1
|
Zhao C, Zhou T, Li M, Liu J, Zhao X, Pang Y, Liu X, Zhang J, Ma L, Li W, Yao X, Feng S. Argatroban promotes recovery of spinal cord injury by inhibiting the PAR1/JAK2/STAT3 signaling pathway. Neural Regen Res 2024; 19:434-439. [PMID: 37488908 PMCID: PMC10503625 DOI: 10.4103/1673-5374.375345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 12/28/2022] [Accepted: 03/29/2023] [Indexed: 07/26/2023] Open
Abstract
Argatroban is a synthetic thrombin inhibitor approved by U.S. Food and Drug Administration for the treatment of thrombosis. However, whether it plays a role in the repair of spinal cord injury is unknown. In this study, we established a rat model of T10 moderate spinal cord injury using an NYU Impactor Moder III and performed intraperitoneal injection of argatroban for 3 consecutive days. Our results showed that argatroban effectively promoted neurological function recovery after spinal cord injury and decreased thrombin expression and activity in the local injured spinal cord. RNA sequencing transcriptomic analysis revealed that the differentially expressed genes in the argatroban-treated group were enriched in the JAK2/STAT3 pathway, which is involved in astrogliosis and glial scar formation. Western blotting and immunofluorescence results showed that argatroban downregulated the expression of the thrombin receptor PAR1 in the injured spinal cord and the JAK2/STAT3 signal pathway. Argatroban also inhibited the activation and proliferation of astrocytes and reduced glial scar formation in the spinal cord. Taken together, these findings suggest that argatroban may inhibit astrogliosis by inhibiting the thrombin-mediated PAR1/JAK2/STAT3 signal pathway, thereby promoting the recovery of neurological function after spinal cord injury.
Collapse
Affiliation(s)
- Chenxi Zhao
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Tiangang Zhou
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Ming Li
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Jie Liu
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaoqing Zhao
- Orthopedic Research Center of Shandong University, Cheeloo College of Medicine, Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Yilin Pang
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Xinjie Liu
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Jiawei Zhang
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Lei Ma
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Wenxiang Li
- Orthopedic Research Center of Shandong University, Cheeloo College of Medicine, Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Xue Yao
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
- Orthopedic Research Center of Shandong University, Cheeloo College of Medicine, Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Shiqing Feng
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
- Orthopedic Research Center of Shandong University, Cheeloo College of Medicine, Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| |
Collapse
|
2
|
Pan CC, Maeso-Díaz R, Lewis TR, Xiang K, Tan L, Liang Y, Wang L, Yang F, Yin T, Wang C, Du K, Huang D, Oh SH, Wang E, Lim BJW, Chong M, Alexander PB, Yao X, Arshavsky VY, Li QJ, Diehl AM, Wang XF. Antagonizing the irreversible thrombomodulin-initiated proteolytic signaling alleviates age-related liver fibrosis via senescent cell killing. Cell Res 2023; 33:516-532. [PMID: 37169907 PMCID: PMC10313785 DOI: 10.1038/s41422-023-00820-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 04/10/2023] [Indexed: 05/13/2023] Open
Abstract
Cellular senescence is a stress-induced, stable cell cycle arrest phenotype which generates a pro-inflammatory microenvironment, leading to chronic inflammation and age-associated diseases. Determining the fundamental molecular pathways driving senescence instead of apoptosis could enable the identification of senolytic agents to restore tissue homeostasis. Here, we identify thrombomodulin (THBD) signaling as a key molecular determinant of the senescent cell fate. Although normally restricted to endothelial cells, THBD is rapidly upregulated and maintained throughout all phases of the senescence program in aged mammalian tissues and in senescent cell models. Mechanistically, THBD activates a proteolytic feed-forward signaling pathway by stabilizing a multi-protein complex in early endosomes, thus forming a molecular basis for the irreversibility of the senescence program and ensuring senescent cell viability. Therapeutically, THBD signaling depletion or inhibition using vorapaxar, an FDA-approved drug, effectively ablates senescent cells and restores tissue homeostasis in liver fibrosis models. Collectively, these results uncover proteolytic THBD signaling as a conserved pro-survival pathway essential for senescent cell viability, thus providing a pharmacologically exploitable senolytic target for senescence-associated diseases.
