1
|
Castorina LV, Grazioli F, Machart P, Mösch A, Errica F. Assessing the generalization capabilities of TCR binding predictors via peptide distance analysis. PLoS One 2025; 20:e0324011. [PMID: 40392871 PMCID: PMC12091837 DOI: 10.1371/journal.pone.0324011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 04/19/2025] [Indexed: 05/22/2025] Open
Abstract
Understanding the interaction between T Cell Receptors (TCRs) and peptide-bound Major Histocompatibility Complexes (pMHCs) is crucial for comprehending immune responses and developing targeted immunotherapies. While recent machine learning (ML) models show remarkable success in predicting TCR-pMHC binding within training data, these models often fail to generalize to peptides outside their training distributions, raising concerns about their applicability in therapeutic settings. Understanding and improving the generalization of these models is therefore critical to ensure real-world applications. To address this issue, we evaluate the effect of the distance between training and testing peptide distributions on ML model empirical risk assessments, using sequence-based and 3D structure-based distance metrics. In our analysis we use several state-of-the-art models for TCR-peptide binding prediction: Attentive Variational Information Bottleneck (AVIB), NetTCR-2.0 and -2.2, and ERGO II (pre-trained autoencoder) and ERGO II (LSTM). In this work, we introduce a novel approach for assessing the generalization capabilities of TCR binding predictors: the Distance Split (DS) algorithm. The DS algorithm controls the distance between training and testing peptides based on both sequence and structure, allowing for a more nuanced evaluation of model performance. We show that lower 3D shape similarity between training and test peptides is associated with a harder out-of-distribution task definition, which is more interesting when measuring the ability to generalize to unseen peptides. However, we observe the opposite effect when splitting using sequence-based similarity. These findings highlight the importance of using a distance-based splitting approach to benchmark models. This could then be used to estimate a confidence score on predictions on novel and unseen peptides, based on how different they are from the training ones. Additionally, our results may hint that employing 3D shape to complement sequence information could improve the accuracy of TCR-pMHC binding predictors.
Collapse
Affiliation(s)
- Leonardo V. Castorina
- School of Informatics, University of Edinburgh, Edinburgh, United Kingdom
- NEC Laboratories Europe, Heidelberg, Germany
| | | | | | - Anja Mösch
- NEC Laboratories Europe, Heidelberg, Germany
| | | |
Collapse
|
2
|
Petrova GV, Naumov YN, Naumova EN, Gorski J. Role of cross-reactivity in cellular immune targeting of influenza A M1 58-66 variant peptide epitopes. Front Immunol 2022; 13:956103. [PMID: 36211433 PMCID: PMC9539824 DOI: 10.3389/fimmu.2022.956103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 09/02/2022] [Indexed: 11/30/2022] Open
Abstract
The immunologic significance of cross-reactivity of TCR recognition of peptide:MHC complexes is still poorly understood. We have described TCR cross-reactivity in a system involving polyclonal CD8 T cell recognition of the well characterized influenza viral M158-66 epitope. While M158-66 is generally conserved between influenza A isolates, error-prone transcription generates stable variant RNA during infection which could act as novel epitopes. If packaged and viable, variant genomic RNA generates an influenza quasispecies. The stable RNA variants would generate a new transmissible epitope that can select a specific repertoire, which itself should have cross-reactive properties. We tested two candidate peptides in which Thr65 is changed to Ala (A65) or Ser (S65) using recall responses to identify responding T cell clonotypes. Both peptides generated large polyclonal T cell repertoires of their own with repertoire characteristics and cross-reactivity patterns like that observed for the M158-66 repertoire. Both substitutions could be present in viral genomes or mRNA at sufficient frequency during an infection to drive immunity. Peptides from the resulting protein would be a target for CD8 cells irrespective of virus viability or transmissibility. These data support the hypothesis that cross-reactivity is important for immunity against RNA virus infections.
Collapse
Affiliation(s)
- Galina V. Petrova
- The Blood Research Institute, Versiti Wisconsin, Milwaukee, WI, United States
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
| | | | - Elena N. Naumova
- Division of Nutrition Epidemiology and Data Science, Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, United States
| | - Jack Gorski
- The Blood Research Institute, Versiti Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
3
|
Kinetically distinct processing pathways diversify the CD8 + T cell response to a single viral epitope. Proc Natl Acad Sci U S A 2020; 117:19399-19407. [PMID: 32719124 DOI: 10.1073/pnas.2004372117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The source proteins from which CD8+ T cell-activating peptides are derived remain enigmatic. Glycoproteins are particularly challenging in this regard owing to several potential trafficking routes within the cell. By engineering a glycoprotein-derived epitope to contain an N-linked glycosylation site, we determined that optimal CD8+ T cell expansion and function were induced by the peptides that are rapidly produced from the exceedingly minor fraction of protein mislocalized to the cytosol. In contrast, peptides derived from the much larger fraction that undergoes translocation and quality control are produced with delayed kinetics and induce suboptimal CD8+ T cell responses. This dual system of peptide generation enhances CD8+ T cell participation in diversifying both antigenicity and the kinetics of peptide display.
Collapse
|
4
|
Thomaidou S, Zaldumbide A, Roep BO. Islet stress, degradation and autoimmunity. Diabetes Obes Metab 2018; 20 Suppl 2:88-94. [PMID: 30230178 PMCID: PMC6174957 DOI: 10.1111/dom.13387] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/18/2018] [Accepted: 05/30/2018] [Indexed: 12/15/2022]
Abstract
β-cell destruction in type 1 diabetes (T1D) results from the effect of inflammation and autoimmunity. In response to inflammatory signals, islet cells engage adaptive mechanisms to restore and maintain cellular homeostasis. Among these mechanisms, the unfolded protein response (UPR) leads to a reduction of the general protein translation rate, increased production of endoplasmic reticulum chaperones and the initiation of degradation by activation of the ER associated degradation pathway (ERAD) in which newly synthetized proteins are ubiquitinylated and processed through the proteasome. This adaptive phase is also believed to play a critical role in the development of autoimmunity by the generation of neoantigens. While we have previously investigated the effect of stress on transcription, translation and post-translational events as possible source for neoantigens, the participation of the degradation machinery, yet crucial in the generation of antigenic peptides, remains to be investigated in the context of T1D pathology. In this review, we will describe the relation between the unfolded protein response and the Ubiquitin Proteasome System (UPS) and address the role of the cellular degradation machinery in the generation of antigens. Learning from tumour immunology, we propose how these processes may unmask β-cells by triggering the generation of aberrant peptides recognized by the immune cells.
