush, London, W12 0BZ, UK.
- Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, Shepherd's Bush, London, W12 0BZ, UK
| | - Anthony J Flemming
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire, RG42 6EY, UK
| | - John D Harling
- Medicinal Chemistry, GlaxoSmithKline, Stevenage, SG1 2NY, UK
| | - Robert V Law
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, Shepherd's Bush, London, W12 0BZ, UK.
- Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, Shepherd's Bush, London, W12 0BZ, UK
| | - Nicholas J Brooks
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, Shepherd's Bush, London, W12 0BZ, UK.
- Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, Shepherd's Bush, London, W12 0BZ, UK
| | - Laura M C Barter
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, Shepherd's Bush, London, W12 0BZ, UK.
- Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, Shepherd's Bush, London, W12 0BZ, UK
| | - Oscar Ces
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, Shepherd's Bush, London, W12 0BZ, UK.
- Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, Shepherd's Bush, London, W12 0BZ, UK
| |
Collapse
|
26
|
Sharma B, Moghimianavval H, Hwang SW, Liu AP. Synthetic Cell as a Platform for Understanding Membrane-Membrane Interactions. MEMBRANES 2021; 11:912. [PMID: 34940413 PMCID: PMC8706075 DOI: 10.3390/membranes11120912] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/10/2021] [Accepted: 11/16/2021] [Indexed: 01/27/2023]
Abstract
In the pursuit of understanding life, model membranes made of phospholipids were envisaged decades ago as a platform for the bottom-up study of biological processes. Micron-sized lipid vesicles have gained great acceptance as their bilayer membrane resembles the natural cell membrane. Important biological events involving membranes, such as membrane protein insertion, membrane fusion, and intercellular communication, will be highlighted in this review with recent research updates. We will first review different lipid bilayer platforms used for incorporation of integral membrane proteins and challenges associated with their functional reconstitution. We next discuss different methods for reconstitution of membrane fusion and compare their fusion efficiency. Lastly, we will highlight the importance and challenges of intercellular communication between synthetic cells and synthetic cells-to-natural cells. We will summarize the review by highlighting the challenges and opportunities associated with studying membrane-membrane interactions and possible future research directions.
Collapse
Affiliation(s)
- Bineet Sharma
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (B.S.); (H.M.)
| | - Hossein Moghimianavval
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (B.S.); (H.M.)
| | - Sung-Won Hwang
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Allen P. Liu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (B.S.); (H.M.)
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48105, USA
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48105, USA
| |
Collapse
|
27
|
Cheema JA, Carraher C, Plank NOV, Travas-Sejdic J, Kralicek A. Insect odorant receptor-based biosensors: Current status and prospects. Biotechnol Adv 2021; 53:107840. [PMID: 34606949 DOI: 10.1016/j.biotechadv.2021.107840] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/02/2021] [Accepted: 09/27/2021] [Indexed: 02/01/2023]
Abstract
Whilst the senses of vision and hearing have been successfully automated and miniaturized in portable formats (e.g. smart phone), this is yet to be achieved with the sense of smell. This is because the sensing challenge is not trivial as it involves navigating a chemosensory space comprising thousands of volatile organic compounds. Distinct aroma recognition is based on detecting unique combinations of volatile organic compounds. In natural olfactory systems this is accomplished by employing odorant receptors (ORs) with varying specificities, together with combinatorial neural coding mechanisms. Attempts to mimic the remarkable sensitivity and accuracy of natural olfactory systems has therefore been challenging. Current portable chemical sensors for odorant detection are neither sensitive nor selective, prompting research exploring artificial olfactory devices that use natural OR proteins for sensing. Much research activity to develop OR based biosensors has concentrated on mammalian ORs, however, insect ORs have not been explored as extensively. Insects possess an extraordinary sense of smell due to a repertoire of odorant receptors evolved to interpret olfactory cues vital to the insects' survival. The potential of insect ORs as sensing elements is only now being unlocked through recent research efforts to understand their structure, ligand binding mechanisms and development of odorant biosensors. Like their mammalian counterparts, there are many challenges with working with insect ORs. These include expression, purification and presentation of the insect OR in a stable display format compatible with an effective transduction methodology while maintaining OR structure and function. Despite these challenges, significant progress has been demonstrated in developing OR-based biosensors which exploit insect ORs in cells, lipid bilayers, liposomes and nanodisc formats. Ultrasensitive and highly selective detection of volatile organic compounds has been validated by coupling these insect OR display formats with transduction methodologies spanning optical (fluorescence) and electrical (field effect transistors, electrochemical impedance spectroscopy) techniques. This review summarizes the current status of insect OR based biosensors and their future outlook.
Collapse
Affiliation(s)
- Jamal Ahmed Cheema
- Polymer Biointerface Centre, School of Chemical Sciences, The University of Auckland, Auckland 1023, New Zealand; MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand; The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand
| | - Colm Carraher
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand
| | - Natalie O V Plank
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand; School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington 6021, New Zealand
| | - Jadranka Travas-Sejdic
- Polymer Biointerface Centre, School of Chemical Sciences, The University of Auckland, Auckland 1023, New Zealand; MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand.
| | - Andrew Kralicek
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand; Scentian Bio Limited, 1c Goring Road, Sandringham, Auckland 1025, New Zealand.
