1
|
Le May N, Courraud J, Boujelbène I, Obringer C, Ogi T, Lehmann AR, Laffargue F, Lehalle D, Mizuno S, Mohammed S, Ormières C, Willems M, Laugel V, Calmels N. Clinical and molecular overlap between nucleotide excision repair (NER) disorders and DYRK1A haploinsufficiency syndrome. Front Neurosci 2025; 19:1554093. [PMID: 40206408 PMCID: PMC11979163 DOI: 10.3389/fnins.2025.1554093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 03/03/2025] [Indexed: 04/11/2025] Open
Abstract
Nucleotide excision repair (NER) disorders are genetic conditions caused by defects in the pathway responsible for repairing DNA lesions due to UV radiation. These defects lead to a variety of heterogeneous disorders, including Cockayne syndrome (CS) and trichothiodystrophy (TTD). In this study, we report 11 patients initially suspected of having CS or TTD who were ultimately diagnosed with DYRK1A haploinsufficiency syndrome using high-throughput sequencing. Comparing clinical presentations, we observed that DYRK1A symptoms overlapped with CS, with shared features such as intellectual disability and microcephaly, systematically present in both disorders and other common symptoms including feeding difficulties, abnormal brain imaging, ataxic gait, hypertonia, and deep-set eyes. However, distinctive features of DYRK1A syndrome, such as severely impaired language, febrile seizures, and autistic behavior or anxiety, helped differentiate it from CS, which typically manifests with severe growth delay, bilateral cataracts, and pigmentary retinopathy. Among the cohort, three patients carried novel DYRK1A variants, including two truncating and one in-frame variant p.Val237_Leu241delinsGlu whose pathogenicity have been confirmed through functional analysis of DYRK1A protein. While previous research has implicated DYRK1A in DNA repair, with DYRK1A being one of the most downregulated genes in CS cells, our study found that DYRK1A patient-derived cell lines did not exhibit NER defects and did not share the CS transcriptomic signature. These findings suggest that if clinical symptoms overlap stems from common molecular disruptions, DYRK1A is involved downstream of the CS genes. This research highlights the importance of considering DYRK1A haploinsufficiency syndrome in the differential diagnoses for NER disorders.
Collapse
Affiliation(s)
- Nicolas Le May
- Laboratoire de génétique médicale, Faculté de médecine de Strasbourg, Strasbourg, France
| | - Jérémie Courraud
- Equipe Génétique et physiopathologie de maladies neurodéveloppementales et épileptogènes, IGBMC, Illkirch, France
| | - Imène Boujelbène
- Equipe Génétique et physiopathologie de maladies neurodéveloppementales et épileptogènes, IGBMC, Illkirch, France
- Laboratoires de diagnostic génétique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Cathy Obringer
- Laboratoire de génétique médicale, Faculté de médecine de Strasbourg, Strasbourg, France
| | - Tomoo Ogi
- Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Alan R. Lehmann
- Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
| | - Fanny Laffargue
- Service de génétique médicale, CHU de Clermont-Ferrand, Clermont-Ferrand, France
| | - Daphné Lehalle
- Service de Génétique, Groupe Hospitalier Pitié Salpêtrière, Paris, France
| | - Seiji Mizuno
- Central Hospital, Aichi Developmental Disability Center, Kamiya, Kasugai, Japan
| | - Shehla Mohammed
- South East Thames Regional Genetics Service, Guy's Hospital, London, United Kingdom
| | - Clothilde Ormières
- Service de Génétique Clinique, Hôpital Necker-Enfants Malades, Paris, France
| | - Marjolaine Willems
- Equipe Maladies Génétiques de l'Enfant et de l'Adulte, CHU de Montpellier, Montpellier, France
| | - Vincent Laugel
- Laboratoire de génétique médicale, Faculté de médecine de Strasbourg, Strasbourg, France
- Service de pédiatrie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Nadège Calmels
- Laboratoire de génétique médicale, Faculté de médecine de Strasbourg, Strasbourg, France
- Laboratoires de diagnostic génétique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| |
Collapse
|
2
|
Ramadhin AR, Lee SH, Zhou D, Salmazo A, Gonzalo-Hansen C, van Sluis M, Blom CMA, Janssens RC, Raams A, Dekkers D, Bezstarosti K, Slade D, Vermeulen W, Pines A, Demmers JAA, Bernecky C, Sixma TK, Marteijn JA. STK19 drives transcription-coupled repair by stimulating repair complex stability, RNA Pol II ubiquitylation, and TFIIH recruitment. Mol Cell 2024; 84:4740-4757.e12. [PMID: 39547223 DOI: 10.1016/j.molcel.2024.10.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/16/2024] [Accepted: 10/23/2024] [Indexed: 11/17/2024]
Abstract
Transcription-coupled nucleotide excision repair (TC-NER) efficiently eliminates DNA damage that impedes gene transcription by RNA polymerase II (RNA Pol II). TC-NER is initiated by the recognition of lesion-stalled RNA Pol II by CSB, which recruits the CRL4CSA ubiquitin ligase and UVSSA. RNA Pol II ubiquitylation at RPB1-K1268 by CRL4CSA serves as a critical TC-NER checkpoint, governing RNA Pol II stability and initiating DNA damage excision by TFIIH recruitment. However, the precise regulatory mechanisms of CRL4CSA activity and TFIIH recruitment remain elusive. Here, we reveal human serine/threonine-protein kinase 19 (STK19) as a TC-NER factor, which is essential for correct DNA damage removal and subsequent transcription restart. Cryogenic electron microscopy (cryo-EM) studies demonstrate that STK19 is an integral part of the RNA Pol II-TC-NER complex, bridging CSA, UVSSA, RNA Pol II, and downstream DNA. STK19 stimulates TC-NER complex stability and CRL4CSA activity, resulting in efficient RNA Pol II ubiquitylation and correct UVSSA and TFIIH binding. These findings underscore the crucial role of STK19 as a core TC-NER component.
Collapse
Affiliation(s)
- Anisha R Ramadhin
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands
| | - Shun-Hsiao Lee
- Division of Biochemistry, Netherlands Cancer Institute and Oncode Institute, 1066 CX Amsterdam, the Netherlands
| | - Di Zhou
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands
| | - Anita Salmazo
- Institute of Science and Technology Austria (ISTA), 3400 Klosterneuburg, Austria
| | - Camila Gonzalo-Hansen
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands
| | - Marjolein van Sluis
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands
| | - Cindy M A Blom
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands
| | - Roel C Janssens
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands
| | - Anja Raams
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands
| | - Dick Dekkers
- Proteomics Center, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands
| | - Karel Bezstarosti
- Proteomics Center, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands
| | - Dea Slade
- Department of Medical Biochemistry, Medical University of Vienna, Max Perutz Labs, Vienna Biocenter, 1030 Vienna, Austria
| | - Wim Vermeulen
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands
| | - Alex Pines
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands
| | - Jeroen A A Demmers
- Proteomics Center, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands
| | - Carrie Bernecky
- Institute of Science and Technology Austria (ISTA), 3400 Klosterneuburg, Austria
| | - Titia K Sixma
- Division of Biochemistry, Netherlands Cancer Institute and Oncode Institute, 1066 CX Amsterdam, the Netherlands.
| | - Jurgen A Marteijn
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands.
| |
Collapse
|
3
|
Carnie CJ, Acampora AC, Bader AS, Erdenebat C, Zhao S, Bitensky E, van den Heuvel D, Parnas A, Gupta V, D'Alessandro G, Sczaniecka-Clift M, Weickert P, Aygenli F, Götz MJ, Cordes J, Esain-Garcia I, Melidis L, Wondergem AP, Lam S, Robles MS, Balasubramanian S, Adar S, Luijsterburg MS, Jackson SP, Stingele J. Transcription-coupled repair of DNA-protein cross-links depends on CSA and CSB. Nat Cell Biol 2024; 26:797-810. [PMID: 38600235 PMCID: PMC11098753 DOI: 10.1038/s41556-024-01391-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 02/29/2024] [Indexed: 04/12/2024]
Abstract
Covalent DNA-protein cross-links (DPCs) are toxic DNA lesions that block replication and require repair by multiple pathways. Whether transcription blockage contributes to the toxicity of DPCs and how cells respond when RNA polymerases stall at DPCs is unknown. Here we find that DPC formation arrests transcription and induces ubiquitylation and degradation of RNA polymerase II. Using genetic screens and a method for the genome-wide mapping of DNA-protein adducts, DPC sequencing, we discover that Cockayne syndrome (CS) proteins CSB and CSA provide resistance to DPC-inducing agents by promoting DPC repair in actively transcribed genes. Consequently, CSB- or CSA-deficient cells fail to efficiently restart transcription after induction of DPCs. In contrast, nucleotide excision repair factors that act downstream of CSB and CSA at ultraviolet light-induced DNA lesions are dispensable. Our study describes a transcription-coupled DPC repair pathway and suggests that defects in this pathway may contribute to the unique neurological features of CS.
Collapse
Affiliation(s)
- Christopher J Carnie
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK.
| | - Aleida C Acampora
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Aldo S Bader
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Chimeg Erdenebat
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Shubo Zhao
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Elnatan Bitensky
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research Israel-Canada, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Diana van den Heuvel
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Avital Parnas
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research Israel-Canada, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Vipul Gupta
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Giuseppina D'Alessandro
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | - Pedro Weickert
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Fatih Aygenli
- Institute of Medical Psychology and Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Maximilian J Götz
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Jacqueline Cordes
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Isabel Esain-Garcia
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Larry Melidis
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Annelotte P Wondergem
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Simon Lam
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Maria S Robles
- Institute of Medical Psychology and Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Shankar Balasubramanian
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Sheera Adar
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research Israel-Canada, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Stephen P Jackson
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK.
| | - Julian Stingele
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
4
|
van Sluis M, Yu Q, van der Woude M, Gonzalo-Hansen C, Dealy SC, Janssens RC, Somsen HB, Ramadhin AR, Dekkers DHW, Wienecke HL, Demmers JJPG, Raams A, Davó-Martínez C, Llerena Schiffmacher DA, van Toorn M, Häckes D, Thijssen KL, Zhou D, Lammers JG, Pines A, Vermeulen W, Pothof J, Demmers JAA, van den Berg DLC, Lans H, Marteijn JA. Transcription-coupled DNA-protein crosslink repair by CSB and CRL4 CSA-mediated degradation. Nat Cell Biol 2024; 26:770-783. [PMID: 38600236 PMCID: PMC11098752 DOI: 10.1038/s41556-024-01394-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 03/01/2024] [Indexed: 04/12/2024]
Abstract
DNA-protein crosslinks (DPCs) arise from enzymatic intermediates, metabolism or chemicals like chemotherapeutics. DPCs are highly cytotoxic as they impede DNA-based processes such as replication, which is counteracted through proteolysis-mediated DPC removal by spartan (SPRTN) or the proteasome. However, whether DPCs affect transcription and how transcription-blocking DPCs are repaired remains largely unknown. Here we show that DPCs severely impede RNA polymerase II-mediated transcription and are preferentially repaired in active genes by transcription-coupled DPC (TC-DPC) repair. TC-DPC repair is initiated by recruiting the transcription-coupled nucleotide excision repair (TC-NER) factors CSB and CSA to DPC-stalled RNA polymerase II. CSA and CSB are indispensable for TC-DPC repair; however, the downstream TC-NER factors UVSSA and XPA are not, a result indicative of a non-canonical TC-NER mechanism. TC-DPC repair functions independently of SPRTN but is mediated by the ubiquitin ligase CRL4CSA and the proteasome. Thus, DPCs in genes are preferentially repaired in a transcription-coupled manner to facilitate unperturbed transcription.
