1
|
Liu K, Hui Y, Yang Y, Guo Y, Zhang L. Blockade of mGluR1 and mGluR5 in the lateral habenula produces the opposite effects in the regulation of depressive-like behaviors in the hemiparkinsonian rats. Exp Neurol 2025; 386:115154. [PMID: 39848560 DOI: 10.1016/j.expneurol.2025.115154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 12/24/2024] [Accepted: 01/17/2025] [Indexed: 01/25/2025]
Abstract
Depression is one of the most common non-motor symptoms in Parkinson's disease (PD) and the hyperactivity of the lateral habenula (LHb) may contribute to depression. The present study was performed to investigate the effects and mechanisms of group I metabotropic glutamate receptors (mGluRs) in the LHb on PD-related depressive-like behaviors. Unilateral 6-hydroxydopamine lesions of the substantia nigra pars compacta (SNc) were used to establish the PD rat model. The group I mGluRs agonist and antagonists for mGluR1 and mGluR5 were microinjected into the LHb to observe their effects on PD-related depressive-like behaviors, electrical activities of the LHb, release of monoamines in the medial prefrontal cortex (mPFC) in sham and the lesioned rats. Lesions of the SNc induced depressive-like behaviors and hyperactivity of LHb neurons. Activation of group I mGluRs by 3,5-DHPG induced or enhanced depressive-like behaviors, increased the firing rate of the LHb neurons, and decreased dopamine (DA) and serotonin (5-HT) levels in the mPFC in the two groups of rats. Blockade of mGluR1 by YM298198 also produced similar effects with 3,5-DHPG, however, blockade of mGluR5 by MTEP produced opposite effects. Western blotting data showed that lesions of the SNc in rats down-regulated the expression of mGluR1 and mGluR5 in the LHb. These results suggest that mGluR1 and mGluR5 in the LHb induce opposite effects on depressive-like behaviors, which may attribute to the changed firing rate of LHb neurons by the presynaptic and postsynaptic mechanisms, and the changes in the monoamine levels.
Collapse
Affiliation(s)
- Kuncheng Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China; Department of Neurology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yanping Hui
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710004, China
| | - Yaxin Yang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710004, China
| | - Yuan Guo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China.
| | - Li Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China.
| |
Collapse
|
2
|
Munguba H, Srivastava I, Gutzeit VA, Singh A, Vijay A, Kristt M, Arefin A, Thukral S, Broichhagen J, Stujenske JM, Liston C, Levitz J. Projection-targeted photopharmacology reveals distinct anxiolytic roles for presynaptic mGluR2 in prefrontal- and insula-amygdala synapses. Neuron 2025; 113:912-930.e6. [PMID: 39879977 PMCID: PMC11925682 DOI: 10.1016/j.neuron.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 10/11/2024] [Accepted: 01/03/2025] [Indexed: 01/31/2025]
Abstract
Dissecting how membrane receptors regulate neural circuits is critical for deciphering principles of neuromodulation and mechanisms of drug action. Here, we use a battery of optical approaches to determine how presynaptic metabotropic glutamate receptor 2 (mGluR2) in the basolateral amygdala (BLA) controls anxiety-related behavior in mice. Using projection-specific photopharmacological activation, we find that mGluR2-mediated presynaptic inhibition of ventromedial prefrontal cortex (vmPFC)-BLA, but not posterior insular cortex (pIC)-BLA, connections produces a long-lasting decrease in spatial avoidance. In contrast, presynaptic inhibition of pIC-BLA connections decreases social avoidance and novelty-induced hypophagia without impairing working memory, establishing this projection as a novel target for the treatment of anxiety disorders. Fiber photometry and viral mapping reveal distinct activity patterns and anatomical organization of vmPFC-BLA and pIC-BLA circuits. Together, this work reveals new aspects of BLA neuromodulation with therapeutic implications while establishing a powerful approach for optical mapping of drug action.
Collapse
Affiliation(s)
- Hermany Munguba
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA; Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ipsit Srivastava
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Vanessa A Gutzeit
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ashna Singh
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Akshara Vijay
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA; Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Melanie Kristt
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Anisul Arefin
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Sonal Thukral
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Johannes Broichhagen
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Joseph M Stujenske
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Conor Liston
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Joshua Levitz
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA; Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
3
|
Lorente JS, Sokolov AV, Ferguson G, Schiöth HB, Hauser AS, Gloriam DE. GPCR drug discovery: new agents, targets and indications. Nat Rev Drug Discov 2025:10.1038/s41573-025-01139-y. [PMID: 40033110 DOI: 10.1038/s41573-025-01139-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2025] [Indexed: 03/05/2025]
Abstract
G protein-coupled receptors (GPCRs) form one of the largest drug target families, reflecting their involvement in numerous pathophysiological processes. In this Review, we analyse drug discovery trends for the GPCR superfamily, covering compounds, targets and indications that have reached regulatory approval or that are being investigated in clinical trials. We find that there are 516 approved drugs targeting GPCRs, making up 36% of all approved drugs. These drugs act on 121 GPCR targets, one-third of all non-sensory GPCRs. Furthermore, 337 agents targeting 133 GPCRs, including 30 novel targets, are being investigated in clinical trials. Notably, 165 of these agents are approved drugs being tested for additional indications and novel agents are increasingly allosteric modulators and biologics. Remarkably, diabetes and obesity drugs targeting GPCRs had sales of nearly US $30 billion in 2023 and the numbers of clinical trials for GPCR modulators in the metabolic diseases, oncology and immunology areas are increasing strongly. Finally, we highlight the potential of untapped target-disease associations and pathway-biased signalling. Overall, this Review provides an up-to-date reference for the drugged and potentially druggable GPCRome to inform future GPCR drug discovery and development.
Collapse
Affiliation(s)
- Javier Sánchez Lorente
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Aleksandr V Sokolov
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, University of Uppsala, Uppsala, Sweden
| | - Gavin Ferguson
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- ALPX S.A.S., Grenoble, France
| | - Helgi B Schiöth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, University of Uppsala, Uppsala, Sweden
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Alexander S Hauser
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - David E Gloriam
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
4
|
Hasan-Kareem N, Alijanpour S, Zarrindast MR, Khakpai F. Synergistic anxiolytic-like effect of CPPG and harmaline in non-stressed and acute restraint stress (ARS) mice. Neurosci Lett 2025; 850:138157. [PMID: 39938675 DOI: 10.1016/j.neulet.2025.138157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/05/2025] [Accepted: 02/09/2025] [Indexed: 02/14/2025]
Abstract
Many studies revealed the role of metabotropic glutamate receptors (mGluRs) and harmaline in the modulation of anxiety-related behaviors. This study aimed to determine a possible interaction between harmaline and group III mGluR on the modulation of anxiety-correlated behaviors. The left lateral ventricle of male mice was unilaterally cannulated. Acute restraint stress (ARS) was induced by movement restraint for 4 h. Anxiety-like behaviors were measured using an elevated plus maze. The results showed that induction of ARS during 4 h reduced the percentage of time spent in open arms (%OAT) and percentage of entries to open arms (%OAE) without changing locomotor activity, indicating anxiogenic-like responses. Intraperitoneal (i.p.) administration of harmaline (2 mg/kg) increased %OAT in non-stressed and ARS mice, presenting anxiolytic-like responses. Intracerebroventricular (i.c.v.) infusion of CPPG (potent group III mGlu antagonist, 70 µg/mouse) induced anxiolytic-like behavior due to the augmentation of %OAT in non-stressed and ARS mice. Co-treatment of CPPG (70 µg/mouse, i.c.v.) along with harmaline (1 mg/kg, i.p) induced an anxiolytic-like effect. I.c.v. infusion of L-AP4 (selective group III mGlu agonist) or co-administration of it along harmaline had no significant effect on anxiety-like behaviors both in non-stressed and ARS mice. When harmaline and CPPG were co-administrated, CPPG potentiated the anxiolytic-like behavior induced by harmaline in non-stressed and ARS mice. The results revealed a synergistic effect between CPPG and harmaline on the induction of anxiolytic-like effect in non-stressed and ARS mice. Our results indicated an interaction between harmaline and group III mGluR on the modulation of anxiety-like responses in non-stressed and ARS mice.
Collapse
Affiliation(s)
- Nazahnin Hasan-Kareem
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sakineh Alijanpour
- Department of Biology, Faculty of Science, Gonbad Kavous University, Gonbad Kavous, Iran
| | - Mohammad-Reza Zarrindast
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Khakpai
- Department of Physiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
5
|
Chruścicka-Smaga B, Sowa-Kućma M, Pańczyszyn-Trzewik P, Bobula B, Korlatowicz A, Latocha K, Pabian P, Czechowska E, Lenda T, Faron-Górecka A, Stachowicz K. Evidence for functional interaction between the CB1 and the mGlu7 receptors mediated signaling in modulation of anxiety behavior and cognition. Life Sci 2025; 361:123313. [PMID: 39674270 DOI: 10.1016/j.lfs.2024.123313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/05/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
Anxiety is a severe social problem. It is a disease entity that occurs alone or accompanies other diseases such as depression, phobia, or post-traumatic stress disorder. Our earlier studies demonstrated that blockage of arachidonic acid (AA) pathway via inhibition of cyclooxygenase-2 (COX-2) enzyme can modulate mGluRs-induced anxiety-like behavior. Here, we hypothesized that modulation of 2-arachidoglycerol (2-AG), a component of the AA pathway, concomitantly with modulation of mGluR7 signaling, should be adequate to trigger a similar response from the test organism. Since 2-AG is an endogenous agonist for CB1 receptors, we used a CB1/GPR55/μ-opioid receptor antagonist (AM251) alone and in combination with mGluR7 allosteric agonist (AMN082). Stress-induced hyperthermia (SIH) test was performed as a behavioral readout. AM251 has a dual mode on AMN082-mediated effects in SIH in CD-1 mice. Furthermore, the CB1 receptor ligand influenced adaptation to stress in repeated SIH procedures and learning possibilities of mice in the Barnes maze. We also found changes in mGluR7 protein expression levels in the prefrontal cortex (PFC) after mice were exposed to AM251, which showed the potential to attenuate the AMN082-induced decline in mGluR7 levels. The changes induced by AM251 on AMN082-mediated behavioral and biochemical effects were confirmed in electrophysiological experiments in which AM251 abolished AMN082-mediated LTP escalation in PFC. The mGluR7 overexpressed cell line was used to exclude the direct involvement of mGluR7 in AM251 activity. All the above results and the co-localization of CB1 and mGlu7 receptors detected in specific brain regions strongly suggest the specific interaction between CB1 and mGlu7 receptors and their signaling.
Collapse
Affiliation(s)
- Barbara Chruścicka-Smaga
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Magdalena Sowa-Kućma
- Medical College of Rzeszów University, Institute of Medical Sciences, Department of Human Physiology, 35-310 Rzeszow, Kopisto Street 2a, Poland
| | - Patrycja Pańczyszyn-Trzewik
- Medical College of Rzeszów University, Institute of Medical Sciences, Department of Human Physiology, 35-310 Rzeszow, Kopisto Street 2a, Poland
| | - Bartosz Bobula
- Department of Physiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Agata Korlatowicz
- Department of Pharmacology, Laboratory of Biochemical Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Katarzyna Latocha
- Department of Pharmacology, Laboratory of Biochemical Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Paulina Pabian
- Department of Pharmacology, Laboratory of Biochemical Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Ewelina Czechowska
- Medical College of Rzeszów University, Institute of Medical Sciences, Department of Human Physiology, 35-310 Rzeszow, Kopisto Street 2a, Poland
| | - Tomasz Lenda
- Department of Neuro- and Psychopharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Agata Faron-Górecka
- Department of Pharmacology, Laboratory of Biochemical Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Katarzyna Stachowicz
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland.
| |
Collapse
|
6
|
Gong Y, Haeri M, Zhang X, Li Y, Liu A, Wu D, Zhang Q, Michal Jazwinski S, Zhou X, Wang X, Zhang K, Jiang L, Chen YP, Yan X, Swerdlow RH, Shen H, Deng HW. Stereo-seq of the prefrontal cortex in aging and Alzheimer's disease. Nat Commun 2025; 16:482. [PMID: 39779708 PMCID: PMC11711495 DOI: 10.1038/s41467-024-54715-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025] Open
Abstract
Aging increases the risk for Alzheimer's disease (AD), driving pathological changes like amyloid-β (Aβ) buildup, inflammation, and oxidative stress, especially in the prefrontal cortex (PFC). We present the first subcellular-resolution spatial transcriptome atlas of the human prefrontal cortex (PFC), generated with Stereo-seq from six male AD cases at varying neuropathological stages and six age-matched male controls. Our analyses revealed distinct transcriptional alterations across PFC layers, highlighted disruptions in laminar structure, and exposed AD-related shifts in layer-to-layer and cell-cell interactions. Notably, we identified genes highly upregulated in stressed neurons and nearby glial cells, where AD diminished stress-response interactions that promote Aβ clearance. Further, cell-type-specific co-expression analysis highlighted three neuronal modules linked to neuroprotection, protein dephosphorylation, and Aβ regulation, with all modules downregulated as AD progresses. We identified ZNF460 as a transcription factor regulating these modules, offering a potential therapeutic target. In summary, this spatial transcriptome atlas provides valuable insight into AD's molecular mechanisms.