Collapse
Affiliation(s)
- Christopher C Pan
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Raquel Maeso-Díaz
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, NC, USA
| | - Tylor R Lewis
- Division of Ophthalmology, Department of Medicine, Duke University, Durham, NC, USA
| | - Kun Xiang
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Lianmei Tan
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Yaosi Liang
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Liuyang Wang
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Fengrui Yang
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Tao Yin
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Calvin Wang
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Kuo Du
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, NC, USA
| | - De Huang
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Seh Hoon Oh
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, NC, USA
| | - Ergang Wang
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | | | - Mengyang Chong
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Peter B Alexander
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Xuebiao Yao
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Vadim Y Arshavsky
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
- Division of Ophthalmology, Department of Medicine, Duke University, Durham, NC, USA
| | - Qi-Jing Li
- Department of Immunology, Duke University, Durham, NC, USA
| | - Anna Mae Diehl
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, NC, USA
| | - Xiao-Fan Wang
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA.
| |
Collapse
|
3
|
Patterson EK, Cepinskas G, Fraser DD. Endothelial Glycocalyx Degradation in Critical Illness and Injury. Front Med (Lausanne) 2022; 9:898592. [PMID: 35872762 PMCID: PMC9304628 DOI: 10.3389/fmed.2022.898592] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/14/2022] [Indexed: 12/23/2022] Open
Abstract
The endothelial glycocalyx is a gel-like layer on the luminal side of blood vessels that is composed of glycosaminoglycans and the proteins that tether them to the plasma membrane. Interest in its properties and function has grown, particularly in the last decade, as its importance to endothelial barrier function has come to light. Endothelial glycocalyx studies have revealed that many critical illnesses result in its degradation or removal, contributing to endothelial dysfunction and barrier break-down. Loss of the endothelial glycocalyx facilitates the direct access of immune cells and deleterious agents (e.g., proteases and reactive oxygen species) to the endothelium, that can then further endothelial cell injury and dysfunction leading to complications such as edema, and thrombosis. Here, we briefly describe the endothelial glycocalyx and the primary components thought to be directly responsible for its degradation. We review recent literature relevant to glycocalyx damage in several critical illnesses (sepsis, COVID-19, trauma and diabetes) that share inflammation as a common denominator with actions by several common agents (hyaluronidases, proteases, reactive oxygen species, etc.). Finally, we briefly cover strategies and therapies that show promise in protecting or helping to rebuild the endothelial glycocalyx such as steroids, protease inhibitors, anticoagulants and resuscitation strategies.
Collapse
Affiliation(s)
- Eric K. Patterson
- Centre for Critical Illness Research, Lawson Health Research Institute, London, ON, Canada
| | - Gediminas Cepinskas
- Centre for Critical Illness Research, Lawson Health Research Institute, London, ON, Canada
- Department of Medical Biophysics, Western University, London, ON, Canada
| | - Douglas D. Fraser
- Centre for Critical Illness Research, Lawson Health Research Institute, London, ON, Canada
- Department of Pediatrics, Western University, London, ON, Canada
- Department of Physiology and Pharmacology, Western University, London, ON, Canada
- Department of Clinical Neurological Sciences, Western University, London, ON, Canada
- Children’s Health Research Institute, Lawson Health Research Institute, London, ON, Canada
| |
Collapse
|
4
|
Montinari MR, Minelli S. From ancient leech to direct thrombin inhibitors and beyond: New from old. Biomed Pharmacother 2022; 149:112878. [PMID: 35364378 DOI: 10.1016/j.biopha.2022.112878] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/13/2022] [Accepted: 03/23/2022] [Indexed: 11/30/2022] Open
Abstract
Medicinal leeches have been used in health care since before written history, with widely varying popularity over the centuries. Nowadays, medicinal leech therapy is mainly used in plastic and reconstructive microsurgery, with new interesting potential therapeutic applications in many other diseases. The leech's best-known salivary product, hirudin - one of the most powerful natural anticoagulants - was the only remedy to prevent blood clotting until the discovery of heparin. Starting from hirudin, pharmacological research succeeded in developing new anticoagulants, which represent a cornerstone of prevention and treatment of thromboembolic disease. While we are perhaps on the threshold of a new era of anticoagulation, with the development of FXI and XII inhibitors and direct reversible covalent thrombin inhibitors, which promise to achieve effective anticoagulation without bleeding risk. This review retraces the intriguing journey of these drugs in cardiovascular disease, highlighting the fil rouge that links the ancient leech to the current and oncoming antithrombotic therapy. We think that knowledge of the past is key to understanding and appreciating the present and to seize future opportunities.