| |
Collapse
|
28
|
Kataoka-Hamai C, Kawakami K. Determining the Dependence of Interfacial Tension on Molecular Area for Phospholipid Monolayers Formed at Silicone Oil-Water and Tricaprylin-Water Interfaces by Vesicle Fusion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:7527-7535. [PMID: 34115510 DOI: 10.1021/acs.langmuir.1c01021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Phospholipid monolayers formed at oil-water interfaces have been used to explore biological interface properties. Thus, monolayer systems need to be quantitatively understood. Previously, we investigated the formation of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) monolayers at silicone oil-water interfaces to determine the dependence of interfacial tension, γ, on the area per lipid, a, compared to that of the closely packed monolayers, acp. This study aims to develop a method to obtain the γ-a relationship from the γ-a/acp data by investigating POPC monolayers at the silicone oil-water and tricaprylin-water interfaces. Pendant drop tensiometry was used to obtain the dependence of γ on a/acp. Furthermore, by calculating the surface pressure, Π, from γ and multiplying a/acp with an estimated acp value, the dependence of Π on a was obtained. When a value approximately equal to the a of POPC bilayers was assigned to acp, the resultant Π-a profile partially or approximately completely overlapped with the Π-a isotherms obtained for the monolayers at the air-water interface using a Langmuir trough. The overlap for the silicone oil-water interface occurred at a ≤ 77 Å2, while that for the tricaprylin-water interface occurred in approximately the entire a region. The results indicate that the Π of the condensed monolayers is little affected by bulk oil. Thus, the γ-a relationship for the oil-water interface can be determined by comparing the compression isotherm with the one obtained for the air-water interface.
Collapse
Affiliation(s)
- Chiho Kataoka-Hamai
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Kohsaku Kawakami
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
29
|
Constructing ion channels from water-soluble α-helical barrels. Nat Chem 2021; 13:643-650. [PMID: 33972753 PMCID: PMC7611114 DOI: 10.1038/s41557-021-00688-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 03/05/2021] [Indexed: 12/21/2022]
Abstract
The design of peptides that assemble in membranes to form functional ion channels is challenging. Specifically, hydrophobic interactions must be designed between the peptides and at the peptide-lipid interfaces simultaneously. Here, we take a multi-step approach towards this problem. First, we use rational de novo design to generate water-soluble α-helical barrels with polar interiors, and confirm their structures using high-resolution X-ray crystallography. These α-helical barrels have water-filled lumens like those of transmembrane channels. Then, we modify the sequences to facilitate their insertion into lipid bilayers. Single-channel electrical recordings and fluorescent imaging of the peptides in membranes show monodisperse, cation-selective channels of unitary conductance. Surprisingly, however, an X-ray structure solved from lipidic cubic phase for one peptide reveals an alternative state with tightly packed helices and a constricted channel. To reconcile these observations, we perform computational analyses to compare the properties of possible different states of the peptide.
Collapse
|
30
|
Liu P, Zabala-Ferrera O, Beltramo PJ. Fabrication and electromechanical characterization of freestanding asymmetric membranes. Biophys J 2021; 120:1755-1764. [PMID: 33675759 PMCID: PMC8204216 DOI: 10.1016/j.bpj.2021.02.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/12/2021] [Accepted: 02/24/2021] [Indexed: 01/07/2023] Open
Abstract
All biological cell membranes maintain an electric transmembrane potential of around 100 mV, due in part to an asymmetric distribution of charged phospholipids across the membrane. This asymmetry is crucial to cell health and physiological processes such as intracell signaling, receptor-mediated endocytosis, and membrane protein function. Experimental artificial membrane systems incorporate essential cell membrane structures, such as the phospholipid bilayer, in a controllable manner in which specific properties and processes can be isolated and examined. Here, we describe an approach to fabricate and characterize planar, freestanding, asymmetric membranes and use it to examine the effect of headgroup charge on membrane stiffness. The approach relies on a thin film balance used to form a freestanding membrane by adsorbing aqueous phase lipid vesicles to an oil-water interface and subsequently thinning the oil to form a bilayer. We validate this lipid-in-aqueous approach by analyzing the thickness and compressibility of symmetric membranes with varying zwitterionic 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and anionic 1,2-dioleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) sodium salt (DOPG) content as compared with previous lipid-in-oil methods. We find that as the concentration of DOPG increases, membranes become thicker and stiffer. Asymmetric membranes are fabricated by controlling the lipid vesicle composition in the aqueous reservoirs on either side of the oil. Membrane compositional asymmetry is qualitatively demonstrated using a fluorescence quenching assay and quantitatively characterized through voltage-dependent capacitance measurements. Stable asymmetric membranes with DOPC on one side and DOPC-DOPG mixtures on the other were created with transmembrane potentials ranging from 15 to 80 mV. Introducing membrane charge asymmetry decreases both the thickness and stiffness in comparison with symmetric membranes with the same overall phospholipid composition. These initial successes demonstrate a viable pathway to quantitatively characterize asymmetric bilayers that can be extended to accommodate more complex membranes and membrane processes in the future.
