1
|
Delvaux de Fenffe CM, Govers J, Mattiroli F. Always on the Move: Overview on Chromatin Dynamics within Nuclear Processes. Biochemistry 2025. [PMID: 40312022 DOI: 10.1021/acs.biochem.5c00114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
Our genome is organized into chromatin, a dynamic and modular structure made of nucleosomes. Chromatin organization controls access to the DNA sequence, playing a fundamental role in cell identity and function. How nucleosomes enable these processes is an active area of study. In this review, we provide an overview of chromatin dynamics, its properties, mechanisms, and functions. We highlight the diverse ways by which chromatin dynamics is controlled during transcription, DNA replication, and repair. Recent technological developments have promoted discoveries in this area, to which we provide an outlook on future research directions.
Collapse
Affiliation(s)
| | - Jolijn Govers
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Francesca Mattiroli
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| |
Collapse
|
2
|
Hatazawa S, Horikoshi N, Kurumizaka H. Structural diversity of noncanonical nucleosomes: Functions in chromatin. Curr Opin Struct Biol 2025; 92:103054. [PMID: 40311546 DOI: 10.1016/j.sbi.2025.103054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 04/07/2025] [Accepted: 04/08/2025] [Indexed: 05/03/2025]
Abstract
In eukaryotes, genomic DNA is compacted into chromatin, with nucleosomes acting as its basic structural units. In addition to canonical nucleosomes, noncanonical nucleosomes, such as hexasomes, H3-H4 octasomes, and overlapping dinucleosomes, exhibit alternative histone compositions and play key roles in chromatin remodeling, transcription, and replication. Recent cryo-electron microscopy (cryo-EM) studies have elucidated the structural details of these noncanonical nucleosomes and their interactions with histone chaperones and chromatin remodelers. This review highlights recent advances in the structural and functional understanding of noncanonical nucleosomes and their roles in maintaining chromatin integrity and facilitating transcriptional dynamics.
Collapse
Affiliation(s)
- Suguru Hatazawa
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Naoki Horikoshi
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Hitoshi Kurumizaka
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.
| |
Collapse
|
3
|
Steiert B, Weber MM. Nuclear warfare: pathogen manipulation of the nuclear pore complex and nuclear functions. mBio 2025; 16:e0194024. [PMID: 40111017 PMCID: PMC11980394 DOI: 10.1128/mbio.01940-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025] Open
Abstract
Viruses and bacteria exploit the nuclear pore complex (NPC) and host nuclear functions to bypass cellular barriers and manipulate essential processes. Viruses frequently engage directly with NPC components, such as nucleoporins, to enable genome import and evade immune defenses. In contrast, bacterial pathogens rely on secreted effector proteins to disrupt nuclear transport and reprogram host transcription. These strategies reflect a remarkable evolutionary convergence, with both types of pathogens targeting the NPC and nuclear functions to promote infection. This minireview explores the overlapping and unique mechanisms by which pathogens hijack the host nucleus, shedding light on their roles in disease and potential avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Brianna Steiert
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - Mary M. Weber
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| |
Collapse
|
4
|
Ambrosio S, Noviello A, Di Fusco G, Gorini F, Piscone A, Amente S, Majello B. Interplay and Dynamics of Chromatin Architecture and DNA Damage Response: An Overview. Cancers (Basel) 2025; 17:949. [PMID: 40149285 PMCID: PMC11940107 DOI: 10.3390/cancers17060949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/06/2025] [Accepted: 03/08/2025] [Indexed: 03/29/2025] Open
Abstract
Genome stability is safeguarded by a finely orchestrated cascade of events that collectively represent the DNA damage response (DDR). In eukaryotes, the DDR operates within the dynamic chromatin landscape, where the interplay between DNA repair factors, chromatin remodeling, replication, transcription, spatial genome organization, and cytoskeletal forces is tightly coordinated. High-resolution studies have unveiled chromatin alterations spanning multiple scales, from localized kilobase-level changes to megabase-scale reorganization, which impact chromatin's physical properties and enhance the mobility of damaged regions. Leveraging this knowledge could pave the way for innovative therapeutic strategies, particularly in targeting chromatin dynamics to destabilize cancer cells selectively. This review, focusing on DNA double-strand breaks (DSBs), sheds light on how chromatin undergoes dynamic modifications in response to damage and how these changes influence the DDR at both local and global levels, offering a glimpse into how nuclear architecture contributes to the delicate balance between genome stability and adaptability and highlighting the importance of exploring these interactions in the context of cancer therapy.
Collapse
Affiliation(s)
- Susanna Ambrosio
- Department of Biology, University of Naples “Federico II”, 80126 Naples, Italy; (A.N.); (G.D.F.)
| | - Anna Noviello
- Department of Biology, University of Naples “Federico II”, 80126 Naples, Italy; (A.N.); (G.D.F.)
| | - Giovanni Di Fusco
- Department of Biology, University of Naples “Federico II”, 80126 Naples, Italy; (A.N.); (G.D.F.)
| | - Francesca Gorini
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, 80131 Naples, Italy; (F.G.); (A.P.); (S.A.)
| | - Anna Piscone
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, 80131 Naples, Italy; (F.G.); (A.P.); (S.A.)
| | - Stefano Amente
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, 80131 Naples, Italy; (F.G.); (A.P.); (S.A.)
| | - Barbara Majello
- Department of Biology, University of Naples “Federico II”, 80126 Naples, Italy; (A.N.); (G.D.F.)
| |
Collapse
|
5
|
Jeong TK, Frater RCM, Yoon J, Groth A, Song JJ. CODANIN-1 sequesters ASF1 by using a histone H3 mimic helix to regulate the histone supply. Nat Commun 2025; 16:2181. [PMID: 40038274 DOI: 10.1038/s41467-025-56976-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 02/06/2025] [Indexed: 03/06/2025] Open
Abstract
ASF1 is a major histone chaperone that regulates the supply of histone H3-H4 and facilitates nucleosome assembly to maintain chromatin structure during DNA replication and transcription. CODANIN-1 negatively regulates the function of ASF1. However, the molecular mechanism by which CODANIN-1 inhibits the ASF1-mediated histone supply remains elusive. Here, we present the cryo-EM structure of a human CODANIN-1_ASF1A complex at 3.75 Å resolution. The structure reveals that CODANIN-1 forms a dimer where each monomer holds two ASF1 molecules, utilizing two B-domains and two histone H3 mimic helices (HMHs). The interaction of CODANIN-1 with ASF1 via the HMH and B-domains inhibits the formation of an ASF1/H3-H4 complex and sequesters ASF1 in the cytoplasm. Our study provides a structural and molecular basis for the function of CODANIN-1 as negative regulator that highjacks ASF1 interaction sites with histones and downstream chaperones to inhibit nucleosome assembly.
Collapse
Affiliation(s)
- Tae-Kyeong Jeong
- Department of Biological Sciences, KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - R Ciaran MacKenzie Frater
- The Novo Nordisk Foundation Center for Protein Research (CPR), University of Copenhagen, Copenhagen, Denmark
| | - Jongha Yoon
- Department of Biological Sciences, KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Anja Groth
- The Novo Nordisk Foundation Center for Protein Research (CPR), University of Copenhagen, Copenhagen, Denmark.
- Biotech Research & Innovation Centre, University of Copenhagen, Copenhagen, Denmark.
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.
| | - Ji-Joon Song
- Department of Biological Sciences, KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea.
| |
Collapse
|
6
|
Kawasaki O, Takizawa Y, Kiyokawa I, Kurumizaka H, Nozawa K. Cryo-EM Analysis of a Unique Subnucleosome Containing Centromere-Specific Histone Variant CENP-A. Genes Cells 2025; 30:e70016. [PMID: 40129080 PMCID: PMC11933535 DOI: 10.1111/gtc.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/05/2025] [Accepted: 03/12/2025] [Indexed: 03/26/2025]
Abstract
In eukaryotes, genomic DNA is stored in the nucleus as nucleosomes, in which a DNA segment is wrapped around a protein octamer consisting of two each of the four histones, H2A, H2B, H3, and H4. The core histones can be replaced by histone variants or altered with covalent modifications, contributing to the regulation of chromosome structure and nuclear activities. The formation of an octameric histone core in nucleosomes is widely accepted. Recently, the H3-H4 octasome, a novel nucleosome-like structure with a histone octamer consisting solely of H3 and H4, has been reported. CENP-A is the centromere-specific histone H3 variant and determines the position of kinetochore assembly during mitosis. CENP-A is a distant H3 variant sharing approximately 50% amino acid sequence with H3. In this study, we found that CENP-A and H4 also formed an octamer without H2A and H2B in vitro. We determined the structure of the CENP-A-H4 octasome at 3.66 Å resolution. In the CENP-A-H4 octasome, an approximately 120-base pair DNA segment was wrapped around the CENP-A-H4 octameric core and displayed the four CENP-A RG-loops, which are the direct binding sites for another centromeric protein, CENP-N.
Collapse
Affiliation(s)
- Osamu Kawasaki
- School of Life Science and TechnologyInstitute of Science TokyoYokohamaKanagawaJapan
| | - Yoshimasa Takizawa
- Laboratory of Chromatin Structure and FunctionInstitute for Quantitative Biosciences, The University of TokyoTokyoJapan
- Department of Computational Biology and Medical SciencesGraduate School of Frontier Sciences, The University of TokyoTokyoJapan
| | - Iori Kiyokawa
- School of Life Science and TechnologyInstitute of Science TokyoYokohamaKanagawaJapan
| | - Hitoshi Kurumizaka
- Laboratory of Chromatin Structure and FunctionInstitute for Quantitative Biosciences, The University of TokyoTokyoJapan
- Department of Biological SciencesGraduate School of Science, The University of TokyoTokyoJapan
- Laboratory for Transcription Structural BiologyRIKEN Center for Biosystems Dynamics ResearchYokohamaJapan
| | - Kayo Nozawa
- School of Life Science and TechnologyInstitute of Science TokyoYokohamaKanagawaJapan
| |
Collapse
|
7
|
Watzlowik MT, Silberhorn E, Das S, Singhal R, Venugopal K, Holzinger S, Stokes B, Schadt E, Sollelis L, Bonnell VA, Gow M, Klingl A, Marti M, Llinás M, Meissner M, Längst G. Plasmodium blood stage development requires the chromatin remodeller Snf2L. Nature 2025; 639:1069-1075. [PMID: 39972139 PMCID: PMC11946908 DOI: 10.1038/s41586-025-08595-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 01/03/2025] [Indexed: 02/21/2025]
Abstract
The complex life cycle of the malaria parasite Plasmodium falciparum involves several major differentiation stages, each requiring strict control of gene expression. Fundamental changes in chromatin structure and epigenetic modifications during life cycle progression suggest a central role for these mechanisms in regulating the transcriptional program of malaria parasite development1-6. P. falciparum chromatin is distinct from other eukaryotes, with an extraordinarily high AT content (>80%)7 and highly divergent histones resulting in atypical DNA packaging properties8. Moreover, the chromatin remodellers that are critical for shaping chromatin structure are not conserved and are unexplored in P. falciparum. Here we identify P. falciparum Snf2L (PfSnf2L, encoded by PF3D7_1104200) as an ISWI-related ATPase that actively repositions P. falciparum nucleosomes in vitro. Our results demonstrate that PfSnf2L is essential, regulating both asexual development and sexual differentiation. PfSnf2L globally controls just-in-time transcription by spatiotemporally determining nucleosome positioning at the promoters of stage-specific genes. The unique sequence and functional properties of PfSnf2L led to the identification of an inhibitor that specifically kills P. falciparum and phenocopies the loss of correct gene expression timing. The inhibitor represents a new class of antimalarial transmission-blocking drugs, inhibiting gametocyte formation.