Collapse
Affiliation(s)
- Marjolein van Sluis
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Qing Yu
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Melanie van der Woude
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Camila Gonzalo-Hansen
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Shannon C Dealy
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Roel C Janssens
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Hedda B Somsen
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Anisha R Ramadhin
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Dick H W Dekkers
- Proteomics Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Hannah Lena Wienecke
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Joris J P G Demmers
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Anja Raams
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Carlota Davó-Martínez
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Diana A Llerena Schiffmacher
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Marvin van Toorn
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - David Häckes
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Karen L Thijssen
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Di Zhou
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Judith G Lammers
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Alex Pines
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Wim Vermeulen
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Joris Pothof
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jeroen A A Demmers
- Proteomics Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - Hannes Lans
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jurgen A Marteijn
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
5
|
Muniesa-Vargas A, Davó-Martínez C, Ribeiro-Silva C, van der Woude M, Thijssen KL, Haspels B, Häckes D, Kaynak ÜU, Kanaar R, Marteijn JA, Theil AF, Kuijten MMP, Vermeulen W, Lans H. Persistent TFIIH binding to non-excised DNA damage causes cell and developmental failure. Nat Commun 2024; 15:3490. [PMID: 38664429 PMCID: PMC11045817 DOI: 10.1038/s41467-024-47935-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Congenital nucleotide excision repair (NER) deficiency gives rise to several cancer-prone and/or progeroid disorders. It is not understood how defects in the same DNA repair pathway cause different disease features and severity. Here, we show that the absence of functional ERCC1-XPF or XPG endonucleases leads to stable and prolonged binding of the transcription/DNA repair factor TFIIH to DNA damage, which correlates with disease severity and induces senescence features in human cells. In vivo, in C. elegans, this prolonged TFIIH binding to non-excised DNA damage causes developmental arrest and neuronal dysfunction, in a manner dependent on transcription-coupled NER. NER factors XPA and TTDA both promote stable TFIIH DNA binding and their depletion therefore suppresses these severe phenotypical consequences. These results identify stalled NER intermediates as pathogenic to cell functionality and organismal development, which can in part explain why mutations in XPF or XPG cause different disease features than mutations in XPA or TTDA.
Collapse
Affiliation(s)
- Alba Muniesa-Vargas
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands
| | - Carlota Davó-Martínez
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands
| | - Cristina Ribeiro-Silva
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands
| | - Melanie van der Woude
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands
| | - Karen L Thijssen
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands
| | - Ben Haspels
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Oncode Institute, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands
| | - David Häckes
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands
| | - Ülkem U Kaynak
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands
| | - Roland Kanaar
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Oncode Institute, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands
| | - Jurgen A Marteijn
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Oncode Institute, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands
| | - Arjan F Theil
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands
| | - Maayke M P Kuijten
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Oncode Institute, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands
| | - Wim Vermeulen
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands
| | - Hannes Lans
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands.
| |
Collapse
|
6
|
van der Woude M, Davó-Martínez C, Thijssen K, Vermeulen W, Lans H. Recovery of protein synthesis to assay DNA repair activity in transcribed genes in living cells and tissues. Nucleic Acids Res 2023; 51:e93. [PMID: 37522336 PMCID: PMC10570043 DOI: 10.1093/nar/gkad642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 06/19/2023] [Accepted: 07/25/2023] [Indexed: 08/01/2023] Open
Abstract
Transcription-coupled nucleotide excision repair (TC-NER) is an important DNA repair mechanism that protects against the negative effects of transcription-blocking DNA lesions. Hereditary TC-NER deficiencies cause pleiotropic and often severe neurodegenerative and progeroid symptoms. While multiple assays have been developed to determine TC-NER activity for clinical and research purposes, monitoring TC-NER is hampered by the low frequency of repair events occurring in transcribed DNA. 'Recovery of RNA Synthesis' is widely used as indirect TC-NER assay based on the notion that lesion-blocked transcription only resumes after successful TC-NER. Here, we show that measuring novel synthesis of a protein after its compound-induced degradation prior to DNA damage induction is an equally effective but more versatile manner to indirectly monitor DNA repair activity in transcribed genes. This 'Recovery of Protein Synthesis' (RPS) assay can be adapted to various degradable proteins and readouts, including imaging and immunoblotting. Moreover, RPS allows real-time monitoring of TC-NER activity in various living cells types and even in differentiated tissues of living organisms. To illustrate its utility, we show that DNA repair in transcribed genes declines in aging muscle tissue of C. elegans. Therefore, the RPS assay constitutes an important novel clinical and research tool to investigate transcription-coupled DNA repair.
Collapse
Affiliation(s)
- Melanie van der Woude
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands
| | - Carlota Davó-Martínez
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands
| | - Karen L Thijssen
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands
| | - Wim Vermeulen
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands
| | - Hannes Lans
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands
| |
Collapse
|
7
|
Hameed J S F, Devarajan A, M S DP, Bhattacharyya A, Shirude MB, Dutta D, Karmakar P, Mukherjee A. PTEN-negative endometrial cancer cells protect their genome through enhanced DDB2 expression associated with augmented nucleotide excision repair. BMC Cancer 2023; 23:399. [PMID: 37142958 PMCID: PMC10157935 DOI: 10.1186/s12885-023-10892-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 04/26/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Endometrial cancer (EC) arises from uterine endometrium tissue and is the most prevalent cancer of the female reproductive tract in developed countries. It has been predicted that the global prevalence of EC will increase in part because of its positive association with economic growth and lifestyle. The majority of EC presented with endometrioid histology and mutations in the tumor suppressor gene PTEN, resulting in its loss of function. PTEN negatively regulates the PI3K/Akt/mTOR axis of cell proliferation and thus serves as a tumorigenesis gatekeeper. Through its chromatin functions, PTEN is also implicated in genome maintenance procedures. However, our comprehension of how DNA repair occurs in the absence of PTEN function in EC is inadequate. METHODS We utilized The Cancer Genome Atlas (TCGA) data analysis to establish a correlation between PTEN and DNA damage response genes in EC, followed by a series of cellular and biochemical assays to elucidate a molecular mechanism utilizing the AN3CA cell line model for EC. RESULTS The TCGA analyses demonstrated an inverse correlation between the expression of the damage sensor protein of nucleotide excision repair (NER), DDB2, and PTEN in EC. The transcriptional activation of DDB2 is mediated by the recruitment of active RNA polymerase II to the DDB2 promoter in the PTEN-null EC cells, revealing a correlation between increased DDB2 expression and augmented NER activity in the absence of PTEN. CONCLUSION Our study indicated a causal relationship between NER and EC that may be exploited in disease management.
Collapse
Affiliation(s)
- Fathima Hameed J S
- Rajiv Gandhi Centre for Biotechnology, Cancer Research Program, Thycaud, Poojappura, Thiruvananthapuram, Kerala, 695014, India
- Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Anjali Devarajan
- Rajiv Gandhi Centre for Biotechnology, Cancer Research Program, Thycaud, Poojappura, Thiruvananthapuram, Kerala, 695014, India
| | - Devu Priya M S
- Rajiv Gandhi Centre for Biotechnology, Cancer Research Program, Thycaud, Poojappura, Thiruvananthapuram, Kerala, 695014, India
| | - Ahel Bhattacharyya
- Rajiv Gandhi Centre for Biotechnology, Cancer Research Program, Thycaud, Poojappura, Thiruvananthapuram, Kerala, 695014, India
| | - Mayur Balkrishna Shirude
- Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
- Rajiv Gandhi Centre for Biotechnology, Regenerative Biology Program, Thycaud, Poojappura, Thiruvananthapuram, Kerala, 695014, India
| | - Debasree Dutta
- Rajiv Gandhi Centre for Biotechnology, Regenerative Biology Program, Thycaud, Poojappura, Thiruvananthapuram, Kerala, 695014, India
| | - Parimal Karmakar
- Department of Life Science and Biotechnology, Jadavpur University, 188, Raja S.C. Mullick Road, Kolkata, West Bengal, 700 032, India
| | - Ananda Mukherjee
- Rajiv Gandhi Centre for Biotechnology, Cancer Research Program, Thycaud, Poojappura, Thiruvananthapuram, Kerala, 695014, India.
| |
Collapse
|
8
|
Lee D, Apelt K, Lee SO, Chan HR, Luijsterburg MS, Leung JWC, Miller K. ZMYM2 restricts 53BP1 at DNA double-strand breaks to favor BRCA1 loading and homologous recombination. Nucleic Acids Res 2022; 50:3922-3943. [PMID: 35253893 PMCID: PMC9023290 DOI: 10.1093/nar/gkac160] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 02/11/2022] [Accepted: 02/22/2022] [Indexed: 12/14/2022] Open
Abstract
An inability to repair DNA double-strand breaks (DSBs) threatens genome integrity and can contribute to human diseases, including cancer. Mammalian cells repair DSBs mainly through homologous recombination (HR) and nonhomologous end-joining (NHEJ). The choice between these pathways is regulated by the interplay between 53BP1 and BRCA1, whereby BRCA1 excludes 53BP1 to promote HR and 53BP1 limits BRCA1 to facilitate NHEJ. Here, we identify the zinc-finger proteins (ZnF), ZMYM2 and ZMYM3, as antagonizers of 53BP1 recruitment that facilitate HR protein recruitment and function at DNA breaks. Mechanistically, we show that ZMYM2 recruitment to DSBs and suppression of break-associated 53BP1 requires the SUMO E3 ligase PIAS4, as well as SUMO binding by ZMYM2. Cells deficient for ZMYM2/3 display genome instability, PARP inhibitor and ionizing radiation sensitivity and reduced HR repair. Importantly, depletion of 53BP1 in ZMYM2/3-deficient cells rescues BRCA1 recruitment to and HR repair of DSBs, suggesting that ZMYM2 and ZMYM3 primarily function to restrict 53BP1 engagement at breaks to favor BRCA1 loading that functions to channel breaks to HR repair. Identification of DNA repair functions for these poorly characterized ZnF proteins may shed light on their unknown contributions to human diseases, where they have been reported to be highly dysregulated, including in several cancers.
Collapse
Affiliation(s)
- Doohyung Lee
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Katja Apelt
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Seong-Ok Lee
- Department of Radiation Oncology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Hsin-Ru Chan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Martijn S Luijsterburg
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Justin W C Leung
- Department of Radiation Oncology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Kyle M Miller
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
- Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
9
|
Chikhaoui A, Kraoua I, Calmels N, Bouchoucha S, Obringer C, Zayoud K, Montagne B, M’rad R, Abdelhak S, Laugel V, Ricchetti M, Turki I, Yacoub-Youssef H. Heterogeneous clinical features in Cockayne syndrome patients and siblings carrying the same CSA mutations. Orphanet J Rare Dis 2022; 17:121. [PMID: 35248096 PMCID: PMC8898519 DOI: 10.1186/s13023-022-02257-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 02/16/2022] [Indexed: 11/10/2022] Open
Abstract
Background Cockayne syndrome (CS) is a rare autosomal recessive disorder caused by mutations in ERCC6/CSB or ERCC8/CSA that participate in the transcription-coupled nucleotide excision repair (TC-NER) of UV-induced DNA damage. CS patients display a large heterogeneity of clinical symptoms and severities, the reason of which is not fully understood, and that cannot be anticipated in the diagnostic phase. In addition, little data is available for affected siblings, and this disease is largely undiagnosed in North Africa. Methods We report here the clinical description as well as genetic and functional characterization of eight Tunisian CS patients, including siblings. These patients, who belonged to six unrelated families, underwent complete clinical examination and biochemical analyses. Sanger sequencing was performed for the recurrent mutation in five families, and targeted gene sequencing was done for one patient of the sixth family. We also performed Recovery RNA Synthesis (RRS) to confirm the functional impairment of DNA repair in patient-derived fibroblasts. Results Six out of eight patients carried a homozygous indel mutation (c.598_600delinsAA) in exon 7 of ERCC8, and displayed a variable clinical spectrum including between siblings sharing the same mutation. The other two patients were siblings who carried a homozygous splice-site variant in ERCC8 (c.843+1G>C). This last pair presented more severe clinical manifestations, which are rarely associated with CSA mutations, leading to gastrostomy and hepatic damage. Impaired TC-NER was confirmed by RRS in six tested patients. Conclusions This study provides the first deep characterization of case series of CS patients carrying CSA mutations in North Africa. These mutations have been described only in this region and in the Middle-East. We also provide the largest characterization of multiple unrelated patients, as well as siblings, carrying the same mutation, providing a framework for dissecting elusive genotype–phenotype correlations in CS. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-022-02257-1.
