1
|
Yang X, Gao S. Competitive rDNA binding by dCas9 induces outside-in disassembly of the nucleolus. Biochem Biophys Res Commun 2025; 766:151883. [PMID: 40286769 DOI: 10.1016/j.bbrc.2025.151883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
The inside-out assembly and outside-in disassembly of the nucleolus are well-accepted models, yet direct in-cell evidence remains elusive. Here, we employed a dCas9-based competitive binding system to specifically target the rDNA promoter within the nucleolus, effectively inhibiting rDNA transcription. This transcriptional blockade induced a stepwise, outside-in disassembly of the nucleolus. NPM1 was the first to disappear from the nucleolus, followed by a progressive reduction in the fluorescence intensities of FBL and UBF. Additionally, UBF relocated from the nucleolar core to the periphery. These findings provide the first direct evidence in cells supporting the outside-in disassembly of the nucleolus. Furthermore, our results suggest that the dynamic inside-out assembly and outside-in disassembly of the nucleolus.
Collapse
Affiliation(s)
- Xiaohui Yang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230000, China; Chinese Academy of Sciences (CAS) Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China; Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing, 210096, China
| | - Shan Gao
- Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing, 210096, China.
| |
Collapse
|
2
|
Veiko NN, Ershova ES, Kondratyeva EI, Porokhovnik LN, Zinchenko RA, Melyanovskaya YL, Krasovskiy SA, Vasilyeva TP, Kostyuk GP, Zakharova NV, Kostyuk SV. Copy Number Variations of Human Ribosomal Genes in Health and Disease: Role and Causes. FRONT BIOSCI-LANDMRK 2025; 30:25765. [PMID: 40018927 DOI: 10.31083/fbl25765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/10/2024] [Accepted: 11/18/2024] [Indexed: 03/01/2025]
Abstract
BACKGROUND A number of association studies have linked ribosomal DNA gene copy number (rDNA CN) to aging and pathology. Data from these studies are contradictory and depend on the quantitative method. METHODS The hybridization technique was used for rDNA quantification in human cells. We determined the rDNA CN from healthy controls (HCs) and patients with schizophrenia (SZ) or cystic fibrosis (CF) (total number of subjects N = 1124). For the first time, rDNA CN was quantified in 105 long livers (90-101 years old). In addition, we conducted a joint analysis of the data obtained in this work and previously published by our group (total, N = 3264). RESULTS We found increased rDNA CN in the SZ group (534 ± 108, N = 1489) and CF group (567 ± 100, N = 322) and reduced rDNA CN in patients with mild cognitive impairment (330 ± 60, N = 93) compared with the HC group (422 ± 104, N = 1360). For the SZ, CF, and HC groups, there was a decreased range of rDNA CN variation in older age subgroups compared to child subgroups. For 311 patients with SZ or CF, rDNA CN was determined two or three times, with an interval of months to several years. Only 1.2% of patients demonstrated a decrease in rDNA CN over time. We did not find significant rDNA CN variation in eight different organs of the same patient or in cells of the same fibroblast population. CONCLUSIONS The results suggest that rDNA CN is a relatively stable quantitative genetic trait statistically associated with some diseases, which however, can change in rare cases under conditions of chronic oxidative stress. We believe that age- and disease-related differences between the groups in mean rDNA CN and its variance are caused by the biased elimination of carriers of marginal (predominantly low) rDNA CN values.
Collapse
Affiliation(s)
- Natalia N Veiko
- Laboratory of Molecular Biology, Research Centre of Medical Genetics, 115478 Moscow, Russia
| | - Elizaveta S Ershova
- Laboratory of Molecular Biology, Research Centre of Medical Genetics, 115478 Moscow, Russia
| | - Elena I Kondratyeva
- Laboratory of Molecular Biology, Research Centre of Medical Genetics, 115478 Moscow, Russia
| | - Lev N Porokhovnik
- Laboratory of Molecular Biology, Research Centre of Medical Genetics, 115478 Moscow, Russia
| | - Rena A Zinchenko
- Laboratory of Molecular Biology, Research Centre of Medical Genetics, 115478 Moscow, Russia
| | - Yuliya L Melyanovskaya
- Laboratory of Molecular Biology, Research Centre of Medical Genetics, 115478 Moscow, Russia
| | - Stanislav A Krasovskiy
- Laboratory of Molecular Biology, Research Centre of Medical Genetics, 115478 Moscow, Russia
| | - Tatiana P Vasilyeva
- Department of Public Health, National Research Institute of Public Health n.a. N.А. Semashko, 105064 Moscow, Russia
| | - George P Kostyuk
- Research Department, N. A. Alexeev Clinical Psychiatric Hospital №1, 115447 Moscow, Russia
| | - Natalia V Zakharova
- Research Department, N. A. Alexeev Clinical Psychiatric Hospital №1, 115447 Moscow, Russia
| | - Svetlana V Kostyuk
- Laboratory of Molecular Biology, Research Centre of Medical Genetics, 115478 Moscow, Russia
| |
Collapse
|
3
|
Li HY, Wang M, Jiang X, Jing Y, Wu Z, He Y, Yan K, Sun S, Ma S, Ji Z, Wang S, Belmonte JC, Qu J, Zhang W, Wei T, Liu GH. CRISPR screening uncovers nucleolar RPL22 as a heterochromatin destabilizer and senescence driver. Nucleic Acids Res 2024; 52:11481-11499. [PMID: 39258545 PMCID: PMC11514463 DOI: 10.1093/nar/gkae740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 08/02/2024] [Accepted: 08/16/2024] [Indexed: 09/12/2024] Open
Abstract
Dysfunction of the ribosome manifests during cellular senescence and contributes to tissue aging, functional decline, and development of aging-related disorders in ways that have remained enigmatic. Here, we conducted a comprehensive CRISPR-based loss-of-function (LOF) screen of ribosome-associated genes (RAGs) in human mesenchymal progenitor cells (hMPCs). Through this approach, we identified ribosomal protein L22 (RPL22) as the foremost RAG whose deficiency mitigates the effects of cellular senescence. Consequently, absence of RPL22 delays hMPCs from becoming senescent, while an excess of RPL22 accelerates the senescence process. Mechanistically, we found in senescent hMPCs, RPL22 accumulates within the nucleolus. This accumulation triggers a cascade of events, including heterochromatin decompaction with concomitant degradation of key heterochromatin proteins, specifically heterochromatin protein 1γ (HP1γ) and heterochromatin protein KRAB-associated protein 1 (KAP1). Subsequently, RPL22-dependent breakdown of heterochromatin stimulates the transcription of ribosomal RNAs (rRNAs), triggering cellular senescence. In summary, our findings unveil a novel role for nucleolar RPL22 as a destabilizer of heterochromatin and a driver of cellular senescence, shedding new light on the intricate mechanisms underlying the aging process.
Collapse
Affiliation(s)
- Hong-Yu Li
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Division of Life Sciences and Medicine, School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Xiaoyu Jiang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Yaobin Jing
- International center for Aging and Cancer, Hainan Academy of Medical Sciences, Hainan Medical University, Haikou 571199, China
| | - Zeming Wu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Yifang He
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Kaowen Yan
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Shuhui Sun
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Shuai Ma
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Aging Biomarker Consortium, Beijing 100101, China
| | - Zhejun Ji
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, China
- Aging Translational Medicine Center, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, China
- Aging Biomarker Consortium, Beijing 100101, China
| | | | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Aging Biomarker Consortium, Beijing 100101, China
| | - Weiqi Zhang
- CAS key laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Aging Biomarker Consortium, Beijing 100101, China
| | - Taotao Wei
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- International center for Aging and Cancer, Hainan Academy of Medical Sciences, Hainan Medical University, Haikou 571199, China
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, China
- Aging Translational Medicine Center, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, China
- Aging Biomarker Consortium, Beijing 100101, China
| |
Collapse
|
4
|
Mirza Z, Karim S. Unraveling the Mystery of Energy-Sensing Enzymes and Signaling Pathways in Tumorigenesis and Their Potential as Therapeutic Targets for Cancer. Cells 2024; 13:1474. [PMID: 39273044 PMCID: PMC11394487 DOI: 10.3390/cells13171474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/27/2024] [Accepted: 07/30/2024] [Indexed: 09/15/2024] Open
Abstract
Cancer research has advanced tremendously with the identification of causative genes, proteins, and signaling pathways. Numerous antitumor drugs have been designed and screened for cancer therapeutics; however, designing target-specific drugs for malignant cells with minimal side effects is challenging. Recently, energy-sensing- and homeostasis-associated molecules and signaling pathways playing a role in proliferation, apoptosis, autophagy, and angiogenesis have received increasing attention. Energy-metabolism-based studies have shown the contribution of energetics to cancer development, where tumor cells show increased glycolytic activity and decreased oxidative phosphorylation (the Warburg effect) in order to obtain the required additional energy for rapid division. The role of energy homeostasis in the survival of normal as well as malignant cells is critical; therefore, fuel intake and expenditure must be balanced within acceptable limits. Thus, energy-sensing enzymes detecting the disruption of glycolysis, AMP, ATP, or GTP levels are promising anticancer therapeutic targets. Here, we review the common energy mediators and energy sensors and their metabolic properties, mechanisms, and associated signaling pathways involved in carcinogenesis, and explore the possibility of identifying drugs for inhibiting the energy metabolism of tumor cells. Furthermore, to corroborate our hypothesis, we performed meta-analysis based on transcriptomic profiling to search for energy-associated biomarkers and canonical pathways.
Collapse
Affiliation(s)
- Zeenat Mirza
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21587, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21587, Saudi Arabia;
| | - Sajjad Karim
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21587, Saudi Arabia;
- Center of Excellence in Genomic Medicine Research, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21587, Saudi Arabia
| |
Collapse
|
5
|
Federico C, Brancato D, Bruno F, Galvano D, Caruso M, Saccone S. Robertsonian Translocation between Human Chromosomes 21 and 22, Inherited across Three Generations, without Any Phenotypic Effect. Genes (Basel) 2024; 15:722. [PMID: 38927657 PMCID: PMC11202415 DOI: 10.3390/genes15060722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Chromosomal translocations can result in phenotypic effects of varying severity, depending on the position of the breakpoints and the rearrangement of genes within the interphase nucleus of the translocated chromosome regions. Balanced translocations are often asymptomatic phenotypically and are typically detected due to a decrease in fertility resulting from issues during meiosis. Robertsonian translocations are among the most common chromosomal abnormalities, often asymptomatic, and can persist in the population as a normal polymorphism. We serendipitously discovered a Robertsonian translocation between chromosome 21 and chromosome 22, which is inherited across three generations without any phenotypic effect, notably only in females. In situ hybridization with alpha-satellite DNAs revealed the presence of both centromeric sequences in the translocated chromosome. The reciprocal translocation resulted in a partial deletion of the short arm of both chromosomes 21, and 22, with the ribosomal RNA genes remaining present in the middle part of the new metacentric chromosome. The rearrangement did not cause alterations to the long arm. The spread of an asymptomatic heterozygous chromosomal polymorphism in a population can lead to mating between heterozygous individuals, potentially resulting in offspring with a homozygous chromosomal configuration for the anomaly they carry. This new karyotype may not produce phenotypic effects in the individual who presents it. The frequency of karyotypes with chromosomal rearrangements in asymptomatic heterozygous form in human populations is likely underestimated, and molecular karyotype by array Comparative Genomic Hybridization (array-CGH) analysis does not allow for the identification of this type of chromosomal anomaly, making classical cytogenetic analysis the preferred method for obtaining clear results on a karyotype carrying a balanced rearrangement.
