1
|
Stamatov R, Uzunova S, Kicheva Y, Karaboeva M, Blagoev T, Stoynov S. Supra-second tracking and live-cell karyotyping reveal principles of mitotic chromosome dynamics. Nat Cell Biol 2025; 27:654-667. [PMID: 40185948 PMCID: PMC11991918 DOI: 10.1038/s41556-025-01637-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 02/11/2025] [Indexed: 04/07/2025]
Abstract
Mitotic chromosome dynamics are essential for the three-dimensional organization of the genome during the cell cycle, but the spatiotemporal characteristics of this process remain unclear due to methodological challenges. While Hi-C methods capture interchromosomal contacts, they lack single-cell temporal dynamics, whereas microscopy struggles with bleaching and phototoxicity. Here, to overcome these limitations, we introduce Facilitated Segmentation and Tracking of Chromosomes in Mitosis Pipeline (FAST CHIMP), pairing time-lapse super-resolution microscopy with deep learning. FAST CHIMP tracked all human chromosomes with 8-s resolution from prophase to telophase, identified 15 out of 23 homologue pairs in single cells and compared chromosomal positioning between mother and daughter cells. It revealed a centrosome-motion-dependent flow that governs the mapping between chromosome locations at prophase and their metaphase plate position. In addition, FAST CHIMP measured supra-second dynamics of intra- and interchromosomal contacts. This tool adds a dynamic dimension to the study of chromatin behaviour in live cells, promising advances beyond the scope of existing methods.
Collapse
Affiliation(s)
- Rumen Stamatov
- Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria.
| | - Sonya Uzunova
- Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Yoana Kicheva
- Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Maria Karaboeva
- Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Tavian Blagoev
- Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Stoyno Stoynov
- Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria.
| |
Collapse
|
2
|
Hemminki K, Niazi Y, Vodickova L, Vodicka P, Försti A. Genetic and environmental associations of nonspecific chromosomal aberrations. Mutagenesis 2025; 40:30-38. [PMID: 38422374 PMCID: PMC11911008 DOI: 10.1093/mutage/geae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 02/28/2024] [Indexed: 03/02/2024] Open
Abstract
Nonspecific structural chromosomal aberrations (CAs) are found in around 1% of circulating lymphocytes from healthy individuals but the frequency may be higher after exposure to carcinogenic chemicals or radiation. CAs have been used in the monitoring of persons exposed to genotoxic agents and radiation. Previous studies on occupationally exposed individuals have shown associations between the frequency of CAs in peripheral blood lymphocytes and subsequent cancer risk. The cause for CA formation is believed to be unrepaired or insufficiently repaired DNA double-strand breaks or other DNA damage, and additionally telomere shortening. CAs include chromosome (CSAs) and chromatid type aberrations (CTAs). In the present review, we first describe the types of CAs, the conventional techniques used for their detection and some aspects of interpreting the results. We then focus on germline genetic variation in the frequency and type of CAs measured in a genome-wide association study in healthy individuals in relation to occupational and smoking-related exposure compared to nonexposed referents. The associations (at P < 10-5) on 1473 healthy individuals were broadly classified in candidate genes from functional pathways related to DNA damage response/repair, including PSMA1, UBR5, RRM2B, PMS2P4, STAG3L4, BOD1, COPRS, and FTO; another group included genes related to apoptosis, cell proliferation, angiogenesis, and tumorigenesis, COPB1, NR2C1, COPRS, RHOT1, ITGB3, SYK, and SEMA6A; a third small group mapped to genes KLF7, SEMA5A and ITGB3 which were related to autistic traits, known to manifest frequent CAs. Dedicated studies on 153 DNA repair genes showed associations for some 30 genes, the expression of which could be modified by the implicated variants. We finally point out that monitoring of CAs is so far the only method of assessing cancer risk in healthy human populations, and the use of the technology should be made more attractive by developing automated performance steps and incorporating artificial intelligence methods into the scoring.
Collapse
Affiliation(s)
- Kari Hemminki
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen 32300, Czech Republic
- Division of Cancer Epidemiology, German Cancer Research Centre (DKFZ), Heidelberg 69120, Germany
| | - Yasmeen Niazi
- Hopp Children’s Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Ludmila Vodickova
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen 32300, Czech Republic
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, Prague 14200, Czech Republic
- Institute of Biology and Medical Genetics, Charles University, Albertov 4, Prague 12800, Czech Republic
| | - Pavel Vodicka
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen 32300, Czech Republic
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, Prague 14200, Czech Republic
- Institute of Biology and Medical Genetics, Charles University, Albertov 4, Prague 12800, Czech Republic
| | - Asta Försti
- Hopp Children’s Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| |
Collapse
|
3
|
Groopman E, Milo Rasouly H. Navigating Genetic Testing in Nephrology: Options and Decision-Making Strategies. Kidney Int Rep 2025; 10:673-695. [PMID: 40225372 PMCID: PMC11993218 DOI: 10.1016/j.ekir.2024.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/03/2024] [Accepted: 12/10/2024] [Indexed: 04/15/2025] Open
Abstract
Technological advances such as next-generation sequencing (NGS) have enabled high-throughput assessment of the human genome, supporting the usage of genetic testing as a first-line tool across clinical medicine. Although individually rare, genetic causes account for end-stage renal disease in 10% to 15% of adults and 70% of children, and in many of these individuals, genetic testing can identify a specific etiology and meaningfully impact management. However, with numerous options for genetic testing available, nephrologists may feel uncomfortable integrating genetics into their clinical practice. Here, we aim to demystify the process of genetic test selection and highlight the opportunities for interdisciplinary collaboration between nephrologists and genetics professionals, thereby supporting precision medicine for patients with kidney disease. We first detail the various clinical genetic testing modalities, highlighting their technical advantages and limitations, and then discuss indications for their usage. Next, we provide a generalized workflow for genetic test selection among individuals with kidney disease and illustrate how this workflow can be applied to genetic test selection across diverse clinical contexts. We then discuss key areas related to the usage of genetic testing in clinical nephrology that merit further research and approaches to investigate them.
Collapse
Affiliation(s)
- Emily Groopman
- Pediatrics and Medical Genetics Combined Residency Program, Children’s National Hospital, Washington, DC, USA
| | - Hila Milo Rasouly
- Division of Nephrology, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York, USA
| |
Collapse
|
4
|
Giefing M, Sawicz G, Siebert R. FISH and FICTION in Lymphoma Research. Methods Mol Biol 2025; 2865:221-240. [PMID: 39424726 DOI: 10.1007/978-1-0716-4188-0_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Fluorescence in situ hybridization (FISH) is a powerful and robust technique allowing the visualization of target sequences like genes in interphase nuclei. It is widely used in routine diagnostics to identify cancer-specific aberrations including lymphoma-associated translocations or gene copy number changes in single tumor cells. By combining FISH with immunophenotyping-a technique called fluorescence immunophenotyping and interphase cytogenetic as a tool for investigation of neoplasia (FICTION)-it is moreover possible to identify a cell population of interest. Here we describe standard protocols for FISH and FICTION as used in our laboratories in diagnosis and research.
Collapse
Affiliation(s)
- Maciej Giefing
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland.
| | - Greta Sawicz
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, University Hospital, Ulm, Germany
| |
Collapse
|
5
|
Park HW, Sevilleno SS, Ha MKTT, Cabahug-Braza RA, Yi JH, Lim KB, Cho W, Hwang YJ. The Application of Fluorescence In Situ Hybridization in the Prescreening of Veronica Hybrids. PLANTS (BASEL, SWITZERLAND) 2024; 13:1264. [PMID: 38732480 PMCID: PMC11085602 DOI: 10.3390/plants13091264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/22/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024]
Abstract
Fluorescence in situ hybridization (FISH), a molecular cytogenetic technique that enables the visualization and identification of specific DNA sequences within chromosomes, has emerged as a pivotal tool in plant breeding programs, particularly in the case of Veronica species. Veronica, a genus with a complex reproductive system, often poses challenges in accurately identifying hybrids because of its tendency to hybridize, which leads to intricate genetic variation. This study focused on the use of FISH as a prescreening method to identify true hybrids in Veronica breeding programs. FISH analysis was first performed on the parents to identify their 45S and 5S rDNA signals, along with their respective chromosome numbers. The signals were then compared with those of the twenty progenies with reference to their supposed parents. Five true hybrids, seven self-pollinated progenies, and eight false hybrids were identified through FISH. The findings highlight the significance of FISH as a screening method that contributes significantly to the efficiency of Veronica breeding programs by ensuring the preservation of desired genetic traits and minimizing the inadvertent inclusion of misidentified hybrids. To conclude, this study underscores the vital role of FISH in enhancing the precision and success of breeding programs and opens new avenues for improved breeding strategies and crop development.
Collapse
Affiliation(s)
- Hye-Wan Park
- Department of Convergence Science, Sahmyook University, Seoul 01795, Republic of Korea; (H.-W.P.); (S.S.S.)
| | - Samantha Serafin Sevilleno
- Department of Convergence Science, Sahmyook University, Seoul 01795, Republic of Korea; (H.-W.P.); (S.S.S.)
| | - My Khanh Tran Thi Ha
- Institute for Global Health Innovations, Duy Tan University, Danang 550000, Vietnam;
| | | | - Ji-Hun Yi
- Division of Garden and Plant Resources, Korea National Arboretum, Pocheon 11186, Republic of Korea;
| | - Ki-Byung Lim
- Department of Horticultural Science, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Wonwoo Cho
- Division of Garden and Plant Resources, Korea National Arboretum, Pocheon 11186, Republic of Korea;
| | - Yoon-Jung Hwang
- Department of Convergence Science, Sahmyook University, Seoul 01795, Republic of Korea; (H.-W.P.); (S.S.S.)
- Plant Genetics and Breeding Institute, Sahmyook University, Seoul 01795, Republic of Korea;
| |
Collapse
|
6
|
Chen Y, Han X, Hua R, Li N, Zhang L, Hu W, Wang Y, Qian Z, Li S. Copy number variation sequencing for the products of conception: What is the optimal testing strategy. Clin Chim Acta 2024; 557:117884. [PMID: 38522821 DOI: 10.1016/j.cca.2024.117884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/01/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
BACKGROUND Copy number variation sequencing (CNV-seq) is crucial in prenatal diagnosis, but its limitations in detecting polyploidy, maternal cell contamination (MCC), and uniparental disomy (UPD) restrict its application in the analysis of products of conception (POCs). This study aimed to investigate an optimal genetic testing strategy for POCs in the era of CNV-seq. METHODS CNV-seq and quantitative fluorescent polymerase chain reaction (QF-PCR) were performed in all 4,211 spontaneous miscarriage cases. Different testing strategies were compared and the optimal testing strategies were proposed. RESULTS Of the 4,211 cases, 2561 (60.82%) exhibited clinically significant chromosomal abnormalities. CNV-seq alone, without QF-PCR, might misdiagnose 311 (7.39%) cases, including 278 polyploidy, 13 UPD, and 20 MCC. In 20 MCC cases identified by QF-PCR, CNV-seq successfully pinpointed the cause of miscarriage in 13 cases. Furthermore, in cases where QF-PCR suggested polyploidy, CNV-seq improved the diagnostic accuracy in 54 (1.28%) hypo/hypertriploidy cases. After comparing four different strategies, the sequential approach (initiating with CNV-seq followed by QF-PCR if necessary) emerged as advantageous, reducing approximately 70% of the cost associated with QF-PCR while maintaining result accuracy. CONCLUSIONS We propose an initial CNV-seq followed by QF-PCR if needed-an efficient and cost-effective strategy for the genetic analysis of POCs.