Collapse
Affiliation(s)
- Paige Liu
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts
| | - Oscar Zabala-Ferrera
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts
| | - Peter J Beltramo
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts.
| |
Collapse
|
31
|
El-Beyrouthy J, Freeman E. Characterizing the Structure and Interactions of Model Lipid Membranes Using Electrophysiology. MEMBRANES 2021; 11:319. [PMID: 33925756 PMCID: PMC8145864 DOI: 10.3390/membranes11050319] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/22/2021] [Accepted: 04/25/2021] [Indexed: 11/16/2022]
Abstract
The cell membrane is a protective barrier whose configuration determines the exchange both between intracellular and extracellular regions and within the cell itself. Consequently, characterizing membrane properties and interactions is essential for advancements in topics such as limiting nanoparticle cytotoxicity. Characterization is often accomplished by recreating model membranes that approximate the structure of cellular membranes in a controlled environment, formed using self-assembly principles. The selected method for membrane creation influences the properties of the membrane assembly, including their response to electric fields used for characterizing transmembrane exchanges. When these self-assembled model membranes are combined with electrophysiology, it is possible to exploit their non-physiological mechanics to enable additional measurements of membrane interactions and phenomena. This review describes several common model membranes including liposomes, pore-spanning membranes, solid supported membranes, and emulsion-based membranes, emphasizing their varying structure due to the selected mode of production. Next, electrophysiology techniques that exploit these structures are discussed, including conductance measurements, electrowetting and electrocompression analysis, and electroimpedance spectroscopy. The focus of this review is linking each membrane assembly technique to the properties of the resulting membrane, discussing how these properties enable alternative electrophysiological approaches to measuring membrane characteristics and interactions.
Collapse
Affiliation(s)
| | - Eric Freeman
- School of Environmental, Civil, Agricultural and Mechanical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, USA;
| |
Collapse
|
32
|
Bachler S, Ort M, Krämer SD, Dittrich PS. Permeation Studies across Symmetric and Asymmetric Membranes in Microdroplet Arrays. Anal Chem 2021; 93:5137-5144. [PMID: 33721989 PMCID: PMC8014892 DOI: 10.1021/acs.analchem.0c04939] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We investigated the permeation of molecules across lipid membranes on an open microfluidic platform. An array of droplet pairs was created by spotting aqueous droplets, dispersed in a lipid oil solution, onto a plate with cavities surrounded by a hydrophobic substrate. Droplets in two adjacent cavities come in contact and form an artificial lipid bilayer, called a droplet interface bilayer (DIB). The method allows for monitoring permeation of fluorescently tagged compounds from a donor droplet to an acceptor droplet. A mathematical model was applied to describe the kinetics and determine the permeation coefficient. We also demonstrate that permeation kinetics can be followed over a series of droplets, all connected via DIBs. Moreover, by changing the lipid oil composition after spotting donor droplets, we were able to create asymmetric membranes that we used to mimic the asymmetry of the cellular plasma membrane. Finally, we developed a protocol to separate and extract the droplets for label-free analysis of permeating compounds by liquid chromatography-mass spectrometry. Our versatile platform has the potential to become a new tool for the screening of drug membrane permeability in the future.
Collapse
Affiliation(s)
- Simon Bachler
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Marion Ort
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Stefanie D Krämer
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zürich 8093, Switzerland
| | - Petra S Dittrich
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| |
Collapse
|
33
|
Parperis C, Wallace MI. Single-molecule imaging of pore-forming toxin dynamics in droplet interface bilayers. Methods Enzymol 2021; 649:431-459. [PMID: 33712195 DOI: 10.1016/bs.mie.2021.01.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Single-channel recording from pore-forming toxins (PFTs) provides a clear and direct molecular readout of toxin action. However to complete any mechanistic understanding of PFT behavior, this functional kinetic readout must be linked to the underlying changes in toxin structure, binding, conformation, or stoichiometry. Here we review how single-molecule imaging methods might be used to further our understanding of PFTs, and provide detailed practical guidance on the use of droplet interface bilayers as a method capable of examining both single-molecule fluorescence and single-channel electrical signals from PFTs.
Collapse
Affiliation(s)
- Christopher Parperis
- Department of Chemistry, Britannia House, King's College London, London, United Kingdom
| | - Mark I Wallace
- Department of Chemistry, Britannia House, King's College London, London, United Kingdom.
| |
Collapse
|
34
|
Czekalska MA, Jacobs AMJ, Toprakcioglu Z, Kong L, Baumann KN, Gang H, Zubaite G, Ye R, Mu B, Levin A, Huck WTS, Knowles TPJ. One-Step Generation of Multisomes from Lipid-Stabilized Double Emulsions. ACS APPLIED MATERIALS & INTERFACES 2021; 13:6739-6747. [PMID: 33522221 DOI: 10.1021/acsami.0c16019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Multisomes are multicompartmental structures formed by a lipid-stabilized network of aqueous droplets, which are contained by an outer oil phase. These biomimetic structures are emerging as a versatile platform for soft matter and synthetic biology applications. While several methods for producing multisomes have been described, including microfluidic techniques, approaches for generating biocompatible, monodisperse multisomes in a reproducible manner remain challenging to implement due to low throughput and complex device fabrication. Here, we report on a robust method for the dynamically controlled generation of multisomes with controllable sizes and high monodispersity from lipid-based double emulsions. The described microfluidic approach entails the use of three different phases forming a water/oil/water (W/O/W) double emulsion stabilized by lipid layers. We employ a gradient of glycerol concentration between the inner core and outer phase to drive the directed osmosis, allowing the swelling of lamellar lipid layers resulting in the formation of small aqueous daughter droplets at the interface of the inner aqueous core. By adding increasing concentrations of glycerol to the outer aqueous phase and subsequently varying the osmotic gradient, we show that key structural parameters, including the size of the internal droplets, can be specifically controlled. Finally, we show that this approach can be used to generate multisomes encapsulating small-molecule cargo, with potential applications in synthetic biology, drug delivery, and as carriers for active materials in the food and cosmetics industries.