Collapse
Affiliation(s)
- Sofia Thomaidou
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Arnaud Zaldumbide
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Bart O. Roep
- Department of Immunohematology and Blood bank Leiden University Medical CenterLeiden University Medical CenterLeidenThe Netherlands
- Department of Diabetes ImmunologyDiabetes & Metabolism Research Institute at the Beckman Research InstituteDuarteCalifornia
| |
Collapse
|
5
|
Baek A, Cho SR, Kim SH. Elucidation of Gene Expression Patterns in the Brain after Spinal Cord Injury. Cell Transplant 2018; 26:1286-1300. [PMID: 28933220 PMCID: PMC5657738 DOI: 10.1177/0963689717715822] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Spinal cord injury (SCI) is a devastating neurological disease. The pathophysiological mechanisms of SCI have been reported to be relevant to central nervous system injury such as brain injury. In this study, gene expression of the brain after SCI was elucidated using transcriptome analysis to characterize the temporal changes in global gene expression patterns in a SCI mouse model. Subjects were randomly classified into 3 groups: sham control, acute (3 h post-injury), and subacute (2 wk post-injury) groups. We sought to confirm the genes differentially expressed between post-injured groups and sham control group. Therefore, we performed transcriptome analysis to investigate the enriched pathways associated with pathophysiology of the brain after SCI using Database for Annotation Visualization, and Integrated Discovery (DAVID), which yielded Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway. Following enriched pathways were found in the brain: oxidative phosphorylation pathway; inflammatory response pathways—cytokine–cytokine receptor interaction and chemokine signaling pathway; and endoplasmic reticulum (ER) stress-related pathways—antigen processing and presentation and mitogen-activated protein kinase signaling pathway. Oxidative phosphorylation pathway was identified at acute phase, while inflammation response and ER stress-related pathways were identified at subacute phase. Since the following pathways—oxidative phosphorylation pathway, inflammatory response pathways, and ER stress-related pathways—have been well known in the SCI, we suggested a link between SCI and brain injury. These mechanisms provide valuable reference data for better understanding pathophysiological processes in the brain after SCI.
Collapse
Affiliation(s)
- Ahreum Baek
- 1 Department of Rehabilitation Medicine, Yonsei University Wonju College of Medicine, Wonju, South Korea.,2 Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Sung-Rae Cho
- 2 Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, South Korea.,5 Rehabilitation Institute of Neuromuscular Disease, Yonsei University College of Medicine, Seoul, South Korea
| | - Sung Hoon Kim
- 1 Department of Rehabilitation Medicine, Yonsei University Wonju College of Medicine, Wonju, South Korea
| |
Collapse
|
6
|
Ross P, Nemec PS, Kapatos A, Miller KR, Holmes JC, Suter SE, Buntzman AS, Soderblom EJ, Collins EJ, Hess PR. The canine MHC class Ia allele DLA-88*508:01 presents diverse self- and canine distemper virus-origin peptides of varying length that have a conserved binding motif. Vet Immunol Immunopathol 2018; 197:76-86. [PMID: 29475511 DOI: 10.1016/j.vetimm.2018.01.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 01/03/2018] [Accepted: 01/12/2018] [Indexed: 01/06/2023]
Abstract
Ideally, CD8+ T-cell responses against virally infected or malignant cells are defined at the level of the specific peptide and restricting MHC class I element, a determination not yet made in the dog. To advance the discovery of canine CTL epitopes, we sought to determine whether a putative classical MHC class Ia gene, Dog Leukocyte Antigen (DLA)-88, presents peptides from a viral pathogen, canine distemper virus (CDV). To investigate this possibility, DLA-88*508:01, an allele prevalent in Golden Retrievers, was expressed as a FLAG-tagged construct in canine histiocytic cells to allow affinity purification of peptide-DLA-88 complexes and subsequent elution of bound peptides. Pattern analysis of self peptide sequences, which were determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS), permitted binding preferences to be inferred. DLA-88*508:01 binds peptides that are 9-to-12 amino acids in length, with a modest preference for 9- and 11-mers. Hydrophobic residues are favored at positions 2 and 3, as are K, R or F residues at the C-terminus. Testing motif-matched and -unmatched synthetic peptides via peptide-MHC surface stabilization assay using a DLA-88*508:01-transfected, TAP-deficient RMA-S line supported these conclusions. With CDV infection, 22 viral peptides ranging from 9-to-12 residues in length were identified in DLA-88*508:01 eluates by LC-MS/MS. Combined motif analysis and surface stabilization assay data suggested that 11 of these 22 peptides, derived from CDV hemagglutinin, large polymerase, matrix, nucleocapsid, and V proteins, were processed and presented, and thus, potential targets of anti-viral CTL in DLA-88*508:01-bearing dogs. The presentation of diverse self and viral peptides indicates that DLA-88 is a classical MHC class Ia gene.
Collapse
Affiliation(s)
- Peter Ross
- Department of Clinical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, NC, 27607, USA
| | - Paige S Nemec
- Department of Clinical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, NC, 27607, USA
| | - Alexander Kapatos
- Department of Clinical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, NC, 27607, USA
| | - Keith R Miller
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Jennifer C Holmes
- Department of Clinical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, NC, 27607, USA
| | - Steven E Suter
- Department of Clinical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, NC, 27607, USA
| | - Adam S Buntzman
- Department of Immunobiology, University of Arizona, Tucson, AZ, 85724, USA
| | - Erik J Soderblom
- Proteomics Core Facility, Institute for Genome Science and Policy, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Edward J Collins
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA; Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Paul R Hess
- Department of Clinical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, NC, 27607, USA.
| |
Collapse
|
7
|
Laumont CM, Perreault C. Exploiting non-canonical translation to identify new targets for T cell-based cancer immunotherapy. Cell Mol Life Sci 2018; 75:607-621. [PMID: 28823056 PMCID: PMC11105255 DOI: 10.1007/s00018-017-2628-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/03/2017] [Accepted: 08/16/2017] [Indexed: 01/11/2023]
Abstract
Cryptic MHC I-associated peptides (MAPs) are produced via two mechanisms: translation of protein-coding genes in non-canonical reading frames and translation of allegedly non-coding sequences. In general, cryptic MAPs are coded by relatively short open reading frames whose translation can be regulated at the level of initiation, elongation or termination. In contrast to conventional MAPs, the processing of cryptic MAPs is frequently proteasome independent. The existence of cryptic MAPs derived from allegedly non-coding regions enlarges the scope of CD8 T cell immunosurveillance from a mere ~2% to as much as ~75% of the human genome. Considering that 99% of cancer-specific mutations are located in those allegedly non-coding regions, cryptic MAPs could furthermore represent a particularly rich source of tumor-specific antigens. However, extensive proteogenomic analyses will be required to determine the breath as well as the temporal and spatial plasticity of the cryptic MAP repertoire in normal and neoplastic cells.
Collapse
Affiliation(s)
- Céline M Laumont
- Institute for Research in Immunology and Cancer, Université de Montréal, Station Centre-Ville, PO Box 6128, Montreal, QC, H3C 3J7, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Station Centre-Ville, PO Box 6128, Montreal, QC, H3C 3J7, Canada
| | - Claude Perreault
- Institute for Research in Immunology and Cancer, Université de Montréal, Station Centre-Ville, PO Box 6128, Montreal, QC, H3C 3J7, Canada.
- Department of Medicine, Faculty of Medicine, Université de Montréal, Station Centre-Ville, PO Box 6128, Montreal, QC, H3C 3J7, Canada.