Collapse
Affiliation(s)
- Maria Rosa Montinari
- Chair of History of Medicine, Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy.
| | | |
Collapse
|
5
|
Overview of the Therapeutic Potential of Aptamers Targeting Coagulation Factors. Int J Mol Sci 2021; 22:ijms22083897. [PMID: 33918821 PMCID: PMC8069679 DOI: 10.3390/ijms22083897] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 12/11/2022] Open
Abstract
Aptamers are single-stranded DNA or RNA sequences that bind target molecules with high specificity and affinity. Aptamers exhibit several notable advantages over protein-based therapeutics. Aptamers are non-immunogenic, easier to synthesize and modify, and can bind targets with greater affinity. Due to these benefits, aptamers are considered a promising therapeutic candidate to treat various conditions, including hematological disorders and cancer. An active area of research involves developing aptamers to target blood coagulation factors. These aptamers have the potential to treat cardiovascular diseases, blood disorders, and cancers. Although no aptamers targeting blood coagulation factors have been approved for clinical use, several aptamers have been evaluated in clinical trials and many more have demonstrated encouraging preclinical results. This review summarized our knowledge of the aptamers targeting proteins involved in coagulation, anticoagulation, fibrinolysis, their extensive applications as therapeutics and diagnostics tools, and the challenges they face for advancing to clinical use.
Collapse
|
6
|
Schmitz T, Paul George AA, Nubbemeyer B, Bäuml CA, Steinmetzer T, Ohlenschläger O, Biswas A, Imhof D. NMR-Based Structural Characterization of a Two-Disulfide-Bonded Analogue of the FXIIIa Inhibitor Tridegin: New Insights into Structure-Activity Relationships. Int J Mol Sci 2021; 22:ijms22020880. [PMID: 33477282 PMCID: PMC7830451 DOI: 10.3390/ijms22020880] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/10/2021] [Accepted: 01/12/2021] [Indexed: 12/14/2022] Open
Abstract
The saliva of blood-sucking leeches contains a plethora of anticoagulant substances. One of these compounds derived from Haementeria ghilianii, the 66mer three-disulfide-bonded peptide tridegin, specifically inhibits the blood coagulation factor FXIIIa. Tridegin represents a potential tool for antithrombotic and thrombolytic therapy. We recently synthesized two-disulfide-bonded tridegin variants, which retained their inhibitory potential. For further lead optimization, however, structure information is required. We thus analyzed the structure of a two-disulfide-bonded tridegin isomer by solution 2D NMR spectroscopy in a combinatory approach with subsequent MD simulations. The isomer was studied using two fragments, i.e., the disulfide-bonded N-terminal (Lys1–Cys37) and the flexible C-terminal part (Arg38–Glu66), which allowed for a simplified, label-free NMR-structure elucidation of the 66mer peptide. The structural information was subsequently used in molecular modeling and docking studies to provide insights into the structure–activity relationships. The present study will prospectively support the development of anticoagulant-therapy-relevant compounds targeting FXIIIa.
Collapse
Affiliation(s)
- Thomas Schmitz
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany; (T.S.); (A.A.P.G.); (B.N.); (C.A.B.)
| | - Ajay Abisheck Paul George
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany; (T.S.); (A.A.P.G.); (B.N.); (C.A.B.)
- BioSolveIT GmbH, An der Ziegelei 79, D-53757 Sankt Augustin, Germany
| | - Britta Nubbemeyer
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany; (T.S.); (A.A.P.G.); (B.N.); (C.A.B.)
| | - Charlotte A. Bäuml
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany; (T.S.); (A.A.P.G.); (B.N.); (C.A.B.)
| | - Torsten Steinmetzer
- Institute of Pharmaceutical Chemistry, Philipps University of Marburg, Marbacher Weg 6, 35032 Marburg, Germany;
| | - Oliver Ohlenschläger
- Leibniz Institute on Aging—Fritz-Lipmann-Institute, Beutenbergstr. 11, D-07745 Jena, Germany;
| | - Arijit Biswas
- Institute of Experimental Hematology and Transfusion Medicine, University Hospital Bonn, Sigmund-Freud-Str. 25, D-53127 Bonn, Germany;
| | - Diana Imhof
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany; (T.S.); (A.A.P.G.); (B.N.); (C.A.B.)