Collapse
Affiliation(s)
- Yun Gong
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Mohammad Haeri
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, MO, 66160, USA
| | - Xiao Zhang
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Yisu Li
- Department of Cell and Molecular Biology, School of Science of Engineering, Tulane University, New Orleans, LA, 70118, USA
| | - Anqi Liu
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Di Wu
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Qilei Zhang
- School of Basic Medical Sciences, Central South University, Changsha, Hunan, 410008, China
| | - S Michal Jazwinski
- Tulane Center for Aging, Deming Department of Medicine, Tulane University School of Medicne, New Orleans, LA, 70112, USA
| | - Xiang Zhou
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Xiaoying Wang
- Clinical Neuroscience Research Center, Departments of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Kai Zhang
- Department of Environmental Health Sciences, College of Integrated Health Sciences, University at Albany, Albany, NY, 12222, USA
| | - Lindong Jiang
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Yi-Ping Chen
- Department of Cell and Molecular Biology, School of Science of Engineering, Tulane University, New Orleans, LA, 70118, USA
| | - Xiaoxin Yan
- School of Basic Medical Sciences, Central South University, Changsha, Hunan, 410008, China
| | - Russell H Swerdlow
- Department of Neurology, University of Kansas Medical Center, Kansas City, MO, 66160, USA.
| | - Hui Shen
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, 70112, USA.
| | - Hong-Wen Deng
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, 70112, USA.
| |
Collapse
|
7
|
Biso L, Carli M, Scarselli M, Longoni B. Overview of Novel Antipsychotic Drugs: State of the Art, New Mechanisms, and Clinical Aspects of Promising Compounds. Biomedicines 2025; 13:85. [PMID: 39857669 PMCID: PMC11763187 DOI: 10.3390/biomedicines13010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 12/27/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025] Open
Abstract
Antipsychotic medications are a vast class of drugs used for the treatment of psychotic disorders such as schizophrenia. Although numerous compounds have been developed since their introduction in the 1950s, several patients do not adequately respond to current treatments, or they develop adverse reactions that cause treatment discontinuation. Moreover, in the past few decades, discoveries in the pathophysiology of psychotic disorders have opened the way for experimenting with novel compounds that have alternative mechanisms of action, with some of them showing promising results in early trials. The scope of this review was to summarize the novel antipsychotics developed, their current experimental status, and their mechanisms of action. In particular, we analyzed the main classes of investigational antipsychotics, such as monoamine, glutamate, acetylcholine, cannabinoid receptor modulators, enzyme inhibitors, ion channel modulators, and mixed receptor modulators. In addition, the safety profiles and adverse effects of these drugs were carefully evaluated, considering the relevance of these aspects for patients' drug adherence and quality of life, especially in the long-term treatment. Lastly, we tried to understand which compounds have greater potential to be approved by the principal drug regulatory agencies in the next years and if they could be used for diseases other than psychotic disorders.
Collapse
Affiliation(s)
| | | | | | - Biancamaria Longoni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (L.B.); (M.C.); (M.S.)
| |
Collapse
|
8
|
Lei L, Wang YF, Chen CY, Wang YT, Zhang Y. Novel insight into astrocyte-mediated gliotransmission modulates the synaptic plasticity in major depressive disorder. Life Sci 2024; 355:122988. [PMID: 39153595 DOI: 10.1016/j.lfs.2024.122988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/23/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Major depressive disorder (MDD) is a form of glial cell-based synaptic dysfunction disease in which glial cells interact closely with neuronal synapses and perform synaptic information processing. Glial cells, particularly astrocytes, are active components of the brain and are responsible for synaptic activity through the release gliotransmitters. A reduced density of astrocytes and astrocyte dysfunction have both been identified the brains of patients with MDD. Furthermore, gliotransmission, i.e., active information transfer mediated by gliotransmitters between astrocytes and neurons, is thought to be involved in the pathogenesis of MDD. However, the mechanism by which astrocyte-mediated gliotransmission contributes to depression remains unknown. This review therefore summarizes the alterations in astrocytes in MDD, including astrocyte marker, connexin 43 (Cx43) expression, Cx43 gap junctions, and Cx43 hemichannels, and describes the regulatory mechanisms of astrocytes involved in synaptic plasticity. Additionally, we investigate the mechanisms acting of the glutamatergic, gamma-aminobutyric acidergic, and purinergic systems that modulate synaptic function and the antidepressant mechanisms of the related receptor antagonists. Further, we summarize the roles of glutamate, gamma-aminobutyric acid, d-serine, and adenosine triphosphate in depression, providing a basis for the identification of diagnostic and therapeutic targets for MDD.
Collapse
Affiliation(s)
- Lan Lei
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yu-Fei Wang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Cong-Ya Chen
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ya-Ting Wang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yi Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
9
|
Alkanat M, Alkanat HÖ. D-Limonene reduces depression-like behaviour and enhances learning and memory through an anti-neuroinflammatory mechanism in male rats subjected to chronic restraint stress. Eur J Neurosci 2024; 60:4491-4502. [PMID: 38932560 DOI: 10.1111/ejn.16455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 05/28/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024]
Abstract
D-limonene is a widely used flavouring additive in foods, beverages and fragrances due to its pleasant lemon-like odour. This study aimed to investigate the effects of D-limonene on the central nervous system when subjected to chronic restraint stress in rats for 21 days. Forty rats were randomly divided into five groups: i) control, ii) D-limonene, iii) restraint stress, iv) restraint stress+D-limonene and v) restraint stress+fluoxetine. Following the induction of restraint stress, the sucrose preference test, the open field test, the novel object recognition test and the forced swimming test were performed. The levels of BDNF, IL-1β, IL-6 and caspase-1 were measured from hippocampal tissue using the ELISA method. Sucrose preference test results showed an increase in consumption rate in the stress+D-limonene and a decrease in the stress group. The stress+D-limonene group reversed the increased defensive behaviour observed in the open-field test compared to the stress group. In the novel object recognition test, the discrimination index of the stress+D-limonene group increased compared to the stress group. BDNF levels increased in the stress+limonene group compared to the stress group. In contrast, IL-1β and caspase-1 levels increased in the stress group compared to the control and decreased in the stress+limonene group compared to the stress group. In this study, D-limonene has been found to have antidepressant-like properties, reducing anhedonic and defensive behaviours and the impairing effects of stress on learning and memory tests. It was observed that D-limonene showed these effects by alleviating neuroinflammation induced by chronic restraint stress in rats.
Collapse
Affiliation(s)
- Mehmet Alkanat
- Department of Physiology, Giresun University, Medical School, Giresun, Turkey
| | - Hafize Özdemir Alkanat
- Faculty of Health Science, Department of Internal Medicine Nursing, Giresun University, Giresun, Turkey
| |
Collapse
|
10
|
Gong Y, Haeri M, Zhang X, Li Y, Liu A, Wu D, Zhang Q, Jazwinski SM, Zhou X, Wang X, Jiang L, Chen YP, Yan X, Swerdlow RH, Shen H, Deng HW. Spatial Dissection of the Distinct Cellular Responses to Normal Aging and Alzheimer's Disease in Human Prefrontal Cortex at Single-Nucleus Resolution. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.21.24306783. [PMID: 38826275 PMCID: PMC11142279 DOI: 10.1101/2024.05.21.24306783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Aging significantly elevates the risk for Alzheimer's disease (AD), contributing to the accumulation of AD pathologies, such as amyloid-β (Aβ), inflammation, and oxidative stress. The human prefrontal cortex (PFC) is highly vulnerable to the impacts of both aging and AD. Unveiling and understanding the molecular alterations in PFC associated with normal aging (NA) and AD is essential for elucidating the mechanisms of AD progression and developing novel therapeutics for this devastating disease. In this study, for the first time, we employed a cutting-edge spatial transcriptome platform, STOmics® SpaTial Enhanced Resolution Omics-sequencing (Stereo-seq), to generate the first comprehensive, subcellular resolution spatial transcriptome atlas of the human PFC from six AD cases at various neuropathological stages and six age, sex, and ethnicity matched controls. Our analyses revealed distinct transcriptional alterations across six neocortex layers, highlighted the AD-associated disruptions in laminar architecture, and identified changes in layer-to-layer interactions as AD progresses. Further, throughout the progression from NA to various stages of AD, we discovered specific genes that were significantly upregulated in neurons experiencing high stress and in nearby non-neuronal cells, compared to cells distant from the source of stress. Notably, the cell-cell interactions between the neurons under the high stress and adjacent glial cells that promote Aβ clearance and neuroprotection were diminished in AD in response to stressors compared to NA. Through cell-type specific gene co-expression analysis, we identified three modules in excitatory and inhibitory neurons associated with neuronal protection, protein dephosphorylation, and negative regulation of Aβ plaque formation. These modules negatively correlated with AD progression, indicating a reduced capacity for toxic substance clearance in AD subject samples. Moreover, we have discovered a novel transcription factor, ZNF460, that regulates all three modules, establishing it as a potential new therapeutic target for AD. Overall, utilizing the latest spatial transcriptome platform, our study developed the first transcriptome-wide atlas with subcellular resolution for assessing the molecular alterations in the human PFC due to AD. This atlas sheds light on the potential mechanisms underlying the progression from NA to AD.
Collapse
Affiliation(s)
- Yun Gong
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Mohammad Haeri
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, MO, 66160, USA
| | - Xiao Zhang
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Yisu Li
- Department of Cell and Molecular Biology, School of Science of Engineering, Tulane University, New Orleans, LA, 70118, USA
| | - Anqi Liu
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Di Wu
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Qilei Zhang
- School of Basic Medical Sciences, Central South University, Changsha, Hunan, 410008, China
| | - S. Michal Jazwinski
- Tulane Center for Aging, Deming Department of Medicine, Tulane University School of Medicne, New Orleans, LA 70112, USA
| | - Xiang Zhou
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Xiaoying Wang
- Clinical Neuroscience Research Center, Departments of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Lindong Jiang
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Yi-Ping Chen
- Department of Cell and Molecular Biology, School of Science of Engineering, Tulane University, New Orleans, LA, 70118, USA
| | - Xiaoxin Yan
- School of Basic Medical Sciences, Central South University, Changsha, Hunan, 410008, China
| | - Russell H. Swerdlow
- Department of Neurology, University of Kansas Medical Center, Kansas City, MO, 66160, USA
| | - Hui Shen
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Hong-Wen Deng
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| |
Collapse
|
11
|
Zhang L, Wang Y, Li S, Otani S, Chen F. Post-stress Social Interaction and 3-Cyano-N-(1,3-Diphenyl-1H-Pyrazol-5-yl) Benzamide Treatment Attenuate Depressive-like Behavior Induced by Repeated Social Defeat Stress. Neuroscience 2024; 538:11-21. [PMID: 38103860 DOI: 10.1016/j.neuroscience.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/23/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Persistent stress increases the probability for developing depression significantly thereafter. Repeated social defeat stress is a widely used model to investigate depressive-like behavior in preclinical models. Hence, the repeated social defeat stress model provided an ideal animal model, through which the hypotheses of prevention and treatment can be investigated. We have successfully induced depressive-like behavior for male C57BL/6J mice with this model. Here, we reported that certain level of during-stress social interactions with single female or multiple male peer(s) exerted a positive role in preventing the development of depressive-like behavior induced by repeated social defeat stress. Our data suggested that the stress-susceptible mice may benefit from positive social interaction, which reduces the chance for depressive-like behavior development. Since numerous studies indicate that the metabotropic glutamate receptor 5 (mGluR5) plays an important role in various cognitive functions, we further investigate the treatment effect of 3-cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl) benzamide (CDPPB) on the depressive-like behavior induced by repeated social defeat stress. Most importantly, robust anti-depressant effects have been achieved through modulating the mGluR5 function. We found that single oral dose administration of CDPPB (20 mg/kg), to some extent, alleviated the social avoidance behaviors for the stress-susceptible mice. Our data implies that the CDPPB, a positive allosteric modulator of mGluR5, is a promising anti-depressant candidate with limited side effect.
Collapse
Affiliation(s)
- Liangui Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China.
| | - Ying Wang
- Core Research Facilities, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Shengtian Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China.
| | - Satoru Otani
- Vision Institute, CNRS - INSERM - Sorbonne University, Paris 75012, France.
| | - Fujun Chen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China.
| |
Collapse
|
12
|
Munguba H, Gutzeit VA, Srivastava I, Kristt M, Singh A, Vijay A, Arefin A, Thukral S, Broichhagen J, Stujenske JM, Liston C, Levitz J. Projection-Targeted Photopharmacology Reveals Distinct Anxiolytic Roles for Presynaptic mGluR2 in Prefrontal- and Insula-Amygdala Synapses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.15.575699. [PMID: 38293136 PMCID: PMC10827048 DOI: 10.1101/2024.01.15.575699] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Dissecting how membrane receptors regulate neural circuit function is critical for deciphering basic principles of neuromodulation and mechanisms of therapeutic drug action. Classical pharmacological and genetic approaches are not well-equipped to untangle the roles of specific receptor populations, especially in long-range projections which coordinate communication between brain regions. Here we use viral tracing, electrophysiological, optogenetic, and photopharmacological approaches to determine how presynaptic metabotropic glutamate receptor 2 (mGluR2) activation in the basolateral amygdala (BLA) alters anxiety-related behavior. We find that mGluR2-expressing neurons from the ventromedial prefrontal cortex (vmPFC) and posterior insular cortex (pIC) preferentially target distinct cell types and subregions of the BLA to regulate different forms of avoidant behavior. Using projection-specific photopharmacological activation, we find that mGluR2-mediated presynaptic inhibition of vmPFC-BLA, but not pIC-BLA, connections can produce long-lasting decreases in spatial avoidance. In contrast, presynaptic inhibition of pIC-BLA connections decreased social avoidance, novelty-induced hypophagia, and increased exploratory behavior without impairing working memory, establishing this projection as a novel target for the treatment of anxiety disorders. Overall, this work reveals new aspects of BLA neuromodulation with therapeutic implications while establishing a powerful approach for optical mapping of drug action via photopharmacology.