Collapse
Affiliation(s)
| | - Elisabeth Silberhorn
- Regensburg Center for Biochemistry (RCB), University of Regensburg, Regensburg, Germany
| | - Sujaan Das
- Experimental Parasitology, Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Ritwik Singhal
- Department of Biochemistry and Molecular Biology and Huck Center for Malaria Research, Pennsylvania State University, State College, PA, USA
| | - Kannan Venugopal
- Institute of Parasitology, Vetsuisse and Medical faculty, University of Zurich, Zurich, Switzerland
- Institute of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Simon Holzinger
- Regensburg Center for Biochemistry (RCB), University of Regensburg, Regensburg, Germany
| | - Barbara Stokes
- Institute of Parasitology, Vetsuisse and Medical faculty, University of Zurich, Zurich, Switzerland
- Institute of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Ella Schadt
- Experimental Parasitology, Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Lauriane Sollelis
- Institute of Parasitology, Vetsuisse and Medical faculty, University of Zurich, Zurich, Switzerland
- Institute of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Victoria A Bonnell
- Department of Biochemistry and Molecular Biology and Huck Center for Malaria Research, Pennsylvania State University, State College, PA, USA
| | - Matthew Gow
- Experimental Parasitology, Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Andreas Klingl
- Plant Development, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Matthias Marti
- Institute of Parasitology, Vetsuisse and Medical faculty, University of Zurich, Zurich, Switzerland
- Institute of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Manuel Llinás
- Department of Biochemistry and Molecular Biology and Huck Center for Malaria Research, Pennsylvania State University, State College, PA, USA
- Department of Chemistry, Pennsylvania State University, State College, PA, USA
| | - Markus Meissner
- Experimental Parasitology, Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-University, Munich, Germany.
| | - Gernot Längst
- Regensburg Center for Biochemistry (RCB), University of Regensburg, Regensburg, Germany.
| |
Collapse
|
8
|
Salemi M, Di Stefano V, Schillaci FA, Marchese G, Salluzzo MG, Cordella A, De Leo I, Perrotta CS, Nibali G, Lanza G, Ferri R. Transcriptome Study in Sicilian Patients with Huntington's Disease. Diagnostics (Basel) 2025; 15:409. [PMID: 40002561 PMCID: PMC11854416 DOI: 10.3390/diagnostics15040409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/19/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by the expansion of the CAG nucleotide repeat in the first exon of the huntingtin (HTT) gene. The disease typically manifests between the second and third decades of life and progresses gradually. The pathogenesis of HD involves the dysregulation of gene expression, influenced by various molecular processes ranging from transcription to protein stability. Methods: To investigate potential variations in gene expression associated with HD, a transcriptome study was conducted using peripheral blood mononuclear cell samples from 15 HD patients and 15 controls, all of Sicilian origin. Results: The analysis identified 7179 statistically significant differentially expressed genes between the two groups. Gene Set Enrichment Analysis (GSEA) and Gene Ontology (GO) terms were applied to identify the pathways affected by these differentially expressed mRNAs. The GSEA results highlighted significant associations between HD and GO pathways related to ribosomal functions and structure. These pathways were predominantly characterized by negative expression, with a substantial number of genes showing dysregulation. This suggests that the molecular processes leading to protein translation via ribosomes may be impaired in HD. Furthermore, dysregulation was observed in genes and non-coding RNAs involved in regulatory roles across various transcriptional processes. Conclusions: These findings support the hypothesis that the entire process, from transcription to translation, is disrupted in HD patients carrying the CAG repeat expansion in the first exon of the HTT gene.
Collapse
Affiliation(s)
- Michele Salemi
- Oasi Research Institute-IRCCS, 94018 Troina, EN, Italy; (F.A.S.); (M.G.S.); or (G.L.); (R.F.)
| | - Vincenzo Di Stefano
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, 90127 Palermo, PA, Italy;
| | - Francesca A. Schillaci
- Oasi Research Institute-IRCCS, 94018 Troina, EN, Italy; (F.A.S.); (M.G.S.); or (G.L.); (R.F.)
| | - Giovanna Marchese
- Genomix4Life S.r.l., 84081 Baronissi, SA, Italy; (G.M.); (A.C.); (I.D.L.)
- Genome Research Center for Health-CRGS, 84081 Baronissi, SA, Italy
| | - Maria Grazia Salluzzo
- Oasi Research Institute-IRCCS, 94018 Troina, EN, Italy; (F.A.S.); (M.G.S.); or (G.L.); (R.F.)
| | - Angela Cordella
- Genomix4Life S.r.l., 84081 Baronissi, SA, Italy; (G.M.); (A.C.); (I.D.L.)
- Genome Research Center for Health-CRGS, 84081 Baronissi, SA, Italy
| | - Ilenia De Leo
- Genomix4Life S.r.l., 84081 Baronissi, SA, Italy; (G.M.); (A.C.); (I.D.L.)
| | | | - Giuseppe Nibali
- U.O.S.D. Neurology and Stroke Unit, P.O. Umberto I, 96100 Siracusa, SR, Italy;
| | - Giuseppe Lanza
- Oasi Research Institute-IRCCS, 94018 Troina, EN, Italy; (F.A.S.); (M.G.S.); or (G.L.); (R.F.)
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, CT, Italy
| | - Raffaele Ferri
- Oasi Research Institute-IRCCS, 94018 Troina, EN, Italy; (F.A.S.); (M.G.S.); or (G.L.); (R.F.)
| |
Collapse
|
9
|
Reche-López D, Romero-González A, Álvarez-Córdoba M, Suárez-Carrillo A, Cilleros-Holgado P, Piñero-Pérez R, Gómez-Fernández D, Romero-Domínguez JM, López-Cabrera A, González-Granero S, García-Verdugo JM, Sánchez-Alcázar JA. Biotin Induces Inactive Chromosome X Reactivation and Corrects Physiopathological Alterations in Beta-Propeller-Protein-Associated Neurodegeneration. Int J Mol Sci 2025; 26:1315. [PMID: 39941083 PMCID: PMC11818482 DOI: 10.3390/ijms26031315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/01/2025] [Accepted: 02/02/2025] [Indexed: 02/16/2025] Open
Abstract
Neurodegeneration with brain iron accumulation (NBIA) involves a group of rare neurogenetic disorders often linked with iron overload in the basal nuclei of the brain presenting with spasticity, dystonia, muscle rigidity, neuropsychiatric symptoms, and retinal degeneration. Among NBIA subtypes, beta-propeller-protein-associated neurodegeneration (BPAN) is associated with mutations in the autophagy gene WDR45 (WD repeat domain 45). Previously, we demonstrated that WDR45 mutations in BPAN cellular models impaired autophagy, iron metabolism, and cell bioenergetics. In addition, antioxidant supplementation partially improved cell physiopathology; however, autophagy and cell bioenergetics remained affected. In this work, we explored the possibility of expressing the normal WDR45 allele present in the inactive chromosome X (Xi) of BPAN cells through treatment with epigenetic modulators. The aim of this study was to demonstrate whether biotin, an epigenetic nutrient, was able to restore the expression levels of WDR45 by a mechanism involving Xi reactivation and, consequently, correct BPAN defects. Our study demonstrated that biotin supplementation increases histone biotinylation and allows for the transcription of the WDR45 allele in Xi. Consequently, all physiopathological alterations in BPAN cells were notably corrected. The reactivation of Xi by epigenetic modulators can be a promising approach for the treatment of BPAN and other X-linked diseases.
Collapse
Affiliation(s)
- Diana Reche-López
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (D.R.-L.); (A.R.-G.); (M.Á.-C.); (A.S.-C.); (P.C.-H.); (R.P.-P.); (D.G.-F.); (J.M.R.-D.); (A.L.-C.)
| | - Ana Romero-González
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (D.R.-L.); (A.R.-G.); (M.Á.-C.); (A.S.-C.); (P.C.-H.); (R.P.-P.); (D.G.-F.); (J.M.R.-D.); (A.L.-C.)
| | - Mónica Álvarez-Córdoba
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (D.R.-L.); (A.R.-G.); (M.Á.-C.); (A.S.-C.); (P.C.-H.); (R.P.-P.); (D.G.-F.); (J.M.R.-D.); (A.L.-C.)
| | - Alejandra Suárez-Carrillo
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (D.R.-L.); (A.R.-G.); (M.Á.-C.); (A.S.-C.); (P.C.-H.); (R.P.-P.); (D.G.-F.); (J.M.R.-D.); (A.L.-C.)
| | - Paula Cilleros-Holgado
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (D.R.-L.); (A.R.-G.); (M.Á.-C.); (A.S.-C.); (P.C.-H.); (R.P.-P.); (D.G.-F.); (J.M.R.-D.); (A.L.-C.)
| | - Rocío Piñero-Pérez
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (D.R.-L.); (A.R.-G.); (M.Á.-C.); (A.S.-C.); (P.C.-H.); (R.P.-P.); (D.G.-F.); (J.M.R.-D.); (A.L.-C.)
| | - David Gómez-Fernández
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (D.R.-L.); (A.R.-G.); (M.Á.-C.); (A.S.-C.); (P.C.-H.); (R.P.-P.); (D.G.-F.); (J.M.R.-D.); (A.L.-C.)
| | - José Manuel Romero-Domínguez
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (D.R.-L.); (A.R.-G.); (M.Á.-C.); (A.S.-C.); (P.C.-H.); (R.P.-P.); (D.G.-F.); (J.M.R.-D.); (A.L.-C.)
| | - Alejandra López-Cabrera
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (D.R.-L.); (A.R.-G.); (M.Á.-C.); (A.S.-C.); (P.C.-H.); (R.P.-P.); (D.G.-F.); (J.M.R.-D.); (A.L.-C.)
| | - Susana González-Granero
- Laboratory of Comparative Neurobiology, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia and CIBERNED-ISCIII, 46980 Valencia, Spain; (S.G.-G.); (J.M.G.-V.)
| | - José Manuel García-Verdugo
- Laboratory of Comparative Neurobiology, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia and CIBERNED-ISCIII, 46980 Valencia, Spain; (S.G.-G.); (J.M.G.-V.)
| | - José A. Sánchez-Alcázar
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (D.R.-L.); (A.R.-G.); (M.Á.-C.); (A.S.-C.); (P.C.-H.); (R.P.-P.); (D.G.-F.); (J.M.R.-D.); (A.L.-C.)
| |
Collapse
|
10
|
Hu Y, Horlbeck MA, Zhang R, Ma S, Shrestha R, Kartha VK, Duarte FM, Hock C, Savage RE, Labade A, Kletzien H, Meliki A, Castillo A, Durand NC, Mattei E, Anderson LJ, Tay T, Earl AS, Shoresh N, Epstein CB, Wagers AJ, Buenrostro JD. Multiscale footprints reveal the organization of cis-regulatory elements. Nature 2025; 638:779-786. [PMID: 39843737 PMCID: PMC11839466 DOI: 10.1038/s41586-024-08443-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/22/2024] [Indexed: 01/24/2025]
Abstract
Cis-regulatory elements (CREs) control gene expression and are dynamic in their structure and function, reflecting changes in the composition of diverse effector proteins over time1. However, methods for measuring the organization of effector proteins at CREs across the genome are limited, hampering efforts to connect CRE structure to their function in cell fate and disease. Here we developed PRINT, a computational method that identifies footprints of DNA-protein interactions from bulk and single-cell chromatin accessibility data across multiple scales of protein size. Using these multiscale footprints, we created the seq2PRINT framework, which uses deep learning to allow precise inference of transcription factor and nucleosome binding and interprets regulatory logic at CREs. Applying seq2PRINT to single-cell chromatin accessibility data from human bone marrow, we observe sequential establishment and widening of CREs centred on pioneer factors across haematopoiesis. We further discover age-associated alterations in the structure of CREs in murine haematopoietic stem cells, including widespread reduction of nucleosome footprints and gain of de novo identified Ets composite motifs. Collectively, we establish a method for obtaining rich insights into DNA-binding protein dynamics from chromatin accessibility data, and reveal the architecture of regulatory elements across differentiation and ageing.
Collapse
Affiliation(s)
- Yan Hu
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Max A Horlbeck
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
| | - Ruochi Zhang
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Eric and Wendy Schmidt Center, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sai Ma
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rojesh Shrestha
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Vinay K Kartha
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Fabiana M Duarte
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Conrad Hock
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Rachel E Savage
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Ajay Labade
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Heidi Kletzien
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA, USA
| | - Alia Meliki
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Andrew Castillo
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Neva C Durand
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Eugenio Mattei
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Lauren J Anderson
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Tristan Tay
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Andrew S Earl
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Noam Shoresh
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Charles B Epstein
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Amy J Wagers
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA, USA
| | - Jason D Buenrostro
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
11
|
Prajapati HK, Eriksson PR, Elizalde PA, Coey CT, Xu Z, Clark DJ. The yeast genome is globally accessible in living cells. Nat Struct Mol Biol 2025; 32:247-256. [PMID: 39587299 PMCID: PMC11832417 DOI: 10.1038/s41594-024-01318-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 04/17/2024] [Indexed: 11/27/2024]
Abstract
Eukaryotic genomes are packaged into chromatin, which is composed of condensed filaments of regularly spaced nucleosomes, resembling beads on a string. The nucleosome contains ~147 bp of DNA wrapped almost twice around a central core histone octamer. The packaging of DNA into chromatin represents a challenge to transcription factors and other proteins requiring access to their binding sites. Consequently, control of DNA accessibility is thought to play a key role in gene regulation. Here we measure DNA accessibility genome wide in living budding yeast cells by inducible expression of DNA methyltransferases. We find that the genome is globally accessible in living cells, unlike in isolated nuclei, where DNA accessibility is severely restricted. Gene bodies are methylated at only slightly slower rates than promoters, indicating that yeast chromatin is highly dynamic in vivo. In contrast, silenced loci and centromeres are strongly protected. Global shifts in nucleosome positions occur in cells as they are depleted of ATP-dependent chromatin remodelers, suggesting that nucleosome dynamics result from competition among these enzymes. We conclude that chromatin is in a state of continuous flux in living cells, but static in nuclei, suggesting that DNA packaging in yeast is not generally repressive.