Collapse
Affiliation(s)
- Yiyao Chen
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China; Institute of Birth Defects and Rare Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xu Han
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China; Institute of Birth Defects and Rare Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Renyi Hua
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China; Institute of Birth Defects and Rare Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Niu Li
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China; Institute of Birth Defects and Rare Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lanlan Zhang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China; Institute of Birth Defects and Rare Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wenjing Hu
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China; Institute of Birth Defects and Rare Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yanlin Wang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China; Institute of Birth Defects and Rare Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Zhida Qian
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China; Institute of Birth Defects and Rare Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Shuyuan Li
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China; Institute of Birth Defects and Rare Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
7
|
Lynch A, Bradford S, Burkard ME. The reckoning of chromosomal instability: past, present, future. Chromosome Res 2024; 32:2. [PMID: 38367036 DOI: 10.1007/s10577-024-09746-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 01/11/2024] [Accepted: 01/27/2024] [Indexed: 02/19/2024]
Abstract
Quantitative measures of CIN are crucial to our understanding of its role in cancer. Technological advances have changed the way CIN is quantified, offering increased accuracy and insight. Here, we review measures of CIN through its rise as a field, discuss considerations for its measurement, and look forward to future quantification of CIN.
Collapse
Affiliation(s)
- Andrew Lynch
- UW Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
- McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, WI, USA
- Division of Hematology/Oncology, Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Shermineh Bradford
- UW Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
- McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, WI, USA
- Division of Hematology/Oncology, Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Mark E Burkard
- UW Carbone Cancer Center, University of Wisconsin, Madison, WI, USA.
- McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, WI, USA.
- Division of Hematology/Oncology, Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
8
|
Liu Y, Hao S, Guo X, Fan L, Qiao Z, Wang Y, Wang X, Man J, Wang L, Wei X, Peng H, Peng Z, Sun Y, Song L. Accuracy and depth evaluation of clinical low pass genome sequencing in the detection of mosaic aneuploidies and CNVs. BMC Med Genomics 2023; 16:294. [PMID: 37978521 PMCID: PMC10656965 DOI: 10.1186/s12920-023-01703-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/14/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Low-pass genome sequencing (LP GS) has shown distinct advantages over traditional methods for the detection of mosaicism. However, no study has systematically evaluated the accuracy of LP GS in the detection of mosaic aneuploidies and copy number variants (CNVs) in prenatal diagnosis. Moreover, the influence of sequencing depth on mosaicism detection of LP GS has not been fully evaluated. METHODS To evaluate the accuracy of LP GS in the detection of mosaic aneuploidies and mosaic CNVs, 27 samples with known aneuploidies and CNVs and 1 negative female sample were used to generate 6 simulated samples and 21 virtual samples, each sample contained 9 different mosaic levels. Mosaic levels were simulated by pooling reads or DNA from each positive sample and the negative sample according to a series of percentages (ranging from 3 to 40%). Then, the influence of sequencing depth on LP GS in the detection of mosaic aneuploidies and CNVs was evaluated by downsampling. RESULTS To evaluate the accuracy of LP GS in the detection of mosaic aneuploidies and CNVs, a comparative analysis of mosaic levels was performed using 6 simulated samples and 21 virtual samples with 35 M million (M) uniquely aligned high-quality reads (UAHRs). For mosaic levels > 30%, the average difference (detected mosaic levels vs. theoretical mosaic levels) of 6 mosaic CNVs in simulated samples was 4.0%, and the average difference (detected mosaic levels vs. mosaic levels of Y chromosome) of 6 mosaic aneuploidies and 15 mosaic CNVs in virtual samples was 2.7%. Furthermore, LP GS had a higher detection rate and accuracy for the detection of mosaic aneuploidies and CNVs of larger sizes, especially mosaic aneuploidies. For depth evaluation, the results of LP GS in downsampling samples were compared with those of LP GS using 35 M UAHRs. The detection sensitivity of LP GS for 6 mosaic aneuploidies and 15 mosaic CNVs in virtual samples increased with UAHR. For mosaic levels > 30%, the total detection sensitivity reached a plateau at 30 M UAHRs. With 30 M UAHRs, the total detection sensitivity was 99.2% for virtual samples. CONCLUSIONS We demonstrated the accuracy of LP GS in mosaicism detection using simulated data and virtual samples, respectively. Thirty M UAHRs (single-end 35 bp) were optimal for LP GS in the detection of mosaic aneuploidies and most mosaic CNVs larger than 1.48 Mb (Megabases) with mosaic levels > 30%. These results could provide a reference for laboratories that perform clinical LP GS in the detection of mosaic aneuploidies and CNVs.
Collapse
Affiliation(s)
- Yanqiu Liu
- Jiangxi Maternal and Child Health Hospital Affiliated to Nanchang Medical College, Nanchang, 33000, Jiangxi, China
| | - Shengju Hao
- Medical Genetics Center, Gansu Provincial Clinical Research Center for Birth Defects and Rare Diseases, Gansu Provincial Maternity and Child-care Hospital, Lanzhou, 730050, China
| | - Xueqin Guo
- Clin Lab, BGI Genomics, Wuhan, 430074, China
| | - Linlin Fan
- Clin Lab, BGI Genomics, Tianjin, 300308, China
| | | | | | - Xiaoli Wang
- Clin Lab, BGI Genomics, Shenzhen, 518083, China
| | - Jianfen Man
- Clin Lab, BGI Genomics, Wuhan, 430074, China
| | - Lina Wang
- Clin Lab, BGI Genomics, Wuhan, 430074, China
| | | | | | | | - Yan Sun
- BGI Genomics, Shenzhen, 518083, China.
| | - Lijie Song
- Clin Lab, BGI Genomics, Tianjin, 300308, China.
- DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, 2800, Denmark.
| |
Collapse
|
9
|
Xie M, Xue J, Zhang Y, Zhou Y, Yu Q, Li H, Li Q. Combination of trio-based whole exome sequencing and optical genome mapping reveals a cryptic balanced translocation that causes unbalanced chromosomal rearrangements in a family with multiple anomalies. Front Genet 2023; 14:1248544. [PMID: 37745854 PMCID: PMC10512417 DOI: 10.3389/fgene.2023.1248544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/22/2023] [Indexed: 09/26/2023] Open
Abstract
Background: Balanced translocation (BT) carriers can produce imbalanced gametes and experience recurrent spontaneous abortions (RSAs) and even give birth to a child with complex chromosomal disorders. Here, we report a cryptic BT, t(5; 6) (p15.31; p25.1), in the proband's grandmother, which caused unbalanced chromosomal rearrangements and various anomalies in the two subsequent generations. We also provide a thorough overview of the application of optical genome mapping (OGM) to identify chromosomal structural variants (SVs). Methods: Trio-based whole exome sequencing (Trio-WES) was conducted to explore the genetic basis of the phenotype of the proband and her mother. High-resolution karyotype analysis and OGM detection were performed on the proband's grandparents to trace the origin of the unbalanced rearrangements between chromosomes 5 and 6. A PubMed search was conducted with the following keywords: "OGM" and "SVs." Then, relevant studies were collected and systematically reviewed. Results: The proband and her mother presented with various anomalies, whereas the grandmother was healthy but had a history of four abnormal pregnancies. Trio-WES revealed a heterozygous duplication on the terminal region of chromosome 5p and a heterozygous deletion on the proximal end of chromosome 6p in the proband and her mother. High-resolution karyotype analysis revealed no aberrant karyotypes in either grandparent, whereas OGM detection revealed a cryptic BT, t(5; 6)(p15.31; p25.1), in the proband's grandmother. An overwhelming majority of research publications have verified the clinical utility of OGM in detecting SVs. Conclusion: The results of this study revealed that the unbalanced chromosomal rearrangements and many anomalies observed in multiple members of the family were attributable to the cryptic BT carried by the proband's grandmother. This study supports that OGM has a unique advantage for detecting cryptic BTs, and can be used as a first-tier genetic test for the etiological diagnosis of infertility, RSAs, and other complex genetic disorders.
Collapse
Affiliation(s)
- Min Xie
- The Central Laboratory of Birth Defects Prevention and Control, Ningbo Women and Children’s Hospital, Ningbo, Zhejiang, China
| | - Jiangyang Xue
- The Central Laboratory of Birth Defects Prevention and Control, Ningbo Women and Children’s Hospital, Ningbo, Zhejiang, China
| | - Yuxin Zhang
- The Central Laboratory of Birth Defects Prevention and Control, Ningbo Women and Children’s Hospital, Ningbo, Zhejiang, China
| | - Ying Zhou
- The Central Laboratory of Birth Defects Prevention and Control, Ningbo Women and Children’s Hospital, Ningbo, Zhejiang, China
| | - Qi Yu
- Neonatal Screening Center, Ningbo Women and Children’s Hospital, Ningbo, Zhejiang, China
| | - Haibo Li
- The Central Laboratory of Birth Defects Prevention and Control, Ningbo Women and Children’s Hospital, Ningbo, Zhejiang, China
| | - Qiong Li
- Neonatal Screening Center, Ningbo Women and Children’s Hospital, Ningbo, Zhejiang, China
| |
Collapse
|
10
|
Rosli AA, Azlan A, Rajasegaran Y, Mot YY, Heidenreich O, Yusoff NM, Moses EJ. Cytogenetics analysis as the central point of genetic testing in acute myeloid leukemia (AML): a laboratory perspective for clinical applications. Clin Exp Med 2023; 23:1137-1159. [PMID: 36229751 DOI: 10.1007/s10238-022-00913-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/02/2022] [Indexed: 11/27/2022]
Abstract
Chromosomal abnormalities in acute myeloid leukemia (AML) have significantly contributed to scientific understanding of its molecular pathogenesis, which has aided in the development of therapeutic strategies and enhanced management of AML patients. The diagnosis, prognosis and treatment of AML have also rapidly transformed in recent years, improving initial response to treatment, remission rates, risk stratification and overall survival. Hundreds of rare chromosomal abnormalities in AML have been discovered thus far using chromosomal analysis and next-generation sequencing. As a result, the World Health Organization (WHO) has categorized AML into subgroups based on genetic, genomic and molecular characteristics, to complement the existing French-American classification which is solely based on morphology. In this review, we aim to highlight the most clinically relevant chromosomal aberrations in AML together with the technologies employed to detect these aberrations in laboratory settings.