Collapse
Affiliation(s)
- Hermany Munguba
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Vanessa A. Gutzeit
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ipsit Srivastava
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Melanie Kristt
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ashna Singh
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Akshara Vijay
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Anisul Arefin
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Sonal Thukral
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Johannes Broichhagen
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Joseph M. Stujenske
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA
| | - Conor Liston
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Joshua Levitz
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
13
|
Duan W, Cao D, Wang S, Cheng J. Serotonin 2A Receptor (5-HT 2AR) Agonists: Psychedelics and Non-Hallucinogenic Analogues as Emerging Antidepressants. Chem Rev 2024; 124:124-163. [PMID: 38033123 DOI: 10.1021/acs.chemrev.3c00375] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Psychedelics make up a group of psychoactive compounds that induce hallucinogenic effects by activating the serotonin 2A receptor (5-HT2AR). Clinical trials have demonstrated the traditional psychedelic substances like psilocybin as a class of rapid-acting and long-lasting antidepressants. However, there is a pressing need for rationally designed 5-HT2AR agonists that possess optimal pharmacological profiles in order to fully reveal the therapeutic potential of these agonists and identify safer drug candidates devoid of hallucinogenic effects. This Perspective provides an overview of the structure-activity relationships of existing 5-HT2AR agonists based on their chemical classifications and discusses recent advancements in understanding their molecular pharmacology at a structural level. The encouraging clinical outcomes of psychedelics in depression treatment have sparked drug discovery endeavors aimed at developing novel 5-HT2AR agonists with improved subtype selectivity and signaling bias properties, which could serve as safer and potentially nonhallucinogenic antidepressants. These efforts can be significantly expedited through the utilization of structure-based methods and functional selectivity-directed screening.
Collapse
Affiliation(s)
- Wenwen Duan
- iHuman Institute, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Dongmei Cao
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Sheng Wang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Jianjun Cheng
- iHuman Institute, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| |
Collapse
|
14
|
Zhu T, Liu H, Gao S, Jiang N, Chen S, Xie W. Effect of salidroside on neuroprotection and psychiatric sequelae during the COVID-19 pandemic: A review. Biomed Pharmacother 2024; 170:115999. [PMID: 38091637 DOI: 10.1016/j.biopha.2023.115999] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/22/2023] [Accepted: 12/06/2023] [Indexed: 01/10/2024] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has affected the mental health of individuals worldwide, and the risk of psychiatric sequelae and consequent mental disorders has increased among the general population, health care workers and patients with COVID-19. Achieving effective and widespread prevention of pandemic-related psychiatric sequelae to protect the mental health of the global population is a serious challenge. Salidroside, as a natural agent, has substantial pharmacological activity and health effects, exerts obvious neuroprotective effects, and may be effective in preventing and treating psychiatric sequelae and mental disorders resulting from stress stemming from the COVID-19 pandemic. Herein, we systematically summarise, analyse and discuss the therapeutic effects of salidroside in the prevention and treatment of psychiatric sequelae as well as its roles in preventing the progression of mental disorders, and fully clarify the potential of salidroside as a widely applicable agent for preventing mental disorders caused by stress; the mechanisms underlying the potential protective effects of salidroside are involved in the regulation of the oxidative stress, neuroinflammation, neural regeneration and cell apoptosis in the brain, the network homeostasis of neurotransmission, HPA axis and cholinergic system, and the improvement of synaptic plasticity. Notably, this review innovatively proposes that salidroside is a potential agent for treating stress-induced health issues during the COVID-19 pandemic and provides scientific evidence and a theoretical basis for the use of natural products to combat the current mental health crisis.
Collapse
Affiliation(s)
- Ting Zhu
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Hui Liu
- Guizhou Provincial Key Laboratory of Pharmaceutics & State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, Guizhou, China; Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Shiman Gao
- Department of Clinical Pharmacy, Women and Children's Hospital, Qingdao University, Qingdao 266034, China
| | - Ning Jiang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
| | - Shuai Chen
- School of Public Health, Wuhan University, Donghu Road No. 115, Wuchang District, Wuhan 430071, China.
| | - Weijie Xie
- Clinical Research Center for Mental Disorders, Shanghai Pudong New Area Mental Health Center, Tongji University School of Medicine, Shanghai 200122, China.
| |
Collapse
|
15
|
Patil AS, Koul S. Role of Biosynthesis and Catabolism of Neurotransmitters in Drug Discovery for Anxiety and Depression. Curr Pharm Des 2024; 30:2587-2596. [PMID: 39075953 DOI: 10.2174/0113816128309913240704095334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/23/2024] [Accepted: 06/03/2024] [Indexed: 07/31/2024]
Abstract
The purpose of this review is to correlate the probable causes of anxiety disorders with the imbalance of neurotransmitters in the brain and also highlight the drugs for these mental disorders that have been discovered based on the biosynthesis and catabolism of these brain chemicals. Peer-reviewed journal's articles, news and books published in English between 1997 and 2023 describing the role of neurotransmitters in anxiety disorders were searched in Google Scholar, Research Gate and PubMed databases. The contents were carefully analyzed by the authors and understood and compiled to build a concise perspective on the role of biosynthesis and catabolism of neurotransmitters in anxiety and depression. Anxiety disorders are reported to be common patterns of psychological symptoms that impact multiple areas of life. Anxiety and depression are prevalent worldwide and are significantly contributing towards the global health burden. Genetic determinants are believed to play an important role in these disorders. According to modern medicine, one of the most important aspects that is known to be crucial for these disorders is the imbalance of neurotransmitters in the brain. The biosynthesis and catabolism of neurotransmitters have been extensively targeted for innovative drug discovery approaches at various steps that have led to the discovery of many drugs for these psychological disorders. The biosynthetic and catabolic reaction cycles of neurotransmitters and the discovery of drugs based on these hypotheses are discussed. To the best of the authors' knowledge, this review compiles already known descriptive knowledge on "relation of neurotransmitter imbalance with anxiety disorders" in a precise way that will provide readers with an overview of the vast literature.
Collapse
Affiliation(s)
- Ashish Suresh Patil
- School of Consciousness, Dr. Vishwanath Karad MIT World Peace University, Kothrud, Pune, Maharashtra, 411038, India
| | - Summon Koul
- School of Consciousness, Dr. Vishwanath Karad MIT World Peace University, Kothrud, Pune, Maharashtra, 411038, India
| |
Collapse
|
16
|
Navarro D, Marín-Mayor M, Gasparyan A, García-Gutiérrez MS, Rubio G, Manzanares J. Molecular Changes Associated with Suicide. Int J Mol Sci 2023; 24:16726. [PMID: 38069051 PMCID: PMC10706600 DOI: 10.3390/ijms242316726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Suicide is a serious global public health problem, with a worrying recent increase in suicide rates in both adolescent and adult populations. However, it is essential to recognize that suicide is preventable. A myriad of factors contributes to an individual's vulnerability to suicide. These factors include various potential causes, from psychiatric disorders to genetic and epigenetic alterations. These changes can induce dysfunctions in crucial systems such as the serotonergic, cannabinoid, and hypothalamic-pituitary-adrenal axes. In addition, early life experiences of abuse can profoundly impact an individual's ability to cope with stress, ultimately leading to changes in the inflammatory system, which is a significant risk factor for suicidal behavior. Thus, it is clear that suicidal behavior may result from a confluence of multiple factors. This review examines the primary risk factors associated with suicidal behavior, including psychiatric disorders, early life adversities, and epigenetic modifications. Our goal is to elucidate the molecular changes at the genetic, epigenetic, and molecular levels in the brains of individuals who have taken their own lives and in the plasma and peripheral mononuclear cells of suicide attempters and how these changes may serve as predisposing factors for suicidal tendencies.
Collapse
Affiliation(s)
- Daniela Navarro
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (D.N.); (A.G.); (M.S.G.-G.)
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain;
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - Marta Marín-Mayor
- Instituto de Investigación i+12, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain;
- Department of Psychiatry, Complutense University of Madrid, 28040 Madrid, Spain
| | - Ani Gasparyan
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (D.N.); (A.G.); (M.S.G.-G.)
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain;
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - María Salud García-Gutiérrez
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (D.N.); (A.G.); (M.S.G.-G.)
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain;
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - Gabriel Rubio
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain;
- Instituto de Investigación i+12, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain;
- Department of Psychiatry, Complutense University of Madrid, 28040 Madrid, Spain
| | - Jorge Manzanares
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (D.N.); (A.G.); (M.S.G.-G.)
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain;
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| |
Collapse
|
17
|
Mehta N, Pokharna P, Shetty SR. Unwinding the potentials of vitamin C in COVID-19 and other diseases: An updated review. Nutr Health 2023; 29:415-433. [PMID: 36445072 PMCID: PMC9713540 DOI: 10.1177/02601060221139628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Background: The discovery of vitamin C (ascorbic acid) is related to the ancient history of persistent research on the origins of the haemorrhagic disease scurvy. Vitamin C is an important nutrient that aids in a variety of biological and physiological processes. Scientists have been researching the function of vitamin C in the prevention and ailment of sepsis and pneumonia for decades. This has created a potential platform for applying these results to individuals suffering from severe coronavirus infection (COVID-19). Vitamin C's ability to activate and enhance the immune system makes it a promising treatment in the present COVID-19 pandemic. Vitamin C also aids in the activation of vitamin B, the production of certain neurotransmitters, and the transformation of cholesterol into bile acids. Hence, vitamin C is used for the treatment of many diseases. Aim: This review highlights the Vitamin C investigations that are performed by various researchers on patients with COVID 19 infection, the clinical studies and their observations. The authors have additionally updated information on the significance of vitamin C insufficiency, as well as its relevance and involvement in diseases such as cancer, wound healing, iron deficiency anaemia, atherosclerosis and neurodegenerative disorders. Here, we discuss them with the references. Methods: The method used in order to perform literature search was done using SciFinder, PubMed and ScienceDirect. Results: There is a potential role of vitamin C in various diseases including neurodegenerative disorders, COVID-19 and other diseases and the results are highlighted in the review with the help of clinical and preclinical data. Conclusion: More research on vitamin C and the undergoing clinical trials might prove a potential role of vitamin C in protecting the population from current COVID-19 pandemic.
Collapse
Affiliation(s)
- Nikhil Mehta
- Department of Pharmaceutics, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKMs NMIMS. Mumbai, India
| | - Purvi Pokharna
- Department of Pharmaceutics, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKMs NMIMS. Mumbai, India
| | - Saritha R Shetty
- Department of Pharmaceutics, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKMs NMIMS. Mumbai, India
| |
Collapse
|
18
|
Choi SO, Choi JG, Yun JY. A Study of Brain Function Characteristics of Service Members at High Risk for Accidents in the Military. Brain Sci 2023; 13:1157. [PMID: 37626513 PMCID: PMC10452066 DOI: 10.3390/brainsci13081157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/23/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023] Open
Abstract
Military accidents are often associated with stress and depressive psychological conditions among soldiers, and they often fail to adapt to military life. Therefore, this study analyzes whether there are differences in EEG and pulse wave indices between general soldiers and three groups of soldiers who have not adapted to military life and are at risk of accidents. Data collection was carried out using a questionnaire and a device that can measure EEG and pulse waves, and data analysis was performed using SPSS. The results showed that the concentration level and brain activity indices were higher in the general soldiers and the soldiers in the first stage of accident risk. The body stress index was higher for each stage of accident risk, and the physical vitality index was higher for general soldiers. Therefore, it can be seen that soldiers who have not adapted to military life and are at risk of accidents have somewhat lower concentration and brain activity than general soldiers, and have symptoms of stress and lethargy. The results of this study will contribute to reducing human accidents through EEG and pulse wave measurements not only in the military but also in occupations with a high risk of accidents such as construction.
Collapse
Affiliation(s)
| | | | - Jong-Yong Yun
- Department of Protection and Safety Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| |
Collapse
|
19
|
Woodward DJ, Thorp JG, Akosile W, Ong JS, Gamazon ER, Derks EM, Gerring ZF. Identification of drug repurposing candidates for the treatment of anxiety: A genetic approach. Psychiatry Res 2023; 326:115343. [PMID: 37473490 PMCID: PMC10493169 DOI: 10.1016/j.psychres.2023.115343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/03/2023] [Accepted: 07/10/2023] [Indexed: 07/22/2023]
Abstract
Anxiety disorders are a group of prevalent and heritable neuropsychiatric diseases. We previously conducted a genome-wide association study (GWAS) which identified genomic loci associated with anxiety; however, the biological consequences underlying the genetic associations are largely unknown. Integrating GWAS and functional genomic data may improve our understanding of the genetic effects on intermediate molecular phenotypes such as gene expression. This can provide an opportunity for the discovery of drug targets for anxiety via drug repurposing. We used the GWAS summary statistics to determine putative causal genes for anxiety using MAGMA and colocalization analyses. A transcriptome-wide association study was conducted to identify genes with differential genetically regulated levels of gene expression in human brain tissue. The genes were integrated with a large drug-gene expression database (Connectivity Map), discovering compounds that are predicted to "normalise" anxiety-associated expression changes. The study identified 64 putative causal genes associated with anxiety (35 genes upregulated; 29 genes downregulated). Drug mechanisms adrenergic receptor agonists, sigma receptor agonists, and glutamate receptor agonists gene targets were enriched in anxiety-associated genetic signal and exhibited an opposing effect on the anxiety-associated gene expression signature. The significance of the project demonstrated genetic links for novel drug candidates to potentially advance anxiety therapeutics.
