1
|
Li Y, Xu M, Chen J, Huang J, Cao J, Chen H, Zhang J, Luo Y, Wang Y, Sun J. Ameliorating and refining islet organoids to illuminate treatment and pathogenesis of diabetes mellitus. Stem Cell Res Ther 2024; 15:188. [PMID: 38937834 PMCID: PMC11210168 DOI: 10.1186/s13287-024-03780-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/01/2024] [Indexed: 06/29/2024] Open
Abstract
Diabetes mellitus, a significant global public health challenge, severely impacts human health worldwide. The organoid, an innovative in vitro three-dimensional (3D) culture model, closely mimics tissues or organs in vivo. Insulin-secreting islet organoid, derived from stem cells induced in vitro with 3D structures, has emerged as a potential alternative for islet transplantation and as a possible disease model that mirrors the human body's in vivo environment, eliminating species difference. This technology has gained considerable attention for its potential in diabetes treatment. Despite advances, the process of stem cell differentiation into islet organoid and its cultivation demonstrates deficiencies, prompting ongoing efforts to develop more efficient differentiation protocols and 3D biomimetic materials. At present, the constructed islet organoid exhibit limitations in their composition, structure, and functionality when compared to natural islets. Consequently, further research is imperative to achieve a multi-tissue system composition and improved insulin secretion functionality in islet organoid, while addressing transplantation-related safety concerns, such as tumorigenicity, immune rejection, infection, and thrombosis. This review delves into the methodologies and strategies for constructing the islet organoid, its application in diabetes treatment, and the pivotal scientific challenges within organoid research, offering fresh perspectives for a deeper understanding of diabetes pathogenesis and the development of therapeutic interventions.
Collapse
Affiliation(s)
- Yushan Li
- Department of Endocrinology, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Meiqi Xu
- Department of Biomedical Engineering, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Jiali Chen
- Department of Endocrinology, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jiansong Huang
- Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jiaying Cao
- Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Huajing Chen
- Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jiayi Zhang
- Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yukun Luo
- Department of Endocrinology, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yazhuo Wang
- Tsinghua-Peking Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing, China.
| | - Jia Sun
- Department of Endocrinology, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.
| |
Collapse
|
2
|
Izquierdo-Martínez A, Civantos-Modino S, Cánovas-Molina G, Mora-Hernández B, Bernal-Bello D. An Unexpected Partner in Diabetic Ketoacidosis: Dorsal Pancreatic Agenesis. Can J Diabetes 2024; 48:141-143. [PMID: 37925052 DOI: 10.1016/j.jcjd.2023.10.404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/21/2023] [Accepted: 10/23/2023] [Indexed: 11/06/2023]
Affiliation(s)
| | - Soralla Civantos-Modino
- Endocrinology and Nutrition Department, Hospital Universitario de Fuenlabrada, Madrid, Spain
| | - Gloria Cánovas-Molina
- Endocrinology and Nutrition Department, Hospital Universitario de Fuenlabrada, Madrid, Spain
| | - Belén Mora-Hernández
- Internal Medicine Department, Hospital Universitario de Fuenlabrada, Madrid, Spain
| | - David Bernal-Bello
- Internal Medicine Department, Hospital Universitario de Fuenlabrada, Madrid, Spain
| |
Collapse
|
3
|
Garcia TS, Engelholm JL, Vouche M, Leitão CB. Decrease in Pancreatic Perfusion of Patients with Type 2 Diabetes Mellitus Detected by Perfusion Computed Tomography. J Clin Imaging Sci 2022; 11:50. [PMID: 35003832 PMCID: PMC8730536 DOI: 10.25259/jcis_72_2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 09/04/2021] [Indexed: 11/25/2022] Open
Abstract
Objectives: The objectives of the study was to compare pancreatic perfusion by computed tomography in type 2 diabetes and non-diabetic subjects. Material and Methods: In this case–control study, 17 patients with type 2 diabetes and 22 non-diabetic controls were examined with a dynamic 192-slices perfusion computed tomography for estimating pancreatic perfusion parameters. Results: Thirty-nine patients were included (22 with Type 2 diabetes mellitus [T2DM]), with a mean age of 64 years. There were significant differences in some pancreatic perfusion parameters in patients with and without type 2 diabetes. Blood volume (BV) was lower in pancreatic head (with T2DM: 14.0 ± 3.4 vs. without T2DM: 16.1 ± 2.4 mL/100 mL; P = 0.033), pancreatic tail (with: 14.4 ± 3.6 vs. without: 16.8 ± 2.5 mL/100 mL; P = 0.023), and in whole pancreas (with: 14.2 ± 3.2 vs. without: 16.2 ± 2.5 mL/100 mL; P = 0.042). Similar behavior was observed with mean transit time (MTT) in pancreatic head (with: 7.0 ± 1.0 vs. without: 7.9 ± 1.2 s; P = 0.018), pancreatic tail (with: 6.6 ± 1.3 vs. without: 7.7 ± 0.9 s; P = 0.005), and in whole pancreas (with: 6.8 ± 1.0 vs. without: 7.7 ± 0.9 s; P = 0.016). BV in head, tail, and whole pancreas had negative correlations with age (head r: –0.352, P = 0.032; tail r: –0.421, P = 0.031; whole pancreas r: –0.439, P = 0.007), and fasting plasma glucose (head r: –0.360, P = 0.031; tail r: –0.483, P = 0.003; whole pancreas r: –0.447, P = 0.006). In a multivariate linear regression model, HbA1c was independently associated with decrease in BV in whole pancreas (β: –0.884; CI95%: –1.750 to –0.017; P = 0.046). Conclusion: Pancreatic BV and MTT were significantly lower in patients with type 2 diabetes. BV was decreased with older age and poorer glycemic control.