Collapse
|
10
|
Senju C, Nakazawa Y, Shimada M, Iwata D, Matsuse M, Tanaka K, Miyazaki Y, Moriwaki S, Mitsutake N, Ogi T. Aicardi-Goutières syndrome with SAMHD1 deficiency can be diagnosed by unscheduled DNA synthesis test. Front Pediatr 2022; 10:1048002. [PMID: 36405817 PMCID: PMC9673124 DOI: 10.3389/fped.2022.1048002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022] Open
Abstract
Aicardi-Goutières syndrome (AGS) is a rare genetic disorder characterised by progressive encephalopathy, involving microcephaly, intracranial calcification, and cerebrospinal fluid lymphocytosis with increased interferon-α concentrations. The clinical features of AGS overlap with fetal cerebral anomalies caused by congenital infections, such as TORCH (toxoplasmosis, other, rubella, cytomegalovirus, and herpes), or with those of other genetic disorders showing neonatal microcephaly, including Cockayne syndrome (CS) with transcription-coupled DNA repair deficiency, and Seckel syndrome (SS) showing aberrant cell-cycle checkpoint signaling. Therefore, a differential diagnosis to confirm the genetic cause or a proof of infection should be considered. In this report, we describe an individual who showed primordial dwarfism and encephalopathy, and whose initial diagnosis was CS. First, we conducted conventional DNA repair proficiency tests for the patient derived fibroblast cells. Transcription-coupled nucleotide excision repair (TC-NER) activity, which is mostly compromised in CS cases, was slightly reduced in the patient's cells. However, unscheduled DNA synthesis (UDS) was significantly diminished. These cellular traits were inconsistent with the diagnosis of CS. We further performed whole exome sequencing for the case and identified a compound heterozygous loss-of-function variants in the SAMHD1 gene, mutations in which are known to cause AGS. As SAMHD1 encodes deoxyribonucleoside triphosphate triphosphohydrolase, we reasoned that the deoxyribonucleoside triphosphate (dNTP) pool size in the patient's cells was elevated, and the labeling efficiency of UDS-test was hindered due to the reduced concentration of phosphorylated ethynyl deoxyuridine (EdU), a nucleoside analogue used for the assay. In conclusion, UDS assay may be a useful diagnostic tool to distinguish between AGS with SAMHD1 mutations and other related diseases.
Collapse
Affiliation(s)
- Chikako Senju
- Department of Hematology, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Department of Plastic and Reconstructive Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan.,Department of Human Genetics and Molecular Biology, Graduate School of Medicine, Nagoya University, Nagoya, Japan.,Department of Genome Repair, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Yuka Nakazawa
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan.,Department of Human Genetics and Molecular Biology, Graduate School of Medicine, Nagoya University, Nagoya, Japan.,Department of Genome Repair, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Mayuko Shimada
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan.,Department of Human Genetics and Molecular Biology, Graduate School of Medicine, Nagoya University, Nagoya, Japan.,Department of Genome Repair, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Dai Iwata
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan.,Department of Human Genetics and Molecular Biology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Michiko Matsuse
- Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Katsumi Tanaka
- Department of Plastic and Reconstructive Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yasushi Miyazaki
- Department of Hematology, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Shinichi Moriwaki
- Department of Dermatology, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Norisato Mitsutake
- Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Tomoo Ogi
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan.,Department of Human Genetics and Molecular Biology, Graduate School of Medicine, Nagoya University, Nagoya, Japan.,Department of Genome Repair, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
11
|
Bailey LJ, Teague R, Kolesar P, Bainbridge LJ, Lindsay HD, Doherty AJ. PLK1 regulates the PrimPol damage tolerance pathway during the cell cycle. SCIENCE ADVANCES 2021; 7:eabh1004. [PMID: 34860556 PMCID: PMC8641930 DOI: 10.1126/sciadv.abh1004] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 10/14/2021] [Indexed: 05/14/2023]
Abstract
Replication stress and DNA damage stall replication forks and impede genome synthesis. During S phase, damage tolerance pathways allow lesion bypass to ensure efficient genome duplication. One such pathway is repriming, mediated by Primase-Polymerase (PrimPol) in human cells. However, the mechanisms by which PrimPol is regulated are poorly understood. Here, we demonstrate that PrimPol is phosphorylated by Polo-like kinase 1 (PLK1) at a conserved residue between PrimPol’s RPA binding motifs. This phosphorylation is differentially modified throughout the cell cycle, which prevents aberrant recruitment of PrimPol to chromatin. Phosphorylation can also be delayed and reversed in response to replication stress. The absence of PLK1-dependent regulation of PrimPol induces phenotypes including chromosome breaks, micronuclei, and decreased survival after treatment with camptothecin, olaparib, and UV-C. Together, these findings establish that deregulated repriming leads to genomic instability, highlighting the importance of regulating this damage tolerance pathway following fork stalling and throughout the cell cycle.
Collapse
Affiliation(s)
- Laura J. Bailey
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| | - Rebecca Teague
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| | - Peter Kolesar
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| | - Lewis J. Bainbridge
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| | - Howard D. Lindsay
- Lancaster Medical School, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YQ, UK
| | - Aidan J. Doherty
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| |
Collapse
|
12
|
Zayoud K, Kraoua I, Chikhaoui A, Calmels N, Bouchoucha S, Obringer C, Crochemore C, Najjar D, Zarrouk S, Miladi N, Laugel V, Ricchetti M, Turki I, Yacoub-Youssef H. Identification and Characterization of a Novel Recurrent ERCC6 Variant in Patients with a Severe Form of Cockayne Syndrome B. Genes (Basel) 2021; 12:genes12121922. [PMID: 34946871 PMCID: PMC8701866 DOI: 10.3390/genes12121922] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 01/06/2023] Open
Abstract
Cockayne syndrome (CS) is a rare disease caused by mutations in ERCC6/CSB or ERCC8/CSA. We report here the clinical, genetic, and functional analyses of three unrelated patients mutated in ERCC6/CSB with a severe phenotype. After clinical examination, two patients were investigated via next generation sequencing, targeting seventeen Nucleotide Excision Repair (NER) genes. All three patients harbored a novel, c.3156dup, homozygous mutation located in exon 18 of ERCC6/CSB that affects the C-terminal region of the protein. Sanger sequencing confirmed the mutation and the parental segregation in the three families, and Western blots showed a lack of the full-length protein. NER functional impairment was shown by reduced recovery of RNA synthesis with proficient unscheduled DNA synthesis after UV-C radiations in patient-derived fibroblasts. Despite sharing the same mutation, the clinical spectrum was heterogeneous among the three patients, and only two patients displayed clinical photosensitivity. This novel ERCC6 variant in Tunisian patients suggests a founder effect and has implications for setting-up prenatal diagnosis/genetic counselling in North Africa, where this disease is largely undiagnosed. This study reveals one of the rare cases of CS clinical heterogeneity despite the same mutation. Moreover, the occurrence of an identical homozygous mutation, which either results in clinical photosensitivity or does not, strongly suggests that this classic CS symptom relies on multiple factors.
Collapse
Affiliation(s)
- Khouloud Zayoud
- Laboratory of Biomedical Genomics and Oncogenetics (LR16IPT05), Institut Pasteur de Tunis, Université Tunis El Manar, El Manar I, Tunis 1002, Tunisia; (K.Z.); (A.C.); (D.N.)
- Faculté des Sciences de Bizerte, Bizerte 7000, Tunisia
| | - Ichraf Kraoua
- LR18SP04 and Department of Child and Adolescent Neurology, National Institute Mongi Ben Hmida of Neurology, Tunis 1007, Tunisia; (I.K.); (I.T.)
| | - Asma Chikhaoui
- Laboratory of Biomedical Genomics and Oncogenetics (LR16IPT05), Institut Pasteur de Tunis, Université Tunis El Manar, El Manar I, Tunis 1002, Tunisia; (K.Z.); (A.C.); (D.N.)
| | - Nadège Calmels
- Laboratoires de Diagnostic Génétique, Institut de Génétique Médicale d’Alsace, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France;
- Laboratoire de Génétique Médicale, INSERM U1112, Institut de génétique médicale d’Alsace, CRBS, 67000 Strasbourg, France; (C.O.); (V.L.)
| | - Sami Bouchoucha
- Service Orthopédie, Hôpital d’enfant Béchir Hamza, Tunis 1000, Tunisia;
| | - Cathy Obringer
- Laboratoire de Génétique Médicale, INSERM U1112, Institut de génétique médicale d’Alsace, CRBS, 67000 Strasbourg, France; (C.O.); (V.L.)
| | - Clément Crochemore
- Institut Pasteur, Team Stability of Nuclear and Mitochondrial DNA, Stem Cells and Development, UMR 3738 CNRS, 25-28 rue du Dr. Roux, 75015 Paris, France; (C.C.); (M.R.)
| | - Dorra Najjar
- Laboratory of Biomedical Genomics and Oncogenetics (LR16IPT05), Institut Pasteur de Tunis, Université Tunis El Manar, El Manar I, Tunis 1002, Tunisia; (K.Z.); (A.C.); (D.N.)
| | - Sinda Zarrouk
- Genomics Platform, Institut Pasteur de Tunis (IPT), Tunis-Belvédère, Tunis 1002, Tunisia;
| | - Najoua Miladi
- Maghreb Medical Center, El Manar III, Tunis 9000, Tunisia;
| | - Vincent Laugel
- Laboratoire de Génétique Médicale, INSERM U1112, Institut de génétique médicale d’Alsace, CRBS, 67000 Strasbourg, France; (C.O.); (V.L.)
| | - Miria Ricchetti
- Institut Pasteur, Team Stability of Nuclear and Mitochondrial DNA, Stem Cells and Development, UMR 3738 CNRS, 25-28 rue du Dr. Roux, 75015 Paris, France; (C.C.); (M.R.)
| | - Ilhem Turki
- LR18SP04 and Department of Child and Adolescent Neurology, National Institute Mongi Ben Hmida of Neurology, Tunis 1007, Tunisia; (I.K.); (I.T.)
| | - Houda Yacoub-Youssef
- Laboratory of Biomedical Genomics and Oncogenetics (LR16IPT05), Institut Pasteur de Tunis, Université Tunis El Manar, El Manar I, Tunis 1002, Tunisia; (K.Z.); (A.C.); (D.N.)
- Correspondence:
| |
Collapse
|
13
|
Stefos GC, Szantai E, Konstantopoulos D, Samiotaki M, Fousteri M. aniFOUND: analysing the associated proteome and genomic landscape of the repaired nascent non-replicative chromatin. Nucleic Acids Res 2021; 49:e64. [PMID: 33693861 DOI: 10.1093/nar/gkab144] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 02/01/2021] [Accepted: 02/22/2021] [Indexed: 12/13/2022] Open
Abstract
Specific capture of chromatin fractions with distinct and well-defined features has emerged as both challenging and a key strategy towards a comprehensive understanding of genome biology. In this context, we developed aniFOUND (accelerated native isolation of factors on unscheduled nascent DNA), an antibody-free method, which can label, capture, map and characterise nascent chromatin fragments that are synthesized in response to specific cues outside S-phase. We used the 'unscheduled' DNA synthesis (UDS) that takes place during the repair of UV-induced DNA lesions and coupled the captured chromatin to high-throughput analytical technologies. By mass-spectrometry we identified several factors with no previously known role in UVC-DNA damage response (DDR) as well as known DDR proteins. We experimentally validated the repair-dependent recruitment of the chromatin remodeller RSF1 and the cohesin-loader NIPBL at sites of UVC-induced photolesions. Developing aniFOUND-seq, a protocol for mapping UDS activity with high resolution, allowed us to monitor the landscape of UVC repair-synthesis events genome wide. We further resolved repair efficacy of the rather unexplored repeated genome, in particular rDNA and telomeres. In summary, aniFOUND delineates the proteome composition and genomic landscape of chromatin loci with specific features by integrating state-of-the-art 'omics' technologies to promote a comprehensive view of their function.