- Correspondence: ; Tel.: +49-(0)228-735-254
| |
Collapse
|
7
|
Mothukuri GK, Kale SS, Stenbratt CL, Zorzi A, Vesin J, Bortoli Chapalay J, Deyle K, Turcatti G, Cendron L, Angelini A, Heinis C. Macrocycle synthesis strategy based on step-wise "adding and reacting" three components enables screening of large combinatorial libraries. Chem Sci 2020; 11:7858-7863. [PMID: 34094158 PMCID: PMC8163216 DOI: 10.1039/d0sc01944e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/25/2020] [Indexed: 02/04/2023] Open
Abstract
Macrocycles provide an attractive modality for drug development, but generating ligands for new targets is hampered by the limited availability of large macrocycle libraries. We have established a solution-phase macrocycle synthesis strategy in which three building blocks are coupled sequentially in efficient alkylation reactions that eliminate the need for product purification. We demonstrate the power of the approach by combinatorially reacting 15 bromoacetamide-activated tripeptides, 42 amines, and 6 bis-electrophile cyclization linkers to generate a 3780-compound library with minimal effort. Screening against thrombin yielded a potent and selective inhibitor (K i = 4.2 ± 0.8 nM) that efficiently blocked blood coagulation in human plasma. Structure-activity relationship and X-ray crystallography analysis revealed that two of the three building blocks acted synergistically and underscored the importance of combinatorial screening in macrocycle development. The three-component library synthesis approach is general and offers a promising avenue to generate macrocycle ligands to other targets.
Collapse
Affiliation(s)
- Ganesh K Mothukuri
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL) CH-1015 Lausanne Switzerland
| | - Sangram S Kale
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL) CH-1015 Lausanne Switzerland
| | - Carl L Stenbratt
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL) CH-1015 Lausanne Switzerland
| | - Alessandro Zorzi
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL) CH-1015 Lausanne Switzerland
| | - Jonathan Vesin
- Biomolecular Screening Facility, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL) CH-1015 Lausanne Switzerland
| | - Julien Bortoli Chapalay
- Biomolecular Screening Facility, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL) CH-1015 Lausanne Switzerland
| | - Kaycie Deyle
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL) CH-1015 Lausanne Switzerland
| | - Gerardo Turcatti
- Biomolecular Screening Facility, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL) CH-1015 Lausanne Switzerland
| | - Laura Cendron
- Department of Biology, University of Padova 35131 Padova Italy
| | - Alessandro Angelini
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice Via Torino 155, Venezia Mestre Venice 30172 Italy
- European Centre for Living Technology (ECLT), Ca' Bottacin Dorsoduro 3911, Calle Crosera Venice 30124 Italy
| | - Christian Heinis
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL) CH-1015 Lausanne Switzerland
| |
Collapse
|
8
|
Inhibitors of blood coagulation factor XIII. Anal Biochem 2020; 605:113708. [PMID: 32335064 DOI: 10.1016/j.ab.2020.113708] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/11/2020] [Accepted: 03/30/2020] [Indexed: 02/07/2023]
Abstract
The blood coagulation factor XIII (FXIII) plays an essential role in the stabilization of fibrin clots. This factor, belonging to the class of transglutaminases, catalyzes the final step of secondary hemostasis, i.e. the crosslinking of fibrin polymers. These crosslinks protect the clots against premature fibrinolysis. Consequently, FXIII is an interesting target for the therapeutic treatment of cardiovascular diseases. In this context, inhibitors can influence FXIII in the activation process of the enzyme itself or in its catalytic activity. To date, there is no FXIII inhibitor in medical application, but several studies have been conducted in the past. These studies provided a better understanding of FXIII and identified new lead structures for FXIII inhibitors. Next to small molecule inhibitors, the most promising candidates for the development of clinically applicable FXIII inhibitors are the peptide inhibitors tridegin and transglutaminase-inhibiting Michael acceptors (TIMAs) due to their selectivity towards activated FXIII (FXIIIa). In this review, select FXIII inhibitors and their pharmacological potential are discussed.