Collapse
Affiliation(s)
- Tiago Severo Garcia
- Department of Radiology, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | | | - Michaël Vouche
- Department of Radiology, Institute Jules Bordet, Brussels, Belgium
| | - Cristiane Bauermann Leitão
- Department of Endocrinology, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
4
|
Agarwal K, Chapla A, Chandramohan A, Singh CJ, Thomas N, Jebasingh FK. Diabetes Mellitus With Renal and Müllerian Anomalies. AACE Clin Case Rep 2022; 8:22-24. [PMID: 35097197 PMCID: PMC8784722 DOI: 10.1016/j.aace.2021.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 11/25/2022] Open
|
5
|
Alwatban S, Alfaraidi H, Alosaimi A, Alluhaydan I, Alfadhel M, Polak M, Almutair A. Case Report: Homozygous DNAJC3 Mutation Causes Monogenic Diabetes Mellitus Associated With Pancreatic Atrophy. Front Endocrinol (Lausanne) 2021; 12:742278. [PMID: 34630333 PMCID: PMC8497828 DOI: 10.3389/fendo.2021.742278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/27/2021] [Indexed: 11/24/2022] Open
Abstract
Introduction DNAJC3, abundant in the pancreatic cells, attenuates endoplasmic reticulum stress. Homozygous DNAJC3 mutations have been reported to cause non-immune juvenile-onset diabetes, neurodegeneration, hearing loss, short stature, and hypothyroidism. Case Description We report a case of homozygous DNAJC3 mutation in two siblings of a consanguineous family. A 3-year-old boy presented with short stature and a thyroid nodule. Laboratory findings confirmed hypothyroidism. Subsequently, levothyroxine was administered. Growth hormone (GH) stimulation test results were within the normal limits. His stature was exceedingly short (80.5 cm) (-3.79 SDS). The patient developed sensorineural hearing loss at age 6 years; his intellectual functioning was impaired. Recombinant Human Growth Hormine (rhGH) treatment was postponed until the age of 6.9 years due to a strong family history of diabetes. At age 9 years, he developed an ataxic gait. Brain magnetic resonance imaging (MRI) revealed neurodegeneration. The patient developed diabetes at the age of 11 years-5 years after the initiation of rhGH treatment. Tests for markers of autoimmune diabetes were negative. Lifestyle modification was introduced, but insulin therapy was eventually required. Whole-exome-sequencing (WES) revealed a homozygous DNAJC3 mutation, which explained his clinical presentation. MRI revealed a small, atrophic pancreas. At the age of 17, his final adult height was 143 cm (-4.7 SDS). His elder brother, who had the same mutation, had a similar history, except that he had milder ataxia and normal brain MRI finding at the age of 28 years. Conclusion We propose that DNAJC3 mutation can be considered as a cause of maturity onset diabetes of the young. Patients with DNAJC3 mutations may possess a small atrophic pancreas.
Collapse
Affiliation(s)
- Saud Alwatban
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
- King Abdullah International Medical Research Centre (KAIMRC), Riyadh, Saudi Arabia
| | - Haifa Alfaraidi
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
- King Abdullah International Medical Research Centre (KAIMRC), Riyadh, Saudi Arabia
- Department of Pediatrics, King Abdullah Specialized Children's Hospital, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
| | - Abdulaziz Alosaimi
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
- Medical Imaging Department, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
| | - Iram Alluhaydan
- Genetics and Precision Medicine department, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
| | - Majid Alfadhel
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
- Genetics and Precision Medicine department, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
- Medical Genomics Research Department, King Abdullah International Medical Research Centre (KAIMRC), King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
| | - Michel Polak
- Pediatric Endocrinology, Gynecology, and Diabetology Department, Necker University Children's Hospital, Assistance Publique-Hôpitaux de Paris, IMAGINE Institute affiliate, INSERM U1163; INSERM U1016, Université de Paris, Paris, France
| | - Angham Almutair
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
- King Abdullah International Medical Research Centre (KAIMRC), Riyadh, Saudi Arabia
- Department of Pediatrics, King Abdullah Specialized Children's Hospital, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
| |
Collapse
|
6
|
Kang NY, Lee JY, Lee SH, Song IH, Hwang YH, Kim MJ, Phue WH, Agrawalla BK, Wan SYD, Lalic J, Park SJ, Kim JJ, Kwon HY, Im SH, Bae MA, Ahn JH, Lim CS, Teo AKK, Park S, Kim SE, Lee BC, Lee DY, Chang YT. Multimodal Imaging Probe Development for Pancreatic β Cells: From Fluorescence to PET. J Am Chem Soc 2020; 142:3430-3439. [PMID: 32040300 DOI: 10.1021/jacs.9b11173] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pancreatic β cells are responsible for insulin secretion and are important for glucose regulation in a healthy body and diabetic disease patient without prelabeling of islets. While the conventional biomarkers for diabetes have been glucose and insulin concentrations in the blood, the direct determination of the pancreatic β cell mass would provide critical information for the disease status and progression. By combining fluorination and diversity-oriented fluorescence library strategy, we have developed a multimodal pancreatic β cell probe PiF for both fluorescence and for PET (positron emission tomography). By simple tail vein injection, PiF stains pancreatic β cells specifically and allows intraoperative fluorescent imaging of pancreatic islets. PiF-injected pancreatic tissue even facilitated an antibody-free islet analysis within 2 h, dramatically accelerating the day-long histological procedure without any fixing and dehydration step. Not only islets in the pancreas but also the low background of PiF in the liver allowed us to monitor the intraportal transplanted islets, which is the first in vivo visualization of transplanted human islets without a prelabeling of the islets. Finally, we could replace the built-in fluorine atom in PiF with radioactive 18F and successfully demonstrate in situ PET imaging for pancreatic islets.