Collapse
Affiliation(s)
- Concetta Federico
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy; (C.F.); (D.B.); (F.B.)
| | - Desiree Brancato
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy; (C.F.); (D.B.); (F.B.)
| | - Francesca Bruno
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy; (C.F.); (D.B.); (F.B.)
| | - Daiana Galvano
- Cytogenetic Laboratory, A.O.U. Policlinico Vittorio Emanuele, 95124 Catania, Italy; (D.G.); (M.C.)
| | - Mariella Caruso
- Cytogenetic Laboratory, A.O.U. Policlinico Vittorio Emanuele, 95124 Catania, Italy; (D.G.); (M.C.)
| | - Salvatore Saccone
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy; (C.F.); (D.B.); (F.B.)
| |
Collapse
|
6
|
Ren Z, Gou R, Zhuo W, Chen Z, Yin X, Cao Y, Wang Y, Mi Y, Liu Y, Wang Y, Fan LM, Deng XW, Qian W. The MBD-ACD DNA methylation reader complex recruits MICRORCHIDIA6 to regulate ribosomal RNA gene expression in Arabidopsis. THE PLANT CELL 2024; 36:1098-1118. [PMID: 38092516 PMCID: PMC10980342 DOI: 10.1093/plcell/koad313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 12/11/2023] [Indexed: 04/01/2024]
Abstract
DNA methylation is an important epigenetic mark implicated in selective rRNA gene expression, but the DNA methylation readers and effectors remain largely unknown. Here, we report a protein complex that reads DNA methylation to regulate variant-specific 45S ribosomal RNA (rRNA) gene expression in Arabidopsis (Arabidopsis thaliana). The complex, consisting of METHYL-CpG-BINDING DOMAIN PROTEIN5 (MBD5), MBD6, ALPHA-CRYSTALLIN DOMAIN PROTEIN15.5 (ACD15.5), and ACD21.4, directly binds to 45S rDNA. While MBD5 and MBD6 function redundantly, ACD15.5 and ACD21.4 are indispensable for variant-specific rRNA gene expression. These 4 proteins undergo phase separation in vitro and in vivo and are interdependent for their phase separation. The α-crystallin domain of ACD15.5 and ACD21.4, which is essential for their function, enables phase separation of the complex, likely by mediating multivalent protein interactions. The effector MICRORCHIDIA6 directly interacts with ACD15.5 and ACD21.4, but not with MBD5 and MBD6, and is recruited to 45S rDNA by the MBD-ACD complex to regulate variant-specific 45S rRNA expression. Our study reveals a pathway in Arabidopsis through which certain 45S rRNA gene variants are silenced, while others are activated.
Collapse
Affiliation(s)
- Zhitong Ren
- National Key Laboratory of Wheat Improvement, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Peking University Institute of advanced Agricultural Sciences, Weifang, Shandong 261325, China
- College of Agronomy, Sichuan Agriculture University, Chengdu 611130, China
- School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Runyu Gou
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Wanqing Zhuo
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Zhiyu Chen
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xiaochang Yin
- National Key Laboratory of Wheat Improvement, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Peking University Institute of advanced Agricultural Sciences, Weifang, Shandong 261325, China
| | - Yuxin Cao
- National Key Laboratory of Wheat Improvement, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Peking University Institute of advanced Agricultural Sciences, Weifang, Shandong 261325, China
| | - Yue Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yingjie Mi
- National Key Laboratory of Wheat Improvement, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Peking University Institute of advanced Agricultural Sciences, Weifang, Shandong 261325, China
| | - Yannan Liu
- School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Yingxiang Wang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
- College of Life Sciences, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Liu-Min Fan
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Xing Wang Deng
- National Key Laboratory of Wheat Improvement, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Peking University Institute of advanced Agricultural Sciences, Weifang, Shandong 261325, China
- School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Weiqiang Qian
- National Key Laboratory of Wheat Improvement, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Peking University Institute of advanced Agricultural Sciences, Weifang, Shandong 261325, China
- School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
7
|
Hao Q, Liu M, Daulatabad SV, Gaffari S, Song YJ, Srivastava R, Bhaskar S, Moitra A, Mangan H, Tseng E, Gilmore RB, Frier SM, Chen X, Wang C, Huang S, Chamberlain S, Jin H, Korlach J, McStay B, Sinha S, Janga SC, Prasanth SG, Prasanth KV. Monoallelically expressed noncoding RNAs form nucleolar territories on NOR-containing chromosomes and regulate rRNA expression. eLife 2024; 13:e80684. [PMID: 38240312 PMCID: PMC10852677 DOI: 10.7554/elife.80684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 01/18/2024] [Indexed: 02/07/2024] Open
Abstract
Out of the several hundred copies of rRNA genes arranged in the nucleolar organizing regions (NOR) of the five human acrocentric chromosomes, ~50% remain transcriptionally inactive. NOR-associated sequences and epigenetic modifications contribute to the differential expression of rRNAs. However, the mechanism(s) controlling the dosage of active versus inactive rRNA genes within each NOR in mammals is yet to be determined. We have discovered a family of ncRNAs, SNULs (Single NUcleolus Localized RNA), which form constrained sub-nucleolar territories on individual NORs and influence rRNA expression. Individual members of the SNULs monoallelically associate with specific NOR-containing chromosomes. SNULs share sequence similarity to pre-rRNA and localize in the sub-nucleolar compartment with pre-rRNA. Finally, SNULs control rRNA expression by influencing pre-rRNA sorting to the DFC compartment and pre-rRNA processing. Our study discovered a novel class of ncRNAs influencing rRNA expression by forming constrained nucleolar territories on individual NORs.
Collapse
Affiliation(s)
- Qinyu Hao
- Department of Cell and Developmental Biology, University of Illinois at Urbana-ChampaignUrbanaUnited States
| | - Minxue Liu
- Department of Cell and Developmental Biology, University of Illinois at Urbana-ChampaignUrbanaUnited States
| | - Swapna Vidhur Daulatabad
- Department of BioHealth Informatics, School of Informatics and Computing, IUPUIIndianapolisUnited States
| | - Saba Gaffari
- Department of Computer Science, University of Illinois at Urbana-ChampaignUrbanaUnited States
| | - You Jin Song
- Department of Cell and Developmental Biology, University of Illinois at Urbana-ChampaignUrbanaUnited States
| | - Rajneesh Srivastava
- Department of BioHealth Informatics, School of Informatics and Computing, IUPUIIndianapolisUnited States
| | - Shivang Bhaskar
- Department of Cell and Developmental Biology, University of Illinois at Urbana-ChampaignUrbanaUnited States
| | - Anurupa Moitra
- Department of Cell and Developmental Biology, University of Illinois at Urbana-ChampaignUrbanaUnited States
| | - Hazel Mangan
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland GalwayGalwayIreland
| | | | - Rachel B Gilmore
- Department of Genetics and Genome Sciences, University of Connecticut School of MedicineFarmingtonUnited States
| | | | - Xin Chen
- Department of Biophysics and Quantitative Biology, University of Illinois at Urbana-ChampaignUrbanaUnited States
| | - Chengliang Wang
- Department of Biochemistry, University of Illinois at Urbana-ChampaignUrbanaUnited States
| | - Sui Huang
- Department of Cell and Molecular Biology, Northwestern UniversityChicagoUnited States
| | - Stormy Chamberlain
- Department of Genetics and Genome Sciences, University of Connecticut School of MedicineFarmingtonUnited States
| | - Hong Jin
- Department of Biophysics and Quantitative Biology, University of Illinois at Urbana-ChampaignUrbanaUnited States
- Department of Biochemistry, University of Illinois at Urbana-ChampaignUrbanaUnited States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-ChampaignUrbanaUnited States
| | | | - Brian McStay
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland GalwayGalwayIreland
| | - Saurabh Sinha
- Department of Computer Science, University of Illinois at Urbana-ChampaignUrbanaUnited States
- Department of Biomedical Engineering, Georgia TechAtlantaUnited States
| | - Sarath Chandra Janga
- Department of BioHealth Informatics, School of Informatics and Computing, IUPUIIndianapolisUnited States
| | - Supriya G Prasanth
- Department of Cell and Developmental Biology, University of Illinois at Urbana-ChampaignUrbanaUnited States
- Cancer Center at Illinois, University of Illinois at Urbana-ChampaignUrbanaUnited States
| | - Kannanganattu V Prasanth
- Department of Cell and Developmental Biology, University of Illinois at Urbana-ChampaignUrbanaUnited States
- Cancer Center at Illinois, University of Illinois at Urbana-ChampaignUrbanaUnited States
| |
Collapse
|
8
|
Priyadarshini N, Venkatarama Puppala N, Jayaprakash JP, Khandelia P, Sharma V, Mohannath G. Downregulation of ribosomal RNA (rRNA) genes in human head and neck squamous cell carcinoma (HNSCC) cells correlates with rDNA promoter hypermethylation. Gene 2023; 888:147793. [PMID: 37696422 DOI: 10.1016/j.gene.2023.147793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/31/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
Eukaryotes carry hundreds of ribosomal RNA (rRNA) genes as tandem arrays, which generate rRNA for protein synthesis. Humans carry ∼ 400 rRNA gene copies and their expression is epigenetically regulated. Dysregulation of rRNA synthesis and ribosome biogenesis are characteristic features of cancers. Targeting aberrant rRNA expression for cancer therapy is being explored. Head and neck squamous cell carcinoma (HNSCC) is among the most prevalent cancers globally. Using quantitative PCR and bisulfite sequencing, we show that rRNA genes are downregulated and their promoters are hypermethylated in HNSCC cell lines. These findings may have relevance for prognosis and diagnosis of HNSCC.
Collapse
Affiliation(s)
- Neha Priyadarshini
- Department of Biological Sciences, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Hyderabad, Telangana, India.
| | - Navinchandra Venkatarama Puppala
- Department of Biological Sciences, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Hyderabad, Telangana, India.
| | - Jayasree Peroth Jayaprakash
- Department of Biological Sciences, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Hyderabad, Telangana, India.
| | - Piyush Khandelia
- Department of Biological Sciences, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Hyderabad, Telangana, India.
| | - Vivek Sharma
- Department of Biological Sciences, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Hyderabad, Telangana, India.
| | - Gireesha Mohannath
- Department of Biological Sciences, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Hyderabad, Telangana, India.
| |
Collapse
|
9
|
Sasaki M, Kobayashi T. Regulatory processes that maintain or alter ribosomal DNA stability during the repair of programmed DNA double-strand breaks. Genes Genet Syst 2023; 98:103-119. [PMID: 35922917 DOI: 10.1266/ggs.22-00046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Organisms have evolved elaborate mechanisms that maintain genome stability. Deficiencies in these mechanisms result in changes to the nucleotide sequence as well as copy number and structural variations in the genome. Genome instability has been implicated in numerous human diseases. However, genomic alterations can also be beneficial as they are an essential part of the evolutionary process. Organisms sometimes program genomic changes that drive genetic and phenotypic diversity. Therefore, genome alterations can have both positive and negative impacts on cellular growth and functions, which underscores the need to control the processes that restrict or induce such changes to the genome. The ribosomal RNA gene (rDNA) is highly abundant in eukaryotic genomes, forming a cluster where numerous rDNA copies are tandemly arrayed. Budding yeast can alter the stability of its rDNA cluster by changing the rDNA copy number within the cluster or by producing extrachromosomal rDNA circles. Here, we review the mechanisms that regulate the stability of the budding yeast rDNA cluster during repair of DNA double-strand breaks that are formed in response to programmed DNA replication fork arrest.
Collapse
Affiliation(s)
- Mariko Sasaki
- Laboratory of Genome Regeneration, Institute for Quantitative Biosciences (IQB), The University of Tokyo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo
| | - Takehiko Kobayashi
- Laboratory of Genome Regeneration, Institute for Quantitative Biosciences (IQB), The University of Tokyo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo
| |
Collapse
|
10
|
Yang DL, Huang K, Deng D, Zeng Y, Wang Z, Zhang Y. DNA-dependent RNA polymerases in plants. THE PLANT CELL 2023; 35:3641-3661. [PMID: 37453082 PMCID: PMC10533338 DOI: 10.1093/plcell/koad195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 06/09/2023] [Accepted: 05/29/2023] [Indexed: 07/18/2023]
Abstract
DNA-dependent RNA polymerases (Pols) transfer the genetic information stored in genomic DNA to RNA in all organisms. In eukaryotes, the typical products of nuclear Pol I, Pol II, and Pol III are ribosomal RNAs, mRNAs, and transfer RNAs, respectively. Intriguingly, plants possess two additional Pols, Pol IV and Pol V, which produce small RNAs and long noncoding RNAs, respectively, mainly for silencing transposable elements. The five plant Pols share some subunits, but their distinct functions stem from unique subunits that interact with specific regulatory factors in their transcription cycles. Here, we summarize recent advances in our understanding of plant nucleus-localized Pols, including their evolution, function, structures, and transcription cycles.