Collapse
Affiliation(s)
- Aliaa Arina Rosli
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Pulau Pinang, Malaysia
| | - Adam Azlan
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Pulau Pinang, Malaysia
| | - Yaashini Rajasegaran
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Pulau Pinang, Malaysia
| | - Yee Yik Mot
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Pulau Pinang, Malaysia
| | - Olaf Heidenreich
- Prinses Máxima Centrum Voor Kinderoncologie, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands
| | - Narazah Mohd Yusoff
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Pulau Pinang, Malaysia
| | - Emmanuel Jairaj Moses
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Pulau Pinang, Malaysia.
| |
Collapse
|
11
|
Mukhopadhyay R, Varshitha DV, Telford WG, Sanders CK, Chakraborty U. Mammalian Chromosome Analysis and Sorting by Flow Cytometry. Curr Protoc 2023; 3:e785. [PMID: 37200525 PMCID: PMC10356183 DOI: 10.1002/cpz1.785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The analysis of chromosomes by flow cytometry is termed flow cytogenetics, and it involves the analysis and sorting of single mitotic chromosomes in suspension. The study of flow karyograms provides insight into chromosome number and structure to provide information on chromosomal DNA content and can enable the detection of deletions, translocations, or any forms of aneuploidy. Beyond its clinical applications, flow cytogenetics greatly contributed to the Human Genome Project through the ability to sort pure populations of chromosomes for gene mapping, cloning, and the construction of DNA libraries. Maximizing the potential of these important applications of flow cytogenetics relies on precise instrument setup and optimal sample processing, both of which impact the accuracy and quality of the data that are generated. This article is a compilation of the existing protocols that describe the stepwise methodology of accumulating, isolating, and staining metaphase chromosomes to prepare single-chromosome suspensions for flow cytometric analysis and sorting. Although the chromosome preparation protocols have remained largely unchanged, cytometer technology has advanced dramatically since these protocols were originally developed. Advances in cytometry technologies offer new and exciting approaches for understanding and monitoring chromosomal aberrations, but the hallmark of these protocols remains their simplicity in methodologies and reagent requirements and the accuracy of data resolvable to every chromosome of the cell. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Mitotic block and cell harvesting Basic Protocol 2: Propidium iodide isolation Support Protocol 1: Swelling test Basic Protocol 3: MgSO4 low-molecular-weight isolation Basic Protocol 4: Polyamine high-molecular-weight isolation Support Protocol 2: Molecular-weight determination of chromosomal DNA Basic Protocol 5: Chromosome analysis and sorting.
Collapse
Affiliation(s)
- Risani Mukhopadhyay
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education, GKVK Post, Bellary Road, Allalasandra, Yelahanka, Bengaluru - 560 065 India
| | - DV Varshitha
- #304 - Brindavan Apartment, 7th Main, 15th Cross, BTM 2nd stage, Bengaluru - 560 076 India
| | - William G. Telford
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892 USA
| | - Claire K. Sanders
- Los Alamos National Laboratory, Bioscience Division, P.O. Box 1663, MS M888, Los Alamos, NM 87545 USA
| | - Uttara Chakraborty
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education, GKVK Post, Bellary Road, Allalasandra, Yelahanka, Bengaluru - 560 065 India
| |
Collapse
|
12
|
Pizzi M, Binotto G, Rigoni Savioli G, Dei Tos AP, Orazi A. Of drills and bones: Giovanni Ghedini and the origin of bone marrow biopsy. Br J Haematol 2022; 198:943-952. [PMID: 35510703 DOI: 10.1111/bjh.18206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 11/28/2022]
Abstract
Bone marrow (BM) studies are pivotal for the diagnosis of haematological disorders. Their introduction into clinical haematology dates back to the work of Giovanni Ghedini (1877-1959), an Italian physician who first conceived BM sampling in 1908. Ghedini's proposal stemmed from his clinical experience and from the scientific developments that characterised his epoch. By presenting selected passages of Ghedini's publications, this report considers the theoretical and historical bases of his work and analyses its practical implications for modern haematology.
Collapse
Affiliation(s)
- Marco Pizzi
- Surgical Pathology and Cytopathology Unit, Department of Medicine-DIMED, University of Padua, Padua, Italy
| | - Gianni Binotto
- Haematology and Clinical Immunology Unit, Department of Medicine-DIMED, University of Padua, Padua, Italy
| | - Giulia Rigoni Savioli
- Central Medical Library 'Vincenzo Pinali' - Section of Ancient Books and Special Collections, University of Padua, Padua, Italy
| | - Angelo Paolo Dei Tos
- Surgical Pathology and Cytopathology Unit, Department of Medicine-DIMED, University of Padua, Padua, Italy
| | - Attilio Orazi
- Department of Pathology, Texas Tech University Health Sciences Center, El Paso, Texas, USA
| |
Collapse
|
13
|
Yu Z, Potapova TA. Superresolution Microscopy for Visualization of Physical Contacts Between Chromosomes at Nanoscale Resolution. Methods Mol Biol 2022; 2458:359-375. [PMID: 35103978 DOI: 10.1007/978-1-0716-2140-0_20] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This protocol describes the fluorescence in situ hybridization (FISH) of DNA probes on mitotic chromosome spreads optimized for two super-resolution microscopy approaches-structured illumination microscopy (SIM) and stimulated emission depletion (STED). It is based on traditional DNA FISH methods that can be combined with immunofluorescence labeling (Immuno-FISH). This technique previously allowed us to visualize ribosomal DNA linkages between human acrocentric chromosomes and provided information about the activity status of linked rDNA loci. Compared to the conventional wide-field and confocal microscopy, the quality of SIM and STED data depends a lot more on the optimal specimen preparation, choice of fluorophores, and quality of the fluorescent labeling. This protocol highlights details that make specimens suitable for super-resolution microscopy and tips for good imaging practices.
Collapse
Affiliation(s)
- Zulin Yu
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | | |
Collapse
|
14
|
Sharma G, Boby E, Nidhi T, Jain A, Singh J, Singh A, Chattopadhyay P, Bakhshi S, Chopra A, Palanichamy JK. Diagnostic Utility of IGF2BP1 and Its Targets as Potential Biomarkers in ETV6-RUNX1 Positive B-Cell Acute Lymphoblastic Leukemia. Front Oncol 2021; 11:588101. [PMID: 33708624 PMCID: PMC7940665 DOI: 10.3389/fonc.2021.588101] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 01/08/2021] [Indexed: 01/22/2023] Open
Abstract
Around 85% of childhood Acute Lymphoblastic Leukemia (ALL) are of B-cell origin and characterized by the presence of different translocations including BCR-ABL1, ETV6-RUNX1, E2A-PBX1, and MLL fusion proteins. The current clinical investigations used to identify ETV6-RUNX1 translocation include FISH and fusion transcript specific PCR. In the current study we assessed the utility of IGF2BP1, an oncofetal RNA binding protein, that is over expressed specifically in ETV6-RUNX1 translocation positive B-ALL to be used as a diagnostic marker in the clinic. Further, public transcriptomic and Crosslinked Immunoprecipitation (CLIP) datasets were analyzed to identify the putative targets of IGF2BP1. We also studied the utility of using the mRNA expression of two such targets, MYC and EGFL7 as potential diagnostic markers separately or in conjunction with IGF2BP1. We observed that the expression of IGF2BP1 alone measured by RT-qPCR is highly sensitive and specific to be used as a potential biomarker for the presence of ETV6-RUNX1 translocation in future.
Collapse
Affiliation(s)
- Gunjan Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Elza Boby
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Thakur Nidhi
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Ayushi Jain
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Jay Singh
- Department of Laboratory Oncology, Dr. B.R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Archna Singh
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | | | - Sameer Bakhshi
- Department of Medical Oncology, Dr. B.R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Anita Chopra
- Department of Laboratory Oncology, Dr. B.R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | | |
Collapse
|
15
|
Goldrich DY, LaBarge B, Chartrand S, Zhang L, Sadowski HB, Zhang Y, Pham K, Way H, Lai CYJ, Pang AWC, Clifford B, Hastie AR, Oldakowski M, Goldenberg D, Broach JR. Identification of Somatic Structural Variants in Solid Tumors by Optical Genome Mapping. J Pers Med 2021; 11:142. [PMID: 33670576 PMCID: PMC7921992 DOI: 10.3390/jpm11020142] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/12/2021] [Accepted: 02/15/2021] [Indexed: 12/12/2022] Open
Abstract
Genomic structural variants comprise a significant fraction of somatic mutations driving cancer onset and progression. However, such variants are not readily revealed by standard next-generation sequencing. Optical genome mapping (OGM) surpasses short-read sequencing in detecting large (>500 bp) and complex structural variants (SVs) but requires isolation of ultra-high-molecular-weight DNA from the tissue of interest. We have successfully applied a protocol involving a paramagnetic nanobind disc to a wide range of solid tumors. Using as little as 6.5 mg of input tumor tissue, we show successful extraction of high-molecular-weight genomic DNA that provides a high genomic map rate and effective coverage by optical mapping. We demonstrate the system's utility in identifying somatic SVs affecting functional and cancer-related genes for each sample. Duplicate/triplicate analysis of select samples shows intra-sample reliability but also intra-sample heterogeneity. We also demonstrate that simply filtering SVs based on a GRCh38 human control database provides high positive and negative predictive values for true somatic variants. Our results indicate that the solid tissue DNA extraction protocol, OGM and SV analysis can be applied to a wide variety of solid tumors to capture SVs across the entire genome with functional importance in cancer prognosis and treatment.
