1
|
Mizi A, Tsitsianopoulos M, Papantonis A. Selective Sorting of Senescent Cell Subpopulations Compatible with Downstream Genomics Applications. Methods Mol Biol 2025; 2906:45-55. [PMID: 40082349 DOI: 10.1007/978-1-0716-4426-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
The dynamic character of senescence renders detection and selection of senescent cells challenging. One key feature of senescence is the alteration of chromatin features, and many methods for studying chromatin require only mild fixation of cells. The recent development of GLF16 compound allows for the selection of senescent cells in a population via fluorescence-activated cell sorting. Here, we detail two versions of a modified protocol that uses GLF16 to selectively sort senescent cells so as to be used in downstream genomics applications that require special fixation and permeabilization conditions. As proof of principle, we sort a subpopulation of senescent fetal lung fibroblasts and subject it to standard transcriptomics analysis, while the same procedure could potentially be coupled to other assays like CUT&RUN, CUT&Tag, ATAC-seq, or Hi-C/Micro-C.
Collapse
Affiliation(s)
- Athanasia Mizi
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | | | - Argyris Papantonis
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany.
| |
Collapse
|
2
|
Palikyras S, Sofiadis K, Stavropoulou A, Danieli‐Mackay A, Varamogianni‐Mamatsi V, Hörl D, Nasiscionyte S, Zhu Y, Papadionysiou I, Papadakis A, Josipovic N, Zirkel A, O'Connell A, Loughran G, Keane J, Michel A, Wagner W, Beyer A, Harz H, Leonhardt H, Lukinavicius G, Nikolaou C, Papantonis A. Rapid and synchronous chemical induction of replicative-like senescence via a small molecule inhibitor. Aging Cell 2024; 23:e14083. [PMID: 38196311 PMCID: PMC11019153 DOI: 10.1111/acel.14083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/07/2023] [Accepted: 01/03/2024] [Indexed: 01/11/2024] Open
Abstract
Cellular senescence is acknowledged as a key contributor to organismal ageing and late-life disease. Though popular, the study of senescence in vitro can be complicated by the prolonged and asynchronous timing of cells committing to it and by its paracrine effects. To address these issues, we repurposed a small molecule inhibitor, inflachromene (ICM), to induce senescence to human primary cells. Within 6 days of treatment with ICM, senescence hallmarks, including the nuclear eviction of HMGB1 and -B2, are uniformly induced across IMR90 cell populations. By generating and comparing various high throughput datasets from ICM-induced and replicative senescence, we uncovered a high similarity of the two states. Notably though, ICM suppresses the pro-inflammatory secretome associated with senescence, thus alleviating most paracrine effects. In summary, ICM rapidly and synchronously induces a senescent-like phenotype thereby allowing the study of its core regulatory program without confounding heterogeneity.
Collapse
Affiliation(s)
- Spiros Palikyras
- Institute of PathologyUniversity Medical Center GöttingenGöttingenGermany
| | - Konstantinos Sofiadis
- Institute of PathologyUniversity Medical Center GöttingenGöttingenGermany
- Present address:
Oncode InstituteHubrecht Institute‐KNAW and University Medical Center UtrechtUtrechtThe Netherlands
| | - Athanasia Stavropoulou
- Institute for BioinnovationBiomedical Sciences Research Center “Alexander Fleming”VariGreece
| | - Adi Danieli‐Mackay
- Institute of PathologyUniversity Medical Center GöttingenGöttingenGermany
- Clinical Research Unit 5002University Medical Center GöttingenGöttingenGermany
| | | | - David Hörl
- Faculty of BiologyLudwig Maximilians University MunichMunichGermany
| | | | - Yajie Zhu
- Institute of PathologyUniversity Medical Center GöttingenGöttingenGermany
| | | | - Antonis Papadakis
- Cluster of Excellence on Cellular Stress Responses in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany
| | - Natasa Josipovic
- Institute of PathologyUniversity Medical Center GöttingenGöttingenGermany
- Present address:
Single Cell DiscoveriesUtrechtThe Netherlands
| | - Anne Zirkel
- Center for Molecular Medicine CologneUniversity and University Hospital of CologneCologneGermany
| | | | | | | | | | - Wolfgang Wagner
- Helmholtz‐Institute for Biomedical EngineeringRWTH Aachen University Medical SchoolAachenGermany
- Institute for Stem Cell BiologyRWTH Aachen University Medical SchoolAachenGermany
| | - Andreas Beyer