- Division of Hematology, Hôpital Maisonneuve-Rosemont, 5415 de l'Assomption Boulevard, Montreal, QC, H1T 2M4, Canada.
| |
Collapse
|
8
|
Ubiquitinated Proteins Isolated From Tumor Cells Are Efficient Substrates for Antigen Cross-Presentation. J Immunother 2018; 40:155-163. [PMID: 28368960 DOI: 10.1097/cji.0000000000000165] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We have previously shown that inhibition of the proteasome causes defective ribosomal products to be shunted into autophagosomes and subsequently released from tumor cells as defective ribosomal products in Blebs (DRibbles). These DRibbles serve as an excellent source of antigens for cross-priming of tumor-specific T cells. Here, we examine the role of ubiquitinated proteins (Ub-proteins) in this pathway. Using purified Ub-proteins from tumor cells that express endogenous tumor-associated antigen or exogenous viral antigen, we tested the ability of these proteins to stimulate antigen-specific T-cell responses, by activation of monocyte-derived dendritic cells generated from human peripheral blood mononuclear cells. Compared with total cell lysates, we found that purified Ub-proteins from both a gp100-specific melanoma cell line and from a lung cancer cell line expressing cytomegalovirus pp65 antigen produced a significantly higher level of IFN-γ in gp100- or pp65-specific T cells, respectively. In addition, Ub-proteins from an allogeneic tumor cell line could be used to stimulate tumor-infiltrating lymphocytes isolated and expanded from non-small cell lung cancer patients. These results establish that Ub-proteins provide a relevant source of antigens for cross-priming of antitumor immune responses in a variety of settings, including endogenous melanoma and exogenous viral antigen presentation, as well as antigen-specific tumor-infiltrating lymphocytes. Thus, ubiquitin can be used as an affinity tag to enrich for unknown tumor-specific antigens from tumor cell lysates to stimulate tumor-specific T cells ex vivo or to be used as vaccines to target short-lived proteins.
Collapse
|
9
|
Pearson H, Daouda T, Granados DP, Durette C, Bonneil E, Courcelles M, Rodenbrock A, Laverdure JP, Côté C, Mader S, Lemieux S, Thibault P, Perreault C. MHC class I-associated peptides derive from selective regions of the human genome. J Clin Invest 2016; 126:4690-4701. [PMID: 27841757 DOI: 10.1172/jci88590] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 09/30/2016] [Indexed: 12/24/2022] Open
Abstract
MHC class I-associated peptides (MAPs) define the immune self for CD8+ T lymphocytes and are key targets of cancer immunosurveillance. Here, the goals of our work were to determine whether the entire set of protein-coding genes could generate MAPs and whether specific features influence the ability of discrete genes to generate MAPs. Using proteogenomics, we have identified 25,270 MAPs isolated from the B lymphocytes of 18 individuals who collectively expressed 27 high-frequency HLA-A,B allotypes. The entire MAP repertoire presented by these 27 allotypes covered only 10% of the exomic sequences expressed in B lymphocytes. Indeed, 41% of expressed protein-coding genes generated no MAPs, while 59% of genes generated up to 64 MAPs, often derived from adjacent regions and presented by different allotypes. We next identified several features of transcripts and proteins associated with efficient MAP production. From these data, we built a logistic regression model that predicts with good accuracy whether a gene generates MAPs. Our results show preferential selection of MAPs from a limited repertoire of proteins with distinctive features. The notion that the MHC class I immunopeptidome presents only a small fraction of the protein-coding genome for monitoring by the immune system has profound implications in autoimmunity and cancer immunology.
Collapse
|
10
|
Kracht MJL, Zaldumbide A, Roep BO. Neoantigens and Microenvironment in Type 1 Diabetes: Lessons from Antitumor Immunity. Trends Endocrinol Metab 2016; 27:353-362. [PMID: 27094501 DOI: 10.1016/j.tem.2016.03.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/15/2016] [Accepted: 03/20/2016] [Indexed: 12/24/2022]
Abstract
Type 1 diabetes (T1D) is characterized by the selective and progressive destruction of insulin-producing beta cells by the immune system. An incomplete thymic selection against self-reactive islet antigens partly explains how these T cells reach the periphery and become diabetogenic. Increasing evidence suggest that beta cells themselves also participate to their own demise by generating neoepitopes that could be recognized by the immune surveillance machinery. In this regard, these T cells eradicate self-tissue by mechanisms analogous to a classical antitumor response. Cancer immunotherapy has exploited mutations and transcriptional and translational errors to trigger a specific antitumor response. In this opinion article, we aim at merging insight in antitumor immunology and autoimmunity to reveal processes that had previously been ignored to create beta cell-specific neoantigens.
Collapse
Affiliation(s)
- Maria J L Kracht
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands; Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Arnaud Zaldumbide
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Bart O Roep
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands; Department of Diabetes Immunology, Diabetes and Metabolism Research Institute at the Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA.
| |
Collapse
|
11
|
Yang N, Gibbs JS, Hickman HD, Reynoso GV, Ghosh AK, Bennink JR, Yewdell JW. Defining Viral Defective Ribosomal Products: Standard and Alternative Translation Initiation Events Generate a Common Peptide from Influenza A Virus M2 and M1 mRNAs. THE JOURNAL OF IMMUNOLOGY 2016; 196:3608-17. [PMID: 27016602 DOI: 10.4049/jimmunol.1502303] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 02/23/2016] [Indexed: 12/31/2022]
Abstract
Influenza A virus gene segment 7 encodes two proteins: the M1 protein translated from unspliced mRNA and the M2 protein produced by mRNA splicing and largely encoded by the M1 +1 reading frame. To better understand the generation of defective ribosomal products relevant to MHC class I Ag presentation, we engineered influenza A virus gene segment 7 to encode the model H-2 K(b) class I peptide ligand SIINFEKL at the M2 protein C terminus. Remarkably, after treating virus-infected cells with the RNA splicing inhibitor spliceostatin A to prevent M2 mRNA generation, K(b)-SIINFEKL complexes were still presented on the cell surface at levels ≤60% of untreated cells. Three key findings indicate that SIINFEKL is produced by cytoplasmic translation of unspliced M1 mRNA initiating at CUG codons within the +1 reading frame: 1) synonymous mutation of CUG codons in the M2-reading frame reduced K(b)-SIINFEKL generation; 2) K(b)-SIINFEKL generation was not affected by drug-mediated inhibition of AUG-initiated M1 synthesis; and 3) K(b)-SIINFEKL was generated in vitro and in vivo from mRNA synthesized in the cytoplasm by vaccinia virus, and hence cannot be spliced. These findings define a viral defective ribosomal product generated by cytoplasmic noncanonical translation and demonstrate the participation of CUG-codon-based translation initiation in pathogen immunosurveillance.