Collapse
Affiliation(s)
- Nam-Young Kang
- Laboratory of Bioimaging Probe Development , Singapore Bioimaging Consortium, Agency for Science, Technology and Research , Singapore 138667 , Singapore
| | - Jung Yeol Lee
- New Drug Discovery Center, DGMIF , Daegu 41061 , Republic of Korea
| | - Sang Hee Lee
- Department of Nuclear Medicine , Seoul National University College of Medicine, Seoul National University Bundang Hospital , Seongnam 13620 , Republic of Korea.,Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology , Seoul National University , Seoul 08826 , Republic of Korea
| | - In Ho Song
- Department of Nuclear Medicine , Seoul National University College of Medicine, Seoul National University Bundang Hospital , Seongnam 13620 , Republic of Korea
| | - Yong Hwa Hwang
- Department of Bioengineering, College of Engineering, and BK21 PLUS Future Biopharmaceutical Human Resources Training and Research Team, and Institute of Nano Science & Technology (INST) , Hanyang University , Seoul 04763 , Republic of Korea
| | - Min Jun Kim
- Department of Bioengineering, College of Engineering, and BK21 PLUS Future Biopharmaceutical Human Resources Training and Research Team, and Institute of Nano Science & Technology (INST) , Hanyang University , Seoul 04763 , Republic of Korea
| | - Wut Hmone Phue
- Laboratory of Bioimaging Probe Development , Singapore Bioimaging Consortium, Agency for Science, Technology and Research , Singapore 138667 , Singapore
| | | | - Si Yan Diana Wan
- Laboratory of Bioimaging Probe Development , Singapore Bioimaging Consortium, Agency for Science, Technology and Research , Singapore 138667 , Singapore
| | - Janise Lalic
- Laboratory of Bioimaging Probe Development , Singapore Bioimaging Consortium, Agency for Science, Technology and Research , Singapore 138667 , Singapore
| | - Sung-Jin Park
- Laboratory of Bioimaging Probe Development , Singapore Bioimaging Consortium, Agency for Science, Technology and Research , Singapore 138667 , Singapore
| | - Jong-Jin Kim
- Center for Self-Assembly and Complexity , Institute for Basic Science (IBS) , Pohang 37673 , Republic of Korea
| | - Haw-Young Kwon
- Center for Self-Assembly and Complexity , Institute for Basic Science (IBS) , Pohang 37673 , Republic of Korea
| | - So Hee Im
- Bio &Drug Discovery Division , Korea Research Institute of Chemical Technology Yuseong-Gu , Gajeongro 141 , Daejeon 34114 , Republic of Korea
| | - Myung Ae Bae
- Bio &Drug Discovery Division , Korea Research Institute of Chemical Technology Yuseong-Gu , Gajeongro 141 , Daejeon 34114 , Republic of Korea
| | - Jin Hee Ahn
- Department of Chemistry , Gwangju Institute of Science and Technology (GIST) , Gwangju 61005 , Republic of Korea
| | - Chang Siang Lim
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB) , Agency for Science, Technology and Research (A*STAR) , Singapore 138673 , Singapore
| | - Adrian Kee Keong Teo
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB) , Agency for Science, Technology and Research (A*STAR) , Singapore 138673 , Singapore.,Department of Biochemistry and Department of Medicine, Yong Loo Lin School of Medicine , National University of Singapore , Singapore 117597 , Singapore
| | - Sunyou Park
- New Drug Discovery Center, DGMIF , Daegu 41061 , Republic of Korea
| | - Sang Eun Kim
- Department of Nuclear Medicine , Seoul National University College of Medicine, Seoul National University Bundang Hospital , Seongnam 13620 , Republic of Korea.,Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology , Seoul National University , Seoul 08826 , Republic of Korea.,Center for Nanomolecular Imaging and Innovative Drug Development , Advanced Institutes of Convergence Technology , Suwon 16229 , Republic of Korea
| | - Byung Chul Lee
- Department of Nuclear Medicine , Seoul National University College of Medicine, Seoul National University Bundang Hospital , Seongnam 13620 , Republic of Korea.,Center for Nanomolecular Imaging and Innovative Drug Development , Advanced Institutes of Convergence Technology , Suwon 16229 , Republic of Korea
| | - Dong Yun Lee
- Department of Bioengineering, College of Engineering, and BK21 PLUS Future Biopharmaceutical Human Resources Training and Research Team, and Institute of Nano Science & Technology (INST) , Hanyang University , Seoul 04763 , Republic of Korea
| | - Young-Tae Chang
- Laboratory of Bioimaging Probe Development , Singapore Bioimaging Consortium, Agency for Science, Technology and Research , Singapore 138667 , Singapore.,Center for Self-Assembly and Complexity , Institute for Basic Science (IBS) , Pohang 37673 , Republic of Korea
| |
Collapse
|
7
|
Campbell-Thompson ML, Filipp SL, Grajo JR, Nambam B, Beegle R, Middlebrooks EH, Gurka MJ, Atkinson MA, Schatz DA, Haller MJ. Relative Pancreas Volume Is Reduced in First-Degree Relatives of Patients With Type 1 Diabetes. Diabetes Care 2019; 42:281-287. [PMID: 30552130 PMCID: PMC6341284 DOI: 10.2337/dc18-1512] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 10/31/2018] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Pancreas size is reduced in patients at type 1 diabetes onset and in autoantibody (AAB)-positive donors without diabetes. We sought to determine whether pancreas volume (PV) imaging could improve understanding of the loss of pancreas size in first-degree relatives (FDRs) of patients with type 1 diabetes. We also examined relationships among PV, AAB status, and endocrine and exocrine functions. RESEARCH DESIGN AND METHODS We conducted a cross-sectional study that included five groups: AAB- control subjects (no diabetes and no first- or second-degree relatives with type 1 diabetes) (N = 49), AAB- FDRs (N = 61), AAB+ FDRs (N = 67 total: n = 31 with a single positive AAB [AAB+ single] and n = 36 with multiple positive AABs [AAB+ multiple]), and patients with recent-onset type 1 diabetes (<1 year) (N = 52). Fasting subjects underwent 1.5T pancreatic MRI, and PV and relative PV (RPV) (PV-to-BMI ratio) were analyzed between groups and for correlations with HbA1c, C-peptide, glucose, and trypsinogen. RESULTS All FDR groups had significantly lower RPV adjusted for BMI (RPVBMI) than control subjects (all P < 0.05). Patients with type 1 diabetes had lower RPVBMI than AAB- FDR (P < 0.0001) and AAB+ multiple (P ≤ 0.013) subjects. Transformed data indicated that trypsinogen levels were lowest in patients with type 1 diabetes. CONCLUSIONS This study demonstrates, for the first time, all FDRs having significantly smaller RPVBMI compared with AAB- control subjects. Furthermore, RPVBMI was significantly lower in patients with recent-onset type 1 diabetes than in the AAB- FDR and AAB+ multiple groups. As such, RPVBMI may be a novel noninvasive biomarker for predicting progression through stages of type 1 diabetes risk. This study highlights the potential paracrine relationships between the exocrine and endocrine pancreas in progression to type 1 diabetes in subjects at risk.