- Cluster of Excellence on Cellular Stress Responses in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany
| | - Hartmann Harz
- Faculty of BiologyLudwig Maximilians University MunichMunichGermany
| | | | - Grazvydas Lukinavicius
- Department of NanoBiophotonicsMax Planck Institute for Multidisciplinary SciencesGöttingenGermany
| | - Christoforos Nikolaou
- Institute for BioinnovationBiomedical Sciences Research Center “Alexander Fleming”VariGreece
| | - Argyris Papantonis
- Institute of PathologyUniversity Medical Center GöttingenGöttingenGermany
- Clinical Research Unit 5002University Medical Center GöttingenGöttingenGermany
| |
Collapse
|
3
|
Cui YY. Sequential extraction of RNA, DNA and protein from cultured cells of the same group. World J Methodol 2023; 13:484-491. [PMID: 38229947 PMCID: PMC10789102 DOI: 10.5662/wjm.v13.i5.484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/25/2023] [Accepted: 10/16/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND Efficient extraction of nucleic acids and proteins (ENAP) from cells is a prerequisite for precise annotation of gene function, and has become laboratory routine for revealing the mysteries of life. However, cell samples are often from different culture dishes, resulting in inevitable experimental errors and sometimes poor repeatability.
AIM To explore a method to improve the efficiency of ENAP, minimizing errors in ENAP processes, enhancing the reliability and repeatability of subsequent experimental results.
METHODS A protocol for the sequential isolation of RNA, DNA, and proteins from the same cultured HepG2 cells using RNAzol reagent is presented here. The first step involves culturing HepG2 cells to the exponential phase, followed by the sequential isolation of RNA, DNA, and proteins from the same cultured cells in the second step. The yield of nucleic acids and proteins is detected in the third step, and their purity and integrity are verified in the last step.
RESULTS The procedure takes as few as 3-4 d from the start to quality verification and is highly efficient. In contrast to the existing kits and reagents, which are primarily based on independent isolation, this RNAzol reagent-based method is characterized by the sequential isolation of RNA, DNA, and proteins from the same cells, and therefore saves time, and has low cost and high efficiency.
CONCLUSION The RNA, DNA, and proteins isolated using this method can be used for reverse transcription-polymerase chain reaction, polymerase chain reaction, and western blotting, respectively.
Collapse
Affiliation(s)
- Ying-Yu Cui
- Department of Cell Biology, Institute of Medical Genetics, Key Laboratory of Arrhythmias of the Ministry of Education of China, Tongji University School of Medicine, Shanghai 200331, China
| |
Collapse
|
4
|
Suryo Rahmanto A, Blum CJ, Scalera C, Heidelberger JB, Mesitov M, Horn-Ghetko D, Gräf JF, Mikicic I, Hobrecht R, Orekhova A, Ostermaier M, Ebersberger S, Möckel MM, Krapoth N, Da Silva Fernandes N, Mizi A, Zhu Y, Chen JX, Choudhary C, Papantonis A, Ulrich HD, Schulman BA, König J, Beli P. K6-linked ubiquitylation marks formaldehyde-induced RNA-protein crosslinks for resolution. Mol Cell 2023; 83:4272-4289.e10. [PMID: 37951215 DOI: 10.1016/j.molcel.2023.10.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/17/2023] [Accepted: 10/13/2023] [Indexed: 11/13/2023]
Abstract
Reactive aldehydes are produced by normal cellular metabolism or after alcohol consumption, and they accumulate in human tissues if aldehyde clearance mechanisms are impaired. Their toxicity has been attributed to the damage they cause to genomic DNA and the subsequent inhibition of transcription and replication. However, whether interference with other cellular processes contributes to aldehyde toxicity has not been investigated. We demonstrate that formaldehyde induces RNA-protein crosslinks (RPCs) that stall the ribosome and inhibit translation in human cells. RPCs in the messenger RNA (mRNA) are recognized by the translating ribosomes, marked by atypical K6-linked ubiquitylation catalyzed by the RING-in-between-RING (RBR) E3 ligase RNF14, and subsequently resolved by the ubiquitin- and ATP-dependent unfoldase VCP. Our findings uncover an evolutionary conserved formaldehyde-induced stress response pathway that protects cells against RPC accumulation in the cytoplasm, and they suggest that RPCs contribute to the cellular and tissue toxicity of reactive aldehydes.