Collapse
Affiliation(s)
- Dong-Lei Yang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Kun Huang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Deyin Deng
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Lin’an, Hangzhou 311300, China
| | - Yuan Zeng
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhenxing Wang
- College of Horticulture, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Zhang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
11
|
Mahelka V, Kopecký D, Majka J, Krak K. Uniparental expression of ribosomal RNA in × Festulolium grasses: a link between the genome and nucleolar dominance. FRONTIERS IN PLANT SCIENCE 2023; 14:1276252. [PMID: 37790792 PMCID: PMC10544908 DOI: 10.3389/fpls.2023.1276252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 08/30/2023] [Indexed: 10/05/2023]
Abstract
Genome or genomic dominance (GD) is a phenomenon observed in hybrids when one parental genome becomes dominant over the other. It is manifested by the replacement of chromatin of the submissive genome by that of the dominant genome and by biased gene expression. Nucleolar dominance (ND) - the functional expression of only one parental set of ribosomal genes in hybrids - is another example of an intragenomic competitive process which, however, concerns ribosomal DNA only. Although GD and ND are relatively well understood, the nature and extent of their potential interdependence is mostly unknown. Here, we ask whether hybrids showing GD also exhibit ND and, if so, whether the dominant genome is the same. To test this, we used hybrids between Festuca and Lolium grasses (Festulolium), and between two Festuca species in which GD has been observed (with Lolium as the dominant genome in Festulolium and F. pratensis in interspecific Festuca hybrids). Using amplicon sequencing of ITS1 and ITS2 of the 45S ribosomal DNA (rDNA) cluster and molecular cytogenetics, we studied the organization and expression of rDNA in leaf tissue in five hybrid combinations, four generations and 31 genotypes [F. pratensis × L. multiflorum (F1, F2, F3, BC1), L. multiflorum × F. pratensis (F1), L. multiflorum × F. glaucescens (F2), L. perenne × F. pratensis (F1), F. glaucescens × F. pratensis (F1)]. We have found that instant ND occurs in Festulolium, where expression of Lolium-type rDNA reached nearly 100% in all F1 hybrids and was maintained through subsequent generations. Therefore, ND and GD in Festulolium are manifested by the same dominant genome (Lolium). We also confirmed the concordance between GD and ND in an interspecific cross between two Festuca species.
Collapse
Affiliation(s)
- Václav Mahelka
- Czech Academy of Sciences, Institute of Botany, Průhonice, Czechia
| | - David Kopecký
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Olomouc, Czechia
| | - Joanna Majka
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Olomouc, Czechia
| | - Karol Krak
- Czech Academy of Sciences, Institute of Botany, Průhonice, Czechia
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| |
Collapse
|
12
|
Pikaard CS, Chandrasekhara C, McKinlay A, Enganti R, Fultz D. Reaching for the off switch in nucleolar dominance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:1185-1192. [PMID: 37228042 PMCID: PMC10524600 DOI: 10.1111/tpj.16318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/18/2023] [Accepted: 05/23/2023] [Indexed: 05/27/2023]
Abstract
Nucleolus organizer regions (NORs) are eukaryotic chromosomal loci where ribosomal RNA (rRNA) genes are clustered, typically in hundreds to thousands of copies. Transcription of these rRNA genes by RNA polymerase I and processing of their transcripts results in the formation of the nucleolus, the sub-nuclear domain in which ribosomes are assembled. Approximately 90 years ago, cytogenetic observations revealed that NORs inherited from the different parents of an interspecific hybrid sometimes differ in morphology at metaphase. Fifty years ago, those chromosomal differences were found to correlate with differences in rRNA gene transcription and the phenomenon became known as nucleolar dominance. Studies of the past 30 years have revealed that nucleolar dominance results from selective rRNA gene silencing, involving repressive chromatin modifications, and occurs in pure species as well as hybrids. Recent evidence also indicates that silencing depends on the NOR in which an rRNA gene is located, and not on the gene's sequence. In this perspective, we discuss how our thinking about nucleolar dominance has shifted over time from the kilobase scale of individual genes to the megabase scale of NORs and chromosomes and questions that remain unanswered in the search for a genetic and biochemical understanding of the off switch.
Collapse
Affiliation(s)
- Craig S Pikaard
- Department of Biology, Indiana University, Bloomington, Indiana, USA
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana, USA
- Howard Hughes Medical Institute, Indiana University, Bloomington, Indiana, USA
| | - Chinmayi Chandrasekhara
- Department of Biology, Indiana University, Bloomington, Indiana, USA
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana, USA
| | - Anastasia McKinlay
- Department of Biology, Indiana University, Bloomington, Indiana, USA
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana, USA
- Howard Hughes Medical Institute, Indiana University, Bloomington, Indiana, USA
| | - Ramya Enganti
- Department of Biology, Indiana University, Bloomington, Indiana, USA
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana, USA
- Howard Hughes Medical Institute, Indiana University, Bloomington, Indiana, USA
| | - Dalen Fultz
- Department of Biology, Indiana University, Bloomington, Indiana, USA
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana, USA
- Howard Hughes Medical Institute, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
13
|
Borowska-Zuchowska N, Mykhailyk S, Robaszkiewicz E, Matysiak N, Mielanczyk L, Wojnicz R, Kovarik A, Hasterok R. Switch them off or not: selective rRNA gene repression in grasses. TRENDS IN PLANT SCIENCE 2023; 28:661-672. [PMID: 36764871 DOI: 10.1016/j.tplants.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/31/2022] [Accepted: 01/11/2023] [Indexed: 05/13/2023]
Abstract
Nucleolar dominance (ND) is selective epigenetic silencing of 35-48S rDNA loci. In allopolyploids, it is frequently manifested at the cytogenetic level by the inactivation of nucleolar organiser region(s) (NORs) inherited from one or several evolutionary ancestors. Grasses are ecologically and economically one of the most important land plant groups, which have frequently evolved through hybridisation and polyploidisation events. Here we review common and unique features of ND phenomena in this monocot family from cytogenetic, molecular, and genomic perspectives. We highlight recent advances achieved by using an allotetraploid model grass, Brachypodium hybridum, where ND commonly occurs at a population level, and we cover modern genomic approaches that decipher structural features of core arrays of NORs.
Collapse
Affiliation(s)
- Natalia Borowska-Zuchowska
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice 40-032, Poland.
| | - Serhii Mykhailyk
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice 40-032, Poland
| | - Ewa Robaszkiewicz
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice 40-032, Poland
| | - Natalia Matysiak
- Department of Histology and Cell Pathology, the Medical University of Silesia in Katowice, School of Medicine with the Division of Dentistry, Zabrze, Poland
| | - Lukasz Mielanczyk
- Department of Histology and Cell Pathology, the Medical University of Silesia in Katowice, School of Medicine with the Division of Dentistry, Zabrze, Poland; Silesian Nanomicroscopy Centre in Zabrze, Silesia LabMed - Research and Implementation Centre, Medical University of Silesia, Katowice, Poland
| | - Romuald Wojnicz
- Department of Histology and Cell Pathology, the Medical University of Silesia in Katowice, School of Medicine with the Division of Dentistry, Zabrze, Poland; Silesian Nanomicroscopy Centre in Zabrze, Silesia LabMed - Research and Implementation Centre, Medical University of Silesia, Katowice, Poland
| | - Ales Kovarik
- Department of Molecular Epigenetics, Institute of Biophysics, Czech Academy of Sciences, CZ-61200 Brno, Czech Republic
| | - Robert Hasterok
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice 40-032, Poland.
| |
Collapse
|
14
|
Lezhava T, Khavinson V, Jokhadze T, Buadze T, Monaselidze J, Sigua T, Gaiozishvili M, Tsuleiskiri T. Epigenetic Activation of Ribosomal Cystrons in Chromatids of Acrocentric Chromosome 15th in Ductal Breast Cancer. Int J Pept Res Ther 2023. [DOI: 10.1007/s10989-023-10489-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
15
|
Regulation of ribosomal RNA gene copy number, transcription and nucleolus organization in eukaryotes. Nat Rev Mol Cell Biol 2023; 24:414-429. [PMID: 36732602 DOI: 10.1038/s41580-022-00573-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2022] [Indexed: 02/04/2023]
Abstract
One of the first biological machineries to be created seems to have been the ribosome. Since then, organisms have dedicated great efforts to optimize this apparatus. The ribosomal RNA (rRNA) contained within ribosomes is crucial for protein synthesis and maintenance of cellular function in all known organisms. In eukaryotic cells, rRNA is produced from ribosomal DNA clusters of tandem rRNA genes, whose organization in the nucleolus, maintenance and transcription are strictly regulated to satisfy the substantial demand for rRNA required for ribosome biogenesis. Recent studies have elucidated mechanisms underlying the integrity of ribosomal DNA and regulation of its transcription, including epigenetic mechanisms and a unique recombination and copy-number control system to stably maintain high rRNA gene copy number. In this Review, we disucss how the crucial maintenance of rRNA gene copy number through control of gene amplification and of rRNA production by RNA polymerase I are orchestrated. We also discuss how liquid-liquid phase separation controls the architecture and function of the nucleolus and the relationship between rRNA production, cell senescence and disease.
Collapse
|
16
|
Ziętara P, Dziewięcka M, Augustyniak M. Why Is Longevity Still a Scientific Mystery? Sirtuins-Past, Present and Future. Int J Mol Sci 2022; 24:728. [PMID: 36614171 PMCID: PMC9821238 DOI: 10.3390/ijms24010728] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
The sirtuin system consists of seven highly conserved regulatory enzymes responsible for metabolism, antioxidant protection, and cell cycle regulation. The great interest in sirtuins is associated with the potential impact on life extension. This article summarizes the latest research on the activity of sirtuins and their role in the aging process. The effects of compounds that modulate the activity of sirtuins were discussed, and in numerous studies, their effectiveness was demonstrated. Attention was paid to the role of a caloric restriction and the risks associated with the influence of careless sirtuin modulation on the organism. It has been shown that low modulators' bioavailability/retention time is a crucial problem for optimal regulation of the studied pathways. Therefore, a detailed understanding of the modulator structure and potential reactivity with sirtuins in silico studies should precede in vitro and in vivo experiments. The latest achievements in nanobiotechnology make it possible to create promising molecules, but many of them remain in the sphere of plans and concepts. It seems that solving the mystery of longevity will have to wait for new scientific discoveries.
Collapse
Affiliation(s)
| | | | - Maria Augustyniak
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, ul. Bankowa 9, 40-007 Katowice, Poland
| |
Collapse
|
17
|
Mlinarec J, Boštjančić LL, Malenica N, Jurković A, Boland T, Yakovlev SS, Besendorfer V. Structure and Methylation of 35S rDNA in Allopolyploids Anemone multifida (2 n = 4 x = 32, BBDD) and Anemone baldensis (2 n = 6 x = 48, AABBDD) and Their Parental Species Show Evidence of Nucleolar Dominance. FRONTIERS IN PLANT SCIENCE 2022; 13:908218. [PMID: 35874014 PMCID: PMC9296772 DOI: 10.3389/fpls.2022.908218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/07/2022] [Indexed: 05/26/2023]
Abstract
Transcriptional silencing of 35S rDNA loci inherited from one parental species is occurring relatively frequently in allopolyploids. However, molecular mechanisms by which it is selected for transcriptional silencing remain unclear. We applied NGS, silver staining and bisulfite sequencing to study the structure, expression and methylation landscape of 35S rDNA in two allopolyploids of common origin, allotetraploid Anemone multifida (2n = 4x = 32, genome composition BBDD) and allohexaploid A. baldensis (2n = 6x = 48, AABBDD), and their genome donors, A. sylvestris (2n = 16, AA), A. cylindrica (2n = 16, BB) and A. parviflora (2n = 16, DD). The size of the recovered 35S rDNA units varied from 10,489 bp in A. cylindrica to 12,084 bp in A. sylvestris. Anemone showed an organization typical of most ribosomal 35S rDNA composed of NTS, ETS, rRNA genes, TTS and TIS with structural features of plant IGS sequences and all functional elements needed for rRNA gene activity. The NTS was more variable than the ETS and consisted of SRs which are highly variable among Anemone. Five to six CpG-rich islands were found within the ETS. CpG island located adjacent to the transcription initiation site (TIS) was highly variable regarding the sequence size and methylation level and exhibited in most of the species lower levels of methylation than CpG islands located adjacent to the 18S rRNA gene. Our results uncover hypomethylation of A. sylvestris- and A. parviflora-derived 35S rDNA units in allopolyploids A. multifida and A. baldensis. Hypomethylation of A. parviflora-derived 35S rDNA was more prominent in A. baldensis than in A. multifida. We showed that A. baldensis underwent coupled A. sylvestris-derived 35S rDNA array expansion and A. parviflora-derived 35S rDNA copy number decrease that was accompanied by lower methylation level of A. sylvestris-derived 35S rDNA units in comparison to A. parviflora-derived 35S rDNA units. These observations suggest that in A. baldensis nucleolar dominance is directed toward A. sylvestris-derived chromosomes. This work broadens our current knowledge of the 35S rDNA organization in Anemone and provides evidence of the progenitor-specific 35S rDNA methylation in nucleolar dominance.