Collapse
Affiliation(s)
- Damian J Woodward
- Mental Health and Neuroscience, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia; School of Biomedical Science, Queensland University of Technology, Kelvin Grove, QLD, Australia.
| | - Jackson G Thorp
- Mental Health and Neuroscience, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Wole Akosile
- School of Medicine, University of Queensland, St Lucia, QLD, Australia
| | - Jue-Sheng Ong
- Population Health Department, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Eric R Gamazon
- Vanderbilt Genetics Institute, Vanderbilt University Medical Centre, Nashville, TN, USA; Clare Hall, University of Cambridge, Cambridge, UK
| | - Eske M Derks
- Mental Health and Neuroscience, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Zachary F Gerring
- Mental Health and Neuroscience, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia.
| |
Collapse
|
20
|
Yuan G, Dhaynaut M, Guehl NJ, Neelamegam R, Moon SH, Qu X, Poutiainen P, Afshar S, Fakhri GE, Normandin MD, Brownell AL. PET imaging studies to investigate functional expression of mGluR2 using [ 11C]mG2P001. J Cereb Blood Flow Metab 2023; 43:296-308. [PMID: 36172629 PMCID: PMC9903221 DOI: 10.1177/0271678x221130387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 01/24/2023]
Abstract
Metabotropic glutamate receptor 2 (mGluR2) has been extensively studied for the treatment of various neurological and psychiatric disorders. Understanding of the mGluR2 function is pivotal in supporting the drug discovery targeting mGluR2. Herein, the positive allosteric modulation of mGluR2 was investigated via the in vivo positron emission tomography (PET) imaging using 2-((4-(2-[11C]methoxy-4-(trifluoromethyl)phenyl)piperidin-1-yl)methyl)-1-methyl-1H-imidazo[4,5-b]pyridine ([11C]mG2P001). Distinct from the orthosteric compounds, pretreatment with the unlabeled mG2P001, a potent mGluR2 positive allosteric modulator (PAM), resulted in a significant increase instead of decrease of the [11C]mG2P001 accumulation in rat brain detected by PET imaging. Subsequent in vitro studies with [3H]mG2P001 revealed the cooperative binding mechanism of mG2P001 with glutamate and its pharmacological effect that contributed to the enhanced binding of [3H]mG2P001 in transfected CHO cells expressing mGluR2. The in vivo PET imaging and quantitative analysis of [11C]mG2P001 in non-human primates (NHPs) further validated the characteristics of [11C]mG2P001 as an imaging ligand for mGluR2. Self-blocking studies in primates enhanced accumulation of [11C]mG2P001. Altogether, these studies show that [11C]mG2P001 is a sensitive biomarker for mGluR2 expression and the binding is affected by the tissue glutamate concentration.
Collapse
Affiliation(s)
- Gengyang Yuan
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 125 Nashua Street, Suite 660, Boston, MA 02114, USA
| | - Maeva Dhaynaut
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 125 Nashua Street, Suite 660, Boston, MA 02114, USA
| | - Nicolas J Guehl
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 125 Nashua Street, Suite 660, Boston, MA 02114, USA
| | - Ramesh Neelamegam
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 125 Nashua Street, Suite 660, Boston, MA 02114, USA
| | - Sung-Hyun Moon
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 125 Nashua Street, Suite 660, Boston, MA 02114, USA
| | - Xiying Qu
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 125 Nashua Street, Suite 660, Boston, MA 02114, USA
| | - Pekka Poutiainen
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, 70210, Finland
| | - Sepideh Afshar
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 125 Nashua Street, Suite 660, Boston, MA 02114, USA
| | - Georges El Fakhri
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 125 Nashua Street, Suite 660, Boston, MA 02114, USA
| | - Marc D Normandin
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 125 Nashua Street, Suite 660, Boston, MA 02114, USA
| | - Anna-Liisa Brownell
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 125 Nashua Street, Suite 660, Boston, MA 02114, USA
| |
Collapse
|
21
|
Yadav P, Podia M, Kumari SP, Mani I. Glutamate receptor endocytosis and signaling in neurological conditions. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 196:167-207. [PMID: 36813358 DOI: 10.1016/bs.pmbts.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The non-essential amino acid glutamate acts as a major excitatory neurotransmitter and plays a significant role in the central nervous system (CNS). It binds with two different types of receptors, ionotropic glutamate receptors (iGluRs) and metabotropic glutamate receptors (mGluRs), responsible for the postsynaptic excitation of neurons. They are important for memory, neural development and communication, and learning. Endocytosis and subcellular trafficking of the receptor are essential for the regulation of receptor expression on the cell membrane and excitation of the cells. The endocytosis and trafficking of the receptor are dependent on its type, ligand, agonist, and antagonist present. This chapter discusses the types of glutamate receptors, their subtypes, and the regulation of their internalization and trafficking. The roles of glutamate receptors in neurological diseases are also briefly discussed.
Collapse
Affiliation(s)
- Prerna Yadav
- Department of Microbiology, University of Delhi, New Delhi, India
| | - Mansi Podia
- Department of Microbiology, University of Delhi, New Delhi, India
| | - Shashi Prabha Kumari
- Department of Microbiology, Ram Lal Anand College, University of Delhi, New Delhi, India
| | - Indra Mani
- Department of Microbiology, Gargi College, University of Delhi, New Delhi, India.
| |
Collapse
|
22
|
Witkin JM, Pandey KP, Smith JL. Clinical investigations of compounds targeting metabotropic glutamate receptors. Pharmacol Biochem Behav 2022; 219:173446. [PMID: 35987339 DOI: 10.1016/j.pbb.2022.173446] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/22/2022] [Accepted: 08/08/2022] [Indexed: 11/15/2022]
Abstract
Pharmacological modulation of glutamate has long been considered to be of immense therapeutic utility. The metabotropic glutamate receptors (mGluRs) are potential targets for safely altering glutamate-driven excitation. Data support the potential therapeutic use of mGluR modulators in the treatment of anxiety, depression, schizophrenia, and other psychiatric disorders, pain, epilepsy, as well as neurodegenerative and neurodevelopmental disorders. For each of the three mGluR groups, compounds have been constructed that produce either potentiation or functional blockade. PET ligands for mGlu5Rs have been studied in a range of patient populations and several mGlu5R antagonists have been tested for potential efficacy in patients including mavoglurant, diploglurant, basimglurant, GET 73, and ADX10059. Efficacy with mGlu5R antagonists has been reported in trials with patients with gastroesophageal reflux disease; data from patients with Parkinson's disease or Fragile X syndrome have not been as robust as hoped. Fenobam was approved for use as an anxiolytic prior to its recognition as an mGlu5R antagonist. mGlu2/3R agonists (pomaglumated methionil) and mGlu2R agonists (JNJ-40411813, AZD 8529, and LY2979165) have been studied in patients with schizophrenia with promising but mixed results. Antagonists of mGlu2/3Rs (decoglurant and TS-161) have been studied in depression where TS-161 has advanced into a planned Phase 2 study in treatment-resistant depression. The Group III mGluRs are the least developed of the mGluR receptor targets. The mGlu4R potentiator, foliglurax, did not meet its primary endpoint in patients with Parkinson's disease. Ongoing efforts to develop mGluR-targeted compounds continue to promise these glutamate modulators as medicines for psychiatric and neurological disorders.
Collapse
Affiliation(s)
- Jeffrey M Witkin
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent, Indianapolis, IN, USA; Department of Chemistry & Biochemistry, Milwaukee Institute of Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, WI, USA; RespireRx Pharmaceuticals Inc, Glen Rock, NJ, USA.
| | - Kamal P Pandey
- Department of Chemistry & Biochemistry, Milwaukee Institute of Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Jodi L Smith
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent, Indianapolis, IN, USA
| |
Collapse
|
23
|
Fan S, Li L, Liu L, Li H, Xian X, Li W. Ceftriaxone Suppresses Group II Metabotropic Glutamate Receptor Expression Contributing to Reversal of Recognition Memory Deficits of Amyloid Precursor Protein/Presenilin 1 AD Mice. Front Neurosci 2022; 16:905403. [PMID: 35860293 PMCID: PMC9289516 DOI: 10.3389/fnins.2022.905403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
Group II metabotropic glutamate receptors (Group II mGluRs) are the peri-synaptic receptor of glutamatergic neurons and negatively regulate glutamate release from presynaptic neurons. Glutamate in the synaptic cleft is mainly taken into astrocytes by glutamate transporter-1 (GLT-1), which is primarily expressed in astrocytes. Increasing evidence showed that inhibiting or suppressing the activation of Group II mGluRs would contribute to the improvement of learning and memory deficits in Alzheimer’s disease (AD) animal models. Ceftriaxone (Cef) has been reported to alleviate the spatial memory deficits in AD model mice by improving GLT-1-related clearance and metabolism of glutamate. Therefore, the present study further investigates the improving effect of Cef on recognition memory deficits and the involvement of Group II mGluRs in the process using the APP/PS1 AD mouse model. Novel object recognition tests showed that the Cef treatment significantly improved the recognition memory deficits of the AD mice. The Western blot and immunohistochemistry analysis showed that the Cef treatment significantly suppressed the upregulation of Group II mGluRs expression in APP/PS1 AD mice. The above suppression effect of Cef was blocked by dihydrokainic acid, an inhibitor of GLT-1 uptake activity. Furthermore, the Cef treatment significantly restored the downregulation in the downstream molecules of Group II mGluRs activation, including the expression of PKA and phosphorylated SNAP-25 in the APP/PS1 AD mice. The Cef treatment had no effect on the content of Aβ40 and Aβ42 in the hippocampus of APP/PS1 AD mice. The above results suggested that the suppression of Group II mGluRs contributed to the Cef-induced reversal of the recognition memory deficits in APP/PS1 AD mice.
Collapse
Affiliation(s)
- ShuJuan Fan
- Department of Pathophysiology, Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
| | - Li Li
- Department of Central Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - LiRong Liu
- Department of Pathophysiology, Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
| | - He Li
- Department of Pathophysiology, Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
| | - XiaoHui Xian
- Department of Pathophysiology, Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
- *Correspondence: XiaoHui Xian,
| | - WenBin Li
- Department of Pathophysiology, Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
- WenBin Li,
| |
Collapse
|
24
|
Crespo M, León-Navarro DA, Martín M. Glutamatergic System is Affected in Brain from an Hyperthermia-Induced Seizures Rat Model. Cell Mol Neurobiol 2022; 42:1501-1512. [PMID: 33492599 PMCID: PMC11421758 DOI: 10.1007/s10571-021-01041-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 01/11/2021] [Indexed: 12/22/2022]
Abstract
One of the most frequent neurological disorders in children is febrile seizures (FS), a risk for epilepsy in adults. Glutamate is the main excitatory neurotransmitter in CNS acting through ionotropic and metabotropic receptors. Excess of glutamate in the extracellular space elicits excitotoxicity and has been associated with neurological disorders, such as epilepsy. The removal of extracellular glutamate by excitatory amino acid transporters (EATT) plays an important neuroprotective role. GLT-1 is the main EAAT present in the cortex brain. On the other hand, an increase in metabotropic glutamate receptors 5 (mGlu5R) levels or their overstimulation have been related to the appearance of seizure events in different animal models and in temporal lobe epilepsy in humans. In this work, the status of several components of the glutamatergic system has been analysed in the cortex brain from an FS rat model at short (48 h) and long (20 days) term after hyperthermia-induced seizures. At the short term, we detected increased GLT-1 levels, reduced glutamate concentration, and unchanged mGlu5R levels, without neuronal loss. However, at the long term, an increase in mGlu5R levels together with a decrease in both GLT-1 and glutamate levels were observed. These changes were associated with the appearance of an anxious phenotype. These results suggest a neuroprotective role of the glutamatergic components mGlu5R and GLT-1 at the short term. However, this neuroprotective effect seems to be lost at the long term, leading to an anxious phenotype and suggesting an increased vulnerability and propensity to epileptic events in adults.