Collapse
Affiliation(s)
- Aldwin Suryo Rahmanto
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany; Institute of Developmental Biology and Neurobiology (IDN), Johannes Gutenberg-Universität, 55128 Mainz, Germany
| | | | | | | | | | - Daniel Horn-Ghetko
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Justus F Gräf
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany; Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Ivan Mikicic
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | | | - Anna Orekhova
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | | | | | | | - Nils Krapoth
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | | | - Athanasia Mizi
- Institute of Pathology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Yajie Zhu
- Institute of Pathology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Jia-Xuan Chen
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Chunaram Choudhary
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Argyris Papantonis
- Institute of Pathology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Helle D Ulrich
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Brenda A Schulman
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Julian König
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Petra Beli
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany; Institute of Developmental Biology and Neurobiology (IDN), Johannes Gutenberg-Universität, 55128 Mainz, Germany.
| |
Collapse
|
5
|
Debès C, Papadakis A, Grönke S, Karalay Ö, Tain LS, Mizi A, Nakamura S, Hahn O, Weigelt C, Josipovic N, Zirkel A, Brusius I, Sofiadis K, Lamprousi M, Lu YX, Huang W, Esmaillie R, Kubacki T, Späth MR, Schermer B, Benzing T, Müller RU, Antebi A, Partridge L, Papantonis A, Beyer A. Ageing-associated changes in transcriptional elongation influence longevity. Nature 2023; 616:814-821. [PMID: 37046086 PMCID: PMC10132977 DOI: 10.1038/s41586-023-05922-y] [Citation(s) in RCA: 87] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 03/07/2023] [Indexed: 04/14/2023]
Abstract
Physiological homeostasis becomes compromised during ageing, as a result of impairment of cellular processes, including transcription and RNA splicing1-4. However, the molecular mechanisms leading to the loss of transcriptional fidelity are so far elusive, as are ways of preventing it. Here we profiled and analysed genome-wide, ageing-related changes in transcriptional processes across different organisms: nematodes, fruitflies, mice, rats and humans. The average transcriptional elongation speed (RNA polymerase II speed) increased with age in all five species. Along with these changes in elongation speed, we observed changes in splicing, including a reduction of unspliced transcripts and the formation of more circular RNAs. Two lifespan-extending interventions, dietary restriction and lowered insulin-IGF signalling, both reversed most of these ageing-related changes. Genetic variants in RNA polymerase II that reduced its speed in worms5 and flies6 increased their lifespan. Similarly, reducing the speed of RNA polymerase II by overexpressing histone components, to counter age-associated changes in nucleosome positioning, also extended lifespan in flies and the division potential of human cells. Our findings uncover fundamental molecular mechanisms underlying animal ageing and lifespan-extending interventions, and point to possible preventive measures.
