1
|
Han D, Sojic N, Jiang D. Spatial Profiling of Multiple Enzymatic Activities at Single Tissue Sections via Fenton-Promoted Electrochemiluminescence. J Am Chem Soc 2025; 147:9610-9619. [PMID: 40063963 DOI: 10.1021/jacs.4c17749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Profiling multiple enzymatic activities in tissue is crucial for understanding complex metabolic and signaling networks, yet remains a challenge with existing optical microscopies. Here, we developed a Fenton-promoted luminol electrochemiluminescence (ECL) imaging method to achieve the spatial mapping of multiple enzymatic activities within a single tissue section. This method quantitatively visualizes individual enzymatic activity by combining the enzymatic conversion of substrates with the chemical confinement of the locally produced hydrogen peroxide. To achieve high-resolution spatial imaging by limiting the diffusion (∼500 μm) of hydrogen peroxide, iron oxide nanoparticles were coated on the tissue surface to initiate the Fenton process, locally converting hydrogen peroxide into short-lived hydroxyl radicals with a nanometer-scale diffusion range. The Fenton-promoted ECL emission is confined at the enzymatic conversion sites, offering unprecedented spatial visualization of four tumor-associated oxidases within a single tissue section. Colocalization revealed a synergistic effect between lysyl oxidase and quiescin sulfhydryl oxidase on post-translational modifications of tumor extracellular matrix proteins, along with a previously undiscovered interaction with amiloride-sensitive amine oxidase, which could not be distinguished based on expressions or single enzymatic activity alone. This approach offers a novel activity-based protein profiling tool at the tissue level, providing new data for future enzynomic research and multimodal imaging.
Collapse
Affiliation(s)
- Dongni Han
- State Key Laboratory of Analytical Chemistry for Life Science and School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210093, China
| | - Neso Sojic
- University of Bordeaux, CNRS, Bordeaux INP, ISM, UMR, 5255, F-33400 Talence, France
| | - Dechen Jiang
- State Key Laboratory of Analytical Chemistry for Life Science and School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210093, China
| |
Collapse
|
2
|
Devel L, Malgorn C, Tohon RW, Launay M, Patiniotis K, Sejalon-Cipolla M, Beau F, Thai R, Bruyat P, Bonino A, Bregant S, Subra G, Cantel S, Georgiadis D. Covalent Labeling of Matrix Metalloproteases with Affinity-Based Probes Containing Tuned Reactive N-Acyl-N-Alkyl Sulfonamide Cleavable Linkers. Chembiochem 2024:e202400441. [PMID: 39352839 DOI: 10.1002/cbic.202400441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/11/2024] [Accepted: 10/01/2024] [Indexed: 10/04/2024]
Abstract
Original covalent probes with an N-acyl-N-alkyl sulfonamide cleavable linker were developed to target a broad set of human Matrix Metalloproteases (MMPs). The electrophilicity of this cleavable linker was modulated to improve the selectivity of the probes as well as reduce their unspecific reactivity in complex biological matrices. We first demonstrated that targeting the S3 subsite of MMPs enables access to broad-spectrum affinity-based probes that exclusively react with the active version of these proteases. The probes were further assessed in proteomes of varying complexity, where human MMP-13 was artificially introduced at known concentration and the resulting labeled MMP was imaged by in-gel fluorescence imaging. We showed that the less reactive probe was still able to covalently modify MMP-13 while exhibiting reduced off-target unspecific reactivity. This study clearly demonstrated the importance of finely controlling the reactivity of the NASA warhead to improve the selectivity of covalent probes in complex biological systems.
Collapse
Affiliation(s)
- Laurent Devel
- CEA, INRAE, Médicaments et Technologies pour la Santé (MTS), SIMoS, Université Paris-Saclay, 91191, Gif-sur-Yvette, France
| | - Carole Malgorn
- CEA, INRAE, Médicaments et Technologies pour la Santé (MTS), SIMoS, Université Paris-Saclay, 91191, Gif-sur-Yvette, France
| | - Regis-William Tohon
- CEA, INRAE, Médicaments et Technologies pour la Santé (MTS), SIMoS, Université Paris-Saclay, 91191, Gif-sur-Yvette, France
| | - Marie Launay
- CEA, INRAE, Médicaments et Technologies pour la Santé (MTS), SIMoS, Université Paris-Saclay, 91191, Gif-sur-Yvette, France
| | - Konstantinos Patiniotis
- Department of Chemistry, Laboratory of Organic Chemistry, University of Athens, Panepistimiopolis, Zografou, 15771, Athens, Greece
| | | | - Fabrice Beau
- CEA, INRAE, Médicaments et Technologies pour la Santé (MTS), SIMoS, Université Paris-Saclay, 91191, Gif-sur-Yvette, France
| | - Robert Thai
- CEA, INRAE, Médicaments et Technologies pour la Santé (MTS), SIMoS, Université Paris-Saclay, 91191, Gif-sur-Yvette, France
| | - Pierrick Bruyat
- CEA, INRAE, Médicaments et Technologies pour la Santé (MTS), SIMoS, Université Paris-Saclay, 91191, Gif-sur-Yvette, France
| | - Annabelle Bonino
- CEA, INRAE, Médicaments et Technologies pour la Santé (MTS), SIMoS, Université Paris-Saclay, 91191, Gif-sur-Yvette, France
| | - Sarah Bregant
- CEA, INRAE, Médicaments et Technologies pour la Santé (MTS), SIMoS, Université Paris-Saclay, 91191, Gif-sur-Yvette, France
| | - Gilles Subra
- IBMM, Univ. Montpellier, ENSCM, CNRS, Montpellier, France
| | - Sonia Cantel
- IBMM, Univ. Montpellier, ENSCM, CNRS, Montpellier, France
| | - Dimitris Georgiadis
- Department of Chemistry, Laboratory of Organic Chemistry, University of Athens, Panepistimiopolis, Zografou, 15771, Athens, Greece
| |
Collapse
|
3
|
Sava I, Davis LJ, Gray SR, Bright NA, Luzio JP. Reversible assembly and disassembly of V-ATPase during the lysosome regeneration cycle. Mol Biol Cell 2024; 35:ar63. [PMID: 38446621 PMCID: PMC11151095 DOI: 10.1091/mbc.e23-08-0322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 02/23/2024] [Accepted: 03/01/2024] [Indexed: 03/08/2024] Open
Abstract
Regulation of the luminal pH of late endocytic compartments in continuously fed mammalian cells is poorly understood. Using normal rat kidney fibroblasts, we investigated the reversible assembly/disassembly of the proton pumping V-ATPase when endolysosomes are formed by kissing and fusion of late endosomes with lysosomes and during the subsequent reformation of lysosomes. We took advantage of previous work showing that sucrosomes formed by the uptake of sucrose are swollen endolysosomes from which lysosomes are reformed after uptake of invertase. Using confocal microscopy and subcellular fractionation of NRK cells stably expressing fluorescently tagged proteins, we found net recruitment of the V1 subcomplex during sucrosome formation and loss during lysosome reformation, with a similar time course to RAB7a loss. Addition of invertase did not alter mTORC1 signalling, suggesting that the regulation of reversible V-ATPase assembly/disassembly in continuously fed cells differs from that in cells subject to amino acid depletion/refeeding. Using live cell microscopy, we demonstrated recruitment of a fluorescently tagged V1 subunit during endolysosome formation and a dynamic equilibrium and rapid exchange between the cytosolic and membrane bound pools of this subunit. We conclude that reversible V-ATPase assembly/disassembly plays a key role in regulating endolysosomal/lysosomal pH in continuously fed cells.
Collapse
Affiliation(s)
- Ioana Sava
- Cambridge Institute for Medical Research (CIMR) and Department of Clinical Biochemistry, University of Cambridge School of Clinical Medicine, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK
| | - Luther J. Davis
- Cambridge Institute for Medical Research (CIMR) and Department of Clinical Biochemistry, University of Cambridge School of Clinical Medicine, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK
| | - Sally R. Gray
- Cambridge Institute for Medical Research (CIMR) and Department of Clinical Biochemistry, University of Cambridge School of Clinical Medicine, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK
| | - Nicholas A. Bright
- Cambridge Institute for Medical Research (CIMR) and Department of Clinical Biochemistry, University of Cambridge School of Clinical Medicine, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK
| | - J. Paul Luzio
- Cambridge Institute for Medical Research (CIMR) and Department of Clinical Biochemistry, University of Cambridge School of Clinical Medicine, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK
| |
Collapse
|
4
|
Fujita K, Urano Y. Activity-Based Fluorescence Diagnostics for Cancer. Chem Rev 2024; 124:4021-4078. [PMID: 38518254 DOI: 10.1021/acs.chemrev.3c00612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
Fluorescence imaging is one of the most promising approaches to achieve intraoperative assessment of the tumor/normal tissue margins during cancer surgery. This is critical to improve the patients' prognosis, and therefore various molecular fluorescence imaging probes have been developed for the identification of cancer lesions during surgery. Among them, "activatable" fluorescence probes that react with cancer-specific biomarker enzymes to generate fluorescence signals have great potential for high-contrast cancer imaging due to their low background fluorescence and high signal amplification by enzymatic turnover. Over the past two decades, activatable fluorescence probes employing various fluorescence control mechanisms have been developed worldwide for this purpose. Furthermore, new biomarker enzymatic activities for specific types of cancers have been identified, enabling visualization of various types of cancers with high sensitivity and specificity. This Review focuses on recent advances in the design, function and characteristics of activatable fluorescence probes that target cancer-specific enzymatic activities for cancer imaging and also discusses future prospects in the field of activity-based diagnostics for cancer.
Collapse
|
5
|
Lee I, Tantisirivat P, Edgington-Mitchell LE. Chemical Tools to Image the Activity of PAR-Cleaving Proteases. ACS BIO & MED CHEM AU 2023; 3:295-304. [PMID: 37599791 PMCID: PMC10436261 DOI: 10.1021/acsbiomedchemau.3c00019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 08/22/2023]
Abstract
Protease-activated receptors (PARs) comprise a family of four G protein-coupled receptors (GPCRs) that have broad functions in health and disease. Unlike most GPCRs, PARs are uniquely activated by proteolytic cleavage of their extracellular N termini. To fully understand PAR activation and function in vivo, it is critical to also study the proteases that activate them. As proteases are heavily regulated at the post-translational level, measures of total protease abundance have limited utility. Measures of protease activity are instead required to inform their function. This review will introduce several classes of chemical probes that have been developed to measure the activation of PAR-cleaving proteases. Their strengths, weaknesses, and applications will be discussed, especially as applied to image protease activity at the whole organism, tissue, and cellular level.
Collapse
Affiliation(s)
- Irene
Y. Lee
- Department
of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology
Institute, The University of Melbourne, Parkville, Victoria 3052 Australia
| | - Piyapa Tantisirivat
- Department
of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology
Institute, The University of Melbourne, Parkville, Victoria 3052 Australia
| | - Laura E. Edgington-Mitchell
- Department
of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology
Institute, The University of Melbourne, Parkville, Victoria 3052 Australia
| |
Collapse
|
6
|
Linders DGJ, Bijlstra OD, Fallert LC, Hilling DE, Walker E, Straight B, March TL, Valentijn ARPM, Pool M, Burggraaf J, Basilion JP, Vahrmeijer AL, Kuppen PJK. Cysteine Cathepsins in Breast Cancer: Promising Targets for Fluorescence-Guided Surgery. Mol Imaging Biol 2023; 25:58-73. [PMID: 36002710 PMCID: PMC9971096 DOI: 10.1007/s11307-022-01768-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 12/24/2022]
Abstract
The majority of breast cancer patients is treated with breast-conserving surgery (BCS) combined with adjuvant radiation therapy. Up to 40% of patients has a tumor-positive resection margin after BCS, which necessitates re-resection or additional boost radiation. Cathepsin-targeted near-infrared fluorescence imaging during BCS could be used to detect residual cancer in the surgical cavity and guide additional resection, thereby preventing tumor-positive resection margins and associated mutilating treatments. The cysteine cathepsins are a family of proteases that play a major role in normal cellular physiology and neoplastic transformation. In breast cancer, the increased enzymatic activity and aberrant localization of many of the cysteine cathepsins drive tumor progression, proliferation, invasion, and metastasis. The upregulation of cysteine cathepsins in breast cancer cells indicates their potential as a target for intraoperative fluorescence imaging. This review provides a summary of the current knowledge on the role and expression of the most important cysteine cathepsins in breast cancer to better understand their potential as a target for fluorescence-guided surgery (FGS). In addition, it gives an overview of the cathepsin-targeted fluorescent probes that have been investigated preclinically and in breast cancer patients. The current review underscores that cysteine cathepsins are highly suitable molecular targets for FGS because of favorable expression and activity patterns in virtually all breast cancer subtypes. This is confirmed by cathepsin-targeted fluorescent probes that have been shown to facilitate in vivo breast cancer visualization and tumor resection in mouse models and breast cancer patients. These findings indicate that cathepsin-targeted FGS has potential to improve treatment outcomes in breast cancer patients.