Collapse
Affiliation(s)
- Magdalena A Czekalska
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, United Kingdom
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland
| | - Anne M J Jacobs
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, United Kingdom
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen 6525 AJ, The Netherlands
| | - Zenon Toprakcioglu
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, United Kingdom
| | - Lingling Kong
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, United Kingdom
- State Key Laboratory of Bioreactor Engineering and Applied Chemistry Institute, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Kevin N Baumann
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, United Kingdom
| | - Hongze Gang
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, United Kingdom
- State Key Laboratory of Bioreactor Engineering and Applied Chemistry Institute, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Greta Zubaite
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, United Kingdom
| | - Ruqiang Ye
- State Key Laboratory of Bioreactor Engineering and Applied Chemistry Institute, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Bozhong Mu
- State Key Laboratory of Bioreactor Engineering and Applied Chemistry Institute, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, Shanghai 200237, China
| | - Aviad Levin
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, United Kingdom
| | - Wilhelm T S Huck
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen 6525 AJ, The Netherlands
| | - Tuomas P J Knowles
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, United Kingdom
- Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, CB2 0HE Cambridge, United Kingdom
| |
Collapse
|
35
|
Huang Y, Chandran Suja V, Tajuelo J, Fuller GG. Surface energy and separation mechanics of droplet interface phospholipid bilayers. J R Soc Interface 2021; 18:20200860. [PMID: 33530859 PMCID: PMC8086854 DOI: 10.1098/rsif.2020.0860] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 01/12/2021] [Indexed: 01/06/2023] Open
Abstract
Droplet interface bilayers are a convenient model system to study the physio-chemical properties of phospholipid bilayers, the major component of the cell membrane. The mechanical response of these bilayers to various external mechanical stimuli is an active area of research because of its implications for cellular viability and the development of artificial cells. In this article, we characterize the separation mechanics of droplet interface bilayers under step strain using a combination of experiments and numerical modelling. Initially, we show that the bilayer surface energy can be obtained using principles of energy conservation. Subsequently, we subject the system to a step strain by separating the drops in a step-wise manner, and track the evolution of the bilayer contact angle and radius. The relaxation time of the bilayer contact angle and radius along with the decay magnitude of the bilayer radius were observed to increase with each separation step. By analysing the forces acting on the bilayer and the rate of separation, we show that the bilayer separates primarily through the peeling process with the dominant resistance to separation coming from viscous dissipation associated with corner flows. Finally, we explain the intrinsic features of the observed bilayer separation by means of a mathematical model comprising the Young-Laplace equation and an evolution equation. We believe that the reported experimental and numerical results extend the scientific understanding of lipid bilayer mechanics, and that the developed experimental and numerical tools offer a convenient platform to study the mechanics of other types of bilayers.
Collapse
Affiliation(s)
- Y. Huang
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - V. Chandran Suja
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - J. Tajuelo
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
- Departamento de Física Interdisciplinar, Universidad Nacional de Eduación a Distancia UNED, Madrid 28040, Spain
| | - G. G. Fuller
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
36
|
Findlay HE, Harris NJ, Booth PJ. Integrating Membrane Transporter Proteins into Droplet Interface Bilayers. Methods Mol Biol 2021; 2315:31-41. [PMID: 34302668 DOI: 10.1007/978-1-0716-1468-6_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Droplet interface bilayers (DIBs) are an emerging tool within synthetic biology that aims to recreate biological processes in artificial cells. A critical component for the utility of these bilayers is controlled flow between compartments and, notably, uphill transport against a substrate concentration gradient. A versatile method to achieve the desired flow is to exploit the specificity of membrane proteins that regulate the movement of ions and transport of specific metabolic compounds. Methods have been in existence for some time to synthesize proteins within a droplet as well as incorporate membrane proteins into DIBS; however, there have been few reports combining synthesis and DIB incorporation for membrane transporters that demonstrate specific, uphill transport. This chapter presents two methods for the incorporation of a membrane transporter into a simple two-droplet DIB system, with the downhill and uphill transport reaction readily monitored by fluorescence microscopy.
Collapse
Affiliation(s)
| | | | - Paula J Booth
- Department of Chemistry, Kings College London, London, UK.
| |
Collapse
|
37
|
Bachler S, Haidas D, Ort M, Duncombe TA, Dittrich PS. Microfluidic platform enables tailored translocation and reaction cascades in nanoliter droplet networks. Commun Biol 2020; 3:769. [PMID: 33318607 PMCID: PMC7736871 DOI: 10.1038/s42003-020-01489-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 11/14/2020] [Indexed: 02/03/2023] Open
Abstract
In the field of bottom-up synthetic biology, lipid membranes are the scaffold to create minimal cells and mimic reactions and processes at or across the membrane. In this context, we employ here a versatile microfluidic platform that enables precise positioning of nanoliter droplets with user-specified lipid compositions and in a defined pattern. Adjacent droplets make contact and form a droplet interface bilayer to simulate cellular membranes. Translocation of molecules across membranes are tailored by the addition of alpha-hemolysin to selected droplets. Moreover, we developed a protocol to analyze the translocation of non-fluorescent molecules between droplets with mass spectrometry. Our method is capable of automated formation of one- and two-dimensional droplet networks, which we demonstrated by connecting droplets containing different compound and enzyme solutions to perform translocation experiments and a multistep enzymatic cascade reaction across the droplet network. Our platform opens doors for creating complex artificial systems for bottom-up synthetic biology. Simon Bachler et al. present a new microfluidic platform to control the precise position and patterns of nanoliter droplets with various lipid materials. They show their platform enables monitoring of droplets and subsequent label-free mass spectrometry, which represents an important advance for the synthetic biology community.