Collapse
Affiliation(s)
- Hemant K Prajapati
- Division of Developmental Biology, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Peter R Eriksson
- Division of Developmental Biology, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Paul A Elizalde
- Division of Developmental Biology, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
- NIH-JHU Graduate Partnership Program, Johns Hopkins University, Baltimore, MD, USA
| | - Christopher T Coey
- Division of Developmental Biology, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Zhuwei Xu
- Division of Developmental Biology, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - David J Clark
- Division of Developmental Biology, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
12
|
Pampari A, Shcherbina A, Kvon EZ, Kosicki M, Nair S, Kundu S, Kathiria AS, Risca VI, Kuningas K, Alasoo K, Greenleaf WJ, Pennacchio LA, Kundaje A. ChromBPNet: bias factorized, base-resolution deep learning models of chromatin accessibility reveal cis-regulatory sequence syntax, transcription factor footprints and regulatory variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.25.630221. [PMID: 39829783 PMCID: PMC11741299 DOI: 10.1101/2024.12.25.630221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Despite extensive mapping of cis-regulatory elements (cREs) across cellular contexts with chromatin accessibility assays, the sequence syntax and genetic variants that regulate transcription factor (TF) binding and chromatin accessibility at context-specific cREs remain elusive. We introduce ChromBPNet, a deep learning DNA sequence model of base-resolution accessibility profiles that detects, learns and deconvolves assay-specific enzyme biases from regulatory sequence determinants of accessibility, enabling robust discovery of compact TF motif lexicons, cooperative motif syntax and precision footprints across assays and sequencing depths. Extensive benchmarks show that ChromBPNet, despite its lightweight design, is competitive with much larger contemporary models at predicting variant effects on chromatin accessibility, pioneer TF binding and reporter activity across assays, cell contexts and ancestry, while providing interpretation of disrupted regulatory syntax. ChromBPNet also helps prioritize and interpret regulatory variants that influence complex traits and rare diseases, thereby providing a powerful lens to decode regulatory DNA and genetic variation.
Collapse
Affiliation(s)
- Anusri Pampari
- Department of Computer Science, Stanford University, Stanford CA, 94305
| | - Anna Shcherbina
- Department of Biomedical Data Sciences, Stanford University, Stanford CA, 94305
| | - Evgeny Z. Kvon
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
| | - Michael Kosicki
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Surag Nair
- Department of Computer Science, Stanford University, Stanford CA, 94305
| | - Soumya Kundu
- Department of Computer Science, Stanford University, Stanford CA, 94305
| | | | | | | | - Kaur Alasoo
- Institute of Computer Science, University of Tartu, Tartu, Estonia
| | - William James Greenleaf
- Department of Genetics, Stanford University, Stanford CA, 94305
- Department of Applied Physics, Stanford University, Stanford, California 94305, USA
| | - Len A. Pennacchio
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Anshul Kundaje
- Department of Computer Science, Stanford University, Stanford CA, 94305
- Department of Genetics, Stanford University, Stanford CA, 94305
| |
Collapse
|
13
|
Delamarre A, Bailey B, Yavid J, Koche R, Mohibullah N, Whitehouse I. Chromatin architecture mapping by multiplex proximity tagging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.11.12.623258. [PMID: 39605487 PMCID: PMC11601423 DOI: 10.1101/2024.11.12.623258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Chromatin plays a pivotal role in genome expression, maintenance, and replication. To better understand chromatin organization, we developed a novel proximity-tagging method which assigns unique DNA barcodes to molecules that associate in 3D space. Using this method - Proximity Copy Paste (PCP) - we mapped the connectivity of individual nucleosomes in Saccharomyces cerevisiae. By analyzing nucleosome positions and spacing on single molecule fibers, we show that chromatin is predominantly organized into regularly spaced nucleosome arrays that can be positioned or delocalized. Basic features of nucleosome arrays are generally explained by gene size and transcription. PCP can also map long-range, multi-way interactions and we provide the first direct evidence supporting a model that metaphase chromosomes are compacted by cohesin loop clustering. Analyzing single-molecule nuclease footprinting data we define distinct chromatin states within a mixed population to show that non-canonical nucleosomes, notably Overlapping-Di-Nucleosomes (OLDN) are a stable feature of chromatin. PCP is a versatile method allowing the detection of the connectivity of individual molecules locally and over large distance to be mapped at high-resolution in a single experiment.
Collapse
|
14
|
Mitra R, Cohen AS, Sagendorf JM, Berman HM, Rohs R. DNAproDB: an updated database for the automated and interactive analysis of protein-DNA complexes. Nucleic Acids Res 2025; 53:D396-D402. [PMID: 39494533 PMCID: PMC11701736 DOI: 10.1093/nar/gkae970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/07/2024] [Accepted: 10/11/2024] [Indexed: 11/05/2024] Open
Abstract
DNAproDB (https://dnaprodb.usc.edu/) is a database, visualization tool, and processing pipeline for analyzing structural features of protein-DNA interactions. Here, we present a substantially updated version of the database through additional structural annotations, search, and user interface functionalities. The update expands the number of pre-analyzed protein-DNA structures, which are automatically updated weekly. The analysis pipeline identifies water-mediated hydrogen bonds that are incorporated into the visualizations of protein-DNA complexes. Tertiary structure-aware nucleotide layouts are now available. New file formats and external database annotations are supported. The website has been redesigned, and interacting with graphs and data is more intuitive. We also present a statistical analysis on the updated collection of structures revealing salient patterns in protein-DNA interactions.
Collapse
Affiliation(s)
- Raktim Mitra
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Ari S Cohen
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Jared M Sagendorf
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Helen M Berman
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Remo Rohs
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
- Department of Physics & Astronomy, University of Southern California, Los Angeles, CA 90089, USA
- Thomas Lord Department of Computer Science, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
15
|
Brown MT, McMurray MA. Stepwise order in protein complex assembly: approaches and emerging themes. Open Biol 2025; 15:240283. [PMID: 39809320 PMCID: PMC11732423 DOI: 10.1098/rsob.240283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 01/16/2025] Open
Abstract
Protein-based nanomachines drive every cellular process. An explosion of high-resolution structures of multiprotein complexes has improved our understanding of what these machines look like and how they work, but we still know relatively little about how they assemble in living cells. For example, it has only recently been appreciated that many complexes assemble co-translationally, with at least one subunit still undergoing active translation while already interacting with other subunits. One aspect that is particularly understudied is assembly order, the idea that there is a stepwise order to the subunit-subunit associations that underlies the efficient assembly of the quaternary structure. Here, we integrate a review of the methodological approaches commonly used to query assembly order within a discussion of studies of the 20S proteasome core particle, septin protein complexes, and the histone octamer. We highlight shared and distinct properties of these complexes that illustrate general themes applicable to most other multisubunit assemblies.
Collapse
Affiliation(s)
- Michael T. Brown
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO80045, USA
| | - Michael A. McMurray
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO80045, USA
| |
Collapse
|
16
|
Rafa AY, Filliaux S, Lyubchenko YL. Nanoscale Characterization of Interaction of Nucleosomes with H1 Linker Histone. Int J Mol Sci 2024; 26:303. [PMID: 39796159 PMCID: PMC11719560 DOI: 10.3390/ijms26010303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 12/29/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
In eukaryotic nuclei, DNA is wrapped around an octamer of core histones to form nucleosomes. H1 binds to the linker DNA of nucleosome to form the chromatosome, the next structural unit of chromatin. Structural features on individual chromatosomes contribute to chromatin structure, but not fully characterized. In addition to canonical nucleosomes composed of two copies each of histones H2A, H2B, H3, and H4 (H3 nucleosomes), centromeres chromatin contain nucleosomes in which H3 is replaced with its analog CENP-A, changing structural properties of CENP-A nucleosomes. Nothing is known about the interaction of H1 with CENP-A nucleosomes. Here we filled this gap and characterized the interaction of H1 histone with both types of nucleosomes. H1 does bind both types of the nucleosomes forming more compact chromosome particles with elevated affinity to H3 nucleosomes. H1 binding significantly increases the stability of chromatosomes preventing their spontaneous dissociation. In addition to binding to the entry-exit position of the DNA arms identified earlier, H1 is capable of bridging of distant DNA segments. H1 binding leads to the assembly of mononucleosomes in aggregates, stabilized by internucleosome interactions as well as bridging of the DNA arms of chromatosomes. Contribution of these finding to the chromatin structure and functions are discussed.
Collapse
Affiliation(s)
| | | | - Yuri L. Lyubchenko
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198-6025, USA; (A.Y.R.); (S.F.)
| |
Collapse
|
17
|
Prajapati HK, Xu Z, Eriksson PR, Clark DJ. Nucleosome dynamics render heterochromatin accessible in living human cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.10.627825. [PMID: 39803586 PMCID: PMC11722403 DOI: 10.1101/2024.12.10.627825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
The eukaryotic genome is packaged into chromatin, which is composed of a nucleosomal filament that coils up to form more compact structures. Chromatin exists in two main forms: euchromatin, which is relatively decondensed and enriched in transcriptionally active genes, and heterochromatin, which is condensed and transcriptionally repressed 1-10. It is widely accepted that chromatin architecture modulates DNA accessibility, restricting the access of sequence-specific, gene-regulatory, transcription factors to the genome. Here, we measure genome accessibility at all GATC sites in living human MCF7 and MCF10A cells, using an adenovirus vector to express the sequence-specific dam DNA adenine methyltransferase. We find that the human genome is globally accessible in living cells, unlike in isolated nuclei. Active promoters are methylated somewhat faster than gene bodies and inactive promoters. Remarkably, both constitutive and facultative heterochromatic sites are methylated only marginally more slowly than euchromatic sites. In contrast, sites in centromeric chromatin are methylated slowly and are partly inaccessible. We conclude that all nucleosomes in euchromatin and heterochromatin are highly dynamic in living cells, whereas nucleosomes in centromeric α-satellite chromatin are static. A dynamic architecture implies that simple occlusion of transcription factor binding sites by chromatin is unlikely to be critical for gene regulation.
Collapse
Affiliation(s)
- Hemant K. Prajapati
- Corresponding authors: Building 6A Room 2A02, 6 Center Dr, Bethesda MD 20892. DJC: ; HKP:
| | | | | | - David J. Clark
- Division of Developmental Biology, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda MD 20892, USA
| |
Collapse
|
18
|
Jaroniec CP. Structural and dynamic studies of chromatin by solid-state NMR spectroscopy. Curr Opin Struct Biol 2024; 89:102921. [PMID: 39293192 PMCID: PMC11602356 DOI: 10.1016/j.sbi.2024.102921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/01/2024] [Indexed: 09/20/2024]
Abstract
Chromatin is a complex of DNA with histone proteins organized into nucleosomes that regulates genome accessibility and controls transcription, replication and repair by dynamically switching between open and compact states as a function of different parameters including histone post-translational modifications and interactions with chromatin modulators. Continuing advances in structural biology techniques including X-ray crystallography, cryo-electron microscopy and nuclear magnetic resonance (NMR) spectroscopy have facilitated studies of chromatin systems, in spite of challenges posed by their large size and dynamic nature, yielding important functional and mechanistic insights. In this review we highlight recent applications of magic angle spinning solid-state NMR - an emerging technique that is uniquely-suited toward providing atomistic information for rigid and flexible regions within biomacromolecular assemblies - to detailed characterization of structure, conformational dynamics and interactions for histone core and tail domains in condensed nucleosomes and oligonucleosome arrays mimicking chromatin at high densities characteristic of the cellular environment.
Collapse
Affiliation(s)
- Christopher P Jaroniec
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA.
| |
Collapse
|
19
|
Duan X, Xing Z, Qiao L, Qin S, Zhao X, Gong Y, Li X. The role of histone post-translational modifications in cancer and cancer immunity: functions, mechanisms and therapeutic implications. Front Immunol 2024; 15:1495221. [PMID: 39620228 PMCID: PMC11604627 DOI: 10.3389/fimmu.2024.1495221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 10/18/2024] [Indexed: 12/11/2024] Open
Abstract
Histones play crucial roles in both promoting and repressing gene expression, primarily regulated through post-translational modifications (PTMs) at specific amino acid residues. Histone PTMs, including methylation, acetylation, ubiquitination, phosphorylation, lactylation, butyrylation, and propionylation, act as important epigenetic markers. These modifications influence not only chromatin compaction but also gene expression. Their importance extends to the treatment and prevention of various human diseases, particularly cancer, due to their involvement in key cellular processes. Abnormal histone modifications and the enzymes responsible for these alterations often serve as critical drivers in tumor cell proliferation, invasion, apoptosis, and stemness. This review introduces key histone PTMs and the enzymes responsible for these modifications, examining their impact on tumorigenesis and cancer progression. Furthermore, it explores therapeutic strategies targeting histone PTMs and offers recommendations for identifying new potential therapeutic targets.