Collapse
|
9
|
Kale SS, Bergeron-Brlek M, Wu Y, Kumar MG, Pham MV, Bortoli J, Vesin J, Kong XD, Machado JF, Deyle K, Gonschorek P, Turcatti G, Cendron L, Angelini A, Heinis C. Thiol-to-amine cyclization reaction enables screening of large libraries of macrocyclic compounds and the generation of sub-kilodalton ligands. SCIENCE ADVANCES 2019; 5:eaaw2851. [PMID: 31457083 PMCID: PMC6703864 DOI: 10.1126/sciadv.aaw2851] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 07/12/2019] [Indexed: 06/10/2023]
Abstract
Macrocyclic compounds are an attractive modality for drug development, but the limited availability of large, structurally diverse macrocyclic libraries hampers the discovery of leads. Here, we describe the discovery of efficient macrocyclization reactions based on thiol-to-amine ligations using bis-electrophiles, their application to synthesize and screen large libraries of macrocyclic compounds, and the identification of potent small macrocyclic ligands. The thiol-to-amine cyclization reactions showed unexpectedly high yields for a wide substrate range, which obviated product purification and enabled the generation and screening of an 8988 macrocycle library with a comparatively small effort. X-ray structure analysis of an identified thrombin inhibitor (K i = 42 ± 5 nM) revealed a snug fit with the target, validating the strategy of screening large libraries with a high skeletal diversity. The approach provides a route for screening large sub-kilodalton macrocyclic libraries and may be applied to many challenging drug targets.
Collapse
Affiliation(s)
- S. S. Kale
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - M. Bergeron-Brlek
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Y. Wu
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - M. G. Kumar
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - M. V. Pham
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - J. Bortoli
- Biomolecular Screening Facility, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - J. Vesin
- Biomolecular Screening Facility, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - X.-D. Kong
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - J. Franco Machado
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - K. Deyle
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - P. Gonschorek
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - G. Turcatti
- Biomolecular Screening Facility, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - L. Cendron
- Department of Biology, University of Padova, 35131 Padova, Italy
| | - A. Angelini
- Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, Via Torino 155, Venezia Mestre, Venice 30172, Italy
- European Centre for Living Technologies (ECLT), Ca’ Bottacin, Dorsoduro 3911, Calle Crosera, Venice 30124, Italy
| | - C. Heinis
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
10
|
Transition metal complexes based aptamers as optical diagnostic tools for disease proteins and biomolecules. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2018.09.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
11
|
Anticoagulation in Acute Coronary Syndrome-State of the Art. Prog Cardiovasc Dis 2018; 60:508-513. [DOI: 10.1016/j.pcad.2018.01.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 01/10/2018] [Indexed: 12/14/2022]
|
12
|
Spiridonova VA, Novikova TM, Nikulina DM, Shishkina TA, Golubkina EV, Dyukareva OS, Trizno NN. Complex formation with protamine prolongs the thrombin-inhibiting effect of DNA aptamer in vivo. Biochimie 2017; 145:158-162. [PMID: 28935443 DOI: 10.1016/j.biochi.2017.09.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 09/13/2017] [Indexed: 01/19/2023]
Abstract
Antithrombin DNA aptamersRE31 are single-chain oligonucleotides that fold into three-dimensional forms allowing them to bind the enzyme with high affinity and inhibit its activity in vivo. They are rapidly degraded by a nonspecific nuclease, and, to prolong the lifetime of the aptamer DNA in the bloodstream, it is necessary to coat it with a polymer envelope. A new approach to solving this problem based on preparation of DNA-polyelectrolyte complexes with a minimal particle size that can circulate with blood flow. In our experiments, the negatively charged aptamer DNA RE31 was coated step-by-step with positively charged protamine. They had protamine/aptamer ratios of 0.2/1 and 0.4/1 by charge, with particle size being determined by dynamic light scattering. The aptamer DNA-protamine complexes were administered to rats, followed by ex vivo analysis of blood samples. The results showed that prothrombin time (PT) increased by a factor of 5.6-6.7 within 2 h after injection and remained at approximately the same level for 6 h, while injections of pure protamine did not lead to any noticeable change in clotting time. Thus, complexation with protamine proved to prolong the inhibitory activity of the RE31 DNA aptamer.