Collapse
Affiliation(s)
- Cédric Debès
- Cluster of Excellence on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Antonios Papadakis
- Cluster of Excellence on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | | | - Özlem Karalay
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Luke S Tain
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Athanasia Mizi
- Institute of Pathology, University Medical Centre Göttingen, Göttingen, Germany
| | - Shuhei Nakamura
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Oliver Hahn
- Cluster of Excellence on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Carina Weigelt
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Natasa Josipovic
- Institute of Pathology, University Medical Centre Göttingen, Göttingen, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Anne Zirkel
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Isabell Brusius
- Cluster of Excellence on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Konstantinos Sofiadis
- Institute of Pathology, University Medical Centre Göttingen, Göttingen, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Mantha Lamprousi
- Institute of Pathology, University Medical Centre Göttingen, Göttingen, Germany
| | - Yu-Xuan Lu
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Wenming Huang
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Reza Esmaillie
- Cluster of Excellence on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Torsten Kubacki
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Martin R Späth
- Cluster of Excellence on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Bernhard Schermer
- Cluster of Excellence on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Thomas Benzing
- Cluster of Excellence on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Roman-Ulrich Müller
- Cluster of Excellence on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Adam Antebi
- Cluster of Excellence on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany.
- Max Planck Institute for Biology of Ageing, Cologne, Germany.
| | - Linda Partridge
- Cluster of Excellence on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany.
- Max Planck Institute for Biology of Ageing, Cologne, Germany.
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, UCL, London, UK.
| | - Argyris Papantonis
- Institute of Pathology, University Medical Centre Göttingen, Göttingen, Germany.
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.
| | - Andreas Beyer
- Cluster of Excellence on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany.
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.
- Institute for Genetics, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany.
| |
Collapse
|
6
|
Josipovic N, Ebbesen KK, Zirkel A, Danieli-Mackay A, Dieterich C, Kurian L, Hansen TB, Papantonis A. circRAB3IP modulates cell proliferation by reorganizing gene expression and mRNA processing in a paracrine manner. RNA (NEW YORK, N.Y.) 2022; 28:1481-1495. [PMID: 35973723 PMCID: PMC9745835 DOI: 10.1261/rna.079195.122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 08/01/2022] [Indexed: 05/18/2023]
Abstract
Circular RNAs are an endogenous long-lived and abundant noncoding species. Despite their prevalence, only a few circRNAs have been dissected mechanistically to date. Here, we cataloged nascent RNA-enriched circRNAs from primary human cells and functionally assigned a role to circRAB3IP in sustaining cellular homeostasis. We combined "omics" and functional experiments to show how circRAB3IP depletion deregulates hundreds of genes, suppresses cell cycle progression, and induces senescence-associated gene expression changes. Conversely, excess circRAB3IP delivered to endothelial cells via extracellular vesicles suffices for accelerating their division. We attribute these effects to an interplay between circRAB3IP and the general splicing factor SF3B1, which can affect transcript variant expression levels of cell cycle-related genes. Together, our findings link the maintenance of cell homeostasis to the presence of a single circRNA.
Collapse
Affiliation(s)
- Natasa Josipovic
- Institute of Pathology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Karoline K Ebbesen
- Department of Molecular Biology and Genetics (MBG), Aarhus University, 8000 Aarhus, Denmark
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, 8000 Aarhus, Denmark
| | - Anne Zirkel
- Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
| | - Adi Danieli-Mackay
- Institute of Pathology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Christoph Dieterich
- Bioinformatics and Systems Cardiology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Leo Kurian
- Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
- Institute of Neurophysiology, University of Cologne, 50931 Cologne, Germany