Collapse
Affiliation(s)
- Martha L Campbell-Thompson
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL
| | - Stephanie L Filipp
- Health Outcomes and Biomedical Informatics, Institute for Child Health Policy, College of Medicine, University of Florida, Gainesville, FL
| | - Joseph R Grajo
- Department of Radiology, College of Medicine, University of Florida, Gainesville, FL
| | - Bimota Nambam
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL
| | - Richard Beegle
- Department of Radiology, College of Medicine, University of Florida, Gainesville, FL
| | - Erik H Middlebrooks
- Department of Radiology, College of Medicine, University of Florida, Gainesville, FL
| | - Matthew J Gurka
- Health Outcomes and Biomedical Informatics, Institute for Child Health Policy, College of Medicine, University of Florida, Gainesville, FL
| | - Mark A Atkinson
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL.,Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL
| | - Desmond A Schatz
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL
| | - Michael J Haller
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL
| |
Collapse
|
8
|
Yang J, Zhang LJ, Wang F, Hong T, Liu Z. Molecular imaging of diabetes and diabetic complications: Beyond pancreatic β-cell targeting. Adv Drug Deliv Rev 2019; 139:32-50. [PMID: 30529307 DOI: 10.1016/j.addr.2018.11.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 09/28/2018] [Accepted: 11/27/2018] [Indexed: 12/13/2022]
Abstract
Diabetes is a chronic non-communicable disease affecting over 400 million people worldwide. Diabetic patients are at a high risk of various complications, such as cardiovascular, renal, and other diseases. The pathogenesis of diabetes (both type 1 and type 2 diabetes) is associated with a functional impairment of pancreatic β-cells. Consequently, most efforts to manage and prevent diabetes have focused on preserving β-cells and their function. Advances in imaging techniques, such as magnetic resonance imaging, magnetic resonance spectroscopy, positron emission tomography, and single-photon-emission computed tomography, have enabled noninvasive and quantitative detection and characterization of the population and function of β-cells in vivo. These advantages aid in defining and monitoring the progress of diabetes and determining the efficacy of anti-diabetic therapies. Beyond β-cell targeting, molecular imaging of biomarkers associated with the development of diabetes, e.g., lymphocyte infiltration, insulitis, and metabolic changes, may also be a promising strategy for early detection of diabetes, monitoring its progression, and occurrence of complications, as well as facilitating exploration of new therapeutic interventions. Moreover, molecular imaging of glucose uptake, production and excretion in specified tissues is critical for understanding the pathogenesis of diabetes. In the current review, we summarize and discuss recent advances in noninvasive imaging technologies for imaging of biomarkers beyond β-cells for early diagnosis of diabetes, investigation of glucose metabolism, and precise diagnosis and monitoring of diabetic complications for better management of diabetic patients.
Collapse
Affiliation(s)
- Jichun Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences Peking University Health Science Center, Key Laboratory of Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Beijing 100191, China.
| | - Long Jiang Zhang
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, China
| | - Fan Wang
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Tianpei Hong
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing 100191, China.
| | - Zhaofei Liu
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.
| |
Collapse
|
9
|
Evliyaoğlu O, Ercan O, Ataloğlu E, Zübarioğlu Ü, Özcabı B, Dağdeviren A, Erdoğan H, De Franco E, Ellard S. Neonatal Diabetes: Two Cases with Isolated Pancreas Agenesis due to Homozygous PTF1A Enhancer Mutations and One with Developmental Delay, Epilepsy, and Neonatal Diabetes Syndrome due to KCNJ11 Mutation. J Clin Res Pediatr Endocrinol 2018; 10:168-174. [PMID: 28943513 PMCID: PMC5985387 DOI: 10.4274/jcrpe.5162] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 09/23/2017] [Indexed: 12/01/2022] Open
Abstract
Neonatal diabetes mellitus is a rare form of monogenic diabetes which is diagnosed in the first six months of life. Here we report three patients with neonatal diabetes; two with isolated pancreas agenesis due to mutations in the pancreas-specific transcription factor 1A (PTF1A) enhancer and one with developmental delay, epilepsy, and neonatal diabetes (DEND) syndrome, due to a KCNJ11 mutation. The two cases with mutations in the distal enhancer of PTF1A had a homozygous g.23508363A>G and a homozygous g.23508437A>G mutation respectively. Previous functional analyses showed that these mutations can decrease expression of PTF1A which is involved in pancreas development. Both patients were born small for gestational age to consanguineous parents. Both were treated with insulin and pancreatic enzymes. One of these patients’ fathers was also homozygous for the PTF1A mutation, whilst his partner and the parents of the other patient were heterozygous carriers. In the case with DEND sydrome, a previosly reported heterozygous KCNJ11 mutation, p.Cys166Tyr (c.497G>A), was identified. This patient was born to nonconsanguineous parents with normal birth weight. The majority of neonatal diabetes patients with KCNJ11 mutations will respond to sulphonylurea treatment. Therefore Glibenclamide, an oral antidiabetic of the sulphonylurea group, was started. This treatment regimen relatively improved blood glucose levels and neurological symptoms in the short term. Because we could not follow the patient in the long term, we are not able to draw conclusions about the efficacy of the treatment. Although neonatal diabetes mellitus can be diagnosed clinically, genetic analysis is important since it is a guide for the treatment and for prognosis.