Collapse
Affiliation(s)
- David Y. Goldrich
- Department of Otolaryngology—Head and Neck Surgery, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (D.Y.G.); (B.L.); (D.G.)
| | - Brandon LaBarge
- Department of Otolaryngology—Head and Neck Surgery, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (D.Y.G.); (B.L.); (D.G.)
| | - Scott Chartrand
- Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (S.C.); (L.Z.)
| | - Lijun Zhang
- Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (S.C.); (L.Z.)
| | - Henry B. Sadowski
- Bionano Genomics, San Diego, CA 92121, USA; (H.B.S.); (Y.Z.); (K.P.); (H.W.); (C.-Y.J.L.); (A.W.C.P.); (B.C.); (A.R.H.); (M.O.)
| | - Yang Zhang
- Bionano Genomics, San Diego, CA 92121, USA; (H.B.S.); (Y.Z.); (K.P.); (H.W.); (C.-Y.J.L.); (A.W.C.P.); (B.C.); (A.R.H.); (M.O.)
| | - Khoa Pham
- Bionano Genomics, San Diego, CA 92121, USA; (H.B.S.); (Y.Z.); (K.P.); (H.W.); (C.-Y.J.L.); (A.W.C.P.); (B.C.); (A.R.H.); (M.O.)
| | - Hannah Way
- Bionano Genomics, San Diego, CA 92121, USA; (H.B.S.); (Y.Z.); (K.P.); (H.W.); (C.-Y.J.L.); (A.W.C.P.); (B.C.); (A.R.H.); (M.O.)
| | - Chi-Yu Jill Lai
- Bionano Genomics, San Diego, CA 92121, USA; (H.B.S.); (Y.Z.); (K.P.); (H.W.); (C.-Y.J.L.); (A.W.C.P.); (B.C.); (A.R.H.); (M.O.)
| | - Andy Wing Chun Pang
- Bionano Genomics, San Diego, CA 92121, USA; (H.B.S.); (Y.Z.); (K.P.); (H.W.); (C.-Y.J.L.); (A.W.C.P.); (B.C.); (A.R.H.); (M.O.)
| | - Benjamin Clifford
- Bionano Genomics, San Diego, CA 92121, USA; (H.B.S.); (Y.Z.); (K.P.); (H.W.); (C.-Y.J.L.); (A.W.C.P.); (B.C.); (A.R.H.); (M.O.)
| | - Alex R. Hastie
- Bionano Genomics, San Diego, CA 92121, USA; (H.B.S.); (Y.Z.); (K.P.); (H.W.); (C.-Y.J.L.); (A.W.C.P.); (B.C.); (A.R.H.); (M.O.)
| | - Mark Oldakowski
- Bionano Genomics, San Diego, CA 92121, USA; (H.B.S.); (Y.Z.); (K.P.); (H.W.); (C.-Y.J.L.); (A.W.C.P.); (B.C.); (A.R.H.); (M.O.)
| | - David Goldenberg
- Department of Otolaryngology—Head and Neck Surgery, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (D.Y.G.); (B.L.); (D.G.)
| | - James R. Broach
- Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (S.C.); (L.Z.)
| |
Collapse
|
16
|
Abstract
Gains and losses of large segments of genomic DNA, known as copy number variants (CNVs) gained considerable interest in clinical diagnostics lately, as particular forms may lead to inherited genetic diseases. In recent decades, researchers developed a wide variety of cytogenetic and molecular methods with different detection capabilities to detect clinically relevant CNVs. In this review, we summarize methodological progress from conventional approaches to current state of the art techniques capable of detecting CNVs from a few bases up to several megabases. Although the recent rapid progress of sequencing methods has enabled precise detection of CNVs, determining their functional effect on cellular and whole-body physiology remains a challenge. Here, we provide a comprehensive list of databases and bioinformatics tools that may serve as useful assets for researchers, laboratory diagnosticians, and clinical geneticists facing the challenge of CNV detection and interpretation.
Collapse
|
17
|
Chromosomal abnormality, laboratory techniques, tools and databases in molecular Cytogenetics. Mol Biol Rep 2020; 47:9055-9073. [DOI: 10.1007/s11033-020-05895-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 10/03/2020] [Indexed: 11/30/2022]
|
18
|
Fujikura K, Yamashita D, Yoshida M, Ishikawa T, Itoh T, Imai Y. Cytogenetic complexity and heterogeneity in intravascular lymphoma. J Clin Pathol 2020; 74:244-250. [PMID: 32763919 DOI: 10.1136/jclinpath-2020-206573] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/26/2020] [Accepted: 06/09/2020] [Indexed: 02/07/2023]
Abstract
AIMS To characterise the karyotypic abnormalities and heterogeneities in intravascular lymphoma (IVL). METHODS G-banded karyotyping was performed on biopsy specimens from a single-centre IVL cohort comprising intravascular large B-cell lymphoma (IVLBCL, n=12) and NK/T-cell lymphoma (IVNKTCL, n=1). RESULTS Five IVLBCL cases and one IVNKTCL case (total 46%) were found to have normal karyotypes, and the cytogenetic abnormalities observed in the other seven IVLBCL cases (54%) were investigated further. These seven karyotypes were uniformly complex with an average of 13 aberrations. The seven cases all had abnormalities involving chromosome 6, with 57% involving structural abnormalities at 6q13, and chromosome 8, with 43% involving abnormalities at 8p11.2. In addition, 71% had aberrations at 19q13. On average, 4.4 chromosomal gains and losses were detected per case. Cytogenetic heterogeneities were observed in six cases (86%) and tetraploidy in three cases (43%). There was no significant difference in progression-free survival (p=0.92) and overall survival (p=0.61) between the IVLBCL cases with complex and normal karyotypes. CONCLUSION Approximately half of IVLBCL cases had a highly heterogeneous pattern of karyotypes with different clonal numerical and structural chromosome aberrations.
Collapse
Affiliation(s)
- Kohei Fujikura
- Department of Pathology, Kobe City Medical Center General Hospital, Kobe, Japan .,Department of Diagnostic Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Daisuke Yamashita
- Department of Pathology, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Makoto Yoshida
- Department of Pathology, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Takayuki Ishikawa
- Department of Hematology, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Tomoo Itoh
- Department of Diagnostic Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yukihiro Imai
- Department of Pathology, Kobe City Medical Center General Hospital, Kobe, Japan
| |
Collapse
|
19
|
Samanta D, Ebrahimi SB, Kusmierz CD, Cheng HF, Mirkin CA. Protein Spherical Nucleic Acids for Live-Cell Chemical Analysis. J Am Chem Soc 2020; 142:13350-13355. [PMID: 32706250 DOI: 10.1021/jacs.0c06866] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We report the development of a new strategy for the chemical analysis of live cells based on protein spherical nucleic acids (ProSNAs). The ProSNA architecture enables analyte detection via the highly programmable nucleic acid shell or a functional protein core. As a proof-of-concept, we use an i-motif as the nucleic acid recognition element to probe pH in living cells. By interfacing the i-motif with a forced-intercalation readout, we introduce a quencher-free approach that is resistant to false-positive signals, overcoming limitations associated with conventional fluorophore/quencher-based gold NanoFlares. Using glucose oxidase as a functional protein core, we show activity-based, amplified sensing of glucose. This enzymatic system affords greater than 100-fold fluorescence turn on in buffer, is selective for glucose in the presence of close analogs (i.e., glucose-6-phosphate), and can detect glucose above a threshold concentration of ∼5 μM, which enables the study of relative changes in intracellular glucose concentrations.
Collapse
|
20
|
Atefvahid P, Modarressi MH, Aleyasin A, Noormohammadi Z. Copy number variations in miscarriage products and their relationship with consanguinity and recurrent miscarriage in individuals with normal karyotypes. Mol Cell Probes 2020; 51:101526. [PMID: 32074488 DOI: 10.1016/j.mcp.2020.101526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 01/14/2020] [Accepted: 01/23/2020] [Indexed: 11/28/2022]
Affiliation(s)
- Parisa Atefvahid
- Department of Biology, School of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, 1477893855, Iran
| | - Mohammad Hossein Modarressi
- Departments of Medical Genetics and Molecular Medicine, Tehran University of Medical Sciences, Tehran, 1417653761, Iran.
| | - Ashraf Aleyasin
- Department of Infertility, Shariati Hospital, Tehran University of Medical Sciences, Tehran, 1411713135, Iran
| | - Zahra Noormohammadi
- Department of Biology, School of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, 1477893855, Iran
| |
Collapse
|
21
|
Fluorescence In Situ Hybridization and Rehybridization Using Bacterial Artificial Chromosome Probes. Methods Mol Biol 2020; 2054:243-261. [PMID: 31482460 DOI: 10.1007/978-1-4939-9769-5_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Fluorescence in situ hybridization (FISH) method enables in situ genetic analysis of both metaphase and interphase cells from different types of material, including cell lines, cell smears, and fresh and paraffin-embedded tissue. Despite the growing number of commercially available FISH probes, still for large number of gene loci or chromosomal regions commercial probes are not available. Here we describe a simple method for generating FISH probes using bacterial artificial chromosomes (BAC). Due to genome-wide coverage of BAC clones, there are almost unlimited possibilities for the analysis of any genomic regions using BAC FISH probes.
Collapse
|
22
|
Trzaskoma P, Ruszczycki B, Lee B, Pels KK, Krawczyk K, Bokota G, Szczepankiewicz AA, Aaron J, Walczak A, Śliwińska MA, Magalska A, Kadlof M, Wolny A, Parteka Z, Arabasz S, Kiss-Arabasz M, Plewczyński D, Ruan Y, Wilczyński GM. Ultrastructural visualization of 3D chromatin folding using volume electron microscopy and DNA in situ hybridization. Nat Commun 2020; 11:2120. [PMID: 32358536 PMCID: PMC7195386 DOI: 10.1038/s41467-020-15987-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 04/03/2020] [Indexed: 12/17/2022] Open
Abstract
The human genome is extensively folded into 3-dimensional organization. However, the detailed 3D chromatin folding structures have not been fully visualized due to the lack of robust and ultra-resolution imaging capability. Here, we report the development of an electron microscopy method that combines serial block-face scanning electron microscopy with in situ hybridization (3D-EMISH) to visualize 3D chromatin folding at targeted genomic regions with ultra-resolution (5 × 5 × 30 nm in xyz dimensions) that is superior to the current super-resolution by fluorescence light microscopy. We apply 3D-EMISH to human lymphoblastoid cells at a 1.7 Mb segment of the genome and visualize a large number of distinctive 3D chromatin folding structures in ultra-resolution. We further quantitatively characterize the reconstituted chromatin folding structures by identifying sub-domains, and uncover a high level heterogeneity of chromatin folding ultrastructures in individual nuclei, suggestive of extensive dynamic fluidity in 3D chromatin states.