| | - Thomas B Hansen
- Department of Molecular Biology and Genetics (MBG), Aarhus University, 8000 Aarhus, Denmark
| | - Argyris Papantonis
- Institute of Pathology, University Medical Center Göttingen, 37075 Göttingen, Germany
- Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
7
|
Melnik S, Hofmann N, Gabler J, Hecht N, Richter W. MiR-181a Targets RSPO2 and Regulates Bone Morphogenetic Protein - WNT Signaling Crosstalk During Chondrogenic Differentiation of Mesenchymal Stromal Cells. Front Cell Dev Biol 2021; 9:747057. [PMID: 34778258 PMCID: PMC8586458 DOI: 10.3389/fcell.2021.747057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
Mechanisms of WNT and bone morphogenetic protein (BMP) signaling crosstalk is in the focus of multiple biological studies, and it also has been discovered to play important roles in human mesenchymal stromal cells (MSC) that are of great interest for neocartilage engineering due to their high chondrogenic differentiation potential. However, MSC-derived chondrocytes undergo hypertrophic degeneration that impedes their clinical application for cartilage regeneration. In our previous study, we established that several microRNAs (miRs) are differentially expressed between articular chondrocytes (AC) - and MSC-derived neocartilage, with miR-181a being the most prominent candidate as key microRNA involved in the regulation of a balance between chondral and endochondral differentiation. The aim of this study was the identification of precise mRNA targets and signaling pathways regulated by miR-181a in MSC during chondrogenesis. MiR-181a was upregulated during chondrogenesis of MSC, along with an increase of the hypertrophic phenotype in resulting cartilaginous tissue. By in silico analysis combined with miR reporter assay, the WNT signaling activator and BMP signaling repressor RSPO2 was suggested as a target of miR-181a. Further validation experiments confirmed that miR-181a targets RSPO2 mRNA in MSC. It was found that in human MSC miR-181a activated BMP signaling manifested by the accumulation of SOX9 protein and increased phosphorylation of SMAD1/5/9. These effects, together with the concomitant reduction of canonical WNT signaling induced by miR-181a mimic, were in accordance with the effects expected by the loss of RSPO2, thus indicating the causative link between miR-181a and RSPO2. Moreover, we observed that a tight correlation between miR-181a and miR-218 expression levels in healthy human cartilage tissue was disrupted in osteoarthritis (OA) highlighting the importance of the WNT-BMP signaling crosstalk for preventing OA.
Collapse
Affiliation(s)
- Svitlana Melnik
- Research Center for Experimental Orthopaedics, Heidelberg University Hospital, Heidelberg, Germany
| | - Nina Hofmann
- Research Center for Experimental Orthopaedics, Heidelberg University Hospital, Heidelberg, Germany
| | - Jessica Gabler
- Research Center for Experimental Orthopaedics, Heidelberg University Hospital, Heidelberg, Germany
| | - Nicole Hecht
- Research Center for Experimental Orthopaedics, Heidelberg University Hospital, Heidelberg, Germany
| | - Wiltrud Richter
- Research Center for Experimental Orthopaedics, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
8
|
Feng Y, Pauklin S. Revisiting 3D chromatin architecture in cancer development and progression. Nucleic Acids Res 2020; 48:10632-10647. [PMID: 32941624 PMCID: PMC7641747 DOI: 10.1093/nar/gkaa747] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/21/2020] [Accepted: 09/03/2020] [Indexed: 12/17/2022] Open
Abstract
Cancer development and progression are demarcated by transcriptional dysregulation, which is largely attributed to aberrant chromatin architecture. Recent transformative technologies have enabled researchers to examine the genome organization at an unprecedented dimension and precision. In particular, increasing evidence supports the essential roles of 3D chromatin architecture in transcriptional homeostasis and proposes its alterations as prominent causes of human cancer. In this article, we will discuss the recent findings on enhancers, enhancer-promoter interaction, chromatin topology, phase separation and explore their potential mechanisms in shaping transcriptional dysregulation in cancer progression. In addition, we will propose our views on how to employ state-of-the-art technologies to decode the unanswered questions in this field. Overall, this article motivates the study of 3D chromatin architecture in cancer, which allows for a better understanding of its pathogenesis and develop novel approaches for diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Yuliang Feng
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Old Road, University of Oxford, Oxford OX3 7LD, U.K
| | - Siim Pauklin