Collapse
Affiliation(s)
- Ning Yang
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - James S Gibbs
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Heather D Hickman
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Glennys V Reynoso
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Arun K Ghosh
- Department of Chemistry, Purdue University, West Lafayette, IN 47907
| | - Jack R Bennink
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Jonathan W Yewdell
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| |
Collapse
|
12
|
Interaction of TAPBPR, a tapasin homolog, with MHC-I molecules promotes peptide editing. Proc Natl Acad Sci U S A 2016; 113:E1006-15. [PMID: 26869717 DOI: 10.1073/pnas.1519894113] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Peptide loading of major histocompatibility complex class I (MHC-I) molecules is central to antigen presentation, self-tolerance, and CD8(+) T-cell activation. TAP binding protein, related (TAPBPR), a widely expressed tapasin homolog, is not part of the classical MHC-I peptide-loading complex (PLC). Using recombinant MHC-I molecules, we show that TAPBPR binds HLA-A*02:01 and several other MHC-I molecules that are either peptide-free or loaded with low-affinity peptides. Fluorescence polarization experiments establish that TAPBPR augments peptide binding by MHC-I. The TAPBPR/MHC-I interaction is reversed by specific peptides, related to their affinity. Mutational and small-angle X-ray scattering (SAXS) studies confirm the structural similarities of TAPBPR with tapasin. These results support a role of TAPBPR in stabilizing peptide-receptive conformation(s) of MHC-I, permitting peptide editing.
Collapse
|
13
|
Hermann C, Trowsdale J, Boyle LH. TAPBPR: a new player in the MHC class I presentation pathway. ACTA ACUST UNITED AC 2015; 85:155-66. [PMID: 25720504 DOI: 10.1111/tan.12538] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In order to provide specificity for T cell responses against pathogens and tumours, major histocompatibility complex (MHC) class I molecules present high-affinity peptides at the cell surface to T cells. A key player for peptide loading is the MHC class I-dedicated chaperone tapasin. Recently we discovered a second MHC class I-dedicated chaperone, the tapasin-related protein TAPBPR. Here, we review the major steps in the MHC class I pathway and the TAPBPR data. We discuss the potential function of TAPBPR in the MHC class I pathway and the involvement of this previously uncharacterised protein in human health and disease.
Collapse
Affiliation(s)
- C Hermann
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| | | | | |
Collapse
|
14
|
Jallow S, Leligdowicz A, Kramer HB, Onyango C, Cotten M, Wright C, Whittle HC, McMichael A, Dong T, Kessler BM, Rowland-Jones SL. The presence of prolines in the flanking region of an immunodominant HIV-2 gag epitope influences the quality and quantity of the epitope generated. Eur J Immunol 2015; 45:2232-42. [PMID: 26018465 PMCID: PMC4832300 DOI: 10.1002/eji.201545451] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 04/02/2015] [Accepted: 05/22/2015] [Indexed: 12/31/2022]
Abstract
Both the recognition of HIV‐infected cells and the immunogenicity of candidate CTL vaccines depend on the presentation of a peptide epitope at the cell surface, which in turn depends on intracellular antigen processing. Differential antigen processing maybe responsible for the differences in both the quality and the quantity of epitopes produced, influencing the immunodominance hierarchy of viral epitopes. Previously, we showed that the magnitude of the HIV‐2 gag‐specific T‐cell response is inversely correlated with plasma viral load, particularly when responses are directed against an epitope, 165DRFYKSLRA173, within the highly conserved Major Homology Region of gag‐p26. We also showed that the presence of three proline residues, at positions 119, 159 and 178 of gag‐p26, was significantly correlated with low viral load. Since this proline motif was also associated with stronger gag‐specific CTL responses, we investigated the impact of these prolines on proteasomal processing of the protective 165DRFYKSLRA173 epitope. Our data demonstrate that the 165DRFYKSLRA173 epitope is most efficiently processed from precursors that contain two flanking proline residues, found naturally in low viral‐load patients. Superior antigen processing and enhanced presentation may account for the link between infection with HIV‐2 encoding the “PPP‐gag” sequence and both strong gag‐specific CTL responses as well as lower viral load.
Collapse
Affiliation(s)
- Sabelle Jallow
- Radcliffe Department of Medicine, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Headington, Oxford, UK
| | | | - Holger B Kramer
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | | | | | - Cynthia Wright
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
| | | | - Andrew McMichael
- Radcliffe Department of Medicine, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Headington, Oxford, UK
| | - Tao Dong
- Radcliffe Department of Medicine, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Headington, Oxford, UK
| | - Benedikt M Kessler
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
| | - Sarah L Rowland-Jones
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
| |
Collapse
|
15
|
The nature and extent of contributions by defective ribosome products to the HLA peptidome. Proc Natl Acad Sci U S A 2014; 111:E1591-9. [PMID: 24715725 DOI: 10.1073/pnas.1321902111] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
MHC class I peptides are products of endogenous cellular protein degradation. Their prompt presentation, after rapid degradation of their newly synthesized source proteins, is needed to alert the immune system during pathogen infection. A possible source for such rapidly degrading proteins can be defective ribosome products (DRiPs), which include polypeptides produced as part of the pioneer round of translation, premature translation termination, and proteins failing to fold properly or to assemble into their multisubunit protein complexes. However, the identities and relative contribution to the MHC peptidome of these mature or newly synthesized and rapidly degraded cellular proteins is not well understood. To clarify these issues, we used dynamic stable isotope labeling by amino acids in cell culture to define the relative rates of synthesis of the HLA class I peptidomes and the source proteomes of three cultured human hematopoietic cell lines. Large numbers of HLA class I peptides were observed to be derived from DRiPs, defined here as HLA peptides that shift from their light to heavy isotope forms faster than their source proteins. Specific groups of proteins, such as ribosomal and T-complex protein 1 (TCP-1), contributed a disproportionately large number of DRiPs to the HLA peptidomes. Furthermore, no significant preference was observed for HLA peptides derived from the amino terminal regions of the proteins, suggesting that the contribution of products of premature translation termination was minimal. Thus, the most likely sources of DRiPs-derived HLA peptides are full-sized, misassembled, and surplus subunits of large protein complexes.
Collapse
|
16
|
Antón LC, Yewdell JW. Translating DRiPs: MHC class I immunosurveillance of pathogens and tumors. J Leukoc Biol 2014; 95:551-62. [PMID: 24532645 PMCID: PMC3958739 DOI: 10.1189/jlb.1113599] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 01/15/2014] [Accepted: 01/19/2014] [Indexed: 11/24/2022] Open
Abstract
MHC class I molecules display oligopeptides on the cell surface to enable T cell immunosurveillance of intracellular pathogens and tumors. Speed is of the essence in detecting viruses, which can complete a full replication cycle in just hours, whereas tumor detection is typically a finding-the-needle-in-the-haystack exercise. We review current evidence supporting a nonrandom, compartmentalized selection of peptidogenic substrates that focuses on rapidly degraded translation products as a main source of peptide precursors to optimize immunosurveillance of pathogens and tumors.