Collapse
Affiliation(s)
- Xiaohong Duan
- School of Disaster and Emergency Medicine, Faculty of Medicine, Tianjin University, Tianjin, China
- Institute of Disaster and Emergency Medicine, Faculty of Medicine, Tianjin University, Tianjin, China
- Medical School, Faculty of Medicine, Tianjin University, Tianjin, China
| | - Zhiyao Xing
- Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
- Department of Respiratory Medicine, Jinnan Hospital, Tianjin University, Tianjin, China
- Department of Respiratory Medicine, Tianjin Jinnan Hospital, Tianjin, China
| | - Lu Qiao
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Shan Qin
- Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
| | - Xuejing Zhao
- Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
| | - Yanhua Gong
- School of Disaster and Emergency Medicine, Faculty of Medicine, Tianjin University, Tianjin, China
- Institute of Disaster and Emergency Medicine, Faculty of Medicine, Tianjin University, Tianjin, China
- Medical School, Faculty of Medicine, Tianjin University, Tianjin, China
| | - Xueren Li
- Department of Respiratory Medicine, Jinnan Hospital, Tianjin University, Tianjin, China
- Department of Respiratory Medicine, Tianjin Jinnan Hospital, Tianjin, China
| |
Collapse
|
20
|
Babl V, Girke P, Kruse S, Pinz S, Hannig K, Schächner C, Hergert K, Wittner M, Seufert W, Milkereit P, Tschochner H, Griesenbeck J. Establishment of closed 35S ribosomal RNA gene chromatin in stationary Saccharomyces cerevisiae cells. Nucleic Acids Res 2024; 52:12208-12226. [PMID: 39373531 PMCID: PMC11551728 DOI: 10.1093/nar/gkae838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 09/08/2024] [Accepted: 09/12/2024] [Indexed: 10/08/2024] Open
Abstract
As a first step in eukaryotic ribosome biogenesis RNA polymerase (Pol) I synthesizes a large ribosomal RNA (rRNA) precursor from multicopy rRNA gene loci. This process is essential for cellular growth and regulated in response to the cell's physiological state. rRNA gene transcription is downregulated upon growth to stationary phase in the yeast Saccharomyces cerevisiae. This reduction correlates with characteristic changes in rRNA gene chromatin structure from a transcriptionally active 'open' state to a non-transcribed 'closed' state. The conserved lysine deacetylase Rpd3 was shown to be required for this chromatin transition. We found that Rpd3 is needed for tight repression of Pol I transcription upon growth to stationary phase as a prerequisite for the establishment of the closed chromatin state. We provide evidence that Rpd3 regulates Pol I transcription by adjusting cellular levels of the Pol I preinitiation complex component core factor (CF). Importantly, our study identifies CF as the complex limiting the number of open rRNA genes in exponentially growing and stationary cells.
Collapse
Affiliation(s)
- Virginia Babl
- Regensburg Center of Biochemistry (RCB), Institut für Biochemie, Genetik und Mikrobiologie, Universität Regensburg, Lehrstühle Biochemie III und Genetik, Universitätsstr. 31, 93053 Regensburg, Germany
| | - Philipp Girke
- Regensburg Center of Biochemistry (RCB), Institut für Biochemie, Genetik und Mikrobiologie, Universität Regensburg, Lehrstühle Biochemie III und Genetik, Universitätsstr. 31, 93053 Regensburg, Germany
| | - Sebastian Kruse
- Regensburg Center of Biochemistry (RCB), Institut für Biochemie, Genetik und Mikrobiologie, Universität Regensburg, Lehrstühle Biochemie III und Genetik, Universitätsstr. 31, 93053 Regensburg, Germany
| | - Sophia Pinz
- Regensburg Center of Biochemistry (RCB), Institut für Biochemie, Genetik und Mikrobiologie, Universität Regensburg, Lehrstühle Biochemie III und Genetik, Universitätsstr. 31, 93053 Regensburg, Germany
| | - Katharina Hannig
- Regensburg Center of Biochemistry (RCB), Institut für Biochemie, Genetik und Mikrobiologie, Universität Regensburg, Lehrstühle Biochemie III und Genetik, Universitätsstr. 31, 93053 Regensburg, Germany
| | - Christopher Schächner
- Regensburg Center of Biochemistry (RCB), Institut für Biochemie, Genetik und Mikrobiologie, Universität Regensburg, Lehrstühle Biochemie III und Genetik, Universitätsstr. 31, 93053 Regensburg, Germany
| | - Kristin Hergert
- Regensburg Center of Biochemistry (RCB), Institut für Biochemie, Genetik und Mikrobiologie, Universität Regensburg, Lehrstühle Biochemie III und Genetik, Universitätsstr. 31, 93053 Regensburg, Germany
| | - Manuel Wittner
- Regensburg Center of Biochemistry (RCB), Institut für Biochemie, Genetik und Mikrobiologie, Universität Regensburg, Lehrstühle Biochemie III und Genetik, Universitätsstr. 31, 93053 Regensburg, Germany
| | - Wolfgang Seufert
- Regensburg Center of Biochemistry (RCB), Institut für Biochemie, Genetik und Mikrobiologie, Universität Regensburg, Lehrstühle Biochemie III und Genetik, Universitätsstr. 31, 93053 Regensburg, Germany
| | - Philipp Milkereit
- Regensburg Center of Biochemistry (RCB), Institut für Biochemie, Genetik und Mikrobiologie, Universität Regensburg, Lehrstühle Biochemie III und Genetik, Universitätsstr. 31, 93053 Regensburg, Germany
| | - Herbert Tschochner
- Regensburg Center of Biochemistry (RCB), Institut für Biochemie, Genetik und Mikrobiologie, Universität Regensburg, Lehrstühle Biochemie III und Genetik, Universitätsstr. 31, 93053 Regensburg, Germany
| | - Joachim Griesenbeck
- Regensburg Center of Biochemistry (RCB), Institut für Biochemie, Genetik und Mikrobiologie, Universität Regensburg, Lehrstühle Biochemie III und Genetik, Universitätsstr. 31, 93053 Regensburg, Germany
| |
Collapse
|
21
|
Nagae F, Murayama Y, Terakawa T. Molecular mechanism of parental H3/H4 recycling at a replication fork. Nat Commun 2024; 15:9485. [PMID: 39488545 PMCID: PMC11531469 DOI: 10.1038/s41467-024-53187-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 10/02/2024] [Indexed: 11/04/2024] Open
Abstract
In chromatin replication, faithful recycling of histones from parental DNA to replicated strands is essential for maintaining epigenetic information across generations. A previous experiment has revealed that disrupting interactions between the N-terminal tail of Mcm2, a subunit in DNA replication machinery, and a histone H3/H4 tetramer perturb the recycling. However, the molecular pathways and the factors that regulate the ratio recycled to each strand and the destination location are yet to be revealed. Here, we performed molecular dynamics simulations of yeast DNA replication machinery, an H3/H4 tetramer, and replicated DNA strands. The simulations demonstrated that histones are recycled via Cdc45-mediated and unmediated pathways without histone chaperones, as our in vitro biochemical assays supported. Also, RPA binding regulated the ratio recycled to each strand, whereas DNA bending by Pol ε modulated the destination location. Together, the simulations provided testable hypotheses, which are vital for elucidating the molecular mechanisms of histone recycling.
Collapse
Affiliation(s)
- Fritz Nagae
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Yasuto Murayama
- Department of Chromosome Science, National Institute of Genetics, Shizuoka, Japan
- Department of Genetics, Graduate University for Advanced Studies (SOKENDAI), Shizuoka, Japan
| | - Tsuyoshi Terakawa
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan.
| |
Collapse
|
22
|
Sielaff H, Zhao ZW. Visualizing, quantifying and mapping chromatin remodelers at work with single-molecule and single-cell imaging. Int J Biochem Cell Biol 2024; 176:106667. [PMID: 39362301 DOI: 10.1016/j.biocel.2024.106667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/26/2024] [Accepted: 09/23/2024] [Indexed: 10/05/2024]
Abstract
Chromatin remodeling, carried out by four major subfamilies of ATP-dependent remodeler complexes across eukaryotes, alleviates the topological challenge posed by nucleosomes to regulate genome access. Recently, single-molecule and single-cell imaging techniques have been widely employed to probe this crucial process, both in vitro and in cellulo. Herein, we provide an integrated account of key recent efforts that leverage these approaches to visualize, quantify and map chromatin remodelers at work, elucidating diverse aspects of the remodeling process in both space and time, including molecular mechanisms of DNA wrapping/unwrapping, nucleosome translocation and histone exchange, dynamics of chromatin binding/target search and their intranuclear organization into hotspots or phase condensates, as well as functional coupling with transcription. The mechanistic insights and quantitative parameters revealed shed light on a multi-modal yet shared landscape for regulating remodeling across molecular and cellular scales, and pave the way for further interrogating the implications of its misregulation in disease contexts.
Collapse
Affiliation(s)
- Hendrik Sielaff
- Department of Chemistry, Faculty of Science, National University of Singapore, Singapore 119543, Singapore; Centre for BioImaging Sciences (CBIS), Faculty of Science, National University of Singapore, Singapore 117557, Singapore.
| | - Ziqing Winston Zhao
- Department of Chemistry, Faculty of Science, National University of Singapore, Singapore 119543, Singapore; Centre for BioImaging Sciences (CBIS), Faculty of Science, National University of Singapore, Singapore 117557, Singapore; Mechanobiology Institute (MBI), National University of Singapore, Singapore 117411, Singapore; Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore 119077, Singapore.
| |
Collapse
|
23
|
Luo S, Yue M, Wang D, Lu Y, Wu Q, Jiang J. Breaking the barrier: Epigenetic strategies to combat platinum resistance in colorectal cancer. Drug Resist Updat 2024; 77:101152. [PMID: 39369466 DOI: 10.1016/j.drup.2024.101152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/22/2024] [Accepted: 09/20/2024] [Indexed: 10/08/2024]
Abstract
Colorectal cancer (CRC) is a leading cause of cancer-related mortality worldwide. Platinum-based drugs, such as cisplatin and oxaliplatin, are frontline chemotherapy for CRC, effective in both monotherapy and combination regimens. However, the clinical efficacy of these treatments is often undermined by the development of drug resistance, a significant obstacle in cancer therapy. In recent years, epigenetic alterations have been recognized as key players in the acquisition of resistance to platinum drugs. Targeting these dysregulated epigenetic mechanisms with small molecules represents a promising therapeutic strategy. This review explores the complex relationship between epigenetic changes and platinum resistance in CRC, highlighting current epigenetic therapies and their effectiveness in countering resistance mechanisms. By elucidating the epigenetic underpinnings of platinum resistance, this review aims to contribute to ongoing efforts to improve treatment outcomes for CRC patients.
Collapse
Affiliation(s)
- Shiwen Luo
- Institute of Infection, Immunology and Tumor Microenvironment, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Ming Yue
- Department of Pharmacy, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Dequan Wang
- Institute of Infection, Immunology and Tumor Microenvironment, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yukang Lu
- Institute of Infection, Immunology and Tumor Microenvironment, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Qingming Wu
- Institute of Infection, Immunology and Tumor Microenvironment, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China; Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Jue Jiang
- Institute of Infection, Immunology and Tumor Microenvironment, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China.
| |
Collapse
|
24
|
McDonald A, Murre C, Sedat JW. Helical coiled nucleosome chromosome architectures during cell cycle progression. Proc Natl Acad Sci U S A 2024; 121:e2410584121. [PMID: 39401359 PMCID: PMC11513933 DOI: 10.1073/pnas.2410584121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/04/2024] [Indexed: 10/23/2024] Open
Abstract
Recent studies showed an interphase chromosome architecture-a specific coiled nucleosome structure-derived from cryopreserved EM tomograms, and dispersed throughout the nucleus. The images were computationally processed to fill in the missing wedges of data caused by incomplete tomographic tilts. The resulting structures increased z-resolution enabling an extension of the proposed architecture to that of mitotic chromosomes. Here, we provide additional insights into the chromosome architecture that was recently published [M. Elbaum et al., Proc. Natl. Acad. Sci. U.S.A. 119, e2119101119 (2022)]. We build on the defined chromosomes time-dependent structures in an effort to probe their dynamics. Variants of the coiled chromosome structures, possibly further defining specific regions, are discussed. We propose, based on generalized specific uncoiling of mitotic chromosomes in telophase, large-scale reorganization of interphase chromosomes. Chromosome territories, organized as micron-sized small patches, are constructed, satisfying complex volume considerations. Finally, we unveiled the structures of replicated coiled chromosomes, still attached to centromeres, as part of chromosome architecture.