Collapse
Affiliation(s)
- Olcay Evliyaoğlu
- İstanbul University Cerrahpaşa Faculty of Medicine, Department of Pediatric Endocrinology, İstanbul, Turkey
| | - Oya Ercan
- İstanbul University Cerrahpaşa Faculty of Medicine, Department of Pediatric Endocrinology, İstanbul, Turkey
| | - Emel Ataloğlu
- University of Health Science, Haseki Training and Research Hospital, Newborn Intensive Unit, İstanbul, Turkey
| | - Ümit Zübarioğlu
- Şişli Hamidiye Etfal Training and Research Hospital, Newborn Intensive Unit, İstanbul, Turkey
| | - Bahar Özcabı
- İstanbul University Cerrahpaşa Faculty of Medicine, Department of Pediatric Endocrinology, İstanbul, Turkey
| | - Aydilek Dağdeviren
- İstanbul University Cerrahpaşa Faculty of Medicine, Department of Pediatric Endocrinology, İstanbul, Turkey
| | - Hande Erdoğan
- İstanbul University Cerrahpaşa Faculty of Medicine, Department of Pediatric Endocrinology, İstanbul, Turkey
| | - Elisa De Franco
- University of Exeter Medical School, Institute of Biomedical and Clinical Science, Exeter, United Kingdom
| | - Sian Ellard
- University of Exeter Medical School, Institute of Biomedical and Clinical Science, Exeter, United Kingdom
| |
Collapse
|
10
|
Chakraborty PP, Patra S, Biswas SN, Barman H. Primary male factor infertility due to asthenospermia in maturity-onset diabetes of the young type 5 (MODY 5): uncommon presentation of an uncommon disease. BMJ Case Rep 2018; 2018:bcr-2017-223723. [PMID: 29574432 DOI: 10.1136/bcr-2017-223723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Mutations in hepatocyte nuclear factor-1β gene result in a multisystemic syndrome where a monogenic form of diabetes (maturity-onset diabetes of young type 5; MODY 5) and renal anomalies, usually bilateral multiple cysts are the most characteristic findings. Many of them have pancreatic structural abnormalities as well. A plethora of extrapancreatic manifestations like altered liver function tests, hypomagnesaemia, hyperuricaemia with/without gout and urogenital malformations, particularly in females are also components of the syndrome. Structural malformation of male urogenital tract is rare in MODY 5, even rarer is asthenospermia. We encountered a young non-obese individual having insulin-requiring diabetes following secondary oral agent failure with primary male factor infertility secondary to asthenospermia. A suggestive family history, lack of acanthosis, negative pancreatic autoimmunity, hypomagnesaemia, bilateral renal and epididymal cysts, and absence of body and tail of pancreas pointed towards underlying MODY 5.
Collapse
Affiliation(s)
| | - Shinjan Patra
- Department of Medicine, Midnapore Medical College, Midnapore, West Bengal, India
| | | | - Himanshu Barman
- Department of Medicine, Midnapore Medical College, Midnapore, West Bengal, India
| |
Collapse
|
11
|
Sanyoura M, Jacobsen L, Carmody D, del Gaudio D, Alkorta-Aranburu G, Arndt K, Hu Y, Kobiernicki F, Kusmartseva I, Atkinson MA, Philipson LH, Schatz D, Campbell-Thompson M, Greeley SAW. Pancreatic Histopathology of Human Monogenic Diabetes Due to Causal Variants in KCNJ11, HNF1A, GATA6, and LMNA. J Clin Endocrinol Metab 2018; 103:35-45. [PMID: 28938416 PMCID: PMC5761488 DOI: 10.1210/jc.2017-01159] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/06/2017] [Indexed: 12/13/2022]
Abstract
CONTEXT Monogenic diabetes is thought to account for 2% of all diabetes cases, but most patients receive misdiagnoses of type 1 or type 2 diabetes. To date, little is known about the histopathological features of pancreata from patients with monogenic diabetes. OBJECTIVE Retrospective study of the JDRF Network for Pancreatic Organ Donors with Diabetes biorepository to identify possible cases of monogenic diabetes and to compare effects of genetic variants on pancreas histology. METHODS We selected cases of diabetes for genetic testing on the basis of criteria that included young age at diagnosis, low body mass index, negative autoantibody status, and/or detectable C-peptide level. Samples underwent next-generation-targeted sequencing of 140 diabetes/diabetes-related genes. Pancreas weight and histopathology were reviewed. RESULTS Forty-one of 140 cases of diabetes met the clinical inclusion criteria, with 38 DNA samples available. Genetic variants of probable clinical significance were found in four cases: one each in KCNJ11, HNF1A, GATA6, and LMNA. The KCNJ11 and HNF1A samples had significantly decreased pancreas weight and insulin mass similar to that of type 1 diabetes but had no insulitis. The GATA6 sample had severe pancreatic atrophy but with abundant β cells and severe amyloidosis similar to type 2 diabetes. The LMNA sample had preserved pancreas weight and insulin mass but abnormal islet architecture and exocrine fatty infiltrates. CONCLUSIONS Four cases of diabetes had putative causal variants in monogenic diabetes genes. This study provides further insight into the heterogeneous nature of monogenic diabetes cases that exhibited clinical and pathophysiological features that overlap with type 1/type 2 diabetes.
Collapse
Affiliation(s)
- May Sanyoura
- Section of Adult and Pediatric Endocrinology, Diabetes,
and Metabolism, The University of Chicago, Chicago, Illinois 60637
| | - Laura Jacobsen
- Department of Pediatrics, University of Florida,
Gainesville, Florida 32610
| | - David Carmody
- Section of Adult and Pediatric Endocrinology, Diabetes,
and Metabolism, The University of Chicago, Chicago, Illinois 60637
| | - Daniela del Gaudio
- Department of Human Genetics, The University of Chicago,
Chicago, Illinois 60637
| | | | - Kelly Arndt
- Department of Human Genetics, The University of Chicago,
Chicago, Illinois 60637
| | - Ying Hu
- Department of Human Genetics, The University of Chicago,
Chicago, Illinois 60637
| | - Frances Kobiernicki
- Department of Human Genetics, The University of Chicago,
Chicago, Illinois 60637
| | - Irina Kusmartseva
- Department of Pathology, Immunology and Laboratory
Medicine, University of Florida, Gainesville, Florida 32610
| | - Mark A. Atkinson
- Department of Pathology, Immunology and Laboratory
Medicine, University of Florida, Gainesville, Florida 32610
| | - Louis H. Philipson
- Section of Adult and Pediatric Endocrinology, Diabetes,
and Metabolism, The University of Chicago, Chicago, Illinois 60637
| | - Desmond Schatz
- Department of Pediatrics, University of Florida,
Gainesville, Florida 32610
| | - Martha Campbell-Thompson
- Department of Pathology, Immunology and Laboratory
Medicine, University of Florida, Gainesville, Florida 32610
| | - Siri Atma W. Greeley
- Section of Adult and Pediatric Endocrinology, Diabetes,
and Metabolism, The University of Chicago, Chicago, Illinois 60637
| |
Collapse
|
12
|
A Cienfuegos J, Rotellar F, Salguero J, Benito A, Solórzano JL, Sangro B. Agenesis of the dorsal pancreas: systematic review of a clinical challenge. REVISTA ESPANOLA DE ENFERMEDADES DIGESTIVAS 2017; 108:479-84. [PMID: 27468966 DOI: 10.17235/reed.2016.4474/2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Agenesis of the dorsal pancreas is a rare malformation. Since 1911 and until 2008, 53 cases have been reported. Several authors have recently described the association of this anomaly with neoplasia of the ventral pancreas, thus we performed a systematic review of the literature from 2008 to 2015. METHODS A systematic review of the MedLine and ISI Web of Science Databases from 2008 until 2015 was carried out, and 30 articles which met the inclusion criteria were identified that included a total of 53 patients: 7 children and 46 adults. CONCLUSIONS Although dorsal pancreatic agenesis is a rare malformation, given its association with non-alcoholic pancreatitis and neoplasia of the residual pancreas, physicians should maintain an expectant attitude.