Collapse
Affiliation(s)
- Daan G. J. Linders
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Okker D. Bijlstra
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Laura C. Fallert
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Denise E. Hilling
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Ethan Walker
- Department of Biomedical Engineering, Case School of Engineering, Case Western Reserve University, Cleveland, OH 44106 USA
| | | | - Taryn L. March
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - A. Rob P. M. Valentijn
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Martin Pool
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Jacobus Burggraaf
- Centre for Human Drug Research, 2333 CL Leiden, The Netherlands
- Leiden Academic Center for Drug Research, 2333 AL Leiden, The Netherlands
| | - James P. Basilion
- Department of Biomedical Engineering, Case School of Engineering, Case Western Reserve University, Cleveland, OH 44106 USA
- Department of Radiology, Case School of Medicine, Case Western Reserve University, Cleveland, OH 44106 USA
| | | | - Peter J. K. Kuppen
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
7
|
Abjean L, Ben Haim L, Riquelme-Perez M, Gipchtein P, Derbois C, Palomares MA, Petit F, Hérard AS, Gaillard MC, Guillermier M, Gaudin-Guérif M, Aurégan G, Sagar N, Héry C, Dufour N, Robil N, Kabani M, Melki R, De la Grange P, Bemelmans AP, Bonvento G, Deleuze JF, Hantraye P, Flament J, Bonnet E, Brohard S, Olaso R, Brouillet E, Carrillo-de Sauvage MA, Escartin C. Reactive astrocytes promote proteostasis in Huntington's disease through the JAK2-STAT3 pathway. Brain 2023; 146:149-166. [PMID: 35298632 DOI: 10.1093/brain/awac068] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 01/13/2022] [Accepted: 01/24/2022] [Indexed: 01/11/2023] Open
Abstract
Huntington's disease is a fatal neurodegenerative disease characterized by striatal neurodegeneration, aggregation of mutant Huntingtin and the presence of reactive astrocytes. Astrocytes are important partners for neurons and engage in a specific reactive response in Huntington's disease that involves morphological, molecular and functional changes. How reactive astrocytes contribute to Huntington's disease is still an open question, especially because their reactive state is poorly reproduced in experimental mouse models. Here, we show that the JAK2-STAT3 pathway, a central cascade controlling astrocyte reactive response, is activated in the putamen of Huntington's disease patients. Selective activation of this cascade in astrocytes through viral gene transfer reduces the number and size of mutant Huntingtin aggregates in neurons and improves neuronal defects in two complementary mouse models of Huntington's disease. It also reduces striatal atrophy and increases glutamate levels, two central clinical outcomes measured by non-invasive magnetic resonance imaging. Moreover, astrocyte-specific transcriptomic analysis shows that activation of the JAK2-STAT3 pathway in astrocytes coordinates a transcriptional program that increases their intrinsic proteolytic capacity, through the lysosomal and ubiquitin-proteasome degradation systems. This pathway also enhances their production and exosomal release of the co-chaperone DNAJB1, which contributes to mutant Huntingtin clearance in neurons. Together, our results show that the JAK2-STAT3 pathway controls a beneficial proteostasis response in reactive astrocytes in Huntington's disease, which involves bi-directional signalling with neurons to reduce mutant Huntingtin aggregation, eventually improving disease outcomes.
Collapse
Affiliation(s)
- Laurene Abjean
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265 Fontenay-aux-Roses, France
| | - Lucile Ben Haim
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265 Fontenay-aux-Roses, France
| | - Miriam Riquelme-Perez
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265 Fontenay-aux-Roses, France.,Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de Recherche en Génomique Humaine, 91057 Evry, France
| | - Pauline Gipchtein
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265 Fontenay-aux-Roses, France
| | - Céline Derbois
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de Recherche en Génomique Humaine, 91057 Evry, France
| | - Marie-Ange Palomares
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de Recherche en Génomique Humaine, 91057 Evry, France
| | - Fanny Petit
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265 Fontenay-aux-Roses, France
| | - Anne-Sophie Hérard
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265 Fontenay-aux-Roses, France
| | - Marie-Claude Gaillard
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265 Fontenay-aux-Roses, France
| | - Martine Guillermier
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265 Fontenay-aux-Roses, France
| | - Mylène Gaudin-Guérif
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265 Fontenay-aux-Roses, France
| | - Gwennaëlle Aurégan
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265 Fontenay-aux-Roses, France
| | - Nisrine Sagar
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265 Fontenay-aux-Roses, France
| | - Cameron Héry
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265 Fontenay-aux-Roses, France
| | - Noëlle Dufour
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265 Fontenay-aux-Roses, France
| | | | - Mehdi Kabani
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265 Fontenay-aux-Roses, France
| | - Ronald Melki
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265 Fontenay-aux-Roses, France
| | | | - Alexis P Bemelmans
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265 Fontenay-aux-Roses, France
| | - Gilles Bonvento
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265 Fontenay-aux-Roses, France
| | - Jean-François Deleuze
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de Recherche en Génomique Humaine, 91057 Evry, France
| | - Philippe Hantraye
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265 Fontenay-aux-Roses, France
| | - Julien Flament
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265 Fontenay-aux-Roses, France
| | - Eric Bonnet
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de Recherche en Génomique Humaine, 91057 Evry, France
| | - Solène Brohard
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de Recherche en Génomique Humaine, 91057 Evry, France
| | - Robert Olaso
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de Recherche en Génomique Humaine, 91057 Evry, France
| | - Emmanuel Brouillet
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265 Fontenay-aux-Roses, France
| | - Maria-Angeles Carrillo-de Sauvage
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265 Fontenay-aux-Roses, France
| | - Carole Escartin
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265 Fontenay-aux-Roses, France
| |
Collapse
|
8
|
Soleimany AP, Martin-Alonso C, Anahtar M, Wang CS, Bhatia SN. Protease Activity Analysis: A Toolkit for Analyzing Enzyme Activity Data. ACS OMEGA 2022; 7:24292-24301. [PMID: 35874224 PMCID: PMC9301967 DOI: 10.1021/acsomega.2c01559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Analyzing the activity of proteases and their substrates is critical to defining the biological functions of these enzymes and to designing new diagnostics and therapeutics that target protease dysregulation in disease. While a wide range of databases and algorithms have been created to better predict protease cleavage sites, there is a dearth of computational tools to automate analysis of in vitro and in vivo protease assays. This necessitates individual researchers to develop their own analytical pipelines, resulting in a lack of standardization across the field. To facilitate protease research, here we present Protease Activity Analysis (PAA), a toolkit for the preprocessing, visualization, machine learning analysis, and querying of protease activity data sets. PAA leverages a Python-based object-oriented implementation that provides a modular framework for streamlined analysis across three major components. First, PAA provides a facile framework to query data sets of synthetic peptide substrates and their cleavage susceptibilities across a diverse set of proteases. To complement the database functionality, PAA also includes tools for the automated analysis and visualization of user-input enzyme-substrate activity measurements generated through in vitro screens against synthetic peptide substrates. Finally, PAA supports a set of modular machine learning functions to analyze in vivo protease activity signatures that are generated by activity-based sensors. Overall, PAA offers the protease community a breadth of computational tools to streamline research, taking a step toward standardizing data analysis across the field and in chemical biology and biochemistry at large.
Collapse
Affiliation(s)
- Ava P. Soleimany
- Harvard-MIT
Division of Health Sciences and Technology, MIT, Cambridge, Massachusetts 02139, United States
- Program
in Biophysics, Harvard University, Boston, Massachusetts 02115, United States
- Microsoft
Research New England, Cambridge, Massachusetts 02142, United States
| | - Carmen Martin-Alonso
- Harvard-MIT
Division of Health Sciences and Technology, MIT, Cambridge, Massachusetts 02139, United States
| | - Melodi Anahtar
- Harvard-MIT
Division of Health Sciences and Technology, MIT, Cambridge, Massachusetts 02139, United States
| | - Cathy S. Wang
- Department
of Biological Engineering, MIT, Cambridge, Massachusetts 02139, United States
| | - Sangeeta N. Bhatia
- Harvard-MIT
Division of Health Sciences and Technology, MIT, Cambridge, Massachusetts 02139, United States
- Department
of Electrical Engineering and Computer Science, MIT, Cambridge, Massachusetts 02139, United States
- Howard Hughes
Medical Institute, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
9
|
Walker E, Linders DGJ, Abenojar E, Wang X, Hazelbag HM, Straver ME, Bijlstra OD, March TL, Vahrmeijer AL, Exner A, Bogyo M, Basilion JP, Straight B. Formulation of a Thermosensitive Imaging Hydrogel for Topical Application and Rapid Visualization of Tumor Margins in the Surgical Cavity. Cancers (Basel) 2022; 14:cancers14143459. [PMID: 35884520 PMCID: PMC9323389 DOI: 10.3390/cancers14143459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 01/07/2023] Open
Abstract
Simple Summary We have developed a formulation for an innovative, quenched, cathepsin-targeted, fluorescent molecular probe to enhance resection quality for several solid-tumor cancers. Unlike other formulations for imaging probes or tracers in development and entering the clinic, which require systemic administration hours before the procedure, this current formulation is applied topically into the surgical cavity immediately after a standard of care resection. Within minutes of application, the probe activates in the presence of residual cancer in the surgical wound and provides a strong fluorescent signal that precisely delineates any remaining cancer, enabling a more complete resection. Utilization of this imaging gel formulation for topical application to detect breast cancer in the surgical cavity during surgery has the potential to reduce re-excisions, with consequent savings in healthcare costs and enhancement in patient quality of life. Abstract Background: Tumor-positive surgical margins during primary breast cancer (BCa) surgery are associated with a two-fold increase in the risk of local recurrence when compared with tumor-negative margins. Pathological microscopic evaluation of the samples only assesses about 1/10 of 1% of the entire volume of the removed BCa specimens, leading to margin under-sampling and potential local recurrence in patients with pathologically clean margins, i.e., false negative margins. In the case of tumor-positive margins, patients need to undergo re-excision and/or radiation therapy, resulting in increases in complications, morbidity, and healthcare costs. Development of a simple real-time imaging technique to identify residual BCa in the surgical cavity rapidly and precisely could significantly improve the quality of care. Methods: A small-molecule, fluorescently quenched protease-substrate probe, AKRO-QC-ICG, was tested as part of a thermosensitive imaging gel formulated for topical application and imaging of the BCa surgical cavity. Results: More than forty formulations of gel mixtures were investigated to enable easy fluid application and subsequent solidification once applied, preventing dripping and pooling in the surgical cavity. The final formulation was tested using human BCa orthotopic implants in nude and NSG patient-derived xenografts (PDX) mice. This formulation of Pluronic F-127/DMSO/AKRO-QC-ICG imaging gel was found to be a good solvent for the probe, with a desirable thermo-reversible solid–gel transition and mechanical strength for distribution of AKRO-QC-ICG on the surfaces of tissue. It demonstrated excellent ability to detect BCa tissue after 10 min exposure, with a high signal-to-noise ratio both in mouse xenografts and freshly excised human lumpectomy tissue. The in vivo efficacy of the AKRO-QC-ICG imaging gel to detect BCa revealed the levels of sensitivity/specificity = 0.92/1 in 12 nude mice, which was corroborated with the sensitivity/specificity = 0.94/1 in 10 PDX mice. Conclusions: Utilization of Pluronic F-127/DMSO/AKRO-QC-ICG imaging gel for topical application to detect BCa in the surgical cavity during surgery has the potential to reduce re-excisions, with consequent savings in healthcare costs and enhancement in patient quality of life.