Collapse
Affiliation(s)
- Angus McDonald
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID83725-2090
| | - Cornelis Murre
- Division of Biological Sciences, University of California San Diego, La Jolla, CA92093
| | - John W. Sedat
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA94158
| |
Collapse
|
25
|
Tan M, Sun S, Liu Y, Perreault AA, Phanstiel DH, Dou L, Pang B. Targeting the 3D genome by anthracyclines for chemotherapeutic effects. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.15.614434. [PMID: 39463926 PMCID: PMC11507702 DOI: 10.1101/2024.10.15.614434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
The chromatins are folded into three-dimensional (3D) structures inside cells, which coordinates the regulation of gene transcription by the non-coding regulatory elements. Aberrant chromatin 3D folding has been shown in many diseases, such as acute myeloid leukemia (AML), and may contribute to tumorigenesis. The anthracycline topoisomerase II inhibitors can induce histone eviction and DNA damage. We performed genome-wide high-resolution mapping of the chemotherapeutic effects of various clinically used anthracycline drugs. ATAC-seq was used to profile the histone eviction effects of different anthracyclines. TOP2A ChIP-seq was used to profile the potential DNA damage regions. Integrated analyses show that different anthracyclines have distinct target selectivity on epigenomic regions, based on their respective ATAC-seq and ChIP-seq profiles. We identified the underlying molecular mechanism that unique anthracycline variants selectively target chromatin looping anchors via disrupting CTCF binding, suggesting an additional potential therapeutic effect on the 3D genome. We further performed Hi-C experiments, and data from K562 cells treated with the selective anthracycline drugs indicate that the 3D chromatin organization is disrupted. Furthermore, AML patients receiving anthracycline drugs showed altered chromatin structures around potential looping anchors, which linked to distinct clinical outcomes. Our data indicate that anthracyclines are potent and selective epigenomic targeting drugs and can target the 3D genome for anticancer therapy, which could be used for personalized medicine to treat tumors with aberrant 3D chromatin structures.
Collapse
|
26
|
Guo J, He XJ. Composition and function of plant chromatin remodeling complexes. CURRENT OPINION IN PLANT BIOLOGY 2024; 81:102613. [PMID: 39116678 DOI: 10.1016/j.pbi.2024.102613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/10/2024] [Accepted: 07/17/2024] [Indexed: 08/10/2024]
Abstract
ATP-dependent chromatin remodelers play a crucial role in modifying chromatin configuration by utilizing the energy of ATP hydrolysis. They are involved in various processes, including transcription, DNA replication, and maintaining genome stability. These remodeling remodelers usually form multi-subunit chromatin remodeling complexes in eukaryotes. In plants, chromatin remodeling complexes have diverse functions in regulating plant development and stress response. Recent studies have conducted extensive research on plant chromatin remodeling complexes. This review focuses on recent advances in the classification and composition of plant chromatin remodeling complexes, the protein-protein interactions within the complexes, their impact on chromatin configuration, and their interactions with chromatin modifications and transcription factors.
Collapse
Affiliation(s)
- Jing Guo
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Xin-Jian He
- National Institute of Biological Sciences, Beijing, 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
27
|
Li X, Zhu G, Zhao B. Chromatin remodeling in tissue stem cell fate determination. CELL REGENERATION (LONDON, ENGLAND) 2024; 13:18. [PMID: 39348027 PMCID: PMC11442411 DOI: 10.1186/s13619-024-00203-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/22/2024] [Indexed: 10/01/2024]
Abstract
Tissue stem cells (TSCs), which reside in specialized tissues, constitute the major cell sources for tissue homeostasis and regeneration, and the contribution of transcriptional or epigenetic regulation of distinct biological processes in TSCs has been discussed in the past few decades. Meanwhile, ATP-dependent chromatin remodelers use the energy from ATP hydrolysis to remodel nucleosomes, thereby affecting chromatin dynamics and the regulation of gene expression programs in each cell type. However, the role of chromatin remodelers in tissue stem cell fate determination is less well understood. In this review, we systematically discuss recent advances in epigenetic control by chromatin remodelers of hematopoietic stem cells, intestinal epithelial stem cells, neural stem cells, and skin stem cells in their fate determination and highlight the importance of their essential role in tissue homeostasis, development, and regeneration. Moreover, the exploration of the molecular and cellular mechanisms of TSCs is crucial for advancing our understanding of tissue maintenance and for the discovery of novel therapeutic targets.
Collapse
Affiliation(s)
- Xinyang Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
- Z Lab, bioGenous BIOTECH, Shanghai, 200438, China
| | - Gaoxiang Zhu
- School of Basic Medical Sciences, Jiangxi Medical College, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330031, China
| | - Bing Zhao
- School of Basic Medical Sciences, Jiangxi Medical College, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330031, China.
- Z Lab, bioGenous BIOTECH, Shanghai, 200438, China.
| |
Collapse
|
28
|
Jing X, Zhang N, Zhou X, Chen P, Gong J, Zhang K, Wu X, Cai W, Ye BC, Hao P, Zhao GP, Yang S, Li X. Creating a bacterium that forms eukaryotic nucleosome core particles. Nat Commun 2024; 15:8283. [PMID: 39333491 PMCID: PMC11436726 DOI: 10.1038/s41467-024-52484-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 09/10/2024] [Indexed: 09/29/2024] Open
Abstract
The nucleosome is one of the hallmarks of eukaryotes, a dynamic platform that supports many critical functions in eukaryotic cells. Here, we engineer the in vivo assembly of the nucleosome core in the model bacterium Escherichia coli. We show that bacterial chromosome DNA and eukaryotic histones can assemble in vivo to form nucleosome complexes with many features resembling those found in eukaryotes. The formation of nucleosomes in E. coli was visualized with atomic force microscopy and using tripartite split green fluorescent protein. Under a condition that moderate histones expression was induced at 1 µM IPTG, the nucleosome-forming bacterium is viable and has sustained growth for at least 110 divisions in longer-term growth experiments. It exhibits stable nucleosome formation, a consistent transcriptome across passages, and reduced growth fitness under stress conditions. In particular, the nucleosome arrays in E. coli genic regions have profiles resembling those in eukaryotic cells. The observed compatibility between the eukaryotic nucleosome and the bacterial chromosome machinery may reflect a prerequisite for bacteria-archaea union, providing insight into eukaryogenesis and the origin of the nucleosome.
Collapse
Grants
- This work was supported in part by the National Natural Science Foundation of China (32393971 awarded to X.J., 92451303 and 32270719 awarded to X.L., 32200093 awarded to P.C.), the National Key R&D Program of China (2023ZD04073 awarded to X.L.), the National Science and Technology Major Projects (2018YFA0903700 awarded to X.J., 2019YFA0904600 awarded to Yan Zhu), and the Strategic Projects of the Chinese Academy of Sciences (XDA24010403 awarded to X.L.). We thank Fan Gong at the National Facility for Protein Science in Shanghai (NFPS), Shanghai Advanced Research Institute, CAS, for technical support with AFM experiments, and Yuan Yuan Gao, Shanshan Wang, Lianyan Jing, and Xiaoyan Xu at the core facility of the Center for Excellence in Molecular Plant Sciences (CEMPS) for assistance with LC-MS/MS experiments.
Collapse
Affiliation(s)
- Xinyun Jing
- Key Laboratory of Synthetic Biology, Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Niubing Zhang
- Key Laboratory of Synthetic Biology, Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Xiaojuan Zhou
- Key Laboratory of Synthetic Biology, Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ping Chen
- Key Laboratory of Synthetic Biology, Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Jie Gong
- Key Laboratory of Synthetic Biology, Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kaixiang Zhang
- Key Laboratory of Synthetic Biology, Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xueting Wu
- Key Laboratory of Synthetic Biology, Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wenjuan Cai
- Core Facility Center, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Bang-Ce Ye
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Pei Hao
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Guo-Ping Zhao
- Key Laboratory of Synthetic Biology, Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Sheng Yang
- Key Laboratory of Synthetic Biology, Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xuan Li
- Key Laboratory of Synthetic Biology, Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
29
|
Dhillon N, Kamakaka RT. Transcriptional silencing in Saccharomyces cerevisiae: known unknowns. Epigenetics Chromatin 2024; 17:28. [PMID: 39272151 PMCID: PMC11401328 DOI: 10.1186/s13072-024-00553-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Transcriptional silencing in Saccharomyces cerevisiae is a persistent and highly stable form of gene repression. It involves DNA silencers and repressor proteins that bind nucleosomes. The silenced state is influenced by numerous factors including the concentration of repressors, nature of activators, architecture of regulatory elements, modifying enzymes and the dynamics of chromatin.Silencers function to increase the residence time of repressor Sir proteins at silenced domains while clustering of silenced domains enables increased concentrations of repressors and helps facilitate long-range interactions. The presence of an accessible NDR at the regulatory regions of silenced genes, the cycling of chromatin configurations at regulatory sites, the mobility of Sir proteins, and the non-uniform distribution of the Sir proteins across the silenced domain, all result in silenced chromatin that only stably silences weak promoters and enhancers via changes in transcription burst duration and frequency.These data collectively suggest that silencing is probabilistic and the robustness of silencing is achieved through sub-optimization of many different nodes of action such that a stable expression state is generated and maintained even though individual constituents are in constant flux.
Collapse
Affiliation(s)
- Namrita Dhillon
- Department of Biomolecular Engineering, University of California, 1156 High Street, Santa Cruz, CA, 95064, USA
| | - Rohinton T Kamakaka
- Department of MCD Biology, University of California, 1156 High Street, Santa Cruz, CA, 95064, USA.
| |
Collapse
|
30
|
Hicks C, Rahman S, Gloor S, Fields J, Husby N, Vaidya A, Maier K, Morgan M, Keogh MC, Wolberger C. Ubiquitinated histone H2B as gatekeeper of the nucleosome acidic patch. Nucleic Acids Res 2024; 52:9978-9995. [PMID: 39149911 PMCID: PMC11381367 DOI: 10.1093/nar/gkae698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/15/2024] [Accepted: 08/01/2024] [Indexed: 08/17/2024] Open
Abstract
Monoubiquitination of histones H2B-K120 (H2BK120ub) and H2A-K119 (H2AK119ub) play opposing roles in regulating transcription and chromatin compaction. H2BK120ub is a hallmark of actively transcribed euchromatin, while H2AK119ub is highly enriched in transcriptionally repressed heterochromatin. Whereas H2BK120ub is known to stimulate the binding or activity of various chromatin-modifying enzymes, this post-translational modification (PTM) also interferes with the binding of several proteins to the nucleosome H2A/H2B acidic patch via an unknown mechanism. Here, we report cryoEM structures of an H2BK120ub nucleosome showing that ubiquitin adopts discrete positions that occlude the acidic patch. Molecular dynamics simulations show that ubiquitin remains stably positioned over this nucleosome region. By contrast, our cryoEM structures of H2AK119ub nucleosomes show ubiquitin adopting discrete positions that minimally occlude the acidic patch. Consistent with these observations, H2BK120ub, but not H2AK119ub, abrogates nucleosome interactions with acidic patch-binding proteins RCC1 and LANA, and single-domain antibodies specific to this region. Our results suggest a mechanism by which H2BK120ub serves as a gatekeeper to the acidic patch and point to distinct roles for histone H2AK119 and H2BK120 ubiquitination in regulating protein binding to nucleosomes.