Collapse
Affiliation(s)
| | | | - Joseba Salguero
- Cirugía General y Digestiva, Clinica Universidad de Navarra, España
| | | | | | - Bruno Sangro
- Hepatología, Clinica Universidad de Navarra, España
| |
Collapse
|
13
|
Caetano L, Santana L, Costa-Riquetto A, Lerario A, Nery M, Nogueira G, Ortega C, Rocha M, Jorge A, Teles M. PDX1
-MODY and dorsal pancreatic agenesis: New phenotype of a rare disease. Clin Genet 2017; 93:382-386. [DOI: 10.1111/cge.13044] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/19/2017] [Accepted: 04/21/2017] [Indexed: 01/06/2023]
Affiliation(s)
- L.A. Caetano
- Monogenic Diabetes Group, Genetic Endocrinology Unit/LIM25, School of Medicine; University of Sao Paulo (USP); Sao Paulo Brazil
- Diabetes Unit, Clinics Hospital; School of Medicine/USP; Sao Paulo Brazil
| | - L.S. Santana
- Monogenic Diabetes Group, Genetic Endocrinology Unit/LIM25, School of Medicine; University of Sao Paulo (USP); Sao Paulo Brazil
| | - A.D. Costa-Riquetto
- Monogenic Diabetes Group, Genetic Endocrinology Unit/LIM25, School of Medicine; University of Sao Paulo (USP); Sao Paulo Brazil
- Diabetes Unit, Clinics Hospital; School of Medicine/USP; Sao Paulo Brazil
| | - A.M. Lerario
- Monogenic Diabetes Group, Genetic Endocrinology Unit/LIM25, School of Medicine; University of Sao Paulo (USP); Sao Paulo Brazil
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes; University of Michigan; Ann Arbor Michigan
| | - M. Nery
- Diabetes Unit, Clinics Hospital; School of Medicine/USP; Sao Paulo Brazil
| | - G.F. Nogueira
- Institute of Radiology, Clinics Hospital; School of Medicine/USP; Sao Paulo Brazil
| | - C.D. Ortega
- Institute of Radiology, Clinics Hospital; School of Medicine/USP; Sao Paulo Brazil
| | - M.S. Rocha
- Department of Radiology and Oncology; School of Medicine/USP; Sao Paulo Brazil
| | - A.A.L. Jorge
- Monogenic Diabetes Group, Genetic Endocrinology Unit/LIM25, School of Medicine; University of Sao Paulo (USP); Sao Paulo Brazil
| | - M.G. Teles
- Monogenic Diabetes Group, Genetic Endocrinology Unit/LIM25, School of Medicine; University of Sao Paulo (USP); Sao Paulo Brazil
- Diabetes Unit, Clinics Hospital; School of Medicine/USP; Sao Paulo Brazil
| |
Collapse
|
14
|
Gonc EN, Ozon A, Alikasifoglu A, Haliloğlu M, Ellard S, Shaw-Smith C, Kandemir N. Variable Phenotype of Diabetes Mellitus in Siblings with a Homozygous PTF1A Enhancer Mutation. Horm Res Paediatr 2016; 84:206-11. [PMID: 26184423 DOI: 10.1159/000435782] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 06/01/2015] [Indexed: 11/19/2022] Open
Abstract
Neonatal diabetes is a rare form of diabetes, characterized by onset in the first 6 months of life. A number of cases are due to pancreas agenesis. Recently, PTF1A enhancer mutations have been shown to cause neonatal diabetes associated with pancreatic agenesis. Herein, we report the clinical features of two siblings with PTF1A enhancer mutations, one of whom had neonatal diabetes, whereas the elder sister had a milder form of the disease with onset of diabetes at 9 years of age.
Collapse
Affiliation(s)
- E Nazlı Gonc
- Department of Pediatric Endocrinology, Hacettepe University, Ankara, Turkey
| | | | | | | | | | | | | |
Collapse
|
15
|
Tuhan H, Catli G, Anik A, Özmen D, Türkmen MA, Bober E, Abaci A. Neonatal diabetes mellitus due to a novel mutation in the GATA6 gene accompanying renal dysfunction: a case report. Am J Med Genet A 2015; 167A:925-7. [PMID: 25708516 DOI: 10.1002/ajmg.a.36984] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 01/04/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Hale Tuhan
- Department of Pediatric Endocrinology, Dokuz Eylul University Faculty of Medicine, Izmir, Turkey
| | | | | | | | | | | | | |
Collapse
|
16
|
Gong M, Simaite D, Kühnen P, Heldmann M, Spagnoli F, Blankenstein O, Hübner N, Hussain K, Raile K. Two novel GATA6 mutations cause childhood-onset diabetes mellitus, pancreas malformation and congenital heart disease. Horm Res Paediatr 2013; 79:250-6. [PMID: 23635550 DOI: 10.1159/000348844] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 02/11/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND GATA6 mutations are the most frequent cause of pancreatic agenesis and diabetes in human sporadic cases. In families, dominantly inherited mutations show a variable phenotype also in terms of endocrine and exocrine pancreatic disease. We report two novel GATA6 mutations in an independent cohort of 8 children with pancreas aplasia or hypoplasia and diabetes. METHODS We sequenced GATA6 in 8 children with diabetes and inborn pancreas abnormalities, i.e. hypoplasia or aplasia in which other known candidate genes causing monogenic diabetes and pancreatic defects had been excluded. RESULTS We found two novel heterozygous GATA6 mutations (c.951_954dup and c.754_904del) in 2 patients with sporadic pancreas hypoplasia, diabetes and severe cardiac defects (common truncus arteriosus and tetralogy of Fallot), but not in the remaining 6 patients. GATA6 mutations in carriers exhibited hypoplastic pancreas with absent head in 1 patient and with increased echogenicity and decreasing exocrine function in the other patient. Additionally, hepatobiliary malformations and brain atrophy were found in 1 patient. CONCLUSION Our 2 cases with novel GATA6 mutations add more phenotype characteristics of GATA6 haploinsufficiency. In agreement with an increasing number of published cases, the wide phenotypic spectrum of GATA6 diabetes syndrome should draw the attention of both pediatric endocrinologists and geneticists.