Collapse
Affiliation(s)
- M Crespo
- Department of Inorganic, Organic and Biochemistry, Faculty of Chemical and Technological Sciences, School of Medicine of Ciudad Real, Universidad de Castilla-La Mancha, Regional Centre of Biomedical Research (CRIB), Avenida Camilo José Cela, 10, 13071, Ciudad Real, Spain
| | - D A León-Navarro
- Department of Inorganic, Organic and Biochemistry, Faculty of Chemical and Technological Sciences, School of Medicine of Ciudad Real, Universidad de Castilla-La Mancha, Regional Centre of Biomedical Research (CRIB), Avenida Camilo José Cela, 10, 13071, Ciudad Real, Spain.
| | - M Martín
- Department of Inorganic, Organic and Biochemistry, Faculty of Chemical and Technological Sciences, School of Medicine of Ciudad Real, Universidad de Castilla-La Mancha, Regional Centre of Biomedical Research (CRIB), Avenida Camilo José Cela, 10, 13071, Ciudad Real, Spain
| |
Collapse
|
25
|
Cox MF, Hascup ER, Bartke A, Hascup KN. Friend or Foe? Defining the Role of Glutamate in Aging and Alzheimer’s Disease. FRONTIERS IN AGING 2022; 3:929474. [PMID: 35821835 PMCID: PMC9261322 DOI: 10.3389/fragi.2022.929474] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/17/2022] [Indexed: 11/13/2022]
Abstract
Aging is a naturally occurring decline of physiological processes and biological pathways that affects both the structural and functional integrity of the body and brain. These physiological changes reduce motor skills, executive function, memory recall, and processing speeds. Aging is also a major risk factor for multiple neurodegenerative disorders including Alzheimer’s disease (AD). Identifying a biomarker, or biomarkers, that signals the transition from physiological to pathological aging would aid in earlier therapeutic options or interventional strategies. Considering the importance of glutamate signaling in synaptic plasticity, motor movement, and cognition, this neurotransmitter serves as a juncture between cognitive health and disease. This article discusses glutamatergic signaling during physiological aging and the pathological changes observed in AD patients. Findings from studies in mouse models of successful aging and AD are reviewed and provide a biological context for this transition. Finally, current techniques to monitor brain glutamate are highlighted. These techniques may aid in elucidating time-point specific therapeutic windows to modify disease outcome.
Collapse
Affiliation(s)
- MaKayla F. Cox
- Dale and Deborah Smith Center for Alzheimer’s Research and Treatment, Department of Neurology, Neurosciences Institute, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Erin R. Hascup
- Dale and Deborah Smith Center for Alzheimer’s Research and Treatment, Department of Neurology, Neurosciences Institute, Southern Illinois University School of Medicine, Springfield, IL, United States
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Andrzej Bartke
- Dale and Deborah Smith Center for Alzheimer’s Research and Treatment, Department of Neurology, Neurosciences Institute, Southern Illinois University School of Medicine, Springfield, IL, United States
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL, United States
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Kevin N. Hascup
- Dale and Deborah Smith Center for Alzheimer’s Research and Treatment, Department of Neurology, Neurosciences Institute, Southern Illinois University School of Medicine, Springfield, IL, United States
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, United States
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, United States
- *Correspondence: Kevin N. Hascup,
| |
Collapse
|
26
|
Exploration of group II metabotropic glutamate receptor modulation in mouse models of Rett syndrome and MECP2 Duplication syndrome. Neuropharmacology 2022; 209:109022. [PMID: 35248529 PMCID: PMC8973998 DOI: 10.1016/j.neuropharm.2022.109022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/11/2022] [Accepted: 02/27/2022] [Indexed: 01/01/2023]
Abstract
Rett syndrome (RTT) and MECP2 Duplication syndrome (MDS) have opposing molecular origins in relation to expression and function of the transcriptional regulator Methyl-CpG-binding protein 2 (MeCP2). Several clinical and preclinical phenotypes, however, are shared between these disorders. Modulation of MeCP2 levels has recently emerged as a potential treatment option for both of these diseases. However, toxicity concerns remain with these approaches. Here, we focus on pharmacologically modulating the group II metabotropic glutamate receptors (mGlu), mGlu2 and mGlu3, which are two downstream targets of MeCP2 that are bidirectionally affected in expression in RTT patients and mice (Mecp2Null/+) versus an MDS mouse model (MECP2Tg1/o). Mecp2Null/+ and MECP2Tg1/o animals also exhibit contrasting phenotypes in trace fear acquisition, a form of temporal associative learning and memory, with trace fear deficiency observed in Mecp2Null/+ mice and abnormally enhanced trace fear acquisition in MECP2Tg1/o animals. In Mecp2Null/+ mice, treatment with the mGlu2/3 agonist LY379268 reverses the deficit in trace fear acquisition, and mGlu2/3 antagonism with LY341495 normalizes the abnormal trace fear learning and memory phenotype in MECP2Tg1/o mice. Altogether, these data highlight the role of group II mGlu receptors in RTT and MDS and demonstrate that both mGlu2 and mGlu3 may be potential therapeutic targets for these disorders.
Collapse
|
27
|
Glycoproteins of Capsosiphon fulvescens modulate synaptic clustering of PSD95 and prevent social isolation-induced cognitive decline in aged male rats. J Nutr Biochem 2022; 107:109054. [DOI: 10.1016/j.jnutbio.2022.109054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 03/27/2022] [Accepted: 04/06/2022] [Indexed: 11/18/2022]
|
28
|
Lebelt L, Głowacka IE, Piotrowska DG. Synthesis of Four Enantiomers of (1-Amino-3-Hydroxypropane-1,3-Diyl)Diphosphonic Acid as Diphosphonate Analogues of 4-Hydroxyglutamic Acid. Molecules 2022; 27:2699. [PMID: 35566049 PMCID: PMC9105571 DOI: 10.3390/molecules27092699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 02/04/2023] Open
Abstract
All the enantiomers of (1-amino-3-hydroxypropane-1,3-diyl)diphosphonic acid, newly design phosphonate analogues of 4-hydroxyglutamic acids, were obtained. The synthetic strategy involved Abramov reactions of diethyl (R)- and (S)-1-(N-Boc-amino)-3-oxopropylphosphonates with diethyl phosphite, separation of diastereoisomeric [1-(N-Boc-amino)-3-hydroxypropane-1,3-diyl]diphosphonates as O-protected esters, followed by their hydrolysis to the enantiomeric phosphonic acids. The absolute configuration of the enantiomeric phosphonates was established by comparing the 31P NMR chemical shifts of respective (S)-O-methylmandelic acid esters obtained from respective pairs of syn- and anti-[1-(N-Boc-amino)-3-hydroxypropane-1,3-diyl]diphosphonates according to the Spilling rule.
Collapse
Affiliation(s)
| | | | - Dorota G. Piotrowska
- Bioorganic Chemistry Laboratory, Faculty of Pharmacy, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland; (L.L.); (I.E.G.)
| |
Collapse
|
29
|
Zhang Y, Chu JMT, Wong GTC. Cerebral Glutamate Regulation and Receptor Changes in Perioperative Neuroinflammation and Cognitive Dysfunction. Biomolecules 2022; 12:biom12040597. [PMID: 35454185 PMCID: PMC9029551 DOI: 10.3390/biom12040597] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/11/2022] [Accepted: 04/15/2022] [Indexed: 12/23/2022] Open
Abstract
Glutamate is the major excitatory neurotransmitter in the central nervous system and is intricately linked to learning and memory. Its activity depends on the expression of AMPA and NMDA receptors and excitatory amino transporters on neurons and glial cells. Glutamate transporters prevent the excess accumulation of glutamate in synapses, which can lead to aberrant synaptic signaling, excitotoxicity, or cell death. Neuroinflammation can occur acutely after surgical trauma and contributes to the development of perioperative neurocognitive disorders, which are characterized by impairment in multiple cognitive domains. In this review, we aim to examine how glutamate handling and glutamatergic function are affected by neuroinflammation and their contribution to cognitive impairment. We will first summarize the current data regarding glutamate in neurotransmission, its receptors, and their regulation and trafficking. We will then examine the impact of inflammation on glutamate handling and neurotransmission, focusing on changes in glial cells and the effect of cytokines. Finally, we will discuss these changes in the context of perioperative neuroinflammation and the implications they have for perioperative neurocognitive disorders.
Collapse
|
30
|
Membrane polarization in non-neuronal cells as a potential mechanism of metabolic disruption by depolarizing insecticides. Food Chem Toxicol 2022; 160:112804. [PMID: 34990786 DOI: 10.1016/j.fct.2021.112804] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/22/2021] [Accepted: 12/31/2021] [Indexed: 01/01/2023]
Abstract
A significant rise in the incidence of obesity and type 2 diabetes has occurred worldwide in the last two decades. Concurrently, a growing body of evidence suggests a connection between exposure to environmental pollutants, particularly insecticides, and the development of obesity and type 2 diabetes. This review summarizes key evidence of (1) the presence of different types of neuronal receptors - target sites for neurotoxic insecticides - in non-neuronal cells, (2) the activation of these receptors in non-neuronal cells by membrane-depolarizing insecticides, and (3) changes in metabolic functions, including lipid and glucose accumulation, associated with changes in membrane potential. Based on these findings, we propose that changes in membrane potential (Vmem) by certain insecticides serve as a novel regulator of lipid and glucose metabolism in non-excitable cells associated with obesity and type 2 diabetes.
Collapse
|
31
|
Dyomina AV, Kovalenko AA, Zakharova MV, Postnikova TY, Griflyuk AV, Smolensky IV, Antonova IV, Zaitsev AV. MTEP, a Selective mGluR5 Antagonist, Had a Neuroprotective Effect but Did Not Prevent the Development of Spontaneous Recurrent Seizures and Behavioral Comorbidities in the Rat Lithium-Pilocarpine Model of Epilepsy. Int J Mol Sci 2022; 23:ijms23010497. [PMID: 35008924 PMCID: PMC8745728 DOI: 10.3390/ijms23010497] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/27/2021] [Accepted: 12/30/2021] [Indexed: 02/08/2023] Open
Abstract
Metabotropic glutamate receptors (mGluRs) are expressed predominantly on neurons and glial cells and are involved in the modulation of a wide range of signal transduction cascades. Therefore, different subtypes of mGluRs are considered a promising target for the treatment of various brain diseases. Previous studies have demonstrated the seizure-induced upregulation of mGluR5; however, its functional significance is still unclear. In the present study, we aimed to clarify the effect of treatment with the selective mGluR5 antagonist 3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]-pyridine (MTEP) on epileptogenesis and behavioral impairments in rats using the lithium–pilocarpine model. We found that the administration of MTEP during the latent phase of the model did not improve survival, prevent the development of epilepsy, or attenuate its manifestations in rats. However, MTEP treatment completely prevented neuronal loss and partially attenuated astrogliosis in the hippocampus. An increase in excitatory amino acid transporter 2 expression, which has been detected in treated rats, may prevent excitotoxicity and be a potential mechanism of neuroprotection. We also found that MTEP administration did not prevent the behavioral comorbidities such as depressive-like behavior, motor hyperactivity, reduction of exploratory behavior, and cognitive impairments typical in the lithium–pilocarpine model. Thus, despite the distinct neuroprotective effect, the MTEP treatment was ineffective in preventing epilepsy.
Collapse
|
32
|
Kim JH, Joo YH, Son YD, Kim HK, Kim JH. Differences in mGluR5 Availability Depending on the Level of Social Avoidance in Drug-Naïve Young Patients with Major Depressive Disorder. Neuropsychiatr Dis Treat 2022; 18:2041-2053. [PMID: 36124236 PMCID: PMC9481450 DOI: 10.2147/ndt.s379395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/03/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Previous research has shown that metabotropic glutamate receptor-5 (mGluR5) signaling is significantly involved in social avoidance. We investigated the relationship between levels of social avoidance and mGluR5 availability in drug-naïve young patients with major depressive disorder (MDD). METHODS Twenty non-smoking patients and eighteen matched non-smoking healthy controls underwent [11C]ABP688 positron emission tomography (PET) and magnetic resonance imaging scans. The binding potential (BPND) of [11C]ABP688 was obtained using the simplified reference tissue model. Patients' level of social avoidance was assessed using the Social Avoidance and Distress Scale (SADS). For [11C]ABP688 BPND, the region-of-interest (ROI)-based between-group comparisons and correlations with SADS scores were investigated. The frontal cortices were chosen as a priori ROIs based on previous PET investigations in MDD, and on literature underscoring the importance of the frontal cortex in social avoidance. RESULTS Independent samples t-tests revealed no significant differences in [11C]ABP688 BPND in the frontal cortices between the MDD patient group as a whole and healthy controls. One-way analysis of variance with post-hoc tests revealed significantly lower BPND in the bilateral superior frontal cortex (SFC) and left middle frontal cortex (MFC) in MDD patients with low levels of social avoidance (L-SADS) than in healthy controls. The L-SADS patients also had significantly lower BPND in the medial part of the right SFC than both MDD patients with high levels of social avoidance (H-SADS) and healthy controls. The L-SADS patients also showed significantly lower BPND in the orbital parts of the SFC, MFC, and inferior frontal cortex than H-SADS patients. No significant group differences were found between H-SADS patients and healthy controls. The ROI-based correlation analysis revealed significant positive correlations between social avoidance levels and frontal [11C]ABP688 BPND in the entire patients. CONCLUSION Our exploratory study shows significant differences in frontal mGluR5 availability depending on the level of social avoidance in drug-naïve non-smoking MDD patients, suggesting that social avoidance should be considered as one of the clinical factors involved in mGluR5 signaling changes in depression.