Collapse
Affiliation(s)
- Simon Bachler
- Department of Biosystems Science and Engineering, ETH Zurich, 4058, Basel, Switzerland
| | - Dominik Haidas
- Department of Biosystems Science and Engineering, ETH Zurich, 4058, Basel, Switzerland
| | - Marion Ort
- Department of Biosystems Science and Engineering, ETH Zurich, 4058, Basel, Switzerland
| | - Todd A Duncombe
- Department of Biosystems Science and Engineering, ETH Zurich, 4058, Basel, Switzerland
| | - Petra S Dittrich
- Department of Biosystems Science and Engineering, ETH Zurich, 4058, Basel, Switzerland.
| |
Collapse
|
38
|
Continuous and Rapid Solution Exchange in a Lipid Bilayer Perfusion System Based on Droplet-Interface Bilayer. Methods Mol Biol 2020. [PMID: 32918739 DOI: 10.1007/978-1-0716-0806-7_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Because of the high sensitivity of lipid bilayers to external pressure fluctuations, a major challenge in functional studies of biological pores or ion channels is the difficulty in exchanging solutions rapidly while maintaining the stability of the lipid bilayer in a model membrane. Here we describe a droplet-interface bilayer-based perfusion system that has been routinely used in our research and is currently the most robust and stable perfusion system that provides prompt solution exchange surrounding a lipid bilayer. In this model membrane system, solutions can be completely exchanged within 1-2 s to obtain prompt responses of a lipid bilayer or membrane pores to the membrane environments. Also, our system is stable enough to sustain continuous perfusions up to at least dozens of minutes. To demonstrate, we show that acidification-induced protein channel insertion, substrate binding to protein channels, and pH gradient-driven protein translocation of anthrax toxin can be sequentially initiated by continuous perfusions in our system. Moreover, by rapidly switching the solutions, the protein translocation based on ratchet mechanisms can be paused and reinitiated iteratively in our system. Overall, this perfusion system provides a controllable and reliable solution exchange platform for investigations of pores and translocations on lipid bilayers.
Collapse
|
39
|
Kataoka-Hamai C, Kawakami K. Determination of the Coverage of Phosphatidylcholine Monolayers Formed at Silicone Oil–Water Interfaces by Vesicle Fusion. J Phys Chem B 2020; 124:8719-8727. [DOI: 10.1021/acs.jpcb.0c06310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chiho Kataoka-Hamai
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Kohsaku Kawakami
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
40
|
Stoller MA, Gromowsky M, Rauhauser M, Judah M, Konda A, Jurich CP, Morin SA. Crystallization at droplet interfaces for the fabrication of geometrically programmed synthetic magnetosomes. SOFT MATTER 2020; 16:5819-5826. [PMID: 32324186 DOI: 10.1039/d0sm00410c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Biological systems demonstrate exquisite three dimensional (3D) control over crystal nucleation and growth using soft micro/nanoenvironments, such as vesicles, for reagent transport and confinement. It remains challenging to mimic such biomineralization processes using synthetic systems. A synthetic mineralization strategy applicable to the synthesis of artificial magnetosomes with programmable magnetic domains is described. This strategy relies on the compartmentalization of precursors in surfactant-stabilized liquid microdroplets which, when contacted, spontaneously form lipid bilayers that support reagent transport and interface-confined magnetite nucleation and growth. The resulting magnetic domains are polarized and thus readily manipulated using magnetic fields or assembled using droplet-droplet interactions. This strategy presents a new, liquid phase procedure for the synthesis of vesicles with geometrically controlled inorganic features that would be difficult to produce otherwise. The artificial magnetosomes demonstrated could find use in, for example, drug/cargo delivery, droplet microfluidics, and formulation science.
Collapse
Affiliation(s)
- Michael A Stoller
- Department of Chemistry, University of Nebraska-Lincoln, Hamilton Hall, Lincoln, NE 68588, USA.
| | | | | | | | | | | | | |
Collapse
|
41
|
Rofeh J, Theogarajan L. Instantaneous tension measurements in droplet interface bilayers using an inexpensive, integrated pendant drop camera. SOFT MATTER 2020; 16:4484-4493. [PMID: 32337523 DOI: 10.1039/d0sm00418a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Recently, droplet interface bilayers (DIBs) have been used to determine bilayer tension and thickness in situ by automated image analysis using a microscope and an applied voltage. In this paper, we demonstrate improvements to these measurements by integrating an inexpensive pendant drop setup onto the microscope stage, which allows for simultaneous imaging of DIBs from both the bottom and side. By using pendant drop shape analysis in situ to determine the monolayer tension of the droplets, we avoid the reliance on applied voltages to determine tension. The integrated system also allows for direct measurement of both the major and minor diameter of the elliptical contact region, which produces a more direct measurement of the bilayer specific capacitance. Additionally, we demonstrate a technique for measuring the instantaneous monolayer tension of DIBs using shape analysis despite the assumed requirement for axial symmetry in pendant drop tensiometry. Compared to previous DIB measurements, the integrated pendant drop-microscope system provides improved accuracy accompanied by a fivefold to twentyfold improvement in precision while considerably decreasing the experiment time.