Collapse
Affiliation(s)
- Georgios C Stefos
- Institute for Fundamental Biomedical Research, BSRC 'Alexander Fleming', Vari 16672, Greece
| | - Eszter Szantai
- Institute for Fundamental Biomedical Research, BSRC 'Alexander Fleming', Vari 16672, Greece
| | | | | | - Maria Fousteri
- Institute for Fundamental Biomedical Research, BSRC 'Alexander Fleming', Vari 16672, Greece
| |
Collapse
|
14
|
Geijer ME, Zhou D, Selvam K, Steurer B, Mukherjee C, Evers B, Cugusi S, van Toorn M, van der Woude M, Janssens RC, Kok YP, Gong W, Raams A, Lo CSY, Lebbink JHG, Geverts B, Plummer DA, Bezstarosti K, Theil AF, Mitter R, Houtsmuller AB, Vermeulen W, Demmers JAA, Li S, van Vugt MATM, Lans H, Bernards R, Svejstrup JQ, Ray Chaudhuri A, Wyrick JJ, Marteijn JA. Elongation factor ELOF1 drives transcription-coupled repair and prevents genome instability. Nat Cell Biol 2021; 23:608-619. [PMID: 34108662 PMCID: PMC7611218 DOI: 10.1038/s41556-021-00692-z] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 04/29/2021] [Indexed: 02/05/2023]
Abstract
Correct transcription is crucial for life. However, DNA damage severely impedes elongating RNA polymerase II, causing transcription inhibition and transcription-replication conflicts. Cells are equipped with intricate mechanisms to counteract the severe consequence of these transcription-blocking lesions. However, the exact mechanism and factors involved remain largely unknown. Here, using a genome-wide CRISPR-Cas9 screen, we identified the elongation factor ELOF1 as an important factor in the transcription stress response following DNA damage. We show that ELOF1 has an evolutionarily conserved role in transcription-coupled nucleotide excision repair (TC-NER), where it promotes recruitment of the TC-NER factors UVSSA and TFIIH to efficiently repair transcription-blocking lesions and resume transcription. Additionally, ELOF1 modulates transcription to protect cells against transcription-mediated replication stress, thereby preserving genome stability. Thus, ELOF1 protects the transcription machinery from DNA damage via two distinct mechanisms.
Collapse
Affiliation(s)
- Marit E Geijer
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Di Zhou
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Kathiresan Selvam
- School of Molecular Biosciences, Washington State University, Pullman, WA, USA
| | - Barbara Steurer
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Chirantani Mukherjee
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Bastiaan Evers
- Oncode Institute, Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Simona Cugusi
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, London, UK
| | - Marvin van Toorn
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Melanie van der Woude
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Roel C Janssens
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Yannick P Kok
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Wenzhi Gong
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Anja Raams
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Calvin S Y Lo
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Joyce H G Lebbink
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Radiation Oncology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Bart Geverts
- Erasmus Optical Imaging Center, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Dalton A Plummer
- School of Molecular Biosciences, Washington State University, Pullman, WA, USA
| | - Karel Bezstarosti
- Proteomics Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Arjan F Theil
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Richard Mitter
- Bioinformatics and Biostatistics, The Francis Crick Institute, London, UK
| | - Adriaan B Houtsmuller
- Erasmus Optical Imaging Center, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Wim Vermeulen
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jeroen A A Demmers
- Proteomics Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Shisheng Li
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Marcel A T M van Vugt
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Hannes Lans
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - René Bernards
- Oncode Institute, Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jesper Q Svejstrup
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, London, UK
| | - Arnab Ray Chaudhuri
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - John J Wyrick
- School of Molecular Biosciences, Washington State University, Pullman, WA, USA
| | - Jurgen A Marteijn
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
15
|
Predominant cellular mitochondrial dysfunction in the TOP3A gene-caused Bloom syndrome-like disorder. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166106. [PMID: 33631320 DOI: 10.1016/j.bbadis.2021.166106] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 02/10/2021] [Accepted: 02/17/2021] [Indexed: 12/27/2022]
Abstract
TOP3A promotes processing of double Holliday junction dissolution and also plays an important role in decatenation and segregation of human mtDNA. Recently, TOP3A mutations have been reported to cause Bloom syndrome-like disorder. However, whether the two function play equal roles in the disease pathogenesis is unclear. We retrospectively studied the disease progression of two siblings with Bloom-like syndrome caused by two novel mutations of TOP3A, p.Q788* and p.D479G. Beside the common clinical manifestations, our patients exhibited liver lipid storage with hepatomegaly. In cellular and molecular biological studies, TOP3A deficiency moderately increased sister chromatid exchanges and decreased cell proliferation compared with BLM or RMI2 deficiency. These changes were rescued by ectopic expression of either of the wildtype TOP3A or TOP3A-D479G. In contrast, reduced mitochondrial ATP generation and oxygen consumption rates observed in TOP3A defective cells were rescued by over-expression of the wildtype TOP3A, but not TOP3A-D479G. Considering the different impact of the TOP3A-D479G mutation on the genome stability and mitochondrial metabolism, we propose that the impaired mitochondrial metabolism plays an important role in the pathogenesis of TOP3A-deficient Bloom-like disease.
Collapse
|
16
|
New Perspectives on Unscheduled DNA Synthesis: Functional Assay for Global Genomic DNA Nucleotide Excision Repair. Methods Mol Biol 2020; 2102:483-507. [PMID: 31989573 DOI: 10.1007/978-1-0716-0223-2_27] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The unscheduled DNA synthesis (UDS) assay measures the ability of a cell to perform global genomic nucleotide excision repair (NER). This chapter provides instructions for the application of this technique by creating 6-4 photoproducts and pyrimidine dimers using UV-C (254 nm) irradiation. This procedure is designed specifically for quantification of the 6-4 photoproducts. Repair is quantified by the amount of radioactive thymidine incorporated during repair synthesis after this insult, and radioactivity is evaluated by grain counting after autoradiography. The results have been used to clinically diagnose human DNA repair deficiency disorders, and provide a basis for investigation of repair deficiency in human tissues or tumors. Genomic sequencing to establish the presence of specific mutations is also used now for clinical diagnosis of DNA repair deficiency syndromes. Few functional assays are available which directly measure the capacity to perform NER on the entire genome. Since live cells are required for this assay, explant culture techniques must be previously established. Host cell reactivation (HCR). As discussed in Chap. 28 is not an equivalent technique, as it measures only transcription-coupled repair (TCR) at active genes, a small subset of total NER. Our laboratory also explored the fluorescent label-based Click-iT assay that uses EdU as the label, rather than 3H thymidine. Despite emerging studies in the literature finding this assay to be useful for other purposes, we found that the EdU-based UDS assay was not consistent or reproducible compared with the 3H thymidine-based assay.
Collapse
|
17
|
γH2AX in the S Phase after UV Irradiation Corresponds to DNA Replication and Does Not Report on the Extent of DNA Damage. Mol Cell Biol 2020; 40:MCB.00328-20. [PMID: 32778572 DOI: 10.1128/mcb.00328-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 08/02/2020] [Indexed: 01/13/2023] Open
Abstract
Ultraviolet (UV) radiation is a major environmental mutagen. Exposure to UV leads to a sharp peak of γH2AX, the phosphorylated form of the histone variant H2AX, in the S phase within an asynchronous population of cells. γH2AX is often considered a definitive marker of DNA damage inside a cell. In this report, we show that γH2AX in the S-phase cells after UV irradiation reports neither on the extent of primary DNA damage in the form of cyclobutane pyrimidine dimers nor on the extent of its secondary manifestations in the form of DNA double-strand breaks or in the inhibition of global transcription. Instead, γH2AX in the S phase corresponds to the sites of active replication at the time of UV irradiation. This accumulation of γH2AX at replication sites slows down the replication. However, the cells do complete the replication of their genomes and arrest within the G2 phase. Our study suggests that it is not DNA damage, but the response elicited, which peaks in the S phase upon UV irradiation.
Collapse
|
18
|
Nakazawa Y, Hara Y, Oka Y, Komine O, van den Heuvel D, Guo C, Daigaku Y, Isono M, He Y, Shimada M, Kato K, Jia N, Hashimoto S, Kotani Y, Miyoshi Y, Tanaka M, Sobue A, Mitsutake N, Suganami T, Masuda A, Ohno K, Nakada S, Mashimo T, Yamanaka K, Luijsterburg MS, Ogi T. Ubiquitination of DNA Damage-Stalled RNAPII Promotes Transcription-Coupled Repair. Cell 2020; 180:1228-1244.e24. [PMID: 32142649 DOI: 10.1016/j.cell.2020.02.010] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 12/16/2019] [Accepted: 02/04/2020] [Indexed: 02/06/2023]
Abstract
Transcription-coupled nucleotide excision repair (TC-NER) is initiated by the stalling of elongating RNA polymerase II (RNAPIIo) at DNA lesions. The ubiquitination of RNAPIIo in response to DNA damage is an evolutionarily conserved event, but its function in mammals is unknown. Here, we identified a single DNA damage-induced ubiquitination site in RNAPII at RPB1-K1268, which regulates transcription recovery and DNA damage resistance. Mechanistically, RPB1-K1268 ubiquitination stimulates the association of the core-TFIIH complex with stalled RNAPIIo through a transfer mechanism that also involves UVSSA-K414 ubiquitination. We developed a strand-specific ChIP-seq method, which revealed RPB1-K1268 ubiquitination is important for repair and the resolution of transcriptional bottlenecks at DNA lesions. Finally, RPB1-K1268R knockin mice displayed a short life-span, premature aging, and neurodegeneration. Our results reveal RNAPII ubiquitination provides a two-tier protection mechanism by activating TC-NER and, in parallel, the processing of DNA damage-stalled RNAPIIo, which together prevent prolonged transcription arrest and protect against neurodegeneration.
Collapse
Affiliation(s)
- Yuka Nakazawa
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan; Department of Human Genetics and Molecular Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuichiro Hara
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan; Department of Human Genetics and Molecular Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yasuyoshi Oka
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan; Department of Human Genetics and Molecular Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Okiru Komine
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan; Department of Neuroscience and Pathobiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Diana van den Heuvel
- Department of Human Genetics, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| | - Chaowan Guo
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan; Department of Human Genetics and Molecular Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yasukazu Daigaku
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Japan; Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Mayu Isono
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan; Department of Human Genetics and Molecular Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuxi He
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan; Department of Human Genetics and Molecular Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mayuko Shimada
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan; Department of Human Genetics and Molecular Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kana Kato
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan; Department of Human Genetics and Molecular Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Nan Jia
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan; Department of Human Genetics and Molecular Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Satoru Hashimoto
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan; Department of Human Genetics and Molecular Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuko Kotani
- Institute of Experimental Animal Sciences, Graduate School of Medicine, Osaka University, Osaka, Japan; Genome Editing Research and Development (R&D) Center, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yuka Miyoshi
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan; Department of Neuroscience and Pathobiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Miyako Tanaka
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan; Department of Immunometabolism, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akira Sobue
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan; Department of Neuroscience and Pathobiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Norisato Mitsutake
- Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Takayoshi Suganami
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan; Department of Immunometabolism, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akio Masuda
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinichiro Nakada
- Department of Bioregulation and Cellular Response, Graduate School of Medicine, Osaka University, Osaka, Japan; Institute for Advanced Co-Creation Studies, Osaka University, Osaka, Japan
| | - Tomoji Mashimo
- Institute of Experimental Animal Sciences, Graduate School of Medicine, Osaka University, Osaka, Japan; Genome Editing Research and Development (R&D) Center, Graduate School of Medicine, Osaka University, Osaka, Japan; Division of Animal Genetics, Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Koji Yamanaka
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan; Department of Neuroscience and Pathobiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Martijn S Luijsterburg
- Department of Human Genetics, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| | - Tomoo Ogi
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan; Department of Human Genetics and Molecular Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| |
Collapse
|
19
|
Bui CB, Duong TTP, Tran VT, Pham TTT, Vu T, Chau GC, Vo TNV, Nguyen V, Trinh DTT, Hoang MV. A novel nonsense mutation of ERCC2 in a Vietnamese family with xeroderma pigmentosum syndrome group D. Hum Genome Var 2020; 7:2. [PMID: 32047639 PMCID: PMC7008115 DOI: 10.1038/s41439-020-0089-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/11/2019] [Accepted: 01/09/2020] [Indexed: 11/09/2022] Open
Abstract
Xeroderma pigmentosum (XP) group D, a severe disease often typified by extreme sun sensitivity, can be caused by ERCC2 mutations. ERCC2 encodes an adenosine triphosphate (ATP)-dependent DNA helicase, namely XP group D protein (XPD). The XPD, one of ten subunits of the transcription factor TFIIH, plays a critical role in the nucleotide-excision repair (NER) pathway. Mutations in XPD that affect the NER pathway can lead to neurological degeneration and skin cancer, which are the most common causes of death in XP patients. Here, we present detailed phenotypic information on a Vietnamese family in which four members were affected by XP with extreme sun sensitivity. Genomic analysis revealed a compound heterozygous mutation of ERCC2 that affected family members and single heterozygous mutations in unaffected family members. We identified a novel, nonsense mutation in one allele of ERCC2 (c.1354C > T, p.Q452X) and a known missense mutation in the other allele (c.2048G > A, p.R683Q). Fibroblasts isolated from the compound heterozygous subject also failed to recover from UV-driven DNA damage, thus recapitulating aspects of XP syndrome in vitro. We describe a novel ERCC2 variant that leads to the breakdown of the NER pathway across generations of a family presenting with severe XP.