Collapse
Affiliation(s)
- Paweł Trzaskoma
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteura St, 02-093, Warsaw, Poland
| | - Błażej Ruszczycki
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteura St, 02-093, Warsaw, Poland
| | - Byoungkoo Lee
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Dr, Farmington, CT, 06032, USA
| | - Katarzyna K Pels
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteura St, 02-093, Warsaw, Poland
| | - Katarzyna Krawczyk
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteura St, 02-093, Warsaw, Poland
| | - Grzegorz Bokota
- Center of New Technologies, University of Warsaw, 2c Banacha St, 02-097, Warsaw, Poland
| | - Andrzej A Szczepankiewicz
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteura St, 02-093, Warsaw, Poland
| | - Jesse Aaron
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Dr, Ashburn, VA, 20147, USA
| | - Agnieszka Walczak
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteura St, 02-093, Warsaw, Poland
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 6 Uniwersytetu Poznanskiego St, 61-614, Poznan, Poland
| | - Małgorzata A Śliwińska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteura St, 02-093, Warsaw, Poland
| | - Adriana Magalska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteura St, 02-093, Warsaw, Poland
| | - Michal Kadlof
- Center of New Technologies, University of Warsaw, 2c Banacha St, 02-097, Warsaw, Poland
| | - Artur Wolny
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteura St, 02-093, Warsaw, Poland
| | - Zofia Parteka
- Center of New Technologies, University of Warsaw, 2c Banacha St, 02-097, Warsaw, Poland
| | - Sebastian Arabasz
- Łukasiewicz Research NETWORK - PORT Polish Center for Technology Development, 147 Stablowicka St, 54-066, Wroclaw, Poland
| | - Magdalena Kiss-Arabasz
- Łukasiewicz Research NETWORK - PORT Polish Center for Technology Development, 147 Stablowicka St, 54-066, Wroclaw, Poland
| | - Dariusz Plewczyński
- Center of New Technologies, University of Warsaw, 2c Banacha St, 02-097, Warsaw, Poland
- Mathematics and Information Science, Warsaw Technical University, 75 Koszykowa St, 00-662, Warsaw, Poland
| | - Yijun Ruan
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Dr, Farmington, CT, 06032, USA.
| | - Grzegorz M Wilczyński
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteura St, 02-093, Warsaw, Poland.
| |
Collapse
|
23
|
Hu Q, Maurais EG, Ly P. Cellular and genomic approaches for exploring structural chromosomal rearrangements. Chromosome Res 2020; 28:19-30. [PMID: 31933061 PMCID: PMC7131874 DOI: 10.1007/s10577-020-09626-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/20/2019] [Accepted: 01/01/2020] [Indexed: 12/13/2022]
Abstract
Human chromosomes are arranged in a linear and conserved sequence order that undergoes further spatial folding within the three-dimensional space of the nucleus. Although structural variations in this organization are an important source of natural genetic diversity, cytogenetic aberrations can also underlie a number of human diseases and disorders. Approaches for studying chromosome structure began half a century ago with karyotyping of Giemsa-banded chromosomes and has now evolved to encompass high-resolution fluorescence microscopy, reporter-based assays, and next-generation DNA sequencing technologies. Here, we provide a general overview of experimental methods at different resolution and sensitivity scales and discuss how they can be complemented to provide synergistic insight into the study of human chromosome structural rearrangements. These approaches range from kilobase-level resolution DNA fluorescence in situ hybridization (FISH)-based imaging approaches of individual cells to genome-wide sequencing strategies that can capture nucleotide-level information from diverse sample types. Technological advances coupled to the combinatorial use of multiple methods have resulted in the discovery of new rearrangement classes along with mechanistic insights into the processes that drive structural alterations in the human genome.
Collapse
Affiliation(s)
- Qing Hu
- Department of Pathology, Department of Cell Biology, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Elizabeth G Maurais
- Department of Pathology, Department of Cell Biology, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Peter Ly
- Department of Pathology, Department of Cell Biology, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
24
|
Balachandran P, Beck CR. Structural variant identification and characterization. Chromosome Res 2020; 28:31-47. [PMID: 31907725 PMCID: PMC7131885 DOI: 10.1007/s10577-019-09623-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 10/15/2019] [Accepted: 11/24/2019] [Indexed: 01/06/2023]
Abstract
Structural variant (SV) differences between human genomes can cause germline and mosaic disease as well as inter-individual variation. De-regulation of accurate DNA repair and genomic surveillance mechanisms results in a large number of SVs in cancer. Analysis of the DNA sequences at SV breakpoints can help identify pathways of mutagenesis and regions of the genome that are more susceptible to rearrangement. Large-scale SV analyses have been enabled by high-throughput genome-level sequencing on humans in the past decade. These studies have shed light on the mechanisms and prevalence of complex genomic rearrangements. Recent advancements in both sequencing and other mapping technologies as well as calling algorithms for detection of genomic rearrangements have helped propel SV detection into population-scale studies, and have begun to elucidate previously inaccessible regions of the genome. Here, we discuss the genomic organization of simple and complex SVs, the molecular mechanisms of their formation, and various ways to detect them. We also introduce methods for characterizing SVs and their consequences on human genomes.
Collapse
Affiliation(s)
| | - Christine R Beck
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA.
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, University of Connecticut Health Center, Farmington, CT, 06030, USA.
| |
Collapse
|
25
|
Wang H, Jia Z, Mao A, Xu B, Wang S, Wang L, Liu S, Zhang H, Zhang X, Yu T, Mu T, Xu M, Cram DS, Yao Y. Analysis of balanced reciprocal translocations in patients with subfertility using single-molecule optical mapping. J Assist Reprod Genet 2020; 37:509-516. [PMID: 32026199 DOI: 10.1007/s10815-020-01702-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 01/27/2020] [Indexed: 12/26/2022] Open
Abstract
PURPOSE Approximately 1% of individuals who carry a balanced reciprocal translocation (BRT) are subfertile. Current karyotyping does not have the resolution to determine whether the breakpoints of the involved chromosomes perturb genes important for fertility. The aim of this study was to apply single-molecule optical mapping (SMOM) to patients presenting for IVF (in vitro fertilization) to ascertain whether the BRT disrupted any genes associated with normal fertility. METHODS Nine subfertile patients with different BRTs were recruited for the study. Methyltransferase enzyme DLE1 was used to fluorescently label their genomic DNA samples at the recognition motif CTTAAG. The SMOM was performed on the Bionano platform, and long molecules aligned against the reference genome hg19 to identify the breakpoint regions. Mate-pair and PCR-Sanger sequencing were used to confirm the precise breakpoint sequences. RESULTS Both breakpoint regions in each of the nine BRTs were finely mapped to small regions of approximately 10 Kb, and their positions were consistent with original cytogenetic banding patterns determined by karyotyping. In three BRTs, breakpoints disrupted genes known to be associated with male infertility, namely NUP155 and FNDC3A [46,XY,t(5;13)(p15;q22)], DPY19L1 [46,XY,t(1;7)(p36.3;p15), and BAI3 [46,XY,t(3;6)(p21;q16)]. CONCLUSIONS The SMOM has potential clinical application as a rapid tool to screen patients with BRTs for underlying genetic causes of infertility and other diseases.
Collapse
Affiliation(s)
- Hui Wang
- Department of Obstetrics and Gynecology, PLA General Hospital, Beijing, 100853, China
| | - Zhengjun Jia
- Prenatal Diagnosis Center of Hunan Province, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, 410008, China
| | - Aiping Mao
- Berry Genomics Corporation, Beijing, 102200, China
| | - Bing Xu
- Department of Obstetrics and Gynecology, PLA General Hospital, Beijing, 100853, China
| | - Shuling Wang
- Department of Obstetrics and Gynecology, PLA General Hospital, Beijing, 100853, China
| | - Li Wang
- The First Hospital of KunMing, Kunming, 650034, China
| | - Sai Liu
- Department of Obstetrics and Gynecology, PLA General Hospital, Beijing, 100853, China.,The First Hospital of KunMing, Kunming, 650034, China
| | - Haiman Zhang
- Berry Genomics Corporation, Beijing, 102200, China
| | | | - Tao Yu
- Berry Genomics Corporation, Beijing, 102200, China
| | - Ting Mu
- Berry Genomics Corporation, Beijing, 102200, China
| | - Mengnan Xu
- Berry Genomics Corporation, Beijing, 102200, China
| | - David S Cram
- Berry Genomics Corporation, Beijing, 102200, China.
| | - Yuanqing Yao
- Department of Obstetrics and Gynecology, PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
26
|
Chowdhury MR, Singh A, Dubey S. Role of cytogenetics and molecular genetics in human health and medicine. Anim Biotechnol 2020. [DOI: 10.1016/b978-0-12-811710-1.00022-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
27
|
Au PYB, Eaton A, Dyment DA. Genetic mechanisms of neurodevelopmental disorders. HANDBOOK OF CLINICAL NEUROLOGY 2020; 173:307-326. [PMID: 32958182 DOI: 10.1016/b978-0-444-64150-2.00024-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Neurodevelopmental disorders encompass a broad range of conditions, which include autism, epilepsy, and intellectual disability. These disorders are relatively common and have associated clinical and genetic heterogeneity. Technology has driven much of our understanding of these diseases and their genetic underlying mechanisms, particularly highlighted by the study of large cohorts with comparative genomic hybridization and the more recent implementation of next-generation sequencing (NGS). The mapping of copy number variants throughout the genome has highlighted the recurrent, highly penetrant, de novo variation in syndromic forms of neurodevelopmental disease. NGS of affected individuals and their parents led to a dramatic shift in our understanding as these studies showed that a significant proportion of affected individuals carry rare, de novo variants within single genes that explain their disease presentation. Deep sequencing studies further implicate mosaicism as another mechanism of disease. However, it has also become clear that while rare variants explain a significant proportion of sporadic neurodevelopmental disease, rare variation still does not fully account for the familial clustering and high heritability observed. Common variants, including those within these known disease genes, are also shown to contribute significantly to overall risk. There is also increasing awareness of the important contribution of epigenetic factors and gene-environment interactions.
Collapse
Affiliation(s)
- P Y Billie Au
- Department of Medical Genetics, Alberta Children's Hospital Research Institute, Calgary, AB, Canada
| | - Alison Eaton
- Department of Medical Genetics, The Stollery Children's Hospital, Edmonton, AB, Canada
| | - David A Dyment
- Department of Genetics, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada.
| |
Collapse
|
28
|
|
29
|
Advanced understanding of genetic risk and metabolite signatures in construction workers via cytogenetics and metabolomics analysis. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.07.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
30
|
|
31
|
Fujimoto K, Hashimoto M, Watanabe N, Nakamura S. RNA fluorescence in situ hybridization hybridisation using photo-cross-linkable beacon probes containing pyranocarbazole in living E. coli. Bioorg Med Chem Lett 2019; 29:2173-2177. [DOI: 10.1016/j.bmcl.2019.06.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/18/2019] [Accepted: 06/26/2019] [Indexed: 12/25/2022]
|
32
|
Berry NK, Scott RJ, Rowlings P, Enjeti AK. Clinical use of SNP-microarrays for the detection of genome-wide changes in haematological malignancies. Crit Rev Oncol Hematol 2019; 142:58-67. [PMID: 31377433 DOI: 10.1016/j.critrevonc.2019.07.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 07/18/2019] [Accepted: 07/18/2019] [Indexed: 12/17/2022] Open
Abstract
Single nucleotide polymorphism (SNP) microarrays are commonly used for the clinical investigation of constitutional genomic disorders; however, their adoption for investigating somatic changes is being recognised. With increasing importance being placed on defining the cancer genome, a shift in technology is imperative at a clinical level. Microarray platforms have the potential to become frontline testing, replacing or complementing standard investigations such as FISH or karyotype. This 'molecular karyotype approach' exemplified by SNP-microarrays has distinct advantages in the investigation of several haematological malignancies. A growing body of literature, including guidelines, has shown support for the use of SNP-microarrays in the clinical laboratory to aid in a more accurate definition of the cancer genome. Understanding the benefits of this technology along with discussing the barriers to its implementation is necessary for the development and incorporation of SNP-microarrays in a clinical laboratory for the investigation of haematological malignancies.