Collapse
Affiliation(s)
- Justin Rofeh
- Department of Physics, University of California, Santa Barbara, California 93106, USA
| | - Luke Theogarajan
- Department of Electrical and Computer Engineering, University of California, Santa Barbara, California 93106, USA.
| |
Collapse
|
42
|
Li J, Baxani DK, Jamieson WD, Xu W, Rocha VG, Barrow DA, Castell OK. Formation of Polarized, Functional Artificial Cells from Compartmentalized Droplet Networks and Nanomaterials, Using One-Step, Dual-Material 3D-Printed Microfluidics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1901719. [PMID: 31921557 PMCID: PMC6947711 DOI: 10.1002/advs.201901719] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/04/2019] [Indexed: 05/05/2023]
Abstract
The bottom-up construction of synthetic cells with user-defined chemical organization holds considerable promise in the creation of bioinspired materials. Complex emulsions, droplet networks, and nested vesicles all represent platforms for the engineering of segregated chemistries with controlled communication, analogous to biological cells. Microfluidic manufacture of such droplet-based materials typically results in radial or axisymmetric structures. In contrast, biological cells frequently display chemical polarity or gradients, which enable the determination of directionality, and inform higher-order interactions. Here, a dual-material, 3D-printing methodology to produce microfluidic architectures that enable the construction of functional, asymmetric, hierarchical, emulsion-based artificial cellular chassis is developed. These materials incorporate droplet networks, lipid membranes, and nanoparticle components. Microfluidic 3D-channel arrangements enable symmetry-breaking and the spatial patterning of droplet hierarchies. This approach can produce internal gradients and hemispherically patterned, multilayered shells alongside chemical compartmentalization. Such organization enables incorporation of organic and inorganic components, including lipid bilayers, within the same entity. In this way, functional polarization, that imparts individual and collective directionality on the resulting artificial cells, is demonstrated. This approach enables exploitation of polarity and asymmetry, in conjunction with compartmentalized and networked chemistry, in single and higher-order organized structures, thereby increasing the palette of functionality in artificial cellular materials.
Collapse
Affiliation(s)
- Jin Li
- Cardiff University School of Pharmacy and Pharmaceutical SciencesRedwood Building, King Edward VII AveCardiffCF10 3NBUK
- Cardiff University School of EngineeringQueen's Buildings, 14‐17 The ParadeCardiffCF24 3AAUK
| | - Divesh Kamal Baxani
- Cardiff University School of Pharmacy and Pharmaceutical SciencesRedwood Building, King Edward VII AveCardiffCF10 3NBUK
| | - William David Jamieson
- Cardiff University School of Pharmacy and Pharmaceutical SciencesRedwood Building, King Edward VII AveCardiffCF10 3NBUK
| | - Wen Xu
- Cardiff Business School Cardiff UniversityAberconway Building, Colum DrCardiffCF10 3EUUK
| | - Victoria Garcia Rocha
- Cardiff University School of EngineeringQueen's Buildings, 14‐17 The ParadeCardiffCF24 3AAUK
| | - David Anthony Barrow
- Cardiff University School of EngineeringQueen's Buildings, 14‐17 The ParadeCardiffCF24 3AAUK
| | - Oliver Kieran Castell
- Cardiff University School of Pharmacy and Pharmaceutical SciencesRedwood Building, King Edward VII AveCardiffCF10 3NBUK
| |
Collapse
|
43
|
Kataoka-Hamai C, Kawakami K. Interaction Mechanisms of Giant Unilamellar Vesicles with Hydrophobic Glass Surfaces and Silicone Oil-Water Interfaces: Adsorption, Deformation, Rupture, Dynamic Shape Changes, Internal Vesicle Formation, and Desorption. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:16136-16145. [PMID: 31697503 DOI: 10.1021/acs.langmuir.9b02472] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Phospholipid monolayers at oil-water interfaces are often obtained via vesicle adsorption. However, the interaction mechanisms of vesicles with these oil-water interfaces remain unclear. Herein, we studied the adsorption of giant unilamellar vesicles (GUVs) of approximately 2-5 μm diameter onto silicone oil-water interfaces and glass surfaces modified with hexamethyldisilazane (HMDS) and octadecyltrimethoxysilane (ODTMS) using fluorescence microscopy. The GUVs exhibited various modes of interaction, adsorbing on the silanized glass surfaces without sizable deformation, whereas GUVs bound to the silicone oil-water interface exhibited large deformation. After adsorption, GUV rupture occurred within 350, 110, and 3 ms on HMDS-modified glass, ODTMS-modified glass, and silicone oil-water interface, respectively. On glass surfaces, GUV rupture was often initiated and proceeded with pore formation near the surface. The monolayer patches formed by GUV rupture on HMDS-modified glass remained for at least 1 h over an area approximately twice of that estimated from the original GUV. On the ODTMS-modified glass and silicone oil surfaces, the monolayer patch structures disappeared in milliseconds owing to lipid diffusion across the interface. When adsorbed on the oil-water interface, the GUVs spontaneously underwent dynamic shape changes, internal vesicle formation, and desorption without rupture. Thus, it can be concluded that these different pathways arose from different lipid-surface affinities.