Collapse
Affiliation(s)
- Ethan Walker
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; (E.W.); (X.W.); (A.E.); (J.P.B.)
| | - Daan G. J. Linders
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (D.G.J.L.); (O.D.B.); (A.L.V.)
| | - Eric Abenojar
- Department of Radiology, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - Xinning Wang
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; (E.W.); (X.W.); (A.E.); (J.P.B.)
| | - Hans Marten Hazelbag
- Department of Pathology, Haaglanden Medical Center, 2512 VA The Hague, The Netherlands;
| | - Marieke E. Straver
- Department of Surgery, Haaglanden Medical Center, 2512 VA The Hague, The Netherlands;
| | - Okker D. Bijlstra
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (D.G.J.L.); (O.D.B.); (A.L.V.)
| | - Taryn L. March
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| | - Alexander L. Vahrmeijer
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (D.G.J.L.); (O.D.B.); (A.L.V.)
| | - Agata Exner
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; (E.W.); (X.W.); (A.E.); (J.P.B.)
- Department of Radiology, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - Matthew Bogyo
- Department of Pathology, Stanford University, Stanford, CA 94305, USA;
- Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
| | - James P. Basilion
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; (E.W.); (X.W.); (A.E.); (J.P.B.)
- Department of Radiology, Case Western Reserve University, Cleveland, OH 44106, USA;
- Akrotome Imaging Inc., Charlotte, NC 28205, USA
| | - Brian Straight
- Akrotome Imaging Inc., Charlotte, NC 28205, USA
- Correspondence: ; Tel.: +1-216-983-3264
| |
Collapse
|
10
|
Sotiropoulou G, Zingkou E, Bisyris E, Pampalakis G. Activity-Based Probes for Proteases Pave the Way to Theranostic Applications. Pharmaceutics 2022; 14:pharmaceutics14050977. [PMID: 35631563 PMCID: PMC9145445 DOI: 10.3390/pharmaceutics14050977] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/23/2022] [Accepted: 04/28/2022] [Indexed: 11/16/2022] Open
Abstract
Proteases are important enzymes in health and disease. Their activities are regulated at multiple levels. In fact, proteases are synthesized as inactive proenzymes (zymogens) that are activated by proteolytic removal of their pro-peptide sequence and can remain active or their activity can be attenuated by complex formation with specific endogenous inhibitors or by limited proteolysis or degradation. Consequently, quite often, only a fraction of the protease molecules is in the active/functional form, thus, the abundance of a protease is not always linearly proportional to the (patho)physiological function(s). Therefore, assays to determine the active forms of proteases are needed, not only in research but also in molecular diagnosis and therapy. Activity-based probes (ABPs) are chemical entities that bind covalently to the active enzyme/protease. ABPs carry a detection tag to enable localization and quantification of specific enzymatic/proteolytic activities with applications in molecular imaging and diagnosis. Moreover, ABPs act as suicide inhibitors of proteases, which can be exploited for delineation of the functional role(s) of a given protease in (patho) biological context and as potential therapeutics. In this sense, ABPs represent new theranostic agents. We outline recent developments pertaining to ABPs for proteases with potential therapeutic applications, with the aim to highlight their importance in theranostics.
Collapse
Affiliation(s)
- Georgia Sotiropoulou
- Department of Pharmacy, School of Health Sciences, University of Patras, 26500 Rion-Patras, Greece; (E.Z.); (E.B.)
- Correspondence: (G.S.); (G.P.)
| | - Eleni Zingkou
- Department of Pharmacy, School of Health Sciences, University of Patras, 26500 Rion-Patras, Greece; (E.Z.); (E.B.)
| | - Evangelos Bisyris
- Department of Pharmacy, School of Health Sciences, University of Patras, 26500 Rion-Patras, Greece; (E.Z.); (E.B.)
| | - Georgios Pampalakis
- Department of Pharmacognosy-Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Correspondence: (G.S.); (G.P.)
| |
Collapse
|
11
|
Fundamentals and developments in fluorescence-guided cancer surgery. Nat Rev Clin Oncol 2022; 19:9-22. [PMID: 34493858 DOI: 10.1038/s41571-021-00548-3] [Citation(s) in RCA: 148] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2021] [Indexed: 02/07/2023]
Abstract
Fluorescence-guided surgery using tumour-targeted imaging agents has emerged over the past decade as a promising and effective method of intraoperative cancer detection. An impressive number of fluorescently labelled antibodies, peptides, particles and other molecules related to cancer hallmarks have been developed for the illumination of target lesions. New approaches are being implemented to translate these imaging agents into the clinic, although only a few have made it past early-phase clinical trials. For this translational process to succeed, target selection, imaging agents and their related detection systems and clinical implementation have to operate in perfect harmony to enable real-time intraoperative visualization that can benefit patients. Herein, we review key aspects of this imaging cascade and focus on imaging approaches and methods that have helped to shed new light onto the field of intraoperative fluorescence-guided cancer surgery with the singular goal of improving patient outcomes.
Collapse
|
12
|
Abstract
Cysteine cathepsins are proteases critical in physiopathological processes and show potential as targets or biomarkers for diseases and medical conditions. The 11 members of the cathepsin family are redundant in some cases but remarkably independent of others, demanding the development of both pan-cathepsin targeting tools as well as probes that are selective for specific cathepsins with little off-target activity. This review addresses the diverse design strategies that have been employed to accomplish this tailored selectivity among cysteine cathepsin targets and the imaging modalities incorporated. The power of these diverse tools is contextualized by briefly highlighting the nature of a few prominent cysteine cathepsins, their involvement in select diseases, and the application of cathepsin imaging probes in research spanning basic biochemical studies to clinical applications.
Collapse
Affiliation(s)
- Kelton A Schleyer
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, 1345 Center Dr, Gainesville, FL 32610, USA.
| | - Lina Cui
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, 1345 Center Dr, Gainesville, FL 32610, USA.
| |
Collapse
|
13
|
Kasperkiewicz P. Peptidyl Activity-Based Probes for Imaging Serine Proteases. Front Chem 2021; 9:639410. [PMID: 33996745 PMCID: PMC8117214 DOI: 10.3389/fchem.2021.639410] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/15/2021] [Indexed: 01/12/2023] Open
Abstract
Proteases catalyze the hydrolysis of peptide bonds. Products of this breakdown mediate signaling in an enormous number of biological processes. Serine proteases constitute the most numerous group of proteases, accounting for 40%, and they are prevalent in many physiological functions, both normal and disease-related functions, making them one of the most important enzymes in humans. The activity of proteases is controlled at the expression level by posttranslational modifications and/or endogenous inhibitors. The study of serine proteases requires specific reagents not only for detecting their activity but also for their imaging. Such tools include inhibitors or substrate-related chemical molecules that allow the detection of proteolysis and visual observation of active enzymes, thus facilitating the characterization of the activity of proteases in the complex proteome. Peptidyl activity-based probes (ABPs) have been extensively studied recently, and this review describes the basic principles in the design of peptide-based imaging agents for serine proteases, provides examples of activity-based probe applications and critically discusses their strengths, weaknesses, challenges and limitations.
Collapse
Affiliation(s)
- Paulina Kasperkiewicz
- Department of Chemical Biology and Bioimaging, Wroclaw University of Science and Technology, Wroclaw, Poland
| |
Collapse
|
14
|
Vizovisek M, Ristanovic D, Menghini S, Christiansen MG, Schuerle S. The Tumor Proteolytic Landscape: A Challenging Frontier in Cancer Diagnosis and Therapy. Int J Mol Sci 2021; 22:ijms22052514. [PMID: 33802262 PMCID: PMC7958950 DOI: 10.3390/ijms22052514] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 02/06/2023] Open
Abstract
In recent decades, dysregulation of proteases and atypical proteolysis have become increasingly recognized as important hallmarks of cancer, driving community-wide efforts to explore the proteolytic landscape of oncologic disease. With more than 100 proteases currently associated with different aspects of cancer development and progression, there is a clear impetus to harness their potential in the context of oncology. Advances in the protease field have yielded technologies enabling sensitive protease detection in various settings, paving the way towards diagnostic profiling of disease-related protease activity patterns. Methods including activity-based probes and substrates, antibodies, and various nanosystems that generate reporter signals, i.e., for PET or MRI, after interaction with the target protease have shown potential for clinical translation. Nevertheless, these technologies are costly, not easily multiplexed, and require advanced imaging technologies. While the current clinical applications of protease-responsive technologies in oncologic settings are still limited, emerging technologies and protease sensors are poised to enable comprehensive exploration of the tumor proteolytic landscape as a diagnostic and therapeutic frontier. This review aims to give an overview of the most relevant classes of proteases as indicators for tumor diagnosis, current approaches to detect and monitor their activity in vivo, and associated therapeutic applications.
Collapse
|
15
|
Burster T, Gärtner F, Knippschild U, Zhanapiya A. Activity-Based Probes to Utilize the Proteolytic Activity of Cathepsin G in Biological Samples. Front Chem 2021; 9:628295. [PMID: 33732686 PMCID: PMC7959752 DOI: 10.3389/fchem.2021.628295] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/07/2021] [Indexed: 12/30/2022] Open
Abstract
Neutrophils, migrating to the site of infection, are able to release serine proteases after being activated. These serine proteases comprise cathepsin G (CatG), neutrophil elastase protease 3 (PR3), and neutrophil serine protease 4 (NSP4). A disadvantage of the uncontrolled proteolytic activity of proteases is the outcome of various human diseases, including cardiovascular diseases, thrombosis, and autoimmune diseases. Activity-based probes (ABPs) are used to determine the proteolytic activity of proteases, containing a set of three essential elements: Warhead, recognition sequence, and the reporter tag for detection of the covalent enzyme activity–based probe complex. Here, we summarize the latest findings of ABP-mediated detection of proteases in both locations intracellularly and on the cell surface of cells, thereby focusing on CatG. Particularly, application of ABPs in regular flow cytometry, imaging flow cytometry, and mass cytometry by time-of-flight (CyTOF) approaches is advantageous when distinguishing between immune cell subsets. ABPs can be included in a vast panel of markers to detect proteolytic activity and determine whether proteases are properly regulated during medication. The use of ABPs as a detection tool opens the possibility to interfere with uncontrolled proteolytic activity of proteases by employing protease inhibitors.
Collapse
Affiliation(s)
- Timo Burster
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Fabian Gärtner
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital, Ulm, Germany
| | - Uwe Knippschild
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital, Ulm, Germany
| | - Anuar Zhanapiya
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
| |
Collapse
|
16
|
Fujita K, Kamiya M, Yoshioka T, Ogasawara A, Hino R, Kojima R, Ueo H, Urano Y. Rapid and Accurate Visualization of Breast Tumors with a Fluorescent Probe Targeting α-Mannosidase 2C1. ACS CENTRAL SCIENCE 2020; 6:2217-2227. [PMID: 33376783 PMCID: PMC7760471 DOI: 10.1021/acscentsci.0c01189] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Indexed: 05/21/2023]
Abstract
Accurate detection of breast tumors and discrimination of tumor from normal tissues during breast-conserving surgery are essential to reduce the risk of misdiagnosis or recurrence. However, existing probes show substantial background signals in normal breast tissues. In this study, we focus on glycosidase activities in breast tumors. We synthesized a series of 12 fluorescent probes and performed imaging-based evaluation on surgically resected human breast specimens. Among them, the α-mannosidase-reactive fluorescent probe HMRef-αMan detected breast cancer with 90% sensitivity and 100% specificity. We identified α-mannosidase 2C1 as the target enzyme and confirmed its overexpression in various breast tumors. We found that fibroadenoma, the most common benign breast lesion in young woman, tends to have higher α-mannosidase 2C1 activity than malignant cancer. Combined application of green-emitting HMRef-αMan and a red-emitting γ-glutamyltranspeptidase probe enabled efficient dual-color, dual-target optical discrimination of malignant and benign tumors.