Collapse
Affiliation(s)
- V A Spiridonova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.
| | - T M Novikova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - D M Nikulina
- Astrakhan State Medical University Ministry of Public Health of the Russian Federation, Astrakhan, Russia
| | - T A Shishkina
- Astrakhan State Medical University Ministry of Public Health of the Russian Federation, Astrakhan, Russia
| | - E V Golubkina
- Astrakhan State Medical University Ministry of Public Health of the Russian Federation, Astrakhan, Russia
| | - O S Dyukareva
- Astrakhan State Medical University Ministry of Public Health of the Russian Federation, Astrakhan, Russia
| | - N N Trizno
- Astrakhan State Medical University Ministry of Public Health of the Russian Federation, Astrakhan, Russia
| |
Collapse
|
13
|
Franchi F, Rollini F, Angiolillo DJ. Antithrombotic therapy for patients with STEMI undergoing primary PCI. Nat Rev Cardiol 2017; 14:361-379. [DOI: 10.1038/nrcardio.2017.18] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
14
|
Zhong C, Zhang L, Chen L, Deng L, Li R. Coagulation factor XI vaccination: an alternative strategy to prevent thrombosis. J Thromb Haemost 2017; 15:122-130. [PMID: 27813324 DOI: 10.1111/jth.13561] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 10/24/2016] [Indexed: 12/22/2022]
Abstract
Essentials Coagulation Factor (F) XI is a safe target for the development of antithrombotics. We designed an antigen comprising the human FXI catalytic domain and diphtheria toxin T domain. Antigen immunization reduced plasma FXI activity by 54% and prevented thrombosis in mice. FXI vaccination can serve as an effective strategy for thrombosis prevention. SUMMARY Background Coagulation factor XI serves as a signal amplifier in the intrinsic coagulation pathway. Blockade of FXI by mAbs or small-molecule inhibitors inhibits thrombosis without causing severe bleeding, which is an inherent risk of currently available antithrombotic agents. Objectives To design an FXI vaccine and assess its efficacy in inhibiting FXI activity and preventing thrombosis. Methods An FXI antigen was generated by fusing the catalytic domain of human FXI to the C-terminus of the transmembrane domain of diphtheria toxin. The anti-FXI antibody response, plasma FXI activity and antithrombotic efficacy in mice immunized with the FXI antigen were examined. Results The antigen elicited a significant antibody response against mouse FXI, and reduced the plasma FXI activity by 54.0% in mice. FXI vaccination markedly reduced the levels of coagulation and inflammation in a mouse model of inferior vena cava stenosis. Significant protective effects were also observed in mouse models of venous thrombosis and pulmonary embolism. Conclusions Our data demonstrate that FXI vaccination can serve as an effective strategy for thrombosis prevention.
Collapse
Affiliation(s)
- C Zhong
- State Key Laboratory of Microbial Metabolism and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - L Zhang
- State Key Laboratory of Microbial Metabolism and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - L Chen
- State Key Laboratory of Microbial Metabolism and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - L Deng
- Shanghai HyCharm Inc., Shanghai, China
| | - R Li
- State Key Laboratory of Microbial Metabolism and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai, China
| |
Collapse
|
15
|
Selection of High-Affinity Peptidic Serine Protease Inhibitors with Increased Binding Entropy from a Back-Flip Library of Peptide-Protease Fusions. J Mol Biol 2015; 427:3110-22. [PMID: 26281711 DOI: 10.1016/j.jmb.2015.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 07/19/2015] [Accepted: 08/07/2015] [Indexed: 11/21/2022]
Abstract
We have developed a new concept for designing peptidic protein modulators, by recombinantly fusing the peptidic modulator, with randomized residues, directly to the target protein via a linker and screening for internal modulation of the activity of the protein. We tested the feasibility of the concept by fusing a 10-residue-long, disulfide-bond-constrained inhibitory peptide, randomized in selected positions, to the catalytic domain of the serine protease murine urokinase-type plasminogen activator. High-affinity inhibitory peptide variants were identified as those that conferred to the fusion protease the lowest activity for substrate hydrolysis. The usefulness of the strategy was demonstrated by the selection of peptidic inhibitors of murine urokinase-type plasminogen activator with a low nanomolar affinity. The high affinity could not have been predicted by rational considerations, as the high affinity was associated with a loss of polar interactions and an increased binding entropy.