Collapse
Affiliation(s)
- Chi-Bao Bui
- Biomedical Research Center, School of Medicine, Vietnam National University, Ho Chi Minh City, Vietnam
- Functional Genomics Unit, DNA Medical Technology, Ho Chi Minh City, Vietnam
| | | | - Vien The Tran
- Department of Dermatology, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Thuy Thanh T. Pham
- Functional Genomics Unit, DNA Medical Technology, Ho Chi Minh City, Vietnam
| | - Tung Vu
- Functional Genomics Unit, DNA Medical Technology, Ho Chi Minh City, Vietnam
| | - Gia Cac Chau
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi-do Korea
| | - Thanh-Niem Van Vo
- Center for Molecular Biomedicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Vinh Nguyen
- Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Dieu-Thuong Thi Trinh
- Department of Hematology and Dermatology, University Medical Center 3, Ho Chi Minh City, Vietnam
- Faculty of Traditional Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Minh Van Hoang
- Department of Hematology and Dermatology, University Medical Center 3, Ho Chi Minh City, Vietnam
| |
Collapse
|
20
|
Bailey LJ, Bianchi J, Doherty AJ. PrimPol is required for the maintenance of efficient nuclear and mitochondrial DNA replication in human cells. Nucleic Acids Res 2019; 47:4026-4038. [PMID: 30715459 PMCID: PMC6486543 DOI: 10.1093/nar/gkz056] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 01/14/2019] [Accepted: 01/28/2019] [Indexed: 12/14/2022] Open
Abstract
Eukaryotic Primase-Polymerase (PrimPol) is an enzyme that maintains efficient DNA duplication by repriming replication restart downstream of replicase stalling lesions and structures. To elucidate the cellular requirements for PrimPol in human cells, we generated PrimPol-deleted cell lines and show that it plays key roles in maintaining active replication in both the nucleus and mitochondrion, even in the absence of exogenous damage. Human cells lacking PrimPol exhibit delayed recovery after UV-C damage and increased mutation frequency, micronuclei and sister chromatin exchanges but are not sensitive to genotoxins. PrimPol is also required during mitochondrial replication, with PrimPol-deficient cells having increased mtDNA copy number but displaying a significant decrease in replication. Deletion of PrimPol in XPV cells, lacking functional polymerase Eta, causes an increase in DNA damage sensitivity and pronounced fork stalling after UV-C treatment. We show that, unlike canonical TLS polymerases, PrimPol is important for allowing active replication to proceed, even in the absence of exogenous damage, thus preventing the accumulation of excessive fork stalling and genetic mutations. Together, these findings highlight the importance of PrimPol for maintaining efficient DNA replication in unperturbed cells and its complementary roles, with Pol Eta, in damage tolerance in human cells.
Collapse
Affiliation(s)
- Laura J Bailey
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| | - Julie Bianchi
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| | - Aidan J Doherty
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| |
Collapse
|
21
|
Functional Comparison of XPF Missense Mutations Associated to Multiple DNA Repair Disorders. Genes (Basel) 2019; 10:genes10010060. [PMID: 30658521 PMCID: PMC6357085 DOI: 10.3390/genes10010060] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/11/2019] [Accepted: 01/11/2019] [Indexed: 11/23/2022] Open
Abstract
XPF endonuclease is one of the most important DNA repair proteins. Encoded by XPF/ERCC4, XPF provides the enzymatic activity of XPF-ERCC1 heterodimer, an endonuclease that incises at the 5’ side of various DNA lesions. XPF is essential for nucleotide excision repair (NER) and interstrand crosslink repair (ICLR). XPF/ERCC4 mutations are associated with several human diseases: Xeroderma Pigmentosum (XP), Segmental Progeria (XFE), Fanconi Anemia (FA), Cockayne Syndrome (CS), and XP/CS combined disease (XPCSCD). Most affected individuals are compound heterozygotes for XPF/ERCC4 mutations complicating the identification of genotype/phenotype correlations. We report a detailed overview of NER and ICLR functional studies in human XPF-KO (knock-out) isogenic cells expressing six disease-specific pathogenic XPF amino acid substitution mutations. Ultraviolet (UV) sensitivity and unscheduled DNA synthesis (UDS) assays provide the most reliable information to discern mutations associated with ICLR impairment from mutations related to NER deficiency, whereas recovery of RNA synthesis (RRS) assays results hint to a possible role of XPF in resolving R-loops. Our functional studies demonstrate that a defined cellular phenotype cannot be easily correlated to each XPF mutation. Substituted positions along XPF sequences are not predictive of cellular phenotype nor reflect a particular disease. Therefore, in addition to mutation type, allelic interactions, protein stability and intracellular distribution of mutant proteins may also contribute to alter DNA repair pathways balance leading to clinically distinct disorders.
Collapse
|
22
|
Calmels N, Botta E, Jia N, Fawcett H, Nardo T, Nakazawa Y, Lanzafame M, Moriwaki S, Sugita K, Kubota M, Obringer C, Spitz MA, Stefanini M, Laugel V, Orioli D, Ogi T, Lehmann AR. Functional and clinical relevance of novel mutations in a large cohort of patients with Cockayne syndrome. J Med Genet 2018; 55:329-343. [PMID: 29572252 DOI: 10.1136/jmedgenet-2017-104877] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 10/26/2017] [Accepted: 11/19/2017] [Indexed: 01/20/2023]
Abstract
BACKGROUND Cockayne syndrome (CS) is a rare, autosomal recessive multisystem disorder characterised by prenatal or postnatal growth failure, progressive neurological dysfunction, ocular and skeletal abnormalities and premature ageing. About half of the patients with symptoms diagnostic for CS show cutaneous photosensitivity and an abnormal cellular response to UV light due to mutations in either the ERCC8/CSA or ERCC6/CSB gene. Studies performed thus far have failed to delineate clear genotype-phenotype relationships. We have carried out a four-centre clinical, molecular and cellular analysis of 124 patients with CS. METHODS AND RESULTS We assigned 39 patients to the ERCC8/CSA and 85 to the ERCC6/CSB genes. Most of the genetic variants were truncations. The missense variants were distributed non-randomly with concentrations in relatively short regions of the respective proteins. Our analyses revealed several hotspots and founder mutations in ERCC6/CSB. Although no unequivocal genotype-phenotype relationships could be made, patients were more likely to have severe clinical features if the mutation was downstream of the PiggyBac insertion in intron 5 of ERCC6/CSB than if it was upstream. Also a higher proportion of severely affected patients was found with mutations in ERCC6/CSB than in ERCC8/CSA. CONCLUSION By identifying >70 novel homozygous or compound heterozygous genetic variants in 124 patients with CS with different disease severity and ethnic backgrounds, we considerably broaden the CSA and CSB mutation spectrum responsible for CS. Besides providing information relevant for diagnosis of and genetic counselling for this devastating disorder, this study improves the definition of the puzzling genotype-phenotype relationships in patients with CS.
Collapse
Affiliation(s)
- Nadege Calmels
- Laboratoire de Diagnostic Génétique, Nouvel Hôpital Civil, Strasbourg, France
| | - Elena Botta
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, Pavia, Italy
| | - Nan Jia
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan
| | - Heather Fawcett
- Genome Damage and Stability Centre, University of Sussex, Brighton, UK
| | - Tiziana Nardo
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, Pavia, Italy
| | - Yuka Nakazawa
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan.,Nagasaki University Research Centre for Genomic Instability and Carcinogenesis (NRGIC), Nagasaki, Japan.,Department of Genome Repair, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Manuela Lanzafame
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, Pavia, Italy
| | | | - Katsuo Sugita
- Division of Child Health, Faculty of Education, Chiba University, Chiba, Japan
| | - Masaya Kubota
- Division of Neurology, National Center for Child Health and Development, Tokyo, France
| | - Cathy Obringer
- Faculté de Médecine, Laboratoire de Génétique Médicale, Strasbourg, France
| | - Marie-Aude Spitz
- Départementde Pédiatrie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Miria Stefanini
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, Pavia, Italy
| | - Vincent Laugel
- Faculté de Médecine, Laboratoire de Génétique Médicale, Strasbourg, France.,Départementde Pédiatrie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Donata Orioli
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, Pavia, Italy
| | - Tomoo Ogi
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan.,Nagasaki University Research Centre for Genomic Instability and Carcinogenesis (NRGIC), Nagasaki, Japan.,Department of Genome Repair, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | | |
Collapse
|
23
|
Chitale S, Richly H. Nuclear organization of nucleotide excision repair is mediated by RING1B dependent H2A-ubiquitylation. Oncotarget 2018; 8:30870-30887. [PMID: 28416769 PMCID: PMC5458174 DOI: 10.18632/oncotarget.16142] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 02/15/2017] [Indexed: 01/10/2023] Open
Abstract
One of the major cellular DNA repair pathways is nucleotide excision repair (NER). It is the primary pathway for repair of various DNA lesions caused by exposure to ultraviolet (UV) light, such as cyclobutane pyrimidine dimers (CPDs) and 6-4 photoproducts. Although lesion-containing DNA associates with the nuclear matrix after UV irradiation it is still not understood how nuclear organization affects NER. Analyzing unscheduled DNA synthesis (UDS) indicates that NER preferentially occurs in specific nuclear areas, viz the nucleolus. Upon inducing localized damage, we observe migration of damaged DNA towards the nucleolus. Employing a LacR-based tethering system we demonstrate that H2A-ubiquitylation via the UV-RING1B complex localizes chromatin close to the nucleolus. We further show that the H2A-ubiquitin binding protein ZRF1 resides in the nucleolus, and that it anchors ubiquitylated chromatin along with XPC. Our data thus provide insight into the sub-nuclear organization of NER and reveal a novel role for histone H2A-ubiquitylation.
Collapse
Affiliation(s)
- Shalaka Chitale
- Laboratory of Molecular Epigenetics, Institute of Molecular Biology, Mainz, Germany, Ackermannweg, Mainz, Germany.,Faculty of Biology, Johannes Gutenberg University, Mainz, Germany
| | - Holger Richly
- Laboratory of Molecular Epigenetics, Institute of Molecular Biology, Mainz, Germany, Ackermannweg, Mainz, Germany
| |
Collapse
|
24
|
Wakida T, Ikura M, Kuriya K, Ito S, Shiroiwa Y, Habu T, Kawamoto T, Okumura K, Ikura T, Furuya K. The CDK-PLK1 axis targets the DNA damage checkpoint sensor protein RAD9 to promote cell proliferation and tolerance to genotoxic stress. eLife 2017; 6:e29953. [PMID: 29254517 PMCID: PMC5736350 DOI: 10.7554/elife.29953] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 12/02/2017] [Indexed: 01/08/2023] Open
Abstract
Genotoxic stress causes proliferating cells to activate the DNA damage checkpoint, to assist DNA damage recovery by slowing cell cycle progression. Thus, to drive proliferation, cells must tolerate DNA damage and suppress the checkpoint response. However, the mechanism underlying this negative regulation of checkpoint activation is still elusive. We show that human Cyclin-Dependent-Kinases (CDKs) target the RAD9 subunit of the 9-1-1 checkpoint clamp on Thr292, to modulate DNA damage checkpoint activation. Thr292 phosphorylation on RAD9 creates a binding site for Polo-Like-Kinase1 (PLK1), which phosphorylates RAD9 on Thr313. These CDK-PLK1-dependent phosphorylations of RAD9 suppress checkpoint activation, therefore maintaining high DNA synthesis rates during DNA replication stress. Our results suggest that CDK locally initiates a PLK1-dependent signaling response that antagonizes the ability of the DNA damage checkpoint to detect DNA damage. These findings provide a mechanism for the suppression of DNA damage checkpoint signaling, to promote cell proliferation under genotoxic stress conditions.