Collapse
Affiliation(s)
- Kyohhei Fujita
- Graduate School of Medicine and Graduate School
of Pharmaceutical Sciences, The University
of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
| | - Mako Kamiya
- Graduate School of Medicine and Graduate School
of Pharmaceutical Sciences, The University
of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
- PRESTO,
Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Takafusa Yoshioka
- Graduate School of Medicine and Graduate School
of Pharmaceutical Sciences, The University
of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
| | - Akira Ogasawara
- Graduate School of Medicine and Graduate School
of Pharmaceutical Sciences, The University
of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
| | - Rumi Hino
- Daito
Bunka University, Department of Sports and
Health Science, 560 Iwadono, Higashimatsuyama, Saitama 355-8501, Japan
| | - Ryosuke Kojima
- Graduate School of Medicine and Graduate School
of Pharmaceutical Sciences, The University
of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
- PRESTO,
Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Hiroaki Ueo
- Ueo
Breast Cancer Hospital, 1-3-5 Futamatacho, Oita, Oita 870-0887, Japan
| | - Yasuteru Urano
- Graduate School of Medicine and Graduate School
of Pharmaceutical Sciences, The University
of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
- CREST,
Japan
Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda,
Tokyo 100-0004, Japan
- E-mail
| |
Collapse
|
17
|
Obara R, Kamiya M, Tanaka Y, Abe A, Kojima R, Kawaguchi T, Sugawara M, Takahashi A, Noda T, Urano Y. γ‐Glutamyltranspeptidase (GGT)‐Activatable Fluorescence Probe for Durable Tumor Imaging. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202013265] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Rui Obara
- Graduate School of Medicine The University of Tokyo 7-3-1, Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Mako Kamiya
- Graduate School of Medicine The University of Tokyo 7-3-1, Hongo Bunkyo-ku Tokyo 113-0033 Japan
- PRESTO Japan Science and Technology Agency 4-1-8 Honcho Kawaguchi Saitama 332-0012 Japan
| | - Yoko Tanaka
- Cancer Institute Japanese Foundation for Cancer Research Koto-ku Tokyo 135-8550 Japan
| | - Atsuki Abe
- Graduate School of Medicine The University of Tokyo 7-3-1, Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Ryosuke Kojima
- Graduate School of Medicine The University of Tokyo 7-3-1, Hongo Bunkyo-ku Tokyo 113-0033 Japan
- PRESTO Japan Science and Technology Agency 4-1-8 Honcho Kawaguchi Saitama 332-0012 Japan
| | - Tokuichi Kawaguchi
- Cancer Institute Japanese Foundation for Cancer Research Koto-ku Tokyo 135-8550 Japan
- Cancer Precision Medicine Center Japanese Foundation for Cancer Research Koto-ku Tokyo 135-8550 Japan
| | - Minoru Sugawara
- Cancer Precision Medicine Center Japanese Foundation for Cancer Research Koto-ku Tokyo 135-8550 Japan
| | - Akiko Takahashi
- PRESTO Japan Science and Technology Agency 4-1-8 Honcho Kawaguchi Saitama 332-0012 Japan
- Cancer Institute Japanese Foundation for Cancer Research Koto-ku Tokyo 135-8550 Japan
| | - Tetsuo Noda
- Cancer Institute Japanese Foundation for Cancer Research Koto-ku Tokyo 135-8550 Japan
| | - Yasuteru Urano
- Graduate School of Medicine The University of Tokyo 7-3-1, Hongo Bunkyo-ku Tokyo 113-0033 Japan
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1, Hongo, Bunkyo-ku Tokyo 113-0033 Japan
- CREST Japan Agency for Medical Research and Development (AMED) 1-7-1 Otemachi, Chiyoda-ku Tokyo 100-0004 Japan
| |
Collapse
|
18
|
Obara R, Kamiya M, Tanaka Y, Abe A, Kojima R, Kawaguchi T, Sugawara M, Takahashi A, Noda T, Urano Y. γ-Glutamyltranspeptidase (GGT)-Activatable Fluorescence Probe for Durable Tumor Imaging. Angew Chem Int Ed Engl 2020; 60:2125-2129. [PMID: 33096584 DOI: 10.1002/anie.202013265] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Indexed: 01/17/2023]
Abstract
γ-Glutamyltranspeptidase (GGT) is overexpressed in several types of cancer. Existing GGT-targeting fluorescence probes can image these cancers, but the fluorescent hydrolysis product leaks from the target cancer cells during prolonged incubation or fixation. Here, we present a functionalized fluorescence probe for GGT, 4-CH2 F-HMDiEtR-gGlu, which is designed to generate an azaquinone methide intermediate during activation by GGT; this intermediate reacts with intracellular nucleophiles to generate a fluorescent adduct that is trapped inside the cells, without loss of the target enzyme activity. Application of the probe to patient-derived xenograft (PDX) mice enabled in vivo cancer imaging for a prolonged period and was also compatible with fixation and immunostaining of the cancer tissue.
Collapse
Affiliation(s)
- Rui Obara
- Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Mako Kamiya
- Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,PRESTO Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Yoko Tanaka
- Cancer Institute Japanese Foundation for Cancer Research, Koto-ku, Tokyo, 135-8550, Japan
| | - Atsuki Abe
- Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Ryosuke Kojima
- Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,PRESTO Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Tokuichi Kawaguchi
- Cancer Institute Japanese Foundation for Cancer Research, Koto-ku, Tokyo, 135-8550, Japan.,Cancer Precision Medicine Center Japanese Foundation for Cancer Research, Koto-ku, Tokyo, 135-8550, Japan
| | - Minoru Sugawara
- Cancer Precision Medicine Center Japanese Foundation for Cancer Research, Koto-ku, Tokyo, 135-8550, Japan
| | - Akiko Takahashi
- PRESTO Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.,Cancer Institute Japanese Foundation for Cancer Research, Koto-ku, Tokyo, 135-8550, Japan
| | - Tetsuo Noda
- Cancer Institute Japanese Foundation for Cancer Research, Koto-ku, Tokyo, 135-8550, Japan
| | - Yasuteru Urano
- Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,CREST Japan Agency for Medical Research and Development (AMED), 1-7-1 Otemachi, Chiyoda-ku, Tokyo, 100-0004, Japan
| |
Collapse
|
19
|
Guerra M, Halls VS, Schatterny J, Hagner M, Mall MA, Schultz C. Protease FRET Reporters Targeting Neutrophil Extracellular Traps. J Am Chem Soc 2020; 142:20299-20305. [PMID: 33186023 DOI: 10.1021/jacs.0c08130] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Neutrophil extracellular traps (NETs) consist of DNA released by terminally stimulated neutrophils. They fine-tune inflammation, kill pathogens, activate macrophages, contribute to airway mucus obstruction in cystic fibrosis, and facilitate tumor metastasis after dormancy. Neutrophil proteases such as elastase (NE) and cathepsin G (CG) attach to NETs and contribute to the diverse immune outcome. However, because of the lack of suitable tools, little spatiotemporal information on protease activities on NETs is available in a pathophysiological context to date. Here, we present H-NE and H-CG, two FRET-based reporters armed with a DNA minor groove binder, which monitor DNA-bound NE and CG activity, respectively. The probes revealed that only NE maintains its catalytic ability when localized to DNA. Further, we demonstrated elevated protease activity within the extracellular DNA of sputum from cystic fibrosis patients. Finally, H-NE showed NE activity at single-cell and free DNA resolution within mouse lung slices, a difficult to achieve task with available substrate-based reporters.
Collapse
Affiliation(s)
- Matteo Guerra
- Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory (EMBL) and University of Heidelberg, 69117 Heidelberg, Germany
- Faculty of Biosciences, Collaboration for Joint Ph.D. Degree between EMBL and Heidelberg University, 69117 Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), 69120 Heidelberg, Germany
| | - Victoria S Halls
- Dept. of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon 97239, United States
| | - Jolanthe Schatterny
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), 69120 Heidelberg, Germany
| | - Matthias Hagner
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), 69120 Heidelberg, Germany
| | - Marcus A Mall
- Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory (EMBL) and University of Heidelberg, 69117 Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), 69120 Heidelberg, Germany
- Dept. of Pediatric Pulmonology, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
- Berlin Institute of Health, 10178 Berlin, Germany
- German Center for Lung Research (DZL), Associated Partner Site, 13353 Berlin, Germany
| | - Carsten Schultz
- Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory (EMBL) and University of Heidelberg, 69117 Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), 69120 Heidelberg, Germany
- Dept. of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon 97239, United States
| |
Collapse
|
20
|
Soleimany AP, Kirkpatrick JD, Su S, Dudani JS, Zhong Q, Bekdemir A, Bhatia SN. Activatable Zymography Probes Enable In Situ Localization of Protease Dysregulation in Cancer. Cancer Res 2020; 81:213-224. [PMID: 33106334 DOI: 10.1158/0008-5472.can-20-2410] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/16/2020] [Accepted: 10/21/2020] [Indexed: 12/25/2022]
Abstract
Recent years have seen the emergence of conditionally activated diagnostics and therapeutics that leverage protease-cleavable peptide linkers to enhance their specificity for cancer. However, due to a lack of methods to measure and localize protease activity directly within the tissue microenvironment, the design of protease-activated agents has been necessarily empirical, yielding suboptimal results when translated to patients. To address the need for spatially resolved protease activity profiling in cancer, we developed a new class of in situ probes that can be applied to fresh-frozen tissue sections in a manner analogous to immunofluorescence staining. These activatable zymography probes (AZP) detected dysregulated protease activity in human prostate cancer biopsy samples, enabling disease classification. AZPs were leveraged within a generalizable framework to design conditional cancer diagnostics and therapeutics and showcased in the Hi-Myc mouse model of prostate cancer, which models features of early pathogenesis. Multiplexed screening against barcoded substrates yielded a peptide, S16, that was robustly and specifically cleaved by tumor-associated metalloproteinases in the Hi-Myc model. In situ labeling with an AZP incorporating S16 revealed a potential role of metalloproteinase dysregulation in proliferative, premalignant Hi-Myc prostatic glands. Systemic administration of an in vivo imaging probe incorporating S16 perfectly classified diseased and healthy prostates, supporting the relevance of ex vivo activity assays to in vivo translation. We envision AZPs will enable new insights into the biology of protease dysregulation in cancer and accelerate the development of conditional diagnostics and therapeutics for multiple cancer types. SIGNIFICANCE: Visualization of protease activity within the native tissue context using AZPs provides new biological insights into protease dysregulation in cancer and guides the design of conditional diagnostics and therapeutics.