Collapse
Affiliation(s)
- Jeong-Hee Kim
- Neuroscience Research Institute, Gachon University, Incheon, Republic of Korea.,Department of Biomedical Engineering, College of Health Science, Gachon University, Incheon, Republic of Korea
| | - Yo-Han Joo
- Neuroscience Research Institute, Gachon University, Incheon, Republic of Korea
| | - Young-Don Son
- Neuroscience Research Institute, Gachon University, Incheon, Republic of Korea.,Department of Biomedical Engineering, College of Health Science, Gachon University, Incheon, Republic of Korea.,Gachon Advanced Institute for Health Sciences & Technology, Gachon University, Incheon, Republic of Korea
| | - Hang-Keun Kim
- Neuroscience Research Institute, Gachon University, Incheon, Republic of Korea.,Department of Biomedical Engineering, College of Health Science, Gachon University, Incheon, Republic of Korea.,Gachon Advanced Institute for Health Sciences & Technology, Gachon University, Incheon, Republic of Korea
| | - Jong-Hoon Kim
- Neuroscience Research Institute, Gachon University, Incheon, Republic of Korea.,Gachon Advanced Institute for Health Sciences & Technology, Gachon University, Incheon, Republic of Korea.,Department of Psychiatry, Gachon University College of Medicine, Gil Medical Center, Incheon, Republic of Korea
| |
Collapse
|
33
|
Mantas I, Saarinen M, Xu ZQD, Svenningsson P. Update on GPCR-based targets for the development of novel antidepressants. Mol Psychiatry 2022; 27:534-558. [PMID: 33589739 PMCID: PMC8960420 DOI: 10.1038/s41380-021-01040-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 01/31/2023]
Abstract
Traditional antidepressants largely interfere with monoaminergic transport or degradation systems, taking several weeks to have their therapeutic actions. Moreover, a large proportion of depressed patients are resistant to these therapies. Several atypical antidepressants have been developed which interact with G protein coupled receptors (GPCRs) instead, as direct targeting of receptors may achieve more efficacious and faster antidepressant actions. The focus of this review is to provide an update on how distinct GPCRs mediate antidepressant actions and discuss recent insights into how GPCRs regulate the pathophysiology of Major Depressive Disorder (MDD). We also discuss the therapeutic potential of novel GPCR targets, which are appealing due to their ligand selectivity, expression pattern, or pharmacological profiles. Finally, we highlight recent advances in understanding GPCR pharmacology and structure, and how they may provide new avenues for drug development.
Collapse
Affiliation(s)
- Ioannis Mantas
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Marcus Saarinen
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Zhi-Qing David Xu
- Department of Neurobiology, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Per Svenningsson
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
34
|
Stachowicz K, Bobula B, Kusek M, Lenda T, Tokarski K. Evidence for the interaction of COX-2 with mGluR5 in the regulation of EAAT1 and EAAT3 protein levels in the mouse hippocampus. The influence of oxidative stress mechanisms. Brain Res 2021; 1771:147660. [PMID: 34529964 DOI: 10.1016/j.brainres.2021.147660] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/17/2021] [Accepted: 09/07/2021] [Indexed: 12/29/2022]
Abstract
Since we found that inhibition of cyclooxygenase-2 (COX-2) with concomitant application of a metabotropic glutamate receptor subtype 5 (mGluR5) antagonist (MTEP) down-regulates mGluR7 in the hippocampus (HC) and changes behavior of mice, our team decided to investigate the mechanism responsible for the observed changes. The amino acid glutamate (Glu) is a major excitatory neurotransmitter in the brain. Glu uptake is regulated by excitatory amino acid transporters (EAAT). There are five transporters with documented expression in neurons and glia in the central nervous system (CNS). EAATs, maintain the correct transmission of the Glu signal and prevent its toxic accumulation by removing Glu from the synapse. It has been documented that the toxic level of Glu is one of the main causes of mental and cognitive abnormalities. Given the above mechanisms involved in the functioning of the Glu synapse, we hypothesized modification of Glu uptake, involving EAATs as the cause of the observed changes. This study investigated the level of selected EAATs in the HC after chronic treatment with mGluR5 antagonist MTEP, NS398, and their combination using Western blot. Concomitant MTEP treatment with NS398 or a single administration of the above causes changes in LTP and modulation of EAAT levels in mouse HC. As EAATs are cellular markers of oxidative stress mechanisms, the E. coli lipopolysaccharide (LPS) challenge was performed. The modified Barnes maze test (MBM) revealed alterations in the mouse spatial learning abilities. This study reports an interaction between the mGluR5 and COX-2 in the HC, with EAAT1 and EAAT3 involvement.
Collapse
Affiliation(s)
- Katarzyna Stachowicz
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland.
| | - Bartosz Bobula
- Department of Physiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Magdalena Kusek
- Department of Physiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Tomasz Lenda
- Department of Neuro- and Psychopharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Krzysztof Tokarski
- Department of Physiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| |
Collapse
|
35
|
Upregulation of the mGlu5 receptor and COX-2 protein in the mouse brain after imipramine and NS398, searching for mechanisms of regulation. Neurochem Int 2021; 150:105193. [PMID: 34571049 DOI: 10.1016/j.neuint.2021.105193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 11/24/2022]
Abstract
Imipramine belongs to a group of tricyclic antidepressants (TCAs). It has been also documented that its antidepressant activity connects with the modulation of cytosolic phospholipase A2 (cPLA2) and arachidonic acid (AA) turnover. Through this mechanism, imipramine can indirectly modify glutamate (Glu) transmission. Additionally, it has been shown that chronic treatment with imipramine results in the upregulation of the metabotropic glutamate receptor subtype 5 (mGlu5 receptor) in the hippocampus of rats. Our previous study revealed that manipulation of the AA pathway via inhibition of cyclooxygenase-2 (COX-2) by selective COX-2 inhibitor (NS398) could effectively modulate the behavior of mice treated with imipramine. Here, we hypothesized that COX-2 inhibition could similarly to imipramine influence mGlu5 receptor, and thus NS398 can modulate the effect of imipramine on Glu. Moreover, such regulation changes should correspond with alterations in neurotransmission. Increased cPLA activity after imipramine administration may change the activity of the AA pathway and the endocannabinoid metabolism, e.g., 2-Arachidonyl-glycerol (2-AG). To verify the idea, mGlu5 receptor level was investigated in the hippocampus (HC) and prefrontal cortex (PFC) of mice treated for 7 or 14 days with imipramine and/or COX-2 inhibitor: NS398. Western blot and PCR analyses were conducted. Moreover, the excitatory (Glu) and inhibitory (gamma-aminobutyric acid; GABA) neurotransmitters were measured using HPLC and 2-AG using ELISA. A time-dependent change in mGlu5 receptor and COX-2 protein level, COX-2 expression, and 2-AG level in the PFC after imipramine administration was found. Up-regulation of mGlu5 receptor after NS398 was found in HC and PFC. A structure-dependent shift between excitatory vs. inhibitory transmission was detected when NS398 and imipramine were co-administered.
Collapse
|
36
|
Watanabe M, Marcy B, Hiroki A, Watase H, Kinoshita K, Iijima M, Marumo T, Zarate CA, Chaki S. Evaluation of the Safety, Tolerability, and Pharmacokinetic Profiles of TP0473292 (TS-161), A Prodrug of a Novel Orthosteric mGlu2/3 Receptor Antagonist TP0178894, in Healthy Subjects and Its Antidepressant-Like Effects in Rodents. Int J Neuropsychopharmacol 2021; 25:106-117. [PMID: 34534292 PMCID: PMC8832229 DOI: 10.1093/ijnp/pyab062] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/09/2021] [Accepted: 09/15/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND TP0473292 (the active ingredient of TS-161) is a prodrug of a novel metabotropic glutamate (mGlu) 2/3 receptor antagonist being developed for the treatment of patients with depression. This study evaluated the safety, tolerability, and pharmacokinetics of orally administered TS-161 in healthy subjects. METHODS This was a first-in-human, phase 1, randomized, double-blind, placebo-controlled, single-ascending dose (15-400 mg TS-161) and 10-day multiple-ascending dose (50-150 mg TS-161) study in healthy subjects, conducted from June 2019 through February 2020. Plasma and urine concentrations of the prodrug and its metabolites, and cerebrospinal fluid (CSF) concentrations of the active metabolite TP0178894 were measured to evaluate the pharmacokinetic profiles after oral administration of TS-161. RESULTS Following single and multiple doses, TP0473292 was extensively converted into its active metabolite TP0178894. Plasma concentrations of TP0178894 reached peak (Cmax) within 5 hours post dose and declined with a t1/2 <13 hours. Plasma exposures of TP0178894 increased with increasing dose. TP0178894 penetrated into CSF and reached a Cmax of 9.892 ng/mL at a single dose of 100 mg, which was comparable with IC50 values of antagonist activity at mGlu2/3 receptors. The most frequently observed adverse events that showed exposure-related incidence during the study were nausea, vomiting, and dizziness. CONCLUSIONS The mGlu2/3 receptor antagonist prodrug TP0473292 is safe and well-tolerated, is orally bioavailable in humans with extensive conversion into the active metabolite TP0178894 with sufficient CSF penetration to exert the anticipated pharmacological effects, and is a promising candidate for further clinical development in treatment of patients with depression.
Collapse
Affiliation(s)
- Mai Watanabe
- Taisho Pharmaceutical R&D Inc., Morristown, New Jersey, USA,Correspondence: Mai Watanabe, MS, Taisho Pharmaceutical R&D Inc., 350 Mt. Kemble Avenue, Morristown, NJ 07960, USA ()
| | - Brian Marcy
- Taisho Pharmaceutical R&D Inc., Morristown, New Jersey, USA
| | | | | | | | | | | | - Carlos A Zarate
- National Institute of Mental Health, National Institute of Health, Bethesda, Maryland, USA
| | | |
Collapse
|
37
|
Sahraei M, Sahraei H, Rahimi M, Khosravi M, Ganjkhani M, Meftahi GH. Anxiogenic and anxiolytic effects of memantine injected into the ventral hippocampus in male stressed mice. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2021; 19:581-589. [PMID: 34533006 DOI: 10.1515/jcim-2021-0159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 08/24/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES The effects of intra-ventral hippocampal memantine administration in male NMRI stressed mice were studied. METHODS Two stainless steel gauge 23 guide cannulas were placed in the middle part of the mice ventral hippocampus using stereotaxic coordination. Seven days later, the animals were undergone to the stress protocol as follows: They experience four consecutive electro-foot shock stress sessions lasting for 10 min. Five or 30 min before each stress session, the animals received intra-ventral hippocampal (0.1, 1 and, 5 µg/mouse) or intraperitoneal (1, 5, and 10 mg/kg) memantine respectively. Eight days after stress termination, the animals were tested either for the maintenance of either anxiety (elevated plus maze) or depression (forced swimming test). RESULTS Animals show anxiety eight days after stress termination. Intra-ventral hippocampal infusion of memantine (5 µg/mouse) 5 min before stress inhibited the anxiety-like behaviors. However, other doses of the drug exacerbate the stress effect. The drug, when injected peripherally exacerbated the stress effect in all doses. The drug by itself had no effect. In addition, animals also show depression nine days after stress termination and memantine (0.1, 1, and 5 µg/mouse) reduced the stress effect. The drug (0.1 µg/mouse) by itself induced depression in the animals. However, the drug when injected peripherally reduced the stress effect in all doses. CONCLUSIONS It could be concluded that NMDA glutamate receptors in the ventral hippocampus may play a pivotal role in the mediation of maintenance of anxiety and depression induced by stress in the mice.
Collapse
Affiliation(s)
- Mohammad Sahraei
- School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hedayat Sahraei
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Masoomeh Rahimi
- Department of Biology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Maryam Khosravi
- Department of Biology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mahin Ganjkhani
- Department of Physiology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | | |
Collapse
|
38
|
Identification of an endogenous glutamatergic transmitter system controlling excitability and conductivity of atrial cardiomyocytes. Cell Res 2021; 31:951-964. [PMID: 33824424 PMCID: PMC8410866 DOI: 10.1038/s41422-021-00499-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/10/2021] [Indexed: 02/06/2023] Open
Abstract
As an excitatory transmitter system, the glutamatergic transmitter system controls excitability and conductivity of neurons. Since both cardiomyocytes and neurons are excitable cells, we hypothesized that cardiomyocytes may also be regulated by a similar system. Here, we have demonstrated that atrial cardiomyocytes have an intrinsic glutamatergic transmitter system, which regulates the generation and propagation of action potentials. First, there are abundant vesicles containing glutamate beneath the plasma membrane of rat atrial cardiomyocytes. Second, rat atrial cardiomyocytes express key elements of the glutamatergic transmitter system, such as the glutamate metabolic enzyme, ionotropic glutamate receptors (iGluRs), and glutamate transporters. Third, iGluR agonists evoke iGluR-gated currents and decrease the threshold of electrical excitability in rat atrial cardiomyocytes. Fourth, iGluR antagonists strikingly attenuate the conduction velocity of electrical impulses in rat atrial myocardium both in vitro and in vivo. Knockdown of GRIA3 or GRIN1, two highly expressed iGluR subtypes in atria, drastically decreased the excitatory firing rate and slowed down the electrical conduction velocity in cultured human induced pluripotent stem cell (iPSC)-derived atrial cardiomyocyte monolayers. Finally, iGluR antagonists effectively prevent and terminate atrial fibrillation in a rat isolated heart model. In addition, the key elements of the glutamatergic transmitter system are also present and show electrophysiological functions in human atrial cardiomyocytes. In conclusion, our data reveal an intrinsic glutamatergic transmitter system directly modulating excitability and conductivity of atrial cardiomyocytes through controlling iGluR-gated currents. Manipulation of this system may open potential new avenues for therapeutic intervention of cardiac arrhythmias.