Collapse
Affiliation(s)
- Maolian Gong
- Max Delbrück Center for Molecular Medicine, Charité, Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Tjora E, Wathle G, Erchinger F, Engjom T, Molven A, Aksnes L, Haldorsen IS, Dimcevski G, Raeder H, Njølstad PR. Exocrine pancreatic function in hepatocyte nuclear factor 1β-maturity-onset diabetes of the young (HNF1B-MODY) is only moderately reduced: compensatory hypersecretion from a hypoplastic pancreas. Diabet Med 2013; 30:946-55. [PMID: 23600988 DOI: 10.1111/dme.12190] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/14/2013] [Indexed: 12/13/2022]
Abstract
OBJECTIVES To examine the exocrine pancreatic function in carriers of the hepatocyte nuclear factor 1β gene (HNF1B) mutation by direct testing. METHODS Patients with HNF1B mutations and control subjects were assessed using rapid endoscopic secretin tests and secretin-stimulated magnetic resonance imaging. Seven patients and 25 controls underwent endoscopy, while eight patients and 20 controls had magnetic resonance imaging. Ductal function was assessed according to peak bicarbonate concentrations and acinar function was assessed according to peak digestive enzyme activities in secretin-stimulated duodenal juice. The association of pancreatic exocrine function and diabetes status with pancreatic gland volume was examined. RESULTS The mean increase in secretin-stimulated duodenal fluid was smaller in patients than controls (4.0 vs 6.4 ml/min; P = 0.003). We found lower ductal function in patients than controls (median peak bicarbonate concentration: 73 vs 116 mEq/L; P < 0.001) and lower acinar function (median peak lipase activity: 6.4 vs 33.5 kU/ml; P = 0.01; median peak elastase activity: 0.056 vs 0.130 U/ml; P = 0.01). Pancreatic fluid volume outputs correlated significantly with pancreatic gland volumes (r² = 0.71, P = 0.008) in patients. The total fluid output to pancreatic gland volume ratios were higher in patients than controls (4.5 vs 1.3 ml/cm³; P = 0.03), suggesting compensatory hypersecretion in the remaining gland. CONCLUSION Carriers of the HNF1B mutation have lower exocrine pancreatic function involving both ductal and acinar cells. Compensatory hypersecretion suggests that the small pancreas of HNF1B mutation carriers is attributable to hypoplasia, not atrophy.
Collapse
Affiliation(s)
- E Tjora
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Irgens HU, Molnes J, Johansson BB, Ringdal M, Skrivarhaug T, Undlien DE, Søvik O, Joner G, Molven A, Njølstad PR. Prevalence of monogenic diabetes in the population-based Norwegian Childhood Diabetes Registry. Diabetologia 2013; 56:1512-9. [PMID: 23624530 DOI: 10.1007/s00125-013-2916-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 03/26/2013] [Indexed: 01/25/2023]
Abstract
AIMS/HYPOTHESIS Monogenic diabetes (MD) might be misdiagnosed as type 1 diabetes. The prevalence of MD among children with apparent type 1 diabetes has not been established. Our aim was to estimate the prevalence of common forms of MD in childhood diabetes. METHODS We investigated 2,756 children aged 0-14 years with newly diagnosed diabetes who had been recruited to the nationwide population-based Norwegian Childhood Diabetes Registry (NCDR), from July 2002 to March 2012. Completeness of ascertainment was 91%. Children diagnosed with diabetes who were under12 months of age were screened for mutations in KCNJ11, ABCC8 and INS. Children without GAD and protein tyrosine phosphatase-like protein antibodies were screened in two ways. Those who had a parent with diabetes were screened for mutations in HNF1A, HNF4A, INS and MT-TL1. Children with HbA1c <7.5% (<58 mmol/mol) and no insulin requirement were screened for mutations in GCK. Finally, we searched the Norwegian MODY Registry for children with genetically verified MD. RESULTS We identified 15 children harbouring a mutation in HNF1A, nine with one in GCK, four with one in KCNJ11, one child with a mutation in INS and none with a mutation in MT-TL1. The minimum prevalence of MD in the NCDR was therefore 1.1%. By searching the Norwegian MODY Registry, we found 24 children with glucokinase-MODY, 15 of whom were not present in the NCDR. We estimated the minimum prevalence of MD among Norwegian children to be 3.1/100,000. CONCLUSIONS/INTERPRETATION This is the first prevalence study of the common forms of MD in a nationwide, population-based registry of childhood diabetes. We found that 1.1% of patients in the Norwegian Childhood Diabetes Registry had MD.
Collapse
Affiliation(s)
- H U Irgens
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Guo S, Dai C, Guo M, Taylor B, Harmon JS, Sander M, Robertson RP, Powers AC, Stein R. Inactivation of specific β cell transcription factors in type 2 diabetes. J Clin Invest 2013; 123:3305-16. [PMID: 23863625 DOI: 10.1172/jci65390] [Citation(s) in RCA: 411] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 05/01/2013] [Indexed: 01/03/2023] Open
Abstract
Type 2 diabetes (T2DM) commonly arises from islet β cell failure and insulin resistance. Here, we examined the sensitivity of key islet-enriched transcription factors to oxidative stress, a condition associated with β cell dysfunction in both type 1 diabetes (T1DM) and T2DM. Hydrogen peroxide treatment of β cell lines induced cytoplasmic translocation of MAFA and NKX6.1. In parallel, the ability of nuclear PDX1 to bind endogenous target gene promoters was also dramatically reduced, whereas the activity of other key β cell transcriptional regulators was unaffected. MAFA levels were reduced, followed by a reduction in NKX6.1 upon development of hyperglycemia in db/db mice, a T2DM model. Transgenic expression of the glutathione peroxidase-1 antioxidant enzyme (GPX1) in db/db islet β cells restored nuclear MAFA, nuclear NKX6.1, and β cell function in vivo. Notably, the selective decrease in MAFA, NKX6.1, and PDX1 expression was found in human T2DM islets. MAFB, a MAFA-related transcription factor expressed in human β cells, was also severely compromised. We propose that MAFA, MAFB, NKX6.1, and PDX1 activity provides a gauge of islet β cell function, with loss of MAFA (and/or MAFB) representing an early indicator of β cell inactivity and the subsequent deficit of more impactful NKX6.1 (and/or PDX1) resulting in overt dysfunction associated with T2DM.