Collapse
Affiliation(s)
- Ava P Soleimany
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts.,Harvard-MIT Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts.,Harvard Graduate Program in Biophysics, Harvard University, Boston, Massachusetts
| | - Jesse D Kirkpatrick
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts.,Harvard-MIT Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Susan Su
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts.,Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Jaideep S Dudani
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Qian Zhong
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Ahmet Bekdemir
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts.,Harvard-MIT Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Sangeeta N Bhatia
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts. .,Harvard-MIT Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts.,Howard Hughes Medical Institute, Cambridge, Massachusetts.,Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts.,Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts.,Wyss Institute at Harvard, Boston, Massachusetts.,Ludwig Center at the MIT Koch Institute for Integrative Cancer Research, Cambridge, Massachusetts
| |
Collapse
|
21
|
Suurs FV, Qiu SQ, Yim JJ, Schröder CP, Timmer-Bosscha H, Bensen ES, Santini JT, de Vries EGE, Bogyo M, van Dam GM. Fluorescent image-guided surgery in breast cancer by intravenous application of a quenched fluorescence activity-based probe for cysteine cathepsins in a syngeneic mouse model. EJNMMI Res 2020; 10:111. [PMID: 32990883 PMCID: PMC7524956 DOI: 10.1186/s13550-020-00688-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/13/2020] [Indexed: 12/24/2022] Open
Abstract
Purpose The reoperation rate for breast-conserving surgery is as high as 15–30% due to residual tumor in the surgical cavity after surgery. In vivo tumor-targeted optical molecular imaging may serve as a red-flag technique to improve intraoperative surgical margin assessment and to reduce reoperation rates. Cysteine cathepsins are overexpressed in most solid tumor types, including breast cancer. We developed a cathepsin-targeted, quenched fluorescent activity-based probe, VGT-309, and evaluated whether it could be used for tumor detection and image-guided surgery in syngeneic tumor-bearing mice. Methods Binding specificity of the developed probe was evaluated in vitro. Next, fluorescent imaging in BALB/c mice bearing a murine breast tumor was performed at different time points after VGT-309 administration. Biodistribution of VGT-309 after 24 h in tumor-bearing mice was compared to control mice. Image-guided surgery was performed at multiple time points tumors with different clinical fluorescent camera systems and followed by ex vivo analysis. Results The probe was specifically activated by cathepsins X, B/L, and S. Fluorescent imaging revealed an increased tumor-to-background contrast over time up to 15.1 24 h post probe injection. In addition, VGT-309 delineated tumor tissue during image-guided surgery with different optical fluorescent imaging camera systems. Conclusion These results indicate that optical fluorescent molecular imaging using the cathepsin-targeted probe, VGT-309, may improve intraoperative tumor detection, which could translate to more complete tumor resection when coupled with commercially available surgical tools and techniques.
Collapse
Affiliation(s)
- Frans V Suurs
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Si-Qi Qiu
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands. .,Diagnosis and Treatment Center of Breast Diseases, Affiliated Shantou Hospital, Sun Yat-Sen University, Shantou, China.
| | - Joshua J Yim
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Carolien P Schröder
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Hetty Timmer-Bosscha
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | | | - Elisabeth G E de Vries
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Matthew Bogyo
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA.,Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Gooitzen M van Dam
- Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands. .,Department of Nuclear Medicine and Molecular Imaging and Medical Imaging Center, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
22
|
Fan Q, Cui X, Guo H, Xu Y, Zhang G, Peng B. Application of rare earth-doped nanoparticles in biological imaging and tumor treatment. J Biomater Appl 2020; 35:237-263. [DOI: 10.1177/0885328220924540] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Rare earth-doped nanoparticles have been widely used in disease diagnosis, drug delivery, tumor therapy, and bioimaging. Among various bioimaging methods, the fluorescence imaging technology based on the rare earth-doped nanoparticles can visually display the cell activity and lesion evolution in living animals, which is a powerful tool in biological technology and has being widely applied in medical and biological fields. Especially in the band of near infrared (700–1700 nm), the emissions show the characteristics of deep penetration due to low absorption, low photon scattering, and low autofluorescence interference. Furthermore, the rare earth-doped nanoparticles can be endowed with the water solubility, biocompatibility, drug-loading ability, and the targeting ability for different tumors by surface functionalization. This confirms its potential in the cancer diagnosis and treatment. In this review, we summarized the recent progress in the application of rare earth-doped nanoparticles in the field of bioimaging and tumor treatment. The luminescent mechanism, properties, and structure design were also discussed.
Collapse
Affiliation(s)
- Qi Fan
- State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Science (CAS), Xi’an, Shaanxi, PR China
- University of Chinese Academy of Sciences (UCAS), Beijing, PR China
| | - Xiaoxia Cui
- State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Science (CAS), Xi’an, Shaanxi, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, PR China
| | - Haitao Guo
- State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Science (CAS), Xi’an, Shaanxi, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, PR China
| | - Yantao Xu
- State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Science (CAS), Xi’an, Shaanxi, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, PR China
| | - Guangwei Zhang
- Zhejiang Fountain Aptitude Technology Inc., Hangzhou, Zhejiang, PR China
| | - Bo Peng
- State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Science (CAS), Xi’an, Shaanxi, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, PR China
| |
Collapse
|
23
|
Guo H, Song S, Dai T, Sun K, Zhou G, Li M, Mann S, Dou H. Near-Infrared Fluorescent and Magnetic Resonance Dual-Imaging Coacervate Nanoprobes for Trypsin Mapping and Targeted Payload Delivery of Malignant Tumors. ACS APPLIED MATERIALS & INTERFACES 2020; 12:17302-17313. [PMID: 32212678 DOI: 10.1021/acsami.0c03433] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Trypsin-responsive near-infrared fluorescent (NIRF) and magnetic resonance (MR) dual-imaging composite nanoparticle/polypeptide coacervate nanoprobes with tunable sizes, have been constructed herein via electrostatic interaction-induced self-assembly. Considering the requirements of in vivo metabolism on nanoparticle size, three coacervate nanoprobes with diameters of around 100, 200, and 300 nm were fabricated with a polydispersity of around 0.2. These coacervate nanoprobes consist of Fe3O4 magnetic nanoparticles surface-decorated with poly acrylic acid and Cy5.5-modified poly-l-lysine (PLL-g-Cy5.5) serving as MR imaging and trypsin-responsive substrate/NIRF agents, respectively. The notable fluorescence signal from PLL-g-Cy5.5 is self-quenched due to the short distances between the fluorescent Cy5.5 molecules after construction of the coacervate nanoprobes. Remarkably, coacervate nanoprobes with a diameter of around 100 nm are selectively disintegrated into fragmented segments upon the hydrolysis of PLL by trypsin, resulting in an 18-fold amplification of the NIRF intensity in comparison with the self-assembled coacervate nanoprobes in the quenched state. Moreover, the MR imaging enhancement is also related to the disintegration of the coacervate nanoprobes. Cellular experiments and in vivo studies demonstrate that the coacervate nanoprobes exhibit remarkable trypsin-sensitive NIRF and MR dual-imaging capabilities and thus have excellent potential to serve as dual-imaging nanoprobes for the efficient mapping of malignant tumors in which trypsin is often overexpressed. In consideration of their excellent capability to enrich charged molecules, the coacervate nanoprobes provide a conceptually novel and promising platform toward in vivo trypsin mapping and controlled delivery of targeted payloads.
Collapse
Affiliation(s)
- Heze Guo
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Sheng Song
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Tingting Dai
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering National Tissue Engineering Centre of China, Shanghai 200011, P. R. China
| | - Kang Sun
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Guangdong Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering National Tissue Engineering Centre of China, Shanghai 200011, P. R. China
| | - Mei Li
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K
| | - Stephen Mann
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K
| | - Hongjing Dou
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
24
|
Soleimany AP, Bhatia SN. Activity-Based Diagnostics: An Emerging Paradigm for Disease Detection and Monitoring. Trends Mol Med 2020; 26:450-468. [PMID: 32359477 DOI: 10.1016/j.molmed.2020.01.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/20/2020] [Accepted: 01/28/2020] [Indexed: 12/26/2022]
Abstract
Diagnostics to accurately detect disease and monitor therapeutic response are essential for effective clinical management. Bioengineering, chemical biology, molecular biology, and computer science tools are converging to guide the design of diagnostics that leverage enzymatic activity to measure or produce biomarkers of disease. We review recent advances in the development of these 'activity-based diagnostics' (ABDx) and their application in infectious and noncommunicable diseases. We highlight efforts towards both molecular probes that respond to disease-specific catalytic activity to produce a diagnostic readout, as well as diagnostics that use enzymes as an engineered component of their sense-and-respond cascade. These technologies exemplify how integrating techniques from multiple disciplines with preclinical validation has enabled ABDx that may realize the goals of precision medicine.
Collapse
Affiliation(s)
- Ava P Soleimany
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA; Harvard Graduate Program in Biophysics, Harvard University, Boston, MA, USA
| | - Sangeeta N Bhatia
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Wyss Institute at Harvard, Cambridge, MA, USA; Howard Hughes Medical Institute, Cambridge, MA, USA.
| |
Collapse
|
25
|
High-Resolution Confocal Fluorescence Imaging of Serine Hydrolase Activity in Cryosections - Application to Glioma Brain Unveils Activity Hotspots Originating from Tumor-Associated Neutrophils. Biol Proced Online 2020; 22:6. [PMID: 32190011 PMCID: PMC7073015 DOI: 10.1186/s12575-020-00118-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/19/2020] [Indexed: 12/18/2022] Open
Abstract
Background Serine hydrolases (SHs) are a functionally diverse family of enzymes playing pivotal roles in health and disease and have emerged as important therapeutic targets in many clinical conditions. Activity-based protein profiling (ABPP) using fluorophosphonate (FP) probes has been a powerful chemoproteomic approach in studies unveiling roles of SHs in various biological systems. ABPP utilizes cell/tissue proteomes and features the FP-warhead, linked to a fluorescent reporter for in-gel fluorescence imaging or a biotin tag for streptavidin enrichment and LC-MS/MS-based target identification. Existing ABPP approaches characterize global SH activity based on mobility in gel or MS-based target identification and cannot reveal the identity of the cell-type responsible for an individual SH activity originating from complex proteomes. Results Here, by using an activity probe with broad reactivity towards the SH family, we advance the ABPP methodology to glioma brain cryosections, enabling for the first time high-resolution confocal fluorescence imaging of global SH activity in the tumor microenvironment. Tumor-associated cell types were identified by extensive immunohistochemistry on activity probe-labeled sections. Tissue-ABPP indicated heightened SH activity in glioma vs. normal brain and unveiled activity hotspots originating from tumor-associated neutrophils (TANs), rather than tumor-associated macrophages (TAMs). Thorough optimization and validation was provided by parallel gel-based ABPP combined with LC-MS/MS-based target verification. Conclusions Our study advances the ABPP methodology to tissue sections, enabling high-resolution confocal fluorescence imaging of global SH activity in anatomically preserved complex native cellular environment. To achieve global portrait of SH activity throughout the section, a probe with broad reactivity towards the SH family members was employed. As ABPP requires no a priori knowledge of the identity of the target, we envisage no imaginable reason why the presently described approach would not work for sections regardless of species and tissue source.
Collapse
|
26
|
Deng H, Lei Q, Wu Y, He Y, Li W. Activity-based protein profiling: Recent advances in medicinal chemistry. Eur J Med Chem 2020; 191:112151. [PMID: 32109778 DOI: 10.1016/j.ejmech.2020.112151] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/04/2020] [Accepted: 02/13/2020] [Indexed: 02/05/2023]
Abstract
Activity-based protein profiling (ABPP) has become an emerging chemical proteomic approach to illustrate the interaction mechanisms between compounds and proteins. This approach has combined organic synthesis, biochemistry, cell biology, biophysics and bioinformatics to accelerate the process of drug discovery in target identification and validation, as well as in the stage of lead discovery and optimization. This review will summarize new developments and applications of ABPP in medicinal chemistry. Here, we mainly described the design principles of activity-base probes (ABPs) and general workflows of ABPP approach. Moreover, we discussed various basic and advanced ABPP strategies and their applications in medicinal chemistry, including competitive and comparative ABPP, two-step ABPP, fluorescence polarization ABPP (FluoPol-ABPP) and ABPs for visualization. In conclusion, this review will give a general overview of the applications of ABPP as a powerful and efficient technique in medicinal chemistry.
Collapse
Affiliation(s)
- Hui Deng
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Targeted Tracer Research and Development Laboratory, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Qian Lei
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Targeted Tracer Research and Development Laboratory, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yangping Wu
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Targeted Tracer Research and Development Laboratory, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yang He
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Targeted Tracer Research and Development Laboratory, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Weimin Li
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Targeted Tracer Research and Development Laboratory, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
27
|
Chang Z, Liu F, Wang L, Deng M, Zhou C, Sun Q, Chu J. Near-infrared dyes, nanomaterials and proteins. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.08.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
28
|
Cheng Z, Valença WO, Dias GG, Scott J, Barth ND, de Moliner F, Souza GBP, Mellanby RJ, Vendrell M, da Silva Júnior EN. Natural product-inspired profluorophores for imaging NQO1 activity in tumour tissues. Bioorg Med Chem 2019; 27:3938-3946. [PMID: 31327676 DOI: 10.1016/j.bmc.2019.07.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/08/2019] [Accepted: 07/10/2019] [Indexed: 11/30/2022]
Abstract
Herein we designed a collection of trimethyl-lock quinone profluorophores as activity-based probes for imaging NAD(P)H:quinone oxidoreductase (NQO1) in cancer cells and tumour tissues. Profluorophores were prepared via synthetic routes from naturally-occurring quinones and characterised in vitro using recombinant enzymes, to be further validated in cells and fresh frozen canine tumour tissues as potential new tools for cancer detection and imaging.