Collapse
Affiliation(s)
| | - Ljudevit Luka Boštjančić
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberg Biodiversity and Climate Research Centre, Senckenberg Gesellschaft für Naturforschung, Frankfurt, Germany
- Department of Computer Science, ICube, UMR 7357, CNRS, Centre de Recherche en Biomédecine de Strasbourg, University of Strasbourg, Strasbourg, France
| | - Nenad Malenica
- Division of Molecular Biology, Department of Biology, University of Zagreb, Horvatovac, Croatia
| | - Adela Jurković
- Division of Molecular Biology, Department of Biology, University of Zagreb, Horvatovac, Croatia
| | - Todd Boland
- Memorial University of Newfoundland’s Botanical Gardens, St. John’s, NL, Canada
| | - Sonja Siljak Yakovlev
- CNRS, AgroParisTech, Ecologie Systématique Evolution, Université Paris-Saclay, Orsay, France
| | - Višnja Besendorfer
- Division of Molecular Biology, Department of Biology, University of Zagreb, Horvatovac, Croatia
| |
Collapse
|
18
|
Du Y, Qian C. Non‐canonical bivalent H3K4me3K9me3 recognition by Spindlin1/C11orf84 complex. Bioessays 2022; 44:e2100229. [DOI: 10.1002/bies.202100229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Yongming Du
- School of Biomedical Sciences The University of Hong Kong Pok Fu Lam Hong Kong
| | - Chengmin Qian
- School of Biomedical Sciences The University of Hong Kong Pok Fu Lam Hong Kong
| |
Collapse
|
19
|
Celastrol and Melatonin Modify SIRT1, SIRT6 and SIRT7 Gene Expression and Improve the Response of Human Granulosa-Lutein Cells to Oxidative Stress. Antioxidants (Basel) 2021; 10:antiox10121871. [PMID: 34942974 PMCID: PMC8750604 DOI: 10.3390/antiox10121871] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 11/16/2022] Open
Abstract
An excess of oxidative stress (OS) may affect several physiological processes fundamental to reproduction. SIRT1, SIRT6 and SIRT7 are involved in protection stress systems caused by OS, and they can be activated by antioxidants such as celastrol or melatonin. In this study, we evaluate SIRT1, SIRT6 and SIRT7 gene expression in cultured human granulosa-lutein (hGL) cells in response to OS inductors (glucose or peroxynitrite) and/or antioxidants. Our results show that celastrol and melatonin improve cell survival in the presence and absence of OS inductors. In addition, melatonin induced SIRT1, SIRT6 and SIRT7 gene expression while celastrol only induced SIRT7 gene expression. This response was not altered by the addition of OS inductors. Our previous data for cultured hGL cells showed a dual role of celastrol as a free radical scavenger and as a protective agent by regulating gene expression. This study shows a direct effect of celastrol on SIRT7 gene expression. Melatonin may protect from OS in a receptor-mediated manner rather than as a scavenger. In conclusion, our results show increased hGL cells survival with melatonin or celastrol treatment under OS conditions, probably through the regulation of nuclear sirtuins' gene expression.
Collapse
|
20
|
Sochorová J, Gálvez F, Matyášek R, Garcia S, Kovařík A. Analyses of the Updated "Animal rDNA Loci Database" with an Emphasis on Its New Features. Int J Mol Sci 2021; 22:11403. [PMID: 34768834 PMCID: PMC8584138 DOI: 10.3390/ijms222111403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/17/2021] [Accepted: 10/20/2021] [Indexed: 11/17/2022] Open
Abstract
We report on a major update to the animal rDNA loci database, which now contains cytogenetic information for 45S and 5S rDNA loci in more than 2600 and 1000 species, respectively.The data analyses show the following: (i) A high variability in 5S and 45S loci numbers, with both showing 50-fold or higher variability. However, karyotypes with an extremely high number of loci were rare, and medians generally converged to two 5S sites and two 45S rDNA sites per diploid genome. No relationship was observed between the number of 5S and 45S loci. (ii) The position of 45S rDNA on sex chromosomes was relatively frequent in some groups, particularly in arthropods (14% of karyotypes). Furthermore, 45S rDNA was almost exclusively located in microchromosomes when these were present (in birds and reptiles). (iii) The proportion of active NORs (positively stained with silver staining methods) progressively decreased with an increasing number of 45S rDNA loci, and karyotypes with more than 12 loci showed, on average, less than 40% of active loci. In conclusion, the updated version of the database provides some new insights into the organization of rRNA genes in chromosomes. We expect that its updated content will be useful for taxonomists, comparative cytogeneticists, and evolutionary biologists. .
Collapse
Affiliation(s)
- Jana Sochorová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, 61265 Brno, Czech Republic; (J.S.); (R.M.)
| | - Francisco Gálvez
- Bioscripts—Centro de Investigación y Desarrollo de Recursos Científicos, 41012 Sevilla, Spain;
| | - Roman Matyášek
- Institute of Biophysics, Academy of Sciences of the Czech Republic, 61265 Brno, Czech Republic; (J.S.); (R.M.)
| | - Sònia Garcia
- Institut Botànic de Barcelona (IBB-CSIC), Passeig del Migdia s/n, 08038 Barcelona, Spain;
| | - Aleš Kovařík
- Institute of Biophysics, Academy of Sciences of the Czech Republic, 61265 Brno, Czech Republic; (J.S.); (R.M.)
| |
Collapse
|
21
|
Haas AN, Furlaneto F, Gaio EJ, Gomes SC, Palioto DB, Castilho RM, Sanz M, Messora MR. New tendencies in non-surgical periodontal therapy. Braz Oral Res 2021; 35:e095. [PMID: 34586209 DOI: 10.1590/1807-3107bor-2021.vol35.0095] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 03/31/2021] [Indexed: 12/11/2022] Open
Abstract
The aim of this review was to update the evidence of new approaches to non-surgical therapy (NSPT) in the treatment of periodontitis. Preclinical and clinical studies addressing the benefits of adjunctive antimicrobial photodynamic therapy, probiotics, prebiotics/synbiotics, statins, pro-resolving mediators, omega-6 and -3, ozone, and epigenetic therapy were scrutinized and discussed. Currently, the outcomes of these nine new approaches, when compared with subgingival debridement alone, did not demonstrate a significant added clinical benefit. However, some of these new alternative interventions may have the potential to improve the outcomes of NSPT alone. Future evidence based on randomized controlled clinical trials would help clinicians and patients in the selection of different adjunctive therapies.
Collapse
Affiliation(s)
- Alex Nogueira Haas
- Universidade Federal do Rio Grande do Sul - UFRGS, School of Dentistry, Department of Periodontology, Porto Alegre, RS, Brazil
| | - Flavia Furlaneto
- Universidade de São Paulo - USP, School of Dentistry of Ribeirão Preto, Department of Oral Surgery and Periodontology, Ribeirão Preto, SP, Brazil
| | - Eduardo José Gaio
- Universidade Federal do Rio Grande do Sul - UFRGS, School of Dentistry, Department of Periodontology, Porto Alegre, RS, Brazil
| | - Sabrina Carvalho Gomes
- Universidade Federal do Rio Grande do Sul - UFRGS, School of Dentistry, Department of Periodontology, Porto Alegre, RS, Brazil
| | - Daniela Bazan Palioto
- Universidade de São Paulo - USP, School of Dentistry of Ribeirão Preto, Department of Oral Surgery and Periodontology, Ribeirão Preto, SP, Brazil
| | - Rogerio Moraes Castilho
- Michigan University, School of Dentistry, Department of Periodontics and Oral Medicine, Ann Arbor, MI, USA
| | - Mariano Sanz
- Complutense University of Madrid, Etiology and Therapy of Periodontal and Peri-implant Diseases Research Group, Madrid, Spain
| | - Michel Reis Messora
- Universidade de São Paulo - USP, School of Dentistry of Ribeirão Preto, Department of Oral Surgery and Periodontology, Ribeirão Preto, SP, Brazil
| |
Collapse
|
22
|
Lezhava T, Buadze T, Mikaia N, Jokhadze T, Sigua T, Gaiozishvili M, Melkadze T. Epigenetic Activation of Ribosomal Cistrons in Chromatids of Acrocentric Chromosome 15 in Lung Cancer. CYTOL GENET+ 2021. [DOI: 10.3103/s0095452721050042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Regulatory roles of nucleolus organizer region-derived long non-coding RNAs. Mamm Genome 2021; 33:402-411. [PMID: 34436664 DOI: 10.1007/s00335-021-09906-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/20/2021] [Indexed: 12/13/2022]
Abstract
The nucleolus is the largest sub-nuclear domain, serving primarily as the place for ribosome biogenesis. A delicately regulated function of the nucleolus is vital to the cell not only for maintaining proper protein synthesis but is also tightly associated with responses to different types of cellular stresses. Recently, several long non-coding RNAs (lncRNAs) were found to be part of the regulatory network that modulate nucleolar functions. Several of these lncRNAs are encoded in the ribosomal DNA (rDNA) repeats or are transcribed from the genomic regions that are located near the nucleolus organizer regions (NORs). In this review, we first discuss the current understanding of the sequence of the NORs and variations between different NORs. We then focus on the NOR-derived lncRNAs in mammalian cells and their functions in rRNA transcription and the organization of nucleolar structure under different cellular conditions. The identification of these lncRNAs reveals great potential of the NORs in harboring novel genes involved in the regulation of nucleolar functions.
Collapse
|
24
|
Commuting to Work: Nucleolar Long Non-Coding RNA Control Ribosome Biogenesis from Near and Far. Noncoding RNA 2021; 7:ncrna7030042. [PMID: 34287370 PMCID: PMC8293466 DOI: 10.3390/ncrna7030042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/09/2021] [Accepted: 07/11/2021] [Indexed: 12/26/2022] Open
Abstract
Gene expression is an essential process for cellular growth, proliferation, and differentiation. The transcription of protein-coding genes and non-coding loci depends on RNA polymerases. Interestingly, numerous loci encode long non-coding (lnc)RNA transcripts that are transcribed by RNA polymerase II (RNAPII) and fine-tune the RNA metabolism. The nucleolus is a prime example of how different lncRNA species concomitantly regulate gene expression by facilitating the production and processing of ribosomal (r)RNA for ribosome biogenesis. Here, we summarise the current findings on how RNAPII influences nucleolar structure and function. We describe how RNAPII-dependent lncRNA can both promote nucleolar integrity and inhibit ribosomal (r)RNA synthesis by modulating the availability of rRNA synthesis factors in trans. Surprisingly, some lncRNA transcripts can directly originate from nucleolar loci and function in cis. The nucleolar intergenic spacer (IGS), for example, encodes nucleolar transcripts that counteract spurious rRNA synthesis in unperturbed cells. In response to DNA damage, RNAPII-dependent lncRNA originates directly at broken ribosomal (r)DNA loci and is processed into small ncRNA, possibly to modulate DNA repair. Thus, lncRNA-mediated regulation of nucleolar biology occurs by several modes of action and is more direct than anticipated, pointing to an intimate crosstalk of RNA metabolic events.
Collapse
|
25
|
Lopez FB, Fort A, Tadini L, Probst AV, McHale M, Friel J, Ryder P, Pontvianne F, Pesaresi P, Sulpice R, McKeown P, Brychkova G, Spillane C. Gene dosage compensation of rRNA transcript levels in Arabidopsis thaliana lines with reduced ribosomal gene copy number. THE PLANT CELL 2021; 33:1135-1150. [PMID: 33793816 PMCID: PMC8225240 DOI: 10.1093/plcell/koab020] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 12/24/2020] [Indexed: 05/08/2023]
Abstract
The 45S rRNA genes (rDNA) are among the largest repetitive elements in eukaryotic genomes. rDNA consists of tandem arrays of rRNA genes, many of which are transcriptionally silenced. Silent rDNA repeats may act as 'back-up' copies for ribosome biogenesis and have nuclear organization roles. Through Cas9-mediated genome editing in the Arabidopsis thaliana female gametophyte, we reduced 45S rDNA copy number (CN) to a plateau of ∼10%. Two independent lines had rDNA CNs reduced by up to 90% at the T7 generation, named low copy number (LCN) lines. Despite drastic reduction of rDNA copies, rRNA transcriptional rates, and steady-state levels remained the same as wild-type plants. Gene dosage compensation of rRNA transcript levels was associated with reduction of silencing histone marks at rDNA loci and altered Nucleolar Organiser Region 2 organization. Although overall genome integrity of LCN lines appears unaffected, a chromosome segmental duplication occurred in one of the lines. Transcriptome analysis of LCN seedlings identified several shared dysregulated genes and pathways in both independent lines. Cas9 genome editing of rRNA repeats to generate LCN lines provides a powerful technique to elucidate rDNA dosage compensation mechanisms and impacts of low rDNA CN on genome stability, development, and cellular processes.