Collapse
|
16
|
Schneider DJ. Bivalirudin versus heparin use for patients undergoing PPCI. Lancet 2015; 385:2044. [PMID: 26009224 DOI: 10.1016/s0140-6736(15)60986-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
17
|
Coller BS. The platelet: life on the razor's edge between hemorrhage and thrombosis. Transfusion 2014; 54:2137-46. [PMID: 25092268 DOI: 10.1111/trf.12806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 06/24/2014] [Indexed: 12/26/2022]
Affiliation(s)
- Barry S Coller
- Laboratory of Blood and Vascular Biology, The Rockefeller University, New York, New York
| |
Collapse
|
18
|
Hamon M, Nienaber CA, Galli S, Huber K, Lipiecki J, Hill JM, Amabile N, Bernstein D, Deliargyris E, Lafont A, Steg PG. Bivalirudin in percutaneous coronary intervention: The EUROpean BiValIrudin UtiliSatION in Practice (EUROVISION) Registry. Int J Cardiol 2014; 173:290-4. [DOI: 10.1016/j.ijcard.2014.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 01/26/2014] [Accepted: 03/03/2014] [Indexed: 10/25/2022]
|
19
|
Abstract
Anticoagulant drugs belong to the group of antithrombotic agents and are successfully used in the prophylaxis and treatment of thromboembolic disorders. The use of anticoagulants in the prevention of deep venous thrombosis has significantly lowered the risk of venous thrombosis and fatal pulmonary embolisms even in high-risk situations such as orthopedic surgery. Anticoagulants play a central role in the treatment of acute venous thrombosis and in the prevention of recurrent events. Long-term anticoagulation therapy with orally active anticoagulants significantly reduces the risk of thromboembolic complications in patients showing cardiac arrhythmias. Whereas a few years ago heparins and vitamin K antagonists were the dominant anticoagulants, today a wide range of anticoagulants with improved pharmacological profiles are available. It remains an open question whether these new anticoagulants will improve the efficacy, safety, and acceptance of anticoagulant treatment approaches.
Collapse
Affiliation(s)
- B Pötzsch
- Institut für Experimentelle Hämatologie und Transfusionsmedizin, Universitätsklinikum Bonn.
| |
Collapse
|
20
|
Blizzard TA, Singh S, Patil B, Chidurala N, Komanduri V, Debnath S, Belyakov S, Crespo A, Struck A, Kurtz M, Wiltsie J, Shen X, Sonatore L, Arocho M, Lewis D, Ogletree M, Biftu T. Heterocyclic core analogs of a direct thrombin inhibitor. Bioorg Med Chem Lett 2014; 24:1111-5. [PMID: 24461292 DOI: 10.1016/j.bmcl.2014.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 01/01/2014] [Accepted: 01/03/2014] [Indexed: 11/28/2022]
Abstract
Thrombin is a serine protease that plays a key role in blood clotting. Pyrrolidine 1 is a potent thrombin inhibitor discovered at Merck several years ago. Seven analogs (2-8) of 1 in which the pyrrolidine core was replaced with various heterocycles were prepared and evaluated for activity against thrombin, clotting factors VIIa, IXa, Xa, and XIIa, and trypsin. The thiomorpholine analog 6 was the most active, essentially matching the thrombin inhibitory activity of 1 with slightly improved selectivity over trypsin.