Collapse
Affiliation(s)
- Zhiming Cheng
- Centre for Inflammation Research, The University of Edinburgh, EH16 4TJ Edinburgh, UK
| | - Wagner O Valença
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Gleiston G Dias
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Jamie Scott
- Centre for Inflammation Research, The University of Edinburgh, EH16 4TJ Edinburgh, UK
| | - Nicole D Barth
- Centre for Inflammation Research, The University of Edinburgh, EH16 4TJ Edinburgh, UK
| | - Fabio de Moliner
- Centre for Inflammation Research, The University of Edinburgh, EH16 4TJ Edinburgh, UK
| | - Gabriela B P Souza
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Richard J Mellanby
- Royal (Dick) School of Veterinary Studies, The Roslin Institute, Division of Veterinary Clinical Studies, The University of Edinburgh, Hospital for Small Animals, Easter Bush Veterinary Centre, EH25 9RG Roslin, UK
| | - Marc Vendrell
- Centre for Inflammation Research, The University of Edinburgh, EH16 4TJ Edinburgh, UK.
| | - Eufrânio N da Silva Júnior
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil.
| |
Collapse
|
29
|
Erich K, Reinle K, Müller T, Munteanu B, Sammour DA, Hinsenkamp I, Gutting T, Burgermeister E, Findeisen P, Ebert MP, Krijgsveld J, Hopf C. Spatial Distribution of Endogenous Tissue Protease Activity in Gastric Carcinoma Mapped by MALDI Mass Spectrometry Imaging. Mol Cell Proteomics 2019; 18:151-161. [PMID: 30293968 PMCID: PMC6317471 DOI: 10.1074/mcp.ra118.000980] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 09/23/2018] [Indexed: 12/30/2022] Open
Abstract
Aberrant protease activity has been implicated in the etiology of various prevalent diseases including neurodegeneration and cancer, in particular metastasis. Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) has recently been established as a key technology for bioanalysis of multiple biomolecular classes such as proteins, lipids, and glycans. However, it has not yet been systematically explored for investigation of a tissue's endogenous protease activity. In this study, we demonstrate that different tissues, spray-coated with substance P as a tracer, digest this peptide with different time-course profiles. Furthermore, we reveal that distinct cleavage products originating from substance P are generated transiently and that proteolysis can be attenuated by protease inhibitors in a concentration-dependent manner. To show the translational potential of the method, we analyzed protease activity of gastric carcinoma in mice. Our MSI and quantitative proteomics results reveal differential distribution of protease activity - with strongest activity being observed in mouse tumor tissue, suggesting the general applicability of the workflow in animal pharmacology and clinical studies.
Collapse
Affiliation(s)
- Katrin Erich
- From the ‡Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack Str. 10, 68163 Mannheim, Germany;; §Institute of Medical Technology, Heidelberg University and Mannheim University of Applied Sciences, Paul-Wittsack Str. 10, 68163 Mannheim, Germany
| | - Kevin Reinle
- From the ‡Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack Str. 10, 68163 Mannheim, Germany
| | - Torsten Müller
- ¶German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120 Heidelberg, Germany;; ‡‡Heidelberg University, Medical Faculty, Im Neuenheimer Feld 672, 69120 Heidelberg, Germany
| | - Bogdan Munteanu
- From the ‡Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack Str. 10, 68163 Mannheim, Germany
| | - Denis A Sammour
- From the ‡Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack Str. 10, 68163 Mannheim, Germany;; §Institute of Medical Technology, Heidelberg University and Mannheim University of Applied Sciences, Paul-Wittsack Str. 10, 68163 Mannheim, Germany
| | - Isabel Hinsenkamp
- ‖Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Tobias Gutting
- ‖Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Elke Burgermeister
- ‖Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Peter Findeisen
- **Institute of Clinical Chemistry, University Medical Center Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Matthias P Ebert
- ‖Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Jeroen Krijgsveld
- ¶German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120 Heidelberg, Germany;; ‡‡Heidelberg University, Medical Faculty, Im Neuenheimer Feld 672, 69120 Heidelberg, Germany
| | - Carsten Hopf
- From the ‡Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack Str. 10, 68163 Mannheim, Germany;; §Institute of Medical Technology, Heidelberg University and Mannheim University of Applied Sciences, Paul-Wittsack Str. 10, 68163 Mannheim, Germany;.
| |
Collapse
|
30
|
Zingkou E, Pampalakis G, Kiritsi D, Valari M, Jonca N, Sotiropoulou G. Activography reveals aberrant proteolysis in desquamating diseases of differing backgrounds. Exp Dermatol 2018; 28:86-89. [PMID: 30390391 DOI: 10.1111/exd.13832] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 10/17/2018] [Accepted: 11/01/2018] [Indexed: 01/12/2023]
Abstract
The role of epidermal proteolysis in overdesquamation was revealed in Netherton syndrome, a rare ichthyosis due to genetic deficiency of the LEKTI inhibitor of serine proteases. Recently, we developed activography, a new histochemical method, to spatially localize and semiquantitatively assess proteolytic activities using activity-based probes. Activography provides specificity and versatility compared to in situ zymography, the only available method to determine enzymatic activities in tissue biopsies. Here, activography was validated in skin biopsies obtained from an array of distinct disorders and compared with in situ zymography. Activography provides a methodological advancement due to its simplicity and specificity and can be readily adapted as a routine diagnostic assay. Interestingly, the levels of epidermal proteolysis correlated with the degree of desquamation independent of skin pathology. Thus, deregulated epidermal proteolysis likely represents a universal mechanism underlying aberrant desquamation.
Collapse
Affiliation(s)
- Eleni Zingkou
- Department of Pharmacy, School of Health Sciences, University of Patras, Rion-Patras, Greece
| | - Georgios Pampalakis
- Department of Pharmacy, School of Health Sciences, University of Patras, Rion-Patras, Greece
| | - Dimitra Kiritsi
- Department of Dermatology, Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany
| | | | - Nathalie Jonca
- Epithelial Differentiation and Rheumatoid Autoimmunity Unit (UDEAR), Hôpital Purpan, UMR 1056 Inserm - Université de Toulouse, Toulouse, Cedex 9, France
| | - Georgia Sotiropoulou
- Department of Pharmacy, School of Health Sciences, University of Patras, Rion-Patras, Greece
| |
Collapse
|
31
|
Arora K, Herroon M, Al-Afyouni MH, Toupin NP, Rohrabaugh TN, Loftus LM, Podgorski I, Turro C, Kodanko JJ. Catch and Release Photosensitizers: Combining Dual-Action Ruthenium Complexes with Protease Inactivation for Targeting Invasive Cancers. J Am Chem Soc 2018; 140:14367-14380. [PMID: 30278123 DOI: 10.1021/jacs.8b08853] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Dual action agents containing a cysteine protease inhibitor and Ru-based photosensitizer for photodynamic therapy (PDT) were designed, synthesized, and validated in 2D culture and 3D functional imaging assays of triple-negative human breast cancer (TNBC). These combination agents deliver and release Ru-based PDT agents to tumor cells and cause cancer cell death upon irradiation with visible light, while at the same time inactivating cathespin B (CTSB), a cysteine protease strongly associated with invasive and metastatic behavior. In total five Ru-based complexes were synthesized with the formula [Ru(bpy)2(1)](O2CCF3)2 (3), where bpy = 2,2'-bipyridine and 1 = a bipyridine-based epoxysuccinyl inhibitor; [Ru(tpy)(NN)(2)](PF6)2, where tpy = terpiridine, 2 = a pyridine-based epoxysuccinyl inhibitor and NN = 2,2'-bipyridine (4); 6,6'-dimethyl-2,2'-bipyridine (5); benzo[ i]dipyrido[3,2- a:2',3'- c]phenazine (6); and 3,6-dimethylbenzo[ i]dipyrido[3,2- a:2',3'- c]phenazine (7). Compound 3 contains a [Ru(bpy)3]2+ fluorophore and was designed to track the subcellular localization of the conjugates, whereas compounds 4-7 were designed to undergo either photoactivated ligand dissociation and/or singlet oxygen generation. Photochemical studies confirmed that complexes 5 and 7 undergo photoactivated ligand dissociation, whereas 6 and 7 generate singlet oxygen. Inhibitors 1-7 all potently and irreversibly inhibit CTSB. Compounds 4-7 were evaluated against MDA-MB-231 TNBC and MCF-10A breast epithelial cells in 2D and 3D culture for effects on proteolysis and cell viability under dark and light conditions. Collectively, these data reveal that 4-7 potently inhibit dye-quenched (DQ) collagen degradation, whereas only compound 7 causes efficient cell death under light conditions, consistent with its ability to release a Ru(II)-based photosensitizer and to also generate 1O2.
Collapse
Affiliation(s)
- Karan Arora
- Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , Michigan 48202 , United States
| | - Mackenzie Herroon
- Department of Pharmacology, School of Medicine , Wayne State University , Detroit , Michigan 48201 , United States
| | - Malik H Al-Afyouni
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| | - Nicholas P Toupin
- Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , Michigan 48202 , United States
| | - Thomas N Rohrabaugh
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| | - Lauren M Loftus
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| | - Izabela Podgorski
- Department of Pharmacology, School of Medicine , Wayne State University , Detroit , Michigan 48201 , United States.,Barbara Ann Karmanos Cancer Institute , Detroit , Michigan 48201 , United States
| | - Claudia Turro
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| | - Jeremy J Kodanko
- Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , Michigan 48202 , United States.,Barbara Ann Karmanos Cancer Institute , Detroit , Michigan 48201 , United States
| |
Collapse
|
32
|
Classification of prostate cancer using a protease activity nanosensor library. Proc Natl Acad Sci U S A 2018; 115:8954-8959. [PMID: 30126988 DOI: 10.1073/pnas.1805337115] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Improved biomarkers are needed for prostate cancer, as the current gold standards have poor predictive value. Tests for circulating prostate-specific antigen (PSA) levels are susceptible to various noncancer comorbidities in the prostate and do not provide prognostic information, whereas physical biopsies are invasive, must be performed repeatedly, and only sample a fraction of the prostate. Injectable biosensors may provide a new paradigm for prostate cancer biomarkers by querying the status of the prostate via a noninvasive readout. Proteases are an important class of enzymes that play a role in every hallmark of cancer; their activities could be leveraged as biomarkers. We identified a panel of prostate cancer proteases through transcriptomic and proteomic analysis. Using this panel, we developed a nanosensor library that measures protease activity in vitro using fluorescence and in vivo using urinary readouts. In xenograft mouse models, we applied this nanosensor library to classify aggressive prostate cancer and to select predictive substrates. Last, we coformulated a subset of nanosensors with integrin-targeting ligands to increase sensitivity. These targeted nanosensors robustly classified prostate cancer aggressiveness and outperformed PSA. This activity-based nanosensor library could be useful throughout clinical management of prostate cancer, with both diagnostic and prognostic utility.