Collapse
Affiliation(s)
- Luis C Antón
- 1.NIAID, NIH, Bldg. 33, Bethesda, MD 20892, USA.
| | | |
Collapse
|
17
|
Mage MG, Dolan MA, Wang R, Boyd LF, Revilleza MJ, Robinson H, Natarajan K, Myers NB, Hansen TH, Margulies DH. The peptide-receptive transition state of MHC class I molecules: insight from structure and molecular dynamics. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 189:1391-9. [PMID: 22753930 PMCID: PMC3422668 DOI: 10.4049/jimmunol.1200831] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
MHC class I (MHC-I) proteins of the adaptive immune system require antigenic peptides for maintenance of mature conformation and immune function via specific recognition by MHC-I-restricted CD8(+) T lymphocytes. New MHC-I molecules in the endoplasmic reticulum are held by chaperones in a peptide-receptive (PR) transition state pending release by tightly binding peptides. In this study, we show, by crystallographic, docking, and molecular dynamics methods, dramatic movement of a hinged unit containing a conserved 3(10) helix that flips from an exposed "open" position in the PR transition state to a "closed" position with buried hydrophobic side chains in the peptide-loaded mature molecule. Crystallography of hinged unit residues 46-53 of murine H-2L(d) MHC-I H chain, complexed with mAb 64-3-7, demonstrates solvent exposure of these residues in the PR conformation. Docking and molecular dynamics predict how this segment moves to help form the A and B pockets crucial for the tight peptide binding needed for stability of the mature peptide-loaded conformation, chaperone dissociation, and Ag presentation.
Collapse
Affiliation(s)
- Michael G. Mage
- Molecular Biology Section, Laboratory of Immunology, NIAID, NIH, Bethesda, MD,Corresponding authors: , ph: 301-402-5537, fax: 301-480-7352; or , ph: 301-496-6429, fax: 301-496-0222
| | - Michael A. Dolan
- Computational Biology Section, Bioinformatics and Computational Biosciences Branch (BCBB), NIAID, NIH, Bethesda, MD
| | - Rui Wang
- Molecular Biology Section, Laboratory of Immunology, NIAID, NIH, Bethesda, MD
| | - Lisa F. Boyd
- Molecular Biology Section, Laboratory of Immunology, NIAID, NIH, Bethesda, MD
| | | | - Howard Robinson
- National Synchrotron Light Source, Brookhaven National Laboratories, Upton, New York
| | - Kannan Natarajan
- Molecular Biology Section, Laboratory of Immunology, NIAID, NIH, Bethesda, MD
| | - Nancy B. Myers
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Ted H. Hansen
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - David H. Margulies
- Molecular Biology Section, Laboratory of Immunology, NIAID, NIH, Bethesda, MD,Corresponding authors: , ph: 301-402-5537, fax: 301-480-7352; or , ph: 301-496-6429, fax: 301-496-0222
| |
Collapse
|
18
|
Abstract
In this issue of Blood, Granados et al explore the relationship between the cellular transcriptome and immunopeptidome,1,2 the repertoire of peptides presented by MHC class I molecules for immunosurveillance.
Collapse
|
19
|
Yewdell JW. DRiPs solidify: progress in understanding endogenous MHC class I antigen processing. Trends Immunol 2011; 32:548-58. [PMID: 21962745 DOI: 10.1016/j.it.2011.08.001] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 07/27/2011] [Accepted: 08/01/2011] [Indexed: 12/19/2022]
Abstract
Defective ribosomal products (DRiPs) are a subset of rapidly degraded polypeptides that provide peptide ligands for major histocompatibility complex (MHC) class I molecules. Here, recent progress in understanding DRiP biogenesis is reviewed. These findings place DRiPs at the center of the MHC class I antigen processing pathway, linking immunosurveillance of viruses and tumors to mechanisms of specialized translation and cellular compartmentalization. DRiPs enable the immune system to rapidly detect alterations in cellular gene expression with great sensitivity.
Collapse
|
20
|
Liu Y, Testa JS, Philip R, Block TM, Mehta AS. A ubiquitin independent degradation pathway utilized by a hepatitis B virus envelope protein to limit antigen presentation. PLoS One 2011; 6:e24477. [PMID: 21969857 PMCID: PMC3182176 DOI: 10.1371/journal.pone.0024477] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 08/11/2011] [Indexed: 02/07/2023] Open
Abstract
Hepatitis B virus envelope glycoproteins Large (L), Middle (M) and Small (S) are targets of the host cellular immune system. The extent to which the host recognizes viral antigens presented by infected cells is believed to play a decisive role in determining if an infection will be resolved or become chronic. As with other antigens, HBV envelope polypeptides must be degraded, presumably by cellular proteasomes, to be presented by the MHC I pathway. We have used M as a model to study this process and determine how ER quality control monitors these foreign polymeric proteins and disposes of them through the ER-associated degradation (ERAD) pathway. Using both wild type and mutant HBV M protein, we found that unlike most ERAD substrates, which require ubiquitination for retrotranslocation and degradation, the HBV M protein, which only contains two lysine residues, can undergo rapid and complete, ubiquitin independent, proteasome dependent degradation. The utilization of this pathway had a functional consequence, since proteins degraded through it, were poorly presented via MHC I. To test the hypothesis that the level of ubiquitination, independent of protein degradation, controls the level of antigen presentation, we inserted two additional lysines into both the wild type and mutant M protein. Amazingly, while the addition of the lysine residues dramatically increased the level of ubiquitination, it did not alter the rate of degradation. However and remarkably, the increased ubiquitination was associated with a dramatic increase in the level of antigen presentation. In conclusion, using the HBV surface protein as a model, we have identified a novel ubiquitin independent degradation pathway and determined that this pathway can have implications for antigen presentation and potentially viral pathogenesis.
Collapse
Affiliation(s)
- Yuanjie Liu
- Department of Microbiology and Immunology, Drexel University College of Medicine, Doylestown, Pennsylvania, United States of America
| | - James S. Testa
- Immunotope Inc., Doylestown, Pennsylvania, United States of America
| | - Ramila Philip
- Immunotope Inc., Doylestown, Pennsylvania, United States of America
| | - Timothy M. Block
- Department of Microbiology and Immunology, Drexel University College of Medicine, Doylestown, Pennsylvania, United States of America
| | - Anand S. Mehta
- Department of Microbiology and Immunology, Drexel University College of Medicine, Doylestown, Pennsylvania, United States of America
- * E-mail: .
| |
Collapse
|
21
|
Major source of antigenic peptides for the MHC class I pathway is produced during the pioneer round of mRNA translation. Proc Natl Acad Sci U S A 2011; 108:11572-7. [PMID: 21709220 DOI: 10.1073/pnas.1104104108] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The MHC class I antigen presentation pathway allows the immune system to distinguish between self and nonself. Despite extensive research on the processing of antigenic peptides, little is known about their origin. Here, we show that mRNAs carrying premature stop codons that prevent the production of full-length proteins via the nonsense-mediated decay pathway still produce a majority of peptide substrates for the MHC class I pathway by a noncanonical mRNA translation process. Blocking the interaction of the translation initiation factor eIF4E with the cap structure suppresses the synthesis of full-length proteins but has only a limited effect on the production of antigenic peptides. These results reveal an essential cell biological function for a class of translation products derived during the pioneer round of mRNA translation and will have important implications for understanding how the immune system detects cells harboring pathogens and generates tolerance.