Collapse
|
20
|
Wathle GK, Tjora E, Ersland L, Dimcevski G, Salvesen ØO, Molven A, Njølstad PR, Haldorsen IS. Assessment of exocrine pancreatic function by secretin-stimulated magnetic resonance cholangiopancreaticography and diffusion-weighted imaging in healthy controls. J Magn Reson Imaging 2013; 39:448-54. [PMID: 23649590 DOI: 10.1002/jmri.24167] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 03/13/2013] [Indexed: 12/15/2022] Open
Abstract
PURPOSE To characterize and quantify exocrine pancreatic function by secretin-stimulated magnetic resonance cholangiopancreaticography (s-MRCP) and diffusion-weighted imaging (DWI) in healthy subjects and compare these findings to morphological features, ie, pancreatic volume and secretin-stimulated peak bicarbonate concentration measured in pancreatic juice. MATERIALS AND METHODS Pancreatic magnetic resonance imaging (MRI) (1.5 T) was performed in 20 healthy volunteers among which 10 underwent gastroscopy with duodenal intubation. MRI included T2-weighted imaging and DWI acquired before and 1, 5, 9, and 13 minutes after secretin administration. Secreted pancreatic juice volumes were calculated based on the sequential T2-weighted images and pancreatic volumes and apparent diffusion coefficient (ADC) values were estimated. RESULTS The mean pancreatic secretion rate declined from 9.5 mL/min at 1-5 minutes (postsecretin) to 2.9 mL/min at 9-13 minutes. Pancreatic head ADC values significantly increased from baseline (1.29 × 10(-3) mm(2) /s) to 1 minute postsecretin (1.48 × 10(-3) mm(2) /s) (P = 0.003). Secreted pancreatic juice volume at 1 minute after secretin correlated positively with peak bicarbonate concentration (n = 10, P = 0.05). CONCLUSION Secretin-stimulated MRCP and DWI can characterize and quantify exocrine pancreatic function in healthy subjects. These imaging methods may prove relevant for patients with exocrine pancreatic dysfunction.
Collapse
Affiliation(s)
- Gaute K Wathle
- Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Ræder H, Vesterhus M, El Ouaamari A, Paulo JA, McAllister FE, Liew CW, Hu J, Kawamori D, Molven A, Gygi SP, Njølstad PR, Kahn CR, Kulkarni RN. Absence of diabetes and pancreatic exocrine dysfunction in a transgenic model of carboxyl-ester lipase-MODY (maturity-onset diabetes of the young). PLoS One 2013; 8:e60229. [PMID: 23565203 PMCID: PMC3615023 DOI: 10.1371/journal.pone.0060229] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 02/23/2013] [Indexed: 01/04/2023] Open
Abstract
Background CEL-MODY is a monogenic form of diabetes with exocrine pancreatic insufficiency caused by mutations in CARBOXYL-ESTER LIPASE (CEL). The pathogenic processes underlying CEL-MODY are poorly understood, and the global knockout mouse model of the CEL gene (CELKO) did not recapitulate the disease. We therefore aimed to create and phenotype a mouse model specifically over-expressing mutated CEL in the pancreas. Methods We established a monotransgenic floxed (flanking LOX sequences) mouse line carrying the human CEL mutation c.1686delT and crossed it with an elastase-Cre mouse to derive a bitransgenic mouse line with pancreas-specific over-expression of CEL carrying this disease-associated mutation (TgCEL). Following confirmation of murine pancreatic expression of the human transgene by real-time quantitative PCR, we phenotyped the mouse model fed a normal chow and compared it with mice fed a 60% high fat diet (HFD) as well as the effects of short-term and long-term cerulein exposure. Results Pancreatic exocrine function was normal in TgCEL mice on normal chow as assessed by serum lipid and lipid-soluble vitamin levels, fecal elastase and fecal fat absorption, and the normoglycemic mice exhibited normal pancreatic morphology. On 60% HFD, the mice gained weight to the same extent as controls, had normal pancreatic exocrine function and comparable glucose tolerance even after resuming normal diet and follow up up to 22 months of age. The cerulein-exposed TgCEL mice gained weight and remained glucose tolerant, and there were no detectable mutation-specific differences in serum amylase, islet hormones or the extent of pancreatic tissue inflammation. Conclusions In this murine model of human CEL-MODY diabetes, we did not detect mutation-specific endocrine or exocrine pancreatic phenotypes, in response to altered diets or exposure to cerulein.
Collapse
Affiliation(s)
- Helge Ræder
- Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Njølstad PR, Molven A. To test, or not to test: time for a MODY calculator? Diabetologia 2012; 55:1231-4. [PMID: 22382521 DOI: 10.1007/s00125-012-2514-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 02/08/2012] [Indexed: 10/28/2022]
Abstract
To test, or not to test, that is often the question in diabetes genetics. This is why the paper of Shields et al in the current issue of Diabetologia is so warmly welcomed. MODY is the most common form of monogenic diabetes. Nevertheless, the optimal way of identifying MODY families still poses a challenge both for researchers and clinicians. Hattersley's group in Exeter, UK, have developed an easy-to-use MODY prediction model that can help to identify cases appropriate for genetic testing. By answering eight simple questions on the internet ( www.diabetesgenes.org/content/mody-probability-calculator ), the doctor receives a positive predictive value in return: the probability that the patient has MODY. Thus, the classical binary (yes/no) assessment provided by clinical diagnostic criteria has been substituted by a more rational, quantitative estimate. The model appears to discriminate well between MODY and type 1 and type 2 diabetes when diabetes is diagnosed before the age of 35 years. However, the performance of the MODY probability calculator should now be validated in other settings than where it was developed-and, as always, there is room for some improvements and modifications.
Collapse
Affiliation(s)
- P R Njølstad
- Department of Clinical Medicine, University of Bergen, Bergen, Norway,
| | | |
Collapse
|