Collapse
|
33
|
Vizovišek M, Vidmar R, Drag M, Fonović M, Salvesen GS, Turk B. Protease Specificity: Towards In Vivo Imaging Applications and Biomarker Discovery. Trends Biochem Sci 2018; 43:829-844. [PMID: 30097385 DOI: 10.1016/j.tibs.2018.07.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/05/2018] [Accepted: 07/12/2018] [Indexed: 02/06/2023]
Abstract
Proteases are considered of major importance in biomedical research because of their crucial roles in health and disease. Their ability to hydrolyze their protein and peptide substrates at single or multiple sites, depending on their specificity, makes them unique among the enzymes. Understanding protease specificity is therefore crucial to understand their biology as well as to develop tools and drugs. Recent advancements in the fields of proteomics and chemical biology have improved our understanding of protease biology through extensive specificity profiling and identification of physiological protease substrates. There are growing efforts to transfer this knowledge into clinical modalities, but their success is often limited because of overlapping protease features, protease redundancy, and chemical tools lacking specificity. Herein, we discuss the current trends and challenges in protease research and how to exploit the growing information on protease specificities for understanding protease biology, as well as for development of selective substrates, cleavable linkers, and activity-based probes and for biomarker discovery.
Collapse
Affiliation(s)
- Matej Vizovišek
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000 Ljubljana, Slovenia; These authors contributed equally to this work
| | - Robert Vidmar
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000 Ljubljana, Slovenia; These authors contributed equally to this work
| | - Marcin Drag
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Marko Fonović
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Guy S Salvesen
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.
| | - Boris Turk
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000 Ljubljana, Slovenia; Faculty of Chemistry and Chemical Technology, University of Ljubljana, Vecna pot 113, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
34
|
Matsuoka D, Watanabe H, Shimizu Y, Kimura H, Yagi Y, Kawai R, Ono M, Saji H. Structure–activity relationships of succinimidyl-Cys-C(O)-Glu derivatives with different near-infrared fluorophores as optical imaging probes for prostate-specific membrane antigen. Bioorg Med Chem 2018; 26:2291-2301. [DOI: 10.1016/j.bmc.2018.03.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/09/2018] [Accepted: 03/09/2018] [Indexed: 12/18/2022]
|
35
|
Wang K, Donnarumma F, Baldone MD, Murray KK. Infrared laser ablation and capture of enzymes with conserved activity. Anal Chim Acta 2018; 1027:41-46. [PMID: 29866268 DOI: 10.1016/j.aca.2018.04.058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 04/16/2018] [Accepted: 04/22/2018] [Indexed: 01/24/2023]
Abstract
Infrared (IR) laser ablation at 3 μm wavelength was used to extract enzymes from tissue and quantitatively determine their activity. Experiments were conducted with trypsin, which was ablated, captured and then used to digest bovine serum albumin (BSA). BSA digests were evaluated using matrix-assisted laser desorption ionization (MALDI) mass spectrometry (MS) and sequence coverage of 59% was achieved. Quantification was performed using trypsin and catalase standards and rat brain tissue by fluorescence spectroscopy. Both enzymes were reproducibly transferred with an efficiency of 75 ± 8% at laser fluences between 10 and 30 kJ/m2. Trypsin retained 37 ± 2% of its activity and catalase retained 50 ± 7%. The activity of catalase from tissue was tested using three consecutive 50 μm thick rat brain sections. Two 4 mm2 regions were ablated and captured from the cortex and cerebellum regions. The absolute catalase concentration in the two regions was consistent with previously published data, demonstrating transfer of intact enzymes from tissue.
Collapse
Affiliation(s)
- Kelin Wang
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana, 70803, United States
| | - Fabrizio Donnarumma
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana, 70803, United States
| | - Matthew D Baldone
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana, 70803, United States
| | - Kermit K Murray
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana, 70803, United States.
| |
Collapse
|
36
|
Dudani JS, Warren AD, Bhatia SN. Harnessing Protease Activity to Improve Cancer Care. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2018. [DOI: 10.1146/annurev-cancerbio-030617-050549] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jaideep S. Dudani
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;, ,
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Andrew D. Warren
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;, ,
- Harvard–MIT Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Sangeeta N. Bhatia
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;, ,
- Harvard–MIT Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
37
|
Sharifzadeh S, Shirley JD, Carlson EE. Activity-Based Protein Profiling Methods to Study Bacteria: The Power of Small-Molecule Electrophiles. Curr Top Microbiol Immunol 2018; 420:23-48. [PMID: 30232601 DOI: 10.1007/82_2018_135] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
ABPP methods have been utilized for the last two decades as a means to investigate complex proteomes in all three domains of life. Extensive use in eukaryotes has provided a more fundamental understanding of the biological processes involved in numerous diseases and has driven drug discovery and treatment campaigns. However, the use of ABPP in prokaryotes has been less common, although it has gained more attention over the last decade. The urgent need for understanding bacteriophysiology and bacterial pathogenicity at a foundational level has never been more apparent, as the rise in antibiotic resistance has resulted in the inadequate and ineffective treatment of infections. This is not only a result of resistance to clinically used antibiotics, but also a lack of new drugs and equally as important, new drug targets. ABPP provides a means for which new, clinically relevant drug targets may be identified through gaining insight into biological processes. In this chapter, we place particular focus on the discussion of ABPP strategies that have been applied to study different classes of bacterial enzymes.
Collapse
Affiliation(s)
- Shabnam Sharifzadeh
- Department of Chemistry, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA
| | - Joshua D Shirley
- Department of Medicinal Chemistry, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA
| | - Erin E Carlson
- Department of Chemistry, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA. .,Department of Medicinal Chemistry, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA. .,Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA.
| |
Collapse
|
38
|
Amaike K, Tamura T, Hamachi I. Recognition-driven chemical labeling of endogenous proteins in multi-molecular crowding in live cells. Chem Commun (Camb) 2017; 53:11972-11983. [PMID: 29026906 DOI: 10.1039/c7cc07177a] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Endogenous protein labeling is one of the most invaluable methods for studying the bona fide functions of proteins in live cells. However, multi-molecular crowding conditions, such as those that occur in live cells, hamper the highly selective chemical labeling of a protein of interest (POI). We herein describe how the efficient coupling of molecular recognition with a chemical reaction is crucial for selective protein labeling. Recognition-driven protein labeling is carried out by a synthetic labeling reagent containing a protein (recognition) ligand, a reporter tag, and a reactive moiety. The molecular recognition of a POI can be used to greatly enhance the reaction kinetics and protein selectivity, even under live cell conditions. In this review, we also briefly discuss how such selective chemical labeling of an endogenous protein can have a variety of applications at the interface of chemistry and biology.
Collapse
Affiliation(s)
- Kazuma Amaike
- Graduate School of Engineering, Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
| | - Tomonori Tamura
- Graduate School of Engineering, Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
| | - Itaru Hamachi
- Graduate School of Engineering, Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan. and Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| |
Collapse
|
39
|
Synthesis of a HyCoSuL peptide substrate library to dissect protease substrate specificity. Nat Protoc 2017; 12:2189-2214. [PMID: 28933778 DOI: 10.1038/nprot.2017.091] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Many biologically and chemically based approaches have been developed to design highly active and selective protease substrates and probes. It is, however, difficult to find substrate sequences that are truly selective for any given protease, as different proteases can demonstrate a great deal of overlap in substrate specificities. In some cases, better enzyme selectivity can be achieved using peptide libraries containing unnatural amino acids such as the hybrid combinatorial substrate library (HyCoSuL), which uses both natural and unnatural amino acids. HyCoSuL is a combinatorial library of tetrapeptides containing amino acid mixtures at the P4-P2 positions, a fixed amino acid at the P1 position, and an ACC (7-amino-4-carbamoylmethylcoumarin) fluorescent tag occupying the P1' position. Once the peptide is recognized and cleaved by a protease, the ACC is released and produces a readable fluorescence signal. Here, we describe the synthesis and screening of HyCoSuL for human caspases and legumain. We also discuss possible modifications and adaptations of this approach that make it a useful tool for developing highly active and selective reagents for a wide variety of proteolytic enzymes. The protocol can be divided into three major parts: (i) solid-phase synthesis of the fluorescence-labeled HyCoSuL, (ii) screening of protease P4-P2 preferences, and (iii) synthesis of the optimized activity probes equipped with an AOMK (acyloxymethyl ketone) reactive group and a biotin label for easy detection. Beginning with the library design, the entire protocol can be completed in 4-8 weeks (HyCoSuL synthesis: 3-5 weeks; HyCoSuL screening per enzyme: 4-8 d; and activity-based probe synthesis: 1-2 weeks).
Collapse
|
40
|
Chan YC, Hsiao M. Protease-activated nanomaterials for targeted cancer theranostics. Nanomedicine (Lond) 2017; 12:2153-2159. [PMID: 28814163 DOI: 10.2217/nnm-2017-0068] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cancer metastasis accompanies irreversible proteolysis. Malignant cells that abnormally express extracellular proteases usually lead to a poor outcome during cancer progression. The development of protease-activated drugs is an important goal. Moreover, the specific proteolytic mechanism can be used as a diagnostic strategy. Currently, nanotechnology for use in medication has been extensively developed to exploit the physical and chemical properties of nanoparticles. For example, to improve the efficacy of cancer therapy drugs, targeted delivery has been attempted by combining a targeting ligand with a nanoparticle. Multifunctional nanoparticles have been prepared for cancer therapy and diagnosis because of their advantages such as stable physical properties, drug carrying ability and potential specific targeting ability. In this review, we present reports on protease-activated nanoparticle design for cancer theranostics. We further describe recent protease-activated metalloprotease-based and cathepsin-based nanomaterials used in cancer nanotheranostics. Innovative protease-activated nanomaterials have significant potential for designing personalized treatment.
Collapse
Affiliation(s)
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei, Taiwan.,Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
41
|
Kramer L, Renko M, Završnik J, Turk D, Seeger MA, Vasiljeva O, Grütter MG, Turk V, Turk B. Non-invasive in vivo imaging of tumour-associated cathepsin B by a highly selective inhibitory DARPin. Am J Cancer Res 2017; 7:2806-2821. [PMID: 28824717 PMCID: PMC5562217 DOI: 10.7150/thno.19081] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 04/15/2017] [Indexed: 01/17/2023] Open
Abstract
Cysteine cathepsins often contribute to cancer progression due to their overexpression in the tumour microenvironment and therefore present attractive targets for non-invasive diagnostic imaging. However, the development of highly selective and versatile small molecule probes for cathepsins has been challenging. Here, we targeted tumour-associated cathepsin B using designed ankyrin repeat proteins (DARPins). The selective DARPin 8h6 inhibited cathepsin B with picomolar affinity (Ki = 35 pM) by binding to a site with low structural conservation in cathepsins, as revealed by the X-ray structure of the complex. DARPin 8h6 blocked cathepsin B activity in tumours ex vivo and was successfully applied in in vivo optical imaging in two mouse breast cancer models, in which cathepsin B was bound to the cell membrane or secreted to the extracellular milieu by tumour and stromal cells. Our approach validates cathepsin B as a promising diagnostic and theranostic target in cancer and other inflammation-associated diseases.
Collapse
|
42
|
Kramer L, Turk D, Turk B. The Future of Cysteine Cathepsins in Disease Management. Trends Pharmacol Sci 2017; 38:873-898. [PMID: 28668224 DOI: 10.1016/j.tips.2017.06.003] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/23/2017] [Accepted: 06/05/2017] [Indexed: 02/06/2023]
Abstract
Since the discovery of the key role of cathepsin K in bone resorption, cysteine cathepsins have been investigated by pharmaceutical companies as drug targets. The first clinical results from targeting cathepsins by activity-based probes and substrates are paving the way for the next generation of molecular diagnostic imaging, whereas the majority of antibody-drug conjugates currently in clinical trials depend on activation by cathepsins. Finally, cathepsins have emerged as suitable vehicles for targeted drug delivery. It is therefore timely to review the future of cathepsins in drug discovery. We focus here on inflammation-associated diseases because dysregulation of the immune system accompanied by elevated cathepsin activity is a common feature of these conditions.