Collapse
Affiliation(s)
- Nadine K Berry
- Department of Haematology, Calvary Mater Hospital, Newcastle, New South Wales, Australia; School of Biomedical Sciences and Pharmacy, University of Newcastle, New South Wales, Australia; Department of Molecular Medicine, NSW Health Pathology, Newcastle, New South Wales, Australia.
| | - Rodney J Scott
- School of Biomedical Sciences and Pharmacy, University of Newcastle, New South Wales, Australia; Department of Molecular Medicine, NSW Health Pathology, Newcastle, New South Wales, Australia
| | - Philip Rowlings
- Department of Haematology, Calvary Mater Hospital, Newcastle, New South Wales, Australia; School of Medicine and Public Health, University Newcastle, New South Wales, Australia
| | - Anoop K Enjeti
- Department of Haematology, Calvary Mater Hospital, Newcastle, New South Wales, Australia; School of Medicine and Public Health, University Newcastle, New South Wales, Australia
| |
Collapse
|
33
|
Sedlazeck FJ, Lee H, Darby CA, Schatz MC. Piercing the dark matter: bioinformatics of long-range sequencing and mapping. Nat Rev Genet 2019; 19:329-346. [PMID: 29599501 DOI: 10.1038/s41576-018-0003-4] [Citation(s) in RCA: 312] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Several new genomics technologies have become available that offer long-read sequencing or long-range mapping with higher throughput and higher resolution analysis than ever before. These long-range technologies are rapidly advancing the field with improved reference genomes, more comprehensive variant identification and more complete views of transcriptomes and epigenomes. However, they also require new bioinformatics approaches to take full advantage of their unique characteristics while overcoming their complex errors and modalities. Here, we discuss several of the most important applications of the new technologies, focusing on both the currently available bioinformatics tools and opportunities for future research.
Collapse
Affiliation(s)
- Fritz J Sedlazeck
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Hayan Lee
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Charlotte A Darby
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - Michael C Schatz
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA. .,Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
| |
Collapse
|
34
|
Iourov IY, Vorsanova SG, Yurov YB, Kutsev SI. Ontogenetic and Pathogenetic Views on Somatic Chromosomal Mosaicism. Genes (Basel) 2019; 10:E379. [PMID: 31109140 PMCID: PMC6562967 DOI: 10.3390/genes10050379] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 12/27/2022] Open
Abstract
Intercellular karyotypic variability has been a focus of genetic research for more than 50 years. It has been repeatedly shown that chromosome heterogeneity manifesting as chromosomal mosaicism is associated with a variety of human diseases. Due to the ability of changing dynamically throughout the ontogeny, chromosomal mosaicism may mediate genome/chromosome instability and intercellular diversity in health and disease in a bottleneck fashion. However, the ubiquity of negligibly small populations of cells with abnormal karyotypes results in difficulties of the interpretation and detection, which may be nonetheless solved by post-genomic cytogenomic technologies. In the post-genomic era, it has become possible to uncover molecular and cellular pathways to genome/chromosome instability (chromosomal mosaicism or heterogeneity) using advanced whole-genome scanning technologies and bioinformatic tools. Furthermore, the opportunities to determine the effect of chromosomal abnormalities on the cellular phenotype seem to be useful for uncovering the intrinsic consequences of chromosomal mosaicism. Accordingly, a post-genomic review of chromosomal mosaicism in the ontogenetic and pathogenetic contexts appears to be required. Here, we review chromosomal mosaicism in its widest sense and discuss further directions of cyto(post)genomic research dedicated to chromosomal heterogeneity.
Collapse
Affiliation(s)
- Ivan Y Iourov
- Yurov's Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, 117152 Moscow, Russia.
- Laboratory of Molecular Cytogenetics of Neuropsychiatric Diseases, Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University, 125412 Moscow, Russia.
| | - Svetlana G Vorsanova
- Yurov's Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, 117152 Moscow, Russia.
- Laboratory of Molecular Cytogenetics of Neuropsychiatric Diseases, Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University, 125412 Moscow, Russia.
| | - Yuri B Yurov
- Yurov's Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, 117152 Moscow, Russia.
- Laboratory of Molecular Cytogenetics of Neuropsychiatric Diseases, Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University, 125412 Moscow, Russia.
| | - Sergei I Kutsev
- Research Centre for Medical Genetics, 115522 Moscow, Russia.
- Molecular & Cell Genetics Department, Pirogov Russian National Research Medical University, 117997 Moscow, Russia.
| |
Collapse
|
35
|
Zhu Y, Shan Q, Zheng J, Cai Q, Yang H, Zhang J, Du X, Jin F. Comparison of Efficiencies of Non-invasive Prenatal Testing, Karyotyping, and Chromosomal Micro-Array for Diagnosing Fetal Chromosomal Anomalies in the Second and Third Trimesters. Front Genet 2019; 10:69. [PMID: 30915098 PMCID: PMC6421281 DOI: 10.3389/fgene.2019.00069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 01/28/2019] [Indexed: 01/06/2023] Open
Abstract
In this study, we aimed to compare the efficiency of non-invasive prenatal testing (NIPT), karyotyping, and chromosomal micro-array (CMA) for the diagnosis of fetal chromosomal anomalies in the second and third trimesters. Pregnant women, who underwent amniocenteses for prenatal genetic diagnoses during their middle and late trimesters, were recruited at the Prenatal Diagnosis Center of Taizhou City. Maternal blood was separated for NIPT, and amniotic fluid cells were cultured for karyotyping and CMA. The diagnostic efficiency of NIPT for detecting fetal imbalanced anomalies was compared with karyotyping and CMA. A total of 69 fetal chromosomal imbalances were confirmed by CMA, 37 were diagnosed by NIPT and 35 were found by karyotyping. The sensitivities of NIPT and karyotyping for diagnosing aneuploidy were 96.3% and 100% respectively. Only one mosaic sexual chromosome monosomy was misdiagnosed by NIPT, whereas the sensitivity of NIPT and karyotyping was 70% and 30%, respectively, for detecting pathogenic deletions and duplications sized from 5-20 Mb. Taken together, our results suggest that the efficiency of NIPT was similar to the formula karyotyping for detecting chromosome imbalance in the second and third trimesters.
Collapse
Affiliation(s)
- Yiyang Zhu
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine Zhejiang University, Hangzhou, China.,Department of Prenatal Diagnosis, Enze Women's Hospital, Taizhou Hospital of Zhejiang Province, Zhejiang University, Taizhou, China.,Taizhou Centers of Prenatal Screening, Taizhou Women and Children's Hospital, Wenzhou Medical University, Taizhou, China
| | - Qunda Shan
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine Zhejiang University, Hangzhou, China.,Department of Prenatal Diagnosis, Lishui Maternal and Child Health Care Hospital, Lishui, China
| | - Jiayong Zheng
- Department of Gynecology and Obstetrics, Wenzhou People's Hospital, Wenzhou Maternal and Child Health Care Hospital, Wenzhou City Key Laboratory of Gynecology and Obstetrics, Wenzhou, China
| | - Qunxi Cai
- Department of Prenatal Diagnosis, Enze Women's Hospital, Taizhou Hospital of Zhejiang Province, Zhejiang University, Taizhou, China
| | - Huanli Yang
- Department of Prenatal Diagnosis, Enze Women's Hospital, Taizhou Hospital of Zhejiang Province, Zhejiang University, Taizhou, China
| | - Jianhong Zhang
- Taizhou Centers of Prenatal Screening, Taizhou Women and Children's Hospital, Wenzhou Medical University, Taizhou, China
| | - Xiaodong Du
- Department of Prenatal Diagnosis, Lishui Maternal and Child Health Care Hospital, Lishui, China
| | - Fan Jin
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine Zhejiang University, Hangzhou, China.,Key Laboratory of Reproductive Genetics, Ministry of Education, Hangzhou, China
| |
Collapse
|
36
|
Giefing M, Siebert R. FISH and FICTION in Lymphoma Research. Methods Mol Biol 2019; 1956:249-267. [PMID: 30779038 DOI: 10.1007/978-1-4939-9151-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
Fluorescence in situ hybridization (FISH) is a powerful and robust technique allowing the visualization of target sequences like genes in interphase nuclei. It is widely used in routine diagnostics to identify cancer-specific aberrations including lymphoma-associated translocations or gene copy number changes in single tumor cells. By combining FISH with immunophenotyping-a technique called fluorescence immunophenotyping and interphase cytogenetic as a tool for investigation of neoplasia (FICTION)-it is moreover possible to identify a cell population of interest. Here we describe standard protocols for FISH and FICTION as used in our laboratories in diagnosis and research.
Collapse
Affiliation(s)
- Maciej Giefing
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland.