Collapse
Affiliation(s)
- Francesca B Lopez
- Genetics and Biotechnology Laboratory, Plant & AgriBiosciences Research Centre (PABC), Ryan Institute, National University of Ireland Galway, Galway H91 REW4, Ireland
| | - Antoine Fort
- Genetics and Biotechnology Laboratory, Plant & AgriBiosciences Research Centre (PABC), Ryan Institute, National University of Ireland Galway, Galway H91 REW4, Ireland
- Systems Biology Laboratory, Plant & AgriBiosciences Research Centre (PABC), Ryan Institute, National University of Ireland Galway, Galway H91 REW4, Ireland
| | - Luca Tadini
- Dipartimento di Bioscienze, Universit� degli Studi di Milano, 20133 Milano, Italy
| | - Aline V Probst
- CNRS, GReD, Universit� Clermont Auvergne, INSERM, 63001 Clermont–Ferrand, France
| | - Marcus McHale
- Genetics and Biotechnology Laboratory, Plant & AgriBiosciences Research Centre (PABC), Ryan Institute, National University of Ireland Galway, Galway H91 REW4, Ireland
- Systems Biology Laboratory, Plant & AgriBiosciences Research Centre (PABC), Ryan Institute, National University of Ireland Galway, Galway H91 REW4, Ireland
| | - James Friel
- Genetics and Biotechnology Laboratory, Plant & AgriBiosciences Research Centre (PABC), Ryan Institute, National University of Ireland Galway, Galway H91 REW4, Ireland
| | - Peter Ryder
- Genetics and Biotechnology Laboratory, Plant & AgriBiosciences Research Centre (PABC), Ryan Institute, National University of Ireland Galway, Galway H91 REW4, Ireland
| | - Fr�d�ric Pontvianne
- CNRS, Laboratoire G�nome et D�veloppement des Plantes (LGDP), Universit� de Perpignan Via Domitia, Perpignan, France
| | - Paolo Pesaresi
- Dipartimento di Bioscienze, Universit� degli Studi di Milano, 20133 Milano, Italy
| | - Ronan Sulpice
- Systems Biology Laboratory, Plant & AgriBiosciences Research Centre (PABC), Ryan Institute, National University of Ireland Galway, Galway H91 REW4, Ireland
| | - Peter McKeown
- Genetics and Biotechnology Laboratory, Plant & AgriBiosciences Research Centre (PABC), Ryan Institute, National University of Ireland Galway, Galway H91 REW4, Ireland
| | - Galina Brychkova
- Genetics and Biotechnology Laboratory, Plant & AgriBiosciences Research Centre (PABC), Ryan Institute, National University of Ireland Galway, Galway H91 REW4, Ireland
| | - Charles Spillane
- Genetics and Biotechnology Laboratory, Plant & AgriBiosciences Research Centre (PABC), Ryan Institute, National University of Ireland Galway, Galway H91 REW4, Ireland
- Author for correspondence:
| |
Collapse
|
26
|
|
27
|
Pérez-Ortín JE, Mena A, Barba-Aliaga M, Singh A, Chávez S, García-Martínez J. Cell volume homeostatically controls the rDNA repeat copy number and rRNA synthesis rate in yeast. PLoS Genet 2021; 17:e1009520. [PMID: 33826644 PMCID: PMC8055003 DOI: 10.1371/journal.pgen.1009520] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 04/19/2021] [Accepted: 03/25/2021] [Indexed: 01/20/2023] Open
Abstract
The adjustment of transcription and translation rates to the changing needs of cells is of utmost importance for their fitness and survival. We have previously shown that the global transcription rate for RNA polymerase II in budding yeast Saccharomyces cerevisiae is regulated in relation to cell volume. Total mRNA concentration is constant with cell volume since global RNApol II-dependent nascent transcription rate (nTR) also keeps constant but mRNA stability increases with cell size. In this paper, we focus on the case of rRNA and RNA polymerase I. Contrarily to that found for RNA pol II, we detected that RNA polymerase I nTR increases proportionally to genome copies and cell size in polyploid cells. In haploid mutant cells with larger cell sizes, the rDNA repeat copy number rises. By combining mathematical modeling and experimental work with the large-size cln3 strain, we observed that the increasing repeat copy number is based on a feedback mechanism in which Sir2 histone deacetylase homeostatically controls the amplification of rDNA repeats in a volume-dependent manner. This amplification is paralleled with an increase in rRNA nTR, which indicates a control of the RNA pol I synthesis rate by cell volume. Synthesis rates of biological macromolecules should be strictly regulated and adjusted to the changing conditions of cells. The change in volume is one of the commonest variables along individual cell life and also when comparing different cell types. We previously found that cells with asymmetric division, such as budding yeasts, use a compensatory change in the global RNA polymerase II synthesis rate and mRNA decay rate to maintain mRNA homeostasis. In the present study, we address the same issue for the RNA polymerase that makes rRNAs, which are essential components of ribosomes and the most abundant RNAs in the cell. We found that the copy number of the gene encoding 35S rRNA, transcribed by RNA polymerase I, changes proportionally to the cell volume in budding yeast via a feedback mechanism based on the Sir2 histone deacetylase, which guarantees that yeast cells have the appropriate RNA polymerase I synthesis rate required for rRNA homeostasis.
Collapse
Affiliation(s)
- José E. Pérez-Ortín
- Instituto de Biotecnología y Biomedicina (Biotecmed), Universitat de València, Burjassot, Spain
- * E-mail: (JEP-O); (JG-M)
| | - Adriana Mena
- Instituto de Biotecnología y Biomedicina (Biotecmed), Universitat de València, Burjassot, Spain
| | - Marina Barba-Aliaga
- Instituto de Biotecnología y Biomedicina (Biotecmed), Universitat de València, Burjassot, Spain
| | - Abhyudai Singh
- Department of Electrical and Computer Engineering, University of Delaware, Newark, DE, United States of America
| | - Sebastián Chávez
- Instituto de Biomedicina de Sevilla. Campus Hospital Universitario Virgen del Rocío, Seville, Spain
| | - José García-Martínez
- Instituto de Biotecnología y Biomedicina (Biotecmed), Universitat de València, Burjassot, Spain
- * E-mail: (JEP-O); (JG-M)
| |
Collapse
|
28
|
Poot M, Hochstenbach R. Prevalence and Phenotypic Impact of Robertsonian Translocations. Mol Syndromol 2021; 12:1-11. [PMID: 33776621 PMCID: PMC7983559 DOI: 10.1159/000512676] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/26/2020] [Indexed: 12/11/2022] Open
Abstract
Robertsonian translocations (RTs) result from fusion of 2 acrocentric chromosomes (e.g., 13, 14, 15, 21, 22) and consequential losses of segments of the p arms containing 47S rDNA clusters and transcription factor binding sites. Depending on the position of the breakpoints, the size of these losses vary considerably between types of RTs. The prevalence of RTs in the general population is estimated to be around 1 per 800 individuals, making RTs the most common chromosomal rearrangement in healthy individuals. Based on their prevalence, RTs are classified as "common," rob(13;14) and rob(14;21), or "rare" (the 8 remaining nonhomologous combinations). Carriers of RTs are at an increased risk for offspring with chromosomal imbalances or with uniparental disomy. RTs are generally regarded as phenotypically neutral, although, due to RTs formation, 2 of the 10 ribosomal rDNA gene clusters, several long noncoding RNAs, and in the case of RTs involving chromosome 21, several mRNA encoding genes are lost. Nevertheless, recent evidence indicates that RTs may have a significant phenotypic impact. In particular, rob(13;14) carriers have a significantly elevated risk for breast cancer. While RTs are easily spotted by routine karyotyping, they may go unnoticed if only array-CGH and NextGen sequencing methods are applied. This review first discusses possible molecular mechanisms underlying the particularly high rates of RT formation and their incidence in the general population, and second, likely causes for the elevated cancer risk of some RTs will be examined.
Collapse
Affiliation(s)
- Martin Poot
- Department of Human Genetics, University of Würzburg, Würzburg, Germany
| | - Ron Hochstenbach
- Department of Clinical Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
29
|
Structural mechanism of bivalent histone H3K4me3K9me3 recognition by the Spindlin1/C11orf84 complex in rRNA transcription activation. Nat Commun 2021; 12:949. [PMID: 33574238 PMCID: PMC7878818 DOI: 10.1038/s41467-021-21236-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 01/18/2021] [Indexed: 12/11/2022] Open
Abstract
Spindlin1 is a unique multivalent epigenetic reader that facilitates ribosomal RNA transcription. In this study, we provide molecular and structural basis by which Spindlin1 acts in complex with C11orf84 to preferentially recognize non-canonical bivalent mark of trimethylated lysine 4 and lysine 9 present on the same histone H3 tail (H3K4me3K9me3). We demonstrate that C11orf84 binding stabilizes Spindlin1 and enhances its association with bivalent H3K4me3K9me3 mark. The functional analysis suggests that Spindlin1/C11orf84 complex can displace HP1 proteins from H3K4me3K9me3-enriched rDNA loci, thereby facilitating the conversion of these poised rDNA repeats from the repressed state to the active conformation, and the consequent recruitment of RNA Polymerase I for rRNA transcription. Our study uncovers a previously unappreciated mechanism of bivalent H3K4me3K9me3 recognition by Spindlin1/C11orf84 complex required for activation of rRNA transcription. Spindlin1 is an epigenetic reader that facilitates ribosomal RNA transcription. Here the authors reveal in vitro and structural evidence suggesting that Spindlin1 acts together with C11orf84 to recognize noncanonical bivalent mark of trimethylated lysine 4 and lysine 9 present on histone H3 tail (H3K4me3K9me3).
Collapse
|
30
|
Wakamori M, Okabe K, Ura K, Funatsu T, Takinoue M, Umehara T. Quantification of the effect of site-specific histone acetylation on chromatin transcription rate. Nucleic Acids Res 2021; 48:12648-12659. [PMID: 33238306 PMCID: PMC7736822 DOI: 10.1093/nar/gkaa1050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/15/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022] Open
Abstract
Eukaryotic transcription is epigenetically regulated by chromatin structure and post-translational modifications (PTMs). For example, lysine acetylation in histone H4 is correlated with activation of RNA polymerase I-, II- and III-driven transcription from chromatin templates, which requires prior chromatin remodeling. However, quantitative understanding of the contribution of particular PTM states to the sequential steps of eukaryotic transcription has been hampered partially because reconstitution of a chromatin template with designed PTMs is difficult. In this study, we reconstituted a di-nucleosome with site-specifically acetylated or unmodified histone H4, which contained two copies of the Xenopus somatic 5S rRNA gene with addition of a unique sequence detectable by hybridization-assisted fluorescence correlation spectroscopy. Using a Xenopus oocyte nuclear extract, we analyzed the time course of accumulation of nascent 5S rRNA-derived transcripts generated on chromatin templates in vitro. Our mathematically described kinetic model and fitting analysis revealed that tetra-acetylation of histone H4 at K5/K8/K12/K16 increases the rate of transcriptionally competent chromatin formation ∼3-fold in comparison with the absence of acetylation. We provide a kinetic model for quantitative evaluation of the contribution of epigenetic modifications to chromatin transcription.
Collapse
Affiliation(s)
- Masatoshi Wakamori
- Laboratory for Epigenetics Drug Discovery, RIKEN Center for Biosystems Dynamics Research, Yokohama, Kanagawa 230-0045, Japan
| | - Kohki Okabe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.,PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan
| | - Kiyoe Ura
- PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan.,Graduate School of Science, Chiba University, Chiba, Chiba 263-8522, Japan
| | - Takashi Funatsu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masahiro Takinoue
- PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan.,Department of Computer Science, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8502, Japan
| | - Takashi Umehara
- Laboratory for Epigenetics Drug Discovery, RIKEN Center for Biosystems Dynamics Research, Yokohama, Kanagawa 230-0045, Japan.,PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
31
|
Sims J, Rabanal FA, Elgert C, von Haeseler A, Schlögelhofer P. It Is Just a Matter of Time: Balancing Homologous Recombination and Non-homologous End Joining at the rDNA Locus During Meiosis. FRONTIERS IN PLANT SCIENCE 2021; 12:773052. [PMID: 34777453 PMCID: PMC8580885 DOI: 10.3389/fpls.2021.773052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/04/2021] [Indexed: 05/17/2023]
Abstract
Ribosomal RNA genes (rDNAs) are located in large domains of hundreds of rDNA units organized in a head-to-tail manner. The proper and stable inheritance of rDNA clusters is of paramount importance for survival. Yet, these highly repetitive elements pose a potential risk to the genome since they can undergo non-allelic exchanges. Here, we review the current knowledge of the organization of the rDNA clusters in Arabidopsis thaliana and their stability during meiosis. Recent findings suggest that during meiosis, all rDNA loci are embedded within the nucleolus favoring non-homologous end joining (NHEJ) as a repair mechanism, while DNA repair via homologous recombination (HR) appears to be a rare event. We propose a model where (1) frequent meiotic NHEJ events generate abundant single nucleotide polymorphisms and insertions/deletions within the rDNA, resulting in a heterogeneous population of rDNA units and (2) rare HR events dynamically change rDNA unit numbers, only to be observed in large populations over many generations. Based on the latest efforts to delineate the entire rDNA sequence in A. thaliana, we discuss evidence supporting this model. The results compiled so far draw a surprising picture of rDNA sequence heterogeneity between individual units. Furthermore, rDNA cluster sizes have been recognized as relatively stable when observing less than 10 generations, yet emerged as major determinant of genome size variation between different A. thaliana ecotypes. The sequencing efforts also revealed that transcripts from the diverse rDNA units yield heterogenous ribosome populations with potential functional implications. These findings strongly motivate further research to understand the mechanisms that maintain the metastable state of rDNA loci.