Collapse
Affiliation(s)
- Lovro Kramer
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, 1000 Ljubljana, Slovenia; International Postgraduate School Jozef Stefan, Jamova 39, 1000 Ljubljana, Slovenia
| | - Dušan Turk
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, 1000 Ljubljana, Slovenia; Center of Excellence CIPKEBIP, Jamova 39, 1000 Ljubljana, Slovenia
| | - Boris Turk
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, 1000 Ljubljana, Slovenia; Center of Excellence CIPKEBIP, Jamova 39, 1000 Ljubljana, Slovenia; Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia.
| |
Collapse
|
43
|
Kwon EJ, Dudani JS, Bhatia SN. Ultrasensitive tumour-penetrating nanosensors of protease activity. Nat Biomed Eng 2017; 1:0054. [PMID: 28970963 PMCID: PMC5621765 DOI: 10.1038/s41551-017-0054] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Accepted: 03/01/2017] [Indexed: 12/25/2022]
Abstract
The ability to identify cancer lesions with endogenous biomarkers is currently limited to tumours ~1 cm in diameter. We recently reported an exogenously administered tumour-penetrating nanosensor that sheds, in response to tumour-specific proteases, peptide fragments that can then be detected in the urine. Here, we report the optimization, informed by a pharmacokinetic mathematical model, of the surface presentation of the peptide substrates to both enhance on-target protease cleavage and minimize off-target cleavage, and of the functionalization of the nanosensors with tumour-penetrating ligands that engage active trafficking pathways to increase activation in the tumour microenvironment. The resulting nanosensor discriminated sub-5 mm lesions in human epithelial tumours and detected nodules with median diameters smaller than 2 mm in an orthotopic model of ovarian cancer. We also demonstrate enhanced receptor-dependent specificity of signal generation in the urine in an immunocompetent model of colorectal liver metastases, and in situ activation of the nanosensors in human tumour microarrays when re-engineered as fluorogenic zymography probes.
Collapse
Affiliation(s)
- Ester J. Kwon
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Harvard–MIT Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Jaideep S. Dudani
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Sangeeta N. Bhatia
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Harvard–MIT Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02139
- Howard Hughes Medical Institute, Cambridge, MA 02139
| |
Collapse
|
44
|
|
45
|
Pampalakis G, Zingkou E, Vekrellis K, Sotiropoulou G. “Activography”: a novel, versatile and easily adaptable method for monitoring enzymatic activities in situ. Chem Commun (Camb) 2017; 53:3246-3248. [DOI: 10.1039/c7cc01081h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We developed activography to map enzymatic activities on tissue sections using activity-based probes.
Collapse
Affiliation(s)
- G. Pampalakis
- Department of Pharmacy
- School of Health Sciences
- University of Patras
- Rion-Patras
- Greece
| | - E. Zingkou
- Department of Pharmacy
- School of Health Sciences
- University of Patras
- Rion-Patras
- Greece
| | - K. Vekrellis
- Center for Neurosciences
- Biomedical Research Foundation
- Academy of Athens
- Athens
- Greece
| | - G. Sotiropoulou
- Department of Pharmacy
- School of Health Sciences
- University of Patras
- Rion-Patras
- Greece
| |
Collapse
|
46
|
Repnik U, Distefano MB, Speth MT, Ng MYW, Progida C, Hoflack B, Gruenberg J, Griffiths G. LLOMe does not release cysteine cathepsins to the cytosol but inactivates them in transiently permeabilized lysosomes. J Cell Sci 2017; 130:3124-3140. [DOI: 10.1242/jcs.204529] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 07/26/2017] [Indexed: 01/18/2023] Open
Abstract
L-leucyl-L-leucine methyl ester (LLOMe) induces apoptosis, which is thought to be mediated by release of lysosomal cysteine cathepsins from permeabilized lysosomes into the cytosol. Here, we demonstrated in HeLa cells that at apoptotic as well as sub-apoptotic concentrations LLOMe caused rapid and complete lysosomal membrane permeabilization (LMP), evidenced by loss of the proton gradient and release into the cytosol of internalized lysosomal markers below 10K molecular weight. However, there was no evidence for the release of cysteine cathepsins B and L into the cytosol; rather they remained within lysosomes, where they were rapidly inactivated and degraded. LLOMe-induced adverse effects, including LMP, loss of cysteine cathepsin activity, caspase activation and cell death could be reduced by inhibition of cathepsin C, but not by inhibiting cathepsins B and L. When incubated with sub-apoptotic LLOMe concentrations, lysosomes transiently lost protons but annealed and re-acidified within hours. Full lysosomal function required new protein synthesis of cysteine cathepsins and other hydrolyses. Our data argue against release of lysosomal enzymes into the cytosol and their proposed proteolytic signaling during LLOMe-induced apoptosis.
Collapse
Affiliation(s)
- Urska Repnik
- Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway
| | | | - Martin Tobias Speth
- Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway
| | - Matthew Yoke Wui Ng
- Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway
| | - Cinzia Progida
- Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway
| | - Bernard Hoflack
- Biotechnology Center, Technical University of Dresden, Tatzberg 47-51, 01307 Dresden, Germany
| | - Jean Gruenberg
- Department of Biochemistry, University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva 4, Switzerland
| | - Gareth Griffiths
- Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway
| |
Collapse
|
47
|
Strmiskova M, Desrochers GF, Shaw TA, Powdrill MH, Lafreniere MA, Pezacki JP. Chemical Methods for Probing Virus-Host Proteomic Interactions. ACS Infect Dis 2016; 2:773-786. [PMID: 27933785 DOI: 10.1021/acsinfecdis.6b00084] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Interactions between host and pathogen proteins constitute an important aspect of both infectivity and the host immune response. Different viruses have evolved complex mechanisms to hijack host-cell machinery and metabolic pathways to redirect resources and energy flow toward viral propagation. These interactions are often critical to the virus, and thus understanding these interactions at a molecular level gives rise to opportunities to develop novel antiviral strategies for therapeutic intervention. This review summarizes current advances in chemoproteomic methods for studying these molecular altercations between different viruses and their hosts.
Collapse
Affiliation(s)
- Miroslava Strmiskova
- Department of Chemistry and Biomolecular Sciences, Centre
for Chemical and Synthetic Biology, University of Ottawa, 10 Marie-Curie Private, Ottawa, Ontario, Canada K1N 6N5
| | - Geneviève F. Desrochers
- Department of Chemistry and Biomolecular Sciences, Centre
for Chemical and Synthetic Biology, University of Ottawa, 10 Marie-Curie Private, Ottawa, Ontario, Canada K1N 6N5
| | - Tyler A. Shaw
- Department of Chemistry and Biomolecular Sciences, Centre
for Chemical and Synthetic Biology, University of Ottawa, 10 Marie-Curie Private, Ottawa, Ontario, Canada K1N 6N5
| | - Megan H. Powdrill
- Department of Chemistry and Biomolecular Sciences, Centre
for Chemical and Synthetic Biology, University of Ottawa, 10 Marie-Curie Private, Ottawa, Ontario, Canada K1N 6N5
| | - Matthew A. Lafreniere
- Department of Chemistry and Biomolecular Sciences, Centre
for Chemical and Synthetic Biology, University of Ottawa, 10 Marie-Curie Private, Ottawa, Ontario, Canada K1N 6N5
| | - John Paul Pezacki
- Department of Chemistry and Biomolecular Sciences, Centre
for Chemical and Synthetic Biology, University of Ottawa, 10 Marie-Curie Private, Ottawa, Ontario, Canada K1N 6N5
| |
Collapse
|
48
|
Withana NP, Saito T, Ma X, Garland M, Liu C, Kosuge H, Amsallem M, Verdoes M, Ofori LO, Fischbein M, Arakawa M, Cheng Z, McConnell MV, Bogyo M. Dual-Modality Activity-Based Probes as Molecular Imaging Agents for Vascular Inflammation. J Nucl Med 2016; 57:1583-1590. [PMID: 27199363 DOI: 10.2967/jnumed.115.171553] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 04/14/2016] [Indexed: 01/27/2023] Open
Abstract
Macrophages are cellular mediators of vascular inflammation and are involved in the formation of atherosclerotic plaques. These immune cells secrete proteases such as matrix metalloproteinases and cathepsins that contribute to disease formation and progression. Here, we demonstrate that activity-based probes (ABPs) targeting cysteine cathepsins can be used in murine models of atherosclerosis to noninvasively image activated macrophage populations using both optical and PET/CT methods. The probes can also be used to topically label human carotid plaques demonstrating similar specific labeling of activated macrophage populations. METHODS Macrophage-rich carotid lesions were induced in FVB mice fed on a high-fat diet by streptozotocin injection followed by ligation of the left common carotid artery. Mice with carotid atherosclerotic plaques were injected with the optical or dual-modality probes BMV109 and BMV101, respectively, via the tail vein and noninvasively imaged by optical and small-animal PET/CT at different time points. After noninvasive imaging, the murine carotid arteries were imaged in situ and ex vivo, followed by immunofluorescence staining to confirm target labeling. Additionally, human carotid plaques were topically labeled with the probe and analyzed by both sodium dodecyl sulfate polyacrylamide gel electrophoresis and immunofluorescence staining to confirm the primary targets of the probe. RESULTS Quantitative analysis of the signal intensity from both optical and PET/CT imaging showed significantly higher levels of accumulation of BMV109 and BMV101 (P < 0.005 and P < 0.05, respectively) in the ligated left carotid arteries than the right carotid or healthy arteries. Immunofluorescence staining for macrophages in cross-sectional slices of the murine artery demonstrated substantial infiltration of macrophages in the neointima and adventitia of the ligated left carotid arteries compared with the right. Analysis of the human plaque tissues by sodium dodecyl sulfate polyacrylamide gel electrophoresis confirmed that the primary targets of the probe were cathepsins X, B, S, and L. Immunofluorescence labeling of the human tissue with the probe demonstrated colocalization of the probe with CD68, elastin, and cathepsin S, similar to that observed in the experimental carotid inflammation murine model. CONCLUSION We demonstrate that ABPs targeting the cysteine cathepsins can be used in murine models of atherosclerosis to noninvasively image activated macrophage populations using both optical and PET/CT methods. The probes could also be used to topically label human carotid plaques demonstrating similar specific labeling of activated macrophage populations. Therefore, ABPs targeting the cysteine cathepsins are potentially valuable new reagents for rapid and noninvasive imaging of atherosclerotic disease progression and plaque vulnerability.
Collapse
Affiliation(s)
- Nimali P Withana
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Toshinobu Saito
- Department of Medicine (Cardiovascular), Stanford University School of Medicine, Stanford, California
| | - Xiaowei Ma
- Department of Radiology, Stanford University School of Medicine, Stanford, California
| | - Megan Garland
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Changhao Liu
- Department of Radiology, Stanford University School of Medicine, Stanford, California
| | - Hisanori Kosuge
- Department of Medicine (Cardiovascular), Stanford University School of Medicine, Stanford, California
| | - Myriam Amsallem
- Department of Medicine (Cardiovascular), Stanford University School of Medicine, Stanford, California
| | - Martijn Verdoes
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Leslie O Ofori
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Michael Fischbein
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, California; and
| | - Mamoru Arakawa
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, California; and
| | - Zhen Cheng
- Department of Radiology, Stanford University School of Medicine, Stanford, California
| | - Michael V McConnell
- Department of Medicine (Cardiovascular), Stanford University School of Medicine, Stanford, California
| | - Matthew Bogyo
- Department of Pathology, Stanford University School of Medicine, Stanford, California Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
49
|
Kamiya M, Urano Y. Rapid and sensitive fluorescent imaging of tiny tumors in vivo and in clinical specimens. Curr Opin Chem Biol 2016; 33:9-15. [PMID: 27100047 DOI: 10.1016/j.cbpa.2016.04.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 04/03/2016] [Indexed: 11/19/2022]
Abstract
Fluorescence-guided diagnostics is one of the most powerful techniques for real-time in situ tumor detection. Here, we introduce two categories of fluorescence probes used for tumor imaging (always-on probes and activatable probes) and briefly summarize recent advances in tumor-targeted fluorescence imaging probes and their clinical/preclinical applications, including our recent work on rational design of activatable fluorescence probes for tumors expressing aminopeptidases and glycosidases. These probes enable rapid and sensitive detection of tiny tumors as small as <1mm in diameter, both in vivo and in clinical specimens.
Collapse
Affiliation(s)
- Mako Kamiya
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Yasuteru Urano
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; CREST, Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan.
| |
Collapse
|