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
37
|
Wang J, Chen L, Zhou C, Wang L, Xie H, Xiao Y, Zhu H, Hu T, Zhang Z, Zhu Q, Liu Z, Liu S, Wang H, Xu M, Ren Z, Yu F, Cram DS, Liu H. Prospective chromosome analysis of 3429 amniocentesis samples in China using copy number variation sequencing. Am J Obstet Gynecol 2018; 219:287.e1-287.e18. [PMID: 29852155 DOI: 10.1016/j.ajog.2018.05.030] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 04/25/2018] [Accepted: 05/22/2018] [Indexed: 11/15/2022]
Abstract
BACKGROUND Next-generation sequencing is emerging as a viable alternative to chromosome microarray analysis for the diagnosis of chromosome disease syndromes. One next-generation sequencing methodology, copy number variation sequencing, has been shown to deliver high reliability, accuracy, and reproducibility for detection of fetal copy number variations in prenatal samples. However, its clinical utility as a first-tier diagnostic method has yet to be demonstrated in a large cohort of pregnant women referred for fetal chromosome testing. OBJECTIVE We sought to evaluate copy number variation sequencing as a first-tier diagnostic method for detection of fetal chromosome anomalies in a general population of pregnant women with high-risk prenatal indications. STUDY DESIGN This was a prospective analysis of 3429 pregnant women referred for amniocentesis and fetal chromosome testing for different risk indications, including advanced maternal age, high-risk maternal serum screening, and positivity for an ultrasound soft marker. Amniocentesis was performed by standard procedures. Amniocyte DNA was analyzed by copy number variation sequencing with a chromosome resolution of 0.1 Mb. Fetal chromosome anomalies including whole chromosome aneuploidy and segmental imbalances were independently confirmed by gold standard cytogenetic and molecular methods and their pathogenicity determined following guidelines of the American College of Medical Genetics for sequence variants. RESULTS Clear interpretable copy number variation sequencing results were obtained for all 3429 amniocentesis samples. Copy number variation sequencing identified 3293 samples (96%) with a normal molecular karyotype and 136 samples (4%) with an altered molecular karyotype. A total of 146 fetal chromosome anomalies were detected, comprising 46 whole chromosome aneuploidies (pathogenic), 29 submicroscopic microdeletions/microduplications with known or suspected associations with chromosome disease syndromes (pathogenic), 22 other microdeletions/microduplications (likely pathogenic), and 49 variants of uncertain significance. Overall, the cumulative frequency of pathogenic/likely pathogenic and variants of uncertain significance chromosome anomalies in the patient cohort was 2.83% and 1.43%, respectively. In the 3 high-risk advanced maternal age, high-risk maternal serum screening, and ultrasound soft marker groups, the most common whole chromosome aneuploidy detected was trisomy 21, followed by sex chromosome aneuploidies, trisomy 18, and trisomy 13. Across all clinical indications, there was a similar incidence of submicroscopic copy number variations, with approximately equal proportions of pathogenic/likely pathogenic and variants of uncertain significance copy number variations. If karyotyping had been used as an alternate cytogenetics detection method, copy number variation sequencing would have returned a 1% higher yield of pathogenic or likely pathogenic copy number variations. CONCLUSION In a large prospective clinical study, copy number variation sequencing delivered high reliability and accuracy for identifying clinically significant fetal anomalies in prenatal samples. Based on key performance criteria, copy number variation sequencing appears to be a well-suited methodology for first-tier diagnosis of pregnant women in the general population at risk of having a suspected fetal chromosome abnormality.
Collapse
Affiliation(s)
- Jing Wang
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University and the Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Lin Chen
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University and the Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Cong Zhou
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University and the Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Li Wang
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University and the Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Hanbing Xie
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University and the Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Yuanyuan Xiao
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University and the Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Hongmei Zhu
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University and the Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Ting Hu
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University and the Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Zhu Zhang
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University and the Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Qian Zhu
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University and the Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Zhiying Liu
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University and the Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Shanlin Liu
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University and the Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - He Wang
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University and the Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Mengnan Xu
- Berry Genomics Corporation, Beijing, China
| | - Zhilin Ren
- Berry Genomics Corporation, Beijing, China
| | - Fuli Yu
- Berry Genomics Corporation, Beijing, China; Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | | | - Hongqian Liu
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University and the Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China.
| |
Collapse
|
38
|
Yi K, Ju YS. Patterns and mechanisms of structural variations in human cancer. Exp Mol Med 2018; 50:1-11. [PMID: 30089796 PMCID: PMC6082854 DOI: 10.1038/s12276-018-0112-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 12/29/2017] [Indexed: 12/16/2022] Open
Abstract
Next-generation sequencing technology has enabled the comprehensive detection of genomic alterations in human somatic cells, including point mutations, chromosomal rearrangements, and structural variations (SVs). Using sophisticated bioinformatics algorithms, unbiased catalogs of SVs are emerging from thousands of human cancer genomes for the first time. Via careful examination of SV breakpoints at single-nucleotide resolution as well as local DNA copy number changes, diverse patterns of genomic rearrangements are being revealed. These "SV signatures" provide deep insight into the mutational processes that have shaped genome changes in human somatic cells. This review summarizes the characteristics of recently identified complex SVs, including chromothripsis, chromoplexy, microhomology-mediated breakage-induced replication (MMBIR), and others, to provide a holistic snapshot of the current knowledge on genomic rearrangements in somatic cells.
Collapse
Affiliation(s)
- Kijong Yi
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Korea
| | - Young Seok Ju
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Korea.
| |
Collapse
|
39
|
Space Radiation Effects on Crew During and After Deep Space Missions. CURRENT PATHOBIOLOGY REPORTS 2018. [DOI: 10.1007/s40139-018-0175-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
40
|
Chen L, Guan J, Wei Q, Yuan Z, Zhang M. Potential role of "omics" technique in prenatal diagnosis of congenital heart defects. Clin Chim Acta 2018; 482:185-190. [PMID: 29649453 DOI: 10.1016/j.cca.2018.04.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/04/2018] [Accepted: 04/06/2018] [Indexed: 02/08/2023]
Abstract
Congenital heart defect (CHD) is one of the most common birth defects and is the leading cause of neonatal death. Currently, there are no biomarkers available for prenatal diagnosis of CHD. Clinical strategies to diagnose CHD mostly depend on fetal echocardiography. Recent advances in "omics" techniques have opened up new possibilities for biomarker discoveries. In this review, we discuss recent advances in prenatal detection of CHD using biomarkers obtained by "omics" approaches, including genomics, proteomics, metabolomics, and others. There is great potential in obtaining various kinds of parameters using "omics" studies to facilitate early and accurate diagnosis of CHD.
Collapse
Affiliation(s)
- Lizhu Chen
- Department of Ultrasound, Shengjing Hospital, China Medical University, Shenyang 110004, China; Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang 110004, China
| | - Johnny Guan
- Department of Urology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Qiuju Wei
- Department of Obstetrics and Gynecology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Zhengwei Yuan
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang 110004, China.
| | - Mo Zhang
- Department of Urology, Shengjing Hospital, China Medical University, Shenyang 110004, China..
| |
Collapse
|
41
|
Broadgate S, Yu J, Downes SM, Halford S. Unravelling the genetics of inherited retinal dystrophies: Past, present and future. Prog Retin Eye Res 2017; 59:53-96. [PMID: 28363849 DOI: 10.1016/j.preteyeres.2017.03.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 03/21/2017] [Accepted: 03/23/2017] [Indexed: 02/07/2023]
Abstract
The identification of the genes underlying monogenic diseases has been of interest to clinicians and scientists for many years. Using inherited retinal dystrophies as an example of monogenic disease we describe the history of molecular genetic techniques that have been pivotal in the discovery of disease causing genes. The methods that were developed in the 1970's and 80's are still in use today but have been refined and improved. These techniques enabled the concept of the Human Genome Project to be envisaged and ultimately realised. When the successful conclusion of the project was announced in 2003 many new tools and, as importantly, many collaborations had been developed that facilitated a rapid identification of disease genes. In the post-human genome project era advances in computing power and the clever use of the properties of DNA replication has allowed the development of next-generation sequencing technologies. These methods have revolutionised the identification of disease genes because for the first time there is no need to define the position of the gene in the genome. The use of next generation sequencing in a diagnostic setting has allowed many more patients with an inherited retinal dystrophy to obtain a molecular diagnosis for their disease. The identification of novel genes that have a role in the development or maintenance of retinal function is opening up avenues of research which will lead to the development of new pharmacological and gene therapy approaches. Neither of which can be used unless the defective gene and protein is known. The continued development of sequencing technologies also holds great promise for the advent of truly personalised medicine.
Collapse
Affiliation(s)
- Suzanne Broadgate
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Levels 5 and 6 West Wing, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU, UK
| | - Jing Yu
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Levels 5 and 6 West Wing, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU, UK
| | - Susan M Downes
- Oxford Eye Hospital, Oxford University Hospitals NHS Trust, Oxford, OX3 9DU, UK
| | - Stephanie Halford
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Levels 5 and 6 West Wing, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU, UK.
| |
Collapse
|
42
|
Bhat TA, Wani AA. Fluorescence In Situ Hybridization (FISH) and Its Applications. CHROMOSOME STRUCTURE AND ABERRATIONS 2017. [PMCID: PMC7122835 DOI: 10.1007/978-81-322-3673-3_16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Fluorescence in situ hybridization (FISH) is the most convincing technique for locating the specific DNA sequences, diagnosis of genetic diseases, gene mapping, and identification of novel oncogenes or genetic aberrations contributing to various types of cancers. FISH involves annealing of DNA or RNA probes attached to a fluorescent reporter molecule with specific target sequence of sample DNA, which can be followed under fluorescence microscopy. The technique has lately been expanded to enable screening of the whole genome simultaneously through multicolor whole chromosome probe techniques such as multiplex FISH or spectral karyotyping or through an array-based method using comparative genomic hybridization. FISH has completely revolutionized the field of cytogenetics and has now been recognized as a reliable diagnostic and discovery tool in the fight against genetic diseases.
Collapse
Affiliation(s)
- Tariq Ahmad Bhat
- Department of Education, Government of Jammu and Kashmir, Srinagar, India
| | - Aijaz Ahmad Wani
- Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir India
| |
Collapse
|
43
|
Betts Z, Dickson AJ. Improved CHO Cell Line Stability and Recombinant Protein Expression During Long-Term Culture. Methods Mol Biol 2017; 1603:119-141. [PMID: 28493127 DOI: 10.1007/978-1-4939-6972-2_8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Therapeutic proteins require proper folding and posttranslational modifications to be effective and biologically active. Chinese hamster ovary (CHO) cells are by far the most frequently used host for commercial production of therapeutic proteins. However, an unpredictable decrease in protein productivity during the time required for scale up impairs process yields, time, finance, and regulatory approval for the desired product. Therefore, it is important to assess cell lines at stages throughout the period of long-term culture in terms of productivity and various molecular parameters including plasmid and mRNA copy numbers and location of the plasmid on the host cell chromosome. Here, we describe methods, which are frequently used to analyze stability of the recombinant CHO cells over long-term culture. These procedures include the following; western blotting, ELISA to evaluate protein production, real-time PCR to analyze plasmid and mRNA copy numbers, and fluorescent in situ hybridization (FISH) to assess the location of the inserted plasmid on host cell chromosomes.