Collapse
|
22
|
Dolan BP, Bennink JR, Yewdell JW. Translating DRiPs: progress in understanding viral and cellular sources of MHC class I peptide ligands. Cell Mol Life Sci 2011; 68:1481-9. [PMID: 21416150 PMCID: PMC3393103 DOI: 10.1007/s00018-011-0656-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 02/17/2011] [Accepted: 02/18/2011] [Indexed: 11/27/2022]
Abstract
It has been 15 years since we proposed the defective ribosomal product (DRiP) hypothesis to explain the rapid presentation of viral peptides by MHC class I molecules on the surface of infected cells. Here, we review the evidence for the contribution of DRiPs to antigen processing, pointing to the uncertainties regarding the physical nature of DRiPs, and emphasizing recent findings suggesting that peptide generation is a specialized process involving compartmentalized translation.
Collapse
Affiliation(s)
- Brian P. Dolan
- Laboratory of Viral Diseases, NIAID, Bethesda, MD 20892 USA
| | | | | |
Collapse
|
23
|
Huang L, Kuhls MC, Eisenlohr LC. Hydrophobicity as a driver of MHC class I antigen processing. EMBO J 2011; 30:1634-44. [PMID: 21378750 DOI: 10.1038/emboj.2011.62] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Accepted: 02/02/2011] [Indexed: 11/09/2022] Open
Abstract
The forces that drive conversion of nascent protein to major histocompatibility complex (MHC) class I-restricted peptides remain unknown. We explored the fundamental property of overt hydrophobicity as such a driver. Relocation of a membrane glycoprotein to the cytosol via signal sequence ablation resulted in rapid processing of nascent protein not because of the misfolded luminal domain but because of the unembedded transmembrane (TM) domain, which serves as a dose-dependent degradation motif. Dislocation of the TM domain during the natural process of endoplasmic reticulum-associated degradation (ERAD) similarly accelerated peptide production, but in the context of markedly prolonged processing that included nonnascent species. These insights into intracellular proteolytic pathways and their selective contributions to MHC class I-restricted peptide supply, may point to new approaches in rational vaccine design.
Collapse
Affiliation(s)
- Lan Huang
- Department of Microbiology and Immunology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | | | | |
Collapse
|
24
|
Huang L, Marvin JM, Tatsis N, Eisenlohr LC. Cutting Edge: Selective role of ubiquitin in MHC class I antigen presentation. THE JOURNAL OF IMMUNOLOGY 2011; 186:1904-8. [PMID: 21239720 DOI: 10.4049/jimmunol.1003411] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The importance of ubiquitination in MHC class I-restricted Ag processing remains unclear. To address this issue, we overexpressed wild-type and dominant-negative lysineless forms of ubiquitin (Ub) in mammalian cells using an inducible vaccinia virus system. Overexpression of the lysineless Ub nearly abrogated polyubiquitination and potently inhibited epitope presentation from a cytosolic N-end rule substrate as well as endoplasmic reticulum (ER)-targeted model Ags. In contrast, there was little impact on Ag presentation from cytosolic proteins. These trends were location dependent; redirecting cytosolic Ag to the ER rendered presentation lysineless Ub-sensitive, whereas retargeting exocytic Ag to the cytosol had the inverse effect. This dichotomy was further underscored by small interfering RNA knockdown of the ER-associated Ub ligase Hrd1. Thus, Ub-dependent degradation appears to play a major role in the MHC class I-restricted processing of ER-targeted proteins and a more restricted role in the processing of cytosolic proteins.
Collapse
Affiliation(s)
- Lan Huang
- Department of Microbiology and Immunology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | |
Collapse
|
25
|
Nijveen H, Kester MGD, Hassan C, Viars A, de Ru AH, de Jager M, Falkenburg JHF, Leunissen JAM, van Veelen PA. HSPVdb--the Human Short Peptide Variation Database for improved mass spectrometry-based detection of polymorphic HLA-ligands. Immunogenetics 2010; 63:143-53. [PMID: 21125265 PMCID: PMC3035791 DOI: 10.1007/s00251-010-0497-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Accepted: 11/11/2010] [Indexed: 12/12/2022]
Abstract
T cell epitopes derived from polymorphic proteins or from proteins encoded by alternative reading frames (ARFs) play an important role in (tumor) immunology. Identification of these peptides is successfully performed with mass spectrometry. In a mass spectrometry-based approach, the recorded tandem mass spectra are matched against hypothetical spectra generated from known protein sequence databases. Commonly used protein databases contain a minimal level of redundancy, and thus, are not suitable data sources for searching polymorphic T cell epitopes, either in normal or ARFs. At the same time, however, these databases contain much non-polymorphic sequence information, thereby complicating the matching of recorded and theoretical spectra, and increasing the potential for finding false positives. Therefore, we created a database with peptides from ARFs and peptide variation arising from single nucleotide polymorphisms (SNPs). It is based on the human mRNA sequences from the well-annotated reference sequence (RefSeq) database and associated variation information derived from the Single Nucleotide Polymorphism Database (dbSNP). In this process, we removed all non-polymorphic information. Investigation of the frequency of SNPs in the dbSNP revealed that many SNPs are non-polymorphic "SNPs". Therefore, we removed those from our dedicated database, and this resulted in a comprehensive high quality database, which we coined the Human Short Peptide Variation Database (HSPVdb). The value of our HSPVdb is shown by identification of the majority of published polymorphic SNP- and/or ARF-derived epitopes from a mass spectrometry-based proteomics workflow, and by a large variety of polymorphic peptides identified as potential T cell epitopes in the HLA-ligandome presented by the Epstein-Barr virus cells.
Collapse
Affiliation(s)
- Harm Nijveen
- Laboratory of Bioinformatics, Wageningen University, Wageningen, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
de Verteuil D, Muratore-Schroeder TL, Granados DP, Fortier MH, Hardy MP, Bramoullé A, Caron E, Vincent K, Mader S, Lemieux S, Thibault P, Perreault C. Deletion of immunoproteasome subunits imprints on the transcriptome and has a broad impact on peptides presented by major histocompatibility complex I molecules. Mol Cell Proteomics 2010; 9:2034-47. [PMID: 20484733 DOI: 10.1074/mcp.m900566-mcp200] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proteasome-mediated proteolysis plays a crucial role in many basic cellular processes. In addition to constitutive proteasomes (CPs), which are found in all eukaryotes, jawed vertebrates also express immunoproteasomes (IPs). Evidence suggests that the key role of IPs may hinge on their impact on the repertoire of peptides associated to major histocompatibility complex (MHC) I molecules. Using a label-free quantitative proteomics approach, we identified 417 peptides presented by MHC I molecules on primary mouse dendritic cells (DCs). By comparing MHC I-associated peptides (MIPs) eluted from primary DCs and thymocytes, we found that the MIP repertoire concealed a cell type-specific signature correlating with cell function. Notably, mass spectrometry analyses of DCs expressing or not IP subunits MECL1 and LMP7 showed that IPs substantially increase the abundance and diversity of MIPs. Bioinformatic analyses provided evidence that proteasomes harboring LMP7 and MECL1 have specific cleavage preferences and recognize unstructured protein regions. Moreover, while differences in MIP repertoire cannot be attributed to potential effects of IPs on gene transcription, IP subunits deficiency altered mRNA levels of a set of genes controlling DC function. Regulated genes segregated in clusters that were enriched in chromosomes 4 and 8. Our peptidomic studies performed on untransfected primary cells provide a detailed account of the MHC I-associated immune self. This work uncovers the dramatic impact of IP subunits MECL1 and LMP7 on the MIP repertoire and their non-redundant influence on expression of immune-related genes.