Collapse
Affiliation(s)
- Jason Sims
- Department of Chromosome Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
- *Correspondence: Jason Sims,
| | - Fernando A. Rabanal
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Christiane Elgert
- Center for Integrative Bioinformatics Vienna (CIBIV), Max Perutz Labs, University of Vienna and Medical University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Arndt von Haeseler
- Center for Integrative Bioinformatics Vienna (CIBIV), Max Perutz Labs, University of Vienna and Medical University of Vienna, Vienna BioCenter, Vienna, Austria
- Bioinformatics and Computational Biology, Faculty of Computer Science, University of Vienna, Vienna, Austria
| | - Peter Schlögelhofer
- Department of Chromosome Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
- Peter Schlögelhofer,
| |
Collapse
|
32
|
Zhao L, Cao J, Hu K, He X, Yun D, Tong T, Han L. Sirtuins and their Biological Relevance in Aging and Age-Related Diseases. Aging Dis 2020; 11:927-945. [PMID: 32765955 PMCID: PMC7390530 DOI: 10.14336/ad.2019.0820] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 08/20/2019] [Indexed: 12/18/2022] Open
Abstract
Sirtuins, initially described as histone deacetylases and gene silencers in yeast, are now known to have many more functions and to be much more abundant in living organisms. The increasing evidence of sirtuins in the field of ageing and age-related diseases indicates that they may provide novel targets for treating diseases associated with aging and perhaps extend human lifespan. Here, we summarize some of the recent discoveries in sirtuin biology that clearly implicate the functions of sirtuins in the regulation of aging and age-related diseases. Furthermore, human sirtuins are considered promising therapeutic targets for anti-aging and ageing-related diseases and have attracted interest in scientific communities to develop small molecule activators or drugs to ameliorate a wide range of ageing disorders. In this review, we also summarize the discovery and development status of sirtuin-targeted drug and further discuss the potential medical strategies of sirtuins in delaying aging and treating age-related diseases.
Collapse
Affiliation(s)
- Lijun Zhao
- 1Peking University Research Center on Aging, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Beijing, China
| | - Jianzhong Cao
- 2Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Kexin Hu
- 1Peking University Research Center on Aging, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Beijing, China
| | - Xiaodong He
- 2Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Dou Yun
- 1Peking University Research Center on Aging, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Beijing, China
| | - Tanjun Tong
- 1Peking University Research Center on Aging, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Beijing, China
| | - Limin Han
- 1Peking University Research Center on Aging, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Beijing, China
| |
Collapse
|
33
|
Ren X, Hu B, Song M, Ding Z, Dang Y, Liu Z, Zhang W, Ji Q, Ren R, Ding J, Chan P, Jiang C, Ye K, Qu J, Tang F, Liu GH. Maintenance of Nucleolar Homeostasis by CBX4 Alleviates Senescence and Osteoarthritis. Cell Rep 2020; 26:3643-3656.e7. [PMID: 30917318 DOI: 10.1016/j.celrep.2019.02.088] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 01/27/2019] [Accepted: 02/21/2019] [Indexed: 01/12/2023] Open
Abstract
CBX4, a component of polycomb repressive complex 1 (PRC1), plays important roles in the maintenance of cell identity and organ development through gene silencing. However, whether CBX4 regulates human stem cell homeostasis remains unclear. Here, we demonstrate that CBX4 counteracts human mesenchymal stem cell (hMSC) aging via the maintenance of nucleolar homeostasis. CBX4 protein is downregulated in aged hMSCs, whereas CBX4 knockout in hMSCs results in destabilized nucleolar heterochromatin, enhanced ribosome biogenesis, increased protein translation, and accelerated cellular senescence. CBX4 maintains nucleolar homeostasis by recruiting nucleolar protein fibrillarin (FBL) and heterochromatin protein KRAB-associated protein 1 (KAP1) at nucleolar rDNA, limiting the excessive expression of rRNAs. Overexpression of CBX4 alleviates physiological hMSC aging and attenuates the development of osteoarthritis in mice. Altogether, our findings reveal a critical role of CBX4 in counteracting cellular senescence by maintaining nucleolar homeostasis, providing a potential therapeutic target for aging-associated disorders.
Collapse
Affiliation(s)
- Xiaoqing Ren
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Boqiang Hu
- Biodynamic Optical Imaging Center, College of Life Sciences, Peking University, Beijing 100871, China
| | - Moshi Song
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhichao Ding
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yujiao Dang
- Biodynamic Optical Imaging Center, College of Life Sciences, Peking University, Beijing 100871, China
| | - Zunpeng Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weiqi Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Qianzhao Ji
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruotong Ren
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianjian Ding
- Army Diagnosis and Treatment Center for Oral Disease, 306th Hospital of the PLA, Beijing 100101, China
| | - Piu Chan
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Changtao Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Keqiong Ye
- University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.
| | - Fuchou Tang
- Biodynamic Optical Imaging Center, College of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China; Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China; Biomedical Institute for Pioneering Investigation via Convergence, Peking University, Beijing 100871, China.
| | - Guang-Hui Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China; Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
34
|
Ma WJ, Carpentier F, Giraud T, Hood ME. Differential Gene Expression between Fungal Mating Types Is Associated with Sequence Degeneration. Genome Biol Evol 2020; 12:243-258. [PMID: 32058544 PMCID: PMC7150583 DOI: 10.1093/gbe/evaa028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2020] [Indexed: 12/13/2022] Open
Abstract
Degenerative mutations in non-recombining regions, such as in sex chromosomes, may lead to differential expression between alleles if mutations occur stochastically in one or the other allele. Reduced allelic expression due to degeneration has indeed been suggested to occur in various sex-chromosome systems. However, whether an association occurs between specific signatures of degeneration and differential expression between alleles has not been extensively tested, and sexual antagonism can also cause differential expression on sex chromosomes. The anther-smut fungus Microbotryum lychnidis-dioicae is ideal for testing associations between specific degenerative signatures and differential expression because 1) there are multiple evolutionary strata on the mating-type chromosomes, reflecting successive recombination suppression linked to mating-type loci; 2) separate haploid cultures of opposite mating types help identify differential expression between alleles; and 3) there is no sexual antagonism as a confounding factor accounting for differential expression. We found that differentially expressed genes were enriched in the four oldest evolutionary strata compared with other genomic compartments, and that, within compartments, several signatures of sequence degeneration were greater for differentially expressed than non-differentially expressed genes. Two particular degenerative signatures were significantly associated with lower expression levels within differentially expressed allele pairs: upstream insertion of transposable elements and mutations truncating the protein length. Other degenerative mutations associated with differential expression included nonsynonymous substitutions and altered intron or GC content. The association between differential expression and allele degeneration is relevant for a broad range of taxa where mating compatibility or sex is determined by genes located in large regions where recombination is suppressed.
Collapse
Affiliation(s)
- Wen-Juan Ma
- Department of Biology, Amherst College, Amherst, MA
| | - Fantin Carpentier
- Ecologie Systematique et Evolution, Université Paris-Saclay, CNRS, AgroParisTech, Orsay, France
| | - Tatiana Giraud
- Ecologie Systematique et Evolution, Université Paris-Saclay, CNRS, AgroParisTech, Orsay, France
| | | |
Collapse
|
35
|
Faria TC, Maldonado HL, Santos LC, DeLabio R, Payao SLM, Turecki G, Mechawar N, Santana DA, Gigek CO, Lemos B, Smith MAC, Chen ES. Characterization of Cerebellum-Specific Ribosomal DNA Epigenetic Modifications in Alzheimer's Disease: Should the Cerebellum Serve as a Control Tissue After All? Mol Neurobiol 2020; 57:2563-2571. [PMID: 32232768 DOI: 10.1007/s12035-020-01902-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 03/09/2020] [Indexed: 11/26/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease, known as the most common form of dementia. In AD onset, abnormal rRNA expression has been reported to be linked in pathogenesis. Although region-specific expression patterns have previously been reported in AD, it is not until recently that the cerebellum has come under the spotlight. Specifically, it is unclear whether DNA methylation is the mechanism involved in rRNA expression regulation in AD. Hence, we sought to explore the rDNA methylation pattern of two different brain regions - auditory cortex and cerebellum - from AD and age-/sex-matched controls. Our results showed differential hypermethylation at an upstream CpG region to the rDNA promoter when comparing cerebellum controls to auditory cortex controls. This suggests a possible regulatory region from rDNA expression regulation. Moreover, when comparing between AD and control cerebellum samples, we observed hypermethylation of the rDNA promoter region as well as an increase in rDNA content. In addition, we also observed increased rRNA levels in AD compared to control cerebellum. Although still considered a pathology-free brain region, there are growing findings that continue to suggest otherwise. Indeed, cerebellum from AD has been recently described as affected by the disease, presenting a unique pattern of molecular alterations. Given that we observed that increased rDNA promoter methylation did not silence rDNA gene expression, we suggest that rDNA promoter hypermethylation is playing a protective role in rDNA genomic stability and, therefore, increasing rRNA levels in AD cerebellum.
Collapse
Affiliation(s)
- Tathyane C Faria
- Departamento de Morfologia e Genética, Programa de Pós-Graduação em Biologia Estrutural e Funcional da UNIFESP/EPM, Disciplina de Genética, Universidade Federal de São Paulo (UNIFESP/EPM), São Paulo, SP, Brazil
| | - Héctor L Maldonado
- Department of Environmental Health, Program in Molecular and Integrative Physiological Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Leonardo C Santos
- Departamento de Morfologia e Genética, Programa de Pós-Graduação em Biologia Estrutural e Funcional da UNIFESP/EPM, Disciplina de Genética, Universidade Federal de São Paulo (UNIFESP/EPM), São Paulo, SP, Brazil
| | - Roger DeLabio
- Faculdade de Medicina de Marília (FAMEMA), Marília, SP, Brazil
| | | | - Gustavo Turecki
- Department of Psychiatry, Douglas Hospital Research Center, McGill University, Montreal, QC, Canada
| | - Naguib Mechawar
- Department of Psychiatry, Douglas Hospital Research Center, McGill University, Montreal, QC, Canada
| | - Dalileia A Santana
- Departamento de Morfologia e Genética, Programa de Pós-Graduação em Biologia Estrutural e Funcional da UNIFESP/EPM, Disciplina de Genética, Universidade Federal de São Paulo (UNIFESP/EPM), São Paulo, SP, Brazil
| | - Carolina O Gigek
- Departamento de Morfologia e Genética, Programa de Pós-Graduação em Biologia Estrutural e Funcional da UNIFESP/EPM, Disciplina de Genética, Universidade Federal de São Paulo (UNIFESP/EPM), São Paulo, SP, Brazil
| | - Bernardo Lemos
- Department of Environmental Health, Program in Molecular and Integrative Physiological Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Marilia A C Smith
- Departamento de Morfologia e Genética, Programa de Pós-Graduação em Biologia Estrutural e Funcional da UNIFESP/EPM, Disciplina de Genética, Universidade Federal de São Paulo (UNIFESP/EPM), São Paulo, SP, Brazil
| | - Elizabeth S Chen
- Departamento de Morfologia e Genética, Programa de Pós-Graduação em Biologia Estrutural e Funcional da UNIFESP/EPM, Disciplina de Genética, Universidade Federal de São Paulo (UNIFESP/EPM), São Paulo, SP, Brazil.