Collapse
Affiliation(s)
- Chad W Hicks
- Department of Biophysics & Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA
| | - Sanim Rahman
- Department of Biophysics & Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA
| | - Susan L Gloor
- EpiCypher Inc., 6 Davis Drive, Suite 755, Durham, NC 27709, USA
| | - James K Fields
- Department of Biophysics & Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA
| | | | - Anup Vaidya
- EpiCypher Inc., 6 Davis Drive, Suite 755, Durham, NC 27709, USA
| | - Keith E Maier
- EpiCypher Inc., 6 Davis Drive, Suite 755, Durham, NC 27709, USA
| | - Michael Morgan
- Department of Biophysics & Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA
| | | | - Cynthia Wolberger
- Department of Biophysics & Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA
| |
Collapse
|
31
|
Raja N, Ganesan A, Chandrasekar Lakshmi K, Aniyan Y. Assessing DNA methylation of ATG 5 and MAP1LC3Av1 gene in oral squamous cell carcinoma and oral leukoplakia- a cross sectional study. J Oral Biol Craniofac Res 2024; 14:534-539. [PMID: 39070885 PMCID: PMC11277762 DOI: 10.1016/j.jobcr.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/14/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024] Open
Abstract
Background The progression and pathogenesis of oral cancer is greatly impacted by epigenetic modifications, such as DNA methylation. Autophagy, is an adaptive mechanism used to maintain the survival and integrity of cells. Oral squamous cell carcinoma is linked to a number of autophagy indicators, although it is yet unknown if DNA methylation of autophagy-related genes promotes the development of oral leukoplakia (OL), oral squamous cell carcinoma (OSCC). Aim Our study was aimed to assess, compare and evaluate the DNA methylation of ATG5 and MAP1LC3Av1 genes in oral leukoplakia, oral squamous cell carcinoma. Materials and methods This cross-sectional study was designed with sample size of 48 tissues which was clinically and histopathologically diagnosed as OL, OSCC and normal tissue. The samples were divided into three groups (Group A, Group B, and Group C; (n = 16 each). Following histopathological confirmation, the tissue was stored in the RNA reagent, then subjected to DNA extraction, methylation-sensitive polymerase chain reaction (MS-PCR). DNA methylation of the ATG5 and MAP1LC3Av1 genes were assessed. Results Shapiro-Wilk and Kolmogorov-Smirnov tests showed that the values were normally distributed. Both the ATG5 and MAP1LC3Av1 genes were methylated in OSCC, OL tissues compared to normal tissues. A statistically significant results was seen among the three study groups. Conclusion A significant difference was noted in the hypermethylation status of the promoter regions of the ATG5 and MAP1LC3Av1 genes. This provides some insight into their crucial role in the development of tumors. Future research with larger sample is needed to assess its potential clinical implications in oral carcinoma.
Collapse
Affiliation(s)
- Nishanthi Raja
- Department of Oral Medicine and Radiology, SRM Dental College, Bharathi salai, Chennai, Tamil Nadu, India
| | - Anuradha Ganesan
- Department of Oral Medicine and Radiology, SRM Dental College, Bharathi salai, Chennai, Tamil Nadu, India
| | | | - Yesoda Aniyan
- Department of Oral Medicine and Radiology, SRM Dental College, Bharathi salai, Chennai, Tamil Nadu, India
| |
Collapse
|
32
|
Nie Z, Zhao Y, Yu S, Mai J, Gao H, Fan Z, Bao Y, Li R, Xiao J. NucMap 2.0: An Updated Database of Genome-wide Nucleosome Positioning Maps Across Species. J Mol Biol 2024; 436:168655. [PMID: 38878855 DOI: 10.1016/j.jmb.2024.168655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/24/2024] [Accepted: 06/07/2024] [Indexed: 06/24/2024]
Abstract
Nucleosome dynamics plays important roles in many biological processes, such as DNA replication and gene expression. NucMap (https://ngdc.cncb.ac.cn/nucmap) is the first database of genome-wide nucleosome positioning maps across species. Here, we present an updated version, NucMap 2.0, by incorporating more species and MNase-seq samples. In addition, we integrate other related omics data for each MNase-seq sample to provide a comprehensive view of nucleosome positioning, such as gene expression, transcription factor binding sites, histone modifications and DNA methylation. In particular, NucMap 2.0 integrates and pre-analyzes RNA-seq data and ChIP-seq data of human-related samples, which facilitates the interpretation of nucleosome positioning in humans. All processed data are integrated into an in-built genome browser, and users can make comprehensive side-by-side analyses. In addition, more online analytical functions are developed, which allows researchers to identify differential nucleosome regions and explore potential gene regulatory regions. All resources are open access with a user-friendly web interface.
Collapse
Affiliation(s)
- Zhi Nie
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yongbing Zhao
- University of Chinese Academy of Sciences, Beijing 100049, China; Center for Cell Lineage and Development, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.
| | - Shuhuan Yu
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jialin Mai
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Hao Gao
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhuojing Fan
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China.
| | - Yiming Bao
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Rujiao Li
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China.
| | - Jingfa Xiao
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
33
|
Huang SC, Chen CW, Satange R, Hsieh CC, Chang CC, Wang SC, Peng CL, Chen TL, Chiang MH, Horng YC, Hou MH. Targeting DNA junction sites by bis-intercalators induces topological changes with potent antitumor effects. Nucleic Acids Res 2024; 52:9303-9316. [PMID: 39036959 PMCID: PMC11347135 DOI: 10.1093/nar/gkae643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/21/2024] [Accepted: 07/09/2024] [Indexed: 07/23/2024] Open
Abstract
Targeting inter-duplex junctions in catenated DNA with bidirectional bis-intercalators is a potential strategy for enhancing anticancer effects. In this study, we used d(CGTATACG)2, which forms a tetraplex base-pair junction that resembles the DNA-DNA contact structure, as a model target for two alkyl-linked diaminoacridine bis-intercalators, DA4 and DA5. Cross-linking of the junction site by the bis-intercalators induced substantial structural changes in the DNA, transforming it from a B-form helical end-to-end junction to an over-wounded side-by-side inter-duplex conformation with A-DNA characteristics and curvature. These structural perturbations facilitated the angled intercalation of DA4 and DA5 with propeller geometry into two adjacent duplexes. The addition of a single carbon to the DA5 linker caused a bend that aligned its chromophores with CpG sites, enabling continuous stacking and specific water-mediated interactions at the inter-duplex contacts. Furthermore, we have shown that the different topological changes induced by DA4 and DA5 lead to the inhibition of topoisomerase 2 activities, which may account for their antitumor effects. Thus, this study lays the foundations for bis-intercalators targeting biologically relevant DNA-DNA contact structures for anticancer drug development.
Collapse
Affiliation(s)
- Shih-Chun Huang
- Doctoral Program in Medical Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
- Graduate Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung 402, Taiwan
| | - Chia-Wei Chen
- Department of Chemistry, National Changhua University of Education, Changhua 50058, Taiwan
| | - Roshan Satange
- Graduate Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung 402, Taiwan
| | | | - Chih-Chun Chang
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
| | - Shun-Ching Wang
- Doctoral Program in Medical Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
- Graduate Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung 402, Taiwan
| | - Chi-Li Peng
- Graduate Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung 402, Taiwan
| | - Tai-Lin Chen
- Post Baccalaureate Medicine, School of Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | - Ming-Hsi Chiang
- Institute of Chemistry, Academia Sinica, Taipei 11528, Taiwan
| | - Yih-Chern Horng
- Department of Chemistry, National Changhua University of Education, Changhua 50058, Taiwan
| | - Ming-Hon Hou
- Doctoral Program in Medical Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
- Graduate Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung 402, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
- Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
34
|
Chen K, Wang L, Yu Z, Yu J, Ren Y, Wang Q, Xu Y. Structure of the human TIP60 complex. Nat Commun 2024; 15:7092. [PMID: 39154037 PMCID: PMC11330486 DOI: 10.1038/s41467-024-51259-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 08/02/2024] [Indexed: 08/19/2024] Open
Abstract
Mammalian TIP60 is a multi-functional enzyme with histone acetylation and histone dimer exchange activities. It plays roles in diverse cellular processes including transcription, DNA repair, cell cycle control, and embryonic development. Here we report the cryo-electron microscopy structures of the human TIP60 complex with the core subcomplex and TRRAP module refined to 3.2-Å resolution. The structures show that EP400 acts as a backbone integrating the motor module, the ARP module, and the TRRAP module. The RUVBL1-RUVBL2 hexamer serves as a rigid core for the assembly of EP400 ATPase and YL1 in the motor module. In the ARP module, an ACTL6A-ACTB heterodimer and an extra ACTL6A make hydrophobic contacts with EP400 HSA helix, buttressed by network interactions among DMAP1, EPC1, and EP400. The ARP module stably associates with the motor module but is flexibly tethered to the TRRAP module, exhibiting a unique feature of human TIP60. The architecture of the nucleosome-bound human TIP60 reveals an unengaged nucleosome that is located between the core subcomplex and the TRRAP module. Our work illustrates the molecular architecture of human TIP60 and provides architectural insights into how this complex is bound by the nucleosome.
Collapse
Affiliation(s)
- Ke Chen
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, 200032, China
| | - Li Wang
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, 200032, China.
| | - Zishuo Yu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, 200032, China
| | - Jiali Yu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, 200032, China
| | - Yulei Ren
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, 200032, China
| | - Qianmin Wang
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, 200032, China.
| | - Yanhui Xu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, 200032, China.
- The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, China, Department of Systems Biology for Medicine, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032, China.
| |
Collapse
|
35
|
Żychowska J, Ćmil M, Skórka P, Olejnik-Wojciechowska J, Plewa P, Bakinowska E, Kiełbowski K, Pawlik A. The Role of Epigenetic Mechanisms in the Pathogenesis of Hepatitis C Infection. Biomolecules 2024; 14:986. [PMID: 39199374 PMCID: PMC11352264 DOI: 10.3390/biom14080986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 09/01/2024] Open
Abstract
Hepatitis C virus (HCV) is a hepatotropic virus that can be transmitted through unsafe medical procedures, such as injections, transfusions, and dental treatment. The infection may be self-limiting or manifest as a chronic form that induces liver fibrosis, cirrhosis, or progression into hepatocellular carcinoma (HCC). Epigenetic mechanisms are major regulators of gene expression. These mechanisms involve DNA methylation, histone modifications, and the activity of non-coding RNAs, which can enhance or suppress gene expression. Abnormal activity or the dysregulated expression of epigenetic molecules plays an important role in the pathogenesis of various pathological disorders, including inflammatory diseases and malignancies. In this review, we summarise the current evidence on epigenetic mechanisms involved in HCV infection and progression to HCC.
Collapse
Affiliation(s)
- Justyna Żychowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (J.Ż.); (M.Ć.); (P.S.); (E.B.); (K.K.)
| | - Maciej Ćmil
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (J.Ż.); (M.Ć.); (P.S.); (E.B.); (K.K.)
| | - Patryk Skórka
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (J.Ż.); (M.Ć.); (P.S.); (E.B.); (K.K.)
| | | | - Paulina Plewa
- Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland;
| | - Estera Bakinowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (J.Ż.); (M.Ć.); (P.S.); (E.B.); (K.K.)
| | - Kajetan Kiełbowski
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (J.Ż.); (M.Ć.); (P.S.); (E.B.); (K.K.)
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (J.Ż.); (M.Ć.); (P.S.); (E.B.); (K.K.)
| |
Collapse
|
36
|
Sahrhage M, Paul NB, Beißbarth T, Haubrock M. The importance of DNA sequence for nucleosome positioning in transcriptional regulation. Life Sci Alliance 2024; 7:e202302380. [PMID: 38830772 PMCID: PMC11147951 DOI: 10.26508/lsa.202302380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 06/05/2024] Open
Abstract
Nucleosome positioning is a key factor for transcriptional regulation. Nucleosomes regulate the dynamic accessibility of chromatin and interact with the transcription machinery at every stage. Influences to steer nucleosome positioning are diverse, and the according importance of the DNA sequence in contrast to active chromatin remodeling has been the subject of long discussion. In this study, we evaluate the functional role of DNA sequence for all major elements along the process of transcription. We developed a random forest classifier based on local DNA structure that assesses the sequence-intrinsic support for nucleosome positioning. On this basis, we created a simple data resource that we applied genome-wide to the human genome. In our comprehensive analysis, we found a special role of DNA in mediating the competition of nucleosomes with cis-regulatory elements, in enabling steady transcription, for positioning of stable nucleosomes in exons, and for repelling nucleosomes during transcription termination. In contrast, we relate these findings to concurrent processes that generate strongly positioned nucleosomes in vivo that are not mediated by sequence, such as energy-dependent remodeling of chromatin.
Collapse
Affiliation(s)
- Malte Sahrhage
- Department of Medical Bioinformatics, University Medical Center, Göttingen, Germany
| | - Niels Benjamin Paul
- Department of Medical Bioinformatics, University Medical Center, Göttingen, Germany
- Department of Cardiology and Pneumology, University Medical Center, Göttingen, Germany
| | - Tim Beißbarth
- Department of Medical Bioinformatics, University Medical Center, Göttingen, Germany
| | - Martin Haubrock
- Department of Medical Bioinformatics, University Medical Center, Göttingen, Germany
| |
Collapse
|
37
|
Nemsick S, Hansen AS. Molecular models of bidirectional promoter regulation. Curr Opin Struct Biol 2024; 87:102865. [PMID: 38905929 PMCID: PMC11550790 DOI: 10.1016/j.sbi.2024.102865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/30/2024] [Accepted: 05/27/2024] [Indexed: 06/23/2024]
Abstract
Approximately 11% of human genes are transcribed by a bidirectional promoter (BDP), defined as two genes with <1 kb between their transcription start sites. Despite their evolutionary conservation and enrichment for housekeeping genes and oncogenes, the regulatory role of BDPs remains unclear. BDPs have been suggested to facilitate gene coregulation and/or decrease expression noise. This review discusses these potential regulatory functions through the context of six prospective underlying mechanistic models: a single nucleosome free region, shared transcription factor/regulator binding, cooperative negative supercoiling, bimodal histone marks, joint activation by enhancer(s), and RNA-mediated recruitment of regulators. These molecular mechanisms may act independently and/or cooperatively to facilitate the coregulation and/or decreased expression noise predicted of BDPs.