Collapse
Affiliation(s)
| | - Sanjay Singh
- Albany Molecular Research, Singapore Research Center, Singapore
| | | | | | | | | | - Sergei Belyakov
- Albany Molecular Research, Singapore Research Center, Singapore
| | | | | | - Marc Kurtz
- Merck Research Laboratories, Rahway, NJ, USA
| | | | - Xun Shen
- Merck Research Laboratories, Rahway, NJ, USA
| | | | | | - Dale Lewis
- Merck Research Laboratories, Rahway, NJ, USA
| | | | | |
Collapse
|
21
|
Winkler AM, Tormey CA. Pathology consultation on monitoring direct thrombin inhibitors and overcoming their effects in bleeding patients. Am J Clin Pathol 2013; 140:610-22. [PMID: 24124139 DOI: 10.1309/ajcp9vjs6kuknchw] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES Direct thrombin inhibitors (DTIs), a relatively new class of anticoagulants, present several challenges regarding monitoring of their anticoagulant effects and overcoming bleeding associated with their use. The aim of this article is to (1) briefly present the pharmacologic properties of currently available DTIs, (2) discuss approaches to laboratory assessment of these drugs, and (3) review management of bleeding associated with their use. METHODS Published literature on DTIs, including clinical trials, case reports, and experimental animal models, was reviewed. The primary authors also reviewed their first-hand experiences with DTI anticoagulation. RESULTS Based on the literature review and the practical experiences of the authors, suggestions for the monitoring of DTIs and algorithmic approaches for the management of DTI-associated bleeding were developed. CONCLUSIONS Routine coagulation assays (eg, the prothrombin time) show a relatively poor correlation with the degree of anticoagulation and DTI drug concentrations. Newer assays, such as the ecarin clotting time and dilute thrombin time, may be more useful in assessing DTI anticoagulation, but these assays are not yet widely available. Low-grade DTI-associated bleeds are best managed with cessation of the drug and supportive care, while higher-grade and/or life-threatening bleeds may best be reversed by active drug removal (eg, via the administration of activated charcoal or hemodialysis). At present there is little evidence to suggest that transfusion products such as factor concentrates or thawed plasma are of any particular benefit in DTI reversal; however, these products may play a supportive role in the management of bleeding.
Collapse
Affiliation(s)
- Anne M. Winkler
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA
| | - Christopher A. Tormey
- Pathology and Laboratory Medicine Service, VA Connecticut Healthcare System, West Haven, CT
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
22
|
Bivalirudin for treatment of aortic valve thrombosis after left ventricular assist device implantation. ASAIO J 2013; 59:448-9. [PMID: 23820287 DOI: 10.1097/mat.0b013e3182937a65] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Ventricular assist devices are increasingly being used for mechanical support in patients with advanced heart failure. However, thromboembolism remains a leading cause of mortality in this population. We describe the successful treatment of native aortic valve thrombosis with bivalirudin in a patient with factor V Leiden mutation, who had undergone left ventricular assist device implantation, preventing the need for further surgical intervention.
Collapse
|
23
|
Ferraboschi P, Colombo D, Legnani L, Toma L, Grisenti P, Vistoli G, Meneghetti F. Crystallographic, spectroscopic, and theoretical investigation of the efficiently separated 21R and 21S-diastereoisomers of argatroban. Chirality 2013; 25:871-82. [PMID: 23966356 DOI: 10.1002/chir.22228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 07/09/2013] [Indexed: 11/06/2022]
Abstract
Argatroban (I), a potent noncovalent reversible thrombin inhibitor, is used as an anticoagulant for the parenteral treatment of heparin-induced thrombocytopenia (HIT) patients. By virtue of its pharmacological properties and the well-balanced risks and benefits, argatroban is now emerging as a clinically relevant antithrombotic agent. The availability of this drug as a mixture of 21R and 21S-diastereoisomers, in a ratio of roughly 64:36, prompted us to design an efficient separation setup of the two epimers. We pursued our efforts on their detailed structural analysis with the aim of understanding their different activity and aqueous solubility. These investigations were accompanied by a modeling study of the two diastereoisomers, with particular attention on the easy interconverting half-chair of the tetrahydroquinoline system and its preferred conformation, which is determined by the configuration at C21. These results, together with the analysis of their physicochemical profiles, provide new useful information for the development of the individual diastereoisomers.
Collapse
Affiliation(s)
- Patrizia Ferraboschi
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milano, Italy
| | | | | | | | | | | | | |
Collapse
|
24
|
Current world literature. Curr Opin Cardiol 2012. [PMID: 23207493 DOI: 10.1097/hco.0b013e32835c1388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|