Collapse
|
39
|
Zangrandi L, Schmuckermair C, Ghareh H, Castaldi F, Heilbronn R, Zernig G, Ferraguti F, Ramos-Prats A. Loss of mGluR5 in D1 Receptor-Expressing Neurons Improves Stress Coping. Int J Mol Sci 2021; 22:ijms22157826. [PMID: 34360592 PMCID: PMC8346057 DOI: 10.3390/ijms22157826] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/11/2021] [Accepted: 07/19/2021] [Indexed: 11/16/2022] Open
Abstract
The metabotropic glutamate receptor type 5 (mGluR5) has been proposed to play a crucial role in the selection and regulation of cognitive, affective, and emotional behaviors. However, the mechanisms by which these receptors mediate these effects remain largely unexplored. Here, we studied the role of mGluR5 located in D1 receptor-expressing (D1) neurons in the manifestation of different behavioral expressions. Mice with conditional knockout (cKO) of mGluR5 in D1 neurons (mGluR5D1 cKO) and littermate controls displayed similar phenotypical profiles in relation to memory expression, anxiety, and social behaviors. However, mGluR5D1 cKO mice presented different coping mechanisms in response to acute escapable or inescapable stress. mGluR5D1 cKO mice adopted an enhanced active stress coping strategy upon exposure to escapable stress in the two-way active avoidance (TWA) task and a greater passive strategy upon exposure to inescapable stress in the forced swim test (FST). In summary, this work provides evidence for a functional integration of the dopaminergic and glutamatergic system to mediate control over internal states upon stress exposure and directly implicates D1 neurons and mGluR5 as crucial mediators of behavioral stress responses.
Collapse
Affiliation(s)
- Luca Zangrandi
- Department of Neurology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (L.Z.); (R.H.)
- Institute of Pharmacology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (C.S.); (F.C.); (F.F.)
| | - Claudia Schmuckermair
- Institute of Pharmacology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (C.S.); (F.C.); (F.F.)
| | - Hussein Ghareh
- Department of Psychiatry 1, Medical University of Innsbruck, 6020 Innsbruck, Austria; (H.G.); (G.Z.)
| | - Federico Castaldi
- Institute of Pharmacology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (C.S.); (F.C.); (F.F.)
| | - Regine Heilbronn
- Department of Neurology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (L.Z.); (R.H.)
| | - Gerald Zernig
- Department of Psychiatry 1, Medical University of Innsbruck, 6020 Innsbruck, Austria; (H.G.); (G.Z.)
| | - Francesco Ferraguti
- Institute of Pharmacology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (C.S.); (F.C.); (F.F.)
| | - Arnau Ramos-Prats
- Institute of Pharmacology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (C.S.); (F.C.); (F.F.)
- Correspondence:
| |
Collapse
|
40
|
Holter KM, Lekander AD, LaValley CM, Bedingham EG, Pierce BE, Sands LP, Lindsley CW, Jones CK, Gould RW. Partial mGlu 5 Negative Allosteric Modulator M-5MPEP Demonstrates Antidepressant-Like Effects on Sleep Without Affecting Cognition or Quantitative EEG. Front Neurosci 2021; 15:700822. [PMID: 34276300 PMCID: PMC8283128 DOI: 10.3389/fnins.2021.700822] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/03/2021] [Indexed: 01/28/2023] Open
Abstract
Selective negative allosteric modulators (NAMs) targeting the metabotropic glutamate receptor subtype 5 (mGlu5) demonstrate anxiolytic-like and antidepressant-like effects yet concern regarding adverse effect liability remains. Functional coupling of mGlu5 with ionotropic N-methyl-D-aspartate receptors (NMDARs) represents a potential mechanism through which full inhibition leads to adverse effects, as NMDAR inhibition can induce cognitive impairments and psychotomimetic-like effects. Recent development of "partial" mGlu5 NAMs, characterized by submaximal but saturable levels of blockade, may represent a novel development approach to broaden the therapeutic index of mGlu5 NAMs. This study compared the partial mGlu5 NAM, M-5MPEP, with the full mGlu5 NAM, VU0424238 on sleep, cognition, and brain function alone and in combination with a subthreshold dose of the NMDAR antagonist, MK-801, using a paired-associates learning (PAL) cognition task and electroencephalography (EEG) in rats. M-5MPEP and VU0424238 decreased rapid eye movement (REM) sleep and increased REM sleep latency, both putative biomarkers of antidepressant-like activity. Neither compound alone affected accuracy, but 30 mg/kg VU0424238 combined with MK-801 decreased accuracy on the PAL task. Using quantitative EEG, VU0424238, but not M-5MPEP, prolonged arousal-related elevations in high gamma power, and, in combination, VU0424238 potentiated effects of MK-801 on high gamma power. Together, these studies further support a functional interaction between mGlu5 and NMDARs that may correspond with cognitive impairments. Present data support further development of partial mGlu5 NAMs given their potentially broader therapeutic index than full mGlu5 NAMs and use of EEG as a translational biomarker to titrate doses aligning with therapeutic versus adverse effects.
Collapse
Affiliation(s)
- Kimberly M. Holter
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Alex D. Lekander
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Christina M. LaValley
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | | | - Bethany E. Pierce
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - L. Paul Sands
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Craig W. Lindsley
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, United States
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, United States
- Department of Chemistry, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Carrie K. Jones
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, United States
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, United States
| | - Robert W. Gould
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
41
|
Su LD, Wang N, Han J, Shen Y. Group 1 Metabotropic Glutamate Receptors in Neurological and Psychiatric Diseases: Mechanisms and Prospective. Neuroscientist 2021; 28:453-468. [PMID: 34088252 PMCID: PMC9449437 DOI: 10.1177/10738584211021018] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Metabotropic glutamate receptors (mGluRs) are G-protein coupled receptors
that are activated by glutamate in the central nervous system (CNS).
Basically, mGluRs contribute to fine-tuning of synaptic efficacy and
control the accuracy and sharpness of neurotransmission. Among eight
subtypes, mGluR1 and mGluR5 belong to group 1 (Gp1) family, and are
implicated in multiple CNS disorders, such as Alzheimer’s disease,
autism, Parkinson’s disease, and so on. In the present review, we
systematically discussed underlying mechanisms and prospective of Gp1
mGluRs in a group of neurological and psychiatric diseases, including
Alzheimer’s disease, Parkinson’s disease, autism spectrum disorder,
epilepsy, Huntington’s disease, intellectual disability, Down’s
syndrome, Rett syndrome, attention-deficit hyperactivity disorder,
addiction, anxiety, nociception, schizophrenia, and depression, in
order to provide more insights into the therapeutic potential of Gp1
mGluRs.
Collapse
Affiliation(s)
- Li-Da Su
- Neuroscience Care Unit, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Na Wang
- School of Medicine, Zhejiang University City College, Hangzhou, China
| | - Junhai Han
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Ying Shen
- Department of Physiology, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
42
|
Singla R, Mishra A, Joshi R, Kumar R, Sarma P, Sharma AR, Kaur G, Bhatia A, Medhi B. Inhibition of the ERK1/2 Phosphorylation by Dextromethorphan Protects against Core Autistic Symptoms in VPA Induced Autistic Rats: In Silico and in Vivo Drug Repurposition Study. ACS Chem Neurosci 2021; 12:1749-1767. [PMID: 33913688 DOI: 10.1021/acschemneuro.0c00672] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The imbalance between excitatory and inhibitory neurotransmitters is explicitly related to the pathophysiology of autism spectrum disorder (ASD). The role of an NMDA receptor antagonist, dextromethorphan, was studied in ameliorating the ASD-like symptoms by regulating the excitatory and inhibitory imbalance using the valproic acid (VPA) model of ASD. Female Wistar rats were administered VPA [600 mg/kg on embryonic day ED-12.5] through intraperitoneal (ip) injection to induce ASD in pups. Autistic pups were then given dextromethorphan (10, 15, and 30 mg/kg; ip) and risperidone (2.5 mg/kg; ip) from PND 23 to 43 in different groups. Behavioral tests (three chamber sociability, self-grooming, Morris water maze, elevated plus maze, open field, rotarod, grip strength), oxidative stress and inflammatory markers, histological evaluation (H&E, Nissil staining), and NMDA and ERK1/2 expression by immunohistochemistry and RT-PCR were done. The in silico modeling of dextromethorphan against PPDA, TCN-201, MK-22, EVT-101 on NMDA receptors was also performed. Dextromethorphan (30 mg/kg) rescued the impaired behavioral patterns including social excitability, hyperactivity, repetitive and restricted behaviors as well as mitigation of the memory and motor coordination. The levels of various oxidative stress markers (GSH, SOD, catalase, MDA) and inflammatory markers (IL-1β, IL-6, IL-10, TNF-α) were ameliorated by different doses of dextromethorphan. It also reduced the neuronal injury score and rescued the overly expressed pERK1/2 and NMDA signaling in both the prefrontal cortex and hippocampus of the autistic pups. In silico results showed favorable binding of dextromethorphan against TCN-201 and MK-22 binding sites. The present study provided experimental evidence for the potential therapeutic role of dextromethorphan in attenuating autism symptomatology in the ASD model of rats. Thus, modulation of the glutamatergic signaling can be a potential target for ASD treatment.
Collapse
Affiliation(s)
- Rubal Singla
- Department of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India
| | - Abhishek Mishra
- Department of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India
| | - Rupa Joshi
- Department of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India
| | - Rohit Kumar
- Department of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India
| | - Phulen Sarma
- Department of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India
| | - Amit Raj Sharma
- Department of Neurology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India
| | - Gurjeet Kaur
- Department of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India
| | - Alka Bhatia
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India
| | - Bikash Medhi
- Department of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India
| |
Collapse
|
43
|
Maternal stress programs a demasculinization of glutamatergic transmission in stress-related brain regions of aged rats. GeroScience 2021; 44:1047-1069. [PMID: 33983623 PMCID: PMC8116647 DOI: 10.1007/s11357-021-00375-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 04/20/2021] [Indexed: 12/20/2022] Open
Abstract
Brain aging may be programmed by early-life stress. Aging affects males and females differently, but how perinatal stress (PRS) affects brain aging between sexes is unknown. We showed behavioral and neurobiological sex differences in non-stressed control rats that were strongly reduced or inverted in PRS rats. In particular, PRS decreased risk-taking behavior, spatial memory, exploratory behavior, and fine motor behavior in male aged rats. In contrast, female aged PRS rats displayed only increased risk-taking behavior and reduced exploratory behavior. PRS induced large reductions in the expression of glutamate receptors in the ventral and dorsal hippocampus and prefrontal cortex only in male rats. PRS also reduced the expression of synaptic vesicle-associated proteins, glucocorticoid receptors (GR), and mineralocorticoid receptors (MR) in the ventral hippocampus of aged male rats. In contrast, in female aged rats, PRS enhanced the expression of MRs and brain-derived neurotrophic factor (BDNF) in the ventral hippocampus and the expression of glial fibrillary acidic protein (GFAP) and BDNF in the prefrontal cortex. A common PRS effect in both sexes was a reduction in exploratory behavior and metabotropic glutamate (mGlu2/3) receptors in the ventral hippocampus and prefrontal cortex. A multidimensional analysis revealed that PRS induced a demasculinization profile in glutamate-related proteins in the ventral and dorsal hippocampus and prefrontal cortex, as well as a demasculinization profile of stress markers only in the dorsal hippocampus. In contrast, defeminization was observed only in the ventral hippocampus. Measurements of testosterone and 17-β-estradiol in the plasma and aromatase in the dorsal hippocampus were consistent with a demasculinizing action of PRS. These findings confirm that the brains of males and females differentially respond to PRS and aging suggesting that females might be more protected against early stress and age-related inflammation and neurodegeneration. Taken together, these results may contribute to understanding how early environmental factors shape vulnerability to brain aging in both sexes and may lay the groundwork for future studies aimed at identifying new treatment strategies to improve the quality of life of older individuals, which is of particular interest given that there is a high growth of aging in populations around the world.
Collapse
|
44
|
O'Rourke T, Martins PT, Asano R, Tachibana RO, Okanoya K, Boeckx C. Capturing the Effects of Domestication on Vocal Learning Complexity. Trends Cogn Sci 2021; 25:462-474. [PMID: 33810982 DOI: 10.1016/j.tics.2021.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 03/08/2021] [Accepted: 03/08/2021] [Indexed: 11/28/2022]
Abstract
Domesticated and vocal learning species can serve as informative model organisms for the reduction of reactive aggression and emergence of speech in our lineage. Amidst mounting evidence that domestication modifies vocal repertoires across different species, we focus on the domesticated Bengalese finch, which has a more complex song than the wild-type white-rumped munia. Our explanation for this effect revolves around the glutamate neurotransmitter system. Glutamate signaling (i) is implicated in birdsong learning, (ii) controls dopamine activity in neural circuits crucial for vocal learning, (iii) is disproportionately targeted in the evolution of domesticates, and (iv) regulates stress responses and aggressive behaviors attenuated under domestication. We propose that attenuated excitation of stress-related neural circuits potentiates vocal learning via altered dopaminergic signaling.