Collapse
Affiliation(s)
- Zeynep Betts
- Faculty of Science and Literature, Department of Biology, Kocaeli University, Umuttepe Campus, Baki Komsuoglu Blv No. 515, 41380, Izmit, Kocaeli, Turkey.
| | - Alan J Dickson
- Faculty of Life Sciences, The University of Manchester, Michael Smith Building, Manchester, UK
| |
Collapse
|
44
|
Rebner K, Ostertag E, Kessler RW. Hyperspectral backscatter imaging: a label-free approach to cytogenetics. Anal Bioanal Chem 2016; 408:5701-5709. [DOI: 10.1007/s00216-016-9670-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 05/02/2016] [Accepted: 05/25/2016] [Indexed: 02/01/2023]
|
45
|
Qi Q, Lu S, Zhou X, Yao F, Hao N, Yin G, Li W, Bai J, Li N, Cram DS. Copy number variation sequencing-based prenatal diagnosis using cell-free fetal DNA in amniotic fluid. Prenat Diagn 2016; 36:576-83. [PMID: 27084671 DOI: 10.1002/pd.4830] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 04/02/2016] [Accepted: 04/13/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Qingwei Qi
- Department of Obstetrics and Gynecology; Peking Union Medical College Hospital (PUMCH); Beijing China
| | - Sijia Lu
- Yikon Genomics Co., Ltd; Beijing China
| | - Xiya Zhou
- Department of Obstetrics and Gynecology; Peking Union Medical College Hospital (PUMCH); Beijing China
| | - Fengxia Yao
- Department of Obstetrics and Gynecology; Peking Union Medical College Hospital (PUMCH); Beijing China
| | - Na Hao
- Department of Obstetrics and Gynecology; Peking Union Medical College Hospital (PUMCH); Beijing China
| | | | - Wenhui Li
- Yikon Genomics Co., Ltd; Beijing China
| | | | - Ning Li
- Becreative Lab Co., Ltd; Beijing China
| | | |
Collapse
|
46
|
Rocha R, Santos RS, Madureira P, Almeida C, Azevedo NF. Optimization of peptide nucleic acid fluorescence in situ hybridization (PNA-FISH) for the detection of bacteria: The effect of pH, dextran sulfate and probe concentration. J Biotechnol 2016; 226:1-7. [PMID: 27021959 DOI: 10.1016/j.jbiotec.2016.03.047] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 03/23/2016] [Accepted: 03/24/2016] [Indexed: 01/17/2023]
Abstract
Fluorescence in situ hybridization (FISH) is a molecular technique widely used for the detection and characterization of microbial populations. FISH is affected by a wide variety of abiotic and biotic variables and the way they interact with each other. This is translated into a wide variability of FISH procedures found in the literature. The aim of this work is to systematically study the effects of pH, dextran sulfate and probe concentration in the FISH protocol, using a general peptide nucleic acid (PNA) probe for the Eubacteria domain. For this, response surface methodology was used to optimize these 3 PNA-FISH parameters for Gram-negative (Escherichia coli and Pseudomonas fluorescens) and Gram-positive species (Listeria innocua, Staphylococcus epidermidis and Bacillus cereus). The obtained results show that a probe concentration higher than 300nM is favorable for both groups. Interestingly, a clear distinction between the two groups regarding the optimal pH and dextran sulfate concentration was found: a high pH (approx. 10), combined with lower dextran sulfate concentration (approx. 2% [w/v]) for Gram-negative species and near-neutral pH (approx. 8), together with higher dextran sulfate concentrations (approx. 10% [w/v]) for Gram-positive species. This behavior seems to result from an interplay between pH and dextran sulfate and their ability to influence probe concentration and diffusion towards the rRNA target. This study shows that, for an optimum hybridization protocol, dextran sulfate and pH should be adjusted according to the target bacteria.
Collapse
Affiliation(s)
- Rui Rocha
- LEPABE, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; Centre of Biological Engineering, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; Biomode, Ed. GNRATION, Praça Conde Agrolongo no 123, 4700-312 Braga, Portugal.
| | - Rita S Santos
- LEPABE, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Gent, Belgium; i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - Pedro Madureira
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre n.° 823, 4150-180 Porto, Portugal; ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira n.° 228, 4050-313 Porto, Portugal; i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Carina Almeida
- LEPABE, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; Centre of Biological Engineering, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; Biomode, Ed. GNRATION, Praça Conde Agrolongo no 123, 4700-312 Braga, Portugal
| | - Nuno F Azevedo
- LEPABE, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
47
|
Heng HHQ, Regan SM, Liu G, Ye CJ. Why it is crucial to analyze non clonal chromosome aberrations or NCCAs? Mol Cytogenet 2016; 9:15. [PMID: 26877768 PMCID: PMC4752783 DOI: 10.1186/s13039-016-0223-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 02/03/2016] [Indexed: 12/28/2022] Open
Abstract
Current cytogenetics has largely focused its efforts on the identification of recurrent karyotypic alterations, also known as clonal chromosomal aberrations (CCAs). The rationale of doing so seems simple: recurrent genetic changes are relevant for diseases or specific physiological conditions, while non clonal chromosome aberrations (NCCAs) are insignificant genetic background or noise. However, in reality, the vast majority of chromosomal alterations are NCCAs, and it is challenging to identify commonly shared CCAs in most solid tumors. Furthermore, the karyotype, rather than genes, represents the system inheritance, or blueprint, and each NCCA represents an altered genome system. These realizations underscore the importance of the re-evaluation of NCCAs in cytogenetic analyses. In this concept article, we briefly review the definition of NCCAs, some historical misconceptions about them, and why NCCAs are not insignificant "noise," but rather a highly significant feature of the cellular population for providing genome heterogeneity and complexity, representing one important form of fuzzy inheritance. The frequencies of NCCAs also represent an index to measure both internally- and environmentally-induced genome instability. Additionally, the NCCA/CCA cycle is associated with macro- and micro-cellular evolution. Lastly, elevated NCCAs are observed in many disease/illness conditions. Considering all of these factors, we call for the immediate action of studying and reporting NCCAs. Specifically, effort is needed to characterize and compare different types of NCCAs, to define their baseline in various tissues, to develop methods to access mitotic cells, to re-examine/interpret the NCCAs data, and to develop an NCCA database.
Collapse
Affiliation(s)
- Henry H. Q. Heng
- />Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201 USA
- />Department of Pathology, Wayne State University School of Medicine, 3226 Scott Hall, 540 E. Canfield, Detroit, MI 48201 USA
| | - Sarah M. Regan
- />Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201 USA
- />Division of Graduate Medical Sciences, Boston University School of Medicine, Boston, MA 02118 USA
| | - Guo Liu
- />Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201 USA
| | - Christine J. Ye
- />The Division of Hematology/Oncology, University of Michigan Comprehensive Cancer Center, Ann Arbor, MI USA
| |
Collapse
|
48
|
Guan P, Sung WK. Structural variation detection using next-generation sequencing data: A comparative technical review. Methods 2016; 102:36-49. [PMID: 26845461 DOI: 10.1016/j.ymeth.2016.01.020] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Revised: 01/09/2016] [Accepted: 01/31/2016] [Indexed: 12/11/2022] Open
Abstract
Structural variations (SVs) are mutations in the genome of size at least fifty nucleotides. They contribute to the phenotypic differences among healthy individuals, cause severe diseases and even cancers by breaking or linking genes. Thus, it is crucial to systematically profile SVs in the genome. In the past decade, many next-generation sequencing (NGS)-based SV detection methods have been proposed due to the significant cost reduction of NGS experiments and their ability to unbiasedly detect SVs to the base-pair resolution. These SV detection methods vary in both sensitivity and specificity, since they use different SV-property-dependent and library-property-dependent features. As a result, predictions from different SV callers are often inconsistent. Besides, the noises in the data (both platform-specific sequencing error and artificial chimeric reads) impede the specificity of SV detection. Poorly characterized regions in the human genome (e.g., repeat regions) greatly impact the reads mapping and in turn affect the SV calling accuracy. Calling of complex SVs requires specialized SV callers. Apart from accuracy, processing speed of SV caller is another factor deciding its usability. Knowing the pros and cons of different SV calling techniques and the objectives of the biological study are essential for biologists and bioinformaticians to make informed decisions. This paper describes different components in the SV calling pipeline and reviews the techniques used by existing SV callers. Through simulation study, we also demonstrate that library properties, especially insert size, greatly impact the sensitivity of different SV callers. We hope the community can benefit from this work both in designing new SV calling methods and in selecting the appropriate SV caller for specific biological studies.
Collapse
Affiliation(s)
- Peiyong Guan
- School of Computing, National University of Singapore, 117543, Singapore
| | - Wing-Kin Sung
- School of Computing, National University of Singapore, 117543, Singapore; Computational & Mathematical Biology Group, Genome Institute of Singapore, 138672, Singapore.
| |
Collapse
|
49
|
Lund HL, Hughesman CB, McNeil K, Clemens S, Hocken K, Pettersson R, Karsan A, Foster LJ, Haynes C. Initial diagnosis of chronic myelogenous leukemia based on quantification of M-BCR status using droplet digital PCR. Anal Bioanal Chem 2015; 408:1079-94. [DOI: 10.1007/s00216-015-9204-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 11/11/2015] [Accepted: 11/18/2015] [Indexed: 01/25/2023]
|
50
|
Potapova TA, Unruh JR, Box AC, Bradford WD, Seidel CW, Slaughter BD, Sivagnanam S, Wu Y, Li R. Karyotyping human and mouse cells using probes from single-sorted chromosomes and open source software. Biotechniques 2015; 59:335-6, 338, 340-2 passim. [PMID: 26651513 DOI: 10.2144/000114362] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 08/05/2015] [Indexed: 11/23/2022] Open
Abstract
Multispectral karyotyping analyzes all chromosomes in a single cell by labeling them with chromosome-specific probes conjugated to unique combinations of fluorophores. Currently available multispectral karyotyping systems require the purchase of specialized equipment and reagents. However, conventional laser scanning confocal microscopes that are capable of separating multiple overlapping emission spectra through spectral imaging and linear unmixing can be utilized for classifying chromosomes painted with multicolor probes. Here, we generated multicolor chromosome paints from single-sorted human and mouse chromosomes and developed the Karyotype Identification via Spectral Separation (KISS) analysis package, a set of freely available open source ImageJ tools for spectral unmixing and karyotyping. Chromosome spreads painted with our multispectral probe sets can be imaged on widely available spectral laser scanning confocal microscopes and analyzed using our ImageJ tools. Together, our probes and software enable academic labs with access to a laser-scanning spectral microscope to perform multicolor karyotyping in a cost-effective manner.
Collapse
Affiliation(s)
| | - Jay R Unruh
- Stowers Institute for Medical Research, Kansas City, MO
| | - Andrew C Box
- Stowers Institute for Medical Research, Kansas City, MO
| | | | | | | | | | - Yuping Wu
- Stowers Institute for Medical Research, Kansas City, MO
| | - Rong Li
- Stowers Institute for Medical Research, Kansas City, MO.,Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS.,Department of Cell Biology, Johns Hopkins University School of Medicine, 855, N. Wolfe Street, 21205, Baltimore, MD
| |
Collapse
|