Collapse
Affiliation(s)
- Sarah Nemsick
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; The Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA
| | - Anders S Hansen
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; The Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA.
| |
Collapse
|
38
|
Park G, Patel AB, Wu C, Louder RK. Structures of H2A.Z-associated human chromatin remodelers SRCAP and TIP60 reveal divergent mechanisms of chromatin engagement. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.30.605802. [PMID: 39131301 PMCID: PMC11312561 DOI: 10.1101/2024.07.30.605802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
H2A.Z is a conserved histone variant that is localized to specific genomic regions where it plays important roles in transcription, DNA repair, and replication. Central to the biochemistry of human H2A.Z are the SRCAP and TIP60 chromatin remodelers, homologs of yeast SWR1 which catalyzes ATP-dependent H2A.Z exchange. Here, we use cryo-electron microscopy to resolve six structural states of the native SRCAP complex, uncovering conformational intermediates interpreted as a stepwise path to full nucleosome engagement. We also resolve the structure of the native TIP60 complex which consists of a structured core from which flexibly tethered chromatin binding domains emerge. Despite the shared subunit composition, the core of TIP60 displays divergent architectures from SRCAP that structurally disfavor nucleosome engagement, suggesting a distinct biochemical function.
Collapse
Affiliation(s)
- Giho Park
- Biochemistry, Cellular and Molecular Graduate Program, Johns Hopkins School of Medicine; Baltimore, MD 21205, USA
- Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine; Baltimore, MD 21205, USA
| | - Avinash B. Patel
- Department of Biophysics, Johns Hopkins University; Baltimore, MD 21218, USA
| | - Carl Wu
- Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine; Baltimore, MD 21205, USA
- Department of Biology, Johns Hopkins University; Baltimore, MD 21218, USA
| | - Robert K. Louder
- Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine; Baltimore, MD 21205, USA
- Department of Biology, Johns Hopkins University; Baltimore, MD 21218, USA
| |
Collapse
|
39
|
Haase MAB, Lazar-Stefanita L, Ólafsson G, Wudzinska A, Shen MJ, Truong DM, Boeke JD. macroH2A1 drives nucleosome dephasing and genome instability in histone humanized yeast. Cell Rep 2024; 43:114472. [PMID: 38990716 DOI: 10.1016/j.celrep.2024.114472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 01/15/2024] [Accepted: 06/24/2024] [Indexed: 07/13/2024] Open
Abstract
In addition to replicative histones, eukaryotic genomes encode a repertoire of non-replicative variant histones, providing additional layers of structural and epigenetic regulation. Here, we systematically replace individual replicative human histones with non-replicative human variant histones using a histone replacement system in yeast. We show that variants H2A.J, TsH2B, and H3.5 complement their respective replicative counterparts. However, macroH2A1 fails to complement, and its overexpression is toxic in yeast, negatively interacting with yeast's native histones and kinetochore genes. To isolate yeast with macroH2A1 chromatin, we uncouple the effects of its macro and histone fold domains, revealing that both domains suffice to override native nucleosome positioning. Furthermore, both uncoupled constructs of macroH2A1 exhibit lower nucleosome occupancy, decreased short-range chromatin interactions (<20 kb), disrupted centromeric clustering, and increased chromosome instability. Our observations demonstrate that lack of a canonical histone H2A dramatically alters chromatin organization in yeast, leading to genome instability and substantial fitness defects.
Collapse
Affiliation(s)
- Max A B Haase
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA; Vilcek Institute of Graduate Biomedical Sciences, NYU School of Medicine, New York, NY 10016, USA
| | - Luciana Lazar-Stefanita
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Guðjón Ólafsson
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Aleksandra Wudzinska
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Michael J Shen
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - David M Truong
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201, USA; Department of Pathology, NYU Langone Health, New York, NY 10016, USA
| | - Jef D Boeke
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA; Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201, USA.
| |
Collapse
|
40
|
Peeters F, Cappuyns S, Piqué-Gili M, Phillips G, Verslype C, Lambrechts D, Dekervel J. Applications of single-cell multi-omics in liver cancer. JHEP Rep 2024; 6:101094. [PMID: 39022385 PMCID: PMC11252522 DOI: 10.1016/j.jhepr.2024.101094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/18/2024] [Accepted: 03/27/2024] [Indexed: 07/20/2024] Open
Abstract
Primary liver cancer, more specifically hepatocellular carcinoma (HCC), remains a significant global health problem associated with increasing incidence and mortality. Clinical, biological, and molecular heterogeneity are well-known hallmarks of cancer and HCC is considered one of the most heterogeneous tumour types, displaying substantial inter-patient, intertumoural and intratumoural variability. This heterogeneity plays a pivotal role in hepatocarcinogenesis, metastasis, relapse and drug response or resistance. Unimodal single-cell sequencing techniques have already revolutionised our understanding of the different layers of molecular hierarchy in the tumour microenvironment of HCC. By highlighting the cellular heterogeneity and the intricate interactions among cancer, immune and stromal cells before and during treatment, these techniques have contributed to a deeper comprehension of tumour clonality, hematogenous spreading and the mechanisms of action of immune checkpoint inhibitors. However, major questions remain to be elucidated, with the identification of biomarkers predicting response or resistance to immunotherapy-based regimens representing an important unmet clinical need. Although the application of single-cell multi-omics in liver cancer research has been limited thus far, a revolution of individualised care for patients with HCC will only be possible by integrating various unimodal methods into multi-omics methodologies at the single-cell resolution. In this review, we will highlight the different established single-cell sequencing techniques and explore their biological and clinical impact on liver cancer research, while casting a glance at the future role of multi-omics in this dynamic and rapidly evolving field.
Collapse
Affiliation(s)
- Frederik Peeters
- Digestive Oncology, Department of Gastroenterology, University Hospitals Leuven, Leuven, Belgium
- Laboratory of Clinical Digestive Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
- VIB Centre for Cancer Biology, Leuven, Belgium
| | - Sarah Cappuyns
- Digestive Oncology, Department of Gastroenterology, University Hospitals Leuven, Leuven, Belgium
- Laboratory of Clinical Digestive Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
- VIB Centre for Cancer Biology, Leuven, Belgium
| | - Marta Piqué-Gili
- Liver Cancer Translational Research Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Gino Phillips
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
- VIB Centre for Cancer Biology, Leuven, Belgium
| | - Chris Verslype
- Digestive Oncology, Department of Gastroenterology, University Hospitals Leuven, Leuven, Belgium
- Laboratory of Clinical Digestive Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Diether Lambrechts
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
- VIB Centre for Cancer Biology, Leuven, Belgium
| | - Jeroen Dekervel
- Digestive Oncology, Department of Gastroenterology, University Hospitals Leuven, Leuven, Belgium
- Laboratory of Clinical Digestive Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| |
Collapse
|
41
|
Sahoo S, Kadam S, Padinhateeri R, Kumar PBS. Nonequilibrium switching of segmental states can influence compaction of chromatin. SOFT MATTER 2024; 20:4621-4632. [PMID: 38819321 DOI: 10.1039/d4sm00274a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Knowledge about the dynamic nature of chromatin organization is essential to understand the regulation of processes like DNA transcription and repair. The existing models of chromatin assume that protein organization and chemical states along chromatin are static and the 3D organization is purely a result of protein-mediated intra-chromatin interactions. Here we present a new hypothesis that certain nonequilibrium processes, such as switching of chemical and physical states due to nucleosome assembly/disassembly or gene repression/activation, can also simultaneously influence chromatin configurations. To understand the implications of this inherent nonequilibrium switching, we present a block copolymer model of chromatin, with switching of its segmental states between two states, mimicking active/repressed or protein unbound/bound states. We show that competition between switching timescale Tt, polymer relaxation timescale τp, and segmental relaxation timescale τs can lead to non-trivial changes in chromatin organization, leading to changes in local compaction and contact probabilities. As a function of the switching timescale, the radius of gyration of chromatin shows a non-monotonic behavior with a prominent minimum when Tt ≈ τp and a maximum when Tt ≈ τs. We find that polymers with a small segment length exhibit a more compact structure than those with larger segment lengths. We also find that the switching can lead to higher contact probability and better mixing of far-away segments. Our study also shows that the nature of the distribution of chromatin clusters varies widely as we change the switching rate.
Collapse
Affiliation(s)
- Soudamini Sahoo
- Department of Physics, Indian Institute of Technology Palakkad, Palakkad, 678623, India
- Department of Physics and Astronomy, National Institute of Technology Rourkela, Rourkela, 769008, India
| | - Sangram Kadam
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India.
| | - Ranjith Padinhateeri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India.
| | - P B Sunil Kumar
- Department of Physics, Indian Institute of Technology Palakkad, Palakkad, 678623, India
- Department of Physics, Indian Institute of Technology Madras, Chennai, 600036, India
- Center for Soft and Biological Matter, Indian Institute of Technology Madras, Chennai, 600036, India
| |
Collapse
|
42
|
Mabe NW, Perry JA, Malone CF, Stegmaier K. Pharmacological targeting of the cancer epigenome. NATURE CANCER 2024; 5:844-865. [PMID: 38937652 PMCID: PMC11936478 DOI: 10.1038/s43018-024-00777-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 04/19/2024] [Indexed: 06/29/2024]
Abstract
Epigenetic dysregulation is increasingly appreciated as a hallmark of cancer, including disease initiation, maintenance and therapy resistance. As a result, there have been advances in the development and evaluation of epigenetic therapies for cancer, revealing substantial promise but also challenges. Three epigenetic inhibitor classes are approved in the USA, and many more are currently undergoing clinical investigation. In this Review, we discuss recent developments for each epigenetic drug class and their implications for therapy, as well as highlight new insights into the role of epigenetics in cancer.
Collapse
Affiliation(s)
- Nathaniel W Mabe
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jennifer A Perry
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Clare F Malone
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kimberly Stegmaier
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
43
|
Shrestha B, Nieminen AI, Matilainen O. Loss of the histone chaperone UNC-85/ASF1 inhibits the epigenome-mediated longevity and modulates the activity of one-carbon metabolism. Cell Stress Chaperones 2024; 29:392-403. [PMID: 38608859 PMCID: PMC11039323 DOI: 10.1016/j.cstres.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/14/2024] Open
Abstract
Histone H3/H4 chaperone anti-silencing function 1 (ASF1) is a conserved factor mediating nucleosomal assembly and disassembly, playing crucial roles in processes such as replication, transcription, and DNA repair. Nevertheless, its involvement in aging has remained unclear. Here, we utilized the model organism Caenorhabditis elegans to demonstrate that the loss of UNC-85, the homolog of ASF1, leads to a shortened lifespan in a multicellular organism. Furthermore, we show that UNC-85 is required for epigenome-mediated longevity, as knockdown of the histone H3 lysine K4 methyltransferase ash-2 does not extend the lifespan of unc-85 mutants. In this context, we found that the longevity-promoting ash-2 RNA interference enhances UNC-85 activity by increasing its nuclear localization. Finally, our data indicate that the loss of UNC-85 increases the activity of one-carbon metabolism, and that downregulation of the one-carbon metabolism component dao-3/MTHFD2 partially rescues the short lifespan of unc-85 mutants. Together, these findings reveal UNC-85/ASF1 as a modulator of the central metabolic pathway and a factor regulating a pro-longevity response, thus shedding light on a mechanism of how nucleosomal maintenance associates with aging.
Collapse
Affiliation(s)
- Bideep Shrestha
- The Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Anni I Nieminen
- FIMM Metabolomics Unit, Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Olli Matilainen
- The Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
44
|
Chen D, Fan X, Wang K, Gong L, Melero-Martin JM, Pu WT. Pioneer factor ETV2 safeguards endothelial cell specification by recruiting the repressor REST to restrict alternative lineage commitment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.28.595971. [PMID: 38853821 PMCID: PMC11160620 DOI: 10.1101/2024.05.28.595971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Mechanisms of cell fate specification remain a central question for developmental biology and regenerative medicine. The pioneer factor ETV2 is a master regulator for the endothelial cell (EC) lineage specification. Here, we studied mechanisms of ETV2-driven fate specification using a highly efficient system in which ETV2 directs human induced pluripotent stem cell-derived mesodermal progenitors to form ECs over two days. By applying CUT&RUN, single-cell RNA-sequencing (scRNA-seq) and single-cell assay for transposase-accessible chromatin sequencing (scATAC-seq) analyses, we characterized the transcriptomic profiles, chromatin landscapes, dynamic cis-regulatory elements (CREs), and molecular features of EC cell differentiation mediated by ETV2. This defined the scope of ETV2 pioneering activity and identified its direct downstream target genes. Induced ETV2 expression both directed specification of endothelial progenitors and suppressed acquisition of alternative fates. Functional screening and candidate validation revealed cofactors essential for efficient EC specification, including the transcriptional activator GABPA. Surprisingly, the transcriptional repressor REST was also necessary for efficient EC specification. ETV2 recruited REST to occupy and repress non-EC lineage genes. Collectively, our study provides an unparalleled molecular analysis of EC specification at single-cell resolution and identifies the important role of pioneer factors to recruit repressors that suppress commitment to alternative lineages.