Collapse
Affiliation(s)
- Thomas O'Rourke
- Section of General Linguistics, University of Barcelona, 08007 Barcelona, Spain; University of Barcelona Institute for Complex Systems (UBICS), 08028 Barcelona, Spain
| | - Pedro Tiago Martins
- Section of General Linguistics, University of Barcelona, 08007 Barcelona, Spain; University of Barcelona Institute for Complex Systems (UBICS), 08028 Barcelona, Spain
| | - Rie Asano
- Department of Systematic Musicology, University of Cologne, 50923 Cologne, Germany
| | - Ryosuke O Tachibana
- Center for Evolutionary Cognitive Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 153-8902 Tokyo, Japan
| | - Kazuo Okanoya
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 153-8902 Tokyo, Japan
| | - Cedric Boeckx
- Section of General Linguistics, University of Barcelona, 08007 Barcelona, Spain; University of Barcelona Institute for Complex Systems (UBICS), 08028 Barcelona, Spain; Catalan Institute for Advanced Studies and Research (ICREA), 08010 Barcelona, Spain.
| |
Collapse
|
45
|
Ebrahimi Z, Kahvandi N, Komaki A, Karimi SA, Naderishahab M, Sarihi A. The role of mGlu4 receptors within the nucleus accumbens in acquisition and expression of morphine-induced conditioned place preference in male rats. BMC Neurosci 2021; 22:17. [PMID: 33743609 PMCID: PMC7981834 DOI: 10.1186/s12868-021-00627-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/12/2021] [Indexed: 11/26/2022] Open
Abstract
Background Several studies have shown that glutamate neurotransmission in the nucleus accumbens (NAc) is required for the development of morphine-induced conditional place preference (CPP). In addition, metabotropic glutamate receptors (mGluRs) in NAc play important roles in the reward pathways. However, the precise role of mGluR4 in different steps of the morphine-induced CPP is less well known. In the present study the effect of bilateral intra-accumbal infusion of VU0155041, as a specific mGluR4 agonist on the acquisition and expression of morphine induced CPP in male Wistar rats was investigated. The animals were bilaterally implanted with guide cannulae above the NAc. In the first step of the study, the VU0155041 was administered at doses of 10, 30 and 50 μg/0.5 μL saline per side into the NAc during the 3 days of morphine (5 mg/kg) conditioning (acquisition) phase of morphine-induced CPP. In the second step of the study, the rats bilaterally received VU0155041 at the dose of 50 μg/0.5 μL, 5 min before the post-conditioning test in order to check the effect of VU0155041 on the expression of morphine-induced CPP. Results The results showed that the intra-accumbal injection of VU0155041 inhibits the acquisition of morphine-induced CPP in a dose dependent manner, but had no effect on expression. Conclusions The data indicated that intra-NAc administration of VU0155041 dose dependently blocks the establishment of morphine-induced CPP and reduces the rewarding properties of morphine. These effects may be related to changes in glutamate activity in the NAC and/or learning dependent mechanism of glutamate neurotransmission in reward pathway(s).
Collapse
Affiliation(s)
- Zahra Ebrahimi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Nazanin Kahvandi
- Department of Physiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.,Department of Neuroscience, School of Sciences and Advanced Technology in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Seyed Asaad Karimi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.,Department of Neuroscience, School of Sciences and Advanced Technology in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Marzieh Naderishahab
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Abdolrahman Sarihi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran. .,Department of Neuroscience, School of Sciences and Advanced Technology in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
46
|
A short synthesis of both enantiomers of 2-aminobicyclo[3.2.0]heptane-2,7-dicarboxylic acid. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.152912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
47
|
Streffer J, Treyer V, Buck A, Ametamey SM, Blagoev M, Maguire RP, Gautier A, Auberson YP, Schmidt ME, Vranesic IT, Gomez-Mancilla B, Gasparini F. Regional brain mGlu5 receptor occupancy following single oral doses of mavoglurant as measured by [ 11C]-ABP688 PET imaging in healthy volunteers. Neuroimage 2021; 230:117785. [PMID: 33545349 DOI: 10.1016/j.neuroimage.2021.117785] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/17/2020] [Accepted: 01/13/2021] [Indexed: 11/16/2022] Open
Abstract
Mavoglurant binds to same allosteric site on metabotropic glutamate receptor 5 (mGluR5) as [11C]-ABP688, a radioligand. This open-label, single-center pilot study estimates extent of occupancy of mGluR5 receptors following single oral doses of mavoglurant, using [11C]-ABP688 positron emission tomography (PET) imaging, in six healthy males aged 20-40 years. This study comprised three periods and six subjects were divided into two cohorts. On Day 1 (Period 1), baseline clinical data and safety samples were obtained along with PET scan. During Period 2 (1-7 days after Period 1), cohort 1 and 2 received mavoglurant 25 mg and 100 mg, respectively. During Period 3 (7 days after Period 2), cohort 1 and 2 received mavoglurant 200 mg and 400 mg, respectively. Mavoglurant showed the highest distribution volumes in the cingulate region with lower uptake in cerebellum and white matter, possibly because myelinated axonal sheets maybe devoid of mGlu5 receptors. Maximum concentrations of mavoglurant were observed around 2-3.25 h post-dose. Mavoglurant passed the blood-brain barrier and induced dose- and exposure-dependent displacement of [11C]-ABP688 from the mGluR5 receptors, 3-4 h post-administration (27%, 59%, 74%, 85% receptor occupancy for mavoglurant 25 mg, 100 mg, 200 mg, 400 mg dose, respectively). There were no severe adverse effects or clinically significant changes in safety parameters. This is the first human receptor occupancy study completed with Mavoglurant. It served to guide the dosing of mavoglurant in the past and currently ongoing clinical studies. Furthermore, it confirms the utility of [11C]-ABP688 as a unique tool to study drug-induced occupancy of mGlu5 receptors in the living human brain.
Collapse
Affiliation(s)
- Johannes Streffer
- Division of Psychiatric Research, University of Zurich, Zurich, Switzerland
| | - Valerie Treyer
- Department of Nuclear Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Alfred Buck
- Department of Nuclear Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Simon M Ametamey
- Radiopharmaceutical Sciences, Institute of Pharmaceutical Sciences, Zurich, Switzerland
| | - Milen Blagoev
- Department of Nuclear Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Ralph P Maguire
- Novartis Institutes for Biomedical Research, Novartis Pharma AG, Postfach, Basel CH-4002, Switzerland
| | - Aurélie Gautier
- Global Drug Development, Novartis Pharma AG, Basel, Switzerland
| | - Yves P Auberson
- Novartis Institutes for Biomedical Research, Novartis Pharma AG, Postfach, Basel CH-4002, Switzerland
| | - Mark E Schmidt
- Novartis Institutes for Biomedical Research, Novartis Pharma AG, Postfach, Basel CH-4002, Switzerland
| | - Ivan-Toma Vranesic
- Novartis Institutes for Biomedical Research, Novartis Pharma AG, Postfach, Basel CH-4002, Switzerland
| | - Baltazar Gomez-Mancilla
- Novartis Institutes for Biomedical Research, Novartis Pharma AG, Postfach, Basel CH-4002, Switzerland
| | - Fabrizio Gasparini
- Novartis Institutes for Biomedical Research, Novartis Pharma AG, Postfach, Basel CH-4002, Switzerland.
| |
Collapse
|
48
|
Stachowicz K, Sowa-Kućma M, Pańczyszyn-Trzewik P, Misztak P, Marciniak M, Bobula B, Tokarski K. Behavioral consequences of co-administration of MTEP and the COX-2 inhibitor NS398 in mice. Part 2. Neurosci Lett 2021; 741:135435. [PMID: 33171212 DOI: 10.1016/j.neulet.2020.135435] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 09/14/2020] [Accepted: 10/06/2020] [Indexed: 11/22/2022]
Abstract
Our earlier study demonstrated, that antidepressant-like and also cognitive action of MTEP, a metabotropic glutamate receptor subtype 5 (mGluR5) antagonist, was influenced by cyclooxygenase-2 (COX-2) inhibition in mice. We detected a decrease in the mGluR7 protein level in the hippocampus (HC) of mice co-treated chronically with MTEP and NS398 (a COX-2 inhibitor). We found both antidepressant-like effects and cognitive to be associated with mGlu7 receptor-mediated mechanisms.
Collapse
Affiliation(s)
- Katarzyna Stachowicz
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland.
| | - Magdalena Sowa-Kućma
- Department of Human Physiology, Medical College of Rzeszów University, Institute of Medical Science, 35-310, Rzeszow, Kopisto Street 2a, Poland
| | - Patrycja Pańczyszyn-Trzewik
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland; Department of Human Physiology, Medical College of Rzeszów University, Institute of Medical Science, 35-310, Rzeszow, Kopisto Street 2a, Poland
| | - Paulina Misztak
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland; Jagiellonian University Medical College, Kraków, Poland
| | - Marcin Marciniak
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Bartosz Bobula
- Department of Physiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Krzysztof Tokarski
- Department of Physiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| |
Collapse
|
49
|
Li B, Chang LL, Xi K. Neurotensin 1 receptor in the prelimbic cortex regulates anxiety-like behavior in rats. Prog Neuropsychopharmacol Biol Psychiatry 2021; 104:110011. [PMID: 32561375 DOI: 10.1016/j.pnpbp.2020.110011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 05/13/2020] [Accepted: 06/09/2020] [Indexed: 01/01/2023]
Abstract
The central neurotensin system has been implicated in reward, memory processes, also in the regulation of anxiety. However, the neural substrates where neurotensin acts to regulate anxiety have not been fully identified. The prelimbic region of medial prefrontal cortex (PrL) holds a key position in the modulation of anxiety-related behaviors and expresses neurotensin 1 receptor (NTS1). This study investigated the effects of activation or blockade of NTS1 in the PrL on anxiety-like behaviors of rats. Our results demonstrated that infusion of a selective NTS1 agonist or neurotensin into the PrL produced anxiogenic-like effects. Administration of a NTS1 antagonist into the PrL did not affect anxiety-like behaviors of normal rats, but attenuated anxiogenic effects induced by restraint stress. Moreover, we employed molecular approaches to downregulate the expression of NTS1 in the PrL, and found that downregulation of NTS1 in the PrL induced anxiolytic effects in restraint stress rats, also confirming the pharmacological results. Together, these findings suggest that NTS1 in the PrL is actively involved in the regulation of anxiety.
Collapse
Affiliation(s)
- Bin Li
- Clinical Research Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, China.
| | - Lei-Lei Chang
- Department of Neurology, Affiliated Drum Tower Hospital, Nanjing University Medical School, 321 Zhongshan Road, Nanjing, China
| | - Kang Xi
- Clinical Research Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, China
| |
Collapse
|
50
|
Jeon J, Bu F, Sun G, Tian JB, Ting SM, Li J, Aronowski J, Birnbaumer L, Freichel M, Zhu MX. Contribution of TRPC Channels in Neuronal Excitotoxicity Associated With Neurodegenerative Disease and Ischemic Stroke. Front Cell Dev Biol 2021; 8:618663. [PMID: 33490083 PMCID: PMC7820370 DOI: 10.3389/fcell.2020.618663] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022] Open
Abstract
The seven canonical members of transient receptor potential (TRPC) proteins form cation channels that evoke membrane depolarization and intracellular calcium concentration ([Ca2+] i ) rise, which are not only important for regulating cell function but their deregulation can also lead to cell damage. Recent studies have implicated complex roles of TRPC channels in neurodegenerative diseases including ischemic stroke. Brain ischemia reduces oxygen and glucose supply to neurons, i.e., Oxygen and Glucose Deprivation (OGD), resulting in [Ca2+] i elevation, ion dyshomeostasis, and excitotoxicity, which are also common in many forms of neurodegenerative diseases. Although ionotropic glutamate receptors, e.g., N-methyl-D-aspartate receptors, are well established to play roles in excitotoxicity, the contribution of metabotropic glutamate receptors and their downstream effectors, i.e., TRPC channels, should not be neglected. Here, we summarize the current findings about contributions of TRPC channels in neurodegenerative diseases, with a focus on OGD-induced neuronal death and rodent models of cerebral ischemia/reperfusion. TRPC channels play both detrimental and protective roles to neurodegeneration depending on the TRPC subtype and specific pathological conditions involved. When illustrated the mechanisms by which TRPC channels are involved in neuronal survival or death seem differ greatly, implicating diverse and complex regulation. We provide our own data showing that TRPC1/C4/C5, especially TRPC4, may be generally detrimental in OGD and cerebral ischemia/reperfusion. We propose that although TRPC channels significantly contribute to ischemic neuronal death, detailed mechanisms and specific roles of TRPC subtypes in brain injury at different stages of ischemia/reperfusion and in different brain regions need to be carefully and systematically investigated.
Collapse
Affiliation(s)
- Jaepyo Jeon
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Fan Bu
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Guanghua Sun
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Jin-Bin Tian
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Shun-Ming Ting
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Jun Li
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Jaroslaw Aronowski
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Lutz Birnbaumer
- Institute for Biomedical Research (BIOMED UCA-CONICET), Buenos Aires, Argentina.,School of Medical Sciences, Catholic University of Argentina (UCA), Buenos Aires, Argentina.,Neurobiology Laboratory, National Institute of Environmental Health Sciences, Durham, NC, United States
| | - Marc Freichel
- Department of Pharmacology, Heidelberg University, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Michael X Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|