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Old Road, University of Oxford, Oxford OX3 7LD, U.K
| |
Collapse
|
9
|
Mizi A, Gade Gusmao E, Papantonis A. iHi-C 2.0: A simple approach for mapping native spatial chromatin organisation from low cell numbers. Methods 2020; 170:33-37. [DOI: 10.1016/j.ymeth.2019.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 07/04/2019] [Indexed: 01/05/2023] Open
|
10
|
Gothe HJ, Bouwman BAM, Gusmao EG, Piccinno R, Petrosino G, Sayols S, Drechsel O, Minneker V, Josipovic N, Mizi A, Nielsen CF, Wagner EM, Takeda S, Sasanuma H, Hudson DF, Kindler T, Baranello L, Papantonis A, Crosetto N, Roukos V. Spatial Chromosome Folding and Active Transcription Drive DNA Fragility and Formation of Oncogenic MLL Translocations. Mol Cell 2019; 75:267-283.e12. [DOI: 10.1016/j.molcel.2019.05.015] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 04/14/2019] [Accepted: 05/09/2019] [Indexed: 01/21/2023]
|
11
|
Zirkel A, Nikolic M, Sofiadis K, Mallm JP, Brackley CA, Gothe H, Drechsel O, Becker C, Altmüller J, Josipovic N, Georgomanolis T, Brant L, Franzen J, Koker M, Gusmao EG, Costa IG, Ullrich RT, Wagner W, Roukos V, Nürnberg P, Marenduzzo D, Rippe K, Papantonis A. HMGB2 Loss upon Senescence Entry Disrupts Genomic Organization and Induces CTCF Clustering across Cell Types. Mol Cell 2018; 70:730-744.e6. [PMID: 29706538 DOI: 10.1016/j.molcel.2018.03.030] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 02/19/2018] [Accepted: 03/25/2018] [Indexed: 11/30/2022]
Abstract
Processes like cellular senescence are characterized by complex events giving rise to heterogeneous cell populations. However, the early molecular events driving this cascade remain elusive. We hypothesized that senescence entry is triggered by an early disruption of the cells' three-dimensional (3D) genome organization. To test this, we combined Hi-C, single-cell and population transcriptomics, imaging, and in silico modeling of three distinct cells types entering senescence. Genes involved in DNA conformation maintenance are suppressed upon senescence entry across all cell types. We show that nuclear depletion of the abundant HMGB2 protein occurs early on the path to senescence and coincides with the dramatic spatial clustering of CTCF. Knocking down HMGB2 suffices for senescence-induced CTCF clustering and for loop reshuffling, while ectopically expressing HMGB2 rescues these effects. Our data suggest that HMGB2-mediated genomic reorganization constitutes a primer for the ensuing senescent program.
Collapse
Affiliation(s)
- Anne Zirkel
- Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
| | - Milos Nikolic
- Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
| | - Konstantinos Sofiadis
- Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
| | - Jan-Philipp Mallm
- German Cancer Research Center and Bioquant, 69120 Heidelberg, Germany
| | - Chris A Brackley
- School of Physics and Astronomy, University of Edinburgh, EH9 3FD Edinburgh, UK
| | - Henrike Gothe
- Institute of Molecular Biology, 55128 Mainz, Germany
| | | | - Christian Becker
- Cologne Center for Genomics, University of Cologne, 50931 Cologne, Germany
| | - Janine Altmüller
- Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany; Cologne Center for Genomics, University of Cologne, 50931 Cologne, Germany
| | - Natasa Josipovic
- Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
| | | | - Lilija Brant
- Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
| | - Julia Franzen
- Helmholtz Institute for Biomedical Engineering, RWTH Aachen University Medical School, 52074 Aachen, Germany
| | - Mirjam Koker
- Clinic I of Internal Medicine and Center for Integrated Oncology, University Hospital Cologne, 50931 Cologne, Germany
| | - Eduardo G Gusmao
- Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany; Interdisciplinary Centre for Clinical Research, RWTH Aachen University Medical School, 52062 Aachen, Germany
| | - Ivan G Costa
- Interdisciplinary Centre for Clinical Research, RWTH Aachen University Medical School, 52062 Aachen, Germany
| | - Roland T Ullrich
- Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany; Clinic I of Internal Medicine and Center for Integrated Oncology, University Hospital Cologne, 50931 Cologne, Germany
| | - Wolfgang Wagner
- Helmholtz Institute for Biomedical Engineering, RWTH Aachen University Medical School, 52074 Aachen, Germany
| | | | - Peter Nürnberg
- Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany; Cologne Center for Genomics, University of Cologne, 50931 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Davide Marenduzzo
- School of Physics and Astronomy, University of Edinburgh, EH9 3FD Edinburgh, UK
| | - Karsten Rippe
- German Cancer Research Center and Bioquant, 69120 Heidelberg, Germany
| | - Argyris Papantonis
- Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany.