Collapse
|
45
|
Pan S, Yuan T, Xia Y, Yu W, Zhou X, Cheng F. Role of Histone Modifications in Kidney Fibrosis. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:888. [PMID: 38929505 PMCID: PMC11205584 DOI: 10.3390/medicina60060888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/20/2024] [Accepted: 05/25/2024] [Indexed: 06/28/2024]
Abstract
Chronic kidney disease (CKD) is characterized by persistent kidney dysfunction, ultimately resulting in end-stage renal disease (ESRD). Renal fibrosis is a crucial pathological feature of CKD and ESRD. However, there is no effective treatment for this condition. Despite the complex molecular mechanisms involved in renal fibrosis, increasing evidence highlights the crucial role of histone modification in its regulation. The reversibility of histone modifications offers promising avenues for therapeutic strategies to block or reverse renal fibrosis. Therefore, a comprehensive understanding of the regulatory implications of histone modifications in fibrosis may provide novel insights into more effective and safer therapeutic approaches. This review highlights the regulatory mechanisms and recent advances in histone modifications in renal fibrosis, particularly histone methylation and histone acetylation. The aim is to explore the potential of histone modifications as targets for treating renal fibrosis.
Collapse
Affiliation(s)
| | | | | | | | - Xiangjun Zhou
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (S.P.); (T.Y.); (Y.X.); (W.Y.)
| | - Fan Cheng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (S.P.); (T.Y.); (Y.X.); (W.Y.)
| |
Collapse
|
46
|
Segura J, Díaz-Ingelmo O, Martínez-García B, Ayats-Fraile A, Nikolaou C, Roca J. Nucleosomal DNA has topological memory. Nat Commun 2024; 15:4526. [PMID: 38806488 PMCID: PMC11133463 DOI: 10.1038/s41467-024-49023-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 05/21/2024] [Indexed: 05/30/2024] Open
Abstract
One elusive aspect of the chromosome architecture is how it constrains the DNA topology. Nucleosomes stabilise negative DNA supercoils by restraining a DNA linking number difference (∆Lk) of about -1.26. However, whether this capacity is uniform across the genome is unknown. Here, we calculate the ∆Lk restrained by over 4000 nucleosomes in yeast cells. To achieve this, we insert each nucleosome in a circular minichromosome and perform Topo-seq, a high-throughput procedure to inspect the topology of circular DNA libraries in one gel electrophoresis. We show that nucleosomes inherently restrain distinct ∆Lk values depending on their genomic origin. Nucleosome DNA topologies differ at gene bodies (∆Lk = -1.29), intergenic regions (∆Lk = -1.23), rDNA genes (∆Lk = -1.24) and telomeric regions (∆Lk = -1.07). Nucleosomes near the transcription start and termination sites also exhibit singular DNA topologies. Our findings demonstrate that nucleosome DNA topology is imprinted by its native chromatin context and persists when the nucleosome is relocated.
Collapse
Affiliation(s)
- Joana Segura
- DNA Topology Lab, Molecular Biology Institute of Barcelona (IBMB-CSIC), Barcelona, Spain
- Centro de Biología Molecular Severo Ochoa (CSIC/UAM), Madrid, Spain
| | - Ofelia Díaz-Ingelmo
- DNA Topology Lab, Molecular Biology Institute of Barcelona (IBMB-CSIC), Barcelona, Spain
| | - Belén Martínez-García
- DNA Topology Lab, Molecular Biology Institute of Barcelona (IBMB-CSIC), Barcelona, Spain
| | - Alba Ayats-Fraile
- DNA Topology Lab, Molecular Biology Institute of Barcelona (IBMB-CSIC), Barcelona, Spain
| | | | - Joaquim Roca
- DNA Topology Lab, Molecular Biology Institute of Barcelona (IBMB-CSIC), Barcelona, Spain.
| |
Collapse
|
47
|
Moyung K, Li Y, Hartemink AJ, MacAlpine DM. Genome-wide nucleosome and transcription factor responses to genetic perturbations reveal chromatin-mediated mechanisms of transcriptional regulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.24.595391. [PMID: 38826400 PMCID: PMC11142231 DOI: 10.1101/2024.05.24.595391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Epigenetic mechanisms contribute to gene regulation by altering chromatin accessibility through changes in transcription factor (TF) and nucleosome occupancy throughout the genome. Despite numerous studies focusing on changes in gene expression, the intricate chromatin-mediated regulatory code remains largely unexplored on a comprehensive scale. We address this by employing a factor-agnostic, reverse-genetics approach that uses MNase-seq to capture genome-wide TF and nucleosome occupancies in response to the individual deletion of 201 transcriptional regulators in Saccharomyces cerevisiae, thereby assaying nearly one million mutant-gene interactions. We develop a principled approach to identify and quantify chromatin changes genome-wide, observing differences in TF and nucleosome occupancy that recapitulate well-established pathways identified by gene expression data. We also discover distinct chromatin signatures associated with the up- and downregulation of genes, and use these signatures to reveal regulatory mechanisms previously unexplored in expression-based studies. Finally, we demonstrate that chromatin features are predictive of transcriptional activity and leverage these features to reconstruct chromatin-based transcriptional regulatory networks. Overall, these results illustrate the power of an approach combining genetic perturbation with high-resolution epigenomic profiling; the latter enables a close examination of the interplay between TFs and nucleosomes genome-wide, providing a deeper, more mechanistic understanding of the complex relationship between chromatin organization and transcription.
Collapse
Affiliation(s)
- Kevin Moyung
- Program in Computational Biology and Bioinformatics, Duke University, Durham, NC 27708
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710
| | - Yulong Li
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710
- Department of Computer Science, Duke University, Durham, NC 27708
| | - Alexander J. Hartemink
- Program in Computational Biology and Bioinformatics, Duke University, Durham, NC 27708
- Department of Computer Science, Duke University, Durham, NC 27708
| | - David M. MacAlpine
- Program in Computational Biology and Bioinformatics, Duke University, Durham, NC 27708
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
48
|
McDonald A, Murre C, Sedat J. Helical Coiled Nucleosome Chromosome Architectures during Cell Cycle Progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.25.595892. [PMID: 38826250 PMCID: PMC11142257 DOI: 10.1101/2024.05.25.595892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Recent studies showed an interphase chromosome architecture, --- a specific coiled nucleosome structure, --- derived from cryo-preserved EM tomograms, and dispersed throughout the nucleus. The images were computationally processed to fill in the missing wedges of data caused by incomplete tomographic tilts. The resulting structures increased z-resolution enabling an extension of the proposed architecture to that of mitotic chromosomes. Here we provide additional insights and details into the coiled nucleosome chromosome architectures. We build on the defined chromosomes time-dependent structures in an effort to probe their dynamics. Variants of the coiled chromosome structures, possibly further defining specific regions, are discussed. We propose, based on generalized specific uncoiling of mitotic chromosomes in telophase, large-scale re-organization of interphase chromosomes. Chromosome territories, organized as micron-sized small patches, are constructed, satisfying complex volume considerations. Finally, we unveiled the structures of replicated coiled chromosomes, still attached to centromeres, as part of chromosome architecture. Significance Statement This study places all 46 sequenced human chromosomes, --- correctly filled with nucleosomes and in micron sized chromosome territories - into 10micron (average sized) nuclei. The chromosome architecture used a helical nucleosome coiled structure discerned from cryo-EM tomography, as was recently published ( https://doi.org/10.1073/pnas.2119101119 ). This chromosome architecture was further modeled to dynamic structures, structure variations and chromosome replication centromere complications. Finally, this chromosome architecture was modified to allow seamless transition through the cell cycle.
Collapse
|
49
|
Obermeyer S, Kapoor H, Markusch H, Grasser KD. Transcript elongation by RNA polymerase II in plants: factors, regulation and impact on gene expression. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:645-656. [PMID: 36703573 DOI: 10.1111/tpj.16115] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Transcriptional elongation by RNA polymerase II (RNAPII) through chromatin is a dynamic and highly regulated step of eukaryotic gene expression. A combination of transcript elongation factors (TEFs) including modulators of RNAPII activity and histone chaperones facilitate efficient transcription on nucleosomal templates. Biochemical and genetic analyses, primarily performed in Arabidopsis, provided insight into the contribution of TEFs to establish gene expression patterns during plant growth and development. In addition to summarising the role of TEFs in plant gene expression, we emphasise in our review recent advances in the field. Thus, mechanisms are presented how aberrant intragenic transcript initiation is suppressed by repressing transcriptional start sites within coding sequences. We also discuss how transcriptional interference of ongoing transcription with neighbouring genes is prevented. Moreover, it appears that plants make no use of promoter-proximal RNAPII pausing in the way mammals do, but there are nucleosome-defined mechanism(s) that determine the efficiency of mRNA synthesis by RNAPII. Accordingly, a still growing number of processes related to plant growth, development and responses to changing environmental conditions prove to be regulated at the level of transcriptional elongation.
Collapse
Affiliation(s)
- Simon Obermeyer
- Cell Biology and Plant Biochemistry, Biochemistry Centre, University of Regensburg, Universitätsstr. 31, D-93053, Regensburg, Germany
| | - Henna Kapoor
- Cell Biology and Plant Biochemistry, Biochemistry Centre, University of Regensburg, Universitätsstr. 31, D-93053, Regensburg, Germany
| | - Hanna Markusch
- Cell Biology and Plant Biochemistry, Biochemistry Centre, University of Regensburg, Universitätsstr. 31, D-93053, Regensburg, Germany
| | - Klaus D Grasser
- Cell Biology and Plant Biochemistry, Biochemistry Centre, University of Regensburg, Universitätsstr. 31, D-93053, Regensburg, Germany
| |
Collapse
|
50
|
Carnie CJ, Acampora AC, Bader AS, Erdenebat C, Zhao S, Bitensky E, van den Heuvel D, Parnas A, Gupta V, D'Alessandro G, Sczaniecka-Clift M, Weickert P, Aygenli F, Götz MJ, Cordes J, Esain-Garcia I, Melidis L, Wondergem AP, Lam S, Robles MS, Balasubramanian S, Adar S, Luijsterburg MS, Jackson SP, Stingele J. Transcription-coupled repair of DNA-protein cross-links depends on CSA and CSB. Nat Cell Biol 2024; 26:797-810. [PMID: 38600235 PMCID: PMC11098753 DOI: 10.1038/s41556-024-01391-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 02/29/2024] [Indexed: 04/12/2024]
Abstract
Covalent DNA-protein cross-links (DPCs) are toxic DNA lesions that block replication and require repair by multiple pathways. Whether transcription blockage contributes to the toxicity of DPCs and how cells respond when RNA polymerases stall at DPCs is unknown. Here we find that DPC formation arrests transcription and induces ubiquitylation and degradation of RNA polymerase II. Using genetic screens and a method for the genome-wide mapping of DNA-protein adducts, DPC sequencing, we discover that Cockayne syndrome (CS) proteins CSB and CSA provide resistance to DPC-inducing agents by promoting DPC repair in actively transcribed genes. Consequently, CSB- or CSA-deficient cells fail to efficiently restart transcription after induction of DPCs. In contrast, nucleotide excision repair factors that act downstream of CSB and CSA at ultraviolet light-induced DNA lesions are dispensable. Our study describes a transcription-coupled DPC repair pathway and suggests that defects in this pathway may contribute to the unique neurological features of CS.
Collapse
Affiliation(s)
- Christopher J Carnie
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK.
| | - Aleida C Acampora
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Aldo S Bader
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Chimeg Erdenebat
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Shubo Zhao
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Elnatan Bitensky
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research Israel-Canada, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Diana van den Heuvel
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Avital Parnas
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research Israel-Canada, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Vipul Gupta
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Giuseppina D'Alessandro
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | - Pedro Weickert
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Fatih Aygenli
- Institute of Medical Psychology and Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Maximilian J Götz
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Jacqueline Cordes
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Isabel Esain-Garcia
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Larry Melidis
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Annelotte P Wondergem
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Simon Lam
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Maria S Robles
- Institute of Medical Psychology and Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Shankar Balasubramanian
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Sheera Adar
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research Israel-Canada, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Stephen P Jackson
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK.
| | - Julian Stingele
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|