Collapse
Affiliation(s)
- Danielle de Verteuil
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Perreault C. The Origin and Role of MHC Class I-Associated Self-Peptides. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2010; 92:41-60. [DOI: 10.1016/s1877-1173(10)92003-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
28
|
Mackay LK, Long HM, Brooks JM, Taylor GS, Leung CS, Chen A, Wang F, Rickinson AB. T cell detection of a B-cell tropic virus infection: newly-synthesised versus mature viral proteins as antigen sources for CD4 and CD8 epitope display. PLoS Pathog 2009; 5:e1000699. [PMID: 20019813 PMCID: PMC2788701 DOI: 10.1371/journal.ppat.1000699] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Accepted: 11/18/2009] [Indexed: 11/25/2022] Open
Abstract
Viruses that naturally infect cells expressing both MHC I and MHC II molecules render themselves potentially visible to both CD8+ and CD4+ T cells through the de novo expression of viral antigens. Here we use one such pathogen, the B-lymphotropic Epstein-Barr virus (EBV), to examine the kinetics of these processes in the virally-infected cell, comparing newly synthesised polypeptides versus the mature protein pool as viral antigen sources for MHC I- and MHC II-restricted presentation. EBV-transformed B cell lines were established in which the expression of two cognate EBV antigens, EBNA1 and EBNA3B, could be induced and then completely suppressed by doxycycline-regulation. These cells were used as targets for CD8+ and CD4+ T cell clones to a range of EBNA1 and EBNA3B epitopes. For both antigens, when synthesis was induced, CD8 epitope display rose quickly to near maximum within 24 h, well before steady state levels of mature protein had been reached, whereas CD4 epitope presentation was delayed by 36–48 h and rose only slowly thereafter. When antigen expression was suppressed, despite the persistence of mature protein, CD8 epitope display fell rapidly at rates similar to that seen for the MHC I/epitope half-life in peptide pulse-chase experiments. By contrast, CD4 epitope display persisted for many days and, following peptide stripping, recovered well on cells in the absence of new antigen synthesis. We infer that, in virally-infected MHC I/II-positive cells, newly-synthesised polypeptides are the dominant source of antigen feeding the MHC I pathway, whereas the MHC II pathway is fed by the mature protein pool. Hence, newly-infected cells are rapidly visible only to the CD8 response; by contrast, latent infections, in which viral gene expression has been extinguished yet viral proteins persist, will remain visible to CD4+ T cells. Many viruses infect cells in which both the MHC I and MHC II pathways of antigen presentation are active, and so viral proteins expressed in those cells may be presented as MHC I-peptide complexes to CD8+ T cells and as MHC II-peptide complexes to CD4+ T cells. Here we study these processes in a model system involving Epstein-Barr virus-infected human B lymphocytes (MHC I/II-positive) where viral antigen expression can be induced or suppressed at will, and antigen presentation tracked with specific CD8+ and CD4+ T cell clones. In this system, we find that the MHC I pathway is entirely fed by newly-synthesised polypeptides, whereas the MHC II pathway depends upon antigen supplied from the mature protein pool. Hence, while only CD8+ T cells can rapidly recognise new infections, only CD4+ T cells will recognise latent infections in which viral gene expression is extinguished yet a pool of viral antigens remains.
Collapse
Affiliation(s)
- Laura K. Mackay
- School of Cancer Sciences and MRC Centre for Immune Regulation, College of Medicine, University of Birmingham, Birmingham, United Kingdom
| | - Heather M. Long
- School of Cancer Sciences and MRC Centre for Immune Regulation, College of Medicine, University of Birmingham, Birmingham, United Kingdom
| | - Jill M. Brooks
- School of Cancer Sciences and MRC Centre for Immune Regulation, College of Medicine, University of Birmingham, Birmingham, United Kingdom
| | - Graham S. Taylor
- School of Cancer Sciences and MRC Centre for Immune Regulation, College of Medicine, University of Birmingham, Birmingham, United Kingdom
| | - Carol S. Leung
- School of Cancer Sciences and MRC Centre for Immune Regulation, College of Medicine, University of Birmingham, Birmingham, United Kingdom
| | - Adrienne Chen
- Department of Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Fred Wang
- Department of Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Alan B. Rickinson
- School of Cancer Sciences and MRC Centre for Immune Regulation, College of Medicine, University of Birmingham, Birmingham, United Kingdom
- * E-mail:
| |
Collapse
|
29
|
Granados DP, Tanguay PL, Hardy MP, Caron E, de Verteuil D, Meloche S, Perreault C. ER stress affects processing of MHC class I-associated peptides. BMC Immunol 2009; 10:10. [PMID: 19220912 PMCID: PMC2657905 DOI: 10.1186/1471-2172-10-10] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Accepted: 02/16/2009] [Indexed: 12/19/2022] Open
Abstract
Background Viral infection and neoplastic transformation trigger endoplasmic reticulum (ER) stress. Thus, a large proportion of the cells that must be recognized by the immune system are stressed cells. Cells respond to ER stress by launching the unfolded protein response (UPR). The UPR regulates the two key processes that control major histocompatibility complex class I (MHC I)-peptide presentation: protein synthesis and degradation. We therefore asked whether and how the UPR impinges on MHC I-peptide presentation. Results We evaluated the impact of the UPR on global MHC I expression and on presentation of the H2Kb-associated SIINFEKL peptide. EL4 cells stably transfected with vectors coding hen egg lysozyme (HEL)-SIINFEKL protein variants were stressed with palmitate or exposed to glucose deprivation. UPR decreased surface expression of MHC I but did not affect MHC I mRNA level nor the total amount of intracellular MHC I proteins. Impaired MHC I-peptide presentation was due mainly to reduced supply of peptides owing to an inhibition of overall protein synthesis. Consequently, generation of H2Kb-SIINFEKL complexes was curtailed during ER stress, illustrating how generation of MHC I peptide ligands is tightly coupled to ongoing protein synthesis. Notably, the UPR-induced decline of MHC I-peptide presentation was more severe when the protein source of peptides was localized in the cytosol than in the ER. This difference was not due to changes in the translation rates of the precursor proteins but to increased stability of the cytosolic protein during ER stress. Conclusion Our results demonstrate that ER stress impairs MHC I-peptide presentation, and that it differentially regulates expression of ER- vs. cytosol-derived peptides. Furthermore, this work illustrates how ER stress, a typical feature of infected and malignant cells, can impinge on cues for adaptive immune recognition.