Collapse
Affiliation(s)
- Chiho Kataoka-Hamai
- International Center for Materials Nanoarchitectonics (WPI-MANA) , National Institute for Materials Science , 1-1 Namiki , Tsukuba , Ibaraki 305-0044 , Japan
| | - Kohsaku Kawakami
- International Center for Materials Nanoarchitectonics (WPI-MANA) , National Institute for Materials Science , 1-1 Namiki , Tsukuba , Ibaraki 305-0044 , Japan
| |
Collapse
|
44
|
Darley E, Singh JKD, Surace NA, Wickham SFJ, Baker MAB. The Fusion of Lipid and DNA Nanotechnology. Genes (Basel) 2019; 10:E1001. [PMID: 31816934 PMCID: PMC6947036 DOI: 10.3390/genes10121001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/18/2019] [Accepted: 11/26/2019] [Indexed: 01/06/2023] Open
Abstract
Lipid membranes form the boundary of many biological compartments, including organelles and cells. Consisting of two leaflets of amphipathic molecules, the bilayer membrane forms an impermeable barrier to ions and small molecules. Controlled transport of molecules across lipid membranes is a fundamental biological process that is facilitated by a diverse range of membrane proteins, including ion-channels and pores. However, biological membranes and their associated proteins are challenging to experimentally characterize. These challenges have motivated recent advances in nanotechnology towards building and manipulating synthetic lipid systems. Liposomes-aqueous droplets enclosed by a bilayer membrane-can be synthesised in vitro and used as a synthetic model for the cell membrane. In DNA nanotechnology, DNA is used as programmable building material for self-assembling biocompatible nanostructures. DNA nanostructures can be functionalised with hydrophobic chemical modifications, which bind to or bridge lipid membranes. Here, we review approaches that combine techniques from lipid and DNA nanotechnology to engineer the topography, permeability, and surface interactions of membranes, and to direct the fusion and formation of liposomes. These approaches have been used to study the properties of membrane proteins, to build biosensors, and as a pathway towards assembling synthetic multicellular systems.
Collapse
Affiliation(s)
- Es Darley
- School of Biotechnology and Biomolecular Science, UNSW Sydney, Kensington 2052, Australia;
| | - Jasleen Kaur Daljit Singh
- School of Chemistry, University of Sydney, Camperdown 2006, Australia; (J.K.D.S.); (N.A.S.)
- School of Chemical and Biomolecular Engineering, University of Sydney, Camperdown 2006, Australia
- Sydney Nanoscience Institute, University of Sydney, Camperdown 2006, Australia
| | - Natalie A. Surace
- School of Chemistry, University of Sydney, Camperdown 2006, Australia; (J.K.D.S.); (N.A.S.)
| | - Shelley F. J. Wickham
- School of Chemistry, University of Sydney, Camperdown 2006, Australia; (J.K.D.S.); (N.A.S.)
- Sydney Nanoscience Institute, University of Sydney, Camperdown 2006, Australia
- School of Physics, University of Sydney, Camperdown 2006, Australia
| | - Matthew A. B. Baker
- School of Biotechnology and Biomolecular Science, UNSW Sydney, Kensington 2052, Australia;
- CSIRO Synthetic Biology Future Science Platform, GPO Box 2583, Brisbane, QLD 4001, Australia
| |
Collapse
|
45
|
Valet M, Pontani LL, Voituriez R, Wandersman E, Prevost AM. Diffusion through Nanopores in Connected Lipid Bilayer Networks. PHYSICAL REVIEW LETTERS 2019; 123:088101. [PMID: 31491227 DOI: 10.1103/physrevlett.123.088101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Indexed: 05/16/2023]
Abstract
A biomimetic model of cell-cell communication was developed to probe the passive molecular transport across ion channels inserted in synthetic lipid bilayers formed between contacting droplets arranged in a linear array. Diffusion of a fluorescent probe across the array was measured for different pore concentrations. The diffusion characteristic timescale is found to vary nonlinearly with the pore concentration. Our measurements are successfully modeled by a continuous time random walk description whose waiting time is the first exit time from a droplet through a cluster of pores. The size of the cluster of pores is found to increase with their concentration. Our results provide a direct link between the mesoscopic permeation properties and the microscopic characteristics of the pores, such as their number, size, and spatial arrangement.
Collapse
Affiliation(s)
- M Valet
- Laboratoire Jean Perrin CNRS UMR 8237, Sorbonne Université, 4 place Jussieu, 75005 Paris, France
| | - L-L Pontani
- Laboratoire Jean Perrin CNRS UMR 8237, Sorbonne Université, 4 place Jussieu, 75005 Paris, France
| | - R Voituriez
- Laboratoire Jean Perrin CNRS UMR 8237, Sorbonne Université, 4 place Jussieu, 75005 Paris, France
- Laboratoire de Physique Théorique de la Matière Condensée, CNRS UMR 7600, Sorbonne Université, 4 place Jussieu, 75005 Paris, France
| | - E Wandersman
- Laboratoire Jean Perrin CNRS UMR 8237, Sorbonne Université, 4 place Jussieu, 75005 Paris, France
| | - A M Prevost
- Laboratoire Jean Perrin CNRS UMR 8237, Sorbonne Université, 4 place Jussieu, 75005 Paris, France
| |
Collapse
|
46
|
Tsemperouli M, Amstad E, Sakai N, Matile S, Sugihara K. Black Lipid Membranes: Challenges in Simultaneous Quantitative Characterization by Electrophysiology and Fluorescence Microscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:8748-8757. [PMID: 31244250 DOI: 10.1021/acs.langmuir.9b00673] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Horizontal black lipid membranes (BLMs) enable optical microscopy to be combined with the electrophysiological measurements for studying ion channels, peptide pores, and ionophores. However, a careful literature review reveals that simultaneous fluorescence and electrical recordings in horizontal BLMs have been rarely reported for an unclear reason, whereas many works employ bright-field microscopy instead of fluorescence microscopy or perform fluorescence imaging and electrical measurements one after another separately without truly exploiting the advantage of the combined setup. In this work, the major causes related to the simultaneous electrical and fluorescence recordings in horizontal BLMs are identified, and several solutions to counteract the issue are also proposed.