Collapse
Affiliation(s)
- Takeshi Wakida
- Department of Radiation SystemsRadiation Biology Center, Kyoto UniversityKyotoJapan
- Laboratory of Chromatin Regulatory Network, Department of MutagenesisRadiation Biology Center, Kyoto UniversityKyotoJapan
| | - Masae Ikura
- Laboratory of Chromatin Regulatory Network, Department of MutagenesisRadiation Biology Center, Kyoto UniversityKyotoJapan
| | - Kenji Kuriya
- Laboratory of Nutritional Chemistry, Department of Life SciencesGraduate School of Bioresources, Mie UniversityTsuJapan
| | - Shinji Ito
- Medical Research Support CenterGraduate School of Medicine, Kyoto UniversitySakyo-kuJapan
| | - Yoshiharu Shiroiwa
- Department of Radiation SystemsRadiation Biology Center, Kyoto UniversityKyotoJapan
| | - Toshiyuki Habu
- Department of Radiation SystemsRadiation Biology Center, Kyoto UniversityKyotoJapan
- Department of Food Science and NutritionMukogawa Women’s UniversityNishinomiyaJapan
| | | | - Katsuzumi Okumura
- Laboratory of Molecular and Cellular Biology, Department of Life SciencesMie UniversityTsuJapan
| | - Tsuyoshi Ikura
- Laboratory of Chromatin Regulatory Network, Department of MutagenesisRadiation Biology Center, Kyoto UniversityKyotoJapan
- Laboratory of Chromatin Regulatory NetworkGraduate School of Biostudies, Kyoto UniversityKyotoJapan
| | - Kanji Furuya
- Department of Radiation SystemsRadiation Biology Center, Kyoto UniversityKyotoJapan
- Laboratory of Genome MaintenanceGraduate School of Biostudies, Kyoto UniversityKyotoJapan
| |
Collapse
|
25
|
Calses PC, Dhillon KK, Tucker N, Chi Y, Huang JW, Kawasumi M, Nghiem P, Wang Y, Clurman BE, Jacquemont C, Gafken PR, Sugasawa K, Saijo M, Taniguchi T. DGCR8 Mediates Repair of UV-Induced DNA Damage Independently of RNA Processing. Cell Rep 2017; 19:162-174. [PMID: 28380355 DOI: 10.1016/j.celrep.2017.03.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 12/24/2016] [Accepted: 03/03/2017] [Indexed: 12/20/2022] Open
Abstract
Ultraviolet (UV) radiation is a carcinogen that generates DNA lesions. Here, we demonstrate an unexpected role for DGCR8, an RNA binding protein that canonically functions with Drosha to mediate microRNA processing, in the repair of UV-induced DNA lesions. Treatment with UV induced phosphorylation on serine 153 (S153) of DGCR8 in both human and murine cells. S153 phosphorylation was critical for cellular resistance to UV, the removal of UV-induced DNA lesions, and the recovery of RNA synthesis after UV exposure but not for microRNA expression. The RNA-binding and Drosha-binding activities of DGCR8 were not critical for UV resistance. DGCR8 depletion was epistatic to defects in XPA, CSA, and CSB for UV sensitivity. DGCR8 physically interacted with CSB and RNA polymerase II. JNKs were involved in the UV-induced S153 phosphorylation. These findings suggest that UV-induced S153 phosphorylation mediates transcription-coupled nucleotide excision repair of UV-induced DNA lesions in a manner independent of microRNA processing.
Collapse
Affiliation(s)
- Philamer C Calses
- Division of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., C1-015, Seattle, WA 98109-1024, USA; Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., C1-015, Seattle, WA 98109-1024, USA; Molecular and Cellular Biology Graduate Program, University of Washington, 1959 NE Pacific, HSB T-466, Seattle, WA 98195-7275, USA
| | - Kiranjit K Dhillon
- Division of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., C1-015, Seattle, WA 98109-1024, USA; Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., C1-015, Seattle, WA 98109-1024, USA
| | - Nyka Tucker
- Division of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., C1-015, Seattle, WA 98109-1024, USA; Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., C1-015, Seattle, WA 98109-1024, USA
| | - Yong Chi
- Division of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., C1-015, Seattle, WA 98109-1024, USA; Division of Clinical Research, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., C1-015, Seattle, WA 98109-1024, USA
| | - Jen-Wei Huang
- Division of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., C1-015, Seattle, WA 98109-1024, USA; Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., C1-015, Seattle, WA 98109-1024, USA; Molecular and Cellular Biology Graduate Program, University of Washington, 1959 NE Pacific, HSB T-466, Seattle, WA 98195-7275, USA
| | - Masaoki Kawasumi
- Division of Dermatology, Department of Medicine, University of Washington, 850 Republican St., Seattle, WA 98109-4714, USA
| | - Paul Nghiem
- Division of Dermatology, Department of Medicine, University of Washington, 850 Republican St., Seattle, WA 98109-4714, USA
| | - Yemin Wang
- Division of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., C1-015, Seattle, WA 98109-1024, USA; Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., C1-015, Seattle, WA 98109-1024, USA
| | - Bruce E Clurman
- Division of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., C1-015, Seattle, WA 98109-1024, USA; Division of Clinical Research, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., C1-015, Seattle, WA 98109-1024, USA
| | - Celine Jacquemont
- Division of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., C1-015, Seattle, WA 98109-1024, USA; Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., C1-015, Seattle, WA 98109-1024, USA
| | - Philip R Gafken
- Proteomics Core Facility, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., DE-352, Seattle, WA 98109-1024, USA
| | - Kaoru Sugasawa
- Biosignal Research Center, Organization of Advanced Science and Technology, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Masafumi Saijo
- Graduate School of Frontier Biosciences, Osaka University, Yamadaoka 1-3, Suita, Osaka 565-0871, Japan
| | - Toshiyasu Taniguchi
- Division of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., C1-015, Seattle, WA 98109-1024, USA; Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., C1-015, Seattle, WA 98109-1024, USA; Department of Molecular Life Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan.
| |
Collapse
|
26
|
Okuda M, Nakazawa Y, Guo C, Ogi T, Nishimura Y. Common TFIIH recruitment mechanism in global genome and transcription-coupled repair subpathways. Nucleic Acids Res 2017; 45:13043-13055. [PMID: 29069470 PMCID: PMC5727438 DOI: 10.1093/nar/gkx970] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 10/03/2017] [Accepted: 10/10/2017] [Indexed: 12/17/2022] Open
Abstract
Nucleotide excision repair is initiated by two different damage recognition subpathways, global genome repair (GGR) and transcription-coupled repair (TCR). In GGR, XPC detects DNA lesions and recruits TFIIH via interaction with the pleckstrin homology (PH) domain of TFIIH subunit p62. In TCR, an elongating form of RNA Polymerase II detects a lesion on the transcribed strand and recruits TFIIH by an unknown mechanism. Here, we found that the TCR initiation factor UVSSA forms a stable complex with the PH domain of p62 via a short acidic string in the central region of UVSSA, and determined the complex structure by NMR. The acidic string of UVSSA binds strongly to the basic groove of the PH domain by inserting Phe408 and Val411 into two pockets, highly resembling the interaction mechanism of XPC with p62. Mutational binding analysis validated the structure and identified residues crucial for binding. TCR activity was markedly diminished in UVSSA-deficient cells expressing UVSSA mutated at Phe408 or Val411. Thus, a common TFIIH recruitment mechanism is shared by UVSSA in TCR and XPC in GGR.
Collapse
Affiliation(s)
- Masahiko Okuda
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Yuka Nakazawa
- Department of Genome Repair, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4, Sakamoto, Nagasaki 852-8523, Japan
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Chaowan Guo
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Tomoo Ogi
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Yoshifumi Nishimura
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| |
Collapse
|
27
|
Chitale S, Richly H. DICER- and MMSET-catalyzed H4K20me2 recruits the nucleotide excision repair factor XPA to DNA damage sites. J Cell Biol 2017; 217:527-540. [PMID: 29233865 PMCID: PMC5800799 DOI: 10.1083/jcb.201704028] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 10/06/2017] [Accepted: 11/08/2017] [Indexed: 12/30/2022] Open
Abstract
The endoribonuclease DICER facilitates chromatin decondensation during lesion recognition following UV exposure. Chitale and Richly show that DICER mediates the recruitment of the methyltransferase MMSET, which catalyzes the dimethylation of histone H4 at lysine 20 and facilitates the recruitment of the nucleotide excision repair factor XPA. Ultraviolet (UV) irradiation triggers the recruitment of DNA repair factors to the lesion sites and the deposition of histone marks as part of the DNA damage response. The major DNA repair pathway removing DNA lesions caused by exposure to UV light is nucleotide excision repair (NER). We have previously demonstrated that the endoribonuclease DICER facilitates chromatin decondensation during lesion recognition in the global-genomic branch of NER. Here, we report that DICER mediates the recruitment of the methyltransferase MMSET to the DNA damage site. We show that MMSET is required for efficient NER and that it catalyzes the dimethylation of histone H4 at lysine 20 (H4K20me2). H4K20me2 at DNA damage sites facilitates the recruitment of the NER factor XPA. Our work thus provides evidence for an H4K20me2-dependent mechanism of XPA recruitment during lesion recognition in the global-genomic branch of NER.
Collapse
Affiliation(s)
- Shalaka Chitale
- Laboratory of Molecular Epigenetics, Institute of Molecular Biology, Mainz, Germany.,Faculty of Biology, Johannes Gutenberg University, Mainz, Germany
| | - Holger Richly
- Laboratory of Molecular Epigenetics, Institute of Molecular Biology, Mainz, Germany
| |
Collapse
|
28
|
Chitale S, Richly H. DICER and ZRF1 contribute to chromatin decondensation during nucleotide excision repair. Nucleic Acids Res 2017; 45:5901-5912. [PMID: 28402505 PMCID: PMC5449631 DOI: 10.1093/nar/gkx261] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 04/04/2017] [Indexed: 12/18/2022] Open
Abstract
Repair of damaged DNA relies on the recruitment of DNA repair factors in a well orchestrated manner. As a prerequisite, the chromatin needs to be decondensed by chromatin remodelers to allow for binding of repair factors and for DNA repair to occur. Recent studies have implicated members of the SWI/SNF and INO80 families as well as PARP1 in nucleotide excision repair (NER). In this study, we report that the endonuclease DICER is implicated in chromatin decondensation during NER. In response to UV irradiation, DICER is recruited to chromatin in a ZRF1-mediated manner. The H2A–ubiquitin binding protein ZRF1 and DICER together impact on the chromatin conformation via PARP1. Moreover, DICER-mediated chromatin decondensation is independent of its catalytic activity. Taken together, we describe a novel function of DICER at chromatin and its interaction with the ubiquitin signalling cascade during GG-NER.
Collapse
Affiliation(s)
- Shalaka Chitale
- Laboratory of Molecular Epigenetics, Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany.,Faculty of Biology, Johannes Gutenberg University, 55099 Mainz, Germany
| | - Holger Richly
- Laboratory of Molecular Epigenetics, Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany
| |
Collapse
|
29
|
Wienholz F, Vermeulen W, Marteijn JA. Amplification of unscheduled DNA synthesis signal enables fluorescence-based single cell quantification of transcription-coupled nucleotide excision repair. Nucleic Acids Res 2017; 45:e68. [PMID: 28088761 PMCID: PMC5436002 DOI: 10.1093/nar/gkw1360] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 01/02/2017] [Indexed: 12/14/2022] Open
Abstract
Nucleotide excision repair (NER) comprises two damage recognition pathways: global genome NER (GG-NER) and transcription-coupled NER (TC-NER), which remove a wide variety of helix-distorting lesions including UV-induced damage. During NER, a short stretch of single-stranded DNA containing damage is excised and the resulting gap is filled by DNA synthesis in a process called unscheduled DNA synthesis (UDS). UDS is measured by quantifying the incorporation of nucleotide analogues into repair patches to provide a measure of NER activity. However, this assay is unable to quantitatively determine TC-NER activity due to the low contribution of TC-NER to the overall NER activity. Therefore, we developed a user-friendly, fluorescence-based single-cell assay to measure TC-NER activity. We combined the UDS assay with tyramide-based signal amplification to greatly increase the UDS signal, thereby allowing UDS to be quantified at low UV doses, as well as DNA-repair synthesis of other excision-based repair mechanisms such as base excision repair and mismatch repair. Importantly, we demonstrated that the amplified UDS is sufficiently sensitive to quantify TC-NER-derived repair synthesis in GG-NER-deficient cells. This assay is important as a diagnostic tool for NER-related disorders and as a research tool for obtaining new insights into the mechanism and regulation of excision repair.