- Department of Environmental Health, Program in Molecular and Integrative Physiological Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
36
|
Sultana F, Manasa KL, Shaik SP, Bonam SR, Kamal A. Zinc Dependent Histone Deacetylase Inhibitors in Cancer Therapeutics: Recent Update. Curr Med Chem 2020; 26:7212-7280. [PMID: 29852860 DOI: 10.2174/0929867325666180530094120] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 02/12/2018] [Accepted: 05/22/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND Histone deacetylases (HDAC) are an important class of enzymes that play a pivotal role in epigenetic regulation of gene expression that modifies the terminal of core histones leading to remodelling of chromatin topology and thereby controlling gene expression. HDAC inhibitors (HDACi) counter this action and can result in hyperacetylation of histones, thereby inducing an array of cellular consequences such as activation of apoptotic pathways, generation of reactive oxygen species (ROS), cell cycle arrest and autophagy. Hence, there is a growing interest in the potential clinical use of HDAC inhibitors as a new class of targeted cancer therapeutics. Methodology and Result: Several research articles spanning between 2016 and 2017 were reviewed in this article and presently offer critical insights into the important strategies such as structure-based rational drug design, multi-parameter lead optimization methodologies, relevant SAR studies and biology of various class of HDAC inhibitors, such as hydroxamic acids, benzamides, cyclic peptides, aliphatic acids, summarising the clinical trials and results of various combination drug therapy till date. CONCLUSION This review will provide a platform to the synthetic chemists and biologists to cater the needs of both molecular targeted therapy and combination drug therapy to design and synthesize safe and selective HDAC inhibitors in cancer therapeutics.
Collapse
Affiliation(s)
- Faria Sultana
- Medicinal Chemistry and Biotechnology Division, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad-500007, India
| | - Kesari Lakshmi Manasa
- Medicinal Chemistry and Biotechnology Division, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad-500007, India.,Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Siddiq Pasha Shaik
- Medicinal Chemistry and Biotechnology Division, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad-500007, India.,Academy of Scientific and Innovative Research, New Delhi, 110 025, India
| | - Srinivasa Reddy Bonam
- Vaccine Immunology Laboratory, Natural Product Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Ahmed Kamal
- Medicinal Chemistry and Biotechnology Division, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad-500007, India.,Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India.,Academy of Scientific and Innovative Research, New Delhi, 110 025, India.,School of Pharmaceutical Education and Research (SPER), Jamia Hamdard University, New Delhi, 110062, India
| |
Collapse
|
37
|
NoRC Recruitment by H2A.X Deposition at rRNA Gene Promoter Limits Embryonic Stem Cell Proliferation. Cell Rep 2019; 23:1853-1866. [PMID: 29742439 DOI: 10.1016/j.celrep.2018.04.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 01/16/2018] [Accepted: 04/04/2018] [Indexed: 01/22/2023] Open
Abstract
Embryonic stem cells (ESCs) display an abbreviated cell cycle, resulting in a short doubling time and rapid proliferation. The histone variant H2A.X is critical for proliferation of stem cells, although mechanistic insights have remained obscure. Here, we show that H2A.X defines the rate of mouse ESC proliferation independently of the DNA damage response pathway, and it associates with three major chromatin-modifying complexes. Our functional and biochemical analyses demonstrate that H2A.X-associated factors mediate the H2A.X-dependent effect on ESC proliferation and involve the nucleolar remodeling complex (NoRC). A specific H2A.X deposition at rDNA promoters determines the chromatin recruitment of the NoRC, histone modifications, the rRNA transcription, and the rate of proliferation. Collectively, our results suggest that NoRC assembly by H2A.X deposition at rRNA promoters silences transcription, and this represents an important regulatory component for ESC proliferation.
Collapse
|
38
|
Khalid M, Abdollahi M. Epigenetic modifications associated with pathophysiological effects of lead exposure. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2019; 37:235-287. [PMID: 31402779 DOI: 10.1080/10590501.2019.1640581] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Lead (Pb) exposure during different stages of development has demonstrated dose, duration, sex, and tissue-specific pathophysiological outcomes due to altered epigenetic regulation via (a) DNA methylation, (b) histone modifications, (c) miRNAs, and (d) chromatin accessibility. Pb-induced alteration of epigenetic regulation causes neurotoxic and extra-neurotoxic pathophysiological outcomes. Neurotoxic effects of Pb include dysfunction of memory and learning, behavioral disorder, attention deficit hyperactivity disorder, autism spectrum disorder, aging, Alzheimer's disease, tauopathy, and neurodegeneration. Extra-neurotoxic effects of Pb include altered body weight, metabolic disorder, cardiovascular disorders, hematopoietic disorder, and reproductive impairment. Pb exposure either early in life or at any stage of development results in undesirable pathophysiological outcomes that tends to sustain and maintain for a lifetime.
Collapse
Affiliation(s)
- Madiha Khalid
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
39
|
Life time of some RNA products of rDNA intergenic spacer in HeLa cells. Histochem Cell Biol 2019; 152:271-280. [DOI: 10.1007/s00418-019-01804-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2019] [Indexed: 12/21/2022]
|
40
|
Simon L, Rabanal FA, Dubos T, Oliver C, Lauber D, Poulet A, Vogt A, Mandlbauer A, Le Goff S, Sommer A, Duborjal H, Tatout C, Probst AV. Genetic and epigenetic variation in 5S ribosomal RNA genes reveals genome dynamics in Arabidopsis thaliana. Nucleic Acids Res 2019. [PMID: 29518237 PMCID: PMC5887818 DOI: 10.1093/nar/gky163] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Organized in tandem repeat arrays in most eukaryotes and transcribed by RNA polymerase III, expression of 5S rRNA genes is under epigenetic control. To unveil mechanisms of transcriptional regulation, we obtained here in depth sequence information on 5S rRNA genes from the Arabidopsis thaliana genome and identified differential enrichment in epigenetic marks between the three 5S rDNA loci situated on chromosomes 3, 4 and 5. We reveal the chromosome 5 locus as the major source of an atypical, long 5S rRNA transcript characteristic of an open chromatin structure. 5S rRNA genes from this locus translocated in the Landsberg erecta ecotype as shown by linkage mapping and chromosome-specific FISH analysis. These variations in 5S rDNA locus organization cause changes in the spatial arrangement of chromosomes in the nucleus. Furthermore, 5S rRNA gene arrangements are highly dynamic with alterations in chromosomal positions through translocations in certain mutants of the RNA-directed DNA methylation pathway and important copy number variations among ecotypes. Finally, variations in 5S rRNA gene sequence, chromatin organization and transcripts indicate differential usage of 5S rDNA loci in distinct ecotypes. We suggest that both the usage of existing and new 5S rDNA loci resulting from translocations may impact neighboring chromatin organization.
Collapse
Affiliation(s)
- Lauriane Simon
- GReD, Université Clermont Auvergne, CNRS, INSERM, BP 38, 63001 Clermont-Ferrand, France
| | - Fernando A Rabanal
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Tristan Dubos
- GReD, Université Clermont Auvergne, CNRS, INSERM, BP 38, 63001 Clermont-Ferrand, France
| | - Cecilia Oliver
- Departamento de Genética, Facultad de Biología, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Damien Lauber
- GReD, Université Clermont Auvergne, CNRS, INSERM, BP 38, 63001 Clermont-Ferrand, France
| | - Axel Poulet
- GReD, Université Clermont Auvergne, CNRS, INSERM, BP 38, 63001 Clermont-Ferrand, France
| | - Alexander Vogt
- Vienna Biocenter Core Facilities GmbH (VBCF), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Ariane Mandlbauer
- Vienna Biocenter Core Facilities GmbH (VBCF), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Samuel Le Goff
- GReD, Université Clermont Auvergne, CNRS, INSERM, BP 38, 63001 Clermont-Ferrand, France
| | - Andreas Sommer
- Vienna Biocenter Core Facilities GmbH (VBCF), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Hervé Duborjal
- Plant Engineering Platform, BIOGEMMA, Route d'Ennezat Centre de Recherche de Chappes, 63720 Chappes, France
| | - Christophe Tatout
- GReD, Université Clermont Auvergne, CNRS, INSERM, BP 38, 63001 Clermont-Ferrand, France
| | - Aline V Probst
- GReD, Université Clermont Auvergne, CNRS, INSERM, BP 38, 63001 Clermont-Ferrand, France
| |
Collapse
|
41
|
Kirby TJ. Mechanosensitive pathways controlling translation regulatory processes in skeletal muscle and implications for adaptation. J Appl Physiol (1985) 2019; 127:608-618. [PMID: 31295035 DOI: 10.1152/japplphysiol.01031.2018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The ability of myofibers to sense and respond appropriately to mechanical signals is one of the primary determinants of the skeletal muscle phenotype. In response to a change in mechanical load, muscle cells alter their protein metabolism, primarily through the regulation of protein synthesis rate. Protein synthesis rates are determined by both translation efficiency and translational capacity within the muscle. Translational capacity is strongly determined by the ribosome content of the muscle; thus the regulation of ribosomal biogenesis by mechanical inputs has been an area of recent interest. Despite the clear association between mechanical signals and changes in protein metabolism, the molecular pathways that link these events are still not fully elucidated. This review focuses on recent studies looking at how mechanosignaling impacts translational events. The role of impaired mechanotransduction in aging is discussed, as is the connection between age-dependent signaling defects and compromised ribosomal biogenesis during mechanical overload. Finally, emerging evidence suggests that the nucleus can act as a mechanosensitive element and that this mode of mechanotransduction may have an important role in skeletal muscle physiology and adaptation.
Collapse
Affiliation(s)
- Tyler J Kirby
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York.,Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York
| |
Collapse
|
42
|
Potapova TA, Unruh JR, Yu Z, Rancati G, Li H, Stampfer MR, Gerton JL. Superresolution microscopy reveals linkages between ribosomal DNA on heterologous chromosomes. J Cell Biol 2019; 218:2492-2513. [PMID: 31270138 PMCID: PMC6683752 DOI: 10.1083/jcb.201810166] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 03/14/2019] [Accepted: 06/03/2019] [Indexed: 12/15/2022] Open
Abstract
Potapova et al. use superresolution microscopy to describe linkages between ribosomal DNA on heterologous human chromosomes whose formation depends on the transcription factor UBF and topoisomerase II. Linkages persist in the absence of cohesion but require topoisomerase II for resolution. The spatial organization of the genome is enigmatic. Direct evidence of physical contacts between chromosomes and their visualization at nanoscale resolution has been limited. We used superresolution microscopy to demonstrate that ribosomal DNA (rDNA) can form linkages between chromosomes. We observed rDNA linkages in many different human cell types and demonstrated their resolution in anaphase. rDNA linkages are coated by the transcription factor UBF and their formation depends on UBF, indicating that they regularly occur between transcriptionally active loci. Overexpression of c-Myc increases rDNA transcription and the frequency of rDNA linkages, further suggesting that their formation depends on active transcription. Linkages persist in the absence of cohesion, but inhibition of topoisomerase II prevents their resolution in anaphase. We propose that linkages are topological intertwines occurring between transcriptionally active rDNA loci spatially colocated in the same nucleolar compartment. Our findings suggest that active DNA loci engage in physical interchromosomal connections that are an integral and pervasive feature of genome organization.
Collapse
Affiliation(s)
| | - Jay R Unruh
- Stowers Institute for Medical Research, Kansas City, MO
| | - Zulin Yu
- Stowers Institute for Medical Research, Kansas City, MO
| | - Giulia Rancati
- Institute of Medical Biology, Agency for Science, Technology and Research, Singapore
| | - Hua Li
- Stowers Institute for Medical Research, Kansas City, MO
| | - Martha R Stampfer
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA
| | - Jennifer L Gerton
- Stowers Institute for Medical Research, Kansas City, MO .,Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS
| |
Collapse
|
43
|
Ha S, Zhou H, Gautam M, Song Y, Wang C. Reduced ribosomal RNA expression and unchanged ribosomal DNA promoter methylation in oral squamous cell carcinoma. Mol Genet Genomic Med 2019; 7:e00783. [PMID: 31169368 PMCID: PMC6625366 DOI: 10.1002/mgg3.783] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/07/2019] [Accepted: 05/17/2019] [Indexed: 12/31/2022] Open
Abstract
Background Ribosomal RNA (rRNA) consists of four non‐coding RNAs, the 28S, 5.8S, 18S, and 5S rRNA. Abnormal expression of rRNA has been found in multiple tumors, and the methylation of rDNA promoter may affect rRNA expression as an epigenetic regulatory mechanism. Oral squamous cell carcinoma (OSCC) is a kind of aggressive tumors which occurs in multiple sites in oral cavity. rRNA expression and the methylation of rDNA promoter in modulating rRNA expression in OSCC maintain unclear. This study aims to investigate the rRNA expression, the methylation status within rDNA promoter, and the underlying mechanism of methylation in regulating rRNA expression in OSCC. Methods Twelve primary OSCC and matched normal tissue samples were collected from patients with OSCC. Quantitative real‐time PCR was used to evaluate the rRNA level. HpaII/MspI digestion and bisulfite sequencing were used to investigate the methylation status of rDNA promoter. Results Ribosomal RNA levels were suppressed in OSCC as compared with matched normal tissues. HpaII/MspI digestion and bisulfite sequencing showed no significant differences for the methylation of rDNA promoter between the tumor and matched normal tissues. Conclusion The methylation in rDNA promoter could not explain for the suppressed rRNA expression in OSCC tissues.