Collapse
Affiliation(s)
- Diana P Granados
- Department of Medicine, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada.
| | | | | | | | | | | | | |
Collapse
|
30
|
Simsek E, Sinnathamby G, Block TM, Liu Y, Philip R, Mehta AS, Norton PA. Inhibition of cellular alpha-glucosidases results in increased presentation of hepatitis B virus glycoprotein-derived peptides by MHC class I. Virology 2009; 384:12-5. [PMID: 19091367 PMCID: PMC2765373 DOI: 10.1016/j.virol.2008.11.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2008] [Revised: 11/06/2008] [Accepted: 11/14/2008] [Indexed: 11/23/2022]
Abstract
Inhibitors of alpha glucosidases prevent the trimming of oligosaccharides on certain nascent glycoproteins, including the hepatitis B virus MHBs envelope glycoprotein. MHBs proteins with untrimmed oligosaccharides do not interact with calnexin, increasing protein misfolding and subsequent degradation by proteasomes. As peptides loaded onto newly synthesized MHC class I complexes are predominantly derived from proteasomes, the possibility that glucosidase inhibition could increase presentation by MHC class I was determined. Using either a model epitope, or a natural MHBs epitope, it was demonstrated that glucosidase inhibitors enhanced presentation by MHC class I and promoted activation of antigen-specific CTLs, suggesting a pharmacologic approach to immune modulation.
Collapse
Affiliation(s)
- Ender Simsek
- Drexel Institute for Biotechnology and Virology Research and Department of Microbiology and Immunology, Drexel University College of Medicine, 3805 Old Easton Road, Doylestown, PA 18902, USA
| | | | - Timothy M. Block
- Drexel Institute for Biotechnology and Virology Research and Department of Microbiology and Immunology, Drexel University College of Medicine, 3805 Old Easton Road, Doylestown, PA 18902, USA
- Institute for Hepatitis and Virus Research, Doylestown, PA, USA
| | - Yuanjie Liu
- Drexel Institute for Biotechnology and Virology Research and Department of Microbiology and Immunology, Drexel University College of Medicine, 3805 Old Easton Road, Doylestown, PA 18902, USA
| | - Ramila Philip
- Institute for Hepatitis and Virus Research, Doylestown, PA, USA
| | - Anand S. Mehta
- Drexel Institute for Biotechnology and Virology Research and Department of Microbiology and Immunology, Drexel University College of Medicine, 3805 Old Easton Road, Doylestown, PA 18902, USA
| | - Pamela A. Norton
- Drexel Institute for Biotechnology and Virology Research and Department of Microbiology and Immunology, Drexel University College of Medicine, 3805 Old Easton Road, Doylestown, PA 18902, USA
| |
Collapse
|
31
|
Lev A, Takeda K, Zanker D, Maynard JC, Dimberu P, Waffarn E, Gibbs J, Netzer N, Princiotta MF, Neckers L, Picard D, Nicchitta CV, Chen W, Reiter Y, Bennink JR, Yewdell JW. The exception that reinforces the rule: crosspriming by cytosolic peptides that escape degradation. Immunity 2008; 28:787-98. [PMID: 18549799 PMCID: PMC2587262 DOI: 10.1016/j.immuni.2008.04.015] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Revised: 02/13/2008] [Accepted: 04/04/2008] [Indexed: 01/28/2023]
Abstract
The nature of crosspriming immunogens for CD8(+) T cell responses is highly controversial. By using a panel of T cell receptor-like antibodies specific for viral peptides bound to mouse D(b) major histocompatibility complex class I molecules, we show that an exceptional peptide (PA(224-233)) expressed as a viral minigene product formed a sizeable cytosolic pool continuously presented for hours after protein synthesis was inhibited. PA(224-233) pool formation required active cytosolic heat-shock protein 90 but not ER g96 and uniquely enabled crosspriming by this peptide. These findings demonstrate that exceptional class I binding oligopeptides that escape proteolytic degradation are potent crosspriming agents. Thus, the feeble immunogenicity of natural proteasome products in crosspriming can be attributed to their evanescence in donor cells and not an absolute inability of cytosolic oligopeptides to be transferred to and presented by professional antigen-presenting cells.
Collapse
Affiliation(s)
- Avital Lev
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Maeda H, Sahara H, Mori Y, Torigo T, Kamiguchi K, Tamura Y, Tamura Y, Hirata K, Sato N. Biological Heterogeneity of the Peptide-binding Motif of the 70-kDa Heat Shock Protein by Surface Plasmon Resonance Analysis. J Biol Chem 2007; 282:26956-26962. [PMID: 17626008 DOI: 10.1074/jbc.m703436200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
70-kDa heat shock protein family is a molecular chaperone that binds to a variety of client proteins and peptides in the cytoplasm. Several studies have revealed binding motifs between 70-kDa heat shock protein family and cytoplasmic proteins by conventional techniques such as phage display library screening. However, little is known about the binding motif based on kinetic parameters determined by surface plasmon resonance analysis. We investigated the major inducible cytosolic 70-kDa heat shock protein (Hsp70)-binding motif with the human leukocyte antigen B*2702-derived peptide Bw4 (RENLRIALRY) by using a Biacore system based on surface plasmon resonance analysis. The K(D) value of Hsp70-Bw4 interaction was 1.8 x 10(-6) m. Analyses with truncated Bw4 variant peptides showed the binding motif of Hsp70 to be seven residues, LRIALRY. To further study the characteristics of this motif, 126 peptides derived from Bw4, each with single amino acid substitution, were synthesized and analyzed for Hsp70 binding affinity. Interestingly, the Hsp70 binding affinity was abrogated when the residues were substituted for by acidic (Asp and Glu) ones at any position. In contrast, if the substitute residue was aromatic (Trp, Tyr, and Phe) or an Arg residue at any position, Hsp70 binding affinity was maintained. Thus, this study presents a new binding motif between Hsp70 and peptides derived from the natural protein human leukocyte antigen B*2702 and may also elucidate some characteristics of the Hsp70 binding characteristic, enhancing our understanding of Hsp70-binding determinants that may influence diverse cellular and physiological processes.
Collapse
Affiliation(s)
- Hideki Maeda
- Departments of Surgery, South 1 West 17, Chuo-ku, Sapporo 060-8556, Japan; Departments of Pathology, South 1 West 17, Chuo-ku, Sapporo 060-8556, Japan
| | - Hiroeki Sahara
- Marine Biomedical Institute, Sapporo Medical University School of Medicine, South 1 West 17, Chuo-ku, Sapporo 060-8556, Japan.
| | - Yoko Mori
- Marine Biomedical Institute, Sapporo Medical University School of Medicine, South 1 West 17, Chuo-ku, Sapporo 060-8556, Japan
| | - Toshihiko Torigo
- Departments of Pathology, South 1 West 17, Chuo-ku, Sapporo 060-8556, Japan
| | - Kenjiro Kamiguchi
- Departments of Pathology, South 1 West 17, Chuo-ku, Sapporo 060-8556, Japan
| | - Yutaka Tamura
- Department of Bioinformatics Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chiba 260-8670, Japan
| | - Yasuaki Tamura
- Departments of Pathology, South 1 West 17, Chuo-ku, Sapporo 060-8556, Japan
| | - Kouichi Hirata
- Departments of Surgery, South 1 West 17, Chuo-ku, Sapporo 060-8556, Japan
| | - Noriyuki Sato
- Departments of Pathology, South 1 West 17, Chuo-ku, Sapporo 060-8556, Japan
| |
Collapse
|