Collapse
Affiliation(s)
- Franziska Wienholz
- Department of Molecular Genetics, Cancer Genomics Netherlands, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Wim Vermeulen
- Department of Molecular Genetics, Cancer Genomics Netherlands, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Jurgen A Marteijn
- Department of Molecular Genetics, Cancer Genomics Netherlands, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| |
Collapse
|
30
|
Takahashi Y, Endo Y, Kusaka-Kikushima A, Nakamaura S, Nakazawa Y, Ogi T, Uryu M, Tsuji G, Furue M, Moriwaki S. An XPA
gene splicing mutation resulting in trace protein expression in an elderly patient with xeroderma pigmentosum group A without neurological abnormalities. Br J Dermatol 2017; 177:253-257. [DOI: 10.1111/bjd.15051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Y. Takahashi
- Biological Science Research; Kao Corporation; Odawara Japan
| | - Y. Endo
- Biological Science Research; Kao Corporation; Odawara Japan
| | | | - S. Nakamaura
- Biological Science Research; Kao Corporation; Odawara Japan
| | - Y. Nakazawa
- Department of Molecular Medicine; Atomic Bomb Disease Institute; Nagasaki University; Nagasaki Japan
| | - T. Ogi
- Department of Molecular Medicine; Atomic Bomb Disease Institute; Nagasaki University; Nagasaki Japan
- Department of Genetics; Research Institute of Environmental Medicine; Nagoya University; Nagoya Japan
| | - M. Uryu
- Department of Dermatology; Graduate School of Medical Sciences; Kyushu University; Fukuoka Japan
| | - G. Tsuji
- Department of Dermatology; Graduate School of Medical Sciences; Kyushu University; Fukuoka Japan
| | - M. Furue
- Department of Dermatology; Graduate School of Medical Sciences; Kyushu University; Fukuoka Japan
| | - S. Moriwaki
- Department of Dermatology; Osaka Medical College; 2-7 Daigaku-machi Takatsuki Osaka 569-8686 Japan
| |
Collapse
|
31
|
Ono R, Masaki T, Mayca Pozo F, Nakazawa Y, Swagemakers SMA, Nakano E, Sakai W, Takeuchi S, Kanda F, Ogi T, van der Spek PJ, Sugasawa K, Nishigori C. A 10-year follow-up of a child with mild case of xeroderma pigmentosum complementation group D diagnosed by whole-genome sequencing. PHOTODERMATOLOGY PHOTOIMMUNOLOGY & PHOTOMEDICINE 2016; 32:174-80. [DOI: 10.1111/phpp.12240] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/11/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Ryusuke Ono
- Division of Dermatology; Department of Internal Related; Kobe University Graduate School of Medicine; Kobe Japan
| | - Taro Masaki
- Division of Dermatology; Department of Internal Related; Kobe University Graduate School of Medicine; Kobe Japan
| | - Franklin Mayca Pozo
- Biosignal Research Center, Organization of Advanced Science and Technology; Kobe University; Kobe Japan
| | - Yuka Nakazawa
- Nagasaki University Research Centre for Genomic Instability and Carcinogenesis; Nagasaki University; Nagasaki Japan
- Department of Genetics; Research Institute of Environmental Medicine; Nagoya University; Nagoya Japan
| | | | - Eiji Nakano
- Division of Dermatology; Department of Internal Related; Kobe University Graduate School of Medicine; Kobe Japan
| | - Wataru Sakai
- Biosignal Research Center, Organization of Advanced Science and Technology; Kobe University; Kobe Japan
| | - Seiji Takeuchi
- Division of Dermatology; Department of Internal Related; Kobe University Graduate School of Medicine; Kobe Japan
| | - Fumio Kanda
- Division of Neurology; Kobe University Graduate School of Medicine; Kobe Japan
- Integrated Clinical Education Center; Kobe University Hospital; Kobe Japan
| | - Tomoo Ogi
- Nagasaki University Research Centre for Genomic Instability and Carcinogenesis; Nagasaki University; Nagasaki Japan
- Department of Genetics; Research Institute of Environmental Medicine; Nagoya University; Nagoya Japan
| | - Peter J. van der Spek
- Department of Bioinformatics; Erasmus University Medical Centre; Rotterdam The Netherlands
| | - Kaoru Sugasawa
- Biosignal Research Center, Organization of Advanced Science and Technology; Kobe University; Kobe Japan
| | - Chikako Nishigori
- Division of Dermatology; Department of Internal Related; Kobe University Graduate School of Medicine; Kobe Japan
| |
Collapse
|
32
|
Gracheva E, Chitale S, Wilhelm T, Rapp A, Byrne J, Stadler J, Medina R, Cardoso MC, Richly H. ZRF1 mediates remodeling of E3 ligases at DNA lesion sites during nucleotide excision repair. J Cell Biol 2016; 213:185-200. [PMID: 27091446 PMCID: PMC5084270 DOI: 10.1083/jcb.201506099] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 03/16/2016] [Indexed: 01/26/2023] Open
Abstract
Faithful DNA repair is essential to maintain genome integrity. Ultraviolet (UV) irradiation elicits both the recruitment of DNA repair factors and the deposition of histone marks such as monoubiquitylation of histone H2A at lesion sites. Here, we report how a ubiquitin E3 ligase complex specific to DNA repair is remodeled at lesion sites in the global genome nucleotide excision repair (GG-NER) pathway. Monoubiquitylation of histone H2A (H2A-ubiquitin) is catalyzed predominantly by a novel E3 ligase complex consisting of DDB2, DDB1, CUL4B, and RING1B (UV-RING1B complex) that acts early during lesion recognition. The H2A-ubiquitin binding protein ZRF1 mediates remodeling of this E3 ligase complex directly at the DNA lesion site, causing the assembly of the UV-DDB-CUL4A E3 ligase complex (DDB1-DDB2-CUL4A-RBX1). ZRF1 is an essential factor in GG-NER, and its function at damaged chromatin sites is linked to damage recognition factor XPC. Overall, the results shed light on the interplay between epigenetic and DNA repair recognition factors at DNA lesion sites.
Collapse
Affiliation(s)
- Ekaterina Gracheva
- Laboratory of Molecular Epigenetics, Institute of Molecular Biology, 55128 Mainz, Germany
| | - Shalaka Chitale
- Laboratory of Molecular Epigenetics, Institute of Molecular Biology, 55128 Mainz, Germany
| | - Thomas Wilhelm
- Laboratory of Molecular Epigenetics, Institute of Molecular Biology, 55128 Mainz, Germany
| | - Alexander Rapp
- Department of Biology, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Jonathan Byrne
- Laboratory of Molecular Epigenetics, Institute of Molecular Biology, 55128 Mainz, Germany
| | - Jens Stadler
- Laboratory of Molecular Epigenetics, Institute of Molecular Biology, 55128 Mainz, Germany
| | - Rebeca Medina
- Laboratory of Molecular Epigenetics, Institute of Molecular Biology, 55128 Mainz, Germany
| | - M Cristina Cardoso
- Department of Biology, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Holger Richly
- Laboratory of Molecular Epigenetics, Institute of Molecular Biology, 55128 Mainz, Germany
| |
Collapse
|
33
|
Calmels N, Greff G, Obringer C, Kempf N, Gasnier C, Tarabeux J, Miguet M, Baujat G, Bessis D, Bretones P, Cavau A, Digeon B, Doco-Fenzy M, Doray B, Feillet F, Gardeazabal J, Gener B, Julia S, Llano-Rivas I, Mazur A, Michot C, Renaldo-Robin F, Rossi M, Sabouraud P, Keren B, Depienne C, Muller J, Mandel JL, Laugel V. Uncommon nucleotide excision repair phenotypes revealed by targeted high-throughput sequencing. Orphanet J Rare Dis 2016; 11:26. [PMID: 27004399 PMCID: PMC4804614 DOI: 10.1186/s13023-016-0408-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Accepted: 03/16/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Deficient nucleotide excision repair (NER) activity causes a variety of autosomal recessive diseases including xeroderma pigmentosum (XP) a disorder which pre-disposes to skin cancer, and the severe multisystem condition known as Cockayne syndrome (CS). In view of the clinical overlap between NER-related disorders, as well as the existence of multiple phenotypes and the numerous genes involved, we developed a new diagnostic approach based on the enrichment of 16 NER-related genes by multiplex amplification coupled with next-generation sequencing (NGS). METHODS Our test cohort consisted of 11 DNA samples, all with known mutations and/or non pathogenic SNPs in two of the tested genes. We then used the same technique to analyse samples from a prospective cohort of 40 patients. Multiplex amplification and sequencing were performed using AmpliSeq protocol on the Ion Torrent PGM (Life Technologies). RESULTS We identified causative mutations in 17 out of the 40 patients (43%). Four patients showed biallelic mutations in the ERCC6(CSB) gene, five in the ERCC8(CSA) gene: most of them had classical CS features but some had very mild and incomplete phenotypes. A small cohort of 4 unrelated classic XP patients from the Basque country (Northern Spain) revealed a common splicing mutation in POLH (XP-variant), demonstrating a new founder effect in this population. Interestingly, our results also found ERCC2(XPD), ERCC3(XPB) or ERCC5(XPG) mutations in two cases of UV-sensitive syndrome and in two cases with mixed XP/CS phenotypes. CONCLUSIONS Our study confirms that NGS is an efficient technique for the analysis of NER-related disorders on a molecular level. It is particularly useful for phenotypes with combined features or unusually mild symptoms. Targeted NGS used in conjunction with DNA repair functional tests and precise clinical evaluation permits rapid and cost-effective diagnosis in patients with NER-defects.
Collapse
Affiliation(s)
- Nadège Calmels
- Laboratoire de Diagnostic Génétique, Institut de Génétique Médicale d'Alsace (IGMA), Hôpitaux Universitaires de Strasbourg, 1 place de l'hôpital, Strasbourg, France.