Collapse
Affiliation(s)
- Shanshan Ha
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Hong Zhou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China.,School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mayank Gautam
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yaling Song
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Changning Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
44
|
Characterization analysis of the 35S rDNA intergenic spacers in Erianthus arundinaceus. Gene 2019; 694:63-70. [PMID: 30716441 DOI: 10.1016/j.gene.2019.01.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/03/2019] [Accepted: 01/07/2019] [Indexed: 11/21/2022]
Abstract
The 35S ribosomal DNA (rDNA) units that occur in tandem repeat are separated by an intergenic spacer (IGS) that plays an important role in rRNA transcription. Moreover, IGS is an important molecular marker for evolutionary research in plants. In the present study, the IGS sequence of Erianthus arundinaceus was isolated and sequenced for the first time. Structure analysis indicated the entire IGS sequence of three typical E. arundinaceus genotypes was highly conserved, with approximately 3087 bp and 67.1% mean GC content. The putative transcription termination, and initiation sites as well as a large number of methylation sites were found to be present in the IGS of E. arundinaceus compared to other plants. The phylogenic tree constructed using the E. arundinaceus IGS sequence showed that Miscanthus sinensis var. glaber was genetically close to Saccharum spp. while E. arundinaceus was close to Imperata cylindrica. Moreover, fluorescent in situ hybridization revealed that IGS and pTa71 probes had the same locus at nucleolar organizer regions. Taken together, this work enhances our current understanding of the organization of IGS in E. arundinaceus and provides a molecular evidence for an evolutionary relationship between Saccharum spp., E. arundinaceus, I. cylindrica and M. sinensis var. glaber.
Collapse
|
45
|
The chromatin landscape of the ribosomal RNA genes in mouse and human. Chromosome Res 2019; 27:31-40. [PMID: 30617621 DOI: 10.1007/s10577-018-09603-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 12/21/2018] [Accepted: 12/26/2018] [Indexed: 12/21/2022]
Abstract
The rRNA genes of mouse and human encode the three major RNAs of the ribosome and as such are essential for growth and development. These genes are present in high copy numbers and arranged as direct repeats at the Nucleolar Organizer Regions on multiple chromosomes. Not all the rRNA genes are transcriptionally active, but the molecular mechanisms that determine activity are complex and still poorly understood. Recent studies applying a novel Deconvolution Chromatin Immunoprecipitation (DChIP-Seq) technique in conjunction with conditional gene inactivation provide new insights into the structure of the active rRNA genes and question previous assumptions on the role of chromatin and histone modifications. We suggest an alternative model for the active rRNA gene chromatin and discuss how this structure is determined and maintained.
Collapse
|
46
|
Wang M, Bokros M, Theodoridis PR, Lee S. Nucleolar Sequestration: Remodeling Nucleoli Into Amyloid Bodies. Front Genet 2019; 10:1179. [PMID: 31824572 PMCID: PMC6881480 DOI: 10.3389/fgene.2019.01179] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 10/24/2019] [Indexed: 01/14/2023] Open
Abstract
This year marks the 20th anniversary of the discovery that the nucleolus can temporarily immobilize proteins, a process known as nucleolar sequestration. This review reflects on the progress made to understand the physiological roles of nucleolar sequestration and the mechanisms involved in the immobilization of proteins. We discuss how protein immobilization can occur through a highly choreographed amyloidogenic program that converts the nucleolus into a large fibrous organelle with amyloid-like characteristics called the amyloid body (A-body). We propose a working model of A-body biogenesis that includes a role for low-complexity ribosomal intergenic spacer RNA (rIGSRNA) and a discrete peptide sequence, the amyloid-converting motif (ACM), found in many proteins that undergo immobilization. Amyloid bodies provide a unique model to study the multistep assembly of a membraneless compartment and may provide alternative insights into the pathological amyloidogenesis involved in neurological disorders.
Collapse
Affiliation(s)
- Miling Wang
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, United States
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Michael Bokros
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, United States
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Phaedra Rebecca Theodoridis
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, United States
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Stephen Lee
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, United States
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Urology, Miller School of Medicine, University of Miami, FL, United States
- *Correspondence: Stephen Lee,
| |
Collapse
|
47
|
Handa H, Kanamori H, Tanaka T, Murata K, Kobayashi F, Robinson SJ, Koh CS, Pozniak CJ, Sharpe AG, Paux E, Wu J, Nasuda S. Structural features of two major nucleolar organizer regions (NORs), Nor-B1 and Nor-B2, and chromosome-specific rRNA gene expression in wheat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:1148-1159. [PMID: 30238531 DOI: 10.1111/tpj.14094] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 09/09/2018] [Accepted: 09/11/2018] [Indexed: 06/08/2023]
Abstract
The reference genome sequence of wheat 'Chinese Spring' (CS) is now available (IWGSC RefSeq v1.0), but the core sequences defining the nucleolar organizer regions (NORs) have not been characterized. We estimated that the total copy number of the rDNA units in the wheat genome is 11 160, of which 30.5%, 60.9% and 8.6% are located on Nor-B1 (1B), Nor-B2 (6B) and other NORs, respectively. The total length of the NORs is estimated to be 100 Mb, corresponding to approximately 10% of the unassembled portion of the genome not represented in RefSeq v1.0. Four subtypes (S1-S4) of the rDNA units were identified based on differences within the 3' external transcribed spacer regions in Nor-B1 and Nor-B2, and quantitative PCR indicated locus-specific variation in rDNA subtype contents. Expression analyses of rDNA subtypes revealed that S1 was predominantly expressed and S2 weakly expressed, in contrast to the relative abundance of rDNA subtypes in the wheat genome. These results suggest a regulation mechanism of differential rDNA expression based on sequence differences. S3 expression increased in the ditelosomic lines Dt1BL and Dt6BL, suggesting that S3 is subjected to chromosome-mediated silencing. Structural differences were detected in the regions surrounding the NOR among homoeologous chromosomes of groups 1 and 6. The adjacent regions distal to the major NORs were expanded compared with their homoeologous counterparts, and the gene density of these expanded regions was relatively low. We provide evidence that these regions are likely to be important for autoregulation of the associated major NORs as well as silencing of minor NORs.
Collapse
Affiliation(s)
- Hirokazu Handa
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Tsukuba, 305-8518, Japan
| | - Hiroyuki Kanamori
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Tsukuba, 305-8518, Japan
| | - Tsuyoshi Tanaka
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Tsukuba, 305-8518, Japan
| | - Kazuki Murata
- Laboratory of Plant Genetics, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Fuminori Kobayashi
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Tsukuba, 305-8518, Japan
| | - Stephen J Robinson
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK, S7N 0X2, Canada
| | - Chu S Koh
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, S7N 4J8, Canada
| | - Curtis J Pozniak
- Crop Development Centre, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada
| | - Andrew G Sharpe
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, S7N 4J8, Canada
| | - Etienne Paux
- GDEC, INRA, Université Clermont Auvergne, 63000, Clermont-Ferrand, France
| | - Jianzhong Wu
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Tsukuba, 305-8518, Japan
| | - Shuhei Nasuda
- Laboratory of Plant Genetics, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| |
Collapse
|
48
|
Porokhovnik LN, Lyapunova NA. Dosage effects of human ribosomal genes (rDNA) in health and disease. Chromosome Res 2018; 27:5-17. [PMID: 30343462 DOI: 10.1007/s10577-018-9587-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 09/07/2018] [Accepted: 09/24/2018] [Indexed: 02/02/2023]
Abstract
Human ribosomal RNA genes encoding a pre-transcript of the three major ribosomal RNA (18S, 5.8S, and 28S rRNA) are tandemly repeated in human genome. Their total copy number varies from 250 to 670 per diploid genome with a mean of approximately 420 copies, but only a fraction of them is transcriptionally active. The functional consequences of human ribosomal RNA gene dosage are not widely known and often assumed to be negligible. Here, we review the facts of rRNA gene dosage effects on normal growth and aging, stress resistance of healthy individuals, and survivability of patients with chromosomal abnormalities, as well as on the risk and severity of some multifactorial diseases with proven genetic predisposition. An original hypothesis that rRNA gene dosage can be a modulating factor involved in the pathogenesis of schizophrenia and rheumatoid arthritis is put forward.
Collapse
Affiliation(s)
- L N Porokhovnik
- Research Centre for Medical Genetics, 1 Moskvorechie str, Moscow, 115478, Russia.
| | - N A Lyapunova
- Research Centre for Medical Genetics, 1 Moskvorechie str, Moscow, 115478, Russia
| |
Collapse
|
49
|
Relationship between epigenetic marks and the behavior of 45S rDNA sites in chromosomes and interphase nuclei of Lolium-Festuca complex. Mol Biol Rep 2018; 45:1663-1679. [PMID: 30121822 DOI: 10.1007/s11033-018-4310-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 08/14/2018] [Indexed: 10/28/2022]
Abstract
The grasses of the Lolium-Festuca complex show a prominent role in world agricultural scenario. Several studies have demonstrated that the plasticity of 45S rDNA sites has been recently associated with the possible fragility of the loci. Often, these fragile sites were observed as extended sites and gaps in metaphases. This organization can be evaluated in relation to their transcriptional activity/accessibility through epigenetic changes. Thus, this study aimed to investigate the relationship of the 5-methylcytosine and histone H3 lysine-9 dimethylation in different conformations of 45S rDNA sites in interphase nuclei and in metaphase chromosomes of L. perenne, L. multiflorum and F. arundinacea. The FISH technique using 45S rDNA probes was performed sequentially after the immunolocalization. The sites showed predominantly the following characteristics in the interphase nuclei: intra- and perinucleolar position, decondensed or partially condensed and hypomethylated and hyper/hypomethylated status. Extranucleolar sites were mainly hypermethylated for both epigenetic marks. The 45S rDNA sites with gaps identified in metaphases were always hypomethylated, which justifies it decondensed and transcriptional state. The frequency of sites with hypermethylated gaps was very low. The structural differences observed in these sites are directly related to the assessed epigenetic marks, justifying the different conformations throughout the cell cycle.
Collapse
|
50
|
Malinovskaya EM, Ershova ES, Golimbet VE, Porokhovnik LN, Lyapunova NA, Kutsev SI, Veiko NN, Kostyuk SV. Copy Number of Human Ribosomal Genes With Aging: Unchanged Mean, but Narrowed Range and Decreased Variance in Elderly Group. Front Genet 2018; 9:306. [PMID: 30131826 PMCID: PMC6090032 DOI: 10.3389/fgene.2018.00306] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/19/2018] [Indexed: 01/24/2023] Open
Abstract
Introduction: The multi-copied genes coding for the human 18, 5.8, and 28S ribosomal RNA (rRNA) are located in five pairs of acrocentric chromosomes forming so-called rDNA. Human genome contains unmethylated, slightly methylated, and hypermethylated copies of rDNA. The major research question: What is the rDNA copy number (rDNA CN) and the content of hypermethylated rDNA as a function of age? Materials and Methods: We determined the rDNA CN in the blood leukocyte genomes of 651 subjects aged 17 to 91 years. The subjects were divided into two subgroups: “elderly” group (E-group, N = 126) – individuals over 72 years of age (the age of the population’s mean lifetime for Russia) and “non-elderly” group (NE-group, N = 525). The hypermethylated rDNA content was determined in the 40 DNA samples from the each group. The change in rDNA during replicative cell senescence was studied for the cultured skin fibroblast lines of five subjects from NE-group. Non-radioactive quantitative dot- and blot-hybridization techniques (NQH) were applied. Results: In the subjects from the E-group the mean rDNA CN was the same, but the range of variation was narrower compared to the NE-group: a range of 272 to 541 copies in E-group vs. 200 to 711 copies in NE-group. Unlike NE-group, the E-group genomes contained almost no hypermethylated rDNA copies. A case study of cultured skin fibroblasts from five subjects has shown that during the replicative senescence the genome lost hypermethylated rDNA copies only. Conclusion: In the elderly group, the mean rDNA CN is the same, but the range of variation is narrower compared with the younger subjects. During replicative senescence, the human fibroblast genome loses hypermethylated copies of rDNA. Two hypotheses were put forward: (1) individuals with either very low or very high rDNA content in their genomes do not survive till the age of the population’s mean lifetime; and/or (2) during the aging, the human genome eliminates hypermethylated copies of rDNA.
Collapse
|