Collapse
Affiliation(s)
- Maria Tsemperouli
- School of Chemistry and Biochemistry , University of Geneva , CH-1211 Geneva , Switzerland
| | - Esther Amstad
- Institute of Materials , Ecole Polytechnique Fédérale de Lausanne , 1015 Lausanne , Switzerland
| | - Naomi Sakai
- School of Chemistry and Biochemistry , University of Geneva , CH-1211 Geneva , Switzerland
| | - Stefan Matile
- School of Chemistry and Biochemistry , University of Geneva , CH-1211 Geneva , Switzerland
| | - Kaori Sugihara
- School of Chemistry and Biochemistry , University of Geneva , CH-1211 Geneva , Switzerland
| |
Collapse
|
47
|
Cryo-EM structure of OSCA1.2 from Oryza sativa elucidates the mechanical basis of potential membrane hyperosmolality gating. Proc Natl Acad Sci U S A 2019; 116:14309-14318. [PMID: 31227607 DOI: 10.1073/pnas.1900774116] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sensing and responding to environmental water deficiency and osmotic stresses are essential for the growth, development, and survival of plants. Recently, an osmolality-sensing ion channel called OSCA1 was discovered that functions in sensing hyperosmolality in Arabidopsis Here, we report the cryo-electron microscopy (cryo-EM) structure and function of an OSCA1 homolog from rice (Oryza sativa; OsOSCA1.2), leading to a model of how it could mediate hyperosmolality sensing and transport pathway gating. The structure reveals a dimer; the molecular architecture of each subunit consists of 11 transmembrane (TM) helices and a cytosolic soluble domain that has homology to RNA recognition proteins. The TM domain is structurally related to the TMEM16 family of calcium-dependent ion channels and lipid scramblases. The cytosolic soluble domain possesses a distinct structural feature in the form of extended intracellular helical arms that are parallel to the plasma membrane. These helical arms are well positioned to potentially sense lateral tension on the inner leaflet of the lipid bilayer caused by changes in turgor pressure. Computational dynamic analysis suggests how this domain couples to the TM portion of the molecule to open a transport pathway. Hydrogen/deuterium exchange mass spectrometry (HDXMS) experimentally confirms the conformational dynamics of these coupled domains. These studies provide a framework to understand the structural basis of proposed hyperosmolality sensing in a staple crop plant, extend our knowledge of the anoctamin superfamily important for plants and fungi, and provide a structural mechanism for potentially translating membrane stress to transport regulation.
Collapse
|
48
|
Lee Y, Choi SQ. Quantitative analysis for lipophilic drug transport through a model lipid membrane with membrane retention. Eur J Pharm Sci 2019; 134:176-184. [DOI: 10.1016/j.ejps.2019.04.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/17/2019] [Accepted: 04/17/2019] [Indexed: 12/27/2022]
|
49
|
Allen-Benton M, Findlay HE, Booth PJ. Probing membrane protein properties using droplet interface bilayers. Exp Biol Med (Maywood) 2019; 244:709-720. [PMID: 31053046 PMCID: PMC6552395 DOI: 10.1177/1535370219847939] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
IMPACT STATEMENT The paper presents a comprehensive review of integral membrane protein studies utilizing droplet interface bilayers. Droplet interface bilayers are a novel method of constructing artificial lipid bilayers with enhanced stability and physicochemical complexity compared to existing methods. Their unique morphology also suggests applications in the construction of synthetic biological systems and protocells. As well as serving as a guide to in vitro membrane protein functional studies using droplet interface bilayers in the literature to date, a novel in vitro study of a flippase protein in a droplet interface bilayer is presented.
Collapse
Affiliation(s)
| | | | - Paula J Booth
- Department of Chemistry, King’s College London,
London SE1 1DB, UK
| |
Collapse
|
50
|
Coker HLE, Cheetham MR, Kattnig DR, Wang YJ, Garcia-Manyes S, Wallace MI. Controlling Anomalous Diffusion in Lipid Membranes. Biophys J 2019; 116:1085-1094. [PMID: 30846364 DOI: 10.1016/j.bpj.2018.12.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 11/21/2018] [Accepted: 12/14/2018] [Indexed: 12/24/2022] Open
Abstract
Diffusion in cell membranes is not just simple two-dimensional Brownian motion but typically depends on the timescale of the observation. The physical origins of this anomalous subdiffusion are unresolved, and model systems capable of quantitative and reproducible control of membrane diffusion have been recognized as a key experimental bottleneck. Here, we control anomalous diffusion using supported lipid bilayers containing lipids derivatized with polyethylene glycol (PEG) headgroups. Bilayers with specific excluded area fractions are formed by control of PEG lipid mole fraction. These bilayers exhibit a switch in diffusive behavior, becoming anomalous as bilayer continuity is disrupted. Using a combination of single-molecule fluorescence and interferometric imaging, we measure the anomalous behavior in this model over four orders of magnitude in time. Diffusion in these bilayers is well described by a power-law dependence of the mean-square displacement with observation time. Anomaleity in this system can be tailored by simply controlling the mole fraction of PEG lipid, producing bilayers with diffusion parameters similar to those observed for anomalous diffusion in biological membranes.
Collapse
Affiliation(s)
- Helena L E Coker
- Department of Chemistry, King's College London, London, United Kingdom; Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom
| | - Matthew R Cheetham
- Department of Chemistry, King's College London, London, United Kingdom; Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom
| | - Daniel R Kattnig
- Living Systems Institute & Department of Physics, University of Exeter, Exeter, United Kingdom
| | - Yong J Wang
- Department of Physics, King's College London, London, United Kingdom
| | | | - Mark I Wallace
- Department of Chemistry, King's College London, London, United Kingdom.
| |
Collapse
|