| |
Collapse
|
12
|
Kolovos P, Georgomanolis T, Koeferle A, Larkin JD, Brant L, Nikolicć M, Gusmao EG, Zirkel A, Knoch TA, van Ijcken WF, Cook PR, Costa IG, Grosveld FG, Papantonis A. Binding of nuclear factor κB to noncanonical consensus sites reveals its multimodal role during the early inflammatory response. Genome Res 2016; 26:1478-1489. [PMID: 27633323 PMCID: PMC5088591 DOI: 10.1101/gr.210005.116] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 09/14/2016] [Indexed: 01/25/2023]
Abstract
Mammalian cells have developed intricate mechanisms to interpret, integrate, and respond to extracellular stimuli. For example, tumor necrosis factor (TNF) rapidly activates proinflammatory genes, but our understanding of how this occurs against the ongoing transcriptional program of the cell is far from complete. Here, we monitor the early phase of this cascade at high spatiotemporal resolution in TNF-stimulated human endothelial cells. NF-κB, the transcription factor complex driving the response, interferes with the regulatory machinery by binding active enhancers already in interaction with gene promoters. Notably, >50% of these enhancers do not encode canonical NF-κB binding motifs. Using a combination of genomics tools, we find that binding site selection plays a key role in NF-κΒ–mediated transcriptional activation and repression. We demonstrate the latter by describing the synergy between NF-κΒ and the corepressor JDP2. Finally, detailed analysis of a 2.8-Mbp locus using sub-kbp-resolution targeted chromatin conformation capture and genome editing uncovers how NF-κΒ that has just entered the nucleus exploits pre-existing chromatin looping to exert its multimodal role. This work highlights the involvement of topology in cis-regulatory element function during acute transcriptional responses, where primary DNA sequence and its higher-order structure constitute a regulatory context leading to either gene activation or repression.
Collapse
Affiliation(s)
- Petros Kolovos
- Department of Cell Biology, Erasmus Medical Centre, 3015 CN Rotterdam, The Netherlands
| | | | - Anna Koeferle
- Sir William Dunn School of Pathology, University of Oxford, OX1 3RE Oxford, United Kingdom
| | - Joshua D Larkin
- Sir William Dunn School of Pathology, University of Oxford, OX1 3RE Oxford, United Kingdom
| | - Lilija Brant
- Center for Molecular Medicine, University of Cologne, 50931 Cologne, Germany
| | - Miloš Nikolicć
- Center for Molecular Medicine, University of Cologne, 50931 Cologne, Germany
| | - Eduardo G Gusmao
- IZKF Computational Biology Research Group, RWTH Aachen University Medical School, 52062 Aachen, Germany
| | - Anne Zirkel
- Center for Molecular Medicine, University of Cologne, 50931 Cologne, Germany
| | - Tobias A Knoch
- Department of Cell Biology, Erasmus Medical Centre, 3015 CN Rotterdam, The Netherlands
| | | | - Peter R Cook
- Sir William Dunn School of Pathology, University of Oxford, OX1 3RE Oxford, United Kingdom
| | - Ivan G Costa
- IZKF Computational Biology Research Group, RWTH Aachen University Medical School, 52062 Aachen, Germany
| | - Frank G Grosveld
- Department of Cell Biology, Erasmus Medical Centre, 3015 CN Rotterdam, The Netherlands
| | - Argyris Papantonis
- Center for Molecular Medicine, University of Cologne, 50931 Cologne, Germany
| |
Collapse
|