| | - Géraldine Greff
- Laboratoire de Diagnostic Génétique, Institut de Génétique Médicale d'Alsace (IGMA), Hôpitaux Universitaires de Strasbourg, 1 place de l'hôpital, Strasbourg, France
| | - Cathy Obringer
- Laboratoire de Génétique Médicale - INSERM U1112, Institut de Génétique Médicale d'Alsace (IGMA), Faculté de médecine de Strasbourg, 11 rue Humann, Strasbourg, France
| | - Nadine Kempf
- Laboratoire de Diagnostic Génétique, Institut de Génétique Médicale d'Alsace (IGMA), Hôpitaux Universitaires de Strasbourg, 1 place de l'hôpital, Strasbourg, France
| | - Claire Gasnier
- Laboratoire de Diagnostic Génétique, Institut de Génétique Médicale d'Alsace (IGMA), Hôpitaux Universitaires de Strasbourg, 1 place de l'hôpital, Strasbourg, France
| | - Julien Tarabeux
- Laboratoire de Diagnostic Génétique, Institut de Génétique Médicale d'Alsace (IGMA), Hôpitaux Universitaires de Strasbourg, 1 place de l'hôpital, Strasbourg, France
| | - Marguerite Miguet
- Laboratoire de Diagnostic Génétique, Institut de Génétique Médicale d'Alsace (IGMA), Hôpitaux Universitaires de Strasbourg, 1 place de l'hôpital, Strasbourg, France
| | - Geneviève Baujat
- Centre de Référence Maladies Osseuses Constitutionnelles, Département de Génétique, Hôpital Necker-Enfants malades, Paris, France
| | - Didier Bessis
- Département de Dermatologie, Hôpital Saint-Éloi, 80 avenue Augustin-Fliche, 34295, Montpellier, France
| | - Patricia Bretones
- Service d'Endocrinologie Pédiatrique, diabète et maladies héréditaires du métabolisme, Hôpital Femme Mère enfant, GH Est, 59 boulevard Pinel, Bron, France
| | - Anne Cavau
- Service de Pédiatrie Générale, Hôpital Necker-Enfants malades, Paris, France
| | - Béatrice Digeon
- Service de Pédiatrie, CHU de Reims, Hôpital Maison Blanche, 45 rue Cognacq-Jay, Reims, France
| | - Martine Doco-Fenzy
- Service de Génétique et Biologie de la Reproduction CHU de Reims, Hôpital Maison Blanche, 45 rue Cognacq-Jay, Reims, France
| | - Bérénice Doray
- Service de Génétique, CHU La Réunion, Hôpital Félix Guyon, Allée des Topazes, Saint-Denis, France
| | - François Feillet
- Centre de Référence des Maladies Héréditaires du Métabolisme, Service de Médecine Infantile, INSERM NGERE 954, CHU Brabois Enfants, Allée du Morvan, Vandœuvre les Nancy, France
| | - Jesus Gardeazabal
- Servicio de Dermatología, Cruces University Hospital, BioCruces Health Research Institute, Baracaldo Vizcaya, Spain
| | - Blanca Gener
- Servicio de Genética, Cruces University Hospital, BioCruces Health Research Institute, Baracaldo Vizcaya, Spain
| | - Sophie Julia
- Service de Génétique Médicale, CHU de Toulouse - Hôpital Purpan, Place du Docteur Baylac, Toulouse, France
| | - Isabel Llano-Rivas
- Servicio de Genética, Cruces University Hospital, BioCruces Health Research Institute, Baracaldo Vizcaya, Spain
| | - Artur Mazur
- Department of Pediatrics, Pediatric Endocrinology and Diabetes, Faculty of Medicine, University of Rzeszów, Rzeszów, Poland
| | - Caroline Michot
- Service de Génétique Médicale, Hôpital Necker Enfants-Malades, 24 Bd du Montparnasse, Paris, France
| | | | - Massimiliano Rossi
- Centre de Référence des Anomalies du Développement, Service de Génétique, Hospices Civils de Lyon, Lyon, France.,INSERM U1028; CNRS UMR5292; CNRL TIGER Team, Lyon, France
| | - Pascal Sabouraud
- Service de Pédiatrie A - Neurologie pédiatrique, CHU de Reims - American Memorial Hospital, 47 rue Cognacq Jay, Reims, France
| | - Boris Keren
- AP-HP, Hôpital de la Pitié-Salpêtrière, Département de Génétique, F-75013, Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, UM 75, U 1127, UMR 7225, ICM, F-75013, Paris, France
| | - Christel Depienne
- AP-HP, Hôpital de la Pitié-Salpêtrière, Département de Génétique, F-75013, Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, UM 75, U 1127, UMR 7225, ICM, F-75013, Paris, France
| | - Jean Muller
- Laboratoire de Diagnostic Génétique, Institut de Génétique Médicale d'Alsace (IGMA), Hôpitaux Universitaires de Strasbourg, 1 place de l'hôpital, Strasbourg, France.,Laboratoire de Génétique Médicale - INSERM U1112, Institut de Génétique Médicale d'Alsace (IGMA), Faculté de médecine de Strasbourg, 11 rue Humann, Strasbourg, France
| | - Jean-Louis Mandel
- Laboratoire de Diagnostic Génétique, Institut de Génétique Médicale d'Alsace (IGMA), Hôpitaux Universitaires de Strasbourg, 1 place de l'hôpital, Strasbourg, France
| | - Vincent Laugel
- Laboratoire de Génétique Médicale - INSERM U1112, Institut de Génétique Médicale d'Alsace (IGMA), Faculté de médecine de Strasbourg, 11 rue Humann, Strasbourg, France.,Service de Pédiatrie, Hôpitaux Universitaires de Strasbourg, 1 avenue Molière, Strasbourg, France
| |
Collapse
|
34
|
Guo C, Nakazawa Y, Woodbine L, Björkman A, Shimada M, Fawcett H, Jia N, Ohyama K, Li TS, Nagayama Y, Mitsutake N, Pan-Hammarström Q, Gennery AR, Lehmann AR, Jeggo PA, Ogi T. XRCC4 deficiency in human subjects causes a marked neurological phenotype but no overt immunodeficiency. J Allergy Clin Immunol 2015; 136:1007-17. [PMID: 26255102 DOI: 10.1016/j.jaci.2015.06.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 05/27/2015] [Accepted: 06/08/2015] [Indexed: 01/18/2023]
Abstract
BACKGROUND Nonhomologous end-joining (NHEJ) is the major DNA double-strand break (DSB) repair mechanism in human cells. The final rejoining step requires DNA ligase IV (LIG4) together with the partner proteins X-ray repair cross-complementing protein 4 (XRCC4) and XRCC4-like factor. Patients with mutations in genes encoding LIG4, XRCC4-like factor, or the other NHEJ proteins DNA-dependent protein kinase catalytic subunit and Artemis are DSB repair defective and immunodeficient because of the requirement for NHEJ during V(D)J recombination. OBJECTIVE We found a patient displaying microcephaly and progressive ataxia but a normal immune response. We sought to determine pathogenic mutations and to describe the molecular pathogenesis of the patient. METHODS We performed next-generation exome sequencing. We evaluated the DSB repair activities and V(D)J recombination capacity of the patient's cells, as well as performing a standard blood immunologic characterization. RESULTS We identified causal mutations in the XRCC4 gene. The patient's cells are radiosensitive and display the most severe DSB repair defect we have encountered using patient-derived cell lines. In marked contrast, a V(D)J recombination plasmid assay revealed that the patient's cells did not display the junction abnormalities that are characteristic of other NHEJ-defective cell lines. The mutant protein can interact efficiently with LIG4 and functions normally in in vitro assays and when transiently expressed in vivo. However, the mutation makes the protein unstable, and it undergoes proteasome-mediated degradation. CONCLUSION Our findings reveal a novel separation of impact phenotype: there is a pronounced DSB repair defect and marked clinical neurological manifestation but no clinical immunodeficiency.
Collapse
Affiliation(s)
- Chaowan Guo
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan; Nagasaki University Research Centre for Genomic Instability and Carcinogenesis (NRGIC), Nagasaki, Japan; Department of Molecular Medicine, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Yuka Nakazawa
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan; Nagasaki University Research Centre for Genomic Instability and Carcinogenesis (NRGIC), Nagasaki, Japan; Department of Molecular Medicine, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Lisa Woodbine
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton, United Kingdom
| | - Andrea Björkman
- Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Mayuko Shimada
- Nagasaki University Research Centre for Genomic Instability and Carcinogenesis (NRGIC), Nagasaki, Japan; Department of Molecular Medicine, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Heather Fawcett
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton, United Kingdom
| | - Nan Jia
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan; Nagasaki University Research Centre for Genomic Instability and Carcinogenesis (NRGIC), Nagasaki, Japan; Department of Molecular Medicine, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Kaname Ohyama
- Nagasaki University Research Centre for Genomic Instability and Carcinogenesis (NRGIC), Nagasaki, Japan; Course of Pharmaceutical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Tao-Sheng Li
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Yuji Nagayama
- Department of Molecular Medicine, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Norisato Mitsutake
- Nagasaki University Research Centre for Genomic Instability and Carcinogenesis (NRGIC), Nagasaki, Japan; Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Qiang Pan-Hammarström
- Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Andrew R Gennery
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Alan R Lehmann
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton, United Kingdom
| | - Penny A Jeggo
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton, United Kingdom.
| | - Tomoo Ogi
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan; Nagasaki University Research Centre for Genomic Instability and Carcinogenesis (NRGIC), Nagasaki, Japan; Department of Molecular Medicine, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan; Microbial Genetics Laboratory, Genetic Strains Research Center, National Institute of Genetics, Mishima, Japan.
| |
Collapse
|
35
|
Sonohara Y, Iwai S, Kuraoka I. An in vitro method for detecting genetic toxicity based on inhibition of RNA synthesis by DNA lesions. Genes Environ 2015; 37:8. [PMID: 27350805 PMCID: PMC4918014 DOI: 10.1186/s41021-015-0014-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 07/09/2015] [Indexed: 11/25/2022] Open
Abstract
Introduction A wide variety of DNA lesions such as ultraviolet light-induced photoproducts and chemically induced bulky adducts and crosslinks (intrastrand and interstrand) interfere with replication and lead to mutations and cell death. In the human body, these damages may cause cancer, inborn diseases, and aging. So far, mutation-related actions of DNA polymerases during replication have been intensively studied. However, DNA lesions also block RNA synthesis, making the detection of their effects on transcription equally important for chemical safety assessment. Previously, we established an in vivo method for detecting DNA damage induced by ultraviolet light and/or chemicals via inhibition of RNA polymerase by visualizing transcription. Results Here, we present an in vitro method for detecting the effects of chemically induced DNA lesions using in vitro transcription with T7 RNA polymerase and real-time reverse transcription polymerase chain reaction (PCR) based on inhibition of in vitro RNA synthesis. Conventional PCR and real-time reverse transcription PCR without in vitro transcription can detect DNA lesions such as complicated cisplatin DNA adducts but not UV-induced lesions. We found that only this combination of in vitro transcription and real-time reverse transcription PCR can detect both cisplatin- and UV-induced DNA lesions that interfere with transcription. Conclusions We anticipate that this method will be useful for estimating the potential transcriptional toxicity of chemicals in terminally differentiated cells engaged in active transcription and translation but not in replication.
Collapse
Affiliation(s)
- Yuina Sonohara
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531 Japan
| | - Shigenori Iwai
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531 Japan
| | - Isao Kuraoka
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531 Japan
| |
Collapse
|
36
|
Tamura S, Higuchi K, Tamaki M, Inoue C, Awazawa R, Mitsuki N, Nakazawa Y, Mishima H, Takahashi K, Kondo O, Imai K, Morio T, Ohara O, Ogi T, Furukawa F, Inoue M, Yoshiura KI, Kanazawa N. Novel compound heterozygous DNA ligase IV mutations in an adolescent with a slowly-progressing radiosensitive-severe combined immunodeficiency. Clin Immunol 2015; 160:255-60. [PMID: 26172957 DOI: 10.1016/j.clim.2015.07.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 07/05/2015] [Accepted: 07/06/2015] [Indexed: 11/18/2022]
Abstract
We herein describe a case of a 17-year-old boy with intractable common warts, short stature, microcephaly and slowly-progressing pancytopenia. Simultaneous quantification of T-cell receptor recombination excision circles (TREC) and immunoglobulin κ-deleting recombination excision circles (KREC) suggested very poor generation of both T-cells and B-cells. By whole exome sequencing, novel compound heterozygous mutations were identified in the patient's DNA ligase IV (LIG4) gene. The diagnosis of LIG4 syndrome was confirmed by delayed DNA double-strand break repair kinetics in γ-irradiated fibroblasts from the patient and their restoration by an introduction of wild-type LIG4. Although the patient received allogeneic hematopoietic stem cell transplantation from his haploidentical mother, he unfortunately expired due to an insufficiently reconstructed immune system. An earlier definitive diagnosis using TREC/KREC quantification and whole exome sequencing would thereby allow earlier intervention, which would be essential for improving long-term survival in similar cases with slowly-progressing LIG4 syndrome masked in adolescents.
Collapse
Affiliation(s)
- Shinobu Tamura
- Department of Hematology and Oncology, Kinan Hospital, Wakayama, Japan
| | - Kohei Higuchi
- Department of Hematology and Oncology, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka, Japan
| | - Masaharu Tamaki
- Department of Hematology and Oncology, Kinan Hospital, Wakayama, Japan
| | | | - Ryoko Awazawa
- Department of Dermatology, University of the Ryukyus, Okinawa, Japan
| | - Noriko Mitsuki
- Department of Pediatrics, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yuka Nakazawa
- Nagasaki University Research Centre for Genomic Instability and Carcinogenesis, Nagasaki University, Nagasaki, Japan; Department of Genome Repair, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan; Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Hiroyuki Mishima
- Department of Human Genetics, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Kenzo Takahashi
- Department of Dermatology, University of the Ryukyus, Okinawa, Japan
| | - Osamu Kondo
- Department of Hematology and Oncology, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka, Japan
| | - Kohsuke Imai
- Department of Pediatrics, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tomohiro Morio
- Department of Pediatrics, Tokyo Medical and Dental University, Tokyo, Japan
| | - Osamu Ohara
- Department of Technology Development, Kazusa DNA Research Institute, Kisarazu, Japan
| | - Tomoo Ogi
- Nagasaki University Research Centre for Genomic Instability and Carcinogenesis, Nagasaki University, Nagasaki, Japan; Department of Genome Repair, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan; Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Fukumi Furukawa
- Department of Dermatology, Wakayama Medical University, Wakayama, Japan
| | - Masami Inoue
- Department of Hematology and Oncology, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka, Japan
| | - Koh-ichiro Yoshiura
- Department of Human Genetics, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Nobuo Kanazawa
- Department of Dermatology, Wakayama Medical University, Wakayama, Japan.